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It is not the strongest of the species that survives, nor the most
intelligent that survives. It is the one that is the most adaptable
to change.

– Charles Darwin.
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Zusammenfassung

Atom-Atom Wechselwirkungen induzieren eine inhärente nichtlineare Physik in Bose-Einstein
Kondensaten, die eine beachtliche Ähnlichkeit zur nichtlinearen Optik aufweist. Üblicherweise
haben nur kurzreichweitige Wechselwirkungen eine Rolle in Experimenten gespielt. Allerdings
pflastern eine neue Generation von Experimenten zu magnetischen atomaren Dipolen und po-
laren Molekülen den Weg für das sich schnell entwickelnde Gebiet der dipolaren Gase, in de-
nen die Dipol-Dipol Wechselwirkung signifikant oder sogar dominant vorliegt. In dieser Arbeit
untersuchen wir neue von der Dipol-Dipol Wechselwirkung verursachte nichtlineare Physik in
Bose-Einstein Kondensaten.

Wir zeigen, dass die von der Dipol-Dipol Wechselwirkung veursachte Nichtlokalität mehrdimen-
sionale Solitonen stabilisieren kann. Insbesondere können hinreichend große Dipol-Dipol Wech-
selwirkungen zwei-dimensionale helle Solitonen und (falls ein optisches Gitter vorhanden ist)
drei-dimensionale stationäre dunkle Solitonen stabilisieren. Die Möglichkeit zwei-dimensionale
helle Solitonen zu stabilisieren ermöglicht neue Streu-Szenarien für ultra-kalte Atomen, die wir
in dieser Arbeit im Detail untersuchen.

Der teilweise anziehende Charakter der Dipol-Dipol Wechselwirkung wirft offensichtliche Be-
denken bezüglich des Problems der Stabilität auf. Zwei- und drei-dimensionale kurzreichweitig
wechselwirkende homogene Kondensate erfahren lokale Kollapse, wenn die Phononen im Sys-
tem instabil werden (Phononen-Instabilität). Im Gegensatz dazu zeigen wir, dass sich nach der
Phononen-Instabilität die Dynamik in einem zwei-dimensionalen dipolaren Kondensat qualita-
tiv anders verhält, da in diesen Systemen die Phonon-Instabilität kurzlebige Patterns und die
Formation von zwei-dimensionalen hellen Solitonen nach sich zieht.

Außerdem zeigen wir, dass sich Faraday-Patterns, induziert durch externes modulieren der
System-Nichtlinearität, in dipolaren Gasen mit einem Roton-Maxon Anregungsspektrum außergewöhn-
lich verändern. Während für nicht-dipolare Gase die Patternsgröße monoton mit der Modulations-
Frequenz abfällt, weisen Patterns in dipolaren Gasen, auch für flache Roton-Minima, eine hoch
nicht-triviale Frequenzabhängingkeit auf, die durch abrupte Übergange in der Patternsgröße
charakterisiert werden, welche besonders ausgeprägt sind, wenn die dipolare Wechselwirkung
moduliert wird. Deshalb stellen Faraday-Patterns ein optimales Werkzeug da, um die Entste-
hung des Roton-Minimums, einer bedeutenden Schlüsseleigenschaft dipolarer Gase aufzudecken.

In dieser Arbeit diskutieren wir auch experimentelle Möglichkeiten die oben beschriebenen
Phänomene in laufenden Experimenten zu beobachten.

Stichwörter: Bose-Einstein Kondensation, Dipol-Dipol Wechselwirkung, Optische Gitter.
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Abstract

Atom-atom interactions induce an inherent nonlinear physics in Bose-Einstein condensates,
which present remarkable resemblances with nonlinear optics. Typically only short-range in-
teractions have played a role in experiments. However, a new generation of experiments on
magnetic atomic dipoles and polar molecules is paving the path for the rapidly-developing field
of dipolar gases, where the dipole-dipole interaction is significant or even dominant. In this
thesis, we study the novel nonlinear physics introduced by the dipole-dipole interactions in
Bose-Einstein condensates.

We show that nonlocality due to the dipole-dipole interactions may stabilize multi-dimensional
solitons. In particular, sufficiently large dipole-dipole interactions may stabilize two-dimensional
bright solitons and (in the presence of an additional optial lattice) three-dimensional stationary
dark solitons. The possibility of stabilizing two-dimensional dipolar bright solitons offers novel
inelastic soliton-soliton scattering scenarios in ultra-cold atoms, which we study in detail in this
thesis.

The partially attractive character of the dipole-dipole interaction makes the issue of stability an
issue of obvious concern. 2D and 3D short range interacting homogeneous condensates undergo
local collapses if the phonons in the system are unstable (phonon instability). On the contrary,
we show that post phonon instability dynamics is qualitatively different in two-dimensional
dipolar condensates, since in these systems phonon instability is followed by a transient pattern
formation, and the formation of two-dimensional bright solitons.

We show as well that Faraday patterns, induced by external driving of the system nonlinearity,
are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for
non-dipolar gases the pattern size decreases monotonously with the driving frequency, patterns in
dipolar gases present, even for shallow roton minima, a highly non trivial frequency dependence
characterized by abrupt pattern size transitions, which are especially pronounced when the
dipolar interaction is modulated. Faraday patterns constitute hence an optimal tool for revealing
the onset of the roton minimum, a major key feature of dipolar gases.

In this thesis, we also discuss the experimental possibilities of observing the above mentioned
phenomena in on-going experiments.

Keywords: Bose-Einstein Condensation, Dipole-dipole Interaction, Optical Lattices.
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1. Introduction

For more than a decade now, ultracold atoms have been a most active research area in
the community of atomic physics. Both experimentally and theoretically, the progress
in ultracold atoms is outstanding. New trapping and cooling techniques have been
developed since 1970s, which resulted in the discovery of laser based techniques like
laser cooling and magneto-optical trapping [2, 3]. These achievements led to several
Nobel prizes in this field in the last few years 1.

The growing interest in ultracold atoms is mainly motivated by the existence of direct
links to other physics domains like condensed matter, solid-state physics, non-linear
physics, quantum optics and quantum information. A close link to condensed matter
physics is provided by the physics of ultracold atoms in optical lattices or in low di-
mensional systems, which helps to experiment and study condensed matter theory in a
more controlled way. On the other hand the non-linearity originating from atom-atom
interaction in BECs provides an ideal platform to study non-linear physics. So far,
the studies on BEC have witnessed several similar phenomena to those appearing in
non-linear optics.

Cold atoms have also important applications. Atom interferometry [4] using ultracold
atoms can be used, for the precision measurements of various physical constants such
as the gravitational constant G, the acceleration due to gravity g, the Planck constant
h, the fine structure constant α etc [5, 6, 7]. Atom gyroscopes using the Sagnac effect
[8] are used to study the variations in earth’s rotation rate, general relativity effects [9],
and for navigation and oil exploration. Recently, a lot of interest has been aroused in
new directions, as Rydberg atoms, Fermi gases, spinor condensates and ultracold polar-
molecules. In this thesis, we study the novel non-linear phenomena induced by the long-
range and anisotropic character of the dipole-dipole interaction in dipolar condensates.

1.1. Bose-Einstein Condensation

A new state of matter, termed Bose-Einstein condensation, was predicted for bosons
in 1925, by Albert Einstein [10] using the photon-statistics developed by Satyendra
Nath Bose [11]. BEC is a phenomenon in which, below a critical temperature Tc, a
macroscopic number of bosons occupy the lowest single particle state with the rest
distributed over the excited states [12]. BEC occurs at a very low temperature such

1Wolfgang Paul recieved the Nobel prize in 1989 for his studies on ion traps; Steven Chu, Clause
Cohen-Tannoudji and William D. Phillips for their work on laser cooling in 1997; Eric A. Cornell,
Wolfgang Ketterle and Carl E Wieman got the Nobel prize for the experiments on BEC in 2001.
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Introduction

that the dimensionless phase-space density, ρps ≡ nλ3
db is larger than 2.612, where n

is the number density of atoms, and λdb = h/(2πmkBT )1/2 is the thermal de-Broglie
wavelength, with m the mass of an atom, kB the Boltzmann’s constant and T the
temperature. Nowadays, with novel experimental techniques like laser and evaporative
cooling, temperatures of the order of nanokelvins are easily reachable, providing enough
phase-space density to observe BEC in atomic systems. BEC was experimentally realized
for the first time in 1995 on the atomic vapors of sodium [13] and rubidium [14]. The
evidence of condensation is obtained by time-of-flight measurements. A sharp peak
in the momentum distribution of condensate density, below the critical temperature,
provides a clear evidence, and it becomes the standard way to identify BEC in any kind
of system. BEC have been observed in variety of systems such as Chromium atoms
[15, 16], excitons 2 [17], microcavity exciton polaritons 3 [18, 19], magnons 4 [20], spin-
polarized hydrogen atoms [21] and other alkali atoms.

The discovery of BEC as a realistic achievement of a macroscopic state in a quan-
tum many body system opened many activities from fundamental physics to applied
physics. BEC is known to be a fundamental phenomenon, connected to superfluidity in
liquid Helium and superconductivity. The macroscopic wavefunction describing a BEC
characterizes the off-diagonal long-range behavior of the one-particle density matrix
ρ1(~r′, ~r, t) = 〈Ψ̂†(~r′, t)Ψ̂(~r, t)〉, (where Ψ̂(~r) and Ψ̂†(~r, t) are the boson field operators
that annihilate and create a particle at the position ~r respectively) and spontaneously
broken gauge-symmetry [22], and itself plays the role of an order parameter. Strictly
speaking, in a finite sized system neither the concept of broken gauge symmetry, nor
the off-diagonal long-range order can be applied. However, in any case the condensate
wavefunction can be determined by the diagonalization of the one-body density matrix,
ρ1(~r, ~r′) =

∑

iNiΦ
∗
i (~r)Φi(~r

′) and it corresponds to the eigenfunction Φi with the largest
eigen value Ni.

Dimensionality plays a crucial role in the concept of BEC. An ideal Bose gas with no
external trap exhibits BEC only in 3D, and not in 1D and 2D systems. It can be
understood from the concept of the density of states, ρ(E). For an ideal Bose gas with
no trap, ρ(E) ∝ E(d−2)/2, where d is the dimensionality in space. In 3D, the number of
excited states close to the ground state (E = 0) is zero since limE→0 ρ(E) = 0, and as a
consequence the thermal fluctuations do not destroy the BEC. On the contrary, in 2D
and 1D, the thermal population

NT =

∫ ∞

0

ρ(E)dE

exp(βE) − 1
(1.1)

diverges in the thermodynamic limit resulting in the absence of BEC in the thermo-
dynamic limit. However, with an additional harmonic trap the density of states is
ρ(E) ∝ Ed−1 and, consequently the integral (1.1) converges in 2D also. In 1D, BEC

2Electron-hole pair in a semiconductor.
3Polaritons are quasiparticles resulting from the coupling of photons with an excitation in the material.

Exciton polariton is due to the coupling of visible light with an exciton.
4A quantum of a spin wave.
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1.1 Bose-Einstein Condensation

cannot occur even in the presence of harmonic confinement because of the logarithmic
divergence in the integral (1.1) at finite temperature.

The presence of interactions changes the picture even further. Inter-atomic interactions
play a crucial role in the physics of atomic condensates. The physics of short-range
interacting condensates are predominantly determined by a single parameter called the s-
wave scattering length a [23]. The parameter a can be tuned experimentally via Feshbach
resonances by sweeping a static magnetic field [24, 25]. The trap geometry, which is
most often spherical, pancake or cigar shaped, also play a crucial role in determining
the properties of trapped gases. If a > 0, the interatomic interaction is purely repulsive
and the BEC is stable in all dimensions, for any trap configurations and for any number
of atoms. If the interaction is attractive, i.e. a < 0, the homogeneous (no trap) BECs
are unstable against local collapses in two (2D) and three-dimensions (3D). The presence
of a trap guarantees stability below a critical number of atoms, above which the BEC
undergoes a global collapse in 2D and 3D [26, 27, 28]. In 1D case with a < 0, the
stability is confirmed by the formation of bright solitons [29, 30, 31]. If an additional
dipole-dipole interaction is present, the stability conditions for a BEC are non-trivial
due to its anisotropic nature. A main goal, we have achieved in this thesis, is to provide
a clear picture about the stability of dipolar BECs under various circumstances. This
has been done mainly using the concept of elementary excitations of the system, which
will be one of the main subjects of the subsequent chapters.

1.1.1. The Gross-Pitaevskii equation

In the second quantization, the Hamiltonian decsribing N interacting bosons confined
by an external potential Vext is given by [23]

Ĥ =

∫

d~rΨ̂†(~r)

[

− ~
2

2m
∇2 + Vext(~r)

]

Ψ̂(~r)

+
1

2

∫

d~rd~r′Ψ̂†(~r)Ψ̂†(~r′)V (~r − ~r′)Ψ̂(r′)Ψ̂(~r), (1.2)

where Ψ̂(~r) and Ψ̂†(~r) are the boson field operators that annihilate and create a particle
at the position ~r, respectively and V (~r − ~r′) is the two-body interatomic potential,
with m the mass of an atom. The basic idea of mean-field approach is to separate
the condensate contribution from the bosonic field operator. It was first formulated by
Bogoliubov in 1947 [32], and is known as the Bogoliubov approximation:

Ψ̂(~r, t) = Ψ(~r, t) + Ψ̂′(~r, t), (1.3)

where Ψ(~r, t) ≡ 〈Ψ̂(~r, t)〉, is known as the macroscopic wavefunction of the condensate,
while Ψ′(~r, t) describes the non-condensate part. First we write down the time evolution

3



Introduction

of the field operator using the Heisenberg equation,

i~
∂

∂t
Ψ̂(~r, t) =

[

− ~
2

2m
∇2 + Vext(~r)Ψ̂(~r)

+

∫

d~r′Ψ̂†(~r′, t)V (~r′ − ~r)Ψ̂(r′, t)

]

Ψ̂(~r, t). (1.4)

Next, as we are considering the case of a dilute ultracold gas, only binary collisions at
low energy are relevant and these collisions are characterized by the s-wave scattering
length a, and hence the interatomic potential can be replaced by an effective delta-
function potential [23, 33, 34, 35],

V (~r′ − ~r) = gδ(~r′ − ~r), (1.5)

with the coupling constant g = 4π~
2a/m. Finally, using the effective interaction po-

tential in Eq. (1.4), and replacing the field operator Ψ̂ with the classical field Ψ, we
obtain,

i~
∂

∂t
Ψ(~r, t) =

[

− ~
2

2m
∇2 + Vext(~r) + g|Ψ(~r, t)|2

]

Ψ(~r, t). (1.6)

This equation is known as the Gross-Pitaevskii (GP) equation [36, 37, 38]. The validity
of the GP Eq. (1.6) is based on the condition that the s-wave scattering length a be
much smaller than the average distance between the atoms and that the number of
atoms in the condensate Nc is much larger than 1, such that the product Nca is fixed
[39]. Using the GP equation to describe the static and the dynamic properties of BECs
are well justified recently by the rigorous results obtained in [40]. The complex-valued
wavefunction Ψ can be expressed as, Ψ(~r, t) =

√

n(~r, t) exp[iφ(~r, t)], where n(~r, t) is the
condensate density, and φ the phase of the condensate. The Ψ(~r, t) is subjected to the
constraint,

∫

|Ψ(~r, t)|2d~r = N, (1.7)

that defines the conservation of total number of particles. The current density, ~j =
(−i~/2m)[Ψ∗∇Ψ−Ψ∇Ψ∗] assumes a hydrodynamic form ~j = n~v, with an atomic veloc-
ity ~v(~r, t) = (~/m)∇φ(~r, t). It is straight-forward to see that ~v is irrotational, a crucial
point for superfluids. The time-independent GP equation is obtained by writing the
wavefunction as Ψ0(~r, t) = Ψ0(~r) exp(−iµt/~), then the GP Eq. (1.6),

µΨ(~r) =

[

− ~
2

2m
∇2 + Vext(~r) + g|Ψ(~r)|2

]

Ψ(~r), (1.8)

where the chemical potential µ is just the Lagrange multiplier associated with the con-
servation of particle number, and is

µ =
∂E(N)

∂N
, (1.9)
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1.1 Bose-Einstein Condensation

when minimizing the energy functional,

E =

∫

d~r

[

~
2

2m
|∇Ψ|2 + Vext(~r)|Ψ|2 +

1

2
g|Ψ(~r)|4

]

. (1.10)

The three terms in the right-hand side of Eq. (1.10) represents the kinetic energy, the
potential energy and the interaction energy, respectively. The GP equation has the form
of the famous non-linear Schrödinger (NLS) equation which describes the dynamics of
complex fields in non-linear media [41]. NLS equation is a key model appearing in a
variety of physical contexts, ranging from optics [42], to fluid dynamics and plasma
physics. It is not only limited to the case of conservative systems and the theory of
solitons, but also connected to the dissipative models, such as the complex Ginzburg-
Landau equation [43], and exploited very much in the context of pattern formation [44].
The GP approach allows to study very important and experimentally relevant nonlinear
effects such as the formation of solitons and vortices. In the absence of interaction
(g = 0), Eq. (1.8) reduces to the usual Schrödinger equation representing single particle,
and for harmonic confinement the ground state solution become a Gaussian function
with the normalization condition (1.7).

1.1.2. The External Potential

The external potential Vext in the GP Eq.(1.6) represents the trap which confines the
condensate in real experiments. For charged particles , the strong Coulomb interaction
can be used for trapping in electric or electromagnetic fields. For neutral atoms, (as is the
case for BEC) the traps are based on three different interactions (i) radiation-pressure
traps operating with near resonant field, (ii) magnetic traps by means of magnetic fields
[45, 46, 47, 48] and (iii) optical traps by means of laser fields, e.g. an optical dipole trap
[49, 50, 51, 52] or optical lattices [53, 54, 55]. The last two kind of traps are conservative
and employed at the final stages of typical experiments. At this point we comment just
on these conservative traps.

Magnetic traps are based on the state-dependent force on the magnetic dipole moment
in an inhomogeneous field, whereas optical traps rely on the electric dipole interaction
with far-detuned light. Optical traps work on the principle of ac Stark shift. When an
atom is placed in a light field, the electric field ~E induces an atomic dipole moment ~p
that oscillates at the driving frequency ω. The interaction between this induced dipole
and the electric field leads to an energy shift (known as light shift or ac stark shift) of
an atomic energy level, and hence the atom potential energy [49],

∆E = Udip(~r) ∝ I(~r)

∆
(1.11)

where I(~r) = |E(~r)|2 is the intensity of the laser field, and ∆ is the detuning of the light
field from the atomic resonance ω0. Two points are clear from Eq. (1.11): (i) for red-
detuned light, i.e. ∆ < 0, the dipole potential is negative and the interaction attracts
atoms into the light field. Therefore the potential minima are found at the maximum of
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the intensity. For blue-detuned the dipole interaction repels atoms out of the field, and
potential minima correspond to the minima of the intensity. Hence, the dipole traps
can be classified into two types: red-detuned and blue-detuned traps. A stable optical
trap can then realized by simply focusing a laser beam of suitable waist size. Compared
to magnetic traps, optical traps may be advantageous since the trapping mechanism is
independent of the particular sub-level of the electronic ground state, and in addition
it is very flexible for realizing different trapping geometries, e.g. highly anisotropic or
multi-well potentials.

A 1D optical lattice is generated by a laser standing wave of the form E(z, t) =
2E0 cos(kzz) exp(−iωt) created by the superposition of the two counterpropagating
beams, E±(z, t) = E0 exp[i(±kz − ωt)], with the same polarization, amplitude E0,
wavelength λ = 2π/k, and frequency ω. The dipole potential Vdip is proportional to
the intensity I ∼ |E(z, t)|2 of the light field, and hence

Vdip ≡ VOL(z) = V0 cos2(kz), (1.12)

with a lattice periodicity of d = λ/2 and the lattice height V0 ∼ I0/∆, where I0 is the
maximum intensity of the light field. Typically, the lattice depth is measured in units
of the recoil energy

ER =
~

2π2

2md2
(1.13)

and often the dimensionless parameter s = V0/ER is used. For a general 3D case,

VOL(~r) = V0[cos2(kxx+ φx) + cos2(kyy + φy) + cos2(kzz + φz)], (1.14)

where φi are arbitrary phases. The atoms will be trapped in the nodes (anti-nodes) of
the optical lattice for the blue- (red-) detuned laser beams. It is also possible to combine
both the magnetic and the optical traps, e.g. a double well potential can be realized
via combining a harmonic potential with a repulsive localized potential attained by a
blue-tuned lasers [56]. An accessibility in achieving a wide variety of trapping potentials
has inspired many applications and studies of BECs, which including the realization of
strongly correlated systems and low-dimensional systems.

1.1.3. Ground State of the GP Equation

The ground state of the GP Eq. (1.6) can be obtained by rewritting the wavefunction
as Ψ(~r, t) = exp(−iµt/~)Ψ0(~r). An important point to be noted is that the evolution
of the ground state is not given by the energy but by the chemical potential µ. For a
non-interacting gas in a harmonic trap, the ground state of a system of bosons is the
occupation of all particles in the lowest single particle state, which refers to a Gaussian
wavefunction of the form:

Ψ0(~r) =
√
N
(mωho

π~

)3/4
exp

[

−m

2~
(ωxx

2 + ωyy
2 + ωzz

2)
]

, (1.15)
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1.1 Bose-Einstein Condensation

where ωho = (ωxωyωz)1/3 is the geometric mean of the trapping frequencies. The density
distribution then becomes n(~r) = |Ψ0(~r)|2 and its value grows with N . Eventhough the
density grows with N , the condensate size is fixed constant by the harmonic oscillator
length:

aho =

√

~

mωho
(1.16)

which corresponds to the average width of the Gaussian function (1.15). This is the
first important length scale of the system and for a typical experiment it is of the order
of 1µm. The momentum distribution of the condensate density can be obtained from
the Fourier transform of n(~r). It is noted that, a characteristic feature of a BEC in a
harmonic trap is the appearance of a peak in both the spatial distribution and in the
momentum distribution of the condensate density. On contrary, in a uniform gas, the
BEC cant be revealed in coordinate space, since the particles condense into a state of
zero momentum. The momentum distribution is measured experimentally via time of
flight measurements where the condensate is let to expand freely by switching off the
trap, and measures the density of the expanded cloud with light absorption [14]. If
the expansion is ballistic, the imaged spatial distribution of the cloud can be directly
related to the intial momentum distribution. One can also measure directly the density
of atoms in the trap by means of dispersive light scattering [57].

