
 
 
 
 

Semantic Multi-Criteria Decision Making in Autonomous 
Embedded Systems 

 
 
 
 
 

Von der Fakultät für Elektrotechnik und Informatik 
 
 

der Gottfried Wilhelm Leibniz Universität Hannover 
zur Erlangung des Grades eines 

 
DOKTORS DER INGENIEURWISSENSCHAFTEN 

 
Dr.-Ing. 

 
 
 
 
 

genehmigte Dissertation 
von 

 
M. Sc. Ghadi Mahmoudi 

 
geboren am 10 Oktober 1975, in Latakia, Syrien 

 
 
 

2009 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Referent:    Prof. Dr.-Ing. C. Müller-Schloer 
Koreferent:    Prof. Dr. Nicola Henze 
Tag der Promotion: 26. Juni 2009



 

i

Summary 
The increasing complexity of modern computer systems emerges as a real challenge for both 
the users and the designers. According to the innovative vision of Organic Computing 
systems, the system components will profit from their autonomy to perform a self-
organization, and subsequently, to reach a high degree of adaptivity. 

The goal of this thesis is to investigate the vision of Organic Computing and its realization in 
embedded computer systems. An interdisciplinary methodology called “Semantic Multi-
Criteria Decision Making” (SeMCDM), has been suggested and evaluated regarding different 
aspects. The new methodology adopts a marketplace-oriented behavior pattern for the 
autonomous system components. 

The shift of the design decisions from the human designer to the autonomous system 
components implies a balancing knowledge transfer in the same direction. From this central 
idea two issues emerge: The first issue addresses the form of the knowledge to be transferred, 
while the second issue deals with the appropriate mechanisms for autonomous decision 
making. 

Similar to the Semantic Web, the necessity for a common, machine processable, 
understanding of the world has been recognized. An ontology-based description of the world 
offers an optimal solution to represent the knowledge of several human designers, to transfer 
the knowledge to the autonomous system components, and to build a communication 
language between the autonomous system components. While processing the ontological 
knowledge, the autonomous units share also the same semantic with the human designers and 
users. 

This thesis defines the autonomous decision making as a selection problem, which is strongly 
affected by the existence of multiple, conflicting, criteria. Methods for making decision under 
multiple criteria, which are known from the research field of “Operations Research”, have 
been categorized and analyzed to proof their adequacy for the purposes of autonomous system 
components. In the light of the adopted MCDM-Methods, development tools have been 
designed and actually embedded within an ontology development environment. A specially 
developed MCDM-ontology builds a bridge between two worlds: Ontologies and MCDM. A 
set of inference rules enhances a conventional inference engine to be a MCDM-capable 
inference engine. 

Through the merge of both technologies, this thesis presents not only a new concept of 
Semantic Multi-Criteria Decision Making SeMCDM, but also a complete platform for the 
design and deployment of autonomous system components in self-organizing systems. 

The investigation of current automotive communication systems, together with the creation of 
a catalog of requirements, targets at the identification of possible applications for SeMCDM-
based self-organizing embedded systems. Applications of MOST (Media Oriented Systems 
Transport) bus system have been selected as example applications of SeMCDM. 

The marketplace-oriented behavior pattern of the autonomous system components is also a 
theme of an intensive investigation in this thesis. The suggested market scenarios specify the 
details of the generally known marketplace-oriented behavior pattern, and reveal several 
possibilities of role assignments. Furthermore, the performance of the market scenarios has 
been investigated by means of simulation, taking the nature of the application environment 
into account. The results have been summarized as design recommendations.  

 
Keywords: Organic Computing, Multi-Criteria Decision Making, Marketplace 



 

ii

Zusammenfassung 

Die steigende Komplexität moderner Computersysteme entwickelt sich zu einer ernsthaften  
Herausforderung für die Benutzer und für die Entwickler. Nach der innovativen Vision der 
Organischen Computer Systeme, werden die Systemkomponenten von ihrer Autonomie 
profitieren, um eine selbst-organisation durchzuführen und damit eine hohe 
Adaptivitätsfähigkeit zu erreichen. 

Das Ziel dieser Arbeit liegt in der Erforschung der Vision der organischen Computersysteme 
und ihrer Realisierung in eingebetteten Computerarchitekturen. Eine interdisziplinäre 
Methodologie, genannt „Semantic Multi-Criteria Decision Making“ (SeMCDM), wurde hier 
vorgeschlagen und unter mehreren Aspekten evaluiert. Die neue Methodologie übernimmt ein 
Marktplatz-orientiertes Verhaltensmuster für die autonomen Systemkomponenten. 

Die Übertragung der Designentscheidung vom menschlichen Entwickler auf die autonomen 
Systemkomponenten setzt eine balancierende Wissensübertragung in der gleichen Richtung 
voraus. Aus diesem zentralen Gedanken sind zwei Zweigfragen entstanden: Die erste Frage 
betrifft die Form des zu übertragenden Wissens, während sich die zweite Frage mit den 
geeigneten Mechanismen zum autonomen Fällen von Designentscheidungen beschäftigt. 

In einer Analogie zum Semantik Web, wurde für die autonomen Systemkomponenten der 
Bedarf nach einem einheitlichen, maschinell-verarbeitbaren, Verständnis der Welt erkannt. 
Eine Ontologie-basierte Weltbeschreibung bietet eine optimale Lösung zur Darstellung des 
Wissens mehrer menschlichen Entwicklern, zur Wissensübertragung in die autonomen 
Systemkomponenten und zur Kommunikation zwischen den autonomen Systemkomponenten. 
Auch bei der maschinellen Verarbeitung des ontologischen Wissens teilen sich alle 
autonomen Systemkomponenten die gleiche Semantik mit den menschlichen Entwicklern und 
Benutzern. 

Diese Thesis definiert die autonome Designentscheidung als ein Selektionsproblem, das von 
der Existenz mehrerer, widersprüchlichen, Auswahlkriterien geprägt ist. Aus dem 
Forschungsgebiet „Operations Research“ wurden bekannte Methoden zur Entscheidung in 
Betrachtung mehrerer Kriterien (Multi-Criteria Decision Making, MCDM) kategorisiert und 
auf ihrer Eignung für Zwecke der autonomen Systemkomponenten geprüft. Zu den geeigneten 
MCDM-Methoden wurden Entwicklungswerkzeuge konzipiert und sogar in einer 
Ontologieentwicklungsumgebung eingebettet. Eine speziell entwickelte MCDM-Ontologie 
bildet eine Brücke zwischen den zwei Welten: Ontologien und MCDM. Ein Satz von 
Schlussfolgerungsregeln erweitert eine herkömmliche Inferenzmaschine zu einer MCDM-
fähigen Inferenzmaschine.  

Mit der Vereinigung dieser Technologien stellt diese Thesis nicht nur das neue Konzept zum 
Semantic Multi-Criteria Decision Making SeMCDM vor, sondern auch eine komplette 
Plattform zur Entwicklung und Verwendung autonomer Systemkomponenten in selbst-
organisierenden Systemen. 

Eine Untersuchung der heutigen Automobilkommunikationssysteme und die Erstellung eines 
Anforderungskatalogs zielen auf die Erkennung möglicher Applikationsgebieten für 
SeMCDM-basierte selbst-organisierende eingebettete Systeme. Anwendungen um das MOST 
(Media Oriented Systems Transport) Bussystem wurden als Beispielapplikationen of 
SeMCDM ausgewählt. 

Das Marktplatz-orientiertes Verhaltensmuster der autonomen Systemkomponenten ist auch 
ein Thema einer intensiven Untersuchung in dieser Thesis. Die hier vorgeschlagenen 
Marktplatzszenarien konkretisieren das allgemein bekannte Verhaltenmuster und decken 
mehrere mögliche Rollenverteilungen auf. Ferner, die Performanz der Marktplatzszenarien 
wurde im Zusammenhang mit den Eigenschaften der Applikationsumgebung an Hand einer 
Simulation untersucht. Die Ergebnisse wurden zu Designempfehlungen zusammengefasst. 



 

iii

Schlagwörter: Organic Computing, Multi-Criteria Decision Making, Marktplatz 

 



 

iv

Contents 
1. Introduction 1 

1.1. Goals and criteria 1 
1.2. Overview about the thesis 2 

2. State of the art 4 
2.1. Organic Computing 4 
2.2. Organic behavior in automotive systems 5 

2.2.1 Automotive systems 6 
2.2.2 DySCAS 8 
2.2.3 EvoArch 9 
2.2.4 Conclusion 11 

2.3. The Contract Net Protocol 11 
2.4. Semantic Web 13 

2.4.1 The Semantic Web 13 
2.4.2 The role of ontologies in the SW 13 
2.4.3 Ontologies versus taxonomies 14 
2.4.4 The SW in the practice 14 
2.4.5 Reasoning 14 
2.4.6 The stack of the Semantic Web 15 

2.5. Decision problems considering multiple criteria 16 
2.5.1 Multi-Objective Decision Making MODM 16 
2.5.2 Multi-Criteria Decision Making MCDM 17 
2.5.3 MCDM methods 17 

2.6. Ontologies and Multi-Criteria Decision Making problems 27 
2.6.1 Selection of optimal results of semantic queries with soft constraints 27 
2.6.2 Ontologies and decision making in loosely coupled management centres 28 
2.6.3 Ontologies and basic forms of MCDM for competence management 29 
2.6.4 KOWIEN: Ontologies and goal programming for competence management systems 29 
2.6.5 Summary 31 

2.7. Automotive communication platforms 32 
2.7.1 CAN BUS 32 
2.7.2 Local Interconnect Network LIN 35 
2.7.3 FlexRay 35 
2.7.4 Media Oriented Systems Transport MOST 36 

3. Semantic Multi-Criteria Decision Making 38 
3.1. Critique of current approaches 38 

3.1.1 DySCAS 38 
3.1.2 EvoArch 38 
3.1.3 Approaches of Contract Net Protocol 40 

3.2. The basic idea of Semantic Multi-Criteria Decision Making SeMCDM 41 
3.3. Advantages of SeMCDM 43 
3.4. Design issues and open questions 44 

4. Design of SeMCDM 45 
4.1. Multi-Criteria Decision Making for autonomous systems 45 

4.1.1 Requirements 45 
4.1.2 Selection of suitable decision making methods 46 

4.2. Ontologies of the SeMCDM architecture 50 
4.2.1 The kernel ontology 50 
4.2.2 MCDM ontology 52 
4.2.3 Domain ontologies 54 

4.3. Semantic matching for MCDM 55 



 

v

4.3.1 Semantic of the utility functions in relation to offers 55 
4.3.2 Semantic of the utility functions in relation to enquiries 56 
4.3.3 Semantic matching between properties 56 
4.3.4 Semantic matching between utility functions 56 

4.4. Generalized matching process 59 
4.4.1 First matching step 59 
4.4.2 Second matching step 60 

4.5. The Generalized matching process and the marketplace-oriented behavior 60 
4.5.1 Conditions on the allocation of the matching steps on autonomous units 60 
4.5.2 Market scenarios 61 
4.5.3 Summary 65 

4.6. Selection of automotive communication platforms 65 
4.6.1 Requirements on the communication platform 65 
4.6.2 Assessment of the CAN Bus as a communication platform for SeMCDM 66 
4.6.3 Assessment of LIN as a communication platform for SeMCDM 68 
4.6.4 Assessment of FlexRay as a communication platform for SeMCDM 68 
4.6.5 Assessment of MOST as a communication platform for SeMCDM 69 
4.6.6 Conclusion 69 

4.7. Design support 70 
4.7.1 Features’ weighting tool OntoAHP 70 
4.7.2 OntoUtil for the utility assessment of features 71 

5. Evaluation 72 
5.1. SeMCDM: A concept under evaluation 72 
5.2. Methodology 72 
5.3. Simulation Environment 73 

5.3.1 Prototype of the architecture 73 
5.4. Matching time 81 
5.5. Evaluation of alternative market scenarios 82 

5.5.1 Assessment criteria of the market scenarios 82 
5.5.2 Settings of the application environment 83 
5.5.3 Settings of the computing load and timing parameters 85 
5.5.4 Simulation results of the market scenarios 85 
5.5.5 Conclusion 92 
5.5.6 Summary 93 

6. Conclusion and future work 95 

7. Bibliography 97 



 

vi

List of Figures 
Figure 2-1 AUTOSAR ECU layered architecture (from [F+06])............................................... 7 
Figure 2-2 AUTOSAR development methodology (from [Aut08]) .......................................... 7 
Figure 2-3 EvoArch suggests a marketplace-oriented behavior, where autonomic units 

exchange enquiries and offers. ......................................................................................... 10 
Figure 2-4  Taxonomy selection: Restrictions about possible partners (green), favorite partners 

(blue) and excluded partners (red) are made on taxonomically ordered autonomous units 
[H+02]. ............................................................................................................................. 10 

Figure 2-5 The Contract Net Protocol as defined by FIPA [FIPA02]. .................................... 12 
Figure 2-6 Stack of the Semantic Web (from www.Semantic-Conference.com).................... 15 
Figure 3-1 The main contribution of this thesis is the integration of concepts originating from 

different research areas into a practically usable methodology. ...................................... 42 
Figure 3-2 Semantic Multi-Criteria Decision Making: From the technical point of view....... 43 
Figure 4-1 The kernel ontology of the SeMCDM architecture. ............................................... 51 
Figure 4-2 A onePointUtilityFunction ..................................................................................... 52 
Figure 4-3 A MultiPointUtilityFunction .................................................................................. 53 
Figure 4-4 A LinearUtilityFunction ......................................................................................... 53 
Figure 4-5 A UnityFunctionInsideOfRange ............................................................................. 54 
Figure 4-6 A unityFunctionOutsideOfRange........................................................................... 54 
Figure 4-7 A feature of an (active) autonomous unit is described with the help of three types 

of ontologies. .................................................................................................................... 55 
Figure 4-8 Scenario 1 is an enquiry-oriented scenario............................................................. 63 
Figure 4-9 Scenario 2A is an offer-oriented scenario. ............................................................. 63 
Figure 4-10 Scenariao 2B is an offer-oriented scenario, which tries to overcome the 

disadvantages of scenario 2A. .......................................................................................... 64 
Figure 4-11Scenario 3 is a central scneraio. ............................................................................ 64 
Figure 4-12 A capture of Protégé showing the weighting widget, the green value of 

consistency ratio CR indicates acceptable estimation matrix in terms of its consistency.
.......................................................................................................................................... 70 

Figure 4-13 OntoUtil helps to parameterize the utility functions. The user can parameterize a 
linear utility function from the MCDM ontology by giving in two relevant points. ....... 71 

Figure 4-14 The description of autonomous units with the help of SeMCDM ontologies, 
OntoAHP and OntoUtil. ................................................................................................... 71 

Figure 5-1 Main window of SeMCDM prototype. .................................................................. 74 
Figure 5-2 Adding an autonomous units manually. ................................................................. 74 
Figure 5-3 An example of a unit file ........................................................................................ 75 
Figure 5-4 Rule for utility check of two multi point utility functions...................................... 76 
Figure 5-5 Rule for utility check between a multi point utility function and a cubic function.76 
Figure 5-6 Rule for utility check between a multi point utility function and an interval utility 

function............................................................................................................................. 77 
Figure 5-7 Rule for utility check between two Likert scaled functions (qualitative values). .. 77 
Figure 5-8 MOST device in relation to the functions blocks and to the automotive bus 

systems. ............................................................................................................................ 78 
Figure 5-9 Ontology of MOST function blocks as defined for MOST devices....................... 78 
Figure 5-10 Part of the domain ontologies............................................................................... 79 
Figure 5-11 Application specific rule discovers the technology of a MOST device on the base 

of the technology of its main element. ............................................................................. 79 
Figure 5-12 The configuration of an example system as a result of the semantic matching and 

application specific rules. ................................................................................................. 80 
Figure 5-13 Typical description of a wished component. ........................................................ 81 
Figure 5-14 Success rates of the market scenarios in the homogeneous environment. ........... 86 
Figure 5-15 Success rates of the market scenarios in the easy homogeneous environment. ... 86 
Figure 5-16 Success rates of the market scenarios in the heterogeneous environment. .......... 87 



 

vii

Figure 5-17 Success rate of the market scenarios in the easy heterogeneous environment..... 88 
Figure 5-18 Number of matching attempts achieved by the market scenarios in the 

homogeneous environment. ............................................................................................. 89 
Figure 5-19 Number of matching attempts achieved by the market scenarios in the easy 

homogeneous  environment. ............................................................................................ 89 
Figure 5-20 Number of matching attempts achieved by the market scenarios in the 

heterogeneous environment.............................................................................................. 90 
Figure 5-21 Number of matching attempts achieved by the market scenarios in the easy 

heterogeneous environment.............................................................................................. 91 
Figure 5-22 The quality of solution achieved by the market scenarios in different application 

environments. ................................................................................................................... 91 
Figure 5-23 Evaluation of the market scenarios in four different environments. .................... 92 



 

viii

List of Tables 
Table 2-1 Random Consistency Index (CRI) in relation to the matrix size n.......................... 21 
Table 2-2 Saaty's scale of relative importances ....................................................................... 22 
Table 2-3 Efficiency of CANopen with segmented SDO for different numbers of data bytes35 
Table 2-4 the efficiency values of block transfer in CANopen for different lengths of data... 35 
Table 3-1 A comparison between DySCAS and EvoArch. ..................................................... 40 
Table 4-1 Comparison between weighting methods ................................................................ 48 
Table 4-2 Ranking methods in terms of the concerning requirements .................................... 49 
Table 4-3 Example combinations between (quantitative) utility functions. ............................ 57 
Table 4-4 Utility check for all combinations of utility functions on the enquiry side (rows) and 

on the offer side (columns)............................................................................................... 58 
Table 4-5 Utility calculation for all combinations of utility functions on the enquiry side 

(rows) and on the offer side (columns) ............................................................................ 59 
Table 4-6 Possible market scenarios with their specifications................................................. 62 
Table 4-7 Assessment of automotive bus systems ................................................................... 69 
Table 5-1 SeMCDM in comparison with approaches of automotive systems. ........................ 72 
Table 5-2 Simulation settings of the application environments. .............................................. 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

1. Introduction 
The rapid development of electronics and software engineering opens the way for new 
applications and capabilities. Computers are not only our work platform. We meet them 
everywhere in our environment; more in their embedded form than in their traditional 
“personal” form. 

Beside this positive trend, the complexity of the systems increases. Portable telephones are 
equipped now with technologies, which were only some years ago, a luxury on a personal 
computer. The interconnection of distributed systems, which have to work together to fulfil 
our expectations, represents a real challenge for engineers. Such difficulties are not any more 
scientific fiction. The automotive systems show the limits of the traditional way towards a 
“well functioning design”. Main manufacturers and huge numbers of suppliers are no more 
able to cope with the integration problem of their “intelligent devices”. Unexpected behavior 
and failure are the results of such situation. Additionally and surely more dangerous problems 
arise at runtime. Technicians in the repair and assembly shop have usually restricted 
possibilities to identify the source of failure. The possibilities to correct it are consequently 
not better. The integration of new devices or the updating of available software to new 
versions is not imaginable without side effects. 

The manufacturers of automotive systems expressed in the last years their interest on new 
concepts and solutions. Especially the shift of the solution from the design time to the run-
time has become a conceivable idea. The kernel of such approaches is the autonomy of 
system components. Through their cooperative behavior, the components are expected to find 
a solution in dangerous or sub-optimal situations. The resulting adaptive system is described 
as self-organizing. 

Autonomy and the self-organization are basic concepts in the research field of “Organic 
Computing” (OC). The organic dimension is inherited from fascinating creatures, which enjoy 
high performance and find innovative solutions through the cooperation of a high number of, 
in reality weak, individuals. The ants’ colonies, for example, have inspired scientists with new 
and practical ideas. Alone the idea that “the overall performance seems to be more than the 
sum of the individuals’ efforts” stands behind many research projects of possibly high 
importance for future engineering solutions. 

However, the autonomy of system components takes the design authority away from the 
hands of experienced engineers. Therefore, self-organization has been often met with sceptic 
questions about its feasibility and control.  

1.1. Goals and criteria 
This thesis investigates the possibilities of integrating self-organizing behavior in real 
applications. It shows that the autonomy of system components can play a positive role in 
building adaptive systems. 

The main point here is an abstraction of the self-organization from a matter of control to a 
matter of knowledge. An autonomous system component should have a clear imagination 
about itself, about the other components, and about the expected functionality from the whole 
system. This knowledge has been always monopolized by the human designer. The time is 
coming to transfer the knowledge and to place it to the disposal of autonomous system 
components. Only the shift of knowledge will balance the shift of authority. 

The first challenge towards the realization of this vision is to find an adequate language to 
express the engineering knowledge, which is a result of long experience, made by an 



 

2 

unknown number of people. This language should not be readable only by engineers, but also 
digitally processable by system components. 

The second challenge is to support the system components with mechanisms to make use of 
the available knowledge. The system components should be capable of translating knowledge 
to decisions and actions. 

The third challenge is to deliver design tools to support the knowledge transfer process. Such 
tools have to be able to ensure the consistency of the given knowledge. An especially 
important issue here is to find tools which support collaborative development of knowledge. 
Only the collaboration between engineers on the level of knowledge development will lead to 
collaborative self-organizing system components. 

A suitable application field is vital for the deployment of the self-organizing concept in real 
systems. The automotive industry offers a wide range of complicated systems, with a real 
need for know-what and know-how knowledge. On the other hand, critical applications are 
not adequate as a test field of novel concepts. A reasonable balance should be always kept in 
mind. 

The estimation of the success, the performance and resource demand would then give a clear 
image about the self-organizing concept. 

1.2. Overview about the thesis 
This thesis builds on interdisciplinary research. The roots of the main idea go back to Organic 
Computing, to approaches of organic adaptive systems in automotive industry, to the 
Semantic Web and to methods from operations research. 

For the first time an approach has been established, which allows for a useful knowledge 
transfer from the human designer to self-organizing systems. The autonomous ontology-based 
decision making with the existence of multiple criteria is the main contribution of this thesis. 
This novel approach has the name of Semantic Multi-Criteria Decision Making (SeMCDM). 
The suggested concept is specified to a concrete architecture and implemented as a prototype 
to proof its functionality and to evaluate its performance in different technical aspects. 

This thesis is organised as follows: 

A state of the art survey is conducted in chapter 2. The organic computing is presented in 
section 2.1, while a special section 2.2 addresses the developments in the field of automotive 
systems with special concentration on approaches trying to involve principles of Organic 
Computing in the automotive industry. 

Approaches around the Contract Net Protocol are summarized in section 2.3. 

The Semantic Web is the theme of section 2.4. 

Methods for Multi-Criteria Decision Making have been systematically categorized and 
explained in section 2.5. 

First approaches proposing the integration of ontological knowledge and MCDM are 
presented in section 2.6. 

Section 2.7 provides an overview about automotive communication platforms. 

Chapter 3 discovers the shortcomings of existing approaches considering the adoption of 
Organic Computing principles in automotives and suggests the novel concept of Semantic 
Multi-Criteria Decision Making (SeMCDM). The expected advantages of SeMCDM have 
been then explained, before discovering a set of challenging design questions. 



 

3 

Chapter 4 considers these design questions and finds adequate solutions. In section 4.1, the 
suitable MCDM methods have been recognized by applying a requirement catalog on the 
methods surveyed in section 2.5. 

Section 4.2 presents the ontologies of SeMCDM and illustrates their interrelation. 

Section 4.3 deals with the effects of integrating the ontology-based semantic matching with 
MCDM methods and presents special matching rules to build the capability of “semantic 
matching for MCDM”. The generalized matching process, presented in section 4.4, applies 
this capability to reach a complete specification of SeMCDM. 

In section 4.5, the specified concept of SeMCDM finds its application on the base of a 
marketplace-oriented behavior of autonomous system components. The integration of both 
ideas shows different combinations and roles distribution possibilities on the marketplace. A 
set of market scenarios emerges in this section. 

Having a clear specification of SeMCDM, suitable application areas in the automotive 
industry have been found in section 4.6. 

Design tools of SeMCDM-capable autonomous system components have been specified and 
implemented, as shown in section 4.7. 

The suggested concepts and architecture of SeMCDM have been evaluated in chapter 5. The 
implemented prototype validates the SeMCDM concept and its basic functionality, as shown 
in section 5.3. An estimation about the resource demands of SeMCDM is presented in section 
5.4. The fitness of the market scenarios in different embedded application environments has 
been studied on the base of a special simulation model, presented in section 5.5. 

The thesis concludes in chapter 6 with a summary and ideas for further research and future 
developments. 



 

4 

2. State of the art 
Organic Computing represents the theoretical base of this thesis. Section 2.1 introduces the 
concepts of Organic Computing and its main notions like self-organization, autonomy and 
emergence. 

Section 2.2 treats approaches from the world of automotive industry, where self-organization 
plays a central role. Additionally, approaches of marketplace-oriented behavior around the 
Contract Net Protocol are the theme of section 2.2. (On the base of information presented in 
sections 2.2 and 2.2, a comparison between these approaches and their shortcomings will be 
discussed in section 3.1). 

This section gives also information about the enabling technologies and methodologies, which 
(may) play a role in the design of Semantic Multi-Criteria Decision Making SeMCDM. To 
this reason the Semantic Web is presented in section 2.4. The Semantic Web has been proven 
as a future technology, which faces similar questions to those known from approaches of self-
organizing (automotive) systems. 

Section 2.5 introduces problems of decision making under multiple criteria. It contains a 
survey of MCDM methods. The survey has the aim of categorization of these methods, in 
order to make a comparison between them and to select suitable candidates for usage in 
SeMCDM. 

The integration of ontologies within a decision making process is the theme of section 2.6. 
Different integration attempts throw light on real need and benefits of such intention. 

Section 2.7 deals with the communication platforms of automotive systems. On the base of 
the presented information important conclusions about adequate applications of SeMCDM in 
the automotive field will be drawn in section 4.6. 

2.1. Organic Computing 
The Organic Computing Initiative (OCI) promises to face the increasing complexity of 
engineering systems with the usage of principles observed in natural systems [MS04]. A 
leading example of such principles is the ability of ants to find the shortest path by indirect 
communication via pheromones. Research approaches about “swarm intelligence” [BW89] 
try to find, for example, the shortest path to information sources. 

Application fields of Organic Computing are always supposed to be found where “the design 
complexity of the system is no more manageable, and the global behavior might be 
unexpected due to effects of interaction”. Such extreme situations can be more and more 
observed because of the “computerisation of our environment” [MS04].  

From the point of view of the Organic Computing Initiative, more autonomy of our technical 
systems should optimize their orientation towards our needs and construct them as robust, 
safe, flexible and trustworthy as possible. The autonomy of technical systems leads to self-
organized systems, which can adapt dynamically to the current conditions of the environment. 
Along with self-organization, a set of self-x attributes is expected to emboss the Organic 
Computing systems, like the self-configuration, self-healing, self-explanation, self-protection. 

Similar attributes have been announced as the goal of the Autonomic Computing (AC) vision 
[KC03]. However, the Organic Computing initiative addresses more general (application 
independent) questions and focuses on large collections of intelligent devices providing 
services to humans [HS05], whereas the Autonomic Computing concentrates on a specific 
problem concerning the automated administration of networks and computer centres. 



 

5 

Self-organization is based on the idea that local behavior of components decides about the 
global behavior of the systems. One of the most important issues addressed by the Organic 
Computing initiative is related to potential differences between local and global behavior. 
Such differences arise especially if the system consists of large numbers of components. This 
phenomenon, known as “emergence”, is defined as “an attribute of a total system which 
cannot be derived from the simple summation of properties of its constituent subsystems” 
[MS04]. Moreover, the definitions of emergence imply also a kind of surprising happenings, 
which are not pre-programmed explicitly into the subsystems. A resonant circuit may be the 
strongest example of the emergent behavior, where the resonance frequency constitutes a 
property of the total system which is not existent in the components. 

The Organic Computing initiative shows - on the one hand - high confidence about the future 
of its vision, on the other hand it is conscious of the difficulties before the vision can find a 
real implementation: “It is not the question whether self-organized and adaptive systems will 
arise but how they will be designed” [HS05]. 

Especially the emergence phenomenon has been limited to its safe version called “controlled 
emergence”, a mixture of hierarchical control (top-down design paradigm) self-organization 
(bottom-up design paradigm) [MS04]. A generic architectural concept for the design and 
analysis of Organic Computing systems has been developed: The Observer/Controller 
architecture [RMBMSS06]. The suggestion of such modelling architecture complies with the 
trend of combining concepts known from control theory in the design paradigms of 
computing systems [JHYPT05]. In a later work [SMS08], the degree of self-organization has 
been defined as a relation between the number of control mechanisms and the number of 
(autonomous) components. A system enjoys maximum “variability” if every component has a 
specific control mechanism. 

The self-organization implies possibly unexpected behavior of the system. To generate more 
trust into the dependability of a system a new paradigm of Organic Computing has been 
suggested, where “the objective for system design should be to design controllable self-
organizing systems, i.e. systems which allow for external control but have a high degree of 
autonomy as well” [SMS08]. The degree of autonomy of a system has been defined as the 
“complexity reduction”, measured as the difference between the internal control actions (the 
overall number of system’s attributes) and the external control actions (attributes to be set up 
by the human user). Strongly self-organized systems have high values of variability (highly 
distributed) and high degree of autonomy. 

Emergence has been defined as “self-organized order” [MMS06]. Consequently, the entropy, 
known as measure of order, has been suggested as a way to quantify the emergence of organic 
systems. 

A practical organic system can only be built on the base of distributed and reconfigurable 
systems. This means that a lot of small and intelligent components have to be available for the 
designer. Moreover, the designer would face a challenge when trying to determine local rules 
in the components in such a way, so that the expected global behavior of the system can be 
achieved. 

2.2. Organic behavior in automotive systems 
This section presents briefly the current situation and the trends in the field of automotive 
systems and their design methods. Ideas considering concepts of self-configuration and self-
organization in automotive systems are depicted in the following subsections considering two 
major projects: DySCAS [ARCJBE07] and EvoArch [HL05]. 



 

6 

The information provided in this section builds the base for a critique of current approaches in 
section 3.1, which proves the need for the novel concept of SeMCDM. 

2.2.1 Automotive systems 
The automotive systems underwent an enormous development in the last decades. Engine and 
transmission control, chassis control (brakes), body electronics (door control, climate control) 
and safety devices (air bags, pre-tensioning of seat-belts) are standard functionalities in 
modern vehicles. Infotainment and telematic devices, along with the personal portable devices 
of the driver extend the platform to new applications and possibilities. 

Applications of the automotive systems took steps forward, while their design concepts could 
not make a similar development. Developing new functionalities in software has aggravated 
the situation more and more. Standardization efforts were always necessary on the network 
level. So CAN, LIN, FlexRay and MOST are common terms in the world of automotive 
industry (for more details see section 2.7). On the other hand, the design of hardware and 
software was an issue of individual OEMs (Original Equipment Manufacturer) and vendors. 
To develop portable and reusable application software, the OSEK consortium [OVP03] 
proposed more standardization on the level of operating systems and communication since 
1993. OSEK stands for “Offene Systeme und deren Schnittstellen für die Elektronik in 
Kraftfahrzeugen“ ("Open Systems and their Interfaces for the Electronics in Motor 
Vehicles"). The main contribution of the OSEK consortium is the specification of a real time 
operating system for automotive embedded systems. Additionally, the OSEK consortium 
defined the OSEK Implementation Language (known as OSEK-OIL), which enables a 
configuration of the operating system’s resources in accordance with the application’s needs.  
A “system generator” selects the required system resources (resource files), which can be then 
compiled together with the application source files to generate an executable [OV04a]. Data 
transfer between tasks and/or operating system services has been standardized under the 
OSEK-COM specification [OV04b]. The standard applies to internal communication within 
one electronic control unit (ECU) and for external communication (between different ECUs). 
To enhance the development process, OSEK run time interface (OSEK-RTI) enables 
communication between a debug tool and the embedded operation system. This way, valuable 
internal operating system data and information about task states can be made visible to the 
developer [OV05]. OSEK Network Management (OSEK-NM) specification provides 
standardized features, which ensure the functionality of inter-networking by standardized 
interfaces [OV04c].  The network management ensures the safety and the reliability of the 
communication network through network monitoring. 

In the recent past, AUTOSAR (AUTomotive Open System ARchitecture) has been introduced 
as a further development of OSEK. AUTOSAR is “an open and standardized automotive 
software architecture, jointly developed by automobile manufacturers, suppliers and tool 
developers” [Aut03]. AUTOSAR defines a modular software architecture for automotive 
electronic control units (ECUs) (see Figure 2-1). AUTOSAR Runtime Environment (RTE) 
represents a special layer, separating the Basic SoftWare functionalities (BSW) from the 
AUTOSAR application software. AUTOSAR defines also the interfaces between the 
application software and the RTE, as well as between the RTE and the BSW. This way, the 
application software has been isolated from the hardware of the ECU and from the operating 
system (this architecture may remind software developers of the Java Virtual Machine and the 
Java technology [LY99]). 



