
DETECTING LINEAR FEATURES BY SPATIAL POINT PROCESSES

Dengfeng Chaia, Alena Schmidtb, Christian Heipkeb

a Institute of Spatial Information Technique, Zhejiang University, China -
chaidf@zju.edu.cn

b Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany -
alena.schmidt@ipi.uni-hannover.de, heipke@ipi.uni-hannover.de

ICWG III/VII

KEY WORDS: Linear Feature, Feature Detection, Spatial Point Processes, Global Optimization, Simulated Annealing, Markov Chain
Monte Carlo

ABSTRACT:

This paper proposes a novel approach for linear feature detection. The contribution is twofold: a novel model for spatial point processes
and a new method for linear feature detection. It describes a linear feature as a string of points, represents all features in an image as a
configuration of a spatial point process, and formulates feature detection as finding the optimal configuration of a spatial point process.
Further, a prior term is proposed to favor straight linear configurations, and a data term is constructed to superpose the points on
linear features. The proposed approach extracts straight linear features in a global framework. The paper reports ongoing work. As
demonstrated in preliminary experiments, globally optimal linear features can be detected.

1. INTRODUCTION

Image features play a fundamental role in many tasks of image
analysis. For example, both surface reconstruction and object
extraction usually rely on some distinguishable features. Fea-
ture detection has been investigated widely in the communities of
photogrammetry and remote sensing, computer vision and pat-
tern recognition. However, few works were dedicated to model-
ing feature shape in a global framework. This paper address this
issue in the context of detecting linear features. Linear features
offer salient cues for region boundaries and object contours.

1.1 Related Work

Image features refer to image primitives such as points, lines,
curves and regions. Corner detectors and interest point detectors
have been developed to detect point features (Förstner and Gülch,
1987, Harris and Stephens, 1988, Tomasi and Kanade, 1991, Shi
and Tomasi, 1994, Smith and Brady, 1997, Lowe, 2004, Ros-
ten and Drummond, 2006, Bay et al., 2008, Rublee et al., 2011).
Region detectors have been proposed to detect region features
(Kadir et al., 2004, Tuytelaars and Van Gool, 2004, Leutenegger
et al., 2011, Alahi et al., 2012). Both straight lines and curves are
linear features. Their detection is formulated as edge detection,
line detection, boundary detection or contour detection.

Edge detection aims at detecting edges, which refer to abrupt
changes of brightness. Basically, sharp changes are computed
by differential operations, which is achieved by differentiation
based filters such as Sobel, Prewitt, Roberts, Laplacian of Gaus-
sian, etc. These filters are simple and sensitive to noise. This
disadvantage is significantly overcome by the Canny edge de-
tector (Canny, 1986). Its success depends on the definition of
three comprehensive criteria, namely good detection, good local-
ization and single-pixel response, for the computation of edges.
Edge detection is formulated as an optimization with respect to
these criteria. Benefiting from its solid mathematical foundation,
this detector has proven to be reliable and has gained popular-
ity since it was first published. Besides, there are some extended
and adapted versions (Deriche, 1987, McIlhagga, 2011, Xu et al.,

2014). However, feature shape is not modeled in the computa-
tional framework.

Lines are pairs of anti-parallel edges. Depending on the width
of the linear feature to be detected and the contrast with respect
to the neighborhood, line detection can be advantageous to edge
detection. The most prominent example of line detection is the
Steger operator (Steger, 1998).

Boundary detection refers to detecting boundaries between differ-
ent regions. Boundaries are indicated by edges, excluding those
inside a region. However, there are typically a lot of edges inside
a textured region. This issue is addressed by the Pb (probability-
of-boundary) edge detection algorithm (Martin et al., 2004). For
each pixel it fuses brightness gradient, texture gradient and color
gradient to calculate the probability of being a boundary pixel.
Further, MS-Pb (Multiple Scale Pb) integrates Pb in multiple
scales (Ren, 2008), and gPb (global Pb) introduces global infor-
mation into the MS-Pb (Arbelaez et al., 2011). The gPb detector
can detect boundaries between texture regions. However, none of
them models boundary shape.

Contour detection is dedicated to extracting outlines of objects of
interest. Some approaches group edges, lines or boundary frag-
ments into contours (Zhu et al., 2007, Arbelaez et al., 2011, Ming
et al., 2013, Payet and Todorovic, 2013). The other approaches
fit active contour models to images (Kass et al., 1988, Mishra et
al., 2011, Dubrovina et al., 2015). Although shape is modeled
and utilized by these approaches, modeling is performed not in a
global framework.