Thomas-Fermi (TF) approximation: Atom-atom interactions change the size and shape
of the condensates. If a > 0, i.e. the interaction is repulsive, and sufficiently large, then
the kinetic energy term in Eq. (1.8) is negligible compared to the interaction term, and
hence the density of the ground state of a spherically symmetric trap (ωx = ωy = ωz)
read as

n(~r) = |Ψ0(~r)|2 =
µ

g

(

1 − r2

R2
TF

)

, (1.17)

where RTF = (2µ/m)1/2/ωho is called the TF radius of the condensate. The Eq. (1.17)
is known as the TF approximation. The normalization condition of Eq. (1.17) gives the
relation between the chemical potential µ and the number of particles N ,

µ =
~ωho

2

(

15Na

aho

)2/5

, (1.18)

and, hence the TF radius becomes

RTF = aho

(

15aN

aho

)1/5

. (1.19)

As one can see in the TF limit, the size of the condensate proportional to N1/5, whereas
in the non-interacting case it is fixed by aho. Hence for a repulsive condensates, the size
increases with increasing N .

If the interaction is attractive, the density tries to peak at the centre of the trap, but the
kinetic energy tries to balance this increase. However, if the number of atoms N exceeds
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Figure 1.1.: Energy per particle, in units of ~ω, as a function of the variational parameter λ for
an attractive BEC in a spherical trap. The curves are plotted for several values
of N |a|/aho. The local minimum disappears at N = Ncr.

a critical value Ncr, the BEC undergoes a collapse in 2D and 3D geometries [27, 26].
In experiments, during the collapse, as the density grows and the rate of collisions
increases, both the elastic and the inelastic, which results in an explosion which eject
atoms from the condensate, and results in a smaller condensate. The two-body and
three-body collisions are very important during the collapse of a condensate, and that
should be included in the GP Eq. (1.6) to study its dynamics during the collapses. The
numerically obtained critical number of atoms necessary for a spherically symmetric
BEC to collapse is provided by the equation:

Ncr|a|/aho = 0.575, (1.20)

where |a| is the absolute value of the scattering length.

The collapse at a critical number of atoms for a spherically symmetric condensate can
be understood from a simple variational ansatz. We consider the following Gaussian
ansatz

ψ(~r) =

(

N

λ3a3
hoπ

3/2

)

e−r2/2λ2a2
ho , (1.21)

where λ fixes the width of the condensate and works as our variational parameter, and
calculate the energy using the Eq. (1.10),

E(λ)

N~ω
=

3

4

(

1

λ2
+ λ2

)

− N |a|√
2πaho

λ−3, (1.22)

where the first term, represents the sum of kinetic energy and the potential energy, is
independent of N , and the second term represents the interaction energy, its magnitude
increases with increase in N. The energy (1.22) as a function of λ for different values
of N |a|/aho is shown in the Fig. (1.1). For small values of N , E(λ) shows a potential
barrier which prevents the system to collapse. As N increases, the barrier reduces and
disappears at N = Ncr.
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1.1 Bose-Einstein Condensation

1.1.4. Reduced-dimensional GP Equations

Low dimensional systems are an active research area in condensed matter physics and
possesses rich physical phenomena. The properties of reduced dimensional BECs have
been studied theoretically [58, 59, 60, 61, 62] and experimentally in extremely anisotropic
optical and magnetic traps [63], in optical lattice potentials [64, 65, 66] and surface
microtraps [67, 68]. For a trapped short-range interacting BECs, assuming cylindrically
symmetric, the important length scales are the radii R⊥, Rz and the healing length 5

ζ = (4πna)−1/2. These parameters are crucially dependent on the interaction between
the atoms. The external confining potential provides the characteristic length scales:
l⊥,z =

√

~/mω⊥,z. If R⊥, Rz >> ζ >> a, the BEC is said to be 3D in nature and is
well described by the Thomas-Fermi approximation (see Eq. (1.17)).

Quasi-2D GP equation: If lz << ζ << l⊥, the BEC is highly pancake-shaped, and its
dynamics is considered to be effectively 2D. The dynamics along the z direction is frozen
by the tight harmonic trapping in that direction. Hence one can factorize the condensate

wavefunction into: Ψ(~r, t) = ψ⊥(x, y, t)φ0(z), where φ0(z) = 1/(π1/4l
1/2
z ) exp(−z2/2l2z)

is the ground state of the harmonic trap along the z-direction. By employing the above
factorization in Eq. (1.6), multiplying on either side by φ0 and integrating over dz, we
get the effective 2D GP equation,

i~
∂

∂t
ψ(x, y, t) =

[

− ~
2

2m
∇2

x,y + Vext(~ρ) + g2D|ψ(x, y, t)|2
]

ψ(x, y, t), (1.23)

where g2D = g/(
√

2πlz) is the effective 2D coupling constant. The above Eq. (1.23)
describes a quasi-2D BEC, and is valid only if,

g2D|ψ(x, y, t)|2 << ~ωz, (1.24)

is fulfilled locally at any time t. Once the condition (1.24) is violated, the wavefunction
along the z axis is no longer the Gaussian ground state and one need to solve the full
3D GP Eq. (1.6) to obtain physically relevant results.

Quasi-1D GP equation: If l⊥ << ζ << lz, then the BEC is highly cigar-shaped and
exhibits dynamics only along the z direction. With the similar kind of arguments
we made above, and with the following factorization: Ψ(~r, t) = ψ(z, t)φ0(x, y) where
φ0(x, y) = 1/(π1/2l⊥) exp(−(x2 + y2)/2l2⊥) we obtain the effective 1D GP equation,

i~
∂

∂t
ψ(z, t) =

[

− ~
2

2m

∂2

∂z2
+ Vext(z) + g1D|ψ(z, t)|2

]

ψ(z, t), (1.25)

where g1D = g/(2πl2⊥) is the effective 1D coupling constant. The above dimensionality
reductions based on the averaging method are also used in other disciplines, e.g. in
nonlinear fiber optics [42]. There are also other sophisticated techniques employed in
the dimensionality reduction of the GP equation [69, 70].

5The name “healing length” came from the fact that it is the distance over which the condensate
wavefunction heals over the defects and hence it defines the size of darksolitons or vortices in BEC.
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1.1.5. Solitons in BEC

Soliton is a characteristic feature of non-linear theory. A soliton or a solitary wave is
defined as a spatially confined, non-dispersive, integrable and a non-singular solution of
the non-linear theory. The non-linearity can compensate the dispersion in the system,
and hence leads to a stable propagating wave preserving its shape. Historically, solitary
waves were first observed in a water channel, by John Scott Russel in 1845, and the
first mathematical model for solitons was developed by Korteweg and de-Vries known
as the KdV equation. Solitons are relevant in disparate field as meteorology, elementary
particle physics, plasma theory, laser physics, fiber optics communications and more.
Solitons have been also predicted, and observed, in matterwaves. In this section, we
briefly introduce two particular types of solitons in BEC, bright and dark solitons.

Bright soliton: It is a self-bounded matter wave, characterized by a density peak with
zero background density. The stability of a bright soliton in BEC can be understood
from the Gaussian ansatz we introduced in the section (1.1.3). In the absence of a trap,
the energy as a function of the variational parameter λ, in the natural units (~ = 1,
m = 1) reads as (see Eq. (1.22)),

Ẽ(λ)(d) =
d

4λ2
− g̃(d)

√
2π
λ−d, (1.26)

where d is the dimensionality of the system and g̃(d) provides the interaction strength.
For d = 3, the absence of local minimum (see Fig. (1.2(a))) in the energy Ẽ indicates
that the system either collapses or expands without limits, for any values of g̃(3) =
|a|N . As a consequence there cannot be a self-bound (“bubble-like”) solution for the GP
equation in a 3D environment. For d = 2, both the kinetic energy and the interaction
energy scales as λ−2, and hence depending on the value of g̃(2) = |a|N/lz the Gaussian
condensate either collapse or expands, where lz is the fixed width of the Gausian along
the z axis, provided by the strong confinement in the z axis. For N |a|/lz >

√

π/2 the
interaction energy dominates the kinetic energy and the system minimizes the energy by
shrinking and finally the BEC becomes unstable against collapse. If N |a|/lz >

√

π/2
the kinetic energy dominates and the BEC simply expands without limits, see Fig.
(1.2(b)). Therefore, similar to 3D, a stable bright soliton is not possible in 2D short-
range interacting condensates.

The situation is radically different in a 1D system, where the dispersion balances the
attractive inter-atomic interaction and leads to a stable solitonic solution. This is charac-
terized by the appearence of a minimun in the energy (see Fig. (1.3)). These results are
verified by the direct numerical simulation of reduced GP equations. When Vext(z) = 0,
Eq. (1.25) is completely integrable, and possesses an infinite number of integrals of
motion [71], in which the lowest order ones are, the number of particles:

N =

∫

|ψ(z)|2dz,
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Figure 1.2.: Energy per particle as a function of the variational parameter λ for an attractive
Gaussian BEC in the absence of a trap. Fig. (1.2(a)) is for 3D case with N |a| =
0.1. Fig. (1.2(b)) is for 2D case with N |a|/lz = 1 for upper curve and N |a|/lz = 2
for lower curve.

the momentum:

P = (i/2)

∫ (

ψ
∂ψ∗

∂z
− ψ∗∂ψ

∂z

)

dz,

and the energy:

E = (1/2)

∫

(

|∂ψ/∂z|2 + g|ψ|4
)

dz.

For attractive BECs (g<0), the NLS Eq. (1.25) possesses a bright solitonic solution of
the form [72]:

ψ(z, t) = ψ0 sech[(z − vt)/ζ] exp[i(kz − ωt)], (1.27)

where n0 = |ψ0|2 is the central density, ζ = ~/
√

m|g|n0 provides the spatial width of
the soliton, k is the soliton wavenumber, ω is the frequency and v ≡ ∂ω/∂k = k is
the velocity of the soliton. Using the above solitonic solution we obtain the integrals of
motion as N = 2ζ|ψ0|2, P = 2|ψ0|2kη and E = |ψ0|2k2η − |ψ0|4η/3. This implies that
a bright soliton behaves like a classical particle with an effective mass, Mb = 2ζ|ψ0|2,
momentum Pb = Mbv, and energy Eb = 1

2Mbv
2 − 1

24M
3
b , where v = k. In the energy

term, the first term is the kinetic energy, whereas the second term describes the binding
energy of the soliton [73].

Dark solitons: They are density notches (accompanied by phase slips) that propagate
without distortion on top of an uniform background. For g > 0, the 1D NLS equation
admits a dark soliton (DS) solution, and may be written as

ψ(z, t) = ψ0

(

i
v

c
+

√

1 − v2

c2
tanh

[

z − vt

ζ

√

1 − v2

c2

])

, (1.28)

where in the case of DS n0 = |ψ0|2 is the homogeneous background density. DSs are
repressented by a suppresion of the density with respect to the bulk value. The density
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Figure 1.3.: Energy per particle as a function of the variational parameter λ for an attractive
1D Gaussian BEC in the absence of a trap and g̃(1) = N |a|/l2ρ = 2. The stability
of a bright soliton is characterized by the minimum in the energy.

profile n(z, t) = |ψ(z, t)|2 has a minimum in the centre of the soliton corresponding to
n(0) = n0v

2/c2. This minimum is zero for a DS at rest, and is called a black soliton.
Hence, the black soliton is a stationary DS. It is also noted that the width of the soliton
is fixed by the healing length ζ, but is amplified by a factor of 1/

√

1 − v2/c2, which
becomes increasingly large as v → c. Another property of a DS is that the phase of the
wave function undergoes a finite change

∆S = 2 arccos
(v

c

)

(1.29)

when z varies from −∞ to +∞. ∆S = π for a black soliton, with the wavefunction
ψ(z) = ψ0 tanh(z/ζ).

As the integrals of motion of the NLS equation refer to both the background and the
DS, the integrals of motion of the DS are renormalized so as to extract the contribution
of the background [74, 75]. The renormalized energy and the momentum of a DS read
respectively as,

Ed =
4

3
~cn0

(

1 − v2

c2

)

(1.30)

and

Pd = −2~n0

(

v

c

√

1 − v2

c2
+ arcsin

(v

c

)

)

. (1.31)

It can be found that ∂Ed/∂Pd = v. It shows the particle nature of a DS. But unlike the
bright solitons, the DSs are excited state of the GP Eq. (1.6).

Once the transverse size of the DS exceeds the healing length, then the problem is no
longer 1D, and it can be shown that DS in 2D and 3D is dynamically unstable and is
known as snake instability. A detailed discussion on the dynamics of snake instability is
provided in the Chapter 4. As an important result, we show in the chapter 4 that the
presence of long range dipole-dipole interaction may prevent the snake instability under
proper conditions.
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1.1 Bose-Einstein Condensation

1.1.6. Elementary Excitations in BEC

The study of elementary excitations provides an insight into the macroscopic nature of
the quantum fluids, as put forward by Lev Landau in the study of Fermi liquids [76].
In analogy, Bogoliubov calculated first the excitation spectrum of a weakly interacting
Bose gas, and provide a theoretical description of superfluidity in Helium II [32]. The
idea of elementary excitations is the following: any weakly excited state of a macroscopic
system may be regarded in quantum mechanics as an assembly of separate elementary
excitations. These behave like quasi-particles moving in the volume occupied by the
system and possessing definite energies ǫ and momenta ~p. The dispersion relation ǫ(~p),
is a characteristic feature of the macroscopic state and could provide vital information
about the system, in particular the collective behavior of the atoms in the system. The
dispersion relation of elementary excitations in the case of a BEC can be obtained by
linearizing the time dependent GP equation around the ground state. We consider the
following type of solutions for Eq. (1.6),

Ψ(~r, t) = e−iµt/~



Ψ0(~r) +
∑

j

(

uj(~r)e
−iωjt + v∗j (~r)eiωjt

)



 , (1.32)

where uj and vj are the small complex amplitudes of perturbations and ±ωj are the
Bogoliubov frequencies, which are in general complex valued. Using Eq. (1.32) in the
GP Eq. (1.6), and up to first order in uj and vj , we get the following Bogoliubov
de-Gennes equations

[

Ĥ0 − µ+ 2g|Ψ0(~r)|2
]

uj(~r) + gΨ0(~r)2vj(~r) = ~ωjuj(~r) (1.33)

[

Ĥ0 − µ+ 2g|Ψ0(~r)|2
]

vj(~r) + gΨ0(~r)2uj(~r) = ~ωjvj(~r) (1.34)

where Ĥ0 ≡ −(~2/2m)∇2 + Vext(~r), is the single particle Hamiltonian operator. The
same approach can be also used for states other than the ground state Ψ0, e.g. in the
case of solitons or vortices, which we will see in the subsequent chapters. The Bogoliubov
de-Gennes equations can also be derived from a purely quantum mechanical approach
[23, 34, 35, 33]. By suitable combinations of Eqs. (1.33) and (1.34), we obtain the
condition

(ωi − ω∗
i )

∫

d~r(|uj |2 − |vj |2) = 0, (1.35)

which means that if ωj − ω∗
j = 0, i.e. the eigen frequencies are real for all j, then the

ground state Ψ0 is stable. In this case, uj and vj satisfies the normalization condition:

∫

d~r(|uj |2 − |vj |2) = 1. (1.36)

On the other hand, Im(ωj) 6= 0 implies the dynamical instability of the state Ψ0, and
it is possible only if the orthogonality condition:

∫

d~r(|uj |2 − |vj |2) = 0, is satisfied.
Furthermore, for each uj and vj with frequency ωj , there exists another solution u∗j and
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v∗j with frequency −ωj . From physical point of view, these two solutions with frequencies
ωj and ω∗

j represent the same oscillation, as one can see from Eq. (1.32). The ωj = 0 is
always a solution of Eqs. (1.33) and (1.34), with eigenfunctions u = αΨ0 and v = αΨ∗

0,
and hence the order parameter reads Ψ0(~r, t) = Ψ0(~r)[1 + (α − α∗)] exp(−iµt/~). This
corresponds to a gauge transformation in which the phase of the order parameter is
modified by a quantity (α − α∗)/i, which does not result in any physical excitation
in the system. In general the Bogoliubov de-Gennes equations are solved numerically,
but for homogeneous systems one could obtain an analytic expression for the collective
excitations.

Uniform gas: For a uniform gas, i.e. Vext = 0 and Ψ0 =
√
n0 a constant, then the

eigenfunctions uj and vj are plane waves of the form: u(~r) = u0e
i~k·~r and v(~r) = v0e

i~k·~r,
which leads to the Bogoliubov dispersion relation

(~ω)2 =

(

~
2k2

2m

)(

~
2k2

2m
+ 2gn0

)

. (1.37)

In the second bracket, first term represents the kinetic energy, whereas the second term
is provided by the interaction energy. For sufficiently small k, the kinetic energy term
can be neglected and Eq. (1.37) provides the phonon dispersion with ω = ck, where
c =

√

gn0/m is the speed of sound. For large k, the dispersion become a free particle
spectrum, and the crossover between the two regimes occurs when the dispersion wave-
length is of the order of healing length. For g < 0, the speed of sound becomes purely
imaginary, this indicates an exponential growth in the long-wavelength modes, so called
the modulational instability. Since in this case the k → 0 modes become unstable, we
term this phenomena as phonon instability. Such an instability leads to the collapse of
BEC for 2D and 3D geometries, but stabilizes into bright solitons in 1D.

1.2. Dipolar Bose-Einstein Condensation

A novel path in cold gases has been opened recently by experiments in which (magnetic
or electric) dipole-dipole interaction (DDI) plays a significant or even dominant role. On
one side the recent creation of heteronuclear molecules in the lowest ro-vibrational level
[77, 78] opens exciting perspectives for the achievement of a quantum degenerate gas of
polar molecules, which may possesses large dipole moments (e.g. ∼ 0.5 Debyes for KRb
[77]). On the other side, the magnetic DDI has been shown to lead to exciting novel
phenomena in recent experiments on BECs of Chromium, which has a magnetic moment
µ = 6µB, with µB being the Bohr magneton [15, 16]. Particularly interesting is the fact
that the short-range interactions maybe suppressed by means of Feshbach resonances,
leading to a purely dipolar gas [79], and it may influence, or even completely change
the properties of Bose gases [80, 81, 82, 83, 84, 85], or the phase diagram for quantum
phase transitions in ultracold dipolar gases in optical lattices [86]. The interplay of
short-range contact, and long-range dipolar interactions may give rise to phenomena
like ferromagnetic order and spin waves [87, 88]. DDI may also lead to novel ground
state configurations for dipolar vortex lines in an optical lattice e.g. helicoidal vortex

14



1.2 Dipolar Bose-Einstein Condensation

lines [89]. Dipolar particles are also considered to be promising candidates for the
implementation of fast and robust quantum-computing schemes [90]. Moreover, despite
the small µ = 1µB, the DDI played also a significant role in very recent experiments
on spinor Rubidium BECs, since the energy scale of the DDI becomes comparable with
the energy scale of spin-changing collisions [91]. Very recent experiments have shown
as well that the DDI leads to a observable damping of Bloch oscillations in Potassium
BECs in tilted optical lattices [92]. In the following we briefly discuss the mean field
theory for a BEC with dipole-dipole interactions.

1.2.1. Dipole-dipole Interaction

We consider electric/magnetic dipoles which are polarized along a fixed direction, say
along the z axis, by an external electric/magnetic field. The DDI potential between two
polarized dipolar particles is given by,

Vd(~r) =
d2

|~r|3 (1 − 3 cos2 θ), (1.38)

where d characterizes the dipole moment, ~r is the vector between the dipoles and θ the
angle between ~r and the dipole orientation. The two important properties of DDI (1.38)
are its anisotropic (partially repulsive and partially attractive) and long-range character.
The anisotropic nature of the DDI is illustrated in Fig. (1.5). If the dipoles are alligned
parallel to each other (θ = π/2), the interaction is purely repulsive, and if the dipoles
are on top of eachother, orienting in the same direction (θ = 0), the interaction is purely
attractive.

The long-range character of the DDI has important consequences on the scattering
properties. Contrary to the short-range interaction, where at very low energies the
scattering physics is predominantly determined only by s wave, in the presence of DDI
all partial waves contribute to the scattering. A general property of low-energy scattering
is that if a potential approaches zero as r−n when r goes to infinity, then in the limit
of zero energy the phase shift δl in the scattering channel with an angular momentum
l behaves as k2l−1 if l < (n − 3)/2 and as kn−2 otherwise. Hence in the case of DDI
(n=3) δl ∼ k for l > 0 and small k. On the other hand, due to the anisotropy of DDI
the angular momentum is not conserved during the scattering, since the DDI mixes all
even (for bosons) and odd (for fermions) angular momenta scattering channels. Hence,
a thorough study of scattering with the potential (1.38) requires multichannel scattering
theory [93, 94]. The results are summarized as follows: close to the shape resonances
[93, 94, 95], due to the coupling between different scattering channels, the potential Vd

generates a short-range contribution to the total effective potential in the s wave channel
(l = 0) that adds to the short-range part of the interparticle interaction: gδ(~r), and for
all other partial waves l > 0, the generated contribution is of a long-range (∼ r−3) and
determines the scattering at low energies. Hence for two dipolar particles, the effective
inter-atomic interaction can be replaced by a pseudo potential [80, 96, 97, 98, 99]

V (~r) = g(d)δ(~r) +
d2

r3
(1 − 3 cos2 θ), (1.39)
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where g(d) = 4π~
2a(d)/m provides the strength of short-range interaction characterized

by a(d). The strength of the DDI can be characterized by the quantity ad = md2/~2,
which has the dimension of length and can be considered as a characteristic radius of
the DDI. It can be analogously called “the scattering length for the DDI”.

Figure 1.4.: Anisotropy of dipole-dipole interactions.