 

7 

 
Figure 2-1 AUTOSAR ECU layered architecture (from [F+06]) 

In addition to this runtime environment, AUTOSAR presents a new development 
methodology [Aut08], see Figure 2-2. The AUTOSAR methodology covers steps of system 
development from the application source code to the executables on the ECUs. 

 

 
Figure 2-2 AUTOSAR development methodology (from [Aut08]) 

The start point of the system development is the “system configuration input”, which follows 
in its structure predefined templates. The information included in these templates addresses 
three main packages: The software components (software API, data types, ports interfaces 
etc.), the ECU resources (processor unit, memory, peripherals, sensor actuators etc.) and 
system constraints (like bus topology, mapping of software components belonging together). 
The mapping of software components to the ECUs takes place with regard to resources and 
timing requirements. This process is called “System Configuration”. From the resulting 
“System configuration Description”, ECU-specific information is then extracted. The 
configuration process of each ECU considers more information, like task scheduling and 
necessary BSW modules (and their configuration). On the base of the resulting “ECU 
Configuration Description”, executables will be then generated. This process involves code 



 

8 

generation (for the RTE and BSW), code compiling (of the generated code and of the 
software components available as source code) and finally linking everything together into an 
executable. 

The system configuration in AUTOSAR is still a design issue, where software components 
are statically mapped to ECUs at design time. 

2.2.2 DySCAS 
DySCAS (Dynamically Self-Configuring Automotive Systems) is an European Commission 
funded project that started in June 2006 [ARCJBE07]. DySCAS declares the goal of building 
a vehicular control system architecture that supports self-configuration. Benefits of such an 
architecture meet needs of the designers and users of future automobiles. The dynamic 
upgrade of automotive software counts as an important advantage. If a serious fault occurs, 
dynamic upgrade in the field is the only way to avoid expensive recall. Moreover, owners 
have increasingly high expectations for infotainment services on the move and want to get 
benefit of their handheld devices, the embedded devices in the vehicle and the wireless 
connection to the external world. This software-centric and network supported environment 
recalls the computer networks and the idea of Grid Computing [GC]. So the authors of 
[ARCJBE07] speak of “automotive control grid”. 

DySCAS promises automatic discovery and incorporation of new devices, as well as self-
optimisation to best use in terms of available resources (processing, storage, and 
communication resources), in addition to self-diagnostics.  

According to [ARCJBE07], DySCAS will focus mainly on the reconfiguration or self-
reconfiguration of software tasks in a standardized middleware. The underlying middleware is 
AUTOSAR. 

The theoretical roots of DySCAS are derived from the vision of Autonomic Computing 
[KC03]. Autonomic Computing shares similar concepts with Organic Computing (presented 
in section 2.1), like the need for more autonomy and some of the expected self-x properties. 
The vision of Autonomic Computing has been developed originally by IBM, which dates its 
first appearance to March 2001, as IBM’s senior vice president of research, Paul Horn, 
introduced this idea to the National Academy of Engineers at Harvard University. 

A control theoretical approach serves as a think model for DySCAS. This model comprises 
four steps: Sensing, control, feedback and adaptive control (learning during design time and 
run-time). 

The practical implementation of DySCAS was still an open question until 2007 where a study 
of existing technologies has been finished [Dys07] and a first suggestion of the DySCAS 
middleware has been proposed [AE07]. The middleware is supposed to combine two 
mechanisms: The policy-based computing and the utility functions. 

The policy-based computing is “a technique where the business function (or intent) is 
expressed as a set of rules or configuration statements (a policy) and kept detached from the 
implementation mechanism” [Dys07]. The policy determines the behavior of the system using 
a high-level language (i.e. a standardized and platform-independent language) [AE07]. The 
policy itself is stored separately from the deploying mechanism and is loaded at initialisation 
or even during run-time. 

Policies rely on a set of “context parameters” and their values. A context parameter can be, 
for example, the encoding type of a streaming device in the automobile. These context 
parameters are practically attributes of resources. Rules trigger actions on the base of values 
of such context parameters. 



 

9 

A study in [Dys07] distinguishes between static policies, open-loop policy adaptation (manual 
adaptation) and closed loop policy adaptation (automatic adaptation). The adaptation can be 
done within a policy by changing its rules; or using a meta-policy which selects and activates 
one of different available policies. This flexibility is one of the expected advantages of policy-
based computing. 

The utility functions (UF) “provide a means of choosing from several options, based on the 
instantaneous merit of each option” [Dys07]. The meant utility functions are exactly those 
presented in section 2.5.3.3 of this thesis, where multi-criteria decision making methods are 
surveyed. For purposes of DySCAS, the utility functions help to make decisions under the 
influence of several contextual factors. Utility functions require very low levels of processing 
and storage resources and are therefore suitable for use in embedded systems [Dys07]. They 
are preferred by the authors of [Dys07] because decisions can be made on the base of local 
knowledge, and so no more negotiations are needed. The disadvantage of being too static (the 
weights of utility functions are usually pre-defined at design time) is faced with ideas of 
dynamic weighting, which could be achieved by a combination of utility functions and policy-
based computing. A policy may provide a higher-level configuration of a utility function by 
setting its weights dynamically. A policy can also dynamically select which of several 
differently configured utility functions should be used at any specific time. 

The policy implementation is based upon the AGILE policy expression language and 
integration framework [ANT07]. The authors of [AE07] mention different advantages of 
AGILE like the support for hierarchical policies (enabling dynamic adaptation through policy 
selection), dynamic policy adaptation through rules reconfiguration, and the integration of 
utility functions into policy logic. AGILE has been developed in C++/.NET. The authors refer 
that the current version of AGILE is therefore not optimized for resource-constrained 
environments such as that represented by the DySCAS middleware. A lightweight version, 
AGILE-Lite is intended to be developed in C. However, no information is available now 
about the expected resource requirements or performance of AGILE-Lite. A prototype 
application of AGILE is available to be downloaded from [ANT07], in addition to some 
policies and examples. 

No policy design tool is yet available (a tool with unspecified features is announced but it is 
yet “buggy” [ANT07]). A similar problem affects the usage of utility functions. DySCAS and 
AGILE don’t try to suggest a way to set the weights of utility functions. 

2.2.3 EvoArch 
The efforts towards the Evolutionary Architecture (EvoArch) are motivated by the complexity 
of modern automobile systems. The issue is not only related to the number of embedded 
electronic systems in automobiles, and to their increasing complexity, but also to the 
integration process of these systems. The main manufacturer of automobiles is forced to 
gather experiences of other parties to implement his own design. As soon as the supporting 
firms deliver the specified sub-systems separately, problems of integration may arise and the 
functionality of the whole system (a “car”) cannot be guaranteed. 

In addition to problems of the design phase, the manufacturer of the automobile cannot react 
to malfunction of cars, or parts of, in run-time. This shows the need for a kind of self-healing 
in modern cars. 

To face such situations EvoArch [HL05] aims at giving technical systems the capability of 
self-organization. For this purpose EvoArch proposes autonomous units gathered around an 
information space (called arena) to exchange offers and enquiries as in a marketplace (Figure 
2-3). 



 

10 

 
Figure 2-3 EvoArch suggests a marketplace-oriented behavior, where autonomic units exchange enquiries 

and offers. 

The main ideas behind EvoArch can be described as follows [H+02]: An automobile consists 
of intelligent autonomous units. They have properties and aims. Autonomous units can be 
active or passive. Active units look for partners to enhance their own functionality, while 
passive units offer their own capability purposing to be accepted as a partner. If there are 
many available offers for one enquiry, one offer has to be selected. After the selection of a 
partner a contract has to be concluded. 

The authors recognized challenges facing an autonomous unit on the arena: The search for a 
partner, the limitation of the candidate list, the selection of a suitable partner from a candidate 
list, the conclusion of a contract, and the legitimation of contracts. 

The search for partners is supposed to be achieved through the exchange of offers and 
enquiries. The behavior of autonomous units on the arena is determined by the vision that 
active units look for passive units with special capabilities (by sending enquiries) and that 
passive units send a positive answer (offer) if they can meet the required capabilities. 

The limitation of the candidate list arises as a requirement because of the possibly high 
number of autonomous units on the arena. The principle of Taxonomy selection (T-Selection) 
is presented as a possible solution. Accordingly, the autonomous units have to be ordered in a 
“taxonomy graph”. To be close to the nature the authors refer to the classification of living 
organisms as suggested by Linne (see for example [LSL]). The T-Selection considers three 
kinds of restrictions: Inclusion of possible partners, favourite partners, and exclusion of not 
acceptable partners (see Figure 2-4). 

 
Figure 2-4  Taxonomy selection: Restrictions about possible partners (green), favorite partners (blue) and 

excluded partners (red) are made on taxonomically ordered autonomous units [H+02]. 



 

11 

 

By giving T-Selection examples, the authors discovered that one “tree” is not sufficient to 
classify all autonomous units. This is due to the fact, that a taxonomy represents only one 
relation between its elements, normally the “subclass of” relation. The exclusion of 
autonomous units due to not acceptable values of some other property, emphasises the need 
for a multidimensional classification. This, however, is out of the scope of taxonomies. 

The question of how to select of one specific offer from a list of offers is not addressed by 
EvoArch. 

The conclusion of contracts in EvoArch is merely a technical step, but the legitimation of 
contracts is surely a complex theme. The authors speak about levels of contracts, where 
professional staff has full control on the contracts, while drivers get only limited control. Such 
vision indicates not only issues of practicability, but also the major issue of how to control 
self-organizing systems. The contradiction has been later addressed in [SMS08] where 
“controllable self-organizing systems” come into discussion (see section 2.1). 

2.2.4 Conclusion 
This section deals with the design methods of automotive systems. The survey begins with an 
illustration of standardization efforts like OSEK and AUTOSAR. The standardization 
(especially in the case of AUTOSAR) is then proved to be a necessary step to prepare the 
underground for following innovative approaches (DySCAS and EvoArch) which try to go a 
step further towards a self-organizing vehicle. 

The autonomy and the self-organization win increasing recognition by automotive 
manufacturers and represent a paradigm change in the world of automotive systems, i.e. the 
change from the static human-controlled design to the dynamic and adaptive self-
organization. 

In section 3.1, DySCAS and EvoArch will be evaluated from the Organic Computing point of 
view. 

2.3. The Contract Net Protocol 
This section presents the Contract Net Protocol (CNET Protocol) as an established type of 
marketplace-oriented behavior. The information provided here will help to evaluate it from 
the Organic Computing point of view in section 3.1.3. 

The Contract Net Protocol (CNET Protocol) has been suggested by Smith [Smi80] to specify 
problem-solving communication and control for nodes in a distributed problem solver. The 
network is assumed to consist of loosely coupled asynchronous agents, while each agent can 
communicate with every other agent by sending messages [XW01]. The agents play different 
roles in the network. A manager agent decomposes a task into subtasks and tries to find 
cooperating contractor agents to perform these subtasks. 

The Contract Net Protocol addresses only the messages exchanged between the agents. The 
protocol defines a set of main messages: The task announcement (or call for proposals, cfp), 
the propose messages, accept/refuse proposal, and inform message (after performing the task 
by the participant). The concrete types of messages differ between versions of the Contract 
Net Protocol. Figure 2-5 shows the Contract Net Protocol as defined by the FIPA (Foundation 
for Intelligent Physical Agents) [FIPA02]. 



 

12 

 
Figure 2-5 The Contract Net Protocol as defined by FIPA [FIPA02]. 

The Contract Net Protocol defines concrete forms of the messages. The task announcement 
message, for example, contains a task abstraction (with the type of the task) and eligibility 
specification (a kind of must-have properties), bidding specification (a scheme of description 
fields of expected bids) and the expiration time field of the announcement. On the base of the 
task type and the eligibility specification a contractor agent decides about sending a bid in 
response to a task announcement. 

On the other side, the manager agent maintains a rank-ordered list of bids that have been 
received for the announced task. The manager awards the contract to the satisfactory bidder. 
The definition of satisfactory is task-specific [Smi80]. 

The Contract Net Protocol offers a framework that specifies the type of exchanged 
information, but it doesn’t define the content of these messages. The matching between the 
announcements and bids must depend on a common internode language. However, the 
Contract Net Protocol suggests only that in contract nets all tasks are typed. 



 

13 

Only the approach called “Ontology-based Services for Agents Interoperability” [Mal06] 
discovers the need for an ontology-based common language to “facilitate the interoperability 
among heterogeneous agents that belong to a multi-agent system (MAS) dedicated to 
Business-to-Business (B2B) electronic commerce”. The ontology-based matching is 
implemented in a marketplace architecture, which adopts the Contract Net Protocol of FIPA. 

The approach of Extended Contract Net Protocol (ECNET) in [PYM07] suggests the usage of 
TOPSIS (a method of Multi-Attribute Decision theory, see section 2.5.3) to add a 
standardized selection capabilities to the manager. To reduce the communication load it 
adopts a method called a Case-Based Reasoning (CBR). The CBR suggests to learn from the 
(bad/good) experience made with specific contractor (in terms of its success to perform 
previously awarded tasks, and of its cooperation by accepting awarded tasks) to develop a 
useful announcement strategy (to avoid the broadcasting of announcements as much as 
possible). 

2.4. Semantic Web 
The Semantic Web (SW) is of the most important inspiration sources of this thesis. This 
section presents the Semantic Web briefly. 

The (normal) web offers the possibility to put huge numbers of pages and valuable 
information to the hand of the users. As the web grows through years of extensive usage, 
weaknesses of information management have been discovered. A basic service like the search 
for a specific word shows that web pages can only be searched for syntactically equal words. 
Unexpected search results appear when a word has different meanings in different contexts 
(polysemy problem). At the same time, the search is not always complete, because other 
people use other words to refer to the same meaning (synonymy problem).  

Software tools can only process the contents of the normal web syntactically, because the 
meaning of the contents is not machine-accessible. This hinders the automatic processing of 
data, especially for extracting implicit knowledge from the explicitly available knowledge on 
the web pages. The interoperability and the data sharing between applications and enterprises 
suffer under the drawback of the normal web. 

2.4.1  The Semantic Web 
Most resources trace the birth of Semantic Web to Berners-Lee [BLHL01] and his famous 
words: “The Semantic Web is not a separate Web but an extension of the current one, in 
which information is given well-defined meaning, better enabling computers and people to 
work in cooperation”. In the Semantic Web, data are defined and linked in a way that enables 
its use for more effective discovery, automation, integration, and re-use across various 
applications. 

2.4.2 The role of ontologies in the SW 
To enable the vision, the Semantic Web is designed to rely on ontologies. The word ontology 
stems from philosophy, but it means from the engineering point of view “a formal and explicit 
specification of a conceptualization” [Gru93a, Gru93b]. Terms and relations between them 
build a conceptualization, i.e. a view of the world. Explicit specification means that the terms 
and the relations are explicitly given names and definitions. A formal specification has the 
advantage of being machine processable. 

With the help of ontologies, knowledge is explicitly defined in a formal way (to make this 
knowledge available for “machines”) and ambiguity of concepts can be avoided by using a 



 

14 

common ontology or by mapping ontologies to each other. To enhance the search service, 
generalization or specialization of the searched term can be automatically suggested. 

2.4.3 Ontologies versus taxonomies 
Although typically linked to hierarchies of classes (concepts related to each other through 
sub-class relation; i.e. taxonomies), ontologies may include more information, like properties 
(any relation between -instances of- classes), value restrictions, disjointness statements, and 
cardinality of properties. 

2.4.4 The SW in the practice 
In the Semantic Web, web pages are annotated with meta-data, which use terms defined in 
ontologies. The meta-data give the meaning of the described web page (thus the term 
semantic). This way, “personal agents” can read the meta-description, extract information 
about resources (web pages or persons or things mentioned there), deploy ontologies to 
interpret retrieved information, and try to draw conclusions by applying logical reasoning 
[AH08]. 

2.4.5 Reasoning 
Reasoning on ontologies helps to uncover knowledge, which is implicitly given. Reasoning 
(or inference) is known from the Artificial Intelligence (AI). From the AI it is known that 
sound (all derived statements follow semantically from the premises) and complete (all 
logical consequences of the premises can be derived) proof systems exist for predicate logic. 
Some ontology languages can be viewed as specializations of predicate logic. RDF, OWL-
Lite and OWL-DL (see below) can be counted under these languages [AH08]. “DL” refers to 
the Description Logic, which is the theoretical background of ontology languages. 

The Description Logics (DLs) denote “a family of knowledge representation formalisms that 
allow to represent the terminological knowledge of an application domain in a structured and 
well-defined way” [Kue01]. In the terms of description logics, the knowledge base (KB) 
consists of two parts: A TBox stores the conceptual knowledge (vocabulary) of an application 
domain, while an ABox introduces the assertional knowledge (instances with their properties). 
From a set of given concepts and properties, more complex concepts and properties are built 
using concept and properties constructors. DLs differ in the types of supported constructors. 
“Standard inferences” in the description logic cover three types of reasoning about the 
conceptual knowledge and two types of reasoning about the assertional knowledge. Types of 
reasoning about the conceptual knowledge are: 

- Satisfiability check of a concept: Checks the concept about self-contradiction. 

- Subsumption relation check between two concepts: Used to compute the 
subconcept/superconcept hierarchy of concepts. 

- Equivalency check between concepts. 

The reasoning about assertional knowledge answers one of two questions: 

- The question about the consistency of the assertional knowledge in relation to the 
conceptual model (is there a model of the assertional knowledge and the conceptual 
knowledge). 

- The question about relation of one instance to one concept: is it an instance of the 
concept. 

There is a well studied [Kue01] trade-off between the expressive power of the DL language  



 

15 

(i.e. the set of supported constructors) and the complexity of the inference. High expressive 
constructs move the inference problem to higher complexity classes (in terms of the 
computational complexity theory) and can even make it undecidable. 

Ontology editor tools support the standard inferences, known from the description logics. So a 
concept hierarchy (subsumption) can be automatically built, and the consistency check (in 
relation to concepts and instances) is always a part of ontology design. Building a hierarchy of 
concepts through the development process of an ontology is not only a way to present the 
ontology in a better way, enabling better browsing facilities and enhancing therefore the re-
usability of the ontology. Just like the consistency check it is a way to evaluate the resulting 
ontology. If concepts occur at unexpected positions in the hierarchy then this indicates a 
mismatch between the intuition underlying a concept and its representation in the ontology 
[Kue01]. The check for equivalency helps to avoid the definition of redundant concepts in the 
ontology. 

Adding user and application specific rules, the reasoning allows for new services in relation to 
domain knowledge discovery and/or action triggering (as a type of First Order Logic). 

Retracing the inference steps provide an explanation for the conclusions. This great advantage 
is supposed to enhance the confidence in the Semantic Web. The retracing of proof can be 
also achieved by agents, in order to validate the proofs made by other agents [AH08].  

 

 
Figure 2-6 Stack of the Semantic Web (from www.Semantic-Conference.com) 

2.4.6 The stack of the Semantic Web 
Figure 2-6 shows the Semantic Web stack. The Semantic Web makes use of Uniform 
Resource Identifiers (URI), to identify resources, i.e. web pages and terms defined in the 
ontology. As a character set, the Semantic Web adopts the Unicode [Uni07]. The syntactic 
base of the documents is built on the eXtensible Markup Language XML [W3C06]. Using 
namespace, similar names can be used in different context, without causing conflicts. The 
data model of the Semantic Web is represented by the Resource Description Framework 
(RDF) [W3C04]. According to the RDF data model, each “statement” is a triple consisting of 
a subject, a predicate and an object. Subjects and objects, and even the predicates are 
“resources”. RDF documents can be “serialized”, i.e. transferred through the web, in their 
XML representation. RDF Schema can be viewed as a primitive language for writing 
ontologies. Key primitives are classes, properties, subclasses and the subproperty relationship, 
in addition to domain and range restrictions. The ontology languages add more complex 
relationships. For example OWL (Ontology Web Language [DS04]) adds details about 
properties (difference between object properties and datatype properties), restrictions about 



 

16 

the cardinality of properties and their ranges, beside boolean constructs and equivalence and 
disequivalence relations. All of these extensions are available in OWL-Full and partially in 
OWL Description Logic and to restricted extent in OWL-Lite. 

The Logic layer enhances the whole concept by adding reasoning capabilities on the base of 
application specific knowledge/rules. 

The proof layer achieves the proof validation, and uses special languages to present the proofs 
in suitable forms (retracing). 

Additionally, the trust layer integrates digital signatures and encryption algorithms in the 
concept. This way, it is not only possible to know “how” a proof has been evolved, but also 
“who” is the responsible agent (or user). 

2.5. Decision problems considering multiple criteria 
This section provides a survey about methods of making decisions under the existence of 
multiple criteria. The importance of these methods for purposes of Organic Computing 
systems will be presented in section 3.2, while their suitability will be evaluated in section 
4.1. 

Multi-Criteria Decision Making refers in general to problems of decision making under 
multiple and mostly conflicting criteria. These problems are faced by the management and 
engineering team in different application areas: Business management [Ols96], energy 
planning, telecommunication network planning [FGE05], etc. 

The decision making problems under multiple criteria have been given a kind of formal 
definition. It stems from the field of Operations Research (also known as Management 
Science, MS). Vansnick [Van95] suggested a model of decision problems under multiple 
criteria using three elements [Mar99]: 

- A set of potential alternatives (or actions [Roy05]) 

- A set of criteria (or attributes) 

- A set of performance evaluations of alternatives on each criterion. 

A similar model, however a little more complicated, can be found in [Roy05]. The latter 
considers the type of the problem as a part of the model. At least from the “aiding tool” point 
of view there is a difference between “choice” problems (lying in the heart of the review in 
the following sections) and other types like: The problem of “sorting” alternatives into 
predefined categories, the problem of “classifying” alternatives (grouping similar alternatives 
into one class) or the problem of “ranking”.  

According to the nature of alternatives, the problems of decision making in presence of 
multiple criteria can be classified into two general groups [ES04]: Multi Objective Decision 
Making and Multi Attribute Decision Making. 

2.5.1 Multi-Objective Decision Making MODM 
MODM considers decision making problems with multiple objectives. An objective takes the 
form of maximization (or minimization) of a (linear) function gathering multiple decision 
variables in the continuous space (Although the term “criteria” is not usually used in the 
context of MODM, the decision variables can be understood as criteria). “Constraints” limit 
the acceptable values of the decision variables within a “feasible set”. The objectives are 
usually interpreted as vectors in the continuous space, and the whole problem is therefore a 
vector optimization problem. In the general case, the objectives are conflicting, and there is 
accordingly no absolute “optimal solution”, but only a set of optimal solutions, each with 



 

17 

respect to a certain objective function. A point in the space is called a “non-dominated” 
solution or “Pareto-optimal” solution (Pareto spoke in the 19th century about “maximum 
ophelimity1” [Ehr05]) if any displacement from it to achieve better performance of one 
objective means a worsening of (at least one) other objective. All non-dominated solutions are 
located on the boundary of the feasible set. The set of non-dominated solutions forms the 
“non-dominated frontier” or the “efficient frontier”. All approaches trying to identify this 
frontier share the disadvantage of giving an infinite number of solutions, whereas the decision 
maker prefers to find only one - optimal - solution. 

Different approaches address the problem of restricting the number of solutions to a finite set 
(of alternatives), which can be easily taken into consideration by the decision maker. Under 
these approaches, two effective and simple ones are known as the “weighting method” and the 
“constraint method”. The former relies on giving weights to the - linear and convex - 
objectives in order to build one composite objective function. The latter method turns all but 
one of the objective functions into constraints with the help of - known or reasonably selected 
- target values. Both methods result in a linear programming problem, which can be solved by 
pertinent methods [ES04]. The process is usually carried out repeatedly, for different weights 
in the first method, and for different target values and objective functions in the second. Apart 
from the method used, the result is always a suggested set of “discrete solutions”, building the 
typical kernel of Multi-Criteria Decision Making problems. 

2.5.2 Multi-Criteria Decision Making MCDM 
MCDM is a widely used term to refer to Multi Attribute Decision Making (MADM) or 
sometimes to Multi-Criteria Decision Aids MCDA [Ehr05]. However, all these names don’t 
clearify the difference to the MODM counter problems. In fact, MCDM considers decision 
problems with a finite number of alternatives (discrete solutions), which are explicitly known. 
The outcome of alternatives in correspondence to the criteria is also supposed to be known 
and certain. Beside the classical MCDM methods, many approaches treat decision problems 
under special conditions. The “games against nature” treat the problem of the uncertainty 
about the outcome of the alternatives (therefore also called “decision making under 
uncertainty”) [ES04][Ste05]. In this kind of games a rational player (the decision maker) faces 
a second player (the nature) which doesn’t try to reach predefined goals and behaves therefore 
unexpectedly. Typical examples of players with unexpected behavior are the weather and the 
changing demand for specific goods on the market. The “game theory” supposes the existence 
of more players (2 at least), each with his own objectives and decision space [ES04]. 
Uncertainty about the outcome of the alternatives arises here because of the unknown 
reactions of other players. 

The next section describes methods of MCDM with known alternatives, known criteria, and 
with certain outcome of alternatives. However, uncertainty about the decision maker’s 
preferences is always present in MCDM problems. This type of uncertainty is taken into 
account by some of MCDM methods. 

2.5.3 MCDM methods 
Decision making under multiple criteria takes place generally according to a generic 
procedure, which can be broken down into four steps [Tri00]: 

- Problem analysis 

- Weighting of criteria 

                                                 
1 The term “ophelimity” has the meaning of i. economic satisfaction or ii. the ability to please another [Wik08c] 



 

18 

- Utility assessment of alternatives’ performances on the criteria 

- Ranking and decision making. 

2.5.3.1 Problem analysis 
In this step the decision maker analyses the decision making problem to its basic component: 
A goal, a set of criteria, and to a set of alternatives. In the AHP (Analytical Hierarchy 
Process) [GWH89] method this step results in a tree (hierarchy) with the goal at the root, 
criteria as branches and the alternatives as leaves. The criteria build normally more than one 
hierarchical level. The problem analysis is important to clear the problem under consideration, 
especially to find the set of “all”, “relevant” and “non complementary” criteria. In some 
MCDM methods like the value tree method [ES04], the tree of criteria helps also to determine 
the weights associated with the criteria. The importance of this step and its common points 
with ontology-based approaches (like SeMCDM) is discussed in section 2.6. 

2.5.3.2 Weighting of criteria 
Criteria have usually a compensatory nature, but they are of different importance for the 
decision maker. Each criterion has accordingly a “weight”, which defines its importance in 
relation to other criteria. The sum of weights gives usually the value of 1. The given weights 
of criteria have to represent the preferences of the decision maker. Different methods have 
been developed to help the decision maker to transform his “nonnumeric” preferences into 
weights. A survey of these methods is presented in the following sections. 

♦ Fixed point scoring 
This method is the most direct way to obtain weighting information from the decision maker 
[HMS00]. The decision maker is required to give weights of criteria, while bearing in mind 
that the weights have always to sum up to 1. 

♦ Fixed point scoring of hierarchically ordered criteria 
This method is used in the so called “value tree” method, described in [ES04]. Building a tree 
of criteria and sub-criteria has the advantage that the decision maker is only asked to specify 
weights of criteria located on one level. The weighting will be then performed separately on 
each hierarchical level. While it appears to be a simple task compared to the situation of 
unordered criteria, this method suffers from the disadvantage of confronting the decision 
maker directly with the weighting problem. 

♦ Rating method 
The decision maker assigns an importance value to each criterion, usually within a predefined 
range: 1-5, 1-7 or 1-10 [HMS00]. The weights are then calculated through the normalization 
of these values. Still, the importance values have to be defined directly by the decision maker. 
However, compared with the fixed point scoring method, this method releases the decision 
maker from the obligation of keeping the sum of the given values at 1. 

♦ Rating method of ranked criteria 
This method is the weighting method of SMARTS (Simple Multi-Attribute Rating Technique 
with Swing weighting) described in [Ols96]. It is based on the “swing operation” to rank the 
criteria. The swing operation starts by giving a hypothetical worst case alternative (i.e. with 
worst performance on all criteria). The decision maker is then asked to select one criterion to 
improve its performance (to the best performance value) in order to achieve a maximum 



 

19 

improvement effect on the alternative evaluation. The same question will be repeated until all 
criteria are completely ranked. The most important criterion is the first one selected in the 
“swing operation”, while the least important one is the last one selected. The most important 
criterion is then given automatically a score of 100. The decision maker gives the next criteria 
successively scores between 0 and 100. The weights can be then calculated, as in the rating 
method, by normalizing the scores. 

♦ Ordinal ranking method 
This method asks the decision maker to rank the criteria in an order of importance [HMS00]. 
Quantitative values of weights are then calculated by methods like the centroid method or the 
basic approach [HMS00]. SMARTER (Simple Multi-Attribute Rating Technique Exploiting 
Ranks [Ols96]), a following version of SMART and SMARTS, adopts the SMART step of 
criteria ranking beside the centroid method to calculate the weights automatically. The 
mathematical formula for weights calculations according to the centroid method can be found 
in [Ols96] ([HMS00] refers to the method as the “expected value method”). Such methods 
risk a kind of approximation errors, in order to offer more ease of use. The higher the number 
of criteria the smaller is the approximation error by SMARTER. 

♦ Simple Multi-Attribute Rating Technique SMART 
SMART, as described in [Ols96], suggests a complete MCDM procedure of 10 steps, whereas 
the steps 4 to 7 together deal with the weighting issue. After the step of criteria identification 
and criteria reduction to the important ones, the decision maker is asked to rank the remaining 
criteria. The weakest criteria (i.e. least important) gets the importance value of 10. In a 
following step the decision maker compares each criterion with all lower importance criteria, 
to give it relative importance ratios. This takes place in a successive way beginning with the 
second weakest criteria. The consistency of the relative importance ratios (to all criteria of 
lower importance) has to be proved for each criterion, pushing the decision maker to reconcile 
the ratings. In the last step the relative importance values are normalized into weights 
summing to one. The ascending number of needed comparisons and reconciliations with each 
additionally criteria justify the step of criteria reduction, where the decision maker prefers to 
turn a blind eye to some criteria. This method relies on paired comparisons (see methods 
allowing inconsistency) but it is characterized by enforcing iterative and manual consistency 
check. 

♦ The multi-attribute value functions method 
Although the method has been presented by Keeny and Raiffa (s. [ES04]) as an aspect of the 
multi-attribute value function method, it can be considered as a separate weighting method. 
The application of this method supposes that the minimum and maximum criterion values are 
known. To extract the decision maker preferences about two criteria the decision maker is 
asked to compare two hypothetical alternatives. These alternatives can be presented as points 
on a 2-dimensional space, built by two axes of criteria 1 and 2 under consideration. The first 
alternative has the coordinates (value of criterion 1 with maximum utility, value of criterion 2 
with minimum utility) while the second alternative has the coordinates (value of criterion 1 
with minimum utility, value of criterion 2 with maximum utility). 

The decision maker has different impressions about the hypothetical alternatives. So, he will 
be asked to replace the weak alternative with a new one that makes a preference balance to the 
other alternative (the exact procedure is described in [ES04]). The preference balance is 
interpreted as a mathematical equation according to the weighted sum method (section 
2.5.3.4). By repeating the same procedure on all criteria (in comparison to a selected “base 



 

20 

criterion”) the preferences of the decision maker can be transformed into a set of equations. 
Recalling that the sum of weights gives always 1, the equation set can be then solved to 
calculate the weights of criteria. 

♦ Preference cones 
The preference cones method is described below under the ranking and decision making 
methods (section 2.5.3.4). As a side effect, this method produces constraints on the weights of 
criteria. The method doesn’t promise a complete solution for the weighting problem (because, 
in some cases, a decision can be made without producing enough constraints on the weights). 
Additionally, the resulting weights are strongly related to the considered alternatives. 

♦ Methods allowing inconsistency 
These weighting methods are based on paired comparisons between the criteria. For n criteria, 
a perfectly accurate decision maker would need only to make n-1 comparisons to give a 
complete picture of his own preferences. Instead, the methods described here, ask the decision 
maker to make n⋅(n-1)/2 comparisons (equals the number of all possible comparisons). The 
given estimations are usually ordered in a matrix of size n⋅n. Consistent estimation matrices 
have the characteristics that the ratio Estimationx,y / Estimationx,z is the same for all values of 
x between 1 and n. The decision maker is usually not able to give consistent estimations, 
especially for higher numbers of required comparisons. However, incorporating all possible 
comparisons in the calculation process (of weights) the negative impact of inaccurate 
estimation is hopefully diminished [Tri00]. Therefore, these methods have the advantage of 
allowing a kind of inconsistent estimation from the decision maker. Some methods provide 
the decision maker also with feedback, on how inconsistent the estimations are (consistency 
check). The reliability of the obtained weights depends on the consistency of the estimations 
matrix. So, the decision maker is asked to try to enter better (i.e. relatively more consistent) 
estimations, when the consistency check shows useless estimations (i.e. it is too inconsistent). 

