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Kurzzusammenfassung 
 
Diese Dissertation war Teil eines Projektes, das sich die Überwindung der Druck- 
und Materiallücke zwischen Einkristallstudien im UHV und der technischen 
Katalyse am Beispiel der katalytischen Ammoniak-Oxidation an Platin zum Ziel 
gesetzt hatte.  In einem UHV-System wurde deshalb der Druck systematisch variiert 
von 10-6 mbar bis zum 10-2 mbar-Bereich. Die Kinetik der Reaktion und reaktions-
induzierte Substratänderungen wurden in diesem Druckbereich verfolgt durch 
Ratenmessungen über ein differentiell gepumptes Quadrupolmassenspektrometer, 
über Austrittsarbeitsmessungen mittels einer Kelvin-Sonde und über die Beugung 
niederenergetischer Elektronen (LEED). 
 
Die Kinetik der katalytischen Ammoniakoxidation wurde studiert an Pt(533), Pt(443), 
Pt(865), Pt(100) und an einer polykristallinen Platinfolie. Die höchste katalytische 
Aktivität wies die Pt-Folie auf, danach nahm die Aktivität in der Reihenfolge Pt(865), 
Pt(533), Pt(443) und Pt(100) ab. Offenbar erhöhen Oberflächendefekte wie atomare 
Stufen oder Kinken die Aktivität in dieser Reaktion. Unter  Reaktionsbedingungen 
konnten die reaktiven Haftkoeffizienten der reagierenden Gase bestimmt werden: 
sreac(O2) erreicht 0.14 auf der Platinfolie. Ganz allgemein ist bei niedriger Temperatur 
und kleinem Verhältnis der Reaktanten O2/NH3 die N2-Bildung bevorzugt, während 
bei hoher Temperatur und großem Verhältnis O2/NH3 die NO-Bildung dominiert. 
 
In Abhängigkeit vom Gesamtdruck, der Temperatur und dem O2/NH3-Verhältnis 
verursacht die Reaktion eine mehr oder wenige schwere Umstrukturierung der 
Oberfläche. Es zeigte sich, dass die reaktions-induzierte Umstrukturierung der 
Oberfläche verbunden war mit einer Hysterese der Reaktionsrate bei Heiz-Kühl-
Zyklen. Eine sehr breite Hysterese von etwa 70 K Breite tritt bei Pt(100) auf, die auf 
den wohlbekannten 1×1 ↔ hex Phasenübergang von Pt(100) zurückgeführt werden 
kann. Die reaktions-induzierte Restrukturierung der katalytischen Oberfläche nimmt 
tendenziell mit steigendem Gesamtdruck zu. Dabei beobachtet man aber eine nicht-
monotone Abhängigkeit vom Gesamtdruck. Auf beiden Orientierungen, Pt(533) und 
Pt(443), findet man bei 10-3 mbar eine Hysterese verbunden mit einer ungeordneten 
Oberfläche, aber bei 10-2 mbar verschwindet diese Hysterese bei beiden 
Orientierungen verbunden mit der Ausbildung einer teilweise geordneten Oberfläche. 
 
Die raumzeitliche Dynamik der katalytischen Ammoniakoxidation  an Pt(100) und 
Pt(443) wurde mittels Photoelektonenemissionsmikroskopie (PEEM) untersucht. 
Reaktionsfronten und räumlich homogen ablaufende Übergänge wurden an Pt(100) 
gefunden, während keinerlei Strukturbildung an Pt(443) beobachtet wurde. 
Offensichtlich sind die nicht-linearen Phänomene an Pt(100) auf den 1×1 ↔ hex 
Phasenübergang von Pt(100) zurückzuführen. 
 
 
Schlüsselwörter: Platin, Ammoniak-Oxidation, Katalyse, Pt(865), Pt(533), Pt(443), 
Pt(100), Platinfolie, Hysterese, Ammoniak, NO, Stickstoff, Umstrukturierung, 
Phasenübergang, Strukturempfindlichkeit, Drucklücke, Materiallücke 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract 
 
This work was part of an effort to bridge the pressure gap and material gap between 
model catalysts and technical catalysis in catalytic ammonia oxidation. The pressure 
was increased systematically from UHV to close to the mbar range and the state of 
the surface was monitored by utilizing various in situ techniques. The kinetics and 
reaction-induced restructuring were followed in 10-6 – 10-2 mbar range using rate 
measurement via a quadrupole mass spectrometer, work function measurement via a 
Kelvin probe and low energy electron diffraction (LEED) to gain insight into the 
structure sensitivity of the reaction. 
 