1.2.2. Tuning the Dipole-dipole Interaction

The magnitude and sign of the s-wave scattering length a can be tuned using the external
magnetic fields in the vicinity of Feshbach resonances. Similarly, one can tune also the
DDI. For induced electric dipoles, the dipole moment can be tuned by changing the
applied external DC electric field. In the case of polar molecules, a external electric field
is necessary to create permanent dipole moment. The field induce a coupling between the
spherically symmetric rotational ground state of the molecule to the excited rotational
state with different parity, hence inducing a non-zero average dipole moment. Hence,
the average dipole moment may be tuned by tuning the applied field until reaching the
saturation limit where the molecules are completely polarized. Another method is by
means of fast rotating magnetic fields [100]. Assume that, the magnetic dipoles are
aligned along an external magnetic field (see Fig. (1.5))

~B(t) = Bcosφẑ +B sinφ[cos(Ωt)x̂ + sin(Ωt)ŷ], (1.40)

which is a combination of a static magnetic field Bz along the z direction and a fast
rotating field Bρ in the radial plane. φ is the angle between the dipole orientation and z
axis. The frequency Ω is chosen such that the atoms are not significantly moving during
the time Ω−1, while the magnetic moments will follow adiabatically the external field
~B(t). This corrsponds to a situation of ωLarmor >> Ω >> ωr, ωz. Hence one obtain a
time-averaged effective DDI

V̄d(r, θ, φ) = Vd(~r)

(

3 cos2 φ− 1

2

)

. (1.41)
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1.2 Dipolar Bose-Einstein Condensation

The additional multiplication factor (3 cos2 φ − 1)/2 appeared in Eq. (1.41) can be
changed continuously from -1/2 to 1, by varying the angle φ. This allows us to change
the character of DDI between two dipoles with respect to their allignment. That means,
the DDI between two parallel dipoles can be made attractive from repulsive, by means of
fast rotating magnetic fields. At a particular angle φM = 54.7◦ the dipolar interaction
averages to zero. This angle, known as the magic angle, is well known in solid-state
nuclear magnetic resonance technology. The tuning of DDI has important consequences
in the physics of dipolar BEC. In particular, it may lead to the stabilization of multidi-
mensional solitons in dipolar BEC as we discuss in Chapter 2.

r

θ

ϕ

z
^

Figure 1.5.: Tunability of the magnetic dipole-dipole interaction.

1.2.3. Non-local Gross-Pitaevskii Equation

At very low temperatures, and away from the shape resonances, dipolar BECs are
described by a non-local non-linear schrödinger equation:

i~
∂

∂t
Ψ(~r, t) =

[

− ~
2

2m
∇2 + Vext(~r) + g|Ψ(~r, t)|2

+

∫

d~r′Vd(~r − ~r′)|Ψ(~r′, t)|2
]

Ψ(~r, t), (1.42)

where the last term is the mean field of DDI and it introduces nonlocal nonlinearity in
the system. Using Eq. (1.42) we study the static and dynamical properties of a dipolar
BEC. Nonlocality leads to a wealth of novel and interesting phenomena in many areas
of nonlinear physics. Nonlocality arises typically due to some sort of transport processes
(such as heat conduction in media with thermal response [101, 102, 103], diffusion of
charge carriers [104, 105, 106, 107], or atoms or molecules in atomic vapors [108, 109]) or
from long-range interaction of molecules or particles such as in nematic liquid crystals
[110, 111, 112, 113, 114, 115] or ionization in plasma [116, 117]. Nonlocality is thus a
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feature of a large number of nonlinear systems leading to novel phenomena of a generic
nature. In particular, only in nonlinear optics the nonlocality is found in photrefractive
materials [104, 118, 119, 120], in thermal nonlinear media [121, 122, 123, 124, 103], in
atomic vapors [109] and in liquid crystals [114, 115]. Remarkably, it may lead to the
modification of modulation instability [125, 126, 127, 128], supress collapse of multidi-
mensional beams in self-focusing media [129, 130] and may even represent parametric
wave mixing, in both the spatial [131] and spatiotemporal domains [132] where it de-
scribes the formation of the so-called X waves. Furthermore, nonlocality significantly
affects soliton interactions leading to the formation of bound states of otherwise re-
pelling bright or dark solitons [133, 134, 135, 136], and may also support the formation
of stable complex localized structures like multihump [137], azimuthons [138] and vortex
ring solitons [139, 140, 103].

1.2.4. Properties of Dipolar BEC

A spatially homogeneous dipolar BEC with dominant DDI is unstable against local
collapse, similar to the short-range attractively interacting homogeneous BECs. This is
a direct consequence of the partially attractive nature of DDI. This instability can be
seen directly from the Bogoliubov dispersion relation of a purely dipolar gas (assumed
the DDI is completely dominated by the short-range interaction),

ǫ(~k) =

[

~
2~k2

2m

(

~
2~k2

2m
+ 2Ṽd(~k)n

)]1/2

, (1.43)

where Ṽd(~k) = (4π/3)d2[3 cos2 θk − 1] is the Fourier transform of the DDI, and n is the
3D homogeneous density of the dipolar BEC. Note that Ṽd(~k) is negative for θk close
to π/2, and for small ~k the Bogoliubov modes become imaginary. These imaginary
excitations lead to the collapse of homogeneous dipolar BEC with dominant DDI. Such
a collapse could be prevented by a harmonic confinement if the number of particles is
below a critical number Nc. It is similar to the case of attractive short-range interacting
condensates, but in dipolar BEC the trap anisotropy play crucial role in the stability
diagram due to the anisotropic nature of DDI [83].

We discuss briefly the properties of the ground state of a trapped dipolar condensate
[83], in which the DDI completely dominates the contact interaction, so that we can
neglect the term g|Ψ(~r)|2 from Eq. (2.1). We consider a cyllindrically symmetric trap
of the form: Vext = m/2(ω2

ρρ
2 +ω2

zz
2) with the trap aspect ratio l = (ωρ/ωz)1/2 = lz/lρ.

The dipole is oriented along the z axis. The ground state properties are governed by
the stationary GP equation, in which the l.h.s of Eq. (2.1) is replaced by µΨ(~r). A very
relevant parameter is the mean dipole-dipole interaction energy per particle given by
the expression V = (1/N)

∫

Vd(~r − ~r′)|Ψ(~r)|2|Ψ(~r′)|2d~rd~r′. Note that due to anisotropy
of DDI, the energy is minimized by squeezing the atomic cloud in the radial direction
and stretching it along the dipolar axis.
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1.2 Dipolar Bose-Einstein Condensation

For cigar shaped traps with l ≥ 1 the mean-field DDI is always attractive, and the gas
becomes always unstable if the number of particles N exceeds a critical value Nc, which
depends only on the trap aspect ratio l. The quantity |V | increases with N and the
shape of the cloud changes. Near N = Nc the shape of the cloud is close to Gaussian
with the cloud aspect ratio L ≃ 2.1 for a spherical trap (l = 1), and L = 3.0 for an
elongated trap with l >> 1. In cigar-shaped traps (l ≫ 1) especially interesting is the
regime where ~ωz ≪ |V | ≪ ~ωρ. In this case the radial shape of the cloud remains the
same Gaussian as in a non-interacting gas, but the axial behavior of the condensate will
be governed by the DDI which acquires a quasi 1-dimensional (1D) character. Thus,
one has a (quasi) 1D gas with attractive interparticle interactions, i.e. a stable (bright)
soliton-like condensate, where attractive forces are compensated by the kinetic energy .
With increasing N , Lz decreases and near Nc, |V| is close to ~ωρ.

The situation is quite different for pancake traps (l ≤ 1); in particular there exists a
critical aspect ratio l∗ ≃ 0.43, which splits the pancake traps into two different categories:
soft pancake traps (l∗ ≤ < 1) and hard pancake traps (l < l∗). For soft pancake traps the
dipole-dipole interaction energy is positive for a small number of particles and increases
with N . The quantity V reaches its maximum, and the further increase in N reduces
V and makes the cloud less pancake. For a critical number of particles N = Nc the
BEC becomes unstable. It is found generally that the dipolar condensate is unstable
and collapses when N > Nc for V < 0 with |V | > ~ωρ. A detailed study of the stability
of dipolar BEC in terms of the excitation modes is contained in [141], and we follow the
same approach in the subsequent chapters under various situations.

For hard pancake traps V always remains positive. For small N the shape of the cloud
is Gaussian in all directions. With increasing N , the quantity V increases and the
cloud acquires the Thomas-Fermi profile first in the radial direction and then, for a
larger value of N , also in the axial direction. Moreover, it is found that the dipolar
condensate in a hard pancake trap is also unstable when the number of particles is
sufficiently large [142, 143]. Remarkably, there appear regions in parameter space where
the condensate obtains its maximum density away from the center of the trap, and it
exhibits a biconcave shape. The existence of these regions become more robust by the
addition of a small short-range interaction, and the position and size of the region is
sensitive to the value of the s wave scattering length a. The normal and the biconcave
dipolar condensates become unstable in different ways once the instability region is
reached. The instability of the condensate with a normal shape is due to the density
modulation of condensate in the radial direction, so called the radial roton instability,
similar to the case of infinite pancake BEC [144]. In contrast, the biconcave condensates
collapse due to density modulations in angular coordinate, which spontaneously break
cyllindrical symmetry (the angular roton instability [142]).

1.2.5. Roton-maxon Spectrum in Dipolar BEC

One of the most striking features of dipolar BEC is the existence of roton-maxon Bo-
goliubov spectrum. It resembles the physics of liquid helium, where a roton minimum
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was first sugested by Landau [145], and later Feynman related the excitation energy to
the structure factor of the liquid [146]. We briefly discuss the roton-maxon spectrum
obtained in the case of a pancake type BEC [144]. We consider a condensate of dipolar
particles harmonically confined in the direction of the dipoles (z) and uniform in two
other directions (~ρ = {x, y}). The dynamics of the condensate wave function ψ(~r, t)
in this infinite pancake trap is described by the time-dependent Gross-Pitaevskii (GP)
equation:

i~
∂

∂t
ψ(~r, t) =

{

− ~
2

2m
∆ +

m

2
ω2

zz
2 + g|ψ(~r, t)|2

+d2

∫

d~r′Vd(~r − ~r′)|ψ(~r′, t)|2
}

ψ(~r, t), (1.44)

where ωz is the confinement frequency. The ground state wave function is independent of
the in-plane coordinate ~ρ and can be written as ψ0(z) exp (−iµt), where µ is the chemical
potential. Then, integrating over d~ρ′ in the dipole-dipole term of Eq.(1.44), we obtain
a one-dimensional equation similar to the GP equation for short-range interactions:

{

− ~
2

2m
∆ +

m

2
ω2z2 + (g + gd)ψ2

0(z)−µ
}

ψ0(z) = 0, (1.45)

where gd = 8πd2/3. We will discuss the case of (g+gd) > 0, where the chemical potential
µ is always positive. For µ ≫ ~ω the condensate presents a TF density profile in the
confined direction: ψ2

0(z) = n0(1 − z2/L2), with n0 = µ/(g + gd) being the maximum
density, and L = (2µ/mω2)1/2 the TF size.

Linearizing Eq.(4.5) around the ground state solution ψ0(z) we obtain the Bogoliubov-de
Gennes (BdG) equations for the excitations. Those are characterized by the momentum
~q of the in-plane free motion and by an integer quantum number (j ≥ 0) related to the
motion in the z direction. The excitation wave functions take the form f±(z) exp(i~q · ~ρ),
where f± = u±v, and u, v are the Bogoliubov {u, v} functions. Then the BdG equations
read:

ǫf− =
~

2

2m

[

− d2

dz2
+ q2 +

∆ψ0

ψ0

]

f+ ≡ Hkinf+, (1.46)

ǫf+ = Hkinf− +Hint[f−], (1.47)

where Hkin is the sum of kinetic energy operators, and

Hint[f−] = 2(gd + g)f−(z)ψ2
0(z) − (3/2)gd q ψ0(z) ×

×
∫ ∞

−∞
dz′ f−(z′)ψ0(z′) exp (−q|z − z′|). (1.48)

For each j we get the excitation energy ǫj as a function of q. We will be mostly interested
in the lowest excitation branch ǫ0(q) for which the confined motion is not excited in the
limit q → 0.

The second term in the rhs of Eq.(1.48) originates from the non-local character of the
DDI and gives rise to the momentum dependence of an effective coupling strength. In the
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1.2 Dipolar Bose-Einstein Condensation

limit of low in-plane momenta qL≪ 1, this term can be omitted. In this case, excitations
of the lowest branch are essentially 2D and the effective coupling strength corresponds
to repulsion. Equations (1.46) and (1.47) become identical to the BdG equations for the
excitations of a trapped condensate with a short-range interaction characterized by a
coupling constant (g+ gd) > 0. In the TF regime for the confined motion, the spectrum
of low-energy excitations for this case has been found by Stringari [147]. The lowest
branch represents phonons propagating in the x, y-plane. The dispersion law and the
sound velocity cs are given by

ǫ0(q) = ~csq; cs = (2µ/3m)1/2. (1.49)

For qL ≫ 1, the excitations become 3D and the effective coupling strength decreases.
The interaction term is then reduced to Hint[f−] = (2g − gd)ψ2

0(z)f−(z) as in the in-
tegrand of Eq. (1.48) one can put z′ = z in the arguments of f− and ψ0. In this case,
Eqs. (1.46) and (1.47) are similar to the BdG equations for the excitations of a conden-
sate with short-range interactions characterized by a coupling constant (2g− gd). If the
parameter γ = g/gd > 1/2, this coupling constant is positive and one has excitation
energies which are real and positive for any momentum q and condensate density n0.
For γ < 1/2, the coupling constant is negative and one easily shows that at sufficiently
large density the condensate becomes dynamically unstable with respect to the creation
of high momentum excitations.

We thus see that the most interesting behavior of the excitation spectrum in the TF
regime is expected for qL ≫ 1 and γ close to the critical value 1/2. The analytical
results of Eqs. (1.46) and (1.47) are summarized as follows [144]. For the critical value
γ = 1/2 the dispersion law is characterized by a plateau and for the j-th branch of the
spectrum it is given by

ǫ2j (q) = E2
q + ~

2ω2(1 + j(j + 3)/2); qL≫ 1, (1.50)

where Eq = ~
2q2/2m. For β 6= 1/2, assuming that the coupling term µEq|2β − 1|/(1 +

β) << ~
2ω2

z , the lowest branch of the spectrum is found as

ǫ2(q) = E2
q +

(2γ − 1)(5 + 2γ)

3(1 + γ)(2 + γ)
Eqµ+ ~

2ω2
z ; qL≫ 1. (1.51)

From Eq.(1.51) one sees two types of behavior of the spectrum. For γ > 1/2 the
excitation energy monotonously increases with q (see Fig.1b). If γ < 1/2, then the
dispersion law (1.51) is characterized by the presence of a minimum. Since in the limit
of qL ≪ 1 the energy ǫ0 grows with q, the existence of this minimum indicates that
the spectrum as a whole should have a roton-maxon character. As discussed above, the
appearance of roton-maxon spectrum is related to the reduction in the coupling strength
with an increase of momentum, resulting from the transformation of the character of
excitations from 2D to 3D.

The dipolar condensate is the first example of a weakly interacting gas offering a possi-
bility of obtaining a roton-maxon dispersion, up to now only observed in the relatively

21



Introduction

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

ε0
ωh

2.0

2.5

1.5

1.0

0.5

3.0

0

ql0

0.5 1.0 1.5 2.00

(a)

ε0
ωh

ql0

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2

2.0

2.5

1.5

1.0

0.5

0.5 1.0 1.5 2.0

3.0

0

(b)

0

Figure 1.6.: Dispersion law ǫ0(q) for various values of γ and µ/~ω: (a) γ = 1/2, µ/~ω = 343;
(b) β = 0.53, µ/~ω = 46 (upper curve) and β = 0.47, µ/~ω = 54 (lower curve).
The solid curves show the numerical results, and the dotted curves the result of
Eq. (1.51).

more complicated physics of liquid He. In contrast to the helium case, the rotonization
in dipolar condensates is easily tunable. By varying the density, the frequency of the
tight confinement, and the short-range coupling one can manipulate and control the
spectrum, making the roton minimum deeper or shallower. One can also eliminate it
completely and get the Bogoliubov-type spectrum or, on the opposite, reach the point
of instability.

The instability of dipolar condensates with regard to short-wave excitations is fundamen-
tally different from the well-known instability of condensates with attractive short-range
interaction (negative scattering length). In the latter case the chemical potential is neg-
ative and the ground state does not exist. The unstable excitations are long-wave and
an infinitely large cloud undergoes local collapses. For the dipolar BEC the chemical
potential is positive and the instability is related to the momentum dependence of the
DDI. The unstable excitations become the ones with high momenta at which the cou-
pling is attractive. The existence of the roton minimum at a given γ < 1/2 for µ/~ω
just below the point of instability, is likely to indicate that there is a new ground state
in the region of the condensate instability, probably with a periodic density modula-
tion. In the strongly correlated regime, in the rotonic regime there may be a liquid
to solid quantum phase transition is possible [86]. Hence, to study roton excitations
is fundamentally important. The roton excitations is also predicted for dipolar BECs
in 2D geometries [148] and 1D geometries [149, 150]. Although the roton instability
could suggest supersolid, supersolid in bulk dipolar BEC (quasi-2D) has been shown as
unstable [151]. In Chapter 6, we will discuss how to probe rotonic excitations by means
of Faraday patterns.
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1.3. Overview

This thesis is organized as follows:

In chapter 2, we discuss the stability of 2D dipolar bright solitons in dipolar BECs as
shown in Refs. [152, 153]. We introduce a variational Gaussian ansatz in the energy
functional, and obtain the stability domain for the interaction parameters. We also
calculate the low-lying excitations in 2D isotropic solitons by means of variational cal-
culations, which provide a better understanding on the behavior of solitons. At the
end of the chapter, we discuss a crucial point concerning the stability of anisotropic 2D
solitons, that they exhibit a 2D collapse if the number of particles in the soliton exceeds
a critical number.

In Chapter 3, we discuss the scattering dynamics of 2D bright solitons in dipolar BECs
placed at unconnected layers of a 1D optical lattice. We study the scattering of 2D soli-
tons by means of direct numerical simulations of dimensionally reduced GP equations,
and also using a variational formalism. Both the approaches show an excellent agree-
ment with each other. We show that the dipolar solitons scatter inelastically, and show
different scattering scenarios includes resonant scattering, formation of soltion molecule,
and spiraling motion with a non-zero relative angular momentum which provides a fas-
cinating link to the physics of photorrefractive materials. In the final session of the
chapter, we show that similar effects should be observable in 1D geometries, where the
experimental requirements may be easily fulfilled in on-going Chromium experiments.

In Chapter 4, we analyze the stability of a stationary dark soliton in a 3D dipolar
BEC by means of Bogoliubov theory and variational calculations. Both the approaches
show an excellent agreement with each other. We show that on contrary to short-
range interacting BECs, where snake instability is just prevented by a sufficiently strong
transverse confinement, dipolar BECs allow for stable dark solitons of arbitrarily large
transversal sizes, opening a qualitatively novel scenario in nonlinear atom optics. We
obtain the stability conditions, which requires a sufficiently large DDI and a sufficiently
deep optical lattice in the nodal plane.

In Chapter 5, we study the post-phonon-instability (post-PI) dynamics of 2D dipolar
BECs with and without an external confinement by direct numerical simulations of
2D GP equations with DDI. We show that the post-PI dynamics of a 2D dipolar BEC
differs qualitatively from 2D and 3D short-range interacting gases, and 3D dipolar BECs.
Contrary to these cases, the PI is not necessarily followed by the collapse of the gas, but
on the contrary leads to a transient regime characterized by the formation of a gas of
attractive inelastic 2D bright solitons, which eventually undergo fusion, leading to the
creation of a single excited stable bright soliton. If the dipoles are normal to the trap
plane these solitons are stable as long as the gas remains 2D, whereas if the dipoles are
parallel to the trap plane the (anisotropic) solitons may become unstable even in 2D for
a critical number of particles per soliton. We study also the phonon-like instability in
the presence of an harmonic confinement, and we show that it is followed by the creation
of transient ring-like and anisotropic patterns, which eventually lead to the creation of
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a single excited 2D soliton. In the final part of the chapter, we analyze the post-PI
dynamics in 1D dipolar BECs. On contrary to the repulsive soliton train in non-dipolar
BECs, the formed 1D dipolar solitons attract each other and finally merge into a single
one.

In Chapter 6, we study the formation of Faraday patterns in 2D dipolar BECs exhibiting
a roton-maxon Bogoliubov spectrum. The linear stability analysis of GP equation gives
a Mathieu equation. We analyze the solutions of Mathieu equation by a method so-called
Floquet analysis, and the nature of Floquet exponent determines the characteristic
behavior of Faraday patterns. We show that even a shallow roton largely modifies
the physics of Faraday patterns in dipolar BECs. Whereas in non-dipolar BECs the
Faraday pattern size decreases monotonously with the driving frequency 2ω, in dipolar
BECs the patterns show a ω-dependence characterized by abrupt changes in the pattern
size, which are especially remarkable when the dipole itself is modulated. Faraday
patterns constitute hence an excellent tool to probe the onset of rotonization in on-
going experiments with dipolar condensates.
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Part I.

Solitons in Dipolar BEC
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2. Two-dimensional Bright Solitons in

Dipolar BEC

Multidimensional solitons have profound interest in nonlinear optics and matter waves.
Multidimensional solitons have been experimentally observed in nematic liquid crystals
[154] and in photorrefractive screening solitons [155]. In optics, quasi-2D spatiotemporal
solitons in crystals is realized with quadratic nonlinearity [156, 157]. So far in matter
waves, only quasi-1D bright solitons were experimentally observed in self-attracting
BECs of 7Li [29, 30] and 85Rb atoms [31], and gap bright solitons were created in a
repulsive 87Rb condensate confined in an optical lattice [158]. 2D/3D bright solitons
are unstable against collapse in BECs with attractive cubic nonlinearity. Theoretically
proposed stabilization techniques for 2D bright solitons involve the use of optical lattices
[159], but with limited mobility, or the periodic time modulation of the nonlinearity by
means of a Feshbach resonance [160]. Another idea is to create gap bright solitons in 2D
or 3D optical lattices with repulsive nonlinearity. But so far no experimental realization
of 2D or 3D matter wave soliton has been reported. A promising possibility is provided
by the nonlocal nonlinearity of dipolar BECs, as we have discussed in the introduction
of this thesis. We show that indeed the nonlocality induced by the DDI may stabilize 2D
bright solitons in matter waves. In this chapter we show in detail the requirements, and
the stability conditions of a 2D bright solitons in dipolar BEC, by means of numerical
and variational calculations [152].