There are two types of pairwise comparisons, ratio comparisons and difference comparisons 
[Tri00]. By the ratio comparisons the decision maker is asked to answer the question: “How 
many times is the criterion x more important than the criterion y?”, while the question takes 
another form for difference comparisons: “How much is the criterion x more important than 
the criterion y”. The methods described in this section are those used for MCDM, and they are 
all based on ratio comparisons. 

Three methods are counted among the group of ratio comparison methods: 

- The normalization method 

- The Analytical Hierarchy Process (AHP) 

- The geometric mean method. 

The common start point of all of these methods is the estimation matrix which contains pair-
wise ratio comparisons between the criteria. Elements on the main diagonal have always the 
value of 1 (comparison between a criterion and itself). Each element has always the reciprocal 
value of its diagonally symmetric element (i.e. the matrix is reciprocal). 

The normalization technique (not to be confused with the normalization methods in section 
2.5.3.2) is very simple: The weights are calculated as the average values of the rows, after the 
normalization of the columns’ values. 

The Analytical Hierarchy Process (AHP), as presented by Saaty [GWH89], is based on the so 
called “eigenvalue theory”. Saaty proved that for a consistent estimation matrix, the number 
of criteria n is a right eigenvalue, and that the weights build a corresponding eigenvector. 



 

21 

According to Saaty, inconsistent estimation matrices are to be considered as a perturbation of 
the consistent case. Slight changes in the matrix elements induce similar changes in the 
eigenvalues. Moreover, the largest eigenvalue is a real number greater than n while the 
remaining eigenvalues are close to zero [Tri00]. According to Saaty, the eigenvector for the 
largest eigenvalue represents the weights of criteria, and this applies also for inconsistent 
estimation matrices (see the discussion below about the consistency ratio and its maximal 
acceptable value). 

To calculate this eigenvector, an iterative method is used traditionally in combination with 
Saaty’s approach. In each iteration step, the estimation matrix is squared and the rows are then 
normalized to calculate an approximation of the eigenvector for the largest eigenvalue. The 
iteration stops when the difference between two successive iteration steps is smaller than a 
predefined accuracy limit. 

Following a general method to calculate the eigenvector for the largest eigenvalue, the 
calculation process of the weights of criteria from a matrix A containing inconsistent 
estimations of pair-comparisons can be solved in the next steps [ES04]: 

Calculate maxλ  the largest eigenvalue of the estimation matrix A by solving the equation:  

0det max =− λIA  
Where: “I” denotes an identity matrix of appropriate size (the result is always a real number 
greater than n). 

For the largest eigenvalue determine the corresponding normalized eigenvector, which 
represents the vector of weights W, by solving the n equations resulting from the eigenvector 
definition: 

WAW maxλ=  
 

Augmented by the equation: 

1
1

=∑
=

n

i
iw

 
Saaty calculated also a Consistency Index CI using the formula: 

)1/()( max −−= nnCI λ  

A Consistency Ratio CR is obtained by dividing the consistency index by the Random 
Consistency Index RCI: 

RCICICR /=  

where the RCI is an empirically calculated value that depends on the size of the matrix and 
can be taken from reference tables, like Table 2-1 from [ES04]. 

N 3 4 5 6 7 8 9 10 
RCI 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

Table 2-1 Random Consistency Index (CRI) in relation to the matrix size n 

Any consistency ratio in excess of 0.1 should be viewed with suspicion and should be double 
checked [ES04]. The value of 0.1 is not a trivially selected value, since the eigenvector 
method is proved to be applicable for inconsistent ratio estimations only if the consistency 
ratio is equal or less than 0.1. The mathematical origin is shown briefly in [Tri00], while a 



 

22 

completely different approach to measure consistency of the estimation matrix can be found 
in [ES04]. 

The RCI values in Table 2-1 are valid when using the scale of estimations proposed by Saaty, 
which contains the values set {9, 8, 7… 2, 1, 1/2 1/3... 1/7, 1/8, 1/9}. In its abstract definition, 
a scale is a one-to-one mapping between the set of linguistic expressions available for the 
decision maker and a discrete set of numbers which represent corresponding quantitative 
importance values of them. Saaty introduced a map between a set of qualitative (linguistic) 
importance expressions and the quantitative values in his scale as shown in Table 2-2. 

Quantitative importance value Linguistic importance expression 
1 Equal importance 
3 Weak importance of one over another 
5 Essential or strong importance 
7 Demonstrated importance 
9 Absolute importance 

2,4,6,8 Intermediate values between the two adjacent 
judgements 

Table 2-2 Saaty's scale of relative importances 

The adoption of this scale by Saaty is based on psychological experiments showing that most 
individuals cannot simultaneously compare more than seven objects, plus or minus two 
(Variations from Saaty’s linear scale and other scales, for example the exponential scale, are 
also supported with some psychological arguments [Tri00]). 

The geometric mean method, as presented in [ES04], suggests calculating the weights as the 
normalized geometric means of the rows of the estimation matrix. 

[ES04] shows that weights obtained by the three methods (the normalization method, the 
AHP and the geometric mean method) have very similar values. 

2.5.3.3 Utility assessment of alternatives’ performances on the criteria 
Every alternative has a specific performance value on each criterion. The values of 
alternatives’ performances can be presented throw a matrix m×n, where m is the number of 
alternatives (rows) and n is the number of criteria (the columns). This matrix is referred to as 
“decision matrix” or “achievements matrix”. The elements of the matrix are only comparable 
in the same column (for one criterion), but not in the rows (i.e. for different criteria). 
Additionally, the performance values can be of any type: Numeric or qualitative. Therefore, 
multi-criteria decision making requires a transformation of these performance values into 
dimensionless comparable values called utility values or utilities. The utility values fall in the 
range [0:1]. This transformation process is called here as “utility assessment”. 

The next sections describe different methods of utility assessment. 

♦ Normalization methods 
The simplest way to transform the performance values into utilities is to normalize them on 
each criterion separately.  

Accordingly, the performances of alternative i on criterion j are to be normalized using a 
mathematical relation like: 

∑
=

= n

i
ij

ij
ij

x

x
xu

1

)(

 



 

23 

Where: xij is the performance value of alternative i on criterion j. 

To give every criteria a unit length of vector [HY81], some approaches like TOPSIS and 
ELECTRE [Tri00] normalize the performance values using the formula:  

2

1

)(
)(

∑
=

=
n

i
ij

ij
ij

x

x
xu

 
Some normalization methods assign the largest available performance value to the maximal 
utility value of 1, and the smallest performance value to the minimal utility value of 0. All 
other performance values get then a linearly distributed utility values according to their 
performance values. 

In all these methods it is remarkable that the resulting utilities are related to the set of 
alternatives under consideration. This means that one alternative would be given different 
utility values in different consultations of available alternatives (this fact will play an 
important role in section 4.1 and especially in section 4.1.2.3). 

♦ Predefined functions 
Defining a utility function (called also value function) the performances of alternatives on a 
criterion can be converted to a utility value, between 0 and 1. How to choose the suitable 
shape of the utility function is an important question that faces the decision maker. A simple 
linear utility function can represent maximization criteria (higher performance values mean 
higher utility values) or minimization criteria (higher performance values mean lower utility 
values). However, a linear function cannot express the saturation effect, which is typically 
found by concave utility functions. The saturation effect can be explained by a typical 
example as follows: The first dollar in profits is much more important than an additional 
dollar that is gained when the profit has already reached a higher level [ES04]. To make a 
rough estimate about the shape of the utility function (linear or concave), the decision maker 
can try to assign a performance value to the utility value of 0.5. Putting this performance 
value in the middle point between the minimum and the maximum performance values 
indicates a linear utility function, other case; the utility function is merely concave shaped. 

The last discussion guides to a next question about how to set the functions parameters. While 
the decision maker is usually not able to choose suitable values directly, the parameters 
should be calculated depending on “known points”, given by the decision maker. The linear 
function, for example, has two parameters to be set. Consequently two points should be 
defined by the decision maker. A common approach used for linear utility function is to ask 
the decision maker to give the performance points corresponding to the maximum utility 
value (of 1) and to the minimum utility value (of 0). The utility function is then considered as 
a straight line between these points. This approach, adopted by SMART [Ols96], is known as 
linear interpolation or as Edwards procedure (it has been suggested by Edwards in the 1970th 
[ES04]). Edwards procedure is clearly limited to linear functions and to cases, where the 
decision maker is able to choose a maximum and a minimum performance values. So the 
resulting utility functions cannot be used generally for all possible alternatives, which may 
have performance values greater then the chosen maximum one, or smaller than the chosen 
minimum. 

To specify utility functions with more complex shapes, the user has to give more information: 
Three points for quadratic functions or exponential functions of the form: xxu βα +=)(  
[ES04], and four points for cubic functions. In some commercially available tools, like 
Logical Decisions [LD], this step is accomplished graphically by specifying the performance 



 

24 

value which yields a utility value of 0.5, then a curve is automatically fit through three points 
of utility values 0, 0.5 and 1 [Ols96]. 

♦ Utility assessment of qualitative values using predefined scales 
Numeric utility functions cannot be used to assess the utility of qualitative values. The 
predefined utility scales are qualitative counter parts of the numeric utility functions. A utility 
scale contains a finite number of utility values, covered with names like: “very good”, “good”, 
“medium”, “poor”, and “very poor”. While these names represent only 5-points scale, any 
practical number of points can be used. Beside the 5-points scales, 7- and 9-points scales are 
common ones. These scales are known as Likert scale [ES04]. By a 5-points scale, 5 utility 
values can be expressed, like: 1, 0.75, 0.5, 0.25 and 0. 

The assignment of utility values to the qualitative values of the criteria should be done 
manually by the decision maker. 

♦ Methods allowing inconsistency (paired comparisons methods) 
The paired comparison methods (see section 2.5.3.2) can also be applied to assess the utilities 
of alternatives’ performance on the criteria. The comparison takes place this time between 
alternatives and for each criterion separately. The decision maker fills out a matrix (m×m) for 
each criterion, where m is the number of available alternatives. Utility value of each 
alternative can be calculated using the normalization technique, the analytic hierarchy 
process, or the geometric mean method (see section 2.5.3.2). 

2.5.3.4 Ranking and decision making 
The ranking and decision making is the last step of the decision making procedure. In its 
simple and direct form, a mathematical formula gives each alternative a rank depending on 
the weights of criteria and on the utility of alternative on each criterion. Such mathematical 
formula is called the “aggregation function”. The most famous aggregation functions are the 
weighted sum and the weighted product functions. Normally, higher values of rank are related 
to better alternatives. However, the rank is not necessarily a result of an aggregation function. 
In the following the ranking and decision making methods are described and shortly 
discussed. 

♦ Weighted sum (Additive weighting method) 
The evaluation of each alternative is calculated as the weighted sum of its performance values 
on the criteria: 

 ∑
=

=
n

i
ii waua

1

)()(ν  

Where: 

a : The considered alternative 

)(aν : The evaluation of alternative a  

)(aui : The utility value of the alternative a  on criteria i 

iw : Weight of criteria i 

The criteria must be numerical, comparable [CHH92] (the additive utility assumption [Tri00]) 
and independent of each other (performance of alternatives on one attribute is not related to 
their performance on other criteria). Non-numerical (qualitative) criteria have to be quantified 



 

25 

before applying this method. To obtain evaluations of alternatives with non-comparable 
criteria, its performance values on the criteria must be expressed as utilities (see section 
2.5.3.3). 

♦ Weighted product 
Similarly to the weighted sum method, a weighted product can also be used to assess the 
alternatives: 

∏
=

=
n

i

w
i

iaua
1

)()(ν  

 Where: 

a : The considered alternative 

)(aν : The evaluation of alternative a  

)(aui : The utility value of the alternative a  on criteria i 

iw : Weight of criteria i 

This way, alternatives with poor performance values will be more heavily penalized [CHH92] 
(as shown in 2.5.3.3, the utility values fall in the range [0:1]). However, just like the weighted 
sum method, the weighted product method supports the compensation effect between the 
criteria. As done for the weighted sum. Non-numerical criteria have to be quantified and non-
comparable criteria have to undergo the utility assessment process. 

♦ Reference point methods (distance from target alternative) 
These methods select the alternative which has the shortest distance to a “target alternative” 
[CHH92]. The criteria must be numerical (i.e. quantitative or quantified qualitative) and 
comparable (if the absolute performance values are used to calculate the distance) and 
independent of each other. In practical applications utilities, obtained by Edwards procedure, 
or normalized values are used for distance calculation. The weights of the criteria play a 
similar role as in the weighted sum method. 

The famous TOPSIS method (Technique for Order Preference by Similarity to Ideal Solution) 
applies the reference point method using the normalization method (for utility assessment) 
and the Euclidean distance formula to two (hypothetical) alternatives: An ideal alternative and 
a negative-ideal alternative (the worst values on all criteria). 

While these methods seem to be well-founded because of their direct and acceptable 
geometrical justification, the preference point methods suffer from the disadvantage of 
neglecting the need for predefined utility functions (the default utility function is a linear 
function). Like the normalization method used in AHP, a discrete example can demonstrate 
that the ranking results can be affected by the existence/absence of some alternatives. The 
same applies for the Edwards procedure (the resulting utilities depend on the existing 
alternatives). Furthermore, these methods cannot cope with situations where two or more 
preference points (ideal points) exist. TOPSIS assumes for this reason monotonically 
increasing or decreasing utility of criteria. 

♦ Outranking methods 
On the base on utilities and criteria weights, the outranking methods aim to derive dominance 
relations between the alternatives. The dominance relations are represented as a structure, 
usually a graph, which indicates which alternative is preferred to, or outranks, another. The 



 

26 

outranking may or may not be complete [ES04]. The famous ELECTRE method (Elimination 
et Choice Translating Algorithms) is not a complete method, while the PROMETHEE 
(Preference Ranking Organization Method for Enrichment Evaluations) method results in 
complete outranking (although only in its second version PROMETHEE II). 

According to ELECTRE, two matrices have to be calculated: a concordance matrix and a 
discordance matrix. Both matrices represent comparisons between alternatives. In the 
concordance matrix, each element indicates the strength of the preference of alternatives to 
each other. A matrix element is calculated on the base of the proportion of those criteria 
weights, for which an alternative has a higher utility than another. The discordance matrix 
expresses how much worse alternatives are in comparison to each other. A matrix element 
here is calculated using the weights of criteria and the utility differences between the 
alternatives. Defining a minimal required concordance and a maximal allowable discordance 
(by the decision maker or as average values of the concordance and discordance accordingly) 
an outranking relation (x, y) between two alternatives (i.e. alternative x outranks alternative y) 
results if and only if: The concordance (x, y) >= the minimal required concordance AND the 
discordance(x, y) <= the maximal allowable discordance. 

To recognize an outranking relation (x, y), ELECTRE II (a developed version of ELECTRE I) 
adds the condition that the concordance of the first alternative over the second (x, y) exceeds 
that of the second over the first (y, x). Still, ELECTRE doesn’t result in a complete 
outranking. 

The PROMETHEE method compares pairs of alternatives on each criterion by means of a 
preference matrix. To this reason, a preference function has to be first chosen for each 
criterion. Preference functions differ from the utility functions (described in 2.5.3.3), because 
they transform the performance difference (of two alternatives on one criterion) to utility 
difference. For example, for a criterion with a piece-wise linear preference function, the utility 
difference between two alternatives is set: 

- To: 0: if the performance difference <= min. value 

- To: (performance difference – min. value)/(max. value – min. value): if performance 
difference falls between min. value and max value 

- To: 1 if the performance difference >= max value 

Other forms of preference functions can also be used (like simple binary preference function, 
stepwise preference function, or exponential preference function). PROMETHEE don’t define 
ways to choose and to characterize these preference functions. 

However, the preference matrices will be then aggregated to one overall preference matrix 
using the weighted sum formula. From the preference matrix the row averages matrix (P+) 
and the column averages matrix (P-) are then calculated. PROMOETHEE I method gives out 
a graph using a similar outranking condition to that used by ELECTRE method. To get a 
complete ranking, PROMETHEE II ranks the alternatives according to the non-increasing 
values of the difference (P+ - P-). 

♦ Preference cones 
This method makes use of alternatives’ utilities (utility matrix) and direct preference 
statements of the type: Alternative x is better than alternative y, i.e. alternative x dominates 
over alternative y or: Dx > Dy. The preference statements are then modified to unequations 
depending on the weighted sum of utilities. As the utilities of alternatives are known the 
unequations take the form of constraints on the weights. The question “is alternative x is also 
better than a third alternative z turns to a problem of finding a set of feasible weights that 



 

27 

ensures that alternative z can be better than alternative x. If such set of weights does not exist 
then the new preference statement Dx > Dz can be concluded. The procedure can be repeated 
with all existing alternatives. If the decision maker aims to select one alternative, preference 
statements have to be made until one alternative is proved to dominate all other alternatives. 
There is no way to know that additional alternatives could be proved as dominating or 
dominated alternatives. This limits the applicability of the preference cones method to the 
given set of alternatives. 

♦ Special methods 
Some MCDM methods do not follow the generic procedure described above. The Data 
Envelopment Analysis (DEA) method evaluates every alternative in comparison to a 
hypothetical alternative, which is generated as a linear convex combination of all other 
alternatives. The start point is the performance values of each alternative on the criteria. DEA 
method turns out to be a linear programming problem. The result of DEA is a kind of 
“efficiency” evaluation for each alternative. This value represents only a comparative value 
between the alternatives under consideration. [ES04] Shows that this method is not complete, 
i.e. some alternatives may become equal efficiency values. Furthermore, in some cases, only 
one criterion pushes the ranking towards a specific alternative, causing infeasible decision 
making. 

Ariadne and Hipre3+ allow the decision maker to give less precise statements in form of 
range of weights and range of utilities. Such methods imply a kind of uncertainty about the 
made decision. In [Ols96] Ariadne is considered as a special case of SMART while Hipre3+ 
as a special case of AHP. Ariadne is not complete (i.e. it doesn’t select a best alternative in all 
cases), in contrast to Hipre3+, which awaits more elicitation information from the decision 
maker until a best alternative is identified. 

2.6. Ontologies and Multi-Criteria Decision Making problems 
This section presents the approaches, which gather the ontological knowledge processing to 
methods of Multi-Criteria Decision Making. These approaches can be considered as basic 
forms of the methodology suggested in this thesis. 

Although the decision making and ontologies have different origins and goals, a deeper 
investigation shows similarity and almost complementary aspects between them. From the 
theoretical point of view, the “explicit building of a criteria hierarchy”, usually achieved with 
the help of multi-criteria decision making tools, is an important common point with the 
ontology based approaches. In [Mar99], Martal underlines the “positive effect” of the explicit 
building of criteria hierarchies on the modelling of decision making problems. This way, the 
human decision maker obtains a clear image of the decision problem under consideration. 

The next subsections present practical approaches where ontologies and inference 
mechanisms meet the needs of a decision making process and enhance it. 

2.6.1 Selection of optimal results of semantic queries with soft constraints 
The approach around the Personal Preferences Search Service (PPSS) [A+07] addresses the 
search problem for learning resources. It provides enhanced search capabilities on the base of 
preference queries. In contrast to their traditional semantic counterparts, which allow only for 
hard constraints, the preference queries allow the usage of soft constraints. The soft 
constraints increase the expressivity of the queries by enabling a kind of a preference order, 
for example, an order for the preferred days of week for a special course (called scoring 
preferences). 



 

28 

To retrieve the optimal matches according to the user preferences, PPSS adopts the pareto 
composition between the criteria. This means that criteria are considered to have equal 
importance values. Such approach simplifies the usage of the PPSS, as no kind of criteria 
weighting is required. 

The returned results of search have the form of a set of optimal items, found by applying the 
pareto domination principle. 

PPSS has been implemented as a web service within the Personal Reader Framework [HK04]. 
Extensions of SPARQL (a query language) have been proposed to enable the enhanced search 
capability in a large data set (expressed in RDF) about available lectures. 

PPSS offers high expressive, easy to use, enhanced semantic search capability. From the 
theoretical point of view, PPSS discovers an interesting application field of the pareto 
domination relation in semantic-based selection of a small set of optimal offers from a large 
set of available discrete offers. 

However, PPSS doesn’t propose to find the best available offer, but only to suggest a set of 
best available offers to a human decision maker. 

2.6.2 Ontologies and decision making in loosely coupled management centres 
The example application depicted by Lu et al., in [LRLSM06], demonstrates the decision-
making problem about design, operation and maintenance of the railway system in the UK. 
The privatization of the railway system has resulted in the separation of responsibility for 
various technical issues. 

The privatization, in this context, is related to loosening the coupling between the 
management centres and consequently to more autonomy for distributed decision makers. 
This way, different separate parties have been involved in the decision making process 
through different stages of the system life cycle. A dangerous lack of knowledge evolves 
between these parties. While making a decision about a particular part of the railway system 
the dedicated decision maker is not aware of possible side effects on other parts. 

The authors of [LRLSM06] suggest that the integration of the analysis tools has to take place 
through an internet-based decision support system DSS. [LRLSM06] adopts the definition of 
a decision support system from [Tur95] as “interactive computer-based system that aids the  
decision maker to gain a greater understanding of their business by taking advantages of both 
human intelligence and the ability of computers to access large quantities of data, develop 
models, interpret results and formulate and evaluate alternative solutions”. 

The solution suggested by [LRLSM06] does not rely only on a technical solution (internet) to 
integrate the tools of the different parties. It adopts also technologies of the Semantic Web to 
solve the problem of “expertise sharing”. The standards related to the railway system and its 
components are gathered in a unique ontology. The implemented ontology has a structural 
hierarchy of three levels: Simple parts like wheels and rails, subsystems like wheel sets, 
bogies, tracks and vehicles, and the system level composed of vehicles and tracks together. 
There is no information about the size of the developed ontologies, but they are declared to 
represent 63 standards of railway systems in the UK. 

With the help of a reasoner, the decision taken by one party can be proofed about its possible 
effects on other parts of the railway system, even throughout their whole life-cycle. In the 
kernel of the ontology is the property “affects”. 

The ontology development environment and the visualisation of the class hierarchy are based 
on Protégé [Pro08] and its plugins. The ontology can be accessed online by all parties. 



 

29 

2.6.3 Ontologies and basic forms of MCDM for competence management 
A case study about the application of ontology-based competence management for healthcare 
training planning has been published in September 2006 [KS06]. The authors carried out a 
practical experiment in a German hospital to explore how skills- and competence 
management2 concepts can be used in the healthcare domain, with special concentration on 
the training planning. The competence modelling shows the need for a common vocabulary 
between the separate wards of the hospital and led to “constructive discussions” between the 
involved employees. Moreover, the experiment emphasised the fact that competence 
modelling needs “multi hierarchies” as the primary modelling construct, and that “mono 
hierarchies” turn out to be not suitable because of many cross-references among disciplines. 

[KS06] used the terms of “essential” and “desired” competencies. The difference is related to 
the suitable acquisition time of the competencies: Essential competencies must be acquired as 
soon as possible, while desired competencies are foreseen for future. In a following work 
[SK06], the same concepts have been implemented in an ontology for requirements’ profiling. 
The authors declare “hard requirements” as “competencies that are absolutely needed” and 
“soft requirements” as “competencies that are a desired goal for short- to mid-term future”.  

A simple form of MCDM methods has been used, for example, to assess the utilities of the 
competences on the base of a five level scale (the authors refer to studies showing that the five 
level scale yields the “highest validity”, without to define the meaning of the term). The so 
called “prioritization” (in the sense of weighting) of competencies has not been accomplished. 

[KS06] states that the evaluation of the current competency modelling tools, in the context of 
human resources, has been “quite disappointing”. According to the authors, available tools 
suffer from two main disadvantages: They seem to be designed for “small competency 
catalogues” (up to 100 competencies) and/or they support only mono-hierarchies in the form 
of trees. However, the authors do not refer to the evaluated tools. Moreover, to carry out the 
experiment, the case study adopted a mind mapping tool (MindManager X5, with a specific 
plug-in to allow “smooth ontology evolution”) although they are aware of the lack of 
formality of mind maps, which give a strictly mono-hierarchical structure. 

2.6.4 KOWIEN: Ontologies and goal programming for competence management 
systems 

The project “KOWIEN” [SZ04] was funded by the Federal Ministry of Education and 
Research in Germany. The project consortium gathers the institute of Production and 
Industrial Information Management (PIM), University Duisburg-Essen, to five enterprises of 
different backgrounds: Mining services (Deutsche Montan Technologie GmbH), development 
of customized production machines (Karl Schumacher Maschinenbau GmbH), development 
of optical components and image processing units for production processes (TEMA GmbH), 
consulting (Roland Berger Strategy Consultants GmbH), and finally IT-Consulting and 
software development (Comma Soft AG). 

The abbreviation “KOWIEN” is derived from the German title of the project: “Kooperatives 
Wissensmanagement in Engineering-Netzwerken”, which means: “cooperative knowledge 
management in engineering networks”.  

The project suggests a new solution of the competence management problem in small and 
medium enterprises (SMEs). The competence management is one of the essential factors 
which affect the competitive ability of enterprises (costs of production, time-to-market, etc.). 

                                                 
2 The term “skill” is used in relation to employees, while the term “competence” is used in relation to the 
enterprise, i.e. hospital. 



 

30 

The problem is especially noticeable in dynamic business environments embossed by personal 
turnover, virtual enterprises and job rotation. In KOWIEN, the “competence” is defined as 
“use-oriented know-what and know-how of actors”. The natural actors in enterprises are the 
members of staff. 

KOWIEN treats the competence management under major terms: The actors are supposed to 
work in cooperative way (excluding competitive coordination approaches), and the 
engineering tasks are knowledge intensive; i.e. they require human knowledge in form of 
know-what and/or know-how. Additionally, the engineering tasks shall be characterized by 
high “qualitative” diversity, i.e. the tasks differ in their nature and recommend different 
competences (excluding the management of “quantitative” tasks, where the number of 
available actors, but not their competences, is the key of solution). 

KOWIEN defines two measures to give feeling (i.e. not in terms of mathematical formula) 
about the usability and quality of competency management: The effectiveness and the 
efficiency. The “effectiveness” of a competence management is determined by the degree of 
success reached while performing the identification and allocation steps. Both the 
effectiveness and the required efforts (made by the administration personal) decide about the 
“efficiency” of the competence management. 

In the context of complex knowledge intensive engineering tasks, the consortium of 
KOWIEN argues that high effectiveness (and efficiency) is only to be achieved through the 
distribution of the engineering tasks on “partially autonomous networked actors”. Hierarchical 
tasks allocation (by a central instance) would not take the specific competences and/or wishes 
of the employees into account. On the other side, competitive coordination between 
enterprises on the market would not lead to solutions for complex tasks, which cannot be split 
to smaller tasks. Therefore, the suggestion of KOWIEN is to adopt a hybrid coordination form 
“between the market and hierarchy”. The autonomy of the actors reflects the fact that each 
actor is free while performing its task, without hierarchical orders. At the same time, the 
autonomy of actors is restricted so that their whole efforts lead to the fulfilment of a complex 
engineering task.  

KOWIEN extends the interpretation of “competent actors” beyond the simple form of 
employees. In a multi-agent system the agents can be also “competent actors”. A group of 
individual actors build also one competent actor, in the form of an enterprise for example. 

KOWIEN authors know from experience that the application of competence management 
systems faces some difficulties, especially between separate enterprises where every 
enterprise has to put the competence profiles of its employees in the hands of other 
enterprises. The actualisation of the competency profiles may be also a real obstacle in the 
practice. But KOWIEN treats especially the main obstacle arising because of the usage of 
different languages and different languages terms between the enterprises. The problem takes 
place also between different departments of one enterprise. [ZAADW05] shows that the 
deployment of different software systems by the management personal has lead to the 
adoption of enterprise specific (or branch specific) terms. For these reasons, “synonym” and 
“homonym” terms hinder the application of competence management systems. 

KOWIEN refers to the similarity of competence management problems to those found by the 
World Wide Web, and argues that the semantic dimension, as suggested by the Semantic Web 
(see section 2.4), would be a suitable solution. Therefore, ontologies build the kern of 
KOWIEN. The KOWIEN ontology consists of a top-level ontology and application specific 
ontology. The KOWIEN top-level ontology contains top-level concepts like entities, actor, 
personal competence, social competence, know-how competence, know-what competence, 
time point, time ranges, etc; in addition to relations like: works_for; has_address; 
has_competence_profile; contains_competence etc. The application specific ontology 



 

31 

contains for example a set of IT-competences, foreign languages’ competences, planning 
methods competences, investment methods competences, analyse methods competences, 
presentation methods competences, etc. 

On the base of the KOWIEN ontology, inference rules are suggested for two reasons: To 
discover the implicit knowledge included in the explicitly given ontology, and to check the 
consistency [YA03]. As an example of the first type, an inference rule RInference says that a 
person P is competent in a specific theme T if she/he composed a document about a project, 
which is related to the theme T. An “integrity rule” RIntegrity would then deactivate the 
inference rule RInference if a fact exists already and it says that person P is not competent in the 
theme T. 

KOWIEN deals with the question of how to develop the competence ontology and suggested 
a procedure consisting of multiple phases: Requirements specification, knowledge acquisition, 
conceptualization, implementation and evaluation of the ontology. Comma Soft AG, a 
member of the KOWIEN consortium, implemented a prototype of an ontology-based 
competence management system. The prototype has been deployed by other members.  

To find the optimal allocation of engineering tasks to the actors (employees), KOWIEN 
adopts the “Goal Programming” solution. The Goal Programming is one of the Operations 
Research methods, designed to solve decision making problems under multiple criteria. In 
contrast to other methods, goal programming enables the decision maker to take multiple 
goals into account. KOWIEN makes use of this possibility and tries not only to “find the best 
employee to achieve a specific engineering task”, but also to consider the preferences of the 
employees, i.e. “to find the best engineering task for each employee”. 

Each goal is a (mathematically expressed) composition of multiple (weighted) “deviations” on 
each criterion. The deviation on a criterion is the difference between a (predefined) target 
value on the criterion and the actual value (performance of alternative on the criterion). This 
reflects one of the important characteristics of the goal programming method. 

The weighting of criteria (for each goal) is done according to the Analytic Hierarchy Process 
AHP (see section 2.5.3.2). In this context, KOWIEN recognizes that the weighting hierarchy 
of criteria (competences) can be found in the competence ontology. To this reason, KOWIEN 
stresses the importance of ontologies, not only as a base to incorporate intelligent solutions, 
but also as an interface to models of decision making problems. 

2.6.5 Summary 
This section deals with approaches trying to make use of both ontologies and methods of 
Multi-Criteria Decision Making. 

Initial approaches (2.6.2) discovered the benefits of the explicit design of ontologies to clear 
the decision making problem (first step in the generic MCDM procedure. See section 2.5.3). 

Other approaches (2.6.1) extend the semantic queries to consider soft constraints (user 
preferences), which have a comparable effect to the utility assessment (the third step in the 
generic MCDM procedure). The criteria are supposed to have equal importance values, i.e. 
the weighting of criteria (the second step of the generic MCDM procedure) is not considered 
in this context. The search using the preference queries gives out a set of “optimal 
candidates”. Still, the selection of a single best candidate (the fourth step of the generic 
MCDM procedure) is taken out by the human user. 

Approaches from the area of competence management (2.6.3 and specially 2.6.4) go a step 
further towards adopting both ontologies (and semantic matching) and MCDM principles. 
However, these approaches didn’t try to integrate the semantic matching and the MCDM 



 

32 

methods and treated them as two separated processes. This applies for the design time, where 
the weighting of criteria and the utility assessment are supposed to be performed separately 
from the ontology development, and for the runtime, where the semantic matching and the 
decision making are designed to be performed in different and totally separated tools. 
Moreover, the semantic matching and the MCDM are performed in a central unit. 

2.7. Automotive communication platforms 
This section reviews the communication platforms in modern automotive systems. However, 
this section is not written to serve as a comprehensive review about the automotive 
communication platforms. But it delivers sufficient knowledge to evaluate the communication 
platforms from the Organic Computing point of view. Section 4.6.1 will define a set of 
requirements on the communication platforms, sections 4.6.2 to 4.6.5 will then evaluate each 
communication platform according to the requirements, and section 4.6.2.8 concludes with a 
comparison between the communication platforms. 

The CAN Bus will be investigated in more details, because it is the most widespread serial 
bus system in the automotive industry (for the weaknesses of CAN bus, solutions will be 
suggested and evaluated in section 4.6.2). 