Spatial point processes are stochastic models for spatial entities.
The relationships among entities can be considered by a prior
model, and, the shapes of the entities can be represented by some
geometric marks. For example, linear features and line-networks
are represented by line segments and polylines (Stoica et al., 2004,
Lacoste et al., 2005, Lacoste et al., 2010, Chai et al., 2013, Schmidt
et al., 2015), building outlines are represented by rectangles (Ort-
ner et al., 2007, Ortner et al., 2008), and tree crowns are rep-
resented by circles and ellipses (Perrin et al., 2005). But these
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(a) Spatial Point Process (b) Marked Point Process (c) Linear Point Process

Figure 1: Overview of three kinds of spatial point processes.

marks are too specific to represent general linear shapes. Al-
though a combination of above marks integrates their capacities
(Lafarge et al., 2010), they are not general enough to represent
freeform linear features. Alternatively, stochastic models can be
employed to segment an image into regions, whose boundaries
are freeform linear features (Tu and Zhu, 2002). However, re-
gions instead of boundaries are modeled explicitly.

1.2 Motivation and Contribution

Most feature detectors are not developed in a global framework.
Also, they do not deal with feature shape and uncertainty. While
marked point processes do provide a global model for feature
shape and uncertainty, in existing approaches linear features are
represented by geometric marks. Apart from losing generality,
the space of solutions is expanded significantly since additional
parameters are involved in decribing the geometric marks. These
additional parameters impair both detection quality and efficiency.

With reference to Fig. 1 a point is an atomic element in math-
ematics, and a string of points forms a (possibly straight) curve.
In turn, a set of connected curves encloses a region. Motivated
by this common sense observation, in this paper a linear feature
is represented by a string of points. Further, the paper proposes a
spatial point process, in which points are inclined to form curves
as shown in Fig. 1(c). The paper makes several contributions:

• Spatial point process: Based on the proposed model for a
spatial point process, points can form linear shapes. This
characteristic assures its potential in modeling and analyz-
ing linear shapes.

• Feature representation: The proposed model is general
enough to represent freeform linear features. Edges, lines,
boundaries and contours can all be represented in this model.

• Global feature detection: Linear feature detection is for-
mulated as a global optimization problem. The globally op-
timal solution can be reached very efficiently since no extra
parameters are involved in the computation.

The rest of the paper is organized as follows. First, some back-
ground information on spatial point processes is introduced in
Sec. 2 Second, the novel approach for linear feature extraction
is proposed in Sec. 3 Then, experimental results are presented in
Sec. 4 Finally, conclusions are drawn in Sec. 5

2. FEATURE EXTRACTION BASED ON MARKED
POINT PROCESSES

2.1 Spatial Point Processes

A spatial point process is a useful model for a random pattern of
points as depicted in Fig. 1(a). For a k-dimensional space Rk,
let F ⊂ Rk be a compact set, let ω = {ω1, . . . , ωn} be a config-
uration having n unordered points ωi ∈ F , let Ωn be the set of
configurations that consist of n points. A point process on F is a
mapping Ψ from a probability space to the set of configurations
Ω =

⋃∞
n=1 Ωn, such that, for all bounded Borel sets S ⊂ F , the

number of points NΨ(S) falling in S is a finite random variable.

A Poisson process in the plane with uniform intensity measure
ν(.) is a point process in F ∈ R2, such that, for every bounded
closed set S ∈ F , the number of points falling in this region
follows a Poisson distribution with mean ν(S), and the number
of points are independent for disjoint regions.

Complex point processes are specified by a probability density
h(.) defined on Ω and a reference measure µ(.) under the condi-
tion that the normalization constant of h(.) is finite:

∫
ω∈Ω

h(ω)dµ(ω) <∞. (1)

The measure µ(.) having the density h(.) is usually defined via
the intensity measure ν(.) of a homogeneous Poisson process.
For a more detailed definition of point processes the reader is
referred to (Møller and Waagepetersen, 2004).

2.2 Feature Extraction Based on Marked Point Processes

To extract features from images, a data term measuring the con-
sistency between the points and the image is introduced into the
density h(.), and a prior term reflecting the spatial interactions
among the points is also introduced into the density. This density
can be expressed as a product of a data term hd(.) and a prior
term hp(.):

h(.) = hp(.)hd(.). (2)

Feature extraction is achieved by searching for the configuration
ω? maximizing the probability density as

ω? = arg max
ω∈Ω

h(ω). (3)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-841-2016

 
842



Existing approaches typically employ geometric marks such as
line segments to represent shapes. As depicted in Fig. 1(b), the
geometric marks are very specific, they cannot represent general
shapes. Furthermore, the configuration space Ω is expanded dra-
matically by the extra parameters for the marks. Both, detection
quality and efficiency are impaired within this complex space.