2.1. Two-dimensional Nonlocal GP Equation

In the following, we consider a BEC of N particles with electric dipole moment d (the
results are equivalently valid for magnetic dipoles) oriented in the z direction by a
sufficiently large external field and that, hence, interact via a dipole-dipole potential:
Vd(~r) = gd(1−3 cos2 θ)/r3, where gd = αd2, θ the angle formed by the vector joining the
interacting particles and the dipole direction, and −1/2 ≤ α ≤ 1 a tunable parameter
by means of rotating orienting fields [100]. The tunability of DDI by means of fast
rotating fields is discussed in the section (1.2.2). As we will see later in this chapter
that dipolar tuning is necessary for the stabilization of 2D bright solitons in dipolar
BEC with dipoles oriented perpendicular to the plane. In the discussion of this case we
follow closely [152]. At very low temperatures, a dipolar BEC is described by a non-local
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non-linear schrödinger equation:

i~
∂

∂t
Ψ(~r, t) =

[

− ~
2

2m
∇2 + Vext(~r) + g|Ψ(~r, t)|2

+

∫

d~r′Vd(~r − ~r′)|Ψ(~r′, t)|2
]

Ψ(~r, t), (2.1)

where
∫

|Ψ(~r, t)|2d~r = N , and g = 4π~
2a/m is the coupling constant characterizes the

contact interaction, with a the s-wave scattering length. In the following we consider
a > 0, i.e., repulsive short-range interactions. We assume an external trapping potential
Vext(~r) = mω2

zz
2/2, with no trapping in the xy plane. Since we are interested in 2D

bright solitons, we assume a sufficiently tight trap along the z direction, so that we can
consider the system as a quasi-2D BEC extended in the xy plane. The quasi-2D GP
equation from 3D GP Eq. (2.1) can be obtained via averaging method introduced in
the section (1.1.4). Hence, we assume that the condensate is frozen in the ground state

φ0(z) = (1/
√

π1/2lz) exp(−z2/2l2z), of the harmonic oscillator in the z direction. Thus,
the BEC wave function factorizes as Ψ(~r, t) = ψ(ρ, t)φ0(z). Employing this factorization,
the convolution theorem [161], the Fourier transform of the dipolar potential, Ṽd(~k) =
(4π/3)gd(3k2

z/k
2 − 1), multiplying on either side by φ0(z), and integrating over the z

direction in Eq. (2.1), we arrive at the 2D nonlocal nonlinear Schrödinger equation: 1

i~
∂

∂t
ψ(~ρ, t) =

[

− ~
2

2m
∇2

ρ +
g√
2πlz

|ψ(~ρ, t)|2 +
4
√
πgd

3
√

2lz

+

∫

d~kρ

(2π)2
ei

~kρ·~ρñ(~kρ)h2D

(

kρlz√
2

)

]

ψ(~ρ, t), (2.2)

where ñ is the Fourier transform of n(ρ) = |ψ(~ρ)|2, and h2D(k) = 2 − 3
√
πkek

2

erfc(k),
with erfc(k) is the complementary error function. Using Eq. (2.2), we numerically
study the formation and the dynamics of 2D bright solitons in dipolar BEC. Unlike
dark solitons, bright solitons are ground states of the GP equations. Hence, we can
write the solitonic ground state solution as ψ(~ρ, t) = exp(−iµ2dt)ψ(~ρ), where µ2d is
the 2D-chemical potential. To ensure the 2D character of the problem, and hence the
validity of Eq. (2.2), the condition µ2d << ~ωz should be satisfied locally at any time t.

2.2. Gaussian Ansatz

As we discussed in Chapter 1, a suitable Gaussian ansatz provide a good insight into the
physics of bright solitons, especially, it could provide good estimation of stability domain
for relevant parametric in the system. We consider the following Gaussian solution:

Ψ0(~r) =
N

π3/4l
3/2
z LρL

1/2
z

exp

(

−x
2 + y2

2l2zL
2
ρ

− z2

2l2zL
2
z

)

, (2.3)

1To derive Eq.(2.2) from Eq.(2.1), one may need the following

integral:
R

dx
“

3x2

a2+x2 − 1
”

exp(−x2b2/2) = 2
√

2π
b

− 3πa exp(a2b2/2)erfc(ab/
√

2) [162]
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2.2 Gaussian Ansatz

where lz =
√

~/mωz is the width of the ground state of the strong harmonic trap along
the z axis, and Lρ and Lz are dimensionless variational parameters related with the
widths of the the condensate in the xy plane and the z direction respectively. We have
numerically checked that this ansatz is indeed a very good approximation of the exact
solutions of Eq. (2.1) for the situations under considerations.

2.2.1. Energy of the System

We calculate the energy of the system by inserting the Gaussian ansatz (2.3) in the
following energy functional:

E =

∫

d~r

[

~
2

2m
|∇Ψ0|2 + Vext(z)|Ψ0|2 +

1

2
g|Ψ0(~r)|4

+

∫

d~r′Vd(~r − ~r′)|Ψ0(~r′, t)|2|Ψ0(~r, t)|2
]

, (2.4)

where the last term provides the dipolar contribution to the energy, and it can be
trivially calculated by using the convolution theorem, and is simplified to

∫

d~r

∫

d~r′Vd(~r − ~r′)|Ψ0(~r′, t)|2|Ψ0(~r, t)|2 =

∫

d~k

(2π)3
Ṽd(~k)ñ0(~k)2, (2.5)

where Ṽd(~k) and ñ0(~k) = exp(−k2
ρl

2
zL

2
ρ/4 − k2

z l
2
zL

2
z/4) are the Fourier transforms of the

DDI and the density n0(~r) = |Ψ0|2 respectively. Finally, one obtains the energy of a
dipolar Gaussian BEC as a function of its widths Lρ and Lz as

E

N~ωz
=

1

2L2
ρ

+
1

4L2
z

+
L2

z

4
+

1

L2
ρLz

[

g̃

4π
+
g̃d

3
f

(

Lρ

Lz

)]

(2.6)

where g̃ = Ng/(
√

2π~ωzl
3
z) = 2

√
2πNa/lz and g̃d = Ngd/(

√
2π~ωzl

3
z), and f(κ) = (κ2−

1)−1
[

2κ2 + 1 − 3κ2H(κ)
]

, with H(κ) = arctan(
√
κ2 − 1)/

√
κ2 − 1), and κ = Lρ/Lz. In

order to see whether a 2D solitonic solution exists or not, one has to look for the minimum
of the energy as a function of the radial width Lρ for a fixed Lz. The appearance of a
local minimum indicates soliton stability and then it can be identified as its equilibrium
widths.

2.2.2. Stability Conditions for a 2D Soliton

The minimization of E with respect to Lρ and Lz leads to the equations:

1 +
g̃

4πLz

[

1 − 2π

3
βF

(

Lρ

Lz

)]

= 0, (2.7)

Lz =
1

L3
z

+
g̃

4πL2
ρL

2
z

[

1 − 4π

3
βG

(

Lρ

Lz

)]

(2.8)
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where
F (κ) = (1 − κ2)−2

[

−4κ4 − 7κ2 + 2 + 9κ4H(κ)
]

(2.9)

and
G(κ) = (1 − κ2)−2

[

−2κ4 + 10κ2 + 1 − 9κ2H(κ)
]

, (2.10)

with β = g̃d/g̃. Eqs. (2.7) and (2.8) admit a solution, and hence a localized wave, only
under certain conditions. A simplified picture may be achieved by considering the fully
2D situation in which the confinement along the z axis is strong enough to guarantee
Lz = 1. In that case, both the kinetic and the short-range part in the energy scale as
1/L2

ρ. In the absence of DDI (g̃d = 0), and irrespective of the value of Lρ, E(Lρ) is
always either growing with Lρ (collapse instability) or decreasing with Lρ (expansion
instability) [see Fig.(1.2(b))]. This reflects the well-known fact that 2D solitons are not
stable in NLSE with contact interactions. In the case of a dipolar BEC, the situation is
remarkably different, since the function f depends explicitly on Lρ. This allows for the
appearance of a minimum in E(Lρ), which from the asymptotic values of f (f(0) = −1
and f(κ→ ∞) = 2) should occur if:

g̃d

3
< 1 +

g̃

4π
<

−2g̃d

3
. (2.11)

A simple inspection shows that this condition can be fulfilled only if g̃d < 0, i.e. only
if the dipole is tuned, as discussed in the section (1.2.2) of Chapter 1, with φ > 54.7◦

(this is true also for Lz 6= 1). In that case, the tuning of the DDI may allow for the
observation of a stable 2D solitary wave, characterized by an internal energy ES < 0, [see
Fig. (2.1(a))]. Note that if Na/lz ≫ 1, i.e. for large short-range repulsive interactions,
from Eq.(2.11) we arrive at the stability condition for the 2D dipolar bright solitons

|β| > 3/8π ≃ 0.12. (2.12)

If |β| < 0.12, the repulsive short-range interaction dominates the attractive DDI in the
xy plane, and hence the soliton is unstable against expansion, [see Fig. (2.1(a))]. We
have compared this value with the results obtained from the direct numerical simulation
of Eq. (2.2) for the case of large g̃. We obtained stable 2D solitary waves for |β| > 0.12,
showed an excellent agreement with the results obtained via Gaussian ansatz. The
ground state solitonic solution of Eq. (2.2) is obtained numerically via imaginary time
evolution, and is shown in the Fig. (2.1(b)). Using it as an initial condition, we con-
firmed the stability of the soliton by a real time evolution [see Fig. (2.2(b))]. Since the
soliton is isotropic in the xy plane, here onwards we call it as isotropic bright soliton. In
the numerics, we employed split-operator method, and the momentum contribution in
the Hamiltonian is simulated using the fast Fourier transform technique. The equilib-
rium width of the bright soliton as a function of g̃ is shown in the Fig. (2.2(a)). g̃ can be
increased by increasing N . The numerical results are slightly different from the energy
calculations, but qualitatively they are in excellent agreement. As expected, by increas-
ing N the size of the soliton decreases. But it reaches a minimum value and becoming
quasi-independent of g̃ for large values of g̃. It can be explained using the expression of
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2.3 Time Dependent Variational Analysis

the energy (2.13): for small values of g̃, the increase in N increases the attractive DDI
in the xy plane, and hence the system reduces energy by compressing the soliton size.
As N increases and for large values of g̃, the kinetic energy is negligible compared to
the interaction energy and hence the energy of the soliton can be approximated as,

2E

~ωz
∼ g̃√

2πL2
ρLz

[

14π +
β

3
f(Lρ)

]

, (2.13)

and as a consequence, the minimun of E(Lρ) just depend only on β and not on any
particular values of g̃ or g̃d.
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Figure 2.1.: Fig. (2.1(a)): The Gross-Pitaevskii energy functional (2.13) as a function of its
variational parameter Lρ, for g̃ = 200, and β = −0.20 (solid line) and β = −0.10
(dashed line), where Es is the binding energy of the dipolar soliton. The minium
indicates the stability of solitonic solution. Fig. (2.1(b)): The density (|ψ(x, y)|2)
plot of the ground state 2D bright soliton in a 2D dipolar BEC with g̃ = 200, and
β = −0.20. The ground state is obtained via imaginary time evolution.

2.3. Time Dependent Variational Analysis

2.3.1. Model of the System

In this section, we introduce a variational formalism [80] which helps us to gain more
understanding on the stability and the dynamics of the 2D dipolar solitory waves. We
follow the approach pioneered by Perez-Garcia et al [163, 164], which has been used
successfully for many studies on trapped condensates, and also attemted to explain the
anomalous behavior in the finite temperature excitation experiment [165, 166]. Basi-
cally, the idea is to treat the problem of solving Eq. (2.1) as a variational problem,
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Figure 2.2.: (2.2(a)): The equilibrium size of the soliton as a function of g̃ for β = −0.2.
Solid line corresponds to results using Eq. (2.13) and empty circles corresponds
to numerical results. (2.2(b)): The time evolution of soliton width, for g̃ = 200
and β = −0.2.

corresponding to a stationary point of the action related to the Lagrangian Density L:

L =
i~

2
(ΨΨ̇∗ − Ψ̇Ψ∗) +

~
2

2m
|∇Ψ|2 +

1

2
mω2

zz
2|Ψ(~r, t)|2 +

g

2
|Ψ(~r, t)|4 +

1

2
|Ψ(~r, t)|2

∫

d~r′Vd(~r − ~r′)|Ψ(~r′, t)|2. (2.14)

where the asterik denotes the complex conjugation. Hence, one has to find Ψ, such that
the action

S =

∫

Ld~rdt (2.15)

is extreme. We consider the following Gaussian ansatz as a trial function,

Ψ(~r, t) = A(t)
∏

η=x,y,z

e−[η−η0(t)]2/2w2
η+iηαη(t)+iη2βη(t), (2.16)

where A is the complex amplitude, wη the width, αη the slope, βη the (curvature
radius)−1/2, and η0 the center of the dipolar BEC are the variational parameters. Our
aim is to find the equations governing the evolution of the above variational parameters.
So, inserting Eq. (2.15) into Eq. (2.14) and then calculate an effective Langrangian L
by integrating the Lagrangian density over all space coordinates

L = 〈L〉 =

∫

d~rL, (2.17)
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we arrive at

L = N~

∑

η=x,y,z

[

α̇ηη0 + β̇η

(

w2
η

2
+ η2

0

)]

+
N~

2

2m

∑

η=x,y,z

[

1

2w2
η

+ α2
η

+ 4β2
η

(

w2
η

2
+ η2

0

)

+ 4αηβηη0

]

+
N2g

2(2π)3/2wxwywz
+
Nmω2

zw
2
z

4

+
N2gd

12π2

∫

d~k(3 cos2 θk − 1)
∏

η=x,y,z

e−
k2
ηw2

η

2 (2.18)

where we have used the atom number conservation

N = π3/2|A(t)|2wx(t)wy(t)wz(t) = const. (2.19)

At this point we have reduced the problem of solving the Eq. (2.1) to a finite dimensional
problem, i.e., solving the following Lagrange equations

d

dt

(

∂L

∂q̇j

)

− ∂L

∂qj
= 0, (2.20)

with the notation

qj ≡ (wx, wy, wz, x0, y0, z0, αx, αy, αz, βx, βy, βz).

2.3.2. Evolution Equations for the Parameters

For the parameters α and β we get,

βη =
mẇη

2~wη
(2.21)

and

αη =
m

~

(

η̇0 −
ẇηη0

wη

)

(2.22)

The problem can be further simplified by eliminating the parameters α and β from the
Lagrangian L. This can be done by the gauge transformation of Lagrangian, i.e., by
transforming the Lagrangian L to L′ by keeping the action S invariant, which preserves
the equations of motion. We define,

L′ = L− dg

dt
, (2.23)

with

g = ~

∑

η

[

αηη0 + βη

(

w2
η

2
+ η2

0

)]

. (2.24)
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Hence

L′ = −Nm
2

∑

η

[

η̇2
0 +

ẇ2
η

2
− ~

2

2m2w2
η

]

+
N2g

2(2π)3/2wxwywz

+
Nmω2

zw
2
z

4
+
N2gd

12π2

∫

d~k(3 cos2 θk − 1)
∏

η=x,y,z

e−
k2
ηw2

η

2 (2.25)

The Lagrangian L′ describes the physics of a 3D Gaussian BEC with DDI, and a har-
monic confinment along the z axis. The widths of the condensate satisfy the following
equations:

mẅx =
~

2

mw3
x

+
Ng

(2π)3/2w2
xwywz

− 2
∂V

∂wx
, (2.26)

mẅy =
~

2

mw3
y

+
Ng

(2π)3/2w2
ywxwz

− 2
∂V

∂wy
, (2.27)

mẅz =
~

2

mw3
z

+
Ng

(2π)3/2w2
ywxwz

−mω2
zwz − 2

∂V

∂wz
, (2.28)

where

V (wx, wy, wz) = Ngd/(12π2)

∫

d~k(3 cos2 θk − 1)
∏

η=x,y,z

e−k2
ηw2

η/2. (2.29)

The Eqs. (2.26), (2.27) and (2.28) describe the motion of a particle with coordinates
(wx, wy, wz) in an effective potential [80, 167]

U(wx, wy, wz) =
~

2

2m

(

1

w2
x

+
1

w2
y

+
1

w2
z

)

+
mω2

zw
2
z

2
+

Ng

(2π)3/2wxwywz
+ V (wx, wy, wz).

(2.30)
The equilibrium widths of the condensate are then obtained by minimizing the effective
potential U , and the evolution of the condensate widths are found by numerically in-
tegrating the above equation of motions for the corresponding widths along x, y and z
axes.

2.3.3. Small Amplitude Shape Oscillations

Once the equilibrium widths are found, the frequencies of small amplitude oscillations
are obtained by evaluating the second order derivatives of the effective potential U , and
it takes the following symmetric form:





U11 U12 U13

U12 U11 U13

U13 U13 U33



 , (2.31)

where Uij = Uji due to the commuting property of derivative operations with different
coordinates, and U11 = U22 and U13 = U23 due to the cylindrical symmetry. The
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diagonalization of the above symmetric matrix gives the three-mode frequencies ν1 =√
U11 − U12 and

ν3,2 =

√

U11 + U12 + U33 ±
√

(U11 + U12 − U33)2 + 8U2
13√

2
. (2.32)

The schematic representation of the modes are shown in the Fig. (2.3). Mode 1 is
purely radial due to the cylindrical symmetry. Its angular momentum projection along
the z axis is m = 2. Modes 2 and 3 are the quadrupole and the monopole oscillations
respectively, and are customarily called the low and the high m = 0 modes.

Also, a 2D version of above equations can be obtained by taking into account the two
following facts: (i) the trap along the z axis is so strong that there is no dynamics along
the z direction, hence wz is independent of time, (ii) we assume a 2D soliton which is
not moving and, is placed at the origin of the cordinate system, hence η0(t) = 0 for
all x, y and z. Now we end up with two time dependent variables, qj = wx, wy. The
corresponding equations of motion are

mẅx =
~

2

mw3
x

+
g

(2π)3/2w2
xwywz

− 2
∂V

∂wx
, (2.33)

mẅy =
~

2

mw3
y

+
g

(2π)3/2w2
ywxwz

− 2
∂V

∂wy
, (2.34)

The Eqs. (2.34) and (2.34) describe the motion of a particle with coordinates (wx, wy)
in an effective potential

U (2D)(wx, wy) =
~

2

2m

(

1

w2
x

+
1

w2
y

)

+
g

(2π)3/2wxwywz
+ V (wx, wy). (2.35)

The modes are again obtained by diagonalizing the second derivative matrix of the
effective potential U (2D). We get two eigen frequencies corresponding to the modes 1
and 2: ν2,1 =

√
U11 ± U12. Due to the strong trapping along the z diection, mode 3

becomes highly energetic, and hence we are no longer interested in mode 3. The lowest
lying modes of a 2D dipolar bright soliton are shown in the Fig. (2.4). The lowest-lying
mode has for any value of β a breathing character. For sufficiently small values of |β|,
the breathing mode tends to zero, and eventually the system becomes unstable against
expansion. This corresponds to the disappearance of the minimum in the energy. In
this regime, the 2D picture provides a good description of the physics of the problem,
as shown in Fig. (2.4). For sufficiently large values of |β|, the 3D character of the
system becomes crucial, leading to a different sort of instability, in this case against
3D collapse. This is reflected in the decrease of the frequency of the breathing mode.
Hence, as expected from general arguments for nonlocal nonlinearity [130], the DDI can
stabilize the 2D solitary waves. However, a new crucial feature is introduced by the
anisotropic character of the dipolar interaction, since too large DDI can destabilize the
solitary waves.
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Figure 2.3.: Schematic representation of collective excitations in a cylindrical trap.
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Figure 2.4.: Breathing (bold dashed) and m = ±2 quadrupole (bold solid) mode for g̃ = 10,
with κ0 = Lρ/Lz. Results from a purely 2D calculation are shown in thin lines.

2.4. Anisotropic Solitons

Two dimensional solitonic solutions are also possible if the dipoles are aligned parallel
to the xy plane, as recently proposed in [153]. In this section we briefly discuss the
stability conditions and some particular characteristics of such solitons. Since the dipoles
are alligned parallel to the plane, say along the x axis, the DDI in the xy plane is
anisotropic becoming partially attractive and partially repulsive. Hence the soliton is
more elongated along the x axis. Since the shape of the soliton has an anisotropic
character, it is called anisotropic solitons. The stability conditions for an anisotropic
soliton can be estimated using the Gaussian trial function in the corresponding energy
functional (2.4). We assume an anisotropic ansatz of the form:

Ψani =
N

π3/4l
3/2
z

√

L
1/2
x L

1/2
y L

1/2
z

exp

[

− 1

2l2z

(

x2

L2
x

+
y2

L2
y

+
z2

L2
z

)]

, (2.36)
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where Lx, Ly and Lz are the dimensionless variational parameters related with the
widths along the x, y and z directions respectively. We obtain the energy

E

N~ωz
=

1

4

(

1

L2
x

+
1

L2
y

+
1

L2
z

)

+
L2

z

4
+

1

LxLyLz

[

g̃

4π
+
g̃d

3
h(Lx, Ly, Lz)

]

(2.37)

with

h(Lx, Ly, Lz) ≡
∫ 1

0

3LyLzx
2dx

L2
x

√

1 +
(

L2
y/L

2
x − 1

)

x2
√

1 + (L2
z/L

2
x − 1)x2

− 1 (2.38)

It is found that the energy E exhibits a minimum for g̃ > 0 when β > 3/4π ≈ 0.24 (see
Fig. (2.5)). Noted that, eventhough one needs a sufficiently large DDI to stabilize the
2D anisotropic solitons, the tuning of DDI is not required. Hence anisotropic solitons
are more feasible experimentally compared to the isotropic ones where the tuning of
DDI is unavoidable. However, one may show that for a given β > 3/4π, there is a
critical universal value g̃cr(β) ≡ gNcr/

√
2πlz (see Fig. 3.7) such that for N > Ncr the

minimum of E(Lx, Ly) disappears [168]. As a consequence, contrary to the case of
isotropic solitons, which are always stable as long as the soliton is 2D, there is a critical
number of particles per soliton, Ncr, which decreases for larger β (see Fig. (2.6)). Beyond
this number the 2D soliton collapses. This result is also verified by a direct simulation
of the 3D NLSE (2.1). Note that this result was not discussed in [153] and constitutes
a novel result of this thesis.
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Figure 2.5.: The Gross-Pitaevskii energy functional (2.37) as a function of its variational pa-
rameters Lx and Ly, for g̃ = 10, and β = 1./0.911. The minimum (dark region) in-
dicates the stability of solitonic solution. The minimum disappears once N > Ncr

where the anisotropic soliton is unstable against 2D collapse.
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Figure 2.7.: The ground state anisotropic bright soliton solution of Eq. (2.1). The dipoles
are polarized along the x direction and a strong confinement in the z axis. Fig.
(2.7(a)): The density |Ψ|2 in the xy planefor z = 0, and Fig. (2.1(b)): the density
|Ψ|2 in the xz plane for y = 0. g̃ = 10 and β = 1./0.911 for both the plots. Since
the dipoles are alligned along the x axis, the soliton is more elongated along that
direction.
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3. Soliton-soliton Scattering in Dipolar

BECs

In order to deepen our understanding of the 2D isotropic solutions we found in the
Chapter 2 , and their comparison with the solitonic solutions of the 1D NLSE, we have
analyzed the scattering of these solitons. In nonlinear optics, the soliton-soliton inter-
actions in one dimension have been described completely and analytically by Gordon
[169]. They are perfectly elastic. In short-range interacting condensates but trapped
by a confining potential, the soliton dynamics may be chaotic with three or more soli-
tons even in one dimension [170], and higher dimensional effects can lead to inelastic
collisions [171, 172]. In this chapter we discuss the scattering of 1D and 2D dipolar
bright solitons without any harmonic confinement in the radial direction. As we will
discuss, the non-local character of the DDI provides unusual scattering scenarios in
matter waves[173].