2.7.1 CAN BUS 
CAN (Controller Area Network) is characterized by the following features: 

- It supports a multi-master hierarchy: To allow building of intelligent and redundant 
systems. The failure of one network node will not affect the operation of other nodes 
on the network [CAN08]. 

- Broadcast communication: A sender transmits information to all devices on the bus. 
The message is addressed to a node with identification code (ID), which matches the 
ID field in the message. 

- Sophisticated error detecting mechanisms and re-transmission of faulty messages: The 
CAN bus error rate can be kept below 4.7x10-11 [CAN08] 

- Transfer speed related to distance: For bit rates of 5KBit/sec CAN bus length can 
reach 10km, while the maximum length is restricted to 40m for the maximum bit rate 
of 1MBit/sec [ICP04]. 

- Arbitration: To lose conflicts arising when two or more nodes start transmitting 
messages at the same time, CAN bus adopts an arbitration mechanism on bits level. 
During the arbitration, every sending device compares the expected voltage level for 
its own transmitted bit with the actual voltage level monitored on the bus. If these 
levels are equal, the node will continue to send a following bit. When the expected 
level differs from the monitored level, the device has lost the arbitration and must stop 
its activity as a sender [ICP04]. 

- Real time transfer of messages: This feature is restricted to high priority messages 
with maximal length of 8 bytes. 

CAN network can be configured to work with one of two different frame formats: The 
standard base frame format (CAN 2.0 A), or the extended frame format (CAN 2.0 B). These 
formats differ between the lengths of the identifiers: 11 bits in the base frame” and 29 bits in 
the extended format. These 29 bits are made up of the 11-bit identifier “base identifier” and a 
18-bit identifier extension [Wik08b]. The standard format is widely deployed in the 
automotive systems. The extended format plays a role in conjunction with some higher level 
protocols such as SAE J1939 [May06]. 



 

33 

On the base of the CAN Bus, many protocols have been developed to cover tasks such as flow 
control, device addressing, and transportation of long data blocks. Example protocols are: 
“DeviceNet”, “CANopen”, “SDS”, “CANaerospace”, “J1939”, “NMEA 2000”, “CAN 
Kingdom” and “SafetyBUS p” [Wik08b]. SAE J1939 is the vehicle bus standard used for 
communication and diagnostics, originally by the heavy duty truck industry in the United 
States. J1939 is used for communication in the engine compartment and between the tractor 
and trailer [Wik08b], while CANopen is preferred for body management, such as lights and 
locks [Mur03]. 

In order to send long messages (more than 8 bytes) CANopen offers a segmented transferring 
of the Service Data Objects (SDO). The model for the SDO communication is the 
Client/Server model [DCS99]. 

The segmented SDO transfer is combined with high overhead because of the confirmation of 
received segments. CANopen supports the mode of block transfer to avoid this overhead. A 
block consists of (a known number of) segments (maximally 127 segments). One 
confirmation message is sent for every block and better efficiency values can be accordingly 
achieved. 

The next sections contain a study about the efficiency of data transfer on the plain CAN bus, 
the efficiency of CANopen segmented transfer and of block transfer. 

2.7.1.1 The efficiency of data transfer on the plain CAN Bus 
The efficiency of data transfer over the bus system is calculated as the ratio between n, the 
number of application’s data bytes, and the number of transferred bytes (n + overhead). 

length Frame
nEfficiency Frame Bus CAN =  

The base frame format is characterized by its 11 bit message identifier within 44 overhead bits 
[Wik08b]. Consequently, the efficiency of the base frame format: 

n  844
nEfficiency Frame (Base) Bus CAN
+

=  

In the extended frame format the message identifier occupies 29 bits within 64 overhead bits  
[Wik08b], and its efficiency can be calculated as: 

n8
n

n  864
nEfficiency Frame (Extended) Bus CAN

+
=

+
=  

The last relations are true only for a single frame, which can transfer a maximum number of 
data byte of 8 (n <= 8). 

The efficiency of data transfer on the CAN Bus itself reaches its maximum value when 
sending 8 data bytes in one frame: 

59.0=
+

=
+

=
8  844

8
n  844

nFrame) (Base Efficiency Bus CAN Maximum  

50.0==
+

=
16
8

n  8
nFrame) (Extended Efficiency Bus CAN Maximum  

This means that any higher level protocol will never reach an efficiency value better than 0,59 
(for the base frame format) or 0,5 (for the extended frame format).  



 

34 

To get a feeling about the transfer speed, the transfer time of 8 data bytes will be calculated 
using the maximum baud rate of CAN Bus 1 Mbit/Sec. The base frame format would have the 
length of: 44/8 + 8 = 13,5 bytes. The transfer time of the frame can be calculated as: 

(13,5* 8)/10 exp.+6 = 0,108 ms3. 

The transfer time of 8 data bytes in the extended frame frame format is then 0,128 ms. 

For a message of 1KB (1024 ASCI characters), 128 CAN Bus frames have to be at least sent. 
The transfer time reaches 13,824 ms for base frame format and of 16,384 ms for the extended 
frame format. 

However, the transfer of long messages is ruled by the segmentation protocol, which adds 
more overhead. To this reason the transfer time of a 1KB message is only calculated to be a 
theoretical reference value. The actual transfer time is to be taken from the next sections, 
which consider the segmentation overhead. 

2.7.1.2 Efficiency of CANopen for segmented transfer 
For a segmented SDO transfer of n data bytes, the total number of needed segments is 
calculated as: 

Number of segments = n/7+ k 

Where: 

k = 1 when n mod 7 = 0 (1 segment is needed to initialize the data transfer) or 

k = 2 when n mod 7 is not equal to 0  

Consequently the total number of messages is: 

Number of messages = (n/7 + k)*2 

The total CANopen efficiency of segmented SDO transfer over CAN Bus can be calculated as 
[Zel01]: 

E = n / [(g+k)*16] 

Where: 

n number of data bytes (length of data in bytes) 

g = n/7; i.e. one segmented messages contains max. 7 data bytes 

k =1 when n mod 7 = 0 

k = 2 when n mod 7 ≠ 0   

Table 2-3 gives the efficiency values of segmented SDO transfer for different numbers of data 
bytes. 

Number of data bytes (n) CANopen efficiency with 
segmented SDO transfer 

7 0,219 
8 0,159 
64 0,356 
256 0,415 
1024 0,431 

                                                 
3 Message prioritisation and transfer faults may cause unpredictable delays, which are not part of the transfer 
time of the message itself, and are not considered in the relation. 



 

35 

Table 2-3 Efficiency of CANopen with segmented SDO for different numbers of data bytes 

Example: 

For n = 1024, the number of CAN Bus messages is: (1024/7+2) * 2 = 296,571, with transfer 
time of 296,571 * 0,108 = 32,03 ms for the base frame format, and of  296,571 * 0,128 = 
37,961 ms for the extended frame format4.  

2.7.1.3 Efficiency of CANopen for block transfer 
According to [Zel01], the efficiency of transferring 127 segments in each block can be 
calculated as: 

E = n / [(g+h+i+5) * 8] when n mod 7 ≠ 0 

E = n / [(g+h+i+4) * 8] when n mod 7 = 0 

Where: 

n: number of data bytes to be transferred 

g = n/7 total number of data transfer segments  

h = n/890 = n / (127 * 7) number of blocks 

i = 0 for write access to the server 

i = 1 for read access to the server 

Table 2-4 shows the efficiency values of block transfer in CANopen for different lengths of 
data: 

n: Number of data bytes CANopen efficiency with 
block transfer 

7 0,174 
8 0,163 
64 0,565 
256 0,764 
1024 0,840 

Table 2-4 the efficiency values of block transfer in CANopen for different lengths of data 

Example: 

For n = 1024 data bytes the block transfer time is 13,824/0,840 = 16,457 ms for the base 
frame format and 16,384/0,840 = 19,505 ms for the extended frame format. 

2.7.2 Local Interconnect Network LIN 
The LIN bus is a slow network system (max. 20 kbaud), used to build sub-networks from the 
CAN bus network. Nodes in the LIN network are usually intelligent sensors and actuators 
[Wik08]. 

2.7.3 FlexRay 
Along with the increase of the amount of electronics in the automobile and the introduction of 
several advances in safety, reliability and comfort, new and higher requirements on the 
communication platform appear continuously. These requirements include the combination of 
higher data rates to send the increasing number of control and status signals, deterministic 
                                                 
4 The same values can be calculated as: transfer time of 1024 bytes on CAN Bus without segmentation overhead 
/ efficiency of CANopen for 1024 data bytes. 



 

36 

behavior and support of failure tolerance. Efforts on developing a serial bus system according 
to these requirements evolved to the foundation of the FlexRay consortium, which combines 
mainly distinguished motor vehicle manufacturers and chip producers. The consortium 
[Fle06] introduced a new bus system as “a communication system that will support the needs 
of future in-car control applications. At the core of the FlexRay system there is the FlexRay 
communications protocol. The protocol provides flexibility and determinism by combining a 
scalable static and dynamic message transmission, incorporating the advantages of familiar 
synchronous and asynchronous protocols”. 

The determinism in FlexRay is a result of time-triggered communication (in contrast to the 
event-driven CAN bus). All nodes must conform to a precisely defined communication cycle 
that allocates a specific time slot to each FlexRay message (Time Division Multiple Access - 
TDMA) and therefore prescribes the send times of all FlexRay messages [May07a]. 

The flexibility of FlexRay results from its ability to send dynamic messages in the second part 
of each frame. While the static messages are transmitted in each message with guaranteed 
message latency, and therefore used typically for real-time communication, the dynamic 
messages are only transmitted when required and used to transmit diagnostic data, for 
example. 

FlexRay protocol supports also features like: 

- Fault-tolerant clock synchronization via a global time base: correction factors are 
calculated in each node after the reception of Network Idle Time NIT segment (NIT 
comes at the end of each cycle). 

- Collision-free bus access: each Node/message pair has a pre-allocated slot. 

- Single channel gross data rate of 10 Mbit/sec. 

- Scalable system fault-tolerance via an additional (redundant) communication channel: 
to minimize the failure risk, FlexRay offers redundant layout of communication. 
Optionally the redundant channel can be used to increase (duplicate) the transfer data 
rate to 20 Mbit/sec. 

- Support of different network topologies like: 

 Simple passive bus structure: where the nodes act solely as listeners (not as 
repeaters) 

 Star topology: offering the possibility of disconnecting faulty communication 
branches or FlexRay nodes. This topology suffers from the disadvantage of 
having a single point of failure (the central device) 

 A combination of both topologies. 

2.7.4 Media Oriented Systems Transport MOST 
MOST is a networking standard designed for connecting multimedia devices in automobiles. 
It is featured with higher bit rates than other bus systems. The total bit rate of MOST25 (the 
first step of the protocol specification) reaches about 22 Mbit/Sec, divided into 60 channels in 
each frame. MOST150 promises a bit rate of 150 Mbit/Sec [May07b]. 

According to the device profile, several channels can be reserved for one device. The 
reservation of channels takes place in the initialization phase of the connection (Plug-and-
Play). A central channel master adopts the channel s’ management and the synchronization of 
data transfer devices on the bus. The central synchronization enables the involvement of 
relatively simple devices to the bus. 



 

37 

As a synchronized bus with high bit rates, MOST offers an optimal solution for data 
streaming (multimedia) through its channels (guaranteed bandwidth with no need for 
buffering). But it supports also real-time transfer of any type of data, like control data 
[Mos08]. 

MOST covers all seven levels of the Open Systems Interconnect (OSI) reference model. The 
physical layer is realized using unshielded twisted pair (UTP) or optical fiber [Muy08]. On 
the application layer, predefined “functions” are gathered to build a “function block”. Each 
function has a set of operations (like set, get, etc.). This order of functions and function blocks 
is to be understood as a logical view on the system, because a function block can be located in 
reality on any device of the MOST bus. The management of this all is done by the central 
master, which has a registry of available functions and function blocks, along with their 
corresponding addresses. 



 

38 

3. Semantic Multi-Criteria Decision Making  

3.1. Critique of current approaches  

3.1.1 DySCAS 
DySCAS addresses the reconfiguration (or self-configuration) of software tasks which share a 
standardized middleware like AUTOSAR. DySCAS finds its roots in the Grid Computing and 
considers the problem as an allocation problem of processing, storage and communication 
resources. The diversity of devices and features of automobile system makes such reduction 
impracticable. 

The DySCAS solution is designed on the base of two mechanisms: Policies and utility 
functions. 

The matching of the current context parameters, as well as their values, to those found in the 
policies (rules) is a syntactical matching. This means that tools are required to assure coherent 
naming of context parameters. Aside from the fact, that no policy design tools are yet 
available for AGILE, the policy-based computing cannot face the challenge of integrating 
resources (devices and/or software components) developed by different providers. This 
challenge triggered the engineering efforts like AUTOSAR (standardization on the 
implementation level), EvoArch (autonomy), as well as the architecture and design 
methodology presented in this thesis. Just because of this shortcoming, DySCAS is expected 
to be an isolated idea which will not find its applications in reality. 

Design tools to set up the weights in the utility functions are also still missing. Before 
presenting a solution to define weights statically, dynamic weighting cannot be practically 
used (imaginable solutions on the base of “learning” would ruin the relative advantage of a 
lightweight policy-based computing). 

Moreover, the relatively high degree of freedom available through the use of policy-based 
computing, should be balanced by a specific design schema; otherwise the rules could resolve 
to “no actions” or a “lot of actions”. 

Generally, the suggestion of such special runtime architectures has to be followed by the 
introduction of suitable design tools. 

In addition to the design difficulties, the utility functions in DySCAS are still thought of as 
mathematical formulas, where the values of context parameters have to be numeric. Utility 
functions in DySCAS cannot cope with a textual (qualitative) description of components 
(software components or other components). For example, there is no way to express user 
preferences like: “Video streaming is better than audio streaming”. 

The policy expression language and integration platform AGILE is implemented as a .NET 
application, showing that DySCAS is not yet ready to take its place in embedded systems (due 
to limited resources). 

3.1.2 EvoArch 
The main contribution of EvoArch is the introduction of the market place arena, as well as the 
unified taxonomy as two corners of the evolutionary architecture. Each ECU represents an 
autonomous unit. 

EvoArch adopts a marketplace-oriented behavior of the autonomous units, but the question 
about the most suitable order of actions on the marketplace is still open. Different forms of 
behavior, still on a marketplace, should by thought of and put up to discussion. 



 

39 

The T-Selection in its suggested form may be an adequate solution when long candidate lists 
have to be restricted to a shorter one. But an important problem will arise when the T-
Selection cannot limit the candidate list to one specific candidate, i.e. when more than one 
candidate can be proofed as acceptable. Such situation is more than a theoretically thinkable 
one. The evolutionary architecture comes into consideration where engineering systems 
register a high level of complexity. In such environments, different acceptable partners can be 
surely available at the same time. The suggested concept overlooks this problem completely. 
In connection to this problem, some other questions deserve closer attention, like the question 
of description granularity: “How much information should be available about each 
autonomous unit?”. In other words: Too precise descriptions lead to small success rates when 
searching for partners, while too coarse descriptions result in a large number of candidate 
partners. 

The designers of EvoArch used to look at the problem from the point of view of a software 
developer. This explains the usage of principles and tools of the Unified Modelling Language 
UML [OMG08]. UML is originally designed as a supporting language for the software 
development. The similarity of the object-oriented modelling and the taxonomy inspires the 
authors to adopt the UML class diagrams to develop taxonomy graphs, to allocate 
autonomous units on it, and finally to develop a software to run on autonomous units 
(prototype in Java). This generalization of the UML usage is thought of as a simplification of 
the development process, but it hides a dangerous contradiction between the aims of software 
designers, developers and testers, and the expected benefits of taxonomy graphs. For example, 
it is not important for the software developer to know if a lamp controller will be set on the 
right side or on the left side of the car. At the same time, such “classification” includes vital 
information for the autonomous unit and its location on the taxonomy graph. 

A main drawback of EvoArch can be registered because of the expectation that all designers 
and all manufacturers share a common taxonomy. Solely to move the integration problem 
from the designers’ hands to the “autonomous units” does not seem to be a realistic solution. 
The autonomous units have to be supported with adequate knowledge about themselves and 
about other units. They need a common language, just like the human designers. It is not 
known how different manufacturers would be able to transfer a common language to their 
units, before all designers agree and formulate such language. It would be a great challenge to 
persuade the manufacturers to spend time developing a common taxonomy of all units 
constituting a modern car. The development of such a taxonomy internally in each 
manufacturer/vendor is only a first step. The next step has to consider the integration of 
taxonomies made by different manufacturers, coming from different countries with different 
natural languages, experiences and expectations. Such a process would be the most difficult 
problem, and maybe an unsolvable one. 

A further problem would be the validation of the taxonomy. Validation tools are 
indispensable in such cases. Moreover, continuous advances in the technology mean that the 
taxonomy will be always out of date, and therefore, unusable by the autonomous units. The 
costly actualization of the taxonomy would be a permanent problem. From this point of view, 
the original integration problem gets new dimensions, related on the one hand to knowledge 
creation, integration and validation in the design time and, on the other hand, to knowledge 
utilization in the run time (by the autonomous units). In both phases, the authors do not 
suggest convincing solutions. So, EvoArch relies on dangerous and not sufficient syntactic 
matching between (names of) taxonomy nodes in the absence of adequate design, integration, 
validation and execution tools. 

Table 3-1 summarizes the features and differences of DySCAS and EvoArch. 



 

40 

 DySCAS EvoArch 
Components Software tasks ECUs 
Behavior  Application dependent Marketplace oriented 
Enabling technologies - Policy-based computing 

- Selection through utility 
functions (only for quantitative 
values)  

- Taxonomy selection (coarse 
selection) 

- No fine selection 

Matching type Syntactic matching between 
parameters (context parameters and 
rules parameters) 

Syntactic matching between 
taxonomy nodes 

Efforts towards a common 
description language 

No Yes 

Development\Deployment 
support of a common language 

No No 

Development tools - Policy editor (under 
construction) 

- No tools to set up the utility 
functions 

UML editors 

Implementation A prototype on .NET A prototype in Java 

Table 3-1 A comparison between DySCAS and EvoArch. 

3.1.3 Approaches of Contract Net Protocol 
The Contract Net Protocol (CNET Protocol), shown in section 2.3, represents a special 
approach for distributed problem-solving on the base of a marketplace-oriented behavior. 
However, the roles of the manager and of the contractors are statically defined: The manager 
sends a call for proposals (enquiry), the contractor answers it with a bid (offer) if it can fulfil 
the eligibility specifications, and the manager must select a bid from a list of available bids. 
Although it seems to be a “natural” protocol, other types of roles’ assignment are principally 
possible. Such possibilities are not considered by any approach in the research field of 
Contract Net Protocol. 

The Contract Net Protocol ignores also the question of how to construct a common language 
(between the managers and the contractors) and doesn’t provide a solution for the selection 
problem of the satisfactory bidder. The nature of CNET applications explains this situation. 
Although the applications are found in distributed problem solving and resource allocation in 
relatively open environments, the distributed tasks, their restriction to specific known types, 
and the high similarities of the agents make the impression that a statically defined types 
would be a sufficient common language. Also following approaches about the CNET protocol 
ignore these questions and consider the Contract Net Protocol as communication protocol, 
deal with its modelling, or try to find new application areas (see [FIPA02], [JP02], [XW01] 
and [ PCJ04]). 

The approach of “Ontology-based Services for Agents Interoperability” [Mal06] gathers the 
marketplace-oriented behavior (Contract Net Protocol) to the ontology-based matching 
capability. However, the marketplace-oriented behavior is the default behavior in the 
application field of Business-to-Business (B2B). Therefore, the concentration of this approach 
goes to the ontology-mapping between different ontologies (the ontology mapping can be 
always required in distributed application environments like B2B or the Semantic Web), 
rather than the systematic integration of both technologies: Marketplace-oriented behavior 
and the ontology-based matching. In other words: In this approach the marketplace-oriented 
behavior is one of the realities found in the B2B application field and is not a suggested 
solution for any engineering problem (like the system complexity). 



 

41 

Moreover, the approach doesn’t address the selection problem of the best available bid on the 
base of multiple attribute. It adopts also the traditional CNET Protocol without to study any 
other possibilities of roles distribution (the role of the manager and role of the contractor). 

On the other side, the approach of “Extended Contract Net Protocol” (ECNET) oversees the 
interoperability problem (i.e. the need for a common language), but it adopts a method of 
MCDM (TOPSIS). ECNET doesn’t give any justification for the usage of TOPSIS, while 
many other MCDM methods come into question for the same purpose. Moreover, ECNET 
doesn’t address the question of providing suitable design tools of the decision making 
manager and adopts the traditional roles distribution. 

3.2. The basic idea of Semantic Multi-Criteria Decision Making SeMCDM 
Self-organization and autonomy have been already proposed to face the increasing complexity 
of technical systems. However, the shortcomings recognized in current approaches (EvoArch 
as well as DySCAS) push towards new ways of thinking and towards the search for new 
methods.  

Similar to EvoArch, the architecture of Semantic Multi-Criteria Decision Making (SeMCDM) 
considers “parts” of the system as autonomous units, which try to (re)configure the whole 
system through marketplace-oriented behavior: The exchange of offers and enquiries. 
However, SeMCDM relies on a new vision and understanding of the self-organization in 
engineering systems. 

SeMCDM suggests that autonomous individuals would be only able to build a “suitable 
order” if they are supplied with “suitable knowledge”. A common view to the world between 
the designer and the autonomous units, as well as between the autonomous units themselves, 
is here the key of the solution. The problem is redefined as a problem of knowledge and its 
deployment to reach the expected behavior. 

Through the integration of a “knowledge dimension”, SeMCDM finds its counterpart in the 
“Semantic Web”. This goes back to the similar nature of addressed questions: The Semantic 
Web aims to allow data to be shared and processed by automated tools as well as by people. 
As an extension of the current web, information of the Semantic Web is given a well-defined 
meaning, enabling computers and people to work in cooperation. Exactly this cooperation 
between machines and people as well as between the machines themselves builds the key 
solution for the self-organization problem in the design process and later at run-time. 

The Semantic Web deploys the idea of knowledge formulation in “ontologies”, as a common 
and machine readable view to the application domain. Effective methods of data discovery, 
integration and reuse have been declared as key technologies towards the Semantic Web. The 
incorporation of inference mechanisms enables the querying of the ontology, the explicitation 
of the implicit knowledge and the consistency check of ontologies. Moreover, inference rules 
can be deployed to get more (domain/application specific) knowledge. 

SeMCDM benefits from available ideas, experiences and tools found in the world of Semantic 
Web to enable self-organization in engineering systems. On the base of this new 
understanding, SeMCDM suggests to build the knowledge of autonomous units on the base of 
an ontology, which represents an important bridge between the designer(s) and the 
autonomous unit(s). The autonomous units would be able to interact using semantically well-
defined terms. Interaction models, like the market place arena would benefit from the 
“semantic matching” between the offers and the enquiries on the marketplace. 

Moreover, SeMCDM addresses a further problem in relation to multi-dimensional 
descriptions of both offers and enquiries. In practical cases, it is highly expected that the 
autonomous units would be described with the help of multiple features. While the semantic 



 

42 

matching presents a solution for matching of features’ pairs (one feature of the offer and one 
feature of the enquiry), the evaluation of the whole offer, with all of its features, moves the 
matching problem to a higher level of complexity. The analogy to problems of making 
decision under multiple criteria provides an incentive to a deeper study of mechanisms and 
methods known in the field of Operations Research. The adoption of “Multi-Criteria Decision 
Making” (MCDM) methods in SeMCDM is the proposed solution to support the autonomous 
units with selection mechanisms. 

Figure 3-1 summarizes the methodologies integrated within SeMCDM. 

 
Figure 3-1 The main contribution of this thesis is the integration of concepts originating from different 

research areas into a practically usable methodology. 

Figure 3-2 shows the basic idea of SeMCDM from the technical point of view. As in EvoArch 
(section 2.2.3), autonomous units are divided basically into active and passive units. 

Active units are expected to be supplied with a wish list: A list of wished components with 
their specified features. 

To give the description (and successively the autonomy) more flexibility, the features have 
been divided into hard features (exclusion features) and soft features (optimization features). 
For each component the active unit sends an enquiry to all passive units. 

A passive unit tries to answer the question about its adequacy to meet the hard features in the 
enquiry. Features of the enquiry have to be semantically matched to self-description features 
of the passive unit. For this purpose, the passive unit relies on the common language (the 
ontology) and on a mechanism to answer enquiries (inference). The inference engine can be 
supported with additional rules to reach the real relation between features (implicit 
knowledge). 

As soon as the hard features have been proven as available, the passive unit sends an offer to 
the active unit. The active unit receives eventually more than one offer for one specific 
enquiry. Therefore it carries out a kind of Multi-Criteria Decision Making. After making a 
decision to accept a specific offer, the corresponding passive unit is informed about the 
decision and a contract is made between both units.  
 



 

43 

 
Figure 3-2 Semantic Multi-Criteria Decision Making: From the technical point of view. 

A system configuration is built this way as the sum of all concluded contracts. The same 
process can be repeated on different levels of the system: The active unit can play the passive 
role as soon as it could find suitable offers for its components. Such units play a so called 
“passive-active role”. A hierarchical configuration takes place successively. 

3.3. Advantages of SeMCDM 
SeMCDM discovers the knowledge-related dimension of self-organization. Knowledge 
representation in ontologies promises a formal conceptualization of the application domain. 
Research approaches from the field of Semantic Web provide supporting tools to develop the 
ontologies as a common language between the designers. Already available mechanisms for 
consistency check, extension and integration of ontologies developed by different parties are 
of vital importance in this case. 

The same ontology will be processed by the autonomous units at run-time. The autonomous 
units share a common language and can “understand” the needs and competencies of each 
other. The semantic matching is one of the most important advantages of SeMCDM. 

Application specific rules add more intelligence to the autonomous units and enable the 
designers to express their knowledge. 

The designers’ preferences are represented in a clear description schema (the wish list). 
Description of components through two categories of features (hard and soft features) 
promises more flexibility while expressing the designers’ preferences. At run-time, the 
autonomous units make use of the flexible description, and discover sub-optimal solutions. 



 

44 

Methods of Multi-Criteria Decision Making extend the capabilities of the autonomous units to 
the selection of the best available offer and represent therefore an optimization of the self-
organization. Moreover, with the adoption of multi-criteria decision making a new perspective 
has been added to the preference expression. Detailed preference acquisition enables better 
correlation between the view of the designer and the view of the autonomous units. The 
autonomous units will make their decisions in the sense of the designer needs. SeMCDM 
combines the autonomy of the units composing the engineering systems with designers’ 
restrictions and opens the way for flexible and reasonable self-organizing systems. 

3.4. Design issues and open questions 
The field of MCDM is characterized by the existence of different methods to solve the 
selection problems (see section 2.5.2). The adoption of a specific method should consider its 
applicability for purposes of SeMCDM. This applies for all four steps in the decision making 
process. This issue is the theme of section 4.1. 

The semantic matching between features and the Multi-Criteria Decision Making cannot be 
considered really as two separated steps. The semantic matching of two features decides 
basically about the comparability of these features from the semantic point of view, but it 
should tell more about the degree of fulfilment (utility). The combination of qualitative 
features and quantitative features presents a new challenge for the inference engine. 
SeMCDM shows the need for a MCDM capable inference. Three sections address this issue: 
Sections 4.2 present SeMCDM supporting ontologies, section 4.3 specifies an MCDM 
capable inference engine, and section 4.4 considers the flexibility of the wish list to define a 
generalized matching process. 

The integration of MCDM and inference mechanisms at run-time also corresponds with a 
similar issue at design time. Two different worlds have to be integrated: Ontology design and 
the MCDM supporting design. In the light of the selected MCDM methods, a design concept 
of supporting tools should be developed to permit this integration. The design support in 
SeMCDM is the theme of section 4.7. 

According to EvoArch and to the basic idea of SeMCDM, the actions carried out by the 
autonomous units build only a simplified analogy to marketplace-oriented behavior. The 
actions on the marketplace vary between sending an enquiry/offer, matching enquiries to 
offers, and making decisions. Before shifting such ideas to real engineering systems, concrete 
orders of actions have to be developed. A concrete sequence of action builds a “market 
scenario”. A categorized set of possible market scenarios is defined in section 4.5. Different 
factors of the application environment may push towards specific scenarios, as the simulation 
results show in section 5.5. 

Automotive applications differ in their complexity and requirements. Although characterized 
as embedded systems with real time support, some devices in modern automotive systems 
possess high computation power. The selection of suitable applications in automotive systems 
and more information about the requirements of SeMCDM may encourage designers to 
consider self-organization as a real alternative. Application fields of SeMCDM in automotive 
systems have been recognized in section 4.6. 

The specified SeMCDM methodology has been evaluated in section 5. 



 

45 

4. Design of SeMCDM 
The basic concepts of SeMCDM have been defined in section 3.2. This section answers the 
design questions found in section 3.4. A step by step design will take place until SeMCDM 
takes its well-specified form. The design of SeMCDM is made principally through a deep 
requirements analysis and investigation of available solutions. 

4.1. Multi-Criteria Decision Making for autonomous systems 
Section 3.2 presented the selection problem facing the autonomous units. It made also clear, 
that the selection problem is a type of decision making under multiple criteria. 

In this section, terms from the MCDM research field are gathered and mapped to their 
corresponding terms from the suggested architecture of autonomous units. 

Recalling the basic idea of the autonomous behavior, the features of the passive autonomous 
units conform to an “offer” and the “selection” has to take place between offers. Therefore, 
the offers are “alternatives”, from the MCDM point of view. 

The features of the enquiries (for each component) are to be understood as the “criteria” for 
the decision making problem. 

Because the decision has to be made autonomously, the active autonomous units are the real 
“decision makers” on the market place (section 4.5 presents a detailed discussion about the 
possible roles of the units). 

Still, a “human designer” carries out the first three steps of the decision making procedure 
(section 2.5.3) at design time: Features’ analysis, utility assessment of features’ values, and 
features’ weighting. Additionally, the designer of passive units prepares his units, by setting 
up the features and their values. 

For this reason, there is a difference between the “design phase” and the “run-time phase”. 
Hence the following discussion distinguishes the “designer” from the “decision maker”. 

In the following section the requirements on the MCDM methods will be described. The 
following sections apply the requirements on the available methods and filter out the 
inadequate methods. This takes place separately for each step of the MCDM procedure 
(section 2.5.3). 

4.1.1 Requirements 
To select the adequate MCDM method for each MCDM step, the intended SeMCDM 
selection problem has been analysed to discover its requirements. The following requirements 
list has emerged as a result: 

- Finite number of discrete alternatives: As the target application system consists of a 
“finite” number of autonomous units, the decision making problem considers only a 
finite number of discrete alternatives. 

- Stable and known performance values of alternatives on criteria: The autonomous 
units are supposed to offer stable and known performance values on all criteria. It is 
also supposed that the designers know and declare the features of their autonomous 
units. (The topic of trustworthy designer knowledge is beyond the scope of this 
dissertation.) The integration of autonomous units with dynamic features, i.e. 
autonomous units with changing performance values on some criteria, is principally 
possible, if value changes trigger the reconfiguration process of the system. However, 



 

46 

the assumption of stable performance values of alternatives on all criteria is valid 
within each reconfiguration process. 

- Complete methods: The aim of the decision making process is to select the best, and 
only one, available alternative. This means that ranking and decision making methods 
have to deliver a complete rank of alternatives. In the context of criteria weighting, the 
complete methods are those delivering weights for all criteria at hand. 

- General solution: While weighting the criteria at design time, the designer is not able 
to predict the nature of alternatives offered later at runtime. Those weighting methods 
and utility assessment methods, which deliver alternatives’ dependent results, are not 
applicable in this case. 

- Known criteria: Other than the alternatives, the criteria (features) of the alternatives 
are supposed to be known at design time. 

- Uncertain designer preferences: The fact that the designer has always uncertain 
preferences cannot be ignored by the weighting method. 

- Qualitative and quantitative criteria: The criteria can be generally of any data type, 
i.e. qualitative or quantitative. 

- Adequacy to the components description schema: The flexible schema in the wish 
list (see section 3.2) demands an adequate ranking function. The soft features build a 
typical case for the weighted sum method, whereas the hard features push towards a 
weighted product. 

- Help for the designer: The decision making methods and tools are originally 
designed to help the human designer to clear the decision making problem at hand and 
to depict his preferences in a mathematical, or computerised, way. MCDM methods, 
which confront the designer with challenging questions, are not acceptable. 

- Ease of use: The MCDM methods differ in their usability and user friendliness. This 
applies to the number of designer statements, and for the types of theses statements. 

- Integration within the ontology development process: The integration of the 
ontology development process and the MCDM methods (features’ analysis, utility 
assessment of features’ values and features’ weighting methods) is of high importance 
for the designer. 