The kinetics of ammonia oxidation were studied on Pt(533), Pt(443), Pt(865), Pt(100) 
and the Pt foil. The highest catalytic activity was found on the Pt foil, then the 
activity decreased in the order Pt(865), Pt(533), Pt(443), and Pt(100). Evidently 
atomic steps and kinks enhance the catalytic activity. The reaction sticking 
coefficients of the reactants were determined under reaction conditions, sreac (O2) 
reaches 0.14 on a Pt foil. Quite generally, low temperature and a low O2/NH3 ratio of 
the feed gas favor N2 formation; high temperature and a high ratio O2/NH3 lead to 
preferred NO formation. No N2O was detected in the pressure range studied here.  
 
Depending on the total pressure, the temperature and p(O2)/p(NH3) conditions severe 
restructuring of the Pt surface occurred under reaction conditions. The restructuring 
was favored to be associated with a hysteresis in the reaction rate upon cyclic 
variation of the temperature. A rather broad hysteresis occurred on Pt(100) where the 
well known 1×1 ↔ hex surface phase transition is connected with two surface states 
with strongly different catalytic activity, i. e. oxygen sticking. On Pt(443) no LEED 
detectable substrate changes and no rate hysteresis occurred below 10-3 mbar. But 
above 10-3 mbar a substantial hysteresis effect were seen. The restructuring which 
tends to increase with rising total pressure was found to depend in a non-monotonic 
way on the total pressure. So on both orientations, Pt(533) and Pt(443), a hysteresis 
was present at 10-3 mbar, but vanished again at 10-2 mbar. LEED showed a 
disordered surface at 10-3 mbar.  
 
The spatiotemporal dynamic of ammonia oxidation on Pt(100) and Pt(443) have been 
studied by photoelectron emission microscopy (PEEM) in a UHV system. Reaction 
fronts and spatially homogeneous transition were observed on Pt(100), while the 
reaction proceeds spatially homogeneous over Pt(443). Apparently the nonlinear 
phenomena of the reaction on Pt(100) can assigned to the phase transition from the 
active 1×1 to the inactive hex phase of Pt(100).  
 
 
Keywords: Platinum, Ammonia-Oxidation, Catalysts, Pt(533), Pt(443), Pt(865), 
Pt(100), Pt Foil, Hysteresis, Ammonia, NO, Nitrogen, Phase Transition, Structure 
Sensitivity, Restructuring, Pressure Gap, Material Gap 
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Chapter 1  Introduction 

Heterogeneously catalyzed reactions contain purely chemical and purely physical 

processes. For the catalytic process to take place, the starting material must be 

transported to the catalyst. Thus apart from the actual chemical reaction, diffusion, 

adsorption and desorption processes are of importance for the progress of the overall 

reaction [1].  

Surface structure of a catalyst is very difficult to study under working conditions, 

i.e., at ambient or elevated gas pressure. Apparently, the UHV approach has the 

advantageous whole arsenal of surface analytical techniques being available to 

characterize the catalyst. Over the past years, many surface science techniques have 

been developed to provide atomic level information on surface structure (atomic and 

electronic), the surface composition with ever improving spatial and time resolution. 

Most of these techniques involve the use of electron, photon, or ion scattering and 

detection [2-5]. The drawback of this approach is the need for a high vacuum 

working environment. Several gaps between catalysis and traditional surface science 

have been identified: 

(1) the materials gap; (2) the pressure gap. 