3.1. Scattering of 2D Bright Solitons in a Single Plane

First we analyze the scattering of 2D dipolar bright isotropic solitons in a single plane,
where the spatial overlapping of solitons is possible (we follow here the discussion of
[152]). We consider two solitons along a line, which are well separated such that the
interaction between them is negligible. We let them collide with different values of their
initial center-of-mass kinetic energy, Ekin and study the collisional properties. The
schematic diagram of situation under consideration is shown in the Fig. (3.1). Since
β < 0 for isotropic solitons, they attract each other in the xy plane. As a result they
gain kinetic energy when approaching each other. Direct numerical simulations of the
2D nonlocal NLSE show that the scattering of dipolar 2D solitary waves is inelastic.
In particular, as shown in Fig. (3.7), for sufficiently slow localized waves (for the case
considered in Fig. (3.7)), when Ekin ≤ 2.9|ES |, where Es is the binding energy of the
soliton, two solitary waves merge when colliding. As observed in Fig. ( 3.7), the soli-
tary waves, when overlapping they transfer their center-of-mass kinetic energy into the
internal energy, transforming into a single localized structure. This structure, although
localized, is in an excited state, and clear oscillations may be observed. For larger ini-
tial kinetic energies, the waves move apart from each other after the collision, but the
transfer of kinetic energy into internal energy is enough to unbind the solitary wave, and
the solitary waves are destroyed. This inelastic character of the scattering of dipolar
2D solitary waves, clearly differs these solutions from the solitonic solutions of the 1D
NLSE [72].
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Figure 3.1.: Schematic representation of two-dimensional solitons in a single 1D potential.
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Figure 3.2.: Density plot of the fusion of two dipolar 2D solitary waves for g̃ = 20, β = −0.5,
and k0lz = 0.01, where k0 is the intial momentum of the soliton. From top to
bottom ωzt/2 = 0, 1000, 2000, 3000, 4000, 5000.

3.2. Two-dimensional Bright Solitons in Double-well Potential

3.2.1. Model of the Problem

Now we consider two isotropic bright solitons in a 1D double-well potential with sup-
pressed tunneling. Such a setup can be realised as two adjacent sites in an 1D optical
lattices with a sufficiently large lattice depth. Contrary to the short-range interacting
gases in a deep double-well potential, the 2D dipolar gases interact with each other
through DDI. This inter-site interaction introduces novel and rich phenomena in the
context of dipolar BECs. The schematic diagram of the double well potential with 2D
dipolar solitons is shown in the Fig. (3.3). At sufficiently low temperatures, our system
is described by the following two coupled dimensionally reduced 2D NLSE with nonlocal
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nonlinearity:

i~
∂

∂t
ψj =

[

− ~
2

2m
∇2

ρ +
g|ψj |2√

2πlz
+

4
√
πgd

3
√

2lz

∫

d~kρ

(2π)2
ei

~kρ~ρ

(

ñj(~kρ)F (kρlz, 0) + ñ−j(~kρ)F (kρlz, 2z0/lz)
)]

ψj (3.1)

where j = ±1 is the layer-index, Ψj are the wavefunctions at each well, Uj(z) = mω2
z(z+

jz0)2/2,
∫

|Ψj(~r, t)|2d~r = N , and g = 4π~
2a/m characterizes the contact interaction

with a the s-wave scattering length, l2z = ~/mωz is the onsite harmonic-oscillator length,
ñj is the Fourier transform of |ψj(~ρ)|2 and F (

√
2k,

√
2λ) = 2e−λ2 − (3

√
πkek

2

/2)[e−2kλ

erfc(k−λ)+e2kλerfc(k+λ)], with erfc(x) the complementary error function. Eq. (3.1) is
an extension of Eq. (2.2) by including the dipolar coupling between the solitons. Using
Eqs. (3.1), we study numerically the equilibrium properties and the dynamics of the
unconnected 2D dipolar solitons.

y
x

z

two dimensional solitons in different layers

external potential

Figure 3.3.: Schematic representation of the system considered

3.2.2. Variational Method

Using the variational approach we employed in the Chapter 2 to study the stability of
the soliton, we study the dynamics of two solitons in the double-well potential. We
consider a 2D Gaussian Ansatz:

ψj(~ρ, t) = A
∏

η=x,y

exp

[

−(η − jη0)2

4w2
η

]

×

× exp

[

i
m

~

(

jηη̇0 + (η − jη0)2
ẇη

wη

)]

, (3.2)

where A is the normalization factor, {x0, y0} is the soliton center, wx,y the soliton
widths. The variables x0, y0, wx, wy are time-dependent. The center of mass motion is
an independent degree of freedom and it can be decoupled. Without loss of generality,
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it has not been included in the variational Ansatz. Introducing Eq. (3.2) into the
corresponding Lagrangian:

Lj =
i~

2
(ΨjΨ̇

∗
j − Ψ̇jΨ

∗
j ) +

~
2

2m
|∇Ψj |2 +

1

2
mω2

zz
2|Ψj(~r, t)|2 +

g

2
|Ψj(~r, t)|4 +

1

2
|Ψj(~r, t)|2

∫

d~r′Vd(~r − ~r′)(|Ψ1(~r′, t)|2 + |Ψ−1(~r′, t)|2), (3.3)

we obtain the effective Lagrangian:

Lj = −Nm
2

∑

η=x,y

[

η̇2
0 +

ẇ2
η

2
− ~

2

2m2w2
η

]

+
N2g

2(2π)3/2wxwywz

+
Nmω2

zw
2
z

4
+
N2gd

12π2

∫

d~k(3 cos2 θk − 1)
∏

η=x,y,z

e−
k2
ηw2

η

2 (e2ikηη0 + 1). (3.4)

Using the Lagrangian (3.4) we obtain the following set of equations of motion

mq̈i = − ∂

∂qi
U, (3.5)

where q{i} = x0, y0, wx, wy are the dynamical variables. The problem then reduces to
the analysis of an effective particle in a potential

U =
~

2

8m

(

1

w2
x

+
1

w2
y

)

+
g√

2π8πwxwylz
+ V, (3.6)

that includes the dipolar interaction term

V =
gd

12π2

∫

d~k

(

3
k2

z

k2
− 1

)

e−k2
z l2z/4−k2

xw2
x/2−k2

yw2
y/2

(1 + cos(2kxx0) cos(2kyy0) cos(2kzz0)), (3.7)

that couples the unconnected solitons. This coupling gives rise to interesting interlayer
effects which will be analyzed in the following sections.

3.2.3. Stationary Solution of the Two-coupled Solitons

In this section we analyze the stationary state of the coupled 2D isotropic bright solitons.
Since the stabilization of the 2D solitons demands gd < 0, the soliton-soliton potential
is maximally repulsive for solitons when they are aligned exactly on top of each other.
However, due to the angular dependence of the DDI, the potential becomes attractive at
a given distance between the solitons, vanishing at long separations between them. As
a consequence, the soliton-soliton potential presents a minimum (see Fig. (3.4(a))), and
hence the soliton pair can form a soliton-molecule. The equilibrium separation between
the solitons in the molecule, and the corresponding equilibrium widths of the solitons
can be obtained by calculating the minimum of potential U . We have performed this
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Figure 3.4.: Fig. (3.4(a)): Soliton-Soliton potential for 2D solitons. Dotted line is for point
like solitons and solid line for Gaussian shape wavepackets, for a given dipolar
strength. Fig. (3.4(b)): Numerical results for the relative distance between two
dipolar isotropic solitons as a function of g̃, for z0 = 3lz,β = −0.20

task for different parameter regimes by means of a Powell-minimization procedure, and
compared our results with those obtained from the direct numerical simulation of the
coupled GPEs in imaginary time. Note that due to symmetry on the xy-plane, we can
fix without loss of generality y0 = 0 i.e. the solitons are assumed aligned along the x
axis with y0 = 0. In such a situation, the equilibrium widths of the solitons along the
y direction, i.e. the direction perpendicular to the line joining the solitons, are larger
than that along x. This elongation in widths along the x axis is due to the attractive
pull between the solitons.

The equilibrium position is by no means that expected from approximating the solitons
as point-like objects. When the solitons approach each other, their structure becomes
more relevant and that shifts the minimum of the molecular potential, but assymptot-
ically both the potentials are same. In the case of point like solitons, the interaction
potential between the solitons would be provided by Vpoint ∝ −(x2

0 − 2z2
0)/(x2

0 + z2
0)5/2,

which presents a minimum at x0 = 2z0. This value is certainly smaller than the results
obtained from our variational or numerical calculations (see Fig. 3.4(b)). Note that for
growing g the equilibrium separation between the solitons in the molecule is as expected
reduced, becoming quasi independent of g for large g. This is explained since for large
g and fixed β (i.e. increasing the number of atoms) the kinetic energy term becomes
negligible compared to the interaction terms, and hence the minimum of U just depends
on β and not on the particular values of g and gd.

3.2.4. Lowest-lying excitations

In section (2.3.3) we calculated the lowest lying excitations of a single isotropic bright
soliton. The excitations of a single soliton are significantly modified by the presence of
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an additional soliton due to the dipolar coupling between them. In the following we
analyze the small amplitude oscillations of a bound state of two solitons. We estimate
the frequencies of the lowest-lying excitations ωj of the soliton molecule by means of
our variational approach. This is done by calculating the eigenvalues of the Hessian of
the potential U at the equilibrium point. In order to address the excitation in which
the soliton widths of one soliton can oscillate in phase and out of phase with the widths
of the other soliton, we have extended our variational calculation to the case in which
the soliton widths of both solitons are not necessarily the same. Hence, we consider
five variational parameters (x0, wx1, wy1, wx2, wy2) and evaluate the corresponding five
frequencies and the eigen modes.

The frequency of the vibrational mode (see Fig. (3.5(b))) associated with the dynamics
of x0 is much smaller than the monopole and quadrupole modes. In Fig. (3.5(a)) we
depict the frequencies of the internal modes, associated with the dynamics of the soliton
widths, normalized by their values for independent solitons. A significant shift as well
as a splitting of the frequencies of the internal modes is observed due to the presence
of the second soliton. Additionally, the mode geometry is significantly modified. For
independent solitons the modes have a perfect monopole and quadrupole symmetry
for any value of β. For interacting solitons the lowest energy mode becomes more
pronounced along the y direction. For values of β approaching the instability threshold
at which no stable soliton is possible (around β = −0.15 in Fig. (3.5(a))), the internal
modes of a single soliton transform in the presence of the second soliton into modes
purely associated with oscillations of the wy and wx widths, respectively.
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Figure 3.5.: Fig. (3.5(a)): Variational results for low lying excitations: Solid lines are the
breathing modes (in and out of phase) and dashed lines are the quadrupole
modes (in phase mode greater than out of phase mode for both monopole and
quadrupole). The modes for the two solitons ωTWO are normalized to the
corresponding modes (ωONE) of an independent soliton. The results are for
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3
z = 200, z0 = 3lz. 3.5(b)): the vibrational mode associated with the

dynamics of x0.
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3.2 Two-dimensional Bright Solitons in Double-well Potential

3.2.5. Scattering of Two-dimensional Solitons

In the following, we consider the scattering of two 2D isotropic solitons in a double well
potential. We first discuss the case where the relative velocity is parallel to the vector
connecting the centers of mass of the two solitons and hence assuming y0 = 0. We
shall denote this case as the 1D scattering scenario since the soliton just moves along
the x direction with no velocity component along the y direction. We have studied the
scattering for different initial relative velocities both by direct numerical simulations
of Eqs. (3.1) and by determining the evolution of {x0, wx, wy} for each soliton in our
variational calculation. Fig. (3.6) shows the variation of the soliton momentum as a
function of the initial momentum. During the scattering process the total energy of the
system is conserved but the coupling between the external degree of freedom (relative
distance of the two centers of mass) and the internal degree of freedom (modes of the
single solitons) leads to a dissipation in the dynamics of the external variables. It should
be stressed that this dissipation is due to the extended structure of the dipolar solitons,
and would be absent for point like solitons due to the absence of internal degrees of
freedom.

As expected, for sufficiently large initial velocities the scattering may be considered
as elastic. For sufficiently low velocities, the initial kinetic energy of the solitons is
fully transformed during the inelastic scattering into internal soliton energy, and the
initially independent solitons become bounded into an excited molecular state (fusion,
|∆k|/k0 = 1). For all the other cases (including the resonance discussed below) the two
solitons have a relative momentum after the collision and the relative distance between
the two centers of mass increases with time after the collision.

Interestingly, the inelastic losses do not increase monotonically for decreasing velocities,
but on the contrary show pronounced resonant peaks at intermediate velocities (see
Fig. (3.6)). This effect is motivated by a coupling to internal soliton modes, which leads
after the collision to a dramatic enhancement of the soliton widths that eventually may
increase without limits leading to the destruction of the scattered solitons. We stress
that this resonance behavior is only possible because internal modes of the 2D soliton are
at rather low energies, well within the inelastic regime. However, a direct comparison
between the internal modes discussed in the previous section, and the position of the
resonance just provides a qualitative understanding of the regime of velocities for which
the resonance occurs. A more quantitative analysis is largely prevented, because the
internal modes of the solitons vary dynamically when the solitons approach each other.
For higher momenta (right part of the resonance) the two solitons cross each other, but
the interaction time is not large enough to excite the internal modes of the solitons. For
low momenta (left part of the resonance) the relative kinetic energy is too small to allow
the solitons to cross the potential barrier. They can either form a molecule or reflect
off each other. If the interlayer distance is increased, the inelastic losses are as expected
reduced, but an even more complicated structure of resonances is then resolved (see
Fig. (3.6(b))).

The possibility of generating stable 2D solitons in dipolar gases allows for a novel soliton
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Figure 3.6.: Fig. (3.6(a)): Numerical (crosses) and variational (solid) results for ∆k/k0

(∆k = k0 − k(t → ∞)) as a function of the initial momentum k0lz, for z0 = 3lz,
g/

√
2π~ωzl

3
z = 200, β = −0.2. 3.6(b)): Numerical results with z0 = 4lz (solid)

and z0 = 5lz (dotted).

scattering scenario in cold gases, that we denote as the 2D scattering scenario. Contrary
to the case discussed above, in this scenario the relative velocity is not parallel to the
vector connecting the centers of mass of the two solitons, hence y0 6= 0, leading to a
non-vanishing angular momentum. This scattering scenario obviously demands stable
2D solitons, and hence it is not possible in short-range interacting condensates where
the freely moving 2D solitons are not stable. The non-vanishing angular momentum
is conserved after the collision, and as a consequence, for the case of soliton-fusion at
low velocities a spiraling motion of the solitons is observed during the inelastic fusion.
The solitons eventually stabilize into a rosetta-like orbit around each other (Fig. (3.7)).
The spiraling motion of the solitons links the physics of dipolar BEC to that of photor-
refractive materials, where soliton spiraling has been proposed [174] and experimentally
observed [155].

3.3. One-dimensional Bright Solitons in Dipolar BEC

1D bright solitons are stable in BEC even without DDI. However, the presence of DDI
add new characteristics to 1D matter-wave solitons especially on collision dynamics.
Utilizing the attractive part of the DDI, it is possible to have a stable 1D bright soliton
with positive s wave scattering length in dipolar BEC. We consider a dipolar BEC
in an external potential: Vext(ρ) = mω2

ρρ
2/2 with dipoles are polarized along the z

direction. The external confinement is sufficiently strong such that the dipolar BEC is
1D in nature. Using the energy functional (2.4) with an associated external potential,
it is possible to show that for g̃ > 0 we obtain a stable bright soliton if β > 3/4π.
Note that since β > 0 no tuning of DDI is required and hence the situation is less
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experimentally demanding. For 52Cr a Feshbach resonance is necessary to satisfy the
previous condition, but Feshbach resonances are well characterized and accessible [175].
The results obtained from energy calculations are verified using the reduced 1D GP
equation with DDI,

i~
∂

∂t
ψ(z, t) =

[

− ~
2

2m

∂2

∂z2
+

g

2πl2ρ
|ψ(z, t)|2 +

2gd

3l2ρ

+

∫

dkz

2π
eikzzñ(kz)h1D(kz)

]

ψ(z, t), (3.8)

where

h1D(kz) =

∫ ∞

0
dx

(

2k2
z − x

k2
z + x

)

e−x/2. (3.9)

In order to study the scattering, we consider 1D BECs placed at neighboring 1D-sites.
We consider two neighboring wires realized by means of a two dimensional optical lattice
(placed in the x−y plane), and the dipoles are oriented along the wire axis (z direction).
At each wire, the transversal confinement is approximated by an harmonic potential
mω2

ρ[(x± x0)2 + y2]/2. As for the 2D case, we analyze the scattering of the coupled 1D
solitons by means of a variational wavefunction:

Ψj(~r, t) = A exp

[

−(z − jz0)2

2w2
z

− (x− jx0)2 + y2

2l2ρ

]

×

× exp

[

i
m

~

(

jzż0 + (z − jz0)2
ẇz

wz

)]

, (3.10)

where j = ±1, lρ =
√

~/mωρ is the transversal harmonic oscillator length, and ωz and z0
are variational parameters that describe the width of both solitons and their positions,
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respectively. After substituting the ansatz in the corresponding Lagrangian, we obtain
the following Euler-Lagrange equations:

mz̈0 = − ∂

∂z0
U , mẅz = − ∂

∂wz
U , (3.11)

where again the problem reduces to an effective particle in a potential

U =
~

2

8m

1

w2
z

+
g

2(2π)3/2wzl2ρ
+ V, (3.12)

with V being the dipolar interaction

V =
gd

12π2

∫

d~k

(

3
k2

z

k2
− 1

)

e−k2
zw2

z/2−k2
xl2ρ/2−k2

yl2ρ/2

(1 + cos(2kxx0) cos(2kzz0)), (3.13)

As for the 2D solitons, we have calculated the change of the soliton momentum as a
function of the initial momentum, obtaining similar results as in 2D (see Fig. (3.8)), i.e.
three main scattering regimes, soliton-fusion, resonant scattering and elastic interaction.
In Fig. (3.9) we depict an example of the dynamics of the soliton width in and out of
resonance, which clearly shows a resonant (although non-destructive) behavior of the
soliton widths for intermediate velocities.
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Figure 3.8.: Variational results for ∆k/k0 (∆k = k0 − k(t → ∞)) as a function of the initial
momentum k0lρ, for x0 = 3lρ, g/2π~ωρl

3
ρ = 25, β = −0.28.

3.4. Summary

Summarizing, interlayer effects are a fundamentally new feature introduced by the DDI
in dipolar gases placed in unconnected layers of an optical lattice. These effects may
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ρ = 25, β = 0.28, and k0lρ = 0.05

(solid), 0.168 (dashed), 0.35 (dotted). ωρ (ρ) is the transversal oscillator frequency
(length). The time has been re-scaled for comparison.

have remarkable consequences, as e.g. the formation of a BEC of filaments [176]. In
this chapter we analyzed by means of numerical methods the rich physics introduced
by interlayer effects in the nonlinear properties of dipolar BECs, and in particular in
the scattering of unconnected solitons. The DDI induces an inelastic soliton-soliton
scattering, that for low relative velocities, leads to the inelastic fusion into a soliton
molecule. Interestingly, the inelastic losses do not increase monotonically for decreasing
relative velocities, but on the contrary show strong resonances at intermediate velocities,
at which, after interacting, the soliton widths are strongly modified, eventually leading
to soliton destruction. This effect appears, because, due to the relatively low excita-
tion frequencies of the solitons, a resonant coupling between incoming kinetic energy
and internal soliton modes is possible for low relative velocities well within the inelastic
regime. We have shown that a similar effect should be observable in 1D geometries,
where the experimental requirements may be easily fulfilled in on-going Chromium ex-
periments. Finally, we have considered the 2D scattering of dipolar solitons, a unique
possibility offered by the dipolar interactions in cold gases. We have shown that due to
the combination of inelastic trapping and initial angular momentum a spiraling motion
is possible, offering fascinating links to similar physics in photorrefractive materials.
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4. Dark Solitons in Three Dimensional

Dipolar Bose-Einstein Condensates

A dark soliton is a localized wavepacket consisting of a notch in the ambient density
and a phase slip across its centre. It is supported in repulsive/defocusing nonlinear
media where the shape of the wavepacket is preserved by a balance between dispersive
kinetic energy and the nonlinearity in the system. It has been thoroughly studied both
experimentally and theoretically in the context of non-linear optics [177]. As we have
mentioned in Chapter. 1 DSs are dynamically stable only in 1D and are unstable in
higher dimensions. DSs poses other instabilities like thermal instability, arising from the
interaction with a thermal cloud, that leads to dissipation causing the DS to accelerate
to the edge of the BEC and disappear [178]. Slow solitons are sensitive to quantum
fluctuations aswell [179].

We are particularly interested in the dynamical instability of DSs. In 2D and 3D they are
prone to transverse instabilities [180, 181, 182], and bend like a snake, finally decaying
into vortices in both BECs [183] and nonlinear optics [184]. In the context of BEC this
is used as a way to produce both vortices and anti-vortices [183], which is not possible
with the usual stirring techniques. A sufficiently tight transverse confinement could
prevent this dynamical instability [185]. Another kind of dynamical instability arises
from the fact that DSs are solutions of a homogeneous system, and hence the presence
of external confinement breaks the integrability. This leads to instability of soliton via
sound emission while moving through the inhomogeneous background density [186, 187].