4.1.2 Selection of suitable decision making methods 
In this section, the requirements from section 4.1.1 will be applied to MCDM methods (from 
section 2.5.3) in order to select the best ones for purposes of SeMCDM. Generally, unsuitable 
methods will be successively eliminated. 

The first requirement makes it clear that the decision making problem considers only discrete 
alternatives. For this reason the decision making methods in continuous space can be 
excluded from this discussion, i.e. the Multi Objective Decision Making methods, and the 
solution falls under the branch called Multi-Criteria Decision Making. 

Stable and known performance of offers on criteria (the second requirement in section 4.1.1) 
excludes the need for decision-making methods considering uncertainty (games against nature 
and games theory). Therefore, the following discussion will be limited to the methods shown 
in section 2.5.3. The following sections are organized to follow the 4 steps of the generic 
MCDM procedure (section 2.5.3). 



 

47 

4.1.2.1 Selecting suitable methods for the problem analysis step 
Looking at the original decision making hierarchy, developed by Saaty for the Analytical 
Hierarchy Process AHP [GWH89], the similarity to the hierarchical nature of ontologies is 
very apparent. This similarity concerns especially the criteria hierarchy and the alternatives 
(instances) relations to the criteria. Therefore, the hierarchical analysis of the decision 
problem is by its nature the most adequate method to be integrated within the ontology 
development process. 

 

However, the decision making hierarchy combines different criteria to clarify a specific 
decision making problem, while the ontology is a kind of general description of the world, or 
of a specific application domain. 

This difference reflects rather different “ways of thinking” than real conflicts. Then “good 
domain ontologies” are originally designed to be highly reusable and are inherently a suitable 
base for a wide range of description problems, for example, as a source of criteria (features) 
and instances for a decision-making hierarchy. 

On the other hand, designers of autonomous units can enrich the imported ontologies with 
new concepts, properties and instances and then share them with other designers. A common, 
formally well defined language, which enables consistency checking, turns the problem 
analysis in MCDM into a collaborative effort of different designers. These new possibilities 
are one of the major benefits of SeMCDM. 

4.1.2.2 Selecting suitable methods for the step of criteria weighting 
Table 4-1 shows the weighting methods (from section 2.5.3.2) in relation to the requirements 
described in section 4.1.1. Evaluated weighting methods are: The fixed point scoring 
methods; i.e. fixed point scoring (Hajkowicz et al. [12]) and fixed point scoring of 
hierarchically ordered criteria [10], the rating methods; i.e. rating method [12] and SMARTS 
rating of ranked criteria (Olson [13]), the ordinal ranking method [13], [12]), the preference 
cones method [10], SMART weighting method (steps 4-7 as in [13]), the multi-attribute value 
functions method [10] and the paired comparisons methods (AHP [9], normalization method 
and the geometric mean method [10]). These methods have been surveyed in section 2.5.3.2. 

The criteria weighting is the most difficult step which faces the decision makers. Therefore, 
the amount of help delivered by the weighting method is the first requirement to apply when 
selecting a weighting method. Direct weighting methods like the fixed point scoring methods 
and the rating methods are, for this reason, unsuitable methods. 

The SMART weighting method (steps 4-7 as in section 2.5.3.2) shows a major disadvantage 
concerning the ease of use, because its complexity increases dramatically with higher 
numbers of criteria. Therefore, SMART is a typical example for a generally good method, but 
with lack of user friendliness. 

The preference cones method, the ordinal ranking method and the multi-attribute value 
functions method don’t support uncertainty about the designer preferences. Additionally, the 
preference cones method suffers from being incomplete, while the multi-attribute value 
function method addresses only quantitative criteria. Weights resulting from the ordinal 
ranking method imply a kind of approximation errors, especially for small numbers of criteria. 

Paired comparison methods can be applied if the criteria are known at design time, as 
expected in SeMCDM. The paired comparison methods meet all requirements in Table 4-1. 
Also they can especially deal with uncertainty about the designer preferences and support a 
kind of consistency check, like the Analytical Hierarchy Process AHP suggested by Saaty 



 

48 

[GWH89]. As all three paired comparison methods (shown in section 2.5.3) deliver similar 
results, the popular and theoretically founded AHP method is selected to weight the criteria in 
SeMCDM. For the practical implementation and integration of AHP in the ontology 
development process see section 4.7. 

 Fixed 
point 

scoring 
methods 

Rating 
methods 

Ordinal 
ranking 
method

Preference 
cones 

SMART Multi-
attribute 

value 
functions 

Paired 
comparisons

Helpful  
methods 

- - + + + + + 

Uncertainty 
support 

- - - - + - + 

General 
solution 

+ + + - + + + 

Qualitative & 
quantitative 
criteria 

+ + + + + - + 

Completeness + + + - + + + 
Ease of use + +/~ + - - ~ + 

Table 4-1 Comparison between weighting methods 

4.1.2.3 Selecting suitable methods for the utility assessment of alternatives’ 
performance on the features 

As the performance values of alternatives on the criteria are stable and known, methods 
supporting uncertain information about the performance of alternatives (like Ariadne [13] and 
Hipre3+ [13]) can be excluded. 

For the utility assessment of quantitative (numeric) features, three types of methods comes 
into question: The normalization methods, the paired comparison methods and the predefined 
utility functions. The results of the normalization methods (i.e. standard normalization, 
TOPSIS and ELECTRE methods) and the paired comparison methods (AHP, the geometric 
means method and the normalization technique) depend always on the considered 
alternatives. Only the predefined utility function methods (i.e. Edwards’s linear interpolation 
adopted by SMART and the general case of utility functions) can meet the requirement of 
being a general solution and will be adopted for SeMCDM purposes. However, the designer 
has to take care that predefined utility functions deliver really a general solution (for example, 
by choosing the maximum and minimum values in the Edwards procedure). 

The utility assessment of qualitative features can be achieved by paired comparison methods 
(alternatives dependent) or by the simple method of predefined scales, like the Likert scale. 
As possible qualitative values are predefined in the ontology, the predefined scales promise to 
be a general solution. 

The utility assessment through predefined utility functions and predefined scales has been 
integrated in the ontology development process. The integration has been achieved by 
defining the SeMCDM ontology (see section 4.2) which supports these methods, and by 
developing a specific utility assessment tool within an ontology development environment 
(see its concept in details in section 4.7.2). 



 

49 

4.1.2.4 Selecting suitable methods for the ranking and decision making step 
Table 4-2 shows the ranking and decision making methods in regard to relevant requirements 
(methods supporting uncertainty, like Ariadne and Hipre3+, have been already excluded). 

Incomplete methods like the outranking methods and the preference cones are not adequate 
for purposes of autonomous decision making. PROMETHEE II is the sole exception of a 
complete outranking method, but it doesn’t answer the question on how to specify preference 
functions in a reasonable and user friendly way. Moreover, PROMETHEE II implies the 
usage of the weighted sum formula, whereas no reason justifies the adoption of 
PROMETHEE II instead of the weighted sum method. 

 Outranking 
methods 

Preference 
cones 

Data 
envelopment 

analysis 

Weighted 
sum 

Weighted 
product 

Reference 
point 

methods 
Completeness - - + + + + 
General 
solution 

- - - + + - 

Table 4-2 Ranking methods in terms of the concerning requirements 

The weighted sum and the weighted product methods arise as suitable methods regarding the 
two requirements in Table 4-2. In light of the wish list demonstrated in section 3.2, a suitable 
aggregation function has to be defined. The form of the aggregation function decides about its 
adequacy to the components description schema. The next section discusses this issue. 

4.1.2.5 Building a suitable aggregation function 
The aggregation function has to reflect the description schema of looked-for component, as 
defined in section 3.2. So it must especially emphasize the difference between the hard 
features and the soft features. 

The weighted production formula provides the possibility to refuse those alternatives, which 
don’t offer even one of the hard features. On the other hand, the weighted sum formula 
enables a kind of soft compensation among features, and accordingly, it is suitable to 
aggregate values of soft features. 

SeMCDM suggests a combination of both formulas to evaluate the offered alternatives: 

])(1[)()(
11
∑∏
==

+=
n

i
ii

k

j

w
j wauaua jν  

Where: 

 a : The considered offer (or alternative) 

)(aν : Evaluation of offer a  

 k: Number of the hard features 

jw : Weight of the hard feature j 

)(au j : Utility value of offer a  on the hard feature j 

 n: Number of soft features 

)(aui : Utility value of offer a  on the soft feature i 

iw : Weight of the soft feature i 



 

50 

The formula is specified in this way to combine the advantages of weighted sum and weighted 
product formulas: The weighted sum ensures a “soft” compensation effect between the soft 
features, the weighted product ensures a “hard” compensation effect between the hard 
features, and the combination (the multiplication) provides a total compensation effect 
between the hard and the soft features.  

According to the defined aggregation function, the fitness values are always in the range:  
2)(0 ≤≤ aν  

However, while the fitness values are used in a comparative way, the range of their absolute 
values doesn’t affect the selection of the best available alternative. 

If the user prefers to avoid the weighting of the hard features, a neutral weight of 1 can be 
assigned to all of these features. In this case the weighted product part would be practically 
simplified to a normal product of alternative’s utilities on the hard features, and the formula 
takes the following form: 

])(1[)()(
11
∑∏
==

+=
n

i
ii

k

j
j wauauaν  

4.2. Ontologies of the SeMCDM architecture 
The SeMCDM architecture is based on three types of ontologies: (i) the kernel ontology, (ii) 
the Multi-Criteria Decision Making ontology and (iii) the domain ontologies. 

The kernel ontology reflects the description schema of autonomous units as presented in 
section 3.2. The MCDM ontology extends the kernel ontology to different types of utility 
functions enabling a semantic-aware selection mechanism under multiple criteria.  

The next sections describe these ontologies and put emphasis on their semantics and 
interrelation. 

4.2.1 The kernel ontology 
The kernel ontology, shown in Figure 4-1, consists of the main elements required to describe 
the autonomous units according to the description schema presented in section 3.2. 



 

51 

 
Figure 4-1 The kernel ontology of the SeMCDM architecture. 

The kernel ontology includes the following concepts: 

- AutonomousUnit: Represents an autonomous unit, with a specific role assigned 
through property role. Three roles are already predefined in the kernel ontology: 
active, passive and activeAndPassive. For more about the difference between these 
roles see section 3.2. 

- Component: Functionalities of autonomous units are called Components. One 
autonomous unit can offer different kinds of functionalities, and therefore, it may have 
more than one component (property hasComponent). A component is related to one or 
more features by the property fulfils. 

- WishedComponent: A sub-concept of Component, supplied with the weight property. 
A WishedComponent is related to instances of WishedFeature through sub-properties 
of the property fulfils: fulfilsPreferably and fulfilsUnconditionally. 

- WishList: Represents a list of wished components, using the property 
hasWishedComponent. 

- Feature: A feature of a Component defines which value(s) the component has in 
relation to one property. Properties are normally imported from the domain ontologies 
(like gain, noise, color, etc.). Values are assigned to the feature through the property 
featureValue, which refers to one instance of UtilityFunction (s. the MCDM ontology 
in section 4.2.2). 



 

52 

- WishedFeature: A sub-concept of Feature. It has an additional weight property: 
Feature(s) describe Component(s), while WishedFeature(s) describe 
WishedComponent(s). For this reason, a feature is restricted to clear and specific 
values of the component, while a wished feature may enjoy a wider range of values, 
giving higher chance for finding an adequate offer (see section 4.3 for more about this 
point). 

4.2.2 MCDM ontology 
The MCDM ontology presents a set of concepts and instances originating from the world of 
Multi-Criteria Decision Making. It aims to build a bridge between the ontology-based 
description and the possibilities and techniques used for MCDM. 

The concept “MCDMFunctions” is the father concept for all MCDM functions with their two 
types: AggregationFunctions, and UtilityFunctions. The emphasis is put on the utility 
functions, which assess the utility of the features’ performance in the ontology-based 
description. 

Utility functions are mathematical functions with special properties: They return values 
between 0 and 1. For this reason almost all sub-classes of UtilityFunctions are also sub-
classes of the concept MathematicalFunctions, and they share the same properties like: 
Number of parameters, number of needed interpolation points to parameterize the function, 
and parameter values. 

In section 4.1.2.3 a set of utility functions have been chosen and justified for the usage in 
connection with the proposed description schema of autonomous units. These functions are i. 
The predefined utility functions for the utility assessment of quantitative features and ii. 
Predefined scales for the utility assessment of qualitative features.  The MCDM ontology 
supports these utility functions through a corresponding set of concepts, as described in the 
following sections. 

4.2.2.1 OnePointUtilityFunction 
With the help of a OnePointUtilityFunction a utility value (point_y) can be assigned to a 
numeric (float) value (point_x) of a feature (see Figure 4-2). It has two special cases: 
OnePointMinUtility/MaxUtilityFunction, where the utility of the point has special values (0 
and 1 accordingly). 

 
Figure 4-2 A onePointUtilityFunction 

4.2.2.2 MultiPointUtilityFunction 
The MultiPointUtilityFunction generalizes the OnePointUtilityFunction to support multiple 
points (see Figure 4-3). It has also a special case function MultiplePointMaxUtilityFunction. 



 

53 

 
Figure 4-3 A MultiPointUtilityFunction 

4.2.2.3 Linear/Quadratic/Cubic/Exponentialutility functions 
This set of continuous functions gathers typical utility functions, which return the utility of 
numeric feature values. These utility functions are defined as following: 

- LinearUtilityFunction (see Figure 4-4) of the form:  βα += xxu )(  

- QuadraticUtilityFunction of the form:    γβα ++= xxxu 2)(  

- CubicUtilityFunction of the form:    δγβα +++= xxxxu 23)(  

- ExponentialUtilityFunction of the form:    
xexu .)( γβα −+=  

To ensure a utility value between 0 and 1, the values of the input x have to be limited to a 
“rational” range. As this range is related to the functions parameters values (α, β, γ, δ), the 
designer has to consider this issue while setting up the parameters values. However, returned 
values above 1 can be “interpreted” in run time as a 1, whereas negative returned values can 
be interpreted as 0. 

 
Figure 4-4 A LinearUtilityFunction 

4.2.2.4 LikertScale 
The concept LikertScale has only the property quantitativeEvaluation. Every instance of the 
Likert scale is related to one numeric value (its quantitative evaluation). The MCDM ontology 
defines 5-values (instances) of LikertScale: veryGood with the quantitative evaluation of 1, 
instance good of 0.75, instance medium of 0.5, instance poor of 0.25 and instance veryPoor 
with the quantitative evaluation of 0. 

4.2.2.5 LikertScaledPoint 
A LikertScaledPoint links a non-numeric value with an instance of LikertScale. The property 
physicalValue refers to a non-numeric instance of any concept (usually defined in a domain 
ontology). Property qualitativeEvaluation refers to an instance of LikertScale. The concept 
LikertMaxScaledPoint is a special case, which has the maximum quantitativeEvaluation (i.e. 
veryGood). 



 

54 

4.2.2.6 LikertScaleUtilityFunction 
A LikertScaleUtilityFunction gathers one (or more) LikertScaledPoint(s) through the property 
hasLikertScaledPoint. LikertScaleMaxUtilityFunction is a special case with all points of type 
LikertMaxScaledPoint. 

4.2.2.7 Interval utility functions 
The interval utility functions are the solution for special cases, where a “range” of continuous 
values is to be selected, instead of a single value. Predefined instances of the concept Ranges 
are: greaterThan, insideOf, lessThan and outsideOf . Each interval is defined through its 
limits (through property intervalLimits). Interval limits are always instances of 
OnePointUtilityFunction.  

Through the property hasFunction, any mathematical function can be chosen as a utility 
function within the selected range.  

The concept SimpleIntervalUtilityFunction restricts the values of this property to the 
predefined instance unityFunction (it return always 1). The MCDM ontology defines four 
sub-concepts of SimpleIntervalUtilityFunction, each with one instance of Ranges (as above): 

- UnityFunctionLessThanLimit: Defines acceptable values as those smaller than a 
specific value p 

- UnityFunctionGreaterThan: Defines acceptable values as those greater than a specific 
value p 

- UnityFunctionInsideOfRange: Defines acceptable values as those located between two 
specific points p1 and p2 (see Figure 4-5) 

- UnityFunctionOutsideOfRange: Defines acceptable values as those located outside the 
range specified with two points p1 and p2 (see Figure 4-6) 

 
Figure 4-5 A UnityFunctionInsideOfRange 

 

 
Figure 4-6 A unityFunctionOutsideOfRange 

4.2.3 Domain ontologies 
The domain ontologies are strongly related to the application domain. Concepts, instances and 
properties defined in the domain ontologies can be used to complement the Features with the 
desirable semantics. Both the kernel ontology and the MCDM ontology don’t put any 
restriction on the usage of domain ontologies. 

Figure 4-7 shows how SeMCDM combines all ontologies to describe the autonomous units. 



 

55 

hasValue:
LinearUtilityFunciton
α = 0,04
β = -11

Weight: 0,4Attribute: 
WaveLength

hasValue:
LinearUtilityFunciton
α = 0,04
β = -11

Weight: 0,4Attribute: 
WaveLength

Feature

SeMCDM Kernel ontology

MCDM ontology Domain ontology
 

Figure 4-7 A feature of an (active) autonomous unit is described with the help of three types of ontologies. 

4.3. Semantic matching for MCDM 
This section considers the basic matching process, which takes place between pairs of 
features: A wished feature from the enquiry side, and one feature from the offering side. As a 
feature consists of a property (imported usually from a domain ontology) and its values (in the 
form of a utility function from the MCDM ontology), the matching process has to consider 
both parts. Therefore, the matching process suggested here is called “semantic matching for 
MCDM”. Semantic matching for MCDM is the kernel of SeMCDM, and one of the main 
novel contributions of this thesis. 

Section 4.3.3 addresses the semantic matching between the properties of two features and 
section 4.3.4 addresses the semantic matching between the utility functions of two features. 
Especially the semantic matching between utility functions must be based on a clear 
understanding of their semantics. Sections 4.3.1 and 4.3.2 address this issue. A clear 
difference is made between the semantics of offer features (instances of Feature) and enquiry 
features (instances of WishedFeature). The difference has its root in the degree of freedom 
given to each kind of features: Passive units are characterized by concrete values of their offer 
features, while looked-for components define flexible ranges of acceptable feature values. 
Consequently, the offer features (Feature) have limited degrees of freedom in comparison 
with enquiry features (WishedFeature). The next two sections show the effect of this fact on 
the interpretation of utility functions in relation to Feaures and WishedFeatures, providing a 
solid base for defining the process of semantic matching for MCDM in two following 
sections. 

4.3.1 Semantic of the utility functions in relation to offers 
One of the requirements in section 4.1.1 dictates that an alternative is expected to provide 
stable and known performance value on the criteria (features). In this section a slight 
extension (or a broad interpretation) of this requirement suggests that: 

- The offer has only one - known and concrete - value for each feature (no fuzzy or 
multiple values) 

- The performance of the offer on the feature is optimal, which means that the passive 
units completely fulfil the features with the given values in their offers. This 
restriction would simplify the aggregation function, to be just like usual aggregation 
functions used in MCDM problems. However, an extension of the aggregation 



 

56 

function to consider the offers performances is easily imaginable in future 
development, although it implicates more theoretical questions than practical 
implementation difficulties. 

Consequently, the adequate utility function must be of type OnePointMaxUtilityFunction for 
numeric offer features, and of type LikertScaleMaxUtilityFunction for offer features with non-
numeric value. SimpleIntervalUtilityFunction(s) can describe intervals of values with the 
interpretation of an interval as a spectrum of values (for example, an audio amplifier has a 
frequency range between 33 Hz and 30 kHz). This case is not to be confused with multiple 
values or with other possible interpretations like “the feature has an unknown value in the 
specified range”. 

4.3.2 Semantic of the utility functions in relation to enquiries 
Features of enquiries have no restrictions about the usage of utility functions. Consequently, 
any utility function from the MCDM ontology can be used. 

Continuous functions (section 4.2.2.3) are adequate utility functions of enquiry features. 
Using MultiPointUtilityFunction the enquiry can specify more than one acceptable numeric 
value of one feature, where every point has a particular utility value. Any numeric value 
outside the defined points has a default utility value of 0. 

The same holds for non-numeric values using the LikertScaleUtilityFunciton(s). 
IntervalUtilityFunction(s) in relation to enquiry features have to be interpreted as a spectrum 
of acceptable values. 

4.3.3 Semantic matching between properties 
It is the typical case of semantic matching, which makes use of the (domain) ontology and of 
inference rules to get a logical answer of yes or no. In order to get the expected matching 
results, a set of application-dependent matching rules can extend the matching capabilities of 
the inference engine. 

4.3.4 Semantic matching between utility functions 
The semantic matching between utility functions takes place when the semantic matching 
between properties delivers a positive answer. It deals with the question about the utility of 
the offered values in relation to the utility function of the enquiry feature. The question can be 
divided into 2 partial questions: “Is the enquiry feature fulfilled by the offered feature?” and 
“To which extent is the enquiry feature fulfilled by the offered feature?”. The first question 
will be answered through a “utility check” (section 4.3.4.1), while the second is answered 
through a utility calculation in section 4.3.4.25. Both sections adopt the semantics of the utility 
functions as defined in sections 4.3.1 and 4.3.2. The following figures in Table 4-3 show 
example combinations between pairs of utility functions. 

                                                 
5 In some cases, there is no strict limit between the utility check and the utility calculation, because the utility 
calculation is sometimes a part of the utility check. 



 

57 

Quantitative offer feature 
 One point (max)UF (Simple) Interval UF 

Continuous UF  Example of a successful match  

 

Example of a failed match  

 

Example of a successful match  

 

Example of a failed match  

 
(Simple) Interval 
UF 

Example of a successful match  

 

Example of a failed match 

 

Example of a successful match  

 

Example of a failed match 

 

Q
ua

nt
ita

tiv
e 

en
qu

ir
y 

fe
at

ur
e 

Multi-point UF Example of a successful match 

 

In this combination the match is always 
unsuccessful 

 
Table 4-3 Example combinations between (quantitative) utility functions. 



 

58 

4.3.4.1 Utility check 
The offered feature is considered to fulfil the enquiry feature if it has a utility value greater 
than 0. For this reason, the semantic matching between utility functions performs a kind of 
“utility check”, which delivers a logical result (yes or no). 

The utility check takes different forms according to the combinations of the specific utility 
functions on the offer side and on enquiry side. 

Table 4-4 shows these combinations and the way of checking the utility of the feature’s 
values. In the table, rows represent the utility functions of enquiry features, while the columns 
represent the utility functions of offer features. 

Offer feature 
Quantitative Qualitative 

 

One point (max)UF (Simple) Interval 
UF 

Likert-scale (max)UF 
(one point) 

Continuous 
UF 

If offer point has utility 
value > 0 

If all interval points 
have utility values > 
0 

Application/property 
dependent 

(Simple) 
Interval UF 

If the offer point falls 
within the enquiry 
Interval 

If the offer interval 
falls totally within the 
enquiry interval 

Application/property 
dependent 

Q
ua

nt
ita

tiv
e 

Multi-point 
UF 

If the offer point is one 
of the enquiry points 

Doesn’t match Application/property 
dependent 

E
nq

ui
ry

 fe
at

ur
e 

Q
ua

lit
at

iv
e Likert-scale 

UF (Multi 
points) 

Application/property 
dependent 

Application/property 
dependent 

If the offer point is one of the 
enquiry points. 

Table 4-4 Utility check for all combinations of utility functions on the enquiry side (rows) and on the offer 
side (columns) 

For pairs of quantitative and qualitative utility functions (LikertScaledUtiltiyFunction) there 
are no predefined rules for the utility check. This is due to the fact that the transformation 
from the world of qualitative values to the world of numeric (quantitative) ones is a very 
application dependent process. For example, the user can specify the interval (30Hz - 33KHz) 
as equal to the quantitative value “AudioRange”. This transformation is only correct in the 
eyes of the beholder, and for a special property like “hasRangeOfFrequency” used for 
describing an amplifier: “amplifier X hasRangeOfFrequency between a and b”. 

4.3.4.2 Utility calculation 
The second part of semantic matching between utility functions is the “utility calculation”. It 
finds out the concrete utility value of the offered feature according to the utility function of 
the enquiry feature. While the utility check helps to select the acceptable offers (together with 
the semantic matching of properties), the utility calculation is the base of selecting the best 
available offer according to MCDM.  

The utility calculation returns the utility value of the offered feature in relation to the enquiry 
feature. Methods of utility calculation differ for each combination of utility functions as 
shown in Table 4-5. In the table, rows represent the utility functions of enquiry features, while 
the columns represent the utility functions of offer features. 



 

59 

For some combinations of utility functions, the utility check is independent of the utility 
calculation and the utility calculation makes only sense in the case of successful utility check. 
For other combinations, the utility calculation has to take place before making the utility 
check. This fact makes the utility calculation to a part of the semantic matching for MCDM. 

Offer feature 
Quantitative Qualitative 

 

One point 
(max)UF 

(Simple) Interval 
UF 

Likert-scale (max)UF 
(one point) 

Continuous 
UF 

Utility value of offer 
point on the enquiry 
UF 

Minimal utility value 
of the interval on the 
enquiry UF 

 Application\property 
dependent 

(Simple) 
Interval UF 

Utility value = 1 (for 
simple interval UFs) 

Utility value = 1 (for 
simple interval UFs) 

 Application\property 
dependent 

Q
ua

nt
ita

tiv
e 

Multi-point 
UF 

Utility value of the 
offer point 

Utility value is 
always 0. 

Application\property 
dependent 

E
nq

ui
ry

 fe
at

ur
e 

Q
ua

lit
at

iv
e Likert-scale 

UF (Multi 
points) 

 Application\property 
dependent 

Application\property 
dependent 

Utility value of the offer point 

Table 4-5 Utility calculation for all combinations of utility functions on the enquiry side (rows) and on the 
offer side (columns) 

4.4. Generalized matching process 
The generalized matching process makes use of the semantic matching for MCDM (Section 
4.3), by applying it to feature pairs, where a feature pair consists of an offer feature and an 
enquiry feature. 

From a set of available offers, the generalized matching process selects the best available 
offer for an enquiry. 

For each enquiry, the suggested description schema (section 3.2) distinguishes between “hard 
features” and “soft features”. Therefore, the matching process can be divided into two steps as 
shown in the next sections. 

4.4.1 First matching step 
The first matching step considers only the hard features. Working as a filter of offers: Offers 
fulfilling the hard features are considered as “acceptable offers” and they pass through the 
first matching step to the second step. 

For each hard feature the process of “semantic matching for MCDM” tries to find a match 
from the offer’s features. The exact utility value is not important in this context. 

The matching is regarded unsuccessful, when one of the hard features is found to be not 
fulfilled by the offer. The relation between the hard features is characterized by the logical 
relation “AND”. 



 

60 

After a successful matching of all hard features, one feature of the offer is announced as the 
matched feature for each of the hard features of the enquiry6. 

4.4.2 Second matching step 
The second matching step accomplishes semantic matching and utility calculation for the soft 
features.  

In contrast to the soft features, the soft features can be matched sequentially and the matching 
process has to cover all of them, independent of the matching results of the individual 
features. 

A second difference to the matching of hard features is the utility calculation, which has to 
take place after (or before) a successful utility check7. 

The utility values of features, along with their weights (The weights are assumed to be given 
in the design time, as described in section 4.1.2.2) are then to be aggregated to an offer 
evaluation. The aggregation function has been described in section 4.1.2.5. The best offer is 
the one with the highest evaluation value. 

The steps of the generalized matching process are mapped to autonomous units and/or to 
central in section 4.5, where the market scenarios are presented. 

4.5. The Generalized matching process and the marketplace-oriented 
behavior  

The generalized matching process suggested in section 4.4 consists of two steps, gathering the 
semantic aspects to the multi-criteria nature of decision making problems. In the absence of a 
central broker, this process has to take place in the autonomous units. On the base of the 
marketplace-oriented behavior as an upper behavior schema for the autonomous units, this 
section discusses the allocation of the matching steps to active and passive units. 

Systematic design conditions are defined in section 4.5.1. A set of market scenarios emerged 
then in section 4.5.2. 

Beside the distributed market scenarios, the possible commitment of a central broker 
completes the allocation possibilities and results in a central scenario. 

4.5.1 Conditions on the allocation of the matching steps on autonomous units 
For the selection of the best available offer, the evaluations of all offers must be available for 
the decision making unit. By its very nature, a passive unit is interested only in enquiries and 
in its own offer. Furthermore, a passive unit is not aware of offers coming from other passive 
units. For these reasons, the allocation of the second matching step (or at least the decision 
making) to passive units has to be avoided. 

The suggested scenarios below assume the existence of a central common memory for 
communication purposes between the autonomous units. This central common memory is 
called “broker”, however the market scenarios can be considered as distributed, as long as no 
matching activities are performed by the central broker (the broker can be replaced in this 
case by a broadcasting mechanism). However, the allocation of matching activities to the 

                                                 
6 The exact utility value is only available for some of the offered features, as a spin-off product of the utility 
check. 
7 The utility calculation of the hard feature in the first step is not always required to perform a utility check. 
Therefore, the second matching step has to consider the hard features again, and to calculate the not available 
utility values. 



 

61 

central broker has been also considered, and the resulting central scenario serves as a 
reference to evaluate the distributed scenarios. 

Different scenarios may evolve depending on the initiator of an action. Passive units can 
initiate a market scenario by forming offers of their features and then sending them to the 
active units. Active units can also initiate the market scenario by sending their enquiries to the 
passive units. Taking the possibilities of centralized matching into account, three groups of 
market scenarios can be distinguished: 

- Enquiry-oriented scenarios: The active units send enquiries to the passive units. 
Each passive unit sends its offer when its own features meet at least the hard features 
in the enquiry. The first matching step takes place in this case in the passive units. The 
passive unit can also address principally the soft features, and perform a part of the 
second matching step. Only the decision making (the selection) still always beyond the 
control of the passive units. 

- Offer-oriented scenarios: The passive units send offers to the active units, while the 
active units try to choose acceptable offers, carrying out the whole matching process. 

- Mix scenarios: Active and passive units send queries and offers, respectively, to a 
central “broker”, which performs the general matching process (at least the first 
matching step). 

The run-time performance of market scenarios, as well as their structure, is affected also by 
timing conditions of actions. Two principles characterize SeMCDM scenarios:  

- The first matching step is automatically triggered when an enquiry meets an offer. 
This principle leads to the fact that the passive units perform the first matching step in 
enquiry-oriented scenarios and that the active units perform the matching process in 
the offer-oriented scenarios. 

- To assure that an enquiry gets at least an offer (when available), the enquiry stays 
available on the marketplace for a predefined time period, i.e. expiration time of the 
enquiry. The second matching step will be only triggered after the expiration of the 
enquiry. All scenarios follow this principle with the exception of the 2nd scenario in 
its “B” version. 

Moreover, an important rule of market completes the previous conditions: Direct negotiation, 
normally between active units about one offer, are not allowed and not required. A reservation 
mechanism is adopted in the next scenarios to avoid the need for negotiations. A reservation 
of an offer for a specific enquiry takes place after performing the first matching step with a 
positive result. The offer cannot be then considered by other units until it has been given free 
again, usually because the second matching step resolved that the offer is not the best 
available one. The reservation is not to be thought of as an ultimate solution for concurrence 
situations, but as a way to avoid negotiations between autonomous units. Although it could be 
a good way for optimizing the resulting contracts, the negotiations between units builds a 
higher degree of complexity and falls beyond the scope of this study (the game theory 
discusses such approaches [Ros09]). 

4.5.2 Market scenarios 
Taking the conditions in the last section into account, possible allocations of matching steps to 
the autonomous units evolve to a set of market scenarios. Table 4-6 shows the types of the 
market scenarios with their initiator, the type of messages exchanged between the units and 
the responsible unit of both the first and second matching step. 



 

62 

 Scenario 1 Scenario 2 
(in  two versions 
“2A” and “2B”) 

Scenario 3 

Initiator Active units  Passive units  Active and passive 
units  

Type of messages Enquiries Offers Enquiries and offers 
1.st matching step Passive units Active units Central 
2.nd matching 
step 

Active units Active units Central 

Table 4-6 Possible market scenarios with their specifications 

The next sections describe the market scenario in details, where each scenario is presented as 
a sequence diagram. A complete flow through the sequence diagram is called as “cycle”. 
Because of concurrence between the autonomous units more than one cycle can be necessary 
to find a suitable offer for all wished components. Appendix A shows the market scenarios as 
sequence diagrams. 