3. LINEAR FEATURE EXTRACTION BASED ON
SPATIAL POINT PROCESSES

3.1 Linear Feature Representation

This paper represents a linear feature by a string of points instead
of a geometric mark. As shown in Fig. 1(c), a line segment is
represented by a set of points sampled on the segment. Any other
linear features such as freeform curves are also represented by
their sample points.

The suggested model contains a data term measuring the consis-
tency between the points and the image data. Further, this paper
proposes a prior model for spatial point processes such that linear
configurations become more probable than non-linear configura-
tions and straight ones are prefered to curved ones.

3.2 A Prior Model for Linear Configurations

A prior probability of a configuration ω is measured by three dif-
ferent criteria: the sparsity of its points, the neighborhood of its
points and the curvature of the linear configuration. The density
hp is a product of three densities:

hp(ω) ∝ hs(ω)hnb(ω)hc(ω), (4)

where hs(ω), hnb(ω) and hc(ω) are three densities based on the
criteria of sparsity, neighborhood and curvature, respectively.

Figure 2: Sparsity is assured by penalizing closely neighboring
points indicated by the overlapping disks.

Sparsity: Configurations of sparse points are assured by penal-
izing small distances between neighboring points. Let a disk of
radius r1 be the influence area of each point as illustrated in Fig.
2. When two points are closer than 2r1, their disks overlap. To
avoid overlapping, the distance between any two points must be
larger than 2r1.

The density for sparsity is defined as

hs(ω) ∝ αs(ω,r1), (5)

where α is a parameter of this model, s(ω, r1) is calculated as
follows:

s(ω, r1) =
∑

ωi,ωj∈ω

1[d(ωi, ωj) ≤ 2r1], (6)

where d(ωi, ωj) is the distance between ωi and ωj .

The above model penalizes small distances between neighboring
points. For 0 < α < 1, it is a soft constraint, points are allowed
to be closer than 2r1, but they are less probable.

ωi

ωj

ωk

Figure 3: Each point on a line excluding the first and last point
has two neighbors within a disk, i.e., a preceding point and a
succeeding point.

Neighborhood: As one tracks points along a line, each point has
a preceding point and a succeeding point, excluding the first point
and the last point. As depicted in Fig. 3, point ωj has a preceding
point ωi and a succeeding point ωk. This is a basic characteristic
of linear features; it is introduced into the neighborhood density
as follows

hnb(ω) = βnb(ω,r2), (7)

where β is a parameter of this model, and nb(ω, r2) is calculated
as

nb(ω, r2) =
∑
ωj∈ω

|deg(ωj , r2)− 2|, (8)

where deg(ωj , r2) is the degree of ωj , i.e. the number of points
within a disk of radius r2 around ωj . Note that typically r2 is
assumed to be larger than r1.

deg(ωj , r2) =
∑

ωi∈ω,ωi 6=ωj

1[d(ωi, ωj) ≤ r2], (9)

where d(ωi, ωj) is the distance between ωi and ωj .

For 0 < β < 1, points with two neighbors within a disk of radius
r2 are preferred and the other points are penalized.

Curvature: The local curvature at a point of a linear feature is
described by the angle δ defined by its preceding and succeeding
point as illustrated in Fig. 4. Note that the curvature term is
only applied for points with exactly two neighbors, as otherwise
its computation in the described way is either not possible (one
neighbor) or ambiguous (three or more neighbors).

In our approach linear features are assumed to have small curva-
tures; this is why we say we prefer straight linear features. In
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δ

ωi ωj

ωk

Figure 4: The angle defined by three successive points.

turn, small curvature is indicated by an angle close to π. This
angle is introduced into the curvature density as follows

hc(ω) = γc(ω), (10)

where γ is a parameter of the model, and c(ω) is calculated by

c(ω) =
∑
ωj∈ω

ang(ωj), (11)

ang(ωj) =

{
0 deg(ωj) 6= 2
1− cos δ deg(ωj) = 2

, (12)

where ωi and ωk are two neighbors of ωj .

For 0 < γ < 1, points with large curvature are penalized.