In this chapter we focus on stationary DSs in dipolar BECs. In a 3D system a standing
DS has the form of a planar node, and in 2D it is a line or a band. Another way to create
higher dimensional DSs is to wrap a 3D or a 2D DS around on itself. In 2D it takes
the form of a nodal ring, termed as dark ring soliton, and in 3D it is a nodal spherical
shell, termed as spherical shell soliton [188, 189]. These objects are always unstable
in harmonic traps, but can have lifetimes larger than that of BEC experiments. In
this chapter we show that a long-range DDI could stabilize a 3D stationary DS in the
presence of a sufficiently strong optical lattices [190].

4.1. Dark Solitons in 3D BEC

In this section we briefly discuss the stability of a standing DS in a uniform short-range
interacting condensates [185]. Consider a homogeneous BEC, with repulsive inter-atomic
interaction (g > 0) and a condensate homogeneous density of n0. The chemical potential

51



Dark Solitons in Three Dimensional Dipolar Bose-Einstein Condensates

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

qζ

Im
(  

)/ε
µ

Figure 4.1.: Numerical results for the imaginary part of the excitation energies of a nodal plane.

of the system, µ = gn0, and we define the healing length ζ = ~/
√
mµ. Now, we assume

a stationary DS along the z direction, or in other words a nodal xy plane at the centre
of the condensate. The stationary solution of such a system is provided by the following
time-independent GP equation:

µΨ0(z) =

[

− ~
2

2m

∂2

∂z2
+ g|Ψ0(z)|2

]

Ψ0(z), (4.1)

where g = 4π~
2a/m. The Eq. (4.1) exhibits a simple solution describing the DS in the

z direction as

Ψ0(z) =
√
n0 tanh(z/ζ). (4.2)

The stability of the solution (4.2) is analyzed by means of Bogoliubov theory. We con-
sider the small amplitude modulations in nodal plane in the form: χ(~r, t) = u(z) exp[i(~q ·
~ρ− ǫt/~)]+v(z)∗ exp[−i(~q ·~ρ− ǫ∗t/~)], where q is the momentum of the transverse mode
with energy ǫ and the eigen wavefunctions u and v. Introducing this ansatz into (4.1)
and linearizing in χ, one obtains the Bogoliubov-de Gennes (BdG) equations for the
excitation energies ǫ and the corresponding eigenfunctions f± = u± v:

ǫf−(z) =

[

− ~
2

2m

(

∂2

∂z2
− q2

)

+ g|Ψ0(z)|2 − µ

]

f+(z) (4.3)

ǫf+(z) =

[

− ~
2

2m

(

∂2

∂z2
− q2

)

+ 3g|Ψ0(z)|2 − µ

]

f−(z) (4.4)

The lowest eigenvalue ǫ(q) for each q provides the dispersion law. It is found that
the excitation spectrum ǫ(q) is purely imaginary for qζ < 1, as shown in the Fig.
(4.1). The presence of imaginary modes, which grows exponentially in the systems,
indicates the dynamical instability of the DS. Because of this instability, the nodal
plane acquires a characteristic snake-like bending, known as snake instability (see Fig.
(4.2)). A subsequent decay of the DS into more stable structures as vortex rings and
sound excitations has been observed experimentally [183].
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Figure 4.2.: Density plot of the Snake Instability: The Dark Soliton at t = 0 starts to oscillate
and eventually breaks.

4.2. Dark Solitons in Dipolar BEC

In the following, we study the dynamical stability of DSs in a three-dimensional dipolar
BEC. We show that the long-range character of the DDI may have striking consequences
for the stability of DSs in dipolar BECs. Contrary to usual BECs, for which, as men-
tioned above, DSs become unstable when departing from the 1D condition, the DDI
may stabilize DSs in a 3D environement. This stabilization is purely due to the long-
range and anisotropic characters of the DDI. We study in detail the conditions for this
stabilization, and the stabilization regimes.

4.2.1. Model of the Problem

In the following, we consider a dipolar BEC in a 2D optical lattice, and with no other
external confinements. At sufficiently low temperatures the system is described by the
non-local non-linear Schrödinger equation (NLSE):

i~
∂

∂t
Ψ(~r, t) =

[

− ~
2

2m
∇2 + Vol(x, y) + g|Ψ(~r, t)|2

+

∫

d~r′Vd(~r − ~r′)|Ψ(~r′, t)|2
]

Ψ(~r, t), (4.5)

where g = 4π~
2a/m, with a the s-wave scattering length and m the particle mass. For

reasons that will become clear below, the BEC is assumed to be in a 2D optical lattice,

Vol(x, y) = sER

[

sin2(qlx) + sin2(qly)
]

, (4.6)

where ER = ~
2q2l /2m is the recoil energy, ql is the laser wave vector and s is the

dimensionless parameter providing the lattice depth.
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4.2.2. Lattice Calculations

In the tight-binding regime (i.e. for a sufficiently strong lattice but still maintaining the
coherence), we may write

Ψ(~r, t) = Σi,jwij(x, y)ψi,j(z, t), (4.7)

where wij(x, y) are the Wannier functions associated to the lowest energy band in the
2D periodic potential and the site located at (bi, bj), with b = π/ql. Hence, the discrete
GP equation reads as [191]

i~
∂ψij(z, t)

∂t
= −J(ψi+1,j(z, t) + ψi−1,j(z, t) + ψi,j+1(z, t) + ψi,j−1(z, t))

− ~
2

2m

∂2

∂z2
ψij(z, t) + ḡ|ψij(z, t)|2ψij(z, t) + Vdd(z, i, j, t)ψij(z, t) (4.8)

where

J = −
∫

w(x+ b)∗w(y)∗
[

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ Vext(x, y)

]

w(x)w(y)dxdy,

nij(z, t) = |ψij(z, t)|2,
fij(x, y) = f(x− bi, x− bj) = [w(x− bi)w(y − bj)]2,

ḡ = g

∫

|f(x, y)|2dxdy,

and

Vdd(z, i, j, t) =

∫

Vd(~r − ~r′)
∑

i′j′

ni′j′(z
′, t)fi′j′(x

′, y′)d3r′fij(x, y)dxdy (4.9)

In deriving the interaction term we made the following approximation: w(x+ bi)w(x+
bi′)w(y + bj)w(y + bj′) ≈ δii′δjj′f(x + bi, y + bj). Using the convolution theorem the
DDI term can be written as

Vdd(z, i, j, t) =
1

(2π)3

∫

d3kṼd(~k)|f̃(kx, ky)|2 × (4.10)

×
∑

i,′j′

ñi′j′(kz) exp
[

ikxb(i− i′) + ikyb(j − j′) + ikzz
]

,

where Ṽ (~k), f̃(kx, ky), and ñij(kz) denote the the Fourier transform of V (~r), f(x, y),
and nij(z), respectively. We define the discrete Fourier transform

ñ(~k) =
∑

ij

exp [−ikxbi− ikybj] ñij(kz) (4.11)

which fulfills

1. ñ(kx + 2πn/b, ky + 2πm/b, kz) = ñ(kx, ky, kz) with n,m = 0,±1,±2, ...
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2.

(

b

2π

)2 ∫

IBZ
ñ(~k) exp [ikxbi+ ikybj] dkxdky = ñij(kz)

where IBZ is the first Brillouin zone [(−π/b, π/b) × (−π/b, π/b)]. In the dipolar term
(4.11), we split the integral of kx and ky in the following way

∫ +∞

−∞
F (kx, ky) exp [ikxbi+ ikybj] dkxdky = (4.12)

∑

nm

∫

IBZ
F (kx + 2πn/b, ky + 2πm/b) exp [ikxbi+ ikybj] dkxdky

and we obtain

Vdd(z, j) =

∫

IBZ
Ṽ(k)ñ(k) exp [ikxbi+ ikybj + ikzz] d3k (4.13)

with

Ṽ(k) =
∑

nm

Ṽ (kx + 2πn/b, ky + 2πm/b, kz)|f̃(kx + 2πn/b, ky + 2πm/b)|2 (4.14)

We assume that b is the smallest scale of distance. Since the soliton core has a size of
the order of the healing length, then the dominant contribution is provided by kz ∼ 1/ξ,
where ξ is the healing length. We assume b ≪ ξ. In addition, we will be interested in
kx, ky momenta q such that q ∼ 1/ξ. Hence for n,m 6= 0, Ṽ (kx+2πn/b, ky+2πm/b, kz) ≃
Ṽ (2πn/b, 2πm/b, 0) = −gd/2. Then

Ṽ(k) = Ṽ (k)|f̃(kx, ky)|2 + Cdd(kx, ky) (4.15)

Cdd(kx, ky) = gd

∑

m6=0

|f̃(kx + 2πn/b, ky + 2πm/b)|2

≈ gd

∑

n,m6=0

exp
[

−(kx + 2πn/b)2σ2/2
]

exp
[

−(ky + 2πm/b)2σ2/2
]

≈

≈ gd

∑

n,m6=0

exp
[

−(2πn/b)2σ2/2
]

exp
[

−(2πm/b)2σ2/2
]

=

= gd(Θ3

(

0, exp
[

−2π2σ2/b2
])

− 1)2 ≡ Gd. (4.16)

where Θ is the elliptic theta function. In the previous expressions we have assumed
a Gaussian form (with width σ ≃ b/πs1/4 with s = V0/ER (see Chapter 1)) for the
function f ; it is known that it gives good results for the interaction term. The final
form of the discrete GPE reads

i~
∂ψij(z, t)

∂t
= −J(ψi+1,j(z, t) + ψi−1,j(z, t) + ψi,j+1(z, t) + ψi,j−1(z, t))

− ~
2

2m

∂2

∂z2
ψij(ρ, t) + g̃|ψij(z, t)|2ψij(z, t)

+

∫

IBZ
Ṽ (~k)|f̃(kx, ky)|2ñ(~k, t) exp [ikxbi+ ikybj + ikzz]

d3k

(2π)3
ψij(z, t)
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where we redefine the contact interaction

g̃ = ḡ +
Gd

b2
(4.17)

4.2.3. Effective continuous model - coarse-grained

Since we will consider (in our Bogoliubov analysis) kz ≪ π/b, then we can actually
re-write an effective continuous model. To this aim we rewrite the tunneling part as
[192]

− J(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j) → −Jb2
(

∂2
x + ∂2

y

)

ψ (4.18)

= − ~
2

2m∗

(

∂2
x + ∂2

y

)

ψ,

where we have employed the effective mass associated to the lowest band E(κ) =
−2J(cosκxb + cosκyb) at quasi-momentum κ = 0, namely ~

2/2m∗ = Jb2. We added
the term 4Jψi,j which it only shifts the chemical potential. We redefine

1

b
ψij(ρ) → ψ(~r), (4.19)

where now ψ(~r) is the new coarse-grained wave function. As a consequence

g̃ni,j(z) → g̃n(~r) (4.20)

where b2g̃ → g̃ and ni,j(z)/b2 → n(~r) and

∫

IBZ
Ṽ (~k)|f̃(kx, ky)|2ñ(~k) exp [ikxbi+ ikybj + kzz] d3k →

∫

Ṽ (~k)ñ(~k) exp
[

i~k~r
]

d3k.

(4.21)
In this expression we have employed that since, as discussed above, we will consider
that at most kz ∼ 1/ξ, and ξ ≫ σ, then |f̃(kx, ky)| ≃ 1. In conclusion, the effective
continuous GPE (which we employ in the following) reads:

i~
∂Ψ(~r, t)

∂t
=

[

− ~
2

2m∗

(

∂2

∂x2
+

∂2

∂y2

)

− ~
2

2m

∂2

∂z2
+ g̃n(~r, t)

]

Ψ(~r, t) +

+
1

(2π)3

∫

Ṽ (~k)ñ(~k, t) exp(i~k · ~r)d3kΨ(~r, t) (4.22)

where

g̃ = gb2
∫

|f(x, y)|2dxdy + Gd ≈ g

2π

(

b

σ

)2

+ gd(Θ3

(

0, exp
[

−2π2σ2/b2
])

− 1)2, (4.23)

where in the latest equation we assumed, as above, a Gaussian approximation for the
Wannier function.
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4.2.4. Time-independent Solution

We assume that the DS lies on the xy plane, hence the solution can be written as:
Ψ0(~r, t) = ψ0(z) exp[−iµt/~], where µ is the chemical potential. Introducing this ex-
pression into Eq. (4.22) we obtain a 1D time-independent NLSE in z of the form:

µψ0(z) =

[

− ~
2

2m

∂2

∂z2
+ ḡ|ψ0(z)|2

]

ψ0(z). (4.24)

Since ψ0 is independent of x and y, in Eq. (1.8) the DDI just regularizes the value of the
local coupling constant ḡ = g̃ + gd. Eq. (1.8) allows for a simple solution describing a
DS, ψ0 =

√
n0 tanh(z/ζ), where ζ = ~/

√
mḡn0 is the corresponding healing length and

n0 is the bulk density. In the following we use the dimensionless parameter β = gd/g̃.

4.2.5. Bogoliubov Excitations

In order to study the dynamical stability of the DS, we do the Bogoliubov analysis by
considering a transversal perturbation in the nodal plane of the form: Ψ(~r, t) = Ψ0(~r, t)+
χ(~r, t) exp(−iµt/~), where χ(~r, t) = u(z) exp[i(~q · ~ρ− ǫt/~)] +v(z)∗ exp[−i(~q · ~ρ− ǫ∗t/~)],
where q is the momentum of the transverse modes with energy ǫ. Introducing this ansatz
into (4.5) and linearizing in χ, one obtains the Bogoliubov-de Gennes (BdG) equations
for the excitation energies ǫ and the corresponding eigenfunctions f± = u± v:

ǫf−(z) =

[

− ~
2

2m

(

∂2

∂z2
− m

m∗
q2
)

− µ+ 3ḡψ0(z)2
]

f+(z)

−3

2
gdqψ0(z)

∫ ∞

−∞
dz′ exp(−q|z − z′|)ψ0(z′)f+(z′), (4.25)

ǫf+(z) =

[

− ~
2

2m

(

∂2

∂z2
− m

m∗
q2
)

− µ+ ḡψ0(z)2
]

f−(z) (4.26)

The lowest eigenvalue ǫ(q) for each q provides the dispersion law. Note that the DDI
has two main effects: (i) it leads to a regularized ḡ, and (ii) it introduces a qualitatively
new term in the second line of Eq. (4.25). Whereas the first effect leads to a quantitative
modification of the DS width since it modifies the healing length ζ, the second effect is a
purely dipole-induced non local effect, which, as we show below, may lead to remarkable
consequences for the DS stability.

When β = 0 (no DDI) and m/m∗ = 1 (no lattice), we recover the BdG equations:
(4.3) and (4.4), obtained in the case of standard short-range interacting BECs. It
has been shown [185] that in that case the dispersion law ǫ(q) is purely imaginary
for qζ < 1 (Fig. 4.1). Hence DSs in homogeneous 3D short-range interacting BECs,
are dynamically unstable against transverse modulations. Due to this instability the
nodal plane acquires a characteristic snake-like bending. As we discussed before it is
called the snake instability (see Fig. 4.2) and has been experimentally observed in non
linear optics [193, 184] and recently in the context of BEC [183]. In the latter case,
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Figure 4.3.: Numerical results for the imaginary part of the excitation energies of a DS for
m/m∗ = 1, and β = 0 (triangles), −0.5 (squares) and 1 (circles). Solid lines
correspond to the analytical result for low momenta.
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Figure 4.4.: Numerical results for the imaginary part of the excitation energies of a DS for
β = 0, and m/m∗ = 0.2 (squares), 0.1 (triangles) and 0.05 (circles). Solid lines
correspond to the analytical result for low momenta.

the bending results in the decay of a DS into vortex rings and sound excitations [180].
In the presence of a 2D lattice, we found that the DS remains dynamically unstable
[see Fig. (4.4)]. The lattice is taken into account through the effective mass. We have
obtained the Bogoliubov excitation spectrum for different lattice strengths as shown in
Fig. (4.4). It is found that the imaginary modes still remain in the system even in the
presence of an optical lattice, hence conveying the message that a lattice alone cannot
stabilize a stationary DS.

In the presence of DDI (β 6= 0) but without lattice (m/m∗ = 1), the transverse instability
persists, since ǫ(q) remains imaginary for qζ < 1. For β > 0 (β < 0), |ǫ(q)| decreases
(increases) when |β| grows [Fig. (4.3)]. The situation can change dramatically in the
presence of both the DDI and an optical lattice in the xy plane. Surprisingly, for
sufficiently large dipoles and small m/m∗, ǫ(q) becomes real and hence the dark soliton
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Figure 4.5.: Real part of the excitation energies of a DS for m/m∗ = 0.1, and β = 1.6. Solid
line corresponds to the analytical result for low momenta while empty circles
correspond to numerical results.

becomes dynamically stable [see Fig. (4.5)]. This remarkable fact can be understood by
analyzing the surface tension of the nodal plane.

4.2.6. Variational Analysis

In this section we introduce a variational approach to calculate the lowest modes of a
dark soliton. We notice that for low momenta, the Bogoliubov excitations ǫ(q) is always
linear in q, suggesting the idea that for low momenta, the nodal plane may be described
by an elastic model with Lagrangian density:

L(∂φ/∂t, ~∇φ) = (M/2) (∂φ/∂t)2 − (σ/2)|~∇φ|2, (4.27)

where φ is the displacement field of the nodal plane from the ground state, M is the
mass per unit area and σ plays the role of a surface tension of the nodal plane. The
eigen frequencies of the Lagrangian (4.27) are,

ω =

√

σ

M
q. (4.28)

Hence by analyzing the nature of term
√

σ/M , one could study the stability of the
lowest phonon modes in the nodal plane. By expanding the energy of a moving soliton
up to second order in the velocity, we obtain the soliton mass M = −4~n0/c, where
c =

√

ḡn0/m is the sound velocity. Note that M < 0. Since the mass is negative, the
stability of the phonon modes require σ > 0, otherwise the modes (4.28) become purely
imaginary. We calculate σ by inserting a variational ansatz of the form:

Ψvar(~r) =
√
n0 tanh[(z −

√
2α cos(qx))/ζ], (4.29)
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in the energy functional of a dark soliton with DDI,

E =

∫

d~r

[

~
2

2m
|∇Ψvar|2 +

ḡ

2

(

|Ψvar(~r)|2 − n0

)2

+

∫

d~r′Vd(~r − ~r′)
(

|Ψvar(~r′, t)|2| − n0

) (

Ψvar(~r, t)|2 − n0

)

]

. (4.30)

Eq. (4.29) represents a transverse modulation of the nodal plane with amplitude α
and momentum q. The dipolar part of the energy is again calculated by employing
the convolution theorem and hence the Fourier transform of the DDI, and for small
amplitude α one obtain the energy of a dark soliton with modulation:

E = E0 + E1 (4.31)

with

E0 =
2~

2n0

3ζm
+

2ḡn2
0ζ

3
(4.32)

and

E1 =
2~

2α2n0

3ζm
q2 − 3π

8
gdn

2
0ζ

2α2q2
∫

dkz
k4

z

(q2 + k2
z) sinh(kzζπ/2)

, (4.33)

where E0 is the energy of a dark soliton without the modulation in the nodal plane and
E1 provides the energy associated with the small amplitude modulations in the nodal
plane. Since we are interested in the energy associated with the modes q → 0, the
integral in the Eq. (4.33) is estimated upto the second order in q, and also taking into
account the optical lattice in the xy plane, which replaces m by m∗ in Eq. (4.33), we
finally obtain

E1 ≈
(

2~
2α2n0

3ζm∗
− gdn

2
0ζ

)

α2q2. (4.34)

By assuming the ansatz (4.29) in the Lagrangian (4.27), one obtains the energy associ-
ated with linear excitations,

EL =
σ

2
α2q2. (4.35)

By equating Eqs. (4.34) and (4.35), we obtain the expression for the surface tension of
the nodal plane,

σ =
4n0~

2

3ζm∗
− 2gdn

2
0ζ (4.36)

Then the eigenmodes:

ǫ2/~2 = ω2 = (σ/M)q2, (4.37)
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which provide the low energy linear excitations of the dark soliton, can be either purely
real or purely imaginary, crucially depending on the sign of σ/M . In the absence of DDI
(β = 0), σ is always positive, the modes are purely imaginary, and hence the DS shows
snake instability for any value of m/m∗ (see Fig. (4.4)). The stabilization hence is a
characteristic feature introduced by the DDI. Note that for β = 0 and m/m∗ = 1 our
analytical result coincides with the one found in Ref. [185], where the linear excitations
are found to be ǫ(q → 0) = qζ/3. In the absence of an additional optical lattice, the
dynamical instability of the DS at low q dissapears for β > 2, i.e. for situations for which
the homogeneous dipolar BEC as a whole is itself unstable against local collapses. Such
instability, which we termed as the phonon-instability, will be discussed in detail in
Chapter. 5. Increasing the depth of the lattice potential reduces the role of the kinetic
energy term (m/m∗)q2 in Eqs. (4.25) and (4.26) (or equivalently reduces the first term
in Eq. (4.36)) and hence enhances the role of DDI. A sufficiently large DDI or small
m/m∗ < (m/m∗)cr = 3β/2(1 + β) leads to stable low-energy(q → 0) linear excitations.
We have confirmed that this analytical result coincides with our results obtained from
BdG Eqs. (4.25) and (4.26). When m/m∗ decreases further or β grows, a wider regime
of momenta up to q

√

m/m∗ζ ∼ 1 is stabilized [Fig. (4.5)]. Indeed, direct numerical
simulations of 3D GP equation show that the dark nodal plane becomes completely
stable against snake instability, whereas under the same conditions the DS is unstable
in the absence of DDI. Instabilities may appear for momenta q

√

m/m∗ζ ∼ 1, but this
large-momentum instability is typically irrelevant, since for sufficiently small m/m∗ it
concerns momenta much larger than the lattice momentum. Although our effective
mass theory breaks down for such momenta, it becomes clear that such high momentum
instabilities are physically prevented by the zero point oscillations at each lattice site 1

4.3. Summary

Summarizing, contrary to short-range interacting BECs, where snake instability is just
prevented by a sufficiently strong transverse confinement, dipolar BECs allow for stable
dark solitons of arbitrarily large transversal sizes. Dissipation would eventually lead to
thermodynamical instability [182] whose detailed analysis, as well as that of quantum
instabilities [194], demands a separate work. We have obtained the stability conditions,
which demand a sufficiently large dipole and a sufficiently deep optical lattice in the
nodal plane. We stress, that the stabilization of nodal planes against snake instability is
purely linked to the long-range nature of the DDI, opening a qualitatively new scenario
in non linear atom optics.