4.5.2.1 Market scenario 1 
In this enquiry-oriented scenario (Figure 4-8), the active units send their enquiries (one for 
every looked-for component) to the broker, and wait for suitable offers. Every free passive 
unit reads an enquiry (randomly selected by the broker), checks the matching relation between 
its own features and the hard features in the enquiry. When a suitable match can be proved for 
all these features, the passive unit sends an offer, addressed at the specific enquiry. Every 
passive unit may send only one offer addressed to one enquiry. With this behavior the need 
for conversation between active units is avoided. 
The broker stores the offers addressed to each enquiry, until the enquiry expires. At this time 
point, the broker sends the offers to the enquiring active unit and deletes the enquiry. The 
active unit performs the second matching step and chooses the best available offer. The active 
units then conclude a contract with the passive unit of the best offer. All other offers will be 
deleted and all other passive units are free again. Multiple offers can be directed to one 
enquiry, while other enquiries will not receive any offers. Also when suitable offers are 
available, the active units will generally need more than one cycle in order to detect them. 
Scenario 1 is similar to the marketplace-oriented behavior meant by EvoArch (section 2.2.3), 
as well as by the Contract Net Protocol (section 2.3). 
 



 

63 

Write enquiry Read enquiry

Exclusive offer

Subtype matching Type matching

Write enquiry Read enquiry

Exclusive offer

Subtype matching Type matching

 
Figure 4-8 Scenario 1 is an enquiry-oriented scenario. 

4.5.2.2 Market scenario 2A 
In an offer-oriented scenario, the start point of the marketplace activities is the passive unit, 
which tries to find a partner, by putting its own features as an offer in the central broker. Each 
active unit can read an offer (randomly selected by the central broker) and decides about its 
suitability as one of the wished components (first matching step). In the positive case, the 
active unit tries to reserve the offer (the offer might be already reserved for another active 
unit). When the enquiry expires, the active unit calls its reserved offers from the broker, and 
performs the second matching step to choose the best available offer and to make a contract 
with the corresponding owner (passive unit). All other offers will then be released, and a new 
cycle can be started. 

Write offer

Reserve offer

Subtype matching Read offer

Type matching

Write offer

Reserve offer

Subtype matching Read offer

Type matching

 
Figure 4-9 Scenario 2A is an offer-oriented scenario. 

4.5.2.3 Market scenario 2B 
Version “A” of scenario 2 has the disadvantage of reserving more than one offer for one 
active unit, waiting for the time-out of the enquiry and the end of the second matching step. 
This prevents other active units from making use of these offers in the same cycle. Version 
“B” of scenario 2 tries to avoid this disadvantage by performing the second matching step 



 

64 

directly after the first matching step, when the offer is proved to be acceptable. This way, only 
one offer will be reserved for the active unit, i.e. the one with the best evaluation, while other 
acceptable offers will be released “online”. 

Write offer

Exchange offer

Pull offer

Type matching + Subtype matching

Best available offer Write offer

Exchange offer

Pull offer

Type matching + Subtype matching

Best available offer

 
Figure 4-10 Scenario 2B is an offer-oriented scenario, which tries to overcome the disadvantages of 

scenario 2A. 

4.5.2.4 Market scenario 3 
This mix scenario relies more on a central broker, in order to perform the matching steps. In 
this case the autonomous units only have to send their enquiries or offers to the broker, which 
will find the best offer for each enquiry. Then it recommends the closing of contracts between 
pairs of active and passive units. All offers will be matched against all requests (first matching 
step). Upon time-out the offers’ list of each enquiry will be processed by the broker (second 
matching step). As soon as the best offer has been selected, it will be reserved for the specific 
active units and it will be deleted from the offers’ list of other enquiries. The broker tells the 
active units about the best available offer for each of their enquiries. Contracts are then 
concluded directly between the active and passive units. 
 

Write offer

Type matching + Subtype matching

Write enquiry

Write offer

Type matching + Subtype matching

Write enquiry

 
Figure 4-11Scenario 3 is a central scneraio. 



 

65 

4.5.3 Summary 
The adoption of the marketplace idea leads to design questions about the allocation of 
matching steps to the autonomous units. Different possible market scenarios have been 
presented. 

The Contract Net Protocol (see section 2.3) is very similar to market scenario 1. This makes 
the Contract Net Protocol to a special case of the market scenarios presented (and evaluated in 
following sections) in this thesis. 

The selection of the most suitable one is not a trivial question because the nature of the 
application environment (in terms of number of available autonomous units and their types) is 
expected to affect the performance of these scenarios. Section 5.4 addresses this issue in more 
details. 

4.6. Selection of automotive communication platforms 
A communication platform builds the basis for any distributed architecture, like SeMCDM, 
This section proofs the adequacy of automotive communication platforms for the purposes of 
SeMCDM. The automotive communication platforms have been already reviewed in section 
2.7. The requirements of the SeMCDM architecture on the communication platform are 
analysed in section 4.6.1. The following subsections apply the requirements on automotive 
communication platforms. 

This section concludes with results about the most suitable communication platforms and 
gives some suggestions for a step-wise integration of autonomous computing in automotive 
systems. 

4.6.1 Requirements on the communication platform 
The autonomous units exchange two main types of messages through the communication 
framework: Messages on the organic level (i.e. offers and enquiries) and operational control 
messages (on/of-control, set value, get value, etc.). 

The requirements depicted here are related only to the organic level. The communication on 
the operational level is beyond the scope of this thesis. However, the communication platform 
is expected to be shared between the organic and operational level. To this reason, the organic 
communication level would rely on available automotive communication platforms like CAN, 
LIN, FlexRay or MOST. 

By analyzing the SeMCDM architecture and its application environment, the next 
requirements are expected to be supported by the underlying communication platform: 

- Dynamic extension: SeMCDM is designed to be applied in open environments, where 
new devices (autonomous units) are supposed to be engaged or disengaged in run-
time. Therefore, the communication network has to support the ability of such 
dynamic extension. 

- Bandwidth: Offer and enquiry messages take the form of logical expressions with 
different strings lengths. Enquiry languages and logical expressions define the syntax 
of these messages. The lengths of the messages are also affected by the number of 
features (for offers) and required features (for enquiries), as well as by the coding 
format (usually ASCI). Especially in combination with URI, the length of the message 
can simply reaches some kilobytes. The communication framework has to offer 
“sufficient” bandwidth, taking into consideration the number of autonomous units and 
their parallel activities on the marketplace (according to the adopted market scenario). 



 

66 

- Fair access to the communication framework: It is supposed that all autonomous 
units have equal access rights and, consequently, the messages (offers or enquiries) 
have also equal priorities. The communication framework may not affect the results of 
activities on the organic level, for example, because different types of messages (or of 
their sender/receiver) are exposed to different priorities and wait times. 

- Support of centralized messages exchange: Market scenarios rest on a shared 
memory, called as broker. The existence of this broker means that the messages 
exchange goes through a central node. For the distributed scenarios (the first three 
described in 4.5.2) the broker plays in reality the role of a common black board. Such 
black board can be replaced with broadcasting mechanisms. However, the centralized 
scenario (section 4.5.2.4) expects additionally specific computing capabilities from the 
broker. The communication framework is expected to support the centralized 
messages exchanges in all cases, without to build a bottleneck for the whole system. 

- Adequacy for the application environment: The selection of the communication 
framework depends also on its suitability to the application and to the surrounding 
environment. For the automotive industry this means that the communication platform 
has to withstand the harsh environmental and electromagnetic conditions in the car. 

- Real time capability: The capability to support real time systems with organic 
behavior depends partially on the real time capability of the communication 
framework. 

- Independence from special resources: To avoid a system collapse because a single 
point of failure, the communication framework has to provide stable connections, 
which don’t depend on particular resources, like a central node of communication. 

4.6.2 Assessment of the CAN Bus as a communication platform for SeMCDM 
This section proofs the adequacy of CAN Bus/CANopen as a platform for the SeMCDM 
architecture. In the following subsections the requirements defined in section 4.6.1 will be 
discussed in relation to the CAN bus. 

4.6.2.1 Dynamic Extension 
Devices on the CAN Bus have to be configured manually using special tools. Off-the-shelf 
plug-and-play functionality was not originally foreseen in CANopen. [Zel01] argues that 
solutions for this problem have to take place on the application level, without giving more 
details. However, dynamic extension is not the mainstream of applications based on CAN 
bus. 

4.6.2.2 Bandwidth 
The examples in section 2.7.1 show the transfer time of messages with different lengths. The 
block transfer is proved to deliver faster transfer that the segmented transfer, with the 
disadvantage of sending only one confirmation message for each block (in case of failure the 
whole block has to be transferred again). 

Considering the communication load on the SeMCDM marketplace, the CAN bus will be 
apparently overloaded with high number of long messages (of multiple kilobytes) and the 
transfer time of these messages would be not acceptable for most of modern applications. The 
problem gets an additional dimension of complexity because of the unfair access to the CAN 
bus, as discussed in the following section. 



 

67 

4.6.2.3 Fairness of access 
The CAN Bus rests on a strong prioritization of messages. The prioritisation leads to 
situations where messages with minimum priority have to wait for long time before they get 
access the communication platform, while another messages of highest priority can access the 
communication platform immediately. In such case the results on the organic level can be 
shifted towards offers or enquiries of higher priorities. 

While some application can benefit from such feature, the SeMCDM requirements place 
special importance to the fairness of access. 

However, a suboptimal solution can be here suggested. It is based on random prioritization of 
the nodes IDs (IDs of autonomous units). Then according to CANopen every node has a 
dedicated ID of 7 bits (i.e. CAN but supports maximally 128 units). These IDs affects the 
priorities of the messages, the receiver ID is a part of the identifier field of the messages, 
which decides about the priority of the message. When these IDs are randomly generated 
(instead of manual configuration) the messages priorities are then in fact randomized. This 
way the results on the organic level will not be shifted towards “expected solution”. While 
this solution is acceptable for simulation purposes (statistical values), unknown effects can 
appear in real applications. 

A solution on the scenarios level is also imaginable by using long dead times of enquiries, so 
that offers of low priorities can be also considered by the autonomous units. This solution has 
the disadvantage of pushing towards too long cycles (see section 4.5.2) and consequently 
towards longer times to reach a system configuration. 

Therefore, a complete elimination of the negative effects of messages prioritization is not 
really possible. 

4.6.2.4 Support of centralized messages exchange 
CANopen suggests to use the ID of the receiver unit as a message identifiers in the CAN Bus 
frame. Through bit arbitration of messages identifiers, the message of the highest priority will 
be then selected. In the case that two (or more) messages addressed to the central broker 
would share the same ID (the ID of the broker) and consequently the same priority on the 
CAN Bus. This situation could guide the CAN controllers to a conflict, unless the bit 
arbitration takes place on all messages bits and it is not restricted to the identifier bits (there is 
no clear statements about this issue. Such details about the execution of arbitration seem to be 
dependent on the hardware design of the CAN controller). 

As the market scenarios described in section 4.5.2 relies on centralized messages exchange, 
they will be affected by conflicting messages on the CAN bus. A clear example of the 
problem would happen in the first phase of each scenario, where a great number of enquiries 
and/or offers have to be sent at the same time to the central broker. 

A solution for this problem will be suggested and discussed in the following few lines. By 
adding the sender ID to the message identifier, the identifier will gather the sender and the 
receiver IDs. For such arrangement, the 11 bits foreseen for addressing in the base frame 
format are not more sufficient (The 7 bits identifier could be sufficient only in rare cases, 
where the maximum number of units is restricted to 8 and consequently 3 bits can be used as 
a receiver ID and 3 bits as a sender ID). However, the extended frame format supports 
messages identifiers of 29 bits. Therefore, the suggested solution has to rely on the extended 
frame format. In order to enable this solution, the messages ID should be freely editable by 
the application, and the addressed receiver nodes shall recognize their address from the 
receiver part of the identifier. The suggested solution should take place on the CANopen 



 

68 

level. Therefore, CAN bus and CANopen in its original form are not able to support 
centralized scenarios. 

4.6.2.5 Adequacy for the application environment 
CAN Bus has been originally developed for automotive applications. Therefore, this 
requirement is surely fulfilled by the CAN bus. 

4.6.2.6 Real time capability 
CAN Bus is able to guarantees maximal transfer time for messages of high priorities. This 
gives it its name as a real time bus. But this capability is restricted to small messages (Process 
data objects: PDO) which are not longer than 8 bytes. 

Usual offers and enquiries consists of more than 8 bytes, and can be only transferred in 
segments (as SDO mentioned above), and hence, they cannot benefit from the real time 
capability of the CAN bus. Even with the most available compression techniques it is not 
expected to reach as short messages as 8 bytes. 

Beside the problem of messages lengths, the existence of high number of units, which want to 
access the communication platform at the same time, with equal priorities, makes it difficult 
to think about real time transfer on serial busses in general. 

4.6.2.7 Independence from special resources 
CAN Bus doesn’t rely on any central instance, and hence, it is immune against a system 
collapse because of a single point of failure.  

4.6.2.8 Conclusion 
Because of its adequacy for the automotive environment and because of its wide spread since 
many years, the CAN bus is a natural candidate to be a communication platform of SeMCDM 
in automotive applications. It has also the advantage of being independent of special 
resources. However it has serious disadvantages: The static configuration by the designer (the 
lack of dynamic extension), the restricted bandwidth, and the prioritized message transfer. It 
serves as a real time bus only for very short messages.  

The suggestions discussed above try to avoid some of these disadvantages, but they don’t 
promise an ultimate solution. 

4.6.3 Assessment of LIN as a communication platform for SeMCDM 
LIN is designed as to form sub-networks from the CAN bus. Because of its very limited 
bandwidth and because of the resource restrictions on the participating nodes (like sensors), 
LIN cannot be looked at as a realistic communication platform for SeMCDM. 

4.6.4 Assessment of FlexRay as a communication platform for SeMCDM 
In comparison to the CAN bus, FlexRay is surely a better alternative regarding the bandwidth 
question and the fairness of access (Time Division Multiple Access - TDMA). Additionally, it 
has better fault tolerance as described in section 2.7.3. FlexRay is also designed for 
deployment in automotive systems. Its flexibility in sense of dynamic messages enables the 
transfer of long messages (although not in the real time transfer mode). However, according 
to FlexRay specification [Fle05] and to the confirmation from the FlexRay consortium (see 
email contact in [Ema08]), the problem of dynamic extension is still an obstacle before the 
vision of highly flexible plug-and-play extendable systems can be realized. 



 

69 

4.6.5 Assessment of MOST as a communication platform for SeMCDM 
MOST provides high bit rates, dynamic extension of the system (plug-and-play), fair access to 
the transfer medium for all devices (channel reservation), and it supports central and 
distributed scenarios. MOST supports also real time transfer. Moreover, its adequacy to the 
application environment is guaranteed. However, the typical applications of MOST are related 
to multimedia and infotainment devices in automobiles. Additionally, the central 
administration of MOST represents a single point of failure. 

4.6.6 Conclusion 
Table 4-7 shows a comparison between the automotive communication platforms according to 
the requirements of SeMCDM. Because of its advantages, MOST seems to be the best 
available automotive communication platform for dynamic organic architectures. 

Its restriction to multimedia and infotainment applications can be positively understood as a 
chance to test the concepts of organic systems. As such applications are not critical to the 
safety or to the kern functionality of automobiles, and can serve as test applications for 
SeMCDM. After a successful test phase, the concepts of SeMCDM and Organic Computing 
can be adopted for more critical applications. 

Furthermore, MOST has an important advantage because of its predefined functions and 
function blocks. These standardized functions are documented and organized in a “catalogue” 
[May07b]. It is clear that the MOST community realizes the need for standardization and for a 
common language. A catalogue of well understood terms is an optimal base to develop a 
domain specific ontology. The standardization efforts made by the MOST community 
performed indirectly the required prearrangements to go a step further towards SeMCDM. 
With MOST, automotive systems and SeMCDM find their common base and their right start 
point To this reason, the example domain ontology presented in section 5.3.1.3 have been 
designed to represents a part of MOST standardized functions. 

 CAN FlexRay MOST 
Dynamic extension - - + 
Bandwidth 1Mbit/s 10-20 Mbit/s 22-150Mbit/s 
Fairness of access - + + 
Support of centralized messages 
exchange 

- + + 

Adequacy for the application 
environment 

+ + +      
Multimedia 

/Infotainment 
applications) 

Real time transfer + + + 
Distributed solution (no critical central 
resources)  

+ + - 

Predefined functions catalogue8 - - + 
Table 4-7 Assessment of automotive bus systems 

                                                 
8 The availability of a predefined functions catalog is not originally expected from a communication platform. To 
this reason, it is not part of the requirements presented in section 4.6.1. However, this requirement is inherited 
from the main aim of SeMCDM, trying to integrate ontologies within the application environment and its 
development cycle. 



 

70 

4.7. Design support 
The integration of the selected MCDM methods within the ontology development process is 
one of the important steps towards putting the suggested methodology in practical use.  

Tools for feature weighting and for utility assessment have been implemented as extensions to 
“Protégé”, a widely used free and open source ontology development environment. Protégé 
enables the extension of its functionalities through plug-ins. Like Protégé itself, these plug-ins 
are based on Java, implemented and tested with Protégé version 3.3.1. Both the weighting tool 
and the utility assessment tool make use of the kernel ontology depicted in section 4.2.1. The 
utility assessment tool relies especially on the MCDM ontology presented in section 4.2.2. 

4.7.1 Features’ weighting tool OntoAHP 
OntoAHP is a Protégé plug-in for calculating feature weights from the estimation matrix, 
which contains pairwise comparisons between the features. It calculates the weights according 
to the AHP approach (see the Analytical Hierarchy Process in section 2.5.3). Additionally, the 
consistency ratio CR will be also calculated. A consistent matrix has a CR value of 0. The 
calculated CR value appears in green showing acceptable consistency (CR < 0.1) or in red for 
inconsistent matrices (CR > 0.1). For more about the origins of the value 0.1 see section 
2.5.3.2. 

Figure 4-12 shows OntoAHP used to give weights to the soft features of a WishedComponent 
(see the kernel ontology in section 4.2.1). The user can choose and/or add a new feature to the 
feature list. Already defined features can be selected using the + symbol, while new features 
can be defined using the * symbol (as usually done by Protégé). The matrix dimension will be 
automatically adapted to the given number of features. The columns and rows of the matrix 
are headed by the number of the corresponding feature (feature names could be too long to be 
shown in the headers). 

The diagonal cells (where column number equals the row number) have always the value 1.0, 
because they represent the comparison of each feature with itself. The user can enter any 
number in the non-diagonal cells. Automatically the reciprocal value will be calculated and 
shown in the diagonally symmetric cell. 

By selecting the button “Calculate” the weights and the consistency value will be calculated. 
The new values will be saved to the ontology by selecting the “Load” button. 

 
Figure 4-12 A capture of Protégé showing the weighting widget, the green value of consistency ratio CR 

indicates acceptable estimation matrix in terms of its consistency. 

The usage of OntoAHP is not limited to the “fulfilsPreferably” property or to the suggested 
ontologies in general. Any Protégé user can benefit from it in relation to any property within 
the own ontology. 



 

71 

4.7.2 OntoUtil for the utility assessment of features 
The designer can profit from the MCDM ontology (section 4.2.2) to assess the utility of his 
autonomous units’ features. The usage of OntoUtil (Figure 4-13) follows the normal 
principles of ontology development: Instances of the utility function concepts can be 
parameterized and then assigned to features. As soon as the user selects the type of the 
proposed utility function (4.2.2.3), the adequate number of points appears, with empty values. 
The designer fills out the values, and presses the “Compute Parameters” button to get the 
parameters of his utility function. By pressing the “save” button, the parameters will be saved 
to the ontology. 

Figure 4-13 OntoUtil helps to parameterize the utility functions. The user can parameterize a linear utility 
function from the MCDM ontology by giving in two relevant points. 

Figure 4-14 shows the role of OntoAHP and OntoUtil in the ontology-based description of the 
autonomous units. 

hasValue:
LinearUtilityFunciton
α = 0,04
β = -11

Weight: 0,4Attribute: 
WaveLength

hasValue:
LinearUtilityFunciton
α = 0,04
β = -11

Weight: 0,4Attribute: 
WaveLength

Feature

MCDM ontology

Calculated through 
OntoAHP

Calculated through 
OntoUtil

Domain ontology

SeMCDM Kernel ontology

 
Figure 4-14 The description of autonomous units with the help of SeMCDM ontologies, OntoAHP and 

OntoUtil. 

 



 

72 

5. Evaluation 

5.1. SeMCDM: A concept under evaluation 
The SeMCDM concept has been suggested and specified a solution of the problem facing 
current approaches towards high adaptivity in automotive systems. Table 2-1 shows the 
SeMCDM in comparison with these approaches. 
 DySCAS EvoArch SeMCDM 
Components Software tasks ECUs Autonomous units of 

any type 
Behavior  Application dependent Marketplace 

oriented 
Marketplace oriented 

Enabling technologies - Policy-based 
computing 

- Selection through 
utility functions 
(only for 
quantitative values)  

- Taxonomy 
selection 
(coarse 
selection) 

- No fine 
selection 

- Ontology-based 
design and 
inference 

- Multi-Criteria 
Decision Making 

Matching type Syntactic matching 
between parameters 
(context parameters and 
rules parameters) 

Syntactic 
matching 
between 
taxonomy nodes 

Semantic matching 

Efforts towards a common 
description language 

No Yes Done 

Development\Deployment 
support of a common language 

No No Done 

Development tools - Policy editor (under 
construction) 

- No tools to set up 
the utility functions 

UML editors Extended ontology 
development 

environment to support 
MCDM 

Implementation A prototype on .NET A prototype in 
Java 

A prototype in Java 

Table 5-1 SeMCDM in comparison with approaches of automotive systems. 

By it design, the concept of SeMCDM has multiple advantages has multiple advantages in 
comparison to the other approaches: The abstraction of components to autonomous units, the 
common description language, the semantic matching and the supporting design tools. 

The next sections will proof the functionality and the performance of SeMCDM from 
different points of view. 

5.2. Methodology 
The evaluation covers different aspects of SeMCDM. For each aspect, special methods and 
tools have been developed. The evaluation of SeMCDM combines the following types: 

- Functionality test: A prototype of the autonomous units simulates their behavior on 
the marketplace. This prototype shows how a semantic multi-criteria decision making 
takes place on the base of the ontological description of autonomous units. In the 
functionality test the SeMCDM ontologies, OntoAHP, OntoUtil and application 
dependent rules have been used, in order to test the complete chain at design and runt-
time. Benefits of the resulting MCDM-aware inference engine have been 
demonstrated on applications from the field of automotive industry, especially, on 
MOST (Media Oriented Systems Transport) applications. The selection of MOST as 
an example application is based on the argumentation from section 4.6.6. 



 

73 

- Performance analysis: The prototype of the autonomous units delivers information 
about the performance of the inference engine. Using the example ontology and a 
well-known inference engine the execution time of the SeMCDM-process has been 
measured. The results of this step provide the required values to perform a realistic 
evaluation of alternative market scenarios. 

- The evaluation of alternative market scenarios: The run-time performance of the 
market scenarios (defined in section 4.5.2) can be vital to adopt one specific scenario. 
For the evaluation of market scenarios different evaluation metrics has been defined. 
The comparison between the market scenarios according to these metrics takes place 
on the base of simulation. To bring the simulation results close to real applications, 
characteristics of the application environment have been extracted. The complexity of 
the environment is not only reflected by the number of the autonomous units, but also 
by the diversity of their types and by the number and diversity of the looked-for 
components. The simulation results combine run-time performance of market 
scenarios in different environments. The evaluation of market scenarios helps to make 
recommendations for the engineer of self-organizing systems. 

5.3. Simulation Environment 

5.3.1 Prototype of the architecture 
The model of the suggested architecture is designed to evaluate the applicability of the idea 
and to show the benefits of combining ontologies and inference to mechanisms of multi-
criteria decision making. 

Autonomous units have marketplace-oriented behavior (very similar to the market scenario 1 
presented in section 4.5.2.1). Autonomous units are equipped with an inference engine. The 
used inference engine is Jena [HP08]. Jena is an open source Java framework for building 
Semantic Web applications. It includes a generic rule-based inference engine, besides an 
OWL API, and query languages (other inference engines and APIs are also supported). 

The broker is implemented as a common memory space, on the based of Jada [Ros96], a 
Linda [Gel85] implementation. Jada is a package for Java that allows distributed Java 
applications to access a shared object space for coordination and data sharing purposes. The 
prototype deploys Jada only as a common memory space (The associative addressing 
capabilities of Jada allow only for syntactic matching). 

 The model has been implemented in Java. 

5.3.1.1 Usage of the prototype 
Before starting the model, autonomous units have to be defined in application ontologies. The 
kernel ontology, presented in section 4.2.1, can be considered as a start point for the user. The 
ontology can be edited for example by Protégé [Pro08]. Additionally, domain ontologies can 
always be gathered to the application ontology (as usual in Protégé). 

Starting the application a graphical user interface (the main window of the application) 
appears as in Figure 5-1. 



 

74 

 
Figure 5-1 Main window of SeMCDM prototype. 

The user can “add” autonomic units manually to the “Arena”. In this case additional window 
opens, where the user can define the autonomic unit name, its role, and the ontology file name 
to import the units from (.owl file). 

 
Figure 5-2 Adding an autonomous units manually. 

An easier way to add autonomic units is to import the autonomic units directly from ontology 
files (Main window: Units->Read from->Ontology file). In this case all autonomic units 
defined in the ontology file will be added to the arena (the upper list in the main window). All 
mapped domain ontologies have also to be loaded (the user has to select the .owl files of these 
ontologies manually). 



 

75 

To avoid the manual addition of mapped ontologies, the prototype is equipped with the 
capability of reading “Units files”. The units file is a XML file, where ontology files and their 
mapped (domain) ontology files can be listed. Figure 5-3 shows a typical example of  units 
files. 

 
Figure 5-3 An example of a unit file 

As soon as the autonomous units appear in the arena list, the user can activate/deactivate 
them, load them (instances of autonomous units will be generated by loading). The market 
place oriented behavior can be triggered by pressing the start button. 

The user can stop the activities on the arena, by pressing the stop button. 

The resulted configuration of the system (the contracts made between the autonomous units) 
can be seen as a “Tree”, in the lower part of the main window (see Figure 5-1). 

5.3.1.2 Implementation of utility check in inference rules 
To equip the inference engine with the capabilities of Semantic Multi-Criteria Decision 
Making, a set of logic rules have been defined. These inference rules implement the utility 
check as a part of the generalized matching process (see Table 4-4). 

Figure 5-4 shows the utility check rule between two multi point utility functions (the offer’s 
utility function is usually of sub-type: OnePointMaxUtilityFunction. See the discussion in 

<?xml version="1.0" encoding="UTF-8"?> 
<root> 
 <OntolotgyFiles> 
   <OntolotgyFile 

 mainfile="C:\\MOSTUnits\\MOST_Amplifier_ST_1.owl"> 
 
<importedFile namespace= http://www.sra.uni-
hannover.de/rdf/Amplifiers.owl 
 filename= "C:\\DomainOntologiesMOST\\Amplifiers.owl"/> 
 
<!—other mapped ontologies--> 

   </OntolotgyFile> 
  
  
   <OntolotgyFile 
      mainfile="C:\\MOSTUnits\\MOST_Amplifier_ST_2.owl"> 
 

<importedFile namespace= http://www.sra.uni-  
hannover.de/rdf/Amplifiers.owl 

      filename="C: \\DomainOntologiesMOST\\Amplifiers.owl"/> 
 
<!—other mapped ontologies--> 

   </OntolotgyFile> 
 
   <OntolotgyFile 
    mainfile="C:\\MOSTUnits\\MOST_Manager.owl">  

<importedFile namespace= http://www.sra.uni-
hannover.de/rdf/SignalProcessingTechnologies.owl 
filename="C:\\DomainOntologiesMOST\\SignalProcessingTechnologies.o
wl"/> 
<!—other mapped ontologies--> 

    </OntolotgyFile> 
  
 </OntolotgyFiles> 
</root> 



 

76 

section 5.2.3.1). The most important part of the rule is the equality check between two values. 
This equality check is supported by Jena. 

 

 
Figure 5-4 Rule for utility check of two multi point utility functions. 

The property hasCommonValuesWith gather two utility functions, and has the semantic: 
There are common values between them. 

For other pairs of utility function, the utility check requires utility calculation beyond the 
standard mathematical support of Jena, and inference engine in general. It is clear that the 
logical inference engines are not designed to cope with the needs of utility check. But they 
offer the possibilities of adding user extensions. For Jena, these extensions are called as Built- 
Ins. Built-ins are java classes (with a special interface), which can be added while initialising 
the inference engine.  

For purposes of utility check between different pairs of utility functions a set of built-ins and 
rules has been implemented to extend the capability of the inference engine. 

Figure 5-5shows the rule for utility check between: A MultiPointUtilityFunction and a 
continuous function (CubicUtilityFunction). 

 
Figure 5-5 Rule for utility check between a multi point utility function and a cubic function. 

The built-in utilityOfxInCubicFunctionFallsBetweenNullAndOne is an extension of the logical 
inference capability. Similar built-ins have been added for other pairs of utility functions. 

Utility check between a multi point utility function and an interval utility function is 
supported by the rule shown in Figure 5-6. 
 

[hasCommonValuesWithMultiPointsUtilityFunctionMultiPointUtilityFunction:
(?a rdf:type pre:MultiPointUtilityFunction) (?b rdf:type 
pre:MultiPointUtilityFunction) 

 (?a pre:point ?pa)(?pa pre:point_x ?pax) 
 (?b pre:point ?pb)(?pb pre:point_x ?pbx) 
 equal(?pax,?pbx) 
 -> (?a pre:hasCommonValuesWith ?b)  
 ] 

[MultiPointUFhasCommonValuesWithCubicUF: 
(?a rdf:type pre:MultiPointUtilityFunction) (?b rdf:type 
pre:CubicUtilityFunction) 

 (?a pre:point ?pa)(?pa pre:point_x ?pax) 
 (?b pre:parameter_1_alpha ?alpha) 
 (?b pre:parameter_2_beta ?beta) 
 (?b pre:parameter_3_gamma ?gamma) 
 (?b pre:parameter_4_delta ?delta) 

utilityOfxInCubicFunctionFallsBetweenNullAndOne(?alpha,?beta,?gamm
a,?delta,?pax) 

 -> (?a pre:hasCommonValuesWith ?b) 
 ] 



 

77 

 

Figure 5-6 Rule for utility check between a multi point utility function and an interval utility function. 

The utility check between qualitative values (Likert-scaled utility valued) is implemented by 
the help of the rule in Figure 5-7. 

 

Figure 5-7 Rule for utility check between two Likert scaled functions (qualitative values). 

5.3.1.3 Domain ontologies 
As shown in section 4.6, the Media Oriented Systems Transport (MOST) standard provides a 
suitable background for first-steps towards ontological description. A special ontology for 
automotive communication platforms has been developed. Figure 5-8 shows this ontology and 
its relation to MOST devices. 

[MultiPointUFhasCommonValuesWithIntervalUF: 
(?b rdf:type pre:IntervalUtilityFunction) 

 (?b, pre:hasfunction, pre:unityFunction) 
 (?b, pre:hasRange, ?rangevalue) 
 equal(?rangevalue, pre:greaterThan) 

(?b pre:intervallimits ?intervallimitpoint) (?intervallimitpoint 
pre:point_x ?px) 

 (?a rdf:type pre:MultiPointUtilityFunction) 
 (?a pre:point ?pa)(?pa pre:point_x ?pax) 
 ge(?pax,?px) 
 -> 
 (?a pre:hasCommonValuesWith ?b) 
 ] 

[LikertScaleUFhasCommonValuesWithLikertScaleUF: 
(?a rdf:type pre:LikertScaleUtilityFunction) (?b rdf:type 
pre:LikertScaleUtilityFunction) 

 PrintingBuiltin(?a) 
 PrintingBuiltin(?b) 
 (?a pre:hasLikertScaledPoint ?likertscaledpoint_a) (?b 

pre:hasLikertScaledPoint ?likertscaledpoint_b) 
 (?likertscaledpoint_a pre:physicalValue ?aphysicalvalue) 
 (?likertscaledpoint_b pre:physicalValue ?bphysicalvalue) 
 equal(?aphysicalvalue,?bphysicalvalue) 
 -> (?a pre:hasCommonValuesWith ?b) 
 print(?a,?b) 
 (?b pre:hasCommonValuesWith ?a)] 



 

78 

 
Figure 5-8 MOST device in relation to the functions blocks and to the automotive bus systems. 

In addition to the general ontology of automotive communication platform, a special ontology 
for MOST has been designed to gather the MOST function blocks (as can bee found in MOST 
specifications [MC06]). 

 
Figure 5-9 Ontology of MOST function blocks as defined for MOST devices 

A set of supporting “background” domain ontologies has been also developed. Figure 5-10 
shows a part of these domain ontologies. This set of ontologies contains an ontology of 
electronic technology, an ontology of signal processing technologies and an ontology of 
electronic devices.  



 

79 

 
 

Figure 5-10 Part of the domain ontologies 

On the base of the background domain ontologies, special domain ontologies have been built, 
like the ontologies of multimedia devices (amplifiers, tuners, displays, data storage devices, 
etc.). 