3.3 Data Consistency of Linear Features

Assuming the data for the points to be independent, the data den-
sity can be written as a product of local terms

hd(ω) ∝
∏

i=1,2,...n

hd(ωi), (13)

where the local term hd(ωi) for a point ωi measures its consis-
tency with a linear feature, i.e. the likelihood of being either a
corner or an edge. The local term is computed by

hd(ωi) = exp(λ1 + λ2), (14)

where λ1 and λ1 are two eigenvalues of the Harris matrix, which
is calculated as the covariance matrix M of the derivatives of the
image I with respect to the pixel neighborhood

M =

( ∑
N(ωi)

I2
x

∑
N(ωi)

IxIy∑
N(ωi)

IxIy
∑

N(ωi)
I2
y

)
, (15)

where Ix = ∂I
∂x

and Iy = ∂I
∂y

are two derivatives, and N(ωi) is a
window centered at ωi.

As pointed out in (Harris and Stephens, 1988), λ1+λ2 = Tr(M)
measuring the flatness at the point. Large values indicate either a
corner or an edge. Therefore, this data term can be used to find
points at object boundaries.

3.4 Linear Feature Extraction

Linear feature extraction is formulated as finding the optimal con-
figuration of a spatial point process. The optimal configuration
ω? maximizes the probability density

ω? = arg max
ω∈Ω

hs(ω)hnb(ω)hc(ω)hd(ω). (16)

This is not a conventional optimization problem since the con-
figuration space has variable dimensions and the probability den-
sity is multi-modal. Simulated annealing is employed to succes-
sively simulate a series of probability distributions which con-
verges to a distribution concentrated on the optimal configuration
(Kirkpatrick et al., 1983). The Reversible Jump Markov Chain
Monte Carlo (RJMCMC) sampler is embedded into the optimiza-
tion procedure to take into account the variable dimension of the
configuration space and to simulate the expected probability dis-
tribution (Green, 1995).

3.4.1 Searching the Optimal Configuration: Consider a spa-
tial point process, in which each configuration ω has the proba-
bility density

hT (ω) = [h(ω)]1/T = [hs(ω)hnb(ω)hc(ω)hd(ω)]1/T , (17)

where T > 0 is a temperature parameter. When T →∞, hT (ω)
defines a uniform distribution on Ω; for T = 1, hT (ω) = h(ω);
and as T → 0, hT (ω) concentrates on the optimal configura-
tion ω?. When the temperature starts from a large value and de-
creases according to a logarithmic function, it is guaranteed that
the globally optimal configuration is found as the temperature ap-
proaches zero. In practice, a faster geometric decrease gives an
approximate solution, in general close to the optimum (Baddeley
and Lieshout, 1993).

The RJMCMC sampler is adopted to simulate a discrete Markov
Chain (Xt)t∈N, which converges to hT (ω). At each transition,
one point of the current configuration ω is perturbed to generate a
new configuration ω′ according to a kernel Q(ω → .). The con-
figuration ω′ is then accepted as the new state of the chain with a
probability min(1, R), in which the Green ratio is calculated as

R =
Q(ω′ → ω)

Q(ω → ω′)

(
h(ω′)

h(ω)

) 1
T

. (18)

The kernel Q can be a mixture of some sub-kernels Qm

Q(ω → .) =
∑
m

pmQm(ω → .), (19)

where pm is the probability of choosing the sub-kernel Qm.The
kernel mixture must allow any configuration in Ω to be reached
from any other configuration in a finite number of perturbations
(irreducibility condition of the Markov chain), and each sub-kernel
has to be reversible, i.e. able to propose the inverse perturbation.

3.4.2 Transition Kernels: The birth and death kernel QBD

and the translation kernelQT are developed in the sampler. These
two kernels guarantee the irreducibility condition of the Markov
chain.
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Birth and death kernel: The uniform birth and death kernel in-
serts a point into the current configuration ω and deletes a point
from the current configuration ω, respectively. Adding and re-
moving a point corresponds to jumps into a higher dimensional
and a lower dimensional subspace, respectively. The green ratio
for a birth kernel is given by

R =
pdλF

pbn(ω′)

(
hs(ω′)hnb(ω

′)hc(ω
′)hd(ω′

i)

hs(ω)hnb(ω)hc(ω)

) 1
T

(20)

where λF is the Poisson parameter representing the expected
number of points in the domain F (the whole image), n(ω′)
is the number of points in the proposed configuration ω′, ω′

i is
the inserted point, and pd (resp. pb) is the probability of choos-
ing a death (resp. a birth) kernel. In our experiments we set
pd = pb = 0.5. In case of a death, the proposition kernel ratio
corresponds to the inverse of the birth’s ratio.