Surface science has reached a degree of maturity that allows the correlation of 

precise knowledge of surface structure and composition with macroscopic catalytic 

properties [6]. Using model system with increasing degree of complexity, i.e., single 

crystal surfaces with different orientation, bimetallic surfaces and planar oxide-metal 

systems, is one strategy to try to bridge the materials gap. Closing the pressure gap 

can be achieved by virtue of surface sensitive techniques that work in the presence of 

a gas phase at high pressure. Since the 1980s, many researchers have devoted 
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attention to solving the pressure and material gap problem in order to efficiently use 

the results of model studies to explain or even predict specific features of catalytic 

systems [7-9].  

Bridging the gaps between ideal and real system in heterogeneous catalysis is the 

purpose of the priority program 1091 of the Deutsche Forschungsgemeinschaft 

(DFG- SPP-1091) which provided the framework for this study. The goal of the 

program is to gain insights into the so-called pressure and material gap by 

investigating systems with different degree of ideality. Ammonia oxidation on 

platinum catalyst was chosen as one example for such a reaction. Catalytic ammonia 

oxidation was investigated by (a) theory applying DFT to single crystal surfaces [10], 

(b) studies under UHV and intermediate pressure conditions with different 

orientation single crystal faces [11-16], (c) transient low pressure experiments on Pt 

gauze [17], and (d) close to atmospheric pressure experiments over polycrystalline Pt 

gauze and foil [18]. 

The industrial application of ammonia oxidation over platinum based gauze 

catalysts is a highly optimized process, reaching yields of nitric oxide between 94 

and 98% [19]. Nitric acid is an important intermediate in fertilizer production as well 

as for nitration and oxidation reactions in the production of dye, pharmaceuticals and 

explosives. Industrial application started with the development of a process for nitric 

acid production by Ostwald. The catalytic oxidation of ammonia over platinum is a 

key step, both in industrial manufacturing of nitric acid and in environmental 

chemistry where ammonia is removed in the so-called selective catalytic reduction 

process [20]. 

In ammonia oxidation, molecular nitrogen, NO and water are the main products 

of ammonia oxidation over platinum under UHV conditions. N2 products is formed 

between 500 and 800 K, mainly NO is produced at high temperature and at high 

oxygen partial pressure [21-24]. To a small extent also N2O is formed, in particular, 

N2O is reported for studies at pressures above 10-1 mbar [25]. The reason for the 
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pressure dependence of N2O formation was not fully understood yet, which 

illustrates the difficulty in comparing low and high-pressure studies. The following 

reactions take place [18]: 

(R1) 4NH3 + 5O2 → 4NO + 6H2O ΔrH298K = -907 kJ/mol 

(R2) 4NH3 + 3O2 → 2N2 + 6H2O ΔrH298K = -1266 kJ/mol 

(R3) 2NH3 + 2O2 → N2O + 3H2O ΔrH298K = -1104 kJ/mol 

The secondary reactions of ammonia oxidation can be used for the elimination of 

NOx emissions.  

(R4) 2NH3 + 3 N2O →  4 N2 + 3H2O ΔrH298K = -877 kJ/mol 

(R5) 2NH3 + 6 NO →  5 N2 + 6H2O ΔrH298K = -1808 kJ/mol 

Many studies of catalytic ammonia oxidation have been performed on single 

crystal Pt [21, 26, 27], polycrystalline Pt [28, 29], supported Pt [30, 31], and Pt-Rh 

alloys [32]. Although ammonia oxidation has already been highly optimized in the 

industry, the mechanism on molecular level are still far from being understood well. 

In order to gain a certain insight of ammonia oxidation on Pt, many studies have 

been conducted in UHV systems. The oxidation of ammonia comprises a number of 

steps.  

Adsorption and decomposition of ammonia on Pt, dissociative adsorption of 

oxygen, and NO adsorption and dissociation, were studied.  

Ammonia adsorption and decomposition have been investigated on 

polycrystalline Pt [33], single crystal Pt planes [10, 34-44] and supported Pt [31, 45]. 