These sets of domain ontologies (beside the MOST ontology) enable the description of MOST 
devices as autonomous units. 

5.3.1.4 Application specific rules 
The semantic matching can be extended by application specific rules. In addition to the 
semantic matching supported through the use of a common ontology, the user can define 
rules, which enhance the matching capabilities. An example of such rules is depicted in 
Figure 5-11. 

 
Figure 5-11 Application specific rule discovers the technology of a MOST device on the base of the 

technology of its main element. 

The rule enhances the semantic matching in the sense that it say: If a device is based around 
an element, which has a specific electronic technology, then the electronic device itself should 

[basedAroundSomeThingMeansItHasTheSameTechnology: 
 (?a rdf:type ElectronicDevices:ElectronicDevice) 
 (?a ElectronicDevices:basedAroundElement ?element) 

(?C rdf:type owl:Restriction), (?C owl:onProperty 
ElectronicTechnologies:hasElectronicTechnology) 

 (?element rdf:type ?C) 
 (?C owl:hasValue ?D) 
 (?a rdf:type pre:Component) 
 -> 
 addFeatureToComponent 

(?a, ElectronicDevices:hasElectronicTechnology,?D) 
] 



 

80 

has the same electronic technology. An electronic technology is defined (in a special 
ontology) to be either a semiconductors technology or a vacuum tubes technology. Elements 
are semiconductors elements like diodes and transistors (Bipolar BJT, FET, or Mixed); or 
vacuum tubes elements (Triode, Pentode, Tetrode, etc.). 

5.3.1.5 Examples of SeMCDM 
Many examples and configurations of autonomic units have showed the benefits of the 
semantic MCDM matching process. 

In Figure 5-12, a MOST manager (an active autonomous unit) looks for an amplifier (a 
passive autonomous unit). Two amplifier units are available on the marketplace. The MOST 
manager prefers an amplifier based on vacuum tube technology over a semi conductor 
amplifier (Likert scale of qualitative values), although both amplifiers are acceptable offers. 

The fact that the preferred amplifier is based on vacuum tube technology is not asserted 
explicitly in the ontology. The only known fact about this amplifier is that it is based around 
“Pentode_6K6GT”, an instance of the concept “Pentode”. “Pentode” in its role is defined in 
the ontology of electronic technologies. Such matching result would not be possible, without 
an application specific logical rule. The rule presented in Figure 5-11, solves the matching 
problem, enabling optimal matching on the base on “better knowledge”. 

 

 
Figure 5-12 The configuration of an example system as a result of the semantic matching and application 

specific rules. 

Different examples have been developed, where the multi-criteria decision making plays a 
main role of driving the matching results towards specific solutions. The examples gathers 
combinations of continuous utility functions, Likert scaled utility functions and interval utility 
functions (covering different matching rules between these utility functions). 



 

81 

The used example features are defined in the ontologies mentioned above. For example 
MOST amplifiers have features like: Gain, noise, its electronic technology, its signal 
processing technology (Analog\Digital), beside support of the MOST bus and of the 
“AudioAmplifier” function block (from the MOST otology). 

A typical description of a wished component can be seen in Figure 5-13. Combinations of 
hard and soft features, as well as weights of the soft features have been a subject of 
experiments. Features like “SupportBusSystemFeature” and “hasFunctionBlockFeatures” are 
usually used as hard features. The electronic technology and the gain reflect fine preferences 
of the designer. The feature “SignalProcessingTechFeature” can play a key role, because it 
has a great influence on the ranking values (it is a hard feature. See section 4.1.2.5). 

 

 
Figure 5-13 Typical description of a wished component. 

5.4. Matching time 
The prototype of the autonomous units delivers also information about execution time of the 
both matching steps. For this purpose, the SeMCDM ontology and domain ontologies from 
the field of automotive engineering have been deployed to define several autonomous units. 
The prototype is a Java application, which uses the Jena inference engine with SeMCDM 
matching rules. 

The experiment has been performed on an AMD Athlon (tm) 64 Processor 3200+, with 1 GB 
RAM and Microsoft Windows XP operating system. 

Throughout all experiments, the inferred ontology models (in Ontology Web Language OWL 
[13]) have the size of 3183 RDF statements (Resource Description Framework [14]) for the 
passive units and 3133 for the active units. 

Passive units have been described with the help of 6 features, while enquires combined 5 
features (3 hard features and 2 soft features). The features have been specified with different 
kinds of utility functions. 



 

82 

The measured execution time of the first matching step is about 31 ms, while the execution 
time of the second matching step is about 16,7 ms. These results are measured in nanoseconds 
and apply of each pair of (offer, enquiry). 

The execution time of the matching steps are not to be confused with the preparation time 
(forward chaining) of the ontology models, which may last several seconds (4 - 5 s). 

5.5. Evaluation of alternative market scenarios 
The aim of the simulation-based evaluation in this section is to assess the performance of the 
suggested market scenarios (section 4.5.2) in different settings of the application environment. 
The simulation models of the market scenarios have been built in Java, so that every unit has 
the form of a thread, in addition to a broker thread. The fairness between the autonomous 
units is guaranteed through the equal sleep time of the threads and the random selection of 
offers/enquiries from the central broker. 

Real applications of SeMCDM vary between the building of a whole system consisting of a 
high number of heterogeneous autonomous units and the search for a substitution of one 
failing autonomous unit a in a merely homogenous environment. In this context, the 
complexity of the application environment is not only reflected by the number of the 
autonomous units, but also by the diversity of their types and by the number and diversity of 
the looked-for components. 

Therefore, the simulation model has been designed to supports the modification of the next 
parameters: 

- Number and type of existing passive units 

- Number and type of existing active units, in addition to the number and type of the 
components in their wish lists. 

- Computing load resulted from the first matching step and from the second matching 
step. The computing load takes the form of delay time. 

- Enquiry time out: The expiration time of the enquiry. 

- Cycle time: Defines the start time of the next cycle. 

In following sections, theses parameters will be categorized to form settings of the application 
environment (section 5.5.2) and settings of the computing load and timing (section 5.5.3). 

However, the next section presents a set of assessment metrics of the market scenarios. 

5.5.1 Assessment criteria of the market scenarios 
Different assessment metrics have been defined and measured for each of the market 
scenarios: The success rate and the time to first solution, the number of matching attempts and 
the quality of solution. The next sections describe each of these metrics. 

5.5.1.1 Success rate and time to first solution 
A “solution” is a possible configuration of the application system. A configuration consists of 
a set of contracts between autonomous units. A first solution is reached when at least one 
suitable offer for every looked-for component has been found. This leads to the definition of 
the “success rate” as “the ratio of found components to the total number of looked-for 
components”. A success rate has the maximal value of 1, which means that all looked-for 
components have got passive units assigned. 



 

83 

In the simulation settings with only 15 passive units available, the maximum value of the 
success rate is limited to 0.5 (there are always 30 looked-for components). In other settings 
the maximum value of 1 can be reached. The concurrence between the active units on the 
available resources (passive units) and the reservation mechanism yield that one cycle is not 
always sufficient to reach the maximal possible success rate. The time to the first solution can 
therefore be evaluated as the number of the needed cycles to reach the first solution. 

5.5.1.2 Number of matching attempts 
Scenarios differ in the number of matching attempts carried out to reach the first solution. In 
the results’ diagrams the total numbers of matching attempts are depicted for every scenario. 
The total number of matching attempts is the sum of matching attempts in all cycles. 

5.5.1.3 Quality of solution 
An optimal solution is that, where every looked-for component meets its corresponding 
optimal offer. The first solution found is not necessarily the optimal solution. This means that 
it contains acceptable offers, which differ from the optimal offer in their sub-types. The 
quality of solution is defined as the “distance” between the achieved solution and the optimal 
solution. To get a numeric impression of the quality of solution for each pair (enquiry, 
selected offer) the following formula has been used (subtypes are integer numbers), while the 
average value for all pairs represents the quality of found solution: 

           Quality (enquiry, selected offer) = 1 – (subtype of enquiry – subtype of offer) / total 
number of subtypes 

5.5.2 Settings of the application environment 
To cover the variety of application environments, carefully selected values of the simulation 
parameters have been gathered to 4 sets, representing 4 different application environments of 
different complexity degrees. 

Through all tests the number of looked-for components is fixed to 30, while the number of 
passive units took one of three values: 15, 30 or 60. Table 5-2 summarizes all simulation 
settings. 

 
 #of 

Types 
# of 

passive 
units 

# of 
passive 

units per 
type 

# of 
components

# of 
components 
per type = # 

of sub-
types 

# of 
components 
per active 

unit 

# of 
active 
units 

Single I 1 15/ 30/ 60 15/30/60 30 30 1 30 
Single II 1 15/ 30/ 60 15/30/60 30 30 5 6 
Multi I 5 15/ 30/ 60  3 / 6 /12 30 6 5 6 
Multi II 15 15/ 30/ 60  1 / 2 / 4 30 2 5 6 

Table 5-2 Simulation settings of the application environments. 

The following sections describe each configuration with more details. However, the 
simulation results are presented only for a sub-set of these environments settings. Section 
5.5.2.5 justifies the selection of this sub-set. 



 

84 

5.5.2.1 Application environment “Single I” 
Single I represents a very homogeneous application environment, where all passive units are 
of the same type9. Single I is characterized by the next facts: 

- The passive units are of the same type: All passive units share a common set of 
features with the same feature values. 

- Passive units of the same type differ in their sub-types: Each passive unit has 
additional features with specific values. The features values of these additional 
features differ between the passive units of the same type. 

- Every active unit has only one looked-for component in its wish list. 

- The looked-for components share the same type with the passive units: The common 
features of the passive units are exactly those counted under the hard features of the 
looked-for component. 

- Looked-for components of different active units are of different sub-types: As they 
have different values of their soft features. 

5.5.2.2 Application environment “Single II” 
Single II is also a homogeneous application environment, similar to Single I. However Single 
I and Single II differ in the next point: 

- Every active unit looks for five components of the same type. 

- The looked-for components of one active unit have different sub-types. 

5.5.2.3 Application environment “Multi I” 
Multi I represents a heterogeneous application environment characterized by the next facts: 

- There are 5 types of passive units and of looked-for components. 

- Passive units of the same type have different sub-types. 

- Every active unit is looking for 5 components 

- Looked for components in each wish list are of different types. 

- Looked-for components of the same type (in the wish lists of different active units) 
have different sub-types. 

5.5.2.4 Application environment “Multi II” 
Multi II is also a heterogeneous application environment, similar to Multi I, with the only 
difference that the application environment combines 15 types of passive units and of looked-
for components. 

5.5.2.5 Environment settings for better results comparability 
For purposes of better comparability the simulation results will be presented only for 
environment settings with 30 and 60 passive units. In this sub-set of the simulated 

                                                 
9 The word “type” is used to describe either a “partial set of the features and their specific values” when related 
to passive units or “the hard features with their specific values” when related to looked-for components. The 
word “sub-type” is used to describe either “all other features not ranked among the set of type’s features” when 
related to passive units or “the soft features” when related to looked-for components. A sub-type is also specified 
with the values of its features’ set. 



 

85 

environment settings, a maximal success rate of 1 is expected and there is at least one optimal 
offer for every looked-for component. This means that these environments are better 
comparable in relation to the metrics: Time to first solution and quality of solution. 

Additionally, the effect of environment on the results can be seen clearly be considering the 
extreme settings: Single I and Multi II. Therefore, the simulation results will be presented for 
four comparable and useful environment settings: 

- Homogeneous environment: A special case of Single I with 30 available passive 
units. 

- Easy homogeneous environment: A special case of Single I with 60 available 
passive units. 

- Heterogeneous environment: A special case of Multi II with 30 available passive 
units. 

- Easy heterogeneous environment: A special case of Multi II with 60 available 
passive units. 

5.5.3 Settings of the computing load and timing parameters 
On the base of the measured execution time of both matching steps, computing load has been 
simulated for each pair (enquiry, offer) with the following values: The computing load of the 
semantic matching is set to 50 ms, and for the MCDM process to 25 ms. 

These values are not equal to the measured values, because the measured execution time 
represents a subjective value and is strongly related to the different factors, like the 
complication of the ontology, the number of describing features (on both sides: The offer and 
the enquiry), the type of the utility functions, and the number of rules (matching rules between 
utility functions and application specific rules). However the ratio between the execution time 
of the first and the second matching step is still stable (the simulation result will show that the 
evaluation of the scenarios is not related to the execution time of the matching steps. See 
section 5.5.5). 

The expiration time of the enquiry has the value of 20 s for all distributed scenarios, with 
cycle time of 30 s. The third scenario has exceptional values, because of the high number of 
matching attempts: An expiration time of enquiry of 120 s with a cycle time of 200 s. 

5.5.4 Simulation results of the market scenarios 

5.5.4.1 Success rate and time to first solution 
The next sections depict the success rate diagrams and the time to first solution for all 
scenarios in each of the simulation settings (Section 5.5.2.5). 

5.5.4.1.1 The homogeneous environment 
Figure 5-14 shows the success rates of each scenario in relation to the time when running in 
the homogeneous environment. To reach the first solution 6 cycles of scenario 1 have to be 
carried out. The fact that more than one offer can be reserved for one enquiry means that other 
enquiries have to wait for a following cycle to get an offer (30 passive units face exactly 30 
looked-for components). The homogeneous environment represents a worst-case for scenario 
1 because all looked-for components and all passive units are of the same type. 

The best scenario for the homogeneous environment is scenario 2B, which reaches the first 
solution within the first cycle. In comparison to 2B, scenario 2A delivers a moderate 



 

86 

performance (time to first solution of 3 cycles). This difference can be traced back to the fact 
that scenario 2B avoids the reservation of multiple offers for one enquiry. 

According to scenario 3, contracts can be concluded only after achieving both matching steps 
for all possible pairs (offer, enquiry). This explains the late rise of the success rate values in 
comparison to other scenarios. 

Homogeneous environment

0

0,2

0,4

0,6

0,8

1

1,2

50

60
50

12
05

0

18
05

0

24
05

0

30
05

0

36
05

0

42
05

0

48
05

0

54
05

0

60
05

0

66
05

0

72
05

0

78
05

0

84
05

0

90
05

0

96
05

0

10
20

50

10
80

50

11
40

50

12
00

50

12
60

50

13
20

50

76
00

31
60

0

55
60

0

79
60

0

10
36

00

12
76

00

Scenario 1

Scenario 2A

Scenario 2B

Scenario 3

 
Figure 5-14 Success rates of the market scenarios in the homogeneous environment. 

 The success rate line of scenario 3 is not linearly increasing. This is due to the decreasing 
number of available offers for each enquiry along with the number of already processed 
enquiries. 

5.5.4.1.2 Easy homogeneous environment 
The easy homogeneous environment is relatively a friendly environment because of the high 
number of available passive units. Therefore, all distributed scenarios show shorter times to 
the first solution (see Figure 5-15). 

Only scenario 3 requires a longer time to find the first solution in its second matching step. 
This indicates that a high number of candidates can be a real problem for the centralized 
matching. 

Easy homogeneous environment

0

0,2

0,4

0,6

0,8

1

1,2

50

57
00

11
35

0

17
00

0

22
65

0

28
30

0

33
95

0

39
60

0

45
25

0

50
90

0

56
55

0

62
20

0

67
85

0

73
50

0

79
15

0

84
80

0

90
45

0

96
10

0

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

2E
+0

5

2E
+0

5

Scenario 1

Scenario 2A

Scenario 2B

Scenario 3

 
Figure 5-15 Success rates of the market scenarios in the easy homogeneous environment. 



 

87 

5.5.4.1.3 The heterogeneous environment 
In contrast to its bad performance in the homogeneous environment, scenario 1 reaches the 
first solution in only 2 cycles (see Figure 5-16). The heterogeneous environment is not a 
friendly environment, but it is obvious that scenario 1 benefits from the distribution of the 
search processes (the first matching step) on a high number of passive units. The rarity of the 
looked-for components hides the disadvantage of scenario 1 (i.e. the offer reservation 
problem). 

Heterogeneous environment

0

0,2

0,4

0,6

0,8

1

1,2

50

49
50

98
50

14
75

0

19
65

0

24
55

0

29
45

0

34
35

0

39
25

0

44
15

0

49
05

0

53
95

0

58
85

0

63
75

0

68
65

0

73
55

0

78
45

0

83
35

0

88
25

0

93
15

0

98
05

0

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

1E
+0

5

Scenario 1

Scenario 2A

Scenario 2B

Scenario 3

 
Figure 5-16 Success rates of the market scenarios in the heterogeneous environment. 

Scenarios 2A and 2B show a weakness in the heterogeneous environment (both distribute the 
difficult search process on 6 active units). Scenario 2A shares principally the same difficulties 
with scenario 2B, but it can reach the first solution in two cycles (scenario 2B reserves offers 
for both matching steps while scenario 2A reserves them only for the first matching step). 

The second matching step in scenario 3 shows a steeply ascending line (small number of 
alternatives). 

5.5.4.1.4 The easy heterogeneous environment 
In scenario 1, 60 passive autonomous units complete the first matching step in parallel. Due to 
the higher number of passive units, the success rate in the first cycle reaches a better value 
(near to 1) in comparison to its value in heterogeneous environment, and two cycles are 
sufficient to reach the first solution (see Figure 5-17). In spite of additional passive units, in 
comparison to the heterogeneous environment, two cycles are required anyway to reach the 
first solution by scenario 1. 

Even scenarios 2A and 2B deliver better results, but only because of the higher number of 
available offers, where the reservation time plays only a limited role. 



 

88 

Easy heterogeneous environment

0

0,2

0,4

0,6

0,8

1

1,2
50

43
50

86
50

12
95

0

17
25

0

21
55

0

25
85

0

30
15

0

34
45

0

38
75

0

43
05

0

47
35

0

51
65

0

55
95

0

60
25

0

64
55

0

68
85

0

73
15

0

77
45

0

81
75

0

86
05

0

90
35

0

94
65

0

98
95

0

10
32

5

10
75

5

11
18

5

11
61

5

12
04

5

Scenario 1

Scenario 2A

Scenario 2B

Scenario 3

 
Figure 5-17 Success rate of the market scenarios in the easy heterogeneous environment. 

The fact that more alternatives are subject to comparison in the second matching step can be 
seen from the less steeply ascending line of scenario 3. 

5.5.4.2 Number of matching attempts 
In the central scenario (scenario 3) all possible matching attempts are to be attended, and 
therefore this scenario is selected to serve as a reference for all other scenarios in all settings. 
In scenario 3 the central broker achieves (30 * 30 =) 900 matching attempts in homogeneous 
environment and in the heterogeneous environment In the easy homogeneous environment 
and in the easy heterogeneous environment the number of matching attempts in the central 
broker reaches the value of (30 * 60 =) 1800. The following section present the number of 
matching attempts of all scenarios as a percentage fraction of matching attempts in scenario 3. 

5.5.4.2.1 The homogeneous environment 
Figure 5-18 shows the number of matching attempts achieved by the market scenarios in the 
homogeneous environment. In relation to scenario 1, the passive units perform the first 
matching step 60 times (6,6%). In the first cycle 30 matching attempts are made by all 30 
passive units in parallel. No additional attempts are required, nor possible, in the same cycle 
because all attempts return positive results (passive units and looked-for components are all of 
the same type in the homogeneous environment). The other 30 matching attempts are then 
performed in several additional cycles (see Figure 2-1 of the success rate). 

The active units have to try the matching 108 time (12%) before reaching the first solution, 
when adopting scenario 2A. To read an offer from the broker without reservation (through the 
first matching step) means that the same offer can be a subject of matching in more than one 
active unit at the same time. This concurrence situation explains that in the first cycle 94,5 
matching attempts have been carried out in scenario 2A (the number of matching attempts 
exceeds the number of available offers, although all offers are acceptable offers in this 
setting). Concurrence situations are discovered and solved in the same cycle according to 
scenario 2A, and in different cycles according to scenario 1. The amount of effort in each 
scenario is reflected in the achieved success rates shown in Figure 2-1. 



 

89 

0

20

40

60

80

100

120

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented) (Offer oriented) (Central)

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented)

%
 o

f t
he

 c
en

tr
al

 s
ce

na
rio

 
Figure 5-18 Number of matching attempts achieved by the market scenarios in the homogeneous 

environment. 

Scenario 2B is designed to avoid the drawback found in scenario 2A, i.e. the reservation of 
multiple (acceptable) offers within a cycle. So it is able to get by with 30 matching attempts 
(3,3%) within only one cycle. 

5.5.4.2.2 The easy homogeneous environment 
Figure 5-19 shows the number of matching attempts achieved by the market scenarios in the 
easy homogeneous environment. In scenario 1, more passive units (60) attempt to find 
suitable enquiries, and therefore 60 matching attempts are carried out in the first cycle. In total 
93 attempts (5,2% of possible matching attempts) are required to reach the first solution in the 
third cycle. 

The number of carried out matching attempts in scenario 2A is directly related to the number 
of available passive units (a comparison between the homogeneous environment and the easy 
homogeneous environment). 

0

20

40

60

80

100

120

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented) (Offer oriented) (Central)

%
 o

f t
he

 c
en

tr
al

 s
ce

na
rio

 
Figure 5-19 Number of matching attempts achieved by the market scenarios in the easy homogeneous  

environment. 

Scenario 2B finds the first solution in only one cycle, but at a price of 345 matching attempts 
(19,2% of possible matching attempts). In scenario 2A, the offer reservation makes additional 
matching attempts only in a following cycle possible. In scenario 2B, free offers are always 



 

90 

available (in easy homogeneous environment), because each active units reserves only one 
offer. 

5.5.4.2.3 The heterogeneous environment 
Figure 5-20 shows the number of matching attempts achieved by the market scenarios in the 
heterogeneous environment. The rarity of the looked-for components is the main reason for 
higher numbers of matching attempts by all distributed scenarios. For scenario 1, 385 attempts 
(42,7%) have been achieved in two cycles (only 2 attempts in the second cycle), i.e. in order 
to find suitable offers for the last few enquiries, an enormous number of matching attempts 
has to be carried out. Keeping in mind that passive units try to find only one suitable enquiry 
and that there is actually a suitable offer for each looked-for component (according to the 
selected settings) one discovers that there is a drawback distributing the enquiries on the 
passive units. The distribution is performed by the broker in a random way. So the search is 
not as perfect as it could be, if the broker tried to choose enquiries with no available offers at 
first. An important indicator for this drawback can be found in the second cycle where the 
number of enquiries is much smaller, and the random selection is not any more a real 
problem. A similar problem can be expected also by other distributed scenarios, but it cannot 
be shown as clearly as in scenario 1, because other scenarios try making additional matching 
attempts. 

0

20

40

60

80

100

120

140

(Offer oriented) (Central)
Scenario 1 Scenario 2A Scenario 2B Scenario 3

(Enquiry oriented) (Offer oriented)

%
 o

f t
he

 c
en

tr
al

 s
ce

na
rio

 
Figure 5-20 Number of matching attempts achieved by the market scenarios in the heterogeneous 

environment. 

A dramatic worsening can be observed especially in scenario 2B, which reaches the first 
solution after 1035 matching attempts (115% of possible matching attempts). This high 
number of matching attempts has to be explained in correlation with the success rate diagram 
(Figure 5-16), which shows how scenario 2B needs multiple cycles to reach the first solution 
(because of the too long reservation time of rare offers). 

5.5.4.2.4 The easy heterogeneous environment 
Figure 5-21 shows the number of matching attempts achieved by the market scenarios in the 
easy heterogeneous environment. Scenarios 1 and 2A show similar results to those achieved 
in the heterogeneous environment. This reappoints the relation between the number of 
available offers (passive units) and the number of required matching attempts in both 
scenarios. Scenario 2B indicates the relative ability to deal with heterogeneous environments, 
when the looked-for components are not as rare as in heterogeneous environment. 



 

91 

0

20

40

60

80

100

120

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented) (Offer oriented) (Central)

%
 o

f t
he

 c
en

tr
al

 s
ce

na
rio

 
Figure 5-21 Number of matching attempts achieved by the market scenarios in the easy heterogeneous 

environment. 

5.5.4.3 Quality of solution 
Figure 5-22 shows the quality of solution achieved by the market scenarios in different 
application environments. The central solution proves its excellent ability of discovering the 
optimal solution, independent of the simulation settings. This goes back to the fact, that the 
central scenario verifies actually all possible pairs (enquiry, offer). Therefore, whenever an 
optimal offer is available, it can be found and assigned to the enquiry. 

Homogeneous environment 

0

20

40

60

80

100

120

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented) (Offer oriented) (Central)

Easy Homogeneous environment 

0

20

40

60

80

100

120

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented) (Offer oriented) (Central)

Heterogeneous environment 

0

20

40

60

80

100

120

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented) (Offer oriented) (Central)

Easy heterogeneous environment 

0

20

40

60

80

100

120

Scenario 1 Scenario 2A Scenario 2B Scenario 3
(Enquiry oriented) (Offer oriented) (Offer oriented) (Central)

Figure 5-22 The quality of solution achieved by the market scenarios in different application 
environments. 

The distributed scenarios show in general similar results, but there is almost always a 
correlation between the number of performed matching attempts and the achieved quality of 



 

92 

solution. This applies especially for the easy environments (both the homogeneous and the 
heterogeneous), where decision making takes place really between multiple alternatives (The 
homogeneous environment and the heterogeneous environment don’t give enough margin for 
the decision making process). 

5.5.5 Conclusion 
Figure 5-23 shows the advantages and disadvantages of the market scenarios in different 
application environments. The time to first solution is represented as “Performance” of the 
market scenario, while the number of matching attempts is represented by the computing 
“Load”. 

From the figure it can be clearly shown that the evaluation results depend strongly on the 
application environment. Figure 5-23 proves the important fact that the market scenarios can 
only be evaluated in correlation with a specific application environment. The application 
environment is characterized by the diversity of its components (homogeneous vs. 
heterogeneous environments) and by the number of available offers per enquiry (the number 
of enquiry is constant for all studied environments, while the number of offers, i.e. of the 
passive units, changes). 

Homogeneous environment Easy homogeneous environment

Heterogeneous environment Easy heterogeneous environment

Scenario 3 (central) Quality
Performance
Load

Scenario 3 (central) Quality
Performance
Load

Scenario 3 (central)      Quality
Performance
Load

Scenario 3 (central) Quality
Performance
Load

Scenario 1 (enquiry oriented)                                   Performance         Load

Scenario 1 (enquiry oriented)                      Performance

Scenario 2A
(offer oriented)

Performance
Load

Scenario 2B (offer oriented)                        PerformanceLoad Quality

Scenario 2B (offer oriented)      Performance

Load

H
om

og
en

eo
us

 e
nv

ir
on

m
en

ts
H

et
er

og
en

eo
us

 e
nv

ir
on

m
en

ts

Increasing ratio: offers/enquiries
 

Figure 5-23 Evaluation of the market scenarios in four different environments. 

The reference scenario, scenario 3, is a typical central scenario, because it promises to deliver 
the optimal results (quality of solution) at the price of centralized heavy-weight computation. 
In addition to scalability problems with higher numbers of autonomous units, the centralized 
solution entails the danger of total system breakdown because of a failure in the central 
computing unit. 

In the heterogeneous environments it is recommended to use an enquiry-oriented scenario, 
like scenario 1, because of its short time to first solution. The enquiry-oriented scenarios have 
also an important advantage regarding the distribution of the computing load, so that they are 



 

93 

strongly recommended for a balanced computing load and high parallelism, especially for 
environments with high number of passive units. The small number of required matching 
attempts, which are performed on high number of passive units, means that the passive units 
can be designed for restricted computing capabilities. 

Moreover, real application environments are expected to be heterogeneous environments and 
which involve more passive units than active units. In such environments the enquiry-oriented 
scenarios deliver better performance for a smaller number of matching attempts in 
comparison to the offer-oriented scenarios. 

However, the offer-oriented scenarios promise high performance in homogeneous 
environments (especially with high numbers of active units, like the easy homogeneous 
environment). 

The offer-oriented scenario 2A has an important advantage of delivering mid-level, but 
relatively stable, performance value in all environments, although it doesn’t promise a small 
computing load on the active units. 

Pushing towards a “one step matching” is not always a good idea. Scenario 2B faces real 
difficulties by looking for rare components. This is the case in the heterogeneous 
environment, where scenario 2B shows bad performance and high computing load. However, 
higher numbers of matching attempts promise better quality of solution. In this context, 
scenario 2B can be considered as an optimization scenario (the optimization affects only the 
subtypes) where enough time is available. 

A very important result of the simulation is the fact that the evaluation of the market scenarios 
according to the defined metrics is not related to the execution time of the matching steps (as 
soon as all autonomous units have the same computing power). This means that the 
application of the market scenarios on powerful computers may reduce the overall execution 
time of the scenario, but it would not affect the number of required cycles to reach the first 
solution. The market scenarios are actually behavior patterns and their performance is 
determined by the reservation mechanism and by the conflicts between the autonomous units. 

5.5.6 Summary 
The adoption of a marketplace-oriented behavior in Organic Computing architectures, like 
SeMCDM, is not a trivial process. Different market scenarios have been defined in section 
4.5.2 by allocating activities on available autonomous units. Reasonable market scenarios 
have been classified according to the kind of exchanged messages (offers or enquiries). 

To prove the adequacy of these scenarios in different application environments, a prototype of 
market scenarios has been developed. Three evaluation metrics of the market scenarios have 
been defined: Success rate and time to first solution, number of matching attempts and quality 
of solution. A centralized scenario serves as a comparison reference for the defined scenarios. 
The application environment has been specified by different characterization factors like: The 
number of available units, the diversity of unit types and additional timing restrictions 
(computational load). Simulation results proved the effect of the application environment on 
the performance of market scenarios. Therefore, there is no optimal scenario for all typed of 
application environments. However, the discussion of the simulation results led to 
recommendations on the most suitable market scenario in different application environments. 

The delay time of messages (offers and enquiries) is only considered indirectly in the form of 
thread sleep time. To study the effect of the communication platform in future work, it is 
possible to simulate it as a separate variable. 



 

94 

Additionally, autonomous units can dynamically change the market scenario in run time. 
Synchronization mechanisms and the management of such processes can be also a theme for 
further studies, for example, by the usage of an Observer/Controller architecture. 



 

95 

6. Conclusion and future work 
The Organic Computing promise high adaptivity in complex engineering systems. Different 
approaches trying to incorporate (forms of) the Organic Computing principles in real 
engineering applications have been surveyed. An assessment has shown shortcomings, open 
questions and challenges facing the current approaches. 

By studying these challenges, and through the abstraction of the open questions, similarities to 
challenges known in other research areas have been recognized. Corresponding solutions have 
been adopted to reach an interdisciplinary concept gathering Semantic Web technologies, 
especially the ontological expression and processing of knowledge, methods of Multi-Criteria 
Decision Making (MCDM), the marketplace-oriented behavior and the autonomy of self-
organizing systems. 

The concept is based on the idea that the autonomy given to engineering systems and to their 
components must be supported by balancing common, machine processable knowledge and 
by decision making mechanisms. 

A comprehensive study of different technologies, mechanisms, and methods provided the 
underground for the novel concept of this thesis: Semantic Multi-Criteria Decision Making 
(SeMCDM). 

The design of the goal architecture of SeMCDM has been achieved in a systematic way. On 
the base of a detailed requirements analysis, suitable Multi-Criteria Decision Making 
(MCDM) methods has been adopted. 

The integration of MCDM methods and ontological knowledge processing techniques has 
been addressed in both phases: The design time and the runtime. 

An ontology design tool has been extended to express the knowledge required for MCDM, 
and a specific MCDM-ontology has been defined. The ontology-based inference has been 
supported by rules to enable “Semantic Multi-Criteria Decision Making” in runtime. 

The concept of SeMCDM has been studied in relation to marketplace-oriented behavior of 
autonomous system components. In contrast to other approaches, the marketplace-oriented 
behavior has been here carefully specified and a set of possible market scenarios has been 
discovered. 

Applications of SeMCDM have been addressed in the automotive systems. The modern 
communication networks and design methodologies promise to be able to benefit from 
SeMCDM. However, the high priority of safety in automotives may delay the wide adoption 
of autonomy-based concepts, like SeMCDM, as a comprehensive design and operation 
methodology. Therefore, multimedia systems in automotives have been selected as first-step 
applications. 

The example application proofed the functional validity of the new design tools and of the 
SeMCDM model. The SeMCDM model helped also to estimate the performance of 
SeMCDM. The measured performance is strongly related to many factors, like the size of 
ontology, the number of rules, and the complexity of the application. 