Translation kernel: The translation kernel moves a point ωi to a
new point ω′

i. The green ratio for a translation kernel is given by

R =

(
hs(ω′)hnb(ω

′)hc(ω
′)hd(ω′

i)

hs(ω)hnb(ω)hc(ω)hd(ωi)

) 1
T

(21)

In our experiments, a point is moved in a square centered around
its old position and the length of each side is set to be r1.

3.4.3 Sampling Driven by Gradients: The above scheme sam-
ples the configuration space uniformly. It spends a lot of time
checking impossible configurations. The points are usually ex-
pected to lie on edges with large gradients. Motivated by the
Data Driven Markov Chain Monte Carlo (DDMCMC) approach
(Tu and Zhu, 2002), a scheme utilizing gradient information is
developed to improve the sampling.

First, the point must be sampled at the pixel locations, i.e. the
sample points stem from the set of pixels:

ωi ∈ P, (22)

where P is the set of pixels.

Then, each pixel has a weight proportional to its gradient magni-
tude

w(p) ∝
√
I2
x + I2

y , (23)

where Ix = ∂I
∂x

and Iy = ∂I
∂y

are the two derivatives. The weights
of all pixels are normalized such that its sum equals one.

Finally, uniform birth and death is replaced with gradient driven
birth and death. In uniform birth and death, each pixel has the
same chance of being selected as a new point, while in gradient
driven birth and death the pixels having larger gradient have more
chance of being selected as a new point. The chance is propor-
tional to its gradient.

4. EXPERIMENTAL RESULTS

The described method was implemented and some preliminary
tests were conducted to obtain a first insight into the behavior of
the suggested approach. The experiments consist of model simu-
lation and feature detection, the results are reported in the follow-
ing. The parameters selected for the experiments are presented in
Tab. 1.

λ α β γ r1 (pixels) r2 (pixels)
200 0.9 0.9 0.9 5 10

Table 1: Parameters for experiments

Fig. 5 presents two simulations based on two models. An optimal
configuration based on the homogenous Poisson point process is
presented in the left figure. The points are totally random and
no linear features appear. In contrast, the right figure presents an
optimal configuration based on the proposed model. The points
are inclined to form lines and curves as expected.

Fig. 6 presents the results of feature detection. The left column
presents the original images. The two middle columns depict
features detected by the Harris detector (Harris and Stephens,
1988) and the Canny detector (Canny, 1986). The right col-
umn depicts features detected by the proposed approach. The
detected features are represented by the shown points. The de-
tected points representing the linear features are well placed on
the region boundaries and they clearly illustrate the outline of
the objects. Moreover, they are general enough to represent any
freeform features and objects.

The data term is calculated once for each pixel and is stored as an
image for use in the sampling procedure. In this way calculation
efforts are minimized and a better efficiency is achieved.

5. CONCLUSION

This paper proposes a novel approach for linear feature detection.
Feature detection is formulated as finding an optimal configura-
tion of a spatial point process. Based on this formulation, a prior
model is proposed to favor straight linear configurations, and a
data model is constructed to draw the points towards linear fea-
tures. The proposed approach detects linear features in a globally
optimal framework. As demonstrated by the experiments, fea-
tures can in principle be detected and they sit on the boundaries
with good accuracy.

One limitation of the approach is that linear features are not de-
tected explicitly. The model can only serve as an intermedi-
ate representation between edges and contours, which are low-
level and high-level features, respectively. Converting the de-
tected points into contours is worthy to investigate in the future.
Further, the model does not include any topological constraints.
Therefore, a network containing junctions cannot be properly ex-
tracted. Representing junctions without marks is also an issue
which needs further attention. Finally, the data term can be im-
proved by introducing a more sophisticate response, e.g. by in-
troducing the concep of probability-of-boundary (Martin et al.,
2004).
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(a) Poisson (b) Linear

Figure 5: Two simulation results: on the left an optimal configuration of a homogenous Poisson point process is shown, in which points
are distributed randomly. To the right a configuration with density defined by the proposed model is illustrated, in which points are
distributed along linear curves.

(a) Image (b) Harris (c) Canny (d) SPP

(e) Image (f) Harris (g) Canny (h) SPP

(i) Image (j) Harris (k) Canny (l) SPP

Figure 6: Experimental results: The images and features detected by the Harris, the Canny and the new spatial point process based
detector are indicated by the captions. The corners and edges are depicted as red and green pixels, respectively. The points on the linear
features are also depicted as red crosses.
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