1The lattice-induced large-momentum cut-off is introduced in our simulations of 3D GP equation is by
the numerical grid in the xy plane.
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Phonon-instability in Dipolar BEC
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5. Phonon-instability in Dipolar

Bose-Einstein Condensates

The stability of dipolar BEC is an issue of obvious concern due to the partially attrac-
tive character of the DDI. We have discussed the stability of a purely dipolar trapped
condensates in Chapter 1. It was shown that the properties of the trapped dipolar
BECs crucially depend on the trap geometry [83]. In this chapter, we extend our study
to the stability of dipolar BECs by means of Bogoliubov theory and direct numerical
simulations, in particular in the case of 2D dipolar BECs [168].

5.1. Attractive Short-range Interacting Condensates

Bogoliubov spectrum for the elementary excitations of an attractive short-range inter-
acting homogeneous BECs reads as ,

ǫ(k) = [Ek(Ek + 2g(d)n0)]1/2, (5.1)

where Ek = ~
2k2/2m is the kinetic energy and g(d) provides the interaction for a d

dimensional BEC. Since g(d) < 0 for an attractive BEC, the linear Bogoliubov excitations
(ǫ(k → 0)) are purely imaginary. Such imaginary modes grow exponentially in time, and
lead to the instability of the homogeneous BEC. Since the phonon modes are unstable,
we term such instability as phonon-instability (PI). A direct numerical analysis of the
GP Eq. (1.6) shows that a homogeneous BEC with short-range attractive interaction
is unstable against local collapses in 2D and 3D situations. But in the case of 1D
attractive BECs, the low momenta excitations are also purely imaginary, but show a
qualitatively different post-instability dynamics. Instead of collapse, the homogeneous
BEC is stabilized due to the formation of bright solitons [29, 30, 31].

A 3D attractive BEC may get stabilized in an external trap if the number of atoms in
the BEC is below a critical number [195, 196, 28, 197] as we discussed in Chapter 1.
The zero-point energy due to confinement act as a barrier against collapse, following
the formation of a metastable BEC. Just below the critical number, the atoms tunnel
through the barrier and the system collapses spontaneously [198]. The collapse in an
attractive BEC can be controlled by means of Feshbach resonances, which are used to
tune the interaction from repulsive to attractive [26, 197, 199]. After the tuning of
interaction the cloud shrinks and eventually disappeares because the cloud becomes too
small. It is observed that a burst of atoms emanates from the remanant BEC during the
collapse [26] resembling supernova explosion. It is also found that the collapse is partial
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[200, 201], rather than complete. As an interesting feature, numerical simulations of
trapped attractive condensates revealed pattern formation once BEC becomes unstable
against collapse [202].

5.2. Three-dimensional dipolar BECs

We have shown in Chapter 1 that purely dipolar homogeneous BECs are unstable
against low momentum excitations similar to the case of short-range attractively in-
teracting condensates. The competition between repulsive short-range interaction and
the anisotropic DDI would provide a stability window for the parameter β = gd/g in
the case of dipolar BECs, which we discuss below. The 3D homogeneous (Vext(~r) = 0)
solution of Eq. (2.1) is Ψ(~r, t) =

√
n̄3d exp [−iµ3dt/~], where n̄3d denotes the 3D density,

and µ3d = (g+ Ṽd(0))n̄3d is the chemical potential, with Ṽd(~q) = (4π/3)αd2[3q2z/|~q|2−1]
the Fourier transform of the DDI for dipoles oriented along the z-direction. In the fol-
lowing we assume g > 0. A Bogoliubov analysis of the 3D homogeneous BEC provides
the dispersion relation for quasiparticles:

ǫ(~q) = [Ekin(~q)[Ekin(~q) + Eint(~q)]]
1/2, (5.2)

where Ekin(~q) = (~2q2ρ + ~
2q2z)/2m is the kinetic energy, and Eint(~q) = 2(g + Ṽd(~q))n̄3d

is the interaction energy, which includes both short-range and dipolar parts. Note that
Ṽd(~q) may become negative for some particular directions, and hence for low momenta
phonon instability is just prevented if −3/8π < β < 3/4π. If α > 0, phonons with
~q lying on the xy plane are unstable if β > 3/4π, while for α < 0 phonons with ~q
along z are unstable if β < −3/8π. In both cases, the dipolar BEC is unstable against
local collapses. In the presence of trapping, this instability leads to a global collapse of
the BEC, and may be geometrically prevented in sufficiently pancake-shapped traps, as
shown recently in [1]. The complex collapse dynamics involves an anisotropic d-wave
explosion resembling the d- wave symmetry of the DDI (see Fig. (5.1)), and an abrupt
atom number loss is observed. The experimental results show an excellent agreement
with mean-field calculations involving three-body losses.

5.3. Two-dimensional Dipolar BECs

Now we study the stability of 2D dipolar BECs with and without the external confine-
ment. In the following we show that the PI is crucially different in 2D. We first consider
an homogeneous dipolar BEC in the xy plane, which is strongly confined by an harmonic
potential V (z) = mω2

zz
2/2 along the transversal z-direction. If the chemical potential

µ2d ≪ ~ωz, the system can be considered “frozen” into the ground state φ0(z) of V and
hence the BEC wave function factorizes as Ψ(~r) = ψ(~ρ)φ0(z). The dipole orientation
with respect to the xy plane plays a crucial role in the dynamics of 2D dipolar BECs. In
the following we discuss two extremal configurations, in which the dipoles are normal to
the xy plane (⊥-configuration) and parallel to it (along x) (||-configuration). In order to
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Figure 5.1.: Series of images for the collapse dynamics of a dipolar BEC in a 3D trap. Upper
row shows the experimental results and lower row shows the results of mean-field
numerical calculations for the same set of experimental parameters. The picture
is taken from the Ref. [1]

study the dynamics of 2D dipolar BECs we use the reduced 2D GP Eq. (2.2) obtained
in Chapter 2:

i~
∂

∂t
ψ(~ρ) =

[

− ~
2

2m
∇2

ρ +
g√
2πlz

|ψ(~ρ)|2

+
4
√
πgβ

3
√

2lz

∫

d~k

(2π)2
ei

~k·~ρñ(~k)h2D

(

~klz√
2

)]

ψ(~ρ), (5.3)

where ~k is the xy-momentum, ñ the Fourier transform of |ψ(~ρ)|2, h2D(~κ) = 2−3
√
πκeκ

2

erfc(κ)
for ⊥-configuration, and h2D(~κ) = −1+3

√

π/2(κ2
x/k)eκ

2

erfc(κ) for ||-configuration, with
erfc(κ) the complementary error function and lz =

√

~/mωz.

5.3.1. Bogoliubov Excitations of a 2D Dipolar BEC

The homogeneous solution of (5.3) is ψ(~ρ, t) =
√
n̄2d exp [−iµ2dt/~], where n̄2d denotes

the homogeneous 2D density, and µ2d = gn̄2d(1 + 8πβ/3)/
√

2πlz is the chemical po-
tential for ⊥-configuration and µ2d = gn̄2d(1 − 4πβ/3)/

√
2πlz for ||-configuration. The

corresponding Bogoliubov equations provide the dispersion relation for elementary ex-
citations of 2D BEC [203, 204]:

ǫ(~k)2 = E2
kin +

2gn0Ekin√
2πlz

[

1 +
4πβ

3
h2D

(

klz√
2

)]

(5.4)

where Ekin = ~
2|~k|2/2m is the kinetic energy. In the following we study in detail the

stability of 2D dipolar BEC based on the Bogoliubov excitations (5.4).
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Figure 5.2.: 2D soliton gas after phonon instability of an homogeneous dipolar BEC. For both
the figures µ = −0.2 and g/(

√
2πlz) = 10. (top) ⊥-configuration, β = −0.2,

t = 484/ωz; (bottom) ||-configuration, β = 0.3, and t = 108/ωz.

5.3.2. Dipoles Normal to the Plane

We discuss first the ⊥-configuration where the dipoles are oriented perpendicular to the
xy plane. From (5.4) we see that the excitations with ~k → 0 become purely imaginary if
β < −3/8π, i.e. phonon-instability demands the tuning of the DDI using the rotating-
orienting fields [100]. We recall from Chapter. 2 that the stable 2D isotropic bright
solitons are possible for g > 0 if β < −3/8π [152]. That means that the conditions for
phonon-instability and soliton stability are exactly identical. This fact, far from being
accidental, shows that PI and 2D soliton formation are intrinsically linked.

Using Eq. (5.3), we have numerically studied the post-PI dynamics by employing peri-
odic boundary conditions. In all our simulations, we check that µ̃2d = µ2d/~ωz ≪ 1 to
ensure the 2D character of the problem. Starting from an homogeneous solution with
an overimposed random noise provided by a tiny random local phase (< 10−4π), our
real time simulations show the dynamical formation of a soliton gas, Fig. (5.2) (top).
The long-range character of the DDI leads to an attractive soliton-soliton interaction
(since β < 0). As discussed in Ref. [173] the soliton-soliton scattering is inelastic, and
for low relative velocities (as it is the case in the soliton gas) soliton fusion is expected.
This is indeed observed, and hence the number of solitons decreases in time, whereas
the number of particles per soliton increases. As long as the problem remains 2D, the
isotropic solitons remain stable (contrary to the anisotropic solitons discussed below).
However, the density within a given soliton may eventually become large enough to
violate the 2D condition µ̃2d ≪ 1. In that case the soliton becomes unstable against 3D
collapse [152] as we discussed in Chapter. 2.
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5.3.3. Dipoles Parallel to the Plane

The ||-configuration shows a relatively similar physics. From Eq. (5.4) we see that the
Bogoliubov excitations ǫ(~k → 0) becomes unstable if β > 3/4π. This condition is exactly
that found recently in Ref. [153] for the stability of 2D anisotropic bright solitons, whose
properties were discussed in Chapter 2. Unlike isotropic solitons, anisotropic solitons
undergo collapse once the number of atoms surpasses a critical number [168], a crucial
point concerning possible experiments which we discuss below.

Using Eq. (6.4), and starting once more from an homogeneous gas, we have observed
the dynamical formation of a gas of anisotropic solitons, after the initial formation of
stripes along the dipole axis (Fig. (5.2), bottom). Due to the anisotropic nature of DDI
in the plane, the inelastic dynamics of anisotropic solitons is relatively more complicated.
Solitons along the x axis attract each other, fuse together and become unstable against
2D collapse once they surpass the critical number of particles per soliton.

5.3.4. Trapped 2D dipolar BECs

Now we consider an harmonic trap on the xy-plane of the form V (ρ) = mω2
ρρ

2/2. As
an initial condition for our time evolution, we employed a dipolar BEC in the Thomas-
Fermi regime (sufficiently large g), obtained for the ⊥-configuration with β > 0 (no
phonon-instability) by imaginary time evolution of Eq. (5.3). As above we multiply the
wavefunction by a tiny random phase. In order to trigger the phonon-like instability in
our real time evolutions, at time t = 0 we may either switch to β < 0 (which keeps the
polar symmetry) or tilt the dipole switching into the ||-configuration (hence violating
the polar symmetry). We call these two cases, cases (i) and (ii).

Figs. (5.3) illustrate the case (i). The phonon-like instability leads to transient ring-
shaped structures. The formed ring structures resemble to those found in pre-collapse
dynamics of an attractive short-range interacting BEC [202]. The harmonic trap leads
to successive shrinkings and expansions of the rings, which oscillate in the trap. This
process continues until the rings merge into a single excited soliton. We have observed
that for sufficiently shallow traps the ring structures develop azimuthal instability, which
again leads to the formation of 2D bright solitons, recovering, as expected, the homo-
geneous case. The case (ii) is illustrated in Figs. (5.4). An initial anisotropic ring-like
structure breaks into a pair of anisotropic clouds, which eventually merge into the trap
center forming a single stable bright soliton, which as expected is anisotropic, being more
elongated in the dipole x-direction. Note that for both (i) and (ii) the non-dissipative
character of the problem implies that the solitons are produced in an excited internal
state.

Now, we comment on possible experimental realizations. PI for dipoles lying on the
trap plane (and hence anisotropic solitons [153]) does not require tuning, which may
be experimentally demanding. Hence, 2D post-PI dynamics should be relatively easy
to observe in on-going experiments. A possible path would be to prepare a 2D stable
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Figure 5.3.: Trapped BEC in the ⊥-configuration. In the simulations, ωρ = 0.001ωz,
g/(

√
2πlz) = 200 and β = 0.3 (t < 0) and −0.3 (t > 0). (left) Formation of ring

structures (t = 810/ωz); (right) Final soliton at the trap center (t = 7500/ωz).
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Figure 5.4.: Trapped BEC after tilting at t = 0 from ⊥ to || configuration, with ωρ = 0.001ωz,
g/(

√
2πlz) = 200 and β = 0.3. (left) Anisotropic ring formation (t = 1092/ωz);

(right) Final formation of an anisotropic soliton (t = 1281/ωz).

BEC orienting the dipoles perpendicular to the trap plane, and then suddenly re-orient
the dipoles on the plane. An equivalent alternative, more feasible experimentally, would
be to maintain at any time the dipole on the trap plane, but drive the instability by
increasing β using Feshbach resonances as in Ref. [1]. As we have shown, the 2D post-
PI dynamics should lead to the creation of 2D bright solitons for the first time ever in
quantum gases, since they are fundamentally impossible in absence of DDI. 2D solitons
would offer new scenarios for the matter-wave soliton scattering (see Chapter 3), as e.g.
2D inelastic scattering and spiraling, similar to that in photorrefractive materials [155].

5.4. One-dimensional Dipolar BECs

To complete the discussion on PI in dipolar BECs we briefly mention the post-PI dy-
namics in 1D dipolar BEC. We consider a dipolar BEC with dipoles polarized along
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Figure 5.5.: Numerical results for the formation of 1D bright solitons as a conseqeunce of the
phonon-instability in a homogeneous 1D dipolar BEC. The figure is obtained for
µ̃ = −0.9, β = 0.3 and g/2πl2ρ = 20. The figure is at a time t = 3.5/ωρ. n(z) is
the density of the condensate

the z axis and a strong confinement in the xy plane provided by an external potential:
Vext(ρ) = mω2

ρρ
2/2. Bogoliubov analysis provides the following dispersion relation for

an 1D homogeneous dipolar BEC:

ǫ(~kz)2 = E2
kin +

gn0Ekin

πl2ρ

[

1 − 4πβ

3
h1D (kzlρ)

]

, (5.5)

where lρ =
√

~/mωρ, and h1D(x) = 1− 2πx2ex
2

Γ(0, x2/2) with Γ the upper incomplete
gamma function. As one can see from Eq. (5.5) the low-momenta modes ǫ(kz → 0)
become purely imaginary for β > 3/4π if g > 0. Noted that, as we discussed in Chapter
3, the condition for phonon-instability coincide with the stability of 1D bright solitons
in dipolar BECs. Eventhough, the phonon-instability leads to soliton formation both
in dipolar and short-range attractive 1D BECs, the soliton dynamics is qualitatively
different in both the cases. In the short-range case, the solitons are formed with a
relative phase difference of π, and hence the solitons repel each other leading to the
formation of a stable soliton train [30, 31]. On the contrary, in dipolar BECs the solitons
are formed with attractive interactions between the solitons due to the attractive nature
of DDI along the polarized z axis. As a consequence, the formed 1D dipolar solitons
attract each other, and fuse together. Since we are not assuming any dissipation in the
system the formed solitons will be in an excited state. After sufficiently large time, the
solitons will emerge into a single excited soliton. The soliton may be unstable against
3D collapse if the density in a single soliton is large enough such that the soliton looses
its 1D character.

5.5. Summary

Summarizing, we have shown that the post-PI dynamics of a 2D dipolar BEC differs
qualitatively from 2D and 3D short-range interacting gases, and 3D dipolar BECs.
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Contrary to these cases, the PI is not necessarily followed by the collapse of the gas,
but on the contrary leads to a transient regime characterized by the formation of a gas
of attractive inelastic 2D bright solitons, which eventually undergo fusion, leading to
the creation of a single excited stable bright soliton. If the dipoles are normal to the
trap plane these solitons are stable as long as the gas remains 2D, whereas if the dipoles
are parallel to the trap plane the (anisotropic) solitons may become unstable even in
2D for a critical number of particles per soliton. We have shown that the phonon-like
instability in the presence of an harmonic confinement is followed by the creation of
transient ring-like and anisotropic patterns, which eventually lead to the creation of a
single excited 2D soliton. Finally, we have analyzed the post-PI dynamics in 1D dipolar
BECs characterized by the formation of attractive solitons which merge into a single
one, differing from the usual repulsive soliton train in non-dipolar BECs.
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6. Faraday Patterns in Dipolar BEC

Pattern formation may occur naturally or in driven systems when the non-linearity in the
system is modulated. Externally driven or Faraday patterns have been observed in many
systems including those in hydrodynamics, non-linear optics, liquid crystals, chemical
reactions and biological media [44, 205]. Recently it has been predicted theoretically
[206, 207, 208] and also observed experimentally [209] in BEC. Faraday type modulation
in trapped short-range interacting condensates can be achieved by modulating either the
interatomic interaction or the external trap. In the experiment [209], a modulation of the
trap was employed for a cigar-shaped BEC. The wavelength of the pattern is typically
determined by the wavenumber associated with the Bogoliubov excitation in resonance
with half of the forcing frequency. In this sense, the experiments on Faraday patterns
in BEC are certainly interesting, since they allow for the study of collective excitations
in a relatively simple way [209, 208].

The study of collective excitations is very essential for the understanding of the macro-
scopic behavior of atomic BECs. Low-lying excitations in trapped short-range inter-
acting BECs have been studied [210, 211, 212], in which trap modulation and Bragg
spectroscopy was employed. The experimental results show an excellent agreement with
the results of mean-field calculations [213, 192]. The excitations in strongly interact-
ing Bose gases [214, 215] were also studied using Bragg spectroscopy [216, 217]. As
mentioned in Chapter 1 contrary to the phonon-single particle spectrum of short range
BECs, dipolar gases may present a roton-maxon excitation spectrum due to the mo-
mentum dependence of the anisotropic long-range DDI [144].

In this chapter, we show that pattern formation is crucially modified in dipolar BECs
with a roton-maxon spectrum. Remarkably, contrary to many pattern forming systems,
including non-dipolar BECs, the first unstable mode does not necessarily determine
the emerging pattern, which may be dominated by harmonics of the driving frequency
with energies close to the roton minimum. As a result of that and of the multi-valued
character of the roton-maxon spectrum the pattern size presents a highly non trivial
dependence with the driving frequency characterized even for shallow roton minima
by abrupt transitions in the pattern size. These transitions, which are especially pro-
nounced when the DDI is modulated, may be employed to reveal easily the appearance
of a roton-minimum in experiments on dipolar BECs.
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Faraday Patterns in Dipolar BEC

6.1. Faraday Instability in Short-range Interacting Condensates

First, we briefly discuss the formation of Faraday patterns in short-range interacting
condensates as studied in [206]. We consider a 2D homogeneous repulsive BEC realized
by a strong confinement in the z axis. We assume a periodically modulated s-wave
scattering length in time: a(t) = ā[a + 2α cos(2ωt)] around its mean value ā with a
modulation frequency ω. The system is decribed by a reduced 2D-GP equation:

i~
∂

∂t
Ψ(~ρ, t) =

(

− ~
2

2m
∇2

x,y + g(t)|Ψ|2
)

Ψ(~ρ, t), (6.1)

where g(t) = ḡ[a+ 2α cos(2ωt)] = 4π~
2a(t)/m. The spatially homogeneous, temporally

periodic solution of Eq. (6.1) is Ψhom(t) = exp[−iµ(t+ α/ω sin(2ωt))/~]. The periodic
modulation in short-range interaction induce spontaneous spatial-symmetry breaking
of the homogeneous state, and results in the formation of Faraday patterns. In order
to study the symmetry breaking, we perform a linear stability analysis with a suitable
ansatz:

Ψ(~ρ, t) = Ψhom(t)[1 + w(t) cos(~k · ~ρ)], (6.2)

where w is the complex-valued amplitude of the perturbation and ~k is the momentum
vector in the xy plane. Using Eq. (6.2) in Eq. (6.1) we obtain the following Mathieu
equation in u = Re(w):

d2u

dt2
+

1

~2

[

ǫ(k)2 + 4αg2dn2dEk cos(2ωt)
]

u = 0, (6.3)

where ǫ(k) =
√

E2
k + 2g2dn2dEk is the Bogoliubov excitations with Ek = ~

2k2/2m,

g2d = ḡ/
√

2πlz and n2d is the 2D homogeneous density. Following Floquet Theorem,
the solutions of Eq. (6.3) are of the form u(t) = c(t) expσt, where c(t) = c(t + 2π/ω)
and σ(k, ω, α) is the so-called Floquet exponent. If Re(σ) > 0 the homogeneous BEC
is dynamically unstable against the formation of Faraday patterns, whose typical wave-
length is dominated by the most unstable mode i.e. the one with the largest Re(σ) > 0.
For vanishing modulation the system becomes unstable at the parametric resonances
ǫ(k) = n~ω (n = 1, 2, ...). Similar wavenumber selection is also found in parametri-
cally forced spatially extended systems, such as in the Faraday instability of vertically
vibrated fluids [218, 219].

The neutral stability diagram obtained by analyzing the Floquet exponent is shown in
the Fig. (6.1(a)). We have numerically studied the dynamical instability induced by
the modulation and the corresponding Faraday patterns (see Fig. (6.1(b))) by simu-
lating Eq. (6.1) with periodic boundary conditions and an overimposed random noise
provided by a tiny random local phase (< 10−3π) on the homogeneous solution. The
numerical calculations show excellent agreement with the Foquet analysis. Since BECs
with repulsive short-range interactions exhibit a spectrum ǫ(k)2 = Ek[Ek + 2g2dn2d],
characterized by phonon-like excitations at low k and single-particle excitations at large
k. For any given driving frequency the most unstable mode is always provided by the
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Figure 6.1.: Resonant tongues and corresponding Faraday pattern for the parametric insta-
bility in short-range interacting condensates. The white domains indicate the
instability regions where the homogeneous state is unstable as following from the
Floquet analysis of Eq. (6.3). The plot is for ω = 0.2, and ζ =

√

~2/2mµ with µ
is the chemical potential.

first resonance ǫ(k) = ~ω, and hence the wavenumber k = ǫ−1(~ω) determines the typi-
cal inverse size of the Faraday pattern [220]. As a consequence a larger driving frequency
leads to a pattern of smaller size, as shown in recent experiments [209]. In the following,
we will show that the physics of Faraday patterns is remarkably much richer, and the
wavenumber selection has no more trivial monotonous character when the Bogoliubov
spectrum has a roton-maxon character.