To this reason, the performance of the market scenarios has been studies in different 
application environments. Three evaluation metrics of the market scenarios have been defined 
and measured on the simulated marketplace. The application environment itself has been 
specified by different characterization factors related to its complexity, in terms of size 
(scalability) and diversity. The results show that the market scenarios are merely behavior 
patterns, with conflicts-determined performance. The results show also that the performance 
of the market scenario depends not only on the size of the marketplace (the scalability 



 

96 

question) but also to the diversity of the system components. No market place can promise an 
optimal performance in all possible environments. A dynamic switching between the market 
scenarios may be an optimization solution in future work. 

Such switching capability and the need for more trust in Organic Computing systems 
emphasises the need for a higher layer to observe the overall system behavior and to give an 
indicator about its “success”. An Observer/Controller architecture may provide more trust and 
optimization-capable systems on the base of SeMCDM and the marketplace-oriented 
behavior. 

Similar to the situation in the Semantic Web and in Multi-Agent systems, the distribution of 
ontologies on multiple components means that the problem of ontology mapping and 
inference in distributed ontologies is also an important field for future research. Within the 
scope of SeMCDM, efforts have been made to support inference in distributed ontologies 
[Abe06]. On the base of ant-colony-optimization, an inference engine in distributed 
ontologies has been designed and successfully implemented. However, a lack of standardized 
test environment for performance estimation of such inference engine can be registered. 

The development of ontologies may appear as a difficult process in real applications, 
especially in areas of long history and high complexity, like the automotive industry. On the 
other side, the need for standardization pushes towards intensive involvement of modelling 
languages. The ontologies with their open nature, their human-machine readability and their 
applicability in the design time, as well as in the real time, are surely a better alternative. The 
modern automotive systems tend to provide a standardized “catalogue” of functionalities. 
Such catalog is a suitable entry application of ontological-knowledge. However, SeMCDM 
expect more information: SeMCDM expects a detailed expression of designer preferences. It 
is known that such process can be a difficult and error-prone one. Especially the question 
about the completeness of the given preferences cannot be easily answered. Therefore, the 
application of SeMCDM requires an iterative, simulation supported, development of the 
knowledge and of designer preferences, before loading them to the real autonomous system 
components. 

The question about “How much knowledge and preferences are needed” is an important 
research field in future. While the suggested fact that “Suitable knowledge leads to suitable 
order” has been validated on the base of a useful methodology, it calls the definition of the 
word “suitable” into question. Mathematical measures for amount of knowledge (like the 
entropy), knowledge consistency, knowledge completeness, and for the suitability of the 
resulting order may provide a solution in future. 



 

97 

7. Bibliography 
[A+07] Fabian Abel, Eelco Herder, Philipp Kaerger, Daniel Olmedilla and Wolf Siberski. 
Exploiting Preference Queries for Searching Learning Resources. In proceedings of 2nd 
European Conference on Technology Enhanced Learning (EC-TEL 2007) 

[Abe06] F. Abel, “An Agent-based approach to Distributed Reasoning (in german)”, Master 
Thesis applied to the Institute of computer and System Architecture, Leibniz University of 
Hannover, 2006. 

[AE07] R. J. Anthony and Cecilia Ekelin, “Policy-driven self-management for an automotive 
middleware”, at “First International Workshop on Policy-Based Autonomic Computing 
(PBAC 2007)” at the “Fourth IEEE International Conference on Autonomic Computing”, in 
Jacksonville, Florida, USA, June 11-15, 2007. 

[AH08] Grigoris Antoniou and Frank von Harmelen, “A Semantic Web Primer”, 
Massachusetts Institute of Technology, second edition, 2008. 

[ANT07] Richard J. Anthony, Agile Policy-Expression-Language, Policy Autonomics, 
http://www.policyautonomics.net , 2007. 

[ARCJBE07] R. Anthony, A. Rettberg, D. Chen, I. Jahnich, G. de Boer, and C. Ekelin, 
„Towards a dynamically reconfigurable automotive control system architecture“, in IFIP 
International Federation for Information Processing, volume 231/2007, Springer Boston, 
2007. 

[Aut03] AUTOSAR www.autosar.org, May 2003. 

[Aut08] AUTOSAR GbR, “AUTOSAR Methodology”, www.autosar.org, February 2008. 

[BL05] Tim Berners-Lee, “Web for real people”, (http://www.w3.org/2005/Talks/0511-
keynote-tbl/), W3C 2005. 

[BLHL01] Tim Berners-Lee, James Hendler and Ora Lassila, “The Semantic Web: A new 
form of Web content that is meaningful to computers will unleash a revolution of new 
possibilities”, Scientific American, May 2001. 

[BW89] Beni, G., Wang, J. Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO 
Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30, 1989. 
[CAN08] CAN in Automoation, Controller Area Network (CAN), http://www.can-cia.org/, 
2008. 

[CHH92] Shu-Jen Chen, Ching-Lai Hwang, in collaboration with Frank P. Hwang, Fuzzy 
Multiple Attribute Decision Making, Methods and Applications, Springer-Verlag Berlin 
Heidelberg 1992. 

[DCS99] ATLAS Detector Control Systems, “CANopen Service Data Objects”,  
http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/DCS/LMB/PROFILE/cano-sdo.htm 
[DS04] M. Dean and G. Schreiber. „OWL – Web Ontology Langauage Reference”, W3C 
Recommendation, 2004. http://www.w3.org/TR/owl-ref/ 

[Dys07] DySCAS project web site http://www.dyscas.org/doc/DySCAS_D1.1A.pdf, 
“Dynamically Self-Configuring Automotive systems: Existing Technologies”, specific 
targeted research project, 2007. 

[Ehr05] Matthias Ehrgott, Multicriteria Optimization, Springer. Berlin-Heidelberg, second 
edition, 2005. 

[Ema08] EMail from FlexRay consortium 



 

98 

[ES04] H. A. Eiselt, C.-L. Sandblom, “Decision Analysis, Location Models, and Scheduling 
Problems”, Springer-Verlag, Berlin, Heidelberg, 2004, with contributions by: J. Blazewicz, R. 
L. Church, A. Drexl, G. Finke, C. S. ReVelle. 

[F+06] H. Fennel et. al., “Achievements and exploitation of the AUTOSAR development 
partnership”, Convergence, Detroit, USA, 2006 

[FGE05] José Figueira, Salvatore Greco, Matthias Ehrgott, editors, Multiple Criteria Decision 
Analysis: State of the Art Surveys, Springer Science+Business Media Inc., 2005 

[FIPA02] Foundation for Intelligent Physical Agents, “FIPA Contract Net Interaction 
Protocol Specification”, 2002. 
[Fle05] FlexRay consortium, “FlexRay Communications System Protocol Specification”, 
Version 2.1, Revision A, 2005. 
[Fle06] FlexRay consortium, http://www.flexray.com/, 2006. 
[GC] Grid Computing Info Cetner, http://www.gridcomputing.com/ 
[Gel85] David Gelernter, “Generative communication in Linda”, ACM Trans. Programming 
Languages and Systems, 7(1):80{112, January 1985. 

[Gru93a] Thomas R. Gruber, “A translation Approach to Portable Ontology Specifications”. 
Knowledge Acquisition, 5(2): 199-220, 1993. 

[Gru93b] Thomas R. Gruber: Toward Principles for the Design of Ontologies Used for 
Knowledge Sharing. International Journal Human-Computer Studies 43, p.907-928, 1993. 

[GWH89] Bruce L. Golden, Edward A. Wasil, Patrick T. Harker (Eds.), The Analytic 
Hierarchy Process, Applications and Studies, Springer-Verlag Berlin-Heidelberg 1989. 

[H+02] Peter E. H. Hofmann et. al., DAIMLERCHRYSLER, „Evolutionäre E/E-Architektur, 
Vision einer neuartigen Elektronik-Architektur für Fahrzeuge“, 2002. 

[HK04] Henze, N., Kriesell, M., “Personalization functionalitiy for the Semantic Web: 
Architectural outline and first sample implementations”, Semantic Web challenge 2005. In: 
De Bra, P., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, Springer, Heidelberg 2004. 

[HL05] Peter Hoffmann, Stefan Leboch (Daimler Chrysler AG), „Evolutionäre 
Elektronikarchitektur für Kraftfahrzeuge“. Information Technology 47 (2005) 4, Oldenbourg 
Verlag, 2005. 

[HMS00] Stefan A. Hajkowicz, Geoff T. McDonald, Phil N. Smith, An Evaluation of 
Multiple Objective Decision Support Weighting Techniques on Natural Resource 
Management, Journal of Environmental Planning and Management, 43:4, 505 – 518, online 
publication date 01 July 2000. 

[HP08] Hewlett-Packard Development Company, L.P., “Jena Semantic Web Toolkit” 
http://www.hpl.hp.com/semweb/tools.htm#jena, 2008. 

[HY81] Ching-Lai Hwang, Kwangsun Yoon, “Multiple Attribute Decision Making, Methods 
and Applications: A State-of-the-Art Survey”, Springer-Verlag Berlin Heidelberg New York, 
1981. 

[ICP04] ICPDAS, “CAN: the new protocol to enhance your power”, 
http://www.icpdas.com/products/Remote_IO/can_bus/can_intro.htm, 2004. 

[JHYPT05] J. L Hellerstein, Yixin Diao, Sujay Parekh and Dawn M. Tilbury, “Control 
Engineering for Computing Systems”, Industry experience and research challenges”, IEEE 
Control Systems Magazine, Volume 25, Issue 6, Dec. 2005. 



 

99 

[JP02] Juhasz, Z.; Paul, P., "Scalability Analysis of the Contract Net Protocol," Cluster 
Computing and the Grid, 2002. 2nd IEEE/ACM International Symposium on , vol., no., pp. 
346-346, 21-24 May 2002. 

[KC03] J. O. Kephart and D. M. Chess, “The vision of Autonomic Computing”, Computer, 
IEEE, Volume 36, Issue 1, January 2003, pp. 41-50. 

[KS06] Christine Kunzmann, Andreas Schmidt, “Ontology-based Competence Management 
for Healthcare Training Planning: A Case Study”, in Proceedings of I-KNOW 2006, Graz, 
September 2006. 

[Kue01] Ralf Kuesters, “Non-Standard Inferences in Description Logics”, Lecture notes in 
computer scienc; vol. 2100: Lecture notes in artificial intelligence, Springer-Verlag Berlin 
Heidelberg, 2001. 

[LD] Logical Decisions, http://www.logicaldecisions.com/ 

[LRLSM06] Jinwei Lu, Clive Roberts, Karl Lang, Alan Stirling and Keith Madelin, “The 
Application of Semantic Web Technologies for Railway Decision Support”. In Jatinder N.D. 
Gupta, Guisseppi A. Forgionne, Manuel Mora T. editors, “Intelligent Decision-making 
Support Systems, Foundations, Applications and Challenges”, pages 321-337, Springer 
Verlag, London, 2006.  

[LSL] The Linnean Society of London, http://www.linnean.org/. 

[LY99] Tim Lindholm, Frank Yellin, “Java(TM) Virtual Machine Specification”, The 2nd 

Edition, The Java Series, 
httpS//java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html, Sun 
Microsystems, 1999. 

[Mal06] Andreia Malucelli, „Ontology-based Services for Agents Interoperability“, doctoral 
thesis presented at the university of Porto, Portugal, 2006. 

[Mar99] Jean-Marc Martal, Multicriterion Decision Aid: Methods and Applications, CORS-
SCRO annual conference, Windsor, Ontario 1999. 

[May06] Eugen Mayer, “Serial Bus Systems in the Automobile, Part 2: Reliable data 
exchange in the automobile with CAN”, http://www.vector-
worldwide.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part2_ElektronikAutomotiv
e_200612_PressArticle_EN.pdf, 2006. 
[May07a] Eugen Mayer, “Serial Bus Systems in the Automobile, Part 4: FlexRay for data 
exchange in highly critical safety applications“, http://www.vector-
worldwide.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part4_ElektronikAutomotiv
e_200703_PressArticle_EN.pdf, 2007. 
[May07b] Eugen Mayer, „Serielle Bussysteme im Auto, Teil 5: MOST für die Übertragung 
von Multimediadaten“, Elektronik automotive 9/2007, http://www.vector-
worldwide.com/portal/medien/cmc/press/PTR/SerielleBussysteme_Teil5_ElektronikAutomoti
ve_200712_PressArticle_DE.pdf, 2007. 

[MC06] MOST Cooperation, MOST Function Block NetworkMaster, Rev. 2.5.0, 12/2006, 
2006. 

[Mie06] Kaisa Miettinen, International Society on Multiple Criteria Decision Making, 
http://project.hkkk.fi/MCDM/intro.html, September 2006 

[MMS06] M. Mnif, C. Müller-Schloer, "Quantitative Emergence", In Proceedings of the 2006 
IEEE Mountain Workshop on Adaptive and Learning Systems (IEEE SMCals 2006), July 
2006. 



 

100 

[Mos08] MOST Cooperation, “Motivation for MOST”, 
http://www.mostcooperation.com/technology/introduction/index.html, 2008. 

[MS04] Christian Müller-Schloer, “Organic Computing - On the feasibility of controlled 
emergence”, International Conference on Hardware/Software Codesign and System Synthesis 
2004. CODES + ISSS 2004, 8-10 Sept. 2004, pp. 2-5. 

[Mur03] Niall Murphy, “A short trip on the CAN bus”, 
http://www.embedded.com/showArticle.jhtml?articleID=13000304, 2003. 
[Muy08] Henry Muyshondt, „Consumer and automotive electronics converge: Part 2 – A 
MOST implementation“, Automotive Design Line, online edition 
http://www.automotivedesignline.com/howto/infotainment/198001031, 2008. 
[OCI] http://www.organic-computing.de/ 

[Ols96] David L. Olson, Decision Aids for Selection Problems, Sprigner-Verlag New York, 
1996 

[OMG08] Object Management Group, “Unified Modelling Language: UML Resource Page”, 
http://www.uml.org/, 2008. 

[OV04a] OSEK/VDX Portal, “System configuration, OIL: OSEK Implementation Language”, 
version 2.5, 1 July 2004. 

[OV04b] OSEK/VDX Portal, “Communication”, version 3.0.3, 20 July 2004. 

[OV04c] OSEK/VDX Portal, “Concept and Application Programming Interface”, version 
2.5.3, 26 July 2004. 

[OV05] OSEK/VDX Portal, “OSEK Run Time Interface (ORTI), Part A: Language 
Specification”, version 2.2, 14 November 2005. 

[OVP03] OSEK VDX Portal, http://www.osek-vdx.org/, 2003. 

[PCJ04] Paurobally, S., Cunningham, J. and Jennings, N. R. (2004) Verifying the Contract 
Net Protocol: a case study in interaction protocol and agent communication semantics. In: 2nd 
International Workshop on Logic and Communication in Multi-Agent Systems, 2004, Nancy, 
France. 

[Pro08] Protege, http://protege.stanford.edu/, 2008 

[PYM07] Zhou Pu-Cheng, Han Yu-Sheng and Xue Mo-Gen, “Extended Contract Net 
Protocol for Multi-Robot Dynamic Task Allocation”, Information Technology Journal 6(5): 
733-738, 2007. ISSN 1812-5638. The Asina Network for Scientific Information 2007. 

[RMBMSS06] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and H. Schmeck. "Towards 
a generic observer/controller architecture for Organic Computing". In C. Hochberger and R. 
Liskowsky, editors, INFORMATIK 2006 -- Informatik für Menschen, volume P-93 of GI-
Edition -- Lecture Notes in Informatics, pages 112--119, Bonn, Germany, Sept. 2006. Köllen 
Verlag. 

[Ros09] Ross, Don, "Game Theory", The Stanford Encyclopedia of Philosophy (Spring 2009 
Edition), Edward N. Zalta (ed.), URL = 
<http://plato.stanford.edu/archives/spr2009/entries/game-theory/>. 

[Ros96] Davide Rossi, “Jada: multiple object spaces for Java”, 
http://www.cs.unibo.it/~rossi/jada/, 1996. 

[Roy05] Bernard Roy, Paradigms and Challenges, in José Figueira, Salvatore Greco, Matthias 
Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, Springer 
Science+Business Media Inc., 2005 



 

101 

[Sch05] Hartmut Schmeck, “Organic Computing- A New Vision for Distributed Embedded 
Systems”, in Proceedings Eighth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2005), 18-20 May 2005, Seattle, WA, USA, pp. 201-
203. IEEE, IEEE Computer Society 2005, May 2005. 

[SK06] Andreas Schmidt, Christine Kunzmann, “Towards a Human Resource Development 
Ontology for Combining Competence Management and Technology-Enhanced Workplace 
Learning”. In proceedings of OntoContent 2006 (in conjunction with OTM Federated 
Conferences 2006), Springer, Lecture Notes in Computer Science, 2006. 

[Smi80] Reid G. Smith, “The Contract Net Protocol: High-Level Communication and Control 
in a Distributed Problem Solver”, IEEE Transactions on Computers, Vol. C-29, No. 12, 
December 1980. 

[SMS08] H. Schmeck, C. Müller-Schloer, "A Characterization of Key Properties of 
Environment-mediated Multiagent Systems", in Lecture Notes in Computer Science, Springer 
Verlag, Berlin / Heidelberg, 2008. 

[Ste05] Theodor J Stewart, Dealing with Uncertainties in MCDA, in José Figueira, Salvatore 
Greco, Matthias Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art 
Surveys, Springer Science+Business Media Inc., 2005 

[SZ04] Stephan Zelewski, „Kooperatives Wissensmanagement in Engineering-Netzwerken“, 
(Vorläufiger) Abschlussbericht zum Verbundprojekt KOWIEN, Arbeitsbericht Nr. 25, 2004. 

[Tri00] Evangelos Triantaphyllou, Multi-Criteria Decision Making Methods: A Comparative 
Study, Kluwer Academic Publishers, 2000. 

[Tur95] Turban E., Decision Support and Expert Systems: Management Support Systems, 4th 
edition, Prentice-Hall International, London, 1995. 

[Uni07] The Unicode Consortium, “The Unicode Standard, Version 5.1.0, defined by: The 
Unicode Standard, Version 5.0 “, Boston, MA, Addison-Wesley, 2007. ISBN 0-321-48091-
0), as amended by Unicode 5.1.0 (http://www.unicode.org/versions/Unicode5.1.0/).  

[Van95] Vansnick, J.C., L'aide multicritère à la décision: une activité profondément ancrée 
dans son temps”, Newsletter of the European Working Group “Multi Decisions Aiding”, 
Series 2,6, Spring, 1-2, 1995 

[W3C04] World Wide Web, “Resource Description Framework (RDF)”, 
(http://www.w3.org/RDF/), W3C 2004. 

[W3C06] World Wide Web Consortium, “Extensible Markup Language (XML) 1.1 (Second 
Edition)”, W3C Recommendation, http://www.w3.org/TR/2006/REC-xml11-20060816/, 16 
August 2006. 

[Wik08a] Wikipedia, “Local Interconnect Network”, 
http://en.wikipedia.org/wiki/Local_Interconnect_Network , 2008. 

[Wik08b] Wikipedia, http://en.wikipedia.org/wiki/Controller_area_network, 2008. 

[Wik08c] Wikipedia, http://en.wiktionary.org/wiki/ophelimity, 2008. 

[XW01] Lai Xu, Hans Weigand, “The Evolution of the Contract Net Protocol”, In 
Proceedings of WAIM 2001, LNCS 2118, pages 257–264, 2001. 

[YA03] Yilmaz Alan, “Konstruktion der KOWIEN-Ontologie”, KOWIEN-Projektbericht 
2/2003, 2003. 



 

102 

[ZAADW05] Zelewski, S.; Alan, Y.; Alparslan, A.; Dittman, L.; Weichelt, T. (Hrsg.): 
„Ontologiebasierte Kompetenzmanagementsystems, Grundlagen, Konzepte, Anwendungen“, 
Logos Verlag, Berlin, 2005. 

[Zel01] Holger Zeltwanger, „CANopen“, VDE Verlag GmbH, 2001. 



 

103 

Index 
Aggregation function  24, 49, 52 
AHP  18, 20, 47, 48, 70 
Analytical Hierarchy Process  See AHP 
Ant-colony  96 
Ariadne  27, 48, 49 
Artificial Intelligence  14 
Automotive communication platform  32, 65, 69, 77 
Autonomic Computing  4 
Autonomous unit  9, 38, 41 
AUTOSAR  6 
CAN  6, 32, 66, 69 
CANopen  66, 33 
CNET Protocol  11, 40 
Competence management  29 
Consistency check  20 
Consistency Index  21 
Consistency Ratio  21, 70 
Contract Net Protocol  See CNET 
Controller Area Networ  See CAN 
Data Envelopment Analysis  27, 49 
Decision making under uncertainty  17 
Description Logic  14 
Distributed ontologies  96 
Domain ontologies  54, 69, 77 
Dynamically Self-Configuring Automotive Systems  See DySCAS 
DySCAS  8 
ECNET  13, 41 
Edwards procedure  23, 48 
ELECTRE  23, 26, 48 
Elimination et Choice Translating Algorithm  See ELECTRE 
Emergence  5 
Enquiry-oriented scenario  61, 62 
Environment 

Easy heterogeneous environment  85, 87, 90, 91, 92 
Easy homogeneous environment  85, 89, 91, 92 
Heterogeneous environment  85, 87, 90, 91, 92 
Homogeneous environment  85, 88, 91, 92 

Estimation matrix  20, 70 
EvoArch  9, 38 
Evolutionary Architectur  See EvoArch 
Expiration time  85 
Extended Contract Net Protocol  See ECNET 
First Order Logic  15 
Fixed point scoring  18, 47 
FlexRay  6, 35, 68, 69 
Game theory  17 
Games against nature  17 
Generalized matching process  44, 59, 60 
Goal Programming  31 



 

104 

Grid Computing  8, 38 
Hard feature  42 
Hipre3+  27, 48 
Inference  14, 42 

engine  42, 72, 73, 75 
rule  31, 41, 56, 75 
Standard inferences  14 

Jena  73 
Kernel ontology  50 
Kooperatives Wissensmanagement in Engineering-Netzwerken  See KOWIEN 
KOWIEN  29 
Likert  24, 48, 53 
LIN  6, 35, 68 
Local Interconnect Network  See LIN 
MADM  17 
Market scenario  60, 73, 82 
Marketplace-oriented behavior  10, 11, 38, 40, 41, 60 
MCDA  17 
MCDM  17, 42 
MCDM ontology  50, 52, 70 
Media Oriented Systems Transport See MOST 
Mix scenario  61, 64 
MODM  16 
MOST  6, 36, 69, 72, 77 
MOST ontology  79 
Multi Attribute Decision Making  See MADM 
Multi Objective Decision Making  See MODM 
Multi-attribute value function  19, 47 
Multi-Criteria Decision Aids See MCDA 
Multi-Criteria Decision Making  See MCDM 
Observer/Controller  5, 94, 96 
Offer-oriented scenario  61, 63 
OntoAHP  70 
Ontology  13, 41 
OntoUtil  71 
Operations Research  16 
Ordinal ranking method  19, 47 
Organic Computing  1, 4 
OSEK  6 
Outranking method  25, 49 
OWL  14, 15 
Paired comparison 20, 24, 47, 48 
Pareto  17, 28 
Personal Preferences Search Service  See PPSS 
Policy-based computing  8, 38 
Polysemy  13 
PPSS  27 
Preference cones  20, 27, 47, 49 
PROMETHEE  26, 49 
Protégé  28, 70 
Quality of solution  83, 91 



 

105 

Random Consistency Index  21 
Ranking and decision making  18, 24, 49 
Rating method  18, 47 
RDF  14 
Reasoning  14 
Reference point method  25, 49 
Self-organization  1, 4, 41 
Self-x attribute  4 
Semantic matching  41 
Semantic matching for MCDM  55 
Semantic Multi-Criteria Decision Making  Siehe SeMCDM 
Semantic Web  13, 41 
SeMCDM  2, 6, 41, 43, 45, 50, 65, 72, 80 
Simple Multi-Attribute Rating Technique  Siehe SMART 
Simple Multi-Attribute Rating Technique Exploiting Ranks  Siehe SMARTER 
Simple Multi-Attribute Rating Technique with Swing weighting  Siehe SMARTS 
SMART  19, 47, 48 
SMARTER  19 
SMARTS  18, 47 
Soft feature  42, 81 
SPARQL  28 
Subsumption  14 
Success rate  82, 85 
Synonymy  13 
Taxonomies 14 
Taxonomy  10, 38 
Technique for Order Preference by Similarity to Ideal Solution  See TOPSIS 
Time to first solution  82, 85 
TOPSIS  13, 23, 25, 41, 48 
UML  39 
Utility assessment  18, 22, 48, 71 
Utility calculation  56, 58, 60, 76 
Utility check  56, 58, 75 
Utility function  8, 9, 23, 38, 48, 52, 75 
Weighted product  25, 49 
Weighted sum  24, 49 
Weighting of criteria  18 
Wish list  42, 82 
XML  15, 75 



 

106 

Wissenschaftlicher Werdegang 
  

Name Ghadi Mahmoudi 
Geboren am 10.10.1975 in Latakia (Syrien) 
Staatsangehörigkeit Deutsch/Syrisch 
  

 

 
1980 – 1986  Grundschule in Latakia 
1986 – 1989  Mittelschule in Latakia 
1989 – 1992  Oberschule in Latakia, mit Abitur 
1992 – 1997 Bachelor Universität Tischrin in Lattakia/Syrien 

Fakultät für Elektrotechnik 
Abteilung Elektronik  
Hochschulabschluss: „Sehr gut”  Gesamtnote: 78 % 

1997 – 1998 Diplom Universität Tischrin in Lattakia/Syrien 
Fakultät für Elektrotechnik 
Abteilung: Rechneringenieurwesen und 
Automatisierung 
Prädikat: „Sehr gut” 
Gesamtnote: 83,5 % 

1998 - 2000  Assistent an der Fakultät für  
Elektrotechnik der Universität Tischrin 
Abteilung für Elektronik (Rechnerstrukturen, 
Programmierung, Nachrichtentechnik, 
Automatisierung) 

11.01.00 - 27.09.00 Sprachkurs Deutschkurs im Auslandsinstitut Dortmund 
PNdS-Prüfungsabschluss (DSH) 

15.11.00 - 14.01.03 Master of 
Science 

Universität Hannover 
Fachbereich: Elektrotechnik und 
Informationstechnik 
Studienrichtung: Technische Informatik Prädikat: 
„Gut“ 
Gesamtnote: 1,71 

Ab 15.01.03 Promotion Universität Hannover 
Institute für System- und Rechnerarchitektur 
Forschungsbereich: Organic Computing  



 

107 

Appendix A 
 

Conclusion of a contract
Ref

[For all looked-for componentns]loop

[While passive unit is not reserved (no contract)]

[All unconditional properties are fulfilled]

[Some unconditional properties are not fulfilled]alt

loop

parallel

Conclusion of a contract
Ref

[For all looked-for componentns]loop

[While passive unit is not reserved (no contract)]

[All unconditional properties are fulfilled]

[Some unconditional properties are not fulfilled]alt

loop

parallel

Conclusion of a contract
Ref

[For all looked-for componentns]loop

[While passive unit is not reserved (no contract)]

[All unconditional properties are fulfilled]

[Some unconditional properties are not fulfilled]alt

loop

parallel

Conclusion of a contract
Ref

[For all looked-for componentns]loop

[While passive unit is not reserved (no contract)]

[All unconditional properties are fulfilled]

[Some unconditional properties are not fulfilled]alt

loop

parallel

Active:Autonomic_Unit

MCDM(Enquiry, Offers[ ])MCDM(Enquiry, Offers[ ])

Passive:Autonomic_Unit

IsItFulfilled(Enquiry)IsItFulfilled(Enquiry)

Central:Broker

Delete(Enquiry)

Enquiry=ReadEnquiry()

AddNewEnquiry(Enquiry)

AllAcceptableOffersOf(Enquiry)

ReadEnqiry()

AddNewOffer(Offer,Enquiry)

EnquiryTimeOut(Enquiry)

Delete(Enquiry)

Enquiry=ReadEnquiry()

AddNewEnquiry(Enquiry)

AllAcceptableOffersOf(Enquiry)

ReadEnqiry()

AddNewOffer(Offer,Enquiry)

EnquiryTimeOut(Enquiry)

 
Sequence Diagram 1: Scenario 1. The method "IsItFulfilled" represents the first matching step. The 

second matching step is carried out in the „MCDM“ method. 



 

108 

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

[While (some) components are not yet available]loop

parallel

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

[While (some) components are not yet available]loop

parallel

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

[While (some) components are not yet available]loop

parallel

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

[While (some) components are not yet available]loop

parallel

Active:Autonomic_Unit

MCDM(Enquiry, Offers [ ])

IsAcceptable(Offer)

EnquiryTimeOut(Enquiry)

MCDM(Enquiry, Offers [ ])

IsAcceptable(Offer)

EnquiryTimeOut(Enquiry)

Passive:Autonomic_Unit Central:Broker

AddNewOffer(Offer)

ReadOffer()

ReserveOffer(Offer)

Offers[ ] =ReadAllAcceptableOffers(Enquiry)

Offer=ReadOffer()

ReadAllAcceptableOffers(Enquiry)

AddNewOffer(Offer)

ReadOffer()

ReserveOffer(Offer)

Offers[ ] =ReadAllAcceptableOffers(Enquiry)

Offer=ReadOffer()

ReadAllAcceptableOffers(Enquiry)

 
Sequence Diagram 2: Version “A” of scenario 2 



 

109 

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[While (some) components are not yet available]

[NewOffer is not better than the ActualOffer]

[if NewOffer is better than the ActualOffer]alt

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

loop

parallel

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[While (some) components are not yet available]

[NewOffer is not better than the ActualOffer]

[if NewOffer is better than the ActualOffer]alt

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

loop

parallel

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[While (some) components are not yet available]

[NewOffer is not better than the ActualOffer]

[if NewOffer is better than the ActualOffer]alt

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

loop

parallel

Conclusion of a contract
Ref

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

[While (some) components are not yet available]

[NewOffer is not better than the ActualOffer]

[if NewOffer is better than the ActualOffer]alt

[Offer is acceptable]

[Offer is not acceptable]alt

[For all looked-for components]loop

loop

parallel

Active:Autonomic_Unit

EnquiryTimeOut()

IsAcceptable(NewOffer)

SetActualOffer(NewOffer)

MCDMEvaluation(Enquiry, NewOffer)

EnquiryTimeOut()

IsAcceptable(NewOffer)

SetActualOffer(NewOffer)

MCDMEvaluation(Enquiry, NewOffer)

Passive:Autonomic_Unit

FreeOffer(NewOffer)

Central:Broker

FreeOffer(NewOffer)

FreeOffer(ActualOffer)

ReadAndReserveOffer()

NewOffer=ReadAndReserveOffer()

AddNewOffer(Offer)

FreeOffer(NewOffer)

FreeOffer(NewOffer)

FreeOffer(ActualOffer)

ReadAndReserveOffer()

NewOffer=ReadAndReserveOffer()

AddNewOffer(Offer)

 
Sequence Diagram 3: Version “B” of scenario 2 



 

110 

Conclusion of a contract
Ref

[For all looked-for componentns]

[SemanticMatching result: Ok]alt

[While there are more offers]loop

loop

[A match has been found (Matching result: Ok)]alt

[While there are more enquiries]loop

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

parallel

Conclusion of a contract
Ref

[For all looked-for componentns]

[SemanticMatching result: Ok]alt

[While there are more offers]loop

loop

[A match has been found (Matching result: Ok)]alt

[While there are more enquiries]loop

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

parallel

Conclusion of a contract
Ref

[For all looked-for componentns]

[SemanticMatching result: Ok]alt

[While there are more offers]loop

loop

[A match has been found (Matching result: Ok)]alt

[While there are more enquiries]loop

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

parallel

Conclusion of a contract
Ref

[For all looked-for componentns]

[SemanticMatching result: Ok]alt

[While there are more offers]loop

loop

[A match has been found (Matching result: Ok)]alt

[While there are more enquiries]loop

[If passive unit is not yet reserved (no contract) and didn't send any offer]if

parallel

Active:Autonomic_Unit

AddNewEnquiry(Enquiry)

Passive:Autonomic_Unit Central:Broker

SemanticMatching(Enquiry,Offer)

AddOfferToEnquiryList(Enquiry,Offer)

AddOfferToEnquiryList(Enquiry,Offer)

SemanticMatching(Enquiry,Offer)

TimeOut()

MCDM(Enquiry, Offers [ ])

AddNewOffer(Offer)

BestAvailableOffer(ID)

SemanticMatching(Enquiry,Offer)

AddOfferToEnquiryList(Enquiry,Offer)

AddOfferToEnquiryList(Enquiry,Offer)

SemanticMatching(Enquiry,Offer)

TimeOut()

MCDM(Enquiry, Offers [ ])

AddNewOffer(Offer)

BestAvailableOffer(ID)

AddNewEnquiry(Enquiry)

 
Sequence Diagram 4 The central market scenario. 

 