6.2. Faraday Instability in Dipolar Condensates

In the following we discuss the formation of Faraday patterns in dipolar BECs, in par-
ticular the case of dipolar BECs exhibiting roton-maxon Bogoliubov spectrum. We
show that the rich physics offered by the roton-maxon spectrum in Faraday patterns
can be used to probe such excitations in dipolar BEC, where the rotonic excitations are
fundamentally important.

6.2.1. Model of the Problem

We consider a BEC of N particles with mass m and electric dipole d (the results are
equally valid for magnetic dipoles) oriented in the z-direction by a sufficiently large exter-
nal field. The dipoles interact via a dipole-dipole potential: Vd(~r) = d2(1−3 cos2(θ))/r3,
where θ is the angle formed by the vector joining the interacting particles and the dipole
orientation. We assume a strong harmonic confinement V (z) = mω2

zz
2/2 along the

z-direction, whereas for simplicity of our discussion we consider no xy trapping. At
sufficiently low temperatures, the physics is described by a reduced-2D GP equation

77



Faraday Patterns in Dipolar BEC

(see Chapter 2):

i~
∂

∂t
ψ(~ρ) =

[

− ~
2

2m
∇2 + g2d|ψ(~ρ)|2

+
4π

3
βg2d

∫

d2k

(2π)2
ei

~k·~ρñ(~k)h2d

(

klz√
2

)]

ψ(~ρ), (6.4)

where ~k is the xy-momentum, lz ≡
√

~/mωz is the oscillator length, g2d ≡ g/
√

2πlz is the

2D short-range coupling constant, ñ(~k) is the Fourier transform of |ψ(~ρ)|2, and h2d(~k) =
2 − 3

√
πkek

2

erfc(k), with erfc(k) the complementary error function. The parameter
β = d2/g characterizes the DDI strength compared to the short-range interaction. In
the following we assume g < 0.

6.2.2. Bogoliubov Excitations

The homogeneous solution of (6.4) is ψ(~ρ, t) =
√
n̄2d exp [−iµ2dt/~], with n2d the 2D

density, and µ2d = g2dn2d(1+8πβ/3) the chemical potential. The elementary excitations
of the homogeneous 2D BEC are plane waves with 2D wave number ~k and dispersion
(see Chapter 5)

ǫ(k)2 = Ek

[

Ek + 2g2dn2d

[

1 +
4πβ

3
h2d

(

klz√
2

)]]

(6.5)

If β = 0 and since a < 0 then ǫ(k → 0)2 < 0 and phonon instability occurs, followed
by the well-known collapse for attractive short-range interacting BECs (see Chapter
5). This instability is prevented for sufficiently large DDI such that g + 8πd2/3 > 0.
At moderate d values, and due to the k-dependence of the DDI through h2d function,
ǫ(k) may develop a roton-like minimum for intermediate k values (see Fig. (6.2)). The
roton-maxon spectrum constitutes one of the most relevant novel features in dipolar
gases. We show below that this roton minimum may be easily probed even for shallow
roton minima by modulating the system nonlinearity.

6.2.3. Modulation of Short-range Interaction

Mathieu Equation and Floquet Analysis

We consider a modulation a(t) = ā[1+2α cos(2ωt)] about its mean ā. The homogeneous
2D solution is ψH(~ρ, t) =

√
n̄2d exp [−i(t+ γ

ω sin(2ωt))µ2d/~], with γ = α/(1 + 8πβ/3).
The driving may induce a dynamical instability breaking the translational symmetry.
This destabilization is best studied with an ansatz ψ(~ρ, t) = ψH(t)[1 + w(t) cos(~k · ~r)],
where w(t) is the complex perturbation amplitude. Inserting this ansatz into (6.4) we
obtain a Mathieu equation for u =Re(w):

d2u

dt2
+

1

~2

[

ǫ(k)2 + 2b(ω, k, α)(~ω)2 cos(2ωt)
]

u = 0, (6.6)
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Figure 6.2.: Dispersion of a 2D homogeneous BEC of 52Cr with a = −0.54nm (β = −0.375), a
3D density n̄2d/

√
2πlz = 1014cm−3, ~ωz = µ2d/2, and ζ = ~/

√
2mµ2d = 0.59µm.

where b(ω, k, α) ≡ 2αg2dn2dT (k)/(~ω)2. As we discussed above, following Floquet The-
orem, the solutions of (6.6) are of the form u(t) = c(t) expσt and if Re(σ) > 0 the
homogeneous BEC is dynamically unstable against the formation of Faraday patterns,
whose typical wavelength is dominated by the most unstable mode (that with the largest
Re(σ) > 0). For vanishing modulation the system becomes unstable at the parametric
resonances ǫ(k) = n~ω (n = 1, 2, ...).

As mentioned above, for intermediate d values ǫ(k) shows a roton minimum (with energy
~ωr) and a maxon maximum (~ωm). Hence, as a function of the modulation frequency
2ω we may distinguish three driving regimes: (A) ω < ωr, (B) ωr ≤ ω ≤ ωm and (C)
ω > ωm (see Fig. 6.2). The latter regime is relatively uninteresting, since, as for non-
dipolar BECs, the spectrum is uni-valued and the most unstable mode is provided by
ǫ(k) = ~ω. The regime B on the contrary is multi-valued, and the condition ǫ(k) = ~ω
is satisfied by a triplet k1 < k2 < k3. These three resonant momenta lead to three
instability tongues for growing modulation amplitude α (Fig. (6.3(a))). Among the
three resonant momenta, Re(σ) is found to be large for k3 and is represented by a line
in the Fig. (6.3(a)). This numerical results agrees very well with the following analytical
results obtained via Hill’s solution method [220, 221]. Upto the fourth order in b(ω, k, α)
the Hill’s solution method provides an expression for σ:

σ =
i

π
arccos

[(

1 − b4π2

32q2(1 − q2)2

)

cos qπ

+

(

− b2π

4q(1 − q2)
+

15q4 − 35q2 + 8

64q3(1 − q2)3(4 − q2)
b4π

)

sin qπ

]

, (6.7)

with q = ǫ(k)2/(~ω)2. For the lowest resonance ǫ(k) = ~ω (q=1), one obtain the Floquet
exponent for small b, by using the Eq. (6.7) as

σ1 = b(ω, k, α)/2 ∝ k2/(~ω)2. (6.8)

Hence the most unstable mode in regime B is always given by the largest momentum
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k3, which dominates the Faraday pattern formation.
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Figure 6.3.: Stability diagram (dark regions are stable) for the parameters of Fig. (6.2) as a
function of α and k. (6.3(a)) ~ω/µ = 0.268 (regime B). (6.3(b)) ~ω/µ = 0.134
(regime A). The most unstable modes are indicated by a solid line.

For regimes B and C the Faraday pattern is, as for non-dipolar BECs, provided by
ǫ(k) = ~ω. The situation is remarkably different for regime A. The latter is better
understood by considering the ratio σ2/σ1 between the Floquet exponents for the second
(ǫ(k) = 2~ω) and the first (ǫ(k) = ~ω) resonance condition. Again using the Eq. (6.7)
we obtain,

σ2 =

√
5

48
b2. (6.9)

Hence the ratio between σ1 and σ2 can be written as,

σ2

σ1
=

√
5α

12(8π|β|/3 − 1)

(µ2d

~ω

)2
ζ2 [ǫ−1(2~ω)]4

[ǫ−1(~ω)]2
. (6.10)

Not surprisingly, the first resonance dominates for α → 0. However, contrary to the
short-range interacting case, for α surpassing a very small ω-dependent critical α the
situation changes completely. Fig. 6.4(a) depicts the ratio σ2/σ1 as a function of ω
for a small α = 0.04. Note that for ω > ωr σ2 < σ1, and as expected, for regimes B
and C the instability is dominated by the resonance ǫ(k) = ~ω. On the contrary for
ω < ωr, σ2 > σ1 even for such a small value of α, and hence the lowest resonance is not
any more the most unstable one. This surprising result is a direct consequence of the
non-monotonous character of the roton-maxon dispersion law.

Our numerical Floquet analysis shows indeed (see Fig. (6.4(b))) that for α > αcr (for the
parameters of Figs. (6.2) αcr ≃ 0.027) the most unstable mode for all driving frequencies
within the regime A is given by the largest momenta k compatible with the first harmonic
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Figure 6.4.: 6.4(a): Ratio between the Floquet exponent σ1 for ǫ = ~ω and σ2 for ǫ = 2~ω.
6.4(b):Most unstable k as a function of ω in the regime A. We use the same
parameters as for Fig. 6.2. The dashed line indicates the roton frequency or
momentum.

ǫ(k) = n~ω lying in the regime B (or, if none, the first lying in regime C). This has
important consequences for the wavenumber selection as a function of the driving ω,
which, as shown in Fig. (6.4(b)), is remarkably different than that for the non-dipolar
case. The pattern size does not decrease monotonously with growing ω, but on the
contrary oscillates in the vicinity of the roton momentum, presenting abrupt changes of
the pattern size at specific driving frequencies. These oscillations are the result of the
subsequent destabilization of higher harmonics in regime B.

This distorted wave number selection is directly mirrored into the spatial form of the
corresponding Faraday patterns. We have studied the dynamical instability induced by
the modulation and the corresponding Faraday patterns by simulating Eq. (6.4) numer-
ically with periodic boundary conditions and an overimposed random noise provided
by a tiny random local phase (< 10−3π) on the homogeneous solution. Our direct nu-
merical calculations is in excellent agreement with our Floquet analysis. Fig. (6.5(a))
depicts the case of a frequency ωr < ω0 < ωm, where as expected the Faraday pattern is
indeed given by the largest resonant momentum. In Fig. (6.5(b)) we consider ω = ω0/2
which is within the regime A. Strikingly, due to the discussed selection of higher har-
monics, the Faraday pattern is basically the same as for a double driving frequency ω0.
This quasi-insensitivity becomes quantitatively evident after Fourier transforming the
pattern (see Fig. (6.5)).

6.3. Modulation of Dipolar Interaction

In the previous discussion we considered the modulation of the s-wave scattering length
a(t). A dipolar BEC offers, however, an additional novel way of modifying the system
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Figure 6.5.: Faraday patterns for ~ω/µ = 0.268 at t = 40.6 ms (Fig. (6.5(a))) and ~ω/µ =
0.134 at t = 93.2 ms (Fig. (6.5(b))), and the same parameters as in Fig. (6.2).
Figs. (6.5(c)) and (6.5(d)) shows the corresponding Fourier spectrum of Faraday
patterns Figs. (6.5(a)) and (6.5(a)) respectively.

nonlinearity by a time-dependent DDI. This may be achieved by modulating slightly the
intensity of the polarizing field (e.g. the electric field orienting a polar molecule) or by
introducing a slight precession of the direction of the external field (e.g. by additional
transversal magnetic fields in the case of atomic dipoles). In the following we show that
the Faraday patterns obtained by means of a modulated DDI differ very significantly
from those obtained by modulating a(t).

We consider a temporal modulation of the DDI d2 = gβ(t), with β(t) = β̄[1+2α cos(2ωt)]
about its mean value β̄. Following a similar procedure as that discussed above for
the case of modulated a(t), we obtain the Mathieu equation for the real part of the
perturbation amplitude. This equation is of the same form as Eq. (6.6) but with

b(ω, k, α) =
8πα|β̄g2d|n2d

3(~ω)2
T (k)h2d

(

klz√
2

)

. (6.11)
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Figure 6.6.: Most unstable k as a function of ω for modulated β(t), α = 0.12, and the same
parameters as for Fig. 1.6. We indicate the roton and maxon frequencies and
momenta.

The modified k-dependence of b(ω, k, α) has crucial consequences for the formation of
Faraday patterns. Similarly as above we may obtain from Hill’s solution method the
Floquet exponent for the first resonance ǫ(k) = ~ω,

σ1 ∝ k2h2d(klz/
√

2). (6.12)

This leads to a remarkably different selection rule for ω values within the regime B.
Contrary to the case of modulated a(t), it is the intermediate momentum k2 and not
the largest one k3 the most unstable within regime B. This leads to a remarkably abrupt
change in the Faraday pattern size in the vicinity of ωm

1. In addition, and similar to
the case of modulated a(t), driving with ω < ωr may be dominated by higher harmonics.
Fig. (6.6) shows the most unstable k as a function of ω for a typical case of modulated
β(t). Note not only the above mentioned abrupt jump in the vicinity of ωm but also
at other ω values within the regime A. As for the case of modulated a(t) these jumps
represent abrupt transitions in the Faraday pattern size, which are certainly much more
marked than for the modulated a case. Figs. (6.7) show the abrupt change in the
patterns for two driving frequencies right below and above the transition close to ωm.

6.4. Experimental Feasibility

In our calculations we have assumed for simplicity no trapping on the xy plane. An
harmonic xy-confinement (with frequency ω⊥) leads to a finite momentum cut-off kc =
√

mω⊥/~. In a good approximation all features in the excitation spectrum with mo-
menta k ≫ kc are not affected by the inhomogeneous trapping. For typical roton
momenta kζ ≃ 0.5 and ζ ≃ 0.6µm in our figures, k ≫ kc demands for 52Cr a transver-
sal frequency ω⊥ < 130Hz, which can be considered a typical experimental condition.
Finally, we stress that Faraday patterns are a transient phenomenon, and that for the

1For finite α the transitions slightly shift from their values at α ∼= 0
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Figure 6.7.: Faraday patterns for ~ω/µ = 0.32 at t = 116.7 ms (left) and ~ω/µ = 0.34 at
t = 405.1 ms (right), and the same parameters as in Fig. 5.5.

case discussed here (a < 0) pattern formation is followed by collapse (and consequent
violation of the two-dimensional condition).

6.5. Summary

In summary, the physics of Faraday patterns is largely modified in dipolar BECs in
the presence of even shallow roton minima. Whereas in non-dipolar BECs the Faraday
pattern size decreases monotonously with the driving frequency 2ω, in dipolar BECs
the patterns show a ω-dependence characterized by abrupt changes in the pattern size,
which are especially remarkable when the dipole itself is modulated. Faraday patterns
constitute hence an excellent tool to probe the onset of rotonization in on-going exper-
iments with dipolar condensates.
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7. Summary

In this thesis, we have studied novel nonlinear properties introduced by the DDI in the
physics of dipolar BECs.

The nonlocal nonlinearity resulting from the DDI leads to fascinating links between
BEC physics and the physics of other nonlocal nonlinear media, as plasmas and nematic
liquid crystals. In this thesis we have studied these nonlocal nonlinear effects in dipolar
BECs, with particular emphasis on BEC stability (and the corresponding post-instability
dynamics), soliton physics and pattern formation.

In Chapter 2, we have studied 2D dipolar bright solitons, which as shown in Refs. [152,
153] may be stabilized in dipolar BECs. We extended the study on the properties of
2D anisotropic solitons [153], and shown that anisotropic solitons exhibit a 2D collapse
if the number of particles in the soliton exceeds a critical number. The latter may be
crucial in future experiments.

In Chapter 3, we have discussed the scattering dynamics of 2D bright solitons in dipolar
BECs placed at unconnected layers of a 1D optical lattice. Interlayer effects between
the unconnected layers, which are a fundamentally new feature introduced by the DDI,
induce an inelastic soliton-soliton scattering, that for low relative velocities, leads to
the inelastic fusion into a soliton molecule. Interestingly, the inelastic losses do not
increase monotonically for decreasing relative velocities, but on the contrary show strong
resonances at intermediate velocities, at which, after interacting, the soliton widths
are strongly modified, eventually leading to soliton destruction. This effect appears,
because, due to the relatively low excitation frequencies of the solitons, a resonant
coupling between incoming kinetic energy and internal soliton modes is possible for low
relative velocities well within the inelastic regime. We have shown that a similar effects
should be observable in 1D geometries, where the experimental requirements may be
easily fulfilled in on-going Chromium experiments. Finally, we have considered the 2D
scattering of dipolar solitons, a unique possibility offered by the dipolar interactions in
cold gases. We have shown that due to the combination of inelastic trapping and initial
angular momentum a spiraling motion is possible, offering fascinating links to similar
physics in photorrefractive materials.

In the future, we would like to investigate the physics of a stack of 2D dipolar solitons,
in particular to study the ground state, and the excitations in the system. There may
be a possibility to observe structured ground states for the solitons in optical lattices,
e.g. a zigzag structure, due to the long range character of the DDI.

In Chapter 4, we have analyzed the stability of a stationary dark soliton in a 3D dipo-
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lar BEC by means of Bogoliubov theory and variational calculations. Both approaches
have shown an excellent agreement with each other. Contrary to short-range interact-
ing BECs, where snake instability is just prevented by a sufficiently strong transverse
confinement, dipolar BECs allow for stable dark solitons of arbitrarily large transversal
sizes, opening a qualitatively novel scenario in nonlinear atom optics. We have obtained
the stability conditions, which demand a sufficiently large dipole and a sufficiently deep
optical lattice in the nodal plane. We stress that the stabilization of nodal planes against
snake instability is purely linked to the long-range nature of the DDI.

In Chapter 5 we have studied the post-phonon-instability (post-PI) dynamics of 2D
dipolar BECs with and without an external confinement. We have shown that the
post-PI dynamics of a 2D dipolar BEC differs qualitatively from 2D and 3D short-range
interacting gases, and 3D dipolar BECs. Contrary to these cases, the PI is not necessarily
followed by the collapse of the gas, but on the contrary leads to a transient regime
characterized by the formation of a gas of attractive inelastic 2D bright solitons, which
eventually undergo fusion, leading to the creation of a single excited stable bright soliton.
If the dipoles are normal to the trap plane these solitons are stable as long as the gas
remains 2D, whereas if the dipoles are parallel to the trap plane the (anisotropic) solitons
may become unstable even in 2D for a critical number of particles per soliton. We have
shown that the phonon-like instability in the presence of an harmonic confinement is
followed by the creation of transient ring-like and anisotropic patterns, which eventually
lead to the creation of a single excited 2D soliton. Finally, we have analyzed the post-PI
dynamics in 1D dipolar BECs characterized by the formation of attractive solitons which
merge into a single one, differing from the usual repulsive soliton train in non-dipolar
BECs.

In Chapter 6, we have studied the formation of Faraday patterns in 2D dipolar BECs
exhibiting a roton-maxon Bogoliubov spectrum. We have shown that the physics of
Faraday patterns is largely modified in dipolar BECs in the presence of even a shal-
low roton minima. Whereas in non-dipolar BECs the Faraday pattern size decreases
monotonously with the driving frequency 2ω, in dipolar BECs the patterns show a ω-
dependence characterized by abrupt changes in the pattern size, which are especially
remarkable when the dipole itself is modulated. Faraday patterns constitute hence an
excellent tool to probe the onset of rotonization in on-going experiments with dipolar
condensates.

An interesting future research topic concerns the study of Faraday patterns in a stack
of 2D dipolar BECs realized by means of an optical lattice. As an interesting interlayer
effect, the creation of Faraday patterns in a BEC in a single layer would lead to the
formation of Faraday patterns in all layers due to the dipolar coupling between the
layers.
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[1] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau,
H. Saito, Y. Kawaguchi and M. Ueda, d-Wave Collapse and Explosion of a Dipolar
Bose-Einstein Condensate, Phys. Rev. Lett. 101, 080401 (2008).

[2] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable and A. Ashkin, Three-dimensional
Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure,
Phys. Rev. Lett. 55, 48 (1985).

[3] E. L. Raab, M. Prentiss, A. Cable, S. Chu and D. E. Pritchard, Trapping of Neutral
Sodium Atoms with Radiation Pressure, Phys. Rev. Lett. 59, 2631 (1987).

[4] P. R. Berman, Atom Interferometry, Academic Press (1997).

[5] D. S. Weiss, B. C. Young and S. Chu, Precision Measurement of the Photon Recoil
of an Atom Using Atomic Interferometry, Phys. Rev. Lett. 70, 2706 (1993).

[6] A. Peters, K. Y. Chung and S. Chu, Measurement of Gravitational Acceleration
by Dropping Atoms, Nature 400, 849 (1999).

[7] G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli and G. M. Tino, Deter-
mination of the Newtonian Gravitational Constant Using Atom Interferometry,
Phys. Rev. Lett. 100, 050801 (2008).

[8] T. L. Gustavson, A. Landragin and M. A. Kasevich, Rotation Sensing with a Dual
Atom-interferometer Sagnac Gyroscope, Class. Quantum Grav. 17, 2385 (2000).

[9] H. Müller, S. wey Chiow, S. Herrmann, S. Chu and K.-Y. Chung, Atom-
Interferometry Tests of the Isotropy of Post-Newtonian Gravity, Phys. Rev. Lett.
100, 031101 (2008).

[10] A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss.
Akad. Wiss. 1, 3 (1925).

[11] S. N. Bose, Plancks Gesetz und Lichtquantenhypothese, Z. Phys 26, 178 (1924).

[12] K. Huang, Statistical Mechanics, Wiley. New York p. 2nd edition (1987).

[13] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms,
Phys. Rev. Lett 75, 3969 (1995).

[14] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell,

87



Bibliography

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science
269, 198 (1995).

[15] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler and T. Pfau, Bose-Einstein Con-
densation of Chromium, Phys. Rev. Lett 94, 160401 (2005).

[16] Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E. Maréchal, L. Vernac,
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Coherence in a 2D Lattice of Bose-Einstein Condensates, Phys. Rev. Lett. 87,
160405 (2001).

[65] S. Burger, F. S. Cataliotti, C. Fort, P. Madadaloni, F. Minardi and M. Inguscio,
Quasi-2D Bose-Eisntein Condensation in an Optical Lattice, Europhys. Lett. 57,
1 (2002).

[66] F. S. Cataliotti, S. Burger, C. Fort, P. Madadaloni, F. Minardi, A. Trombettoni,
A. Smerzi and M. Inguscio, Josephson Junction Arrays with Bose-Einstein Con-
densates, Science 293, 843 (2001).
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