Three thermal desorption peaks were found following adsorption at 90 K. They are 

attributed to multilayers of solid ammonia at 100 K, to the weakly chemisorbed 

molecular ammonia at 150 K and the chemisorbed molecular ammonia in the 170 to 

450 K temperature range, respectively [37]. Generally, for the adsorption state of 

ammonia on Pt surface, at low coverage, NH3 is strongly bound to the surface via 
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nitrogen like “inverted umbrella”; at high coverage ammonia appears to be 

hydrogen-bonded to the initial layer of ammonia. Although ammonia adsorption is 

believed to be molecular, steady state ammonia decomposition on Pt occurs above 

400 K, which indicates that dissociative adsorption does occur at elevated 

temperatures. After comparison of the decomposition ability of different orientations, 

it was found that high-index Miller planes are more reactive for the decomposition of 

ammonia [38]. Using periodic density functional theory (DFT) calculations Novell- 

Leruth et al. studied adsorbed NHx species on Pt(100) and Pt(111) surfaces. It was 

found that Pt(100) has a higher affinity for NH2 species, whereas NH species are 

preferred over Pt(111) [42].  

Adsorption and dissociation of NO on different orientation Pt single crystal 

surfaces have been studied using experimental techniques and DFT slab calculations 

[46-56]. These results show that both the presence of steps and the orientation of the 

steps are important to activate NO, NO on Pt(100) has stronger bonding and much 

higher decomposition ability than Pt(111) and Pt(110). Decreasing of oxygen 

coverage could suppress recombinative desorption of NO, part of the NO molecules 

adsorbed on the step sites dissociates around 450 K on Pt(533). Adsorption states of 

NO on the Pt(111) step surface were elucidated by using infrared reflection 

absorption spectroscopy (IRAS), STM and DFT calculation. On the (111) terrace, 

NO molecules are adsorbed at fcc-hollow, hcp-hollow and on-top sites. On the other 

hand, NO molecules adsorb at the twofold bridge sites of a step [52].  

The secondary reaction of ammonia, i.e. NO reduction by NH3 on Pt has been 

studied frequently as a model reaction for the selective catalytic reduction process 

(SCR). This reaction follows two main pathways, leading to N2 and H2O, and to N2O 

and H2O. This reaction system also gives rise to nonlinear behavior, such as rate 

oscillations and spatio-temporal pattern formation [50, 57-60].  

Ammonia oxidation was studied under reaction conditions, ranging from UHV to 

atmospheric pressure, with single crystals and with polycrystalline Pt or Pt-Rh alloys. 
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Single crystal studies of the NH3 + O2 have been carried out with the orientations 

Pt(100) [22, 61], Pt(111) [21], and the stepped Pt surfaces [26], Pt(443), Pt(533) [14] 

and Pt(410) [62]. Most of the proposed reaction mechanisms were based on that 

originally suggested by Fogel et al., who suggested that NO formation plays a key 

role in the formation of products [23]. Mieher et al. proposed that the reaction 

proceeds via the oxygen atoms stripping hydrogen of NH3 followed by the 

recombination of nitrogen atoms with oxygen, to form NO, or with other nitrogen 

atoms, to form N2 [63]. In their mechanism NO was not intermediate for N2 

formation. Ammonia activation on Pt(111) was studied by Offermans et al. by means 

of DFT calculations . They have shown that beside Oad, OHad plays an important role 

in the activation of ammonia leading to the dehydrogenation [10]. 

The structure of a metal catalyst surface is not rigid under reaction conditions, 

but changes in response to its changing chemical environment. This restructuring 

occurs on an atomic level on the time scale of adsorption (10-3 sec), on a mesoscopic 

scale on the order of seconds or on longer time scales leading to morphological 

changes, to deactivation or activation of catalytic processes [64]. Under industrial 

conditions Pt catalysts undergo severe morphological changes in the Ostwald 

process due to the strong exothermicity of the reaction. The restructuring behavior of 

catalysts is a general phenomena in heterogeneous catalysis, is often associated with 

an activation or deactivation, or change in the selectivity of a catalyst.   

In heterogeneous catalysis, the term “structure sensitivity” was first introduced to 

indicate the dependence of a catalytic rate on the size of the catalyst particle. As the 

metal loading of a dispersed, supported catalyst decreases, the mean metal particle 

size decreases as well. The smaller the particle is, the more edge and corner atoms 

are exposed [65]. 

The direct correlation between low coordination sites (present at the steps and 

kinks) and catalytic activity led to the development of the concept of structure 

sensitivity. The proposition that highly uncoordinated sites are chemically distinct in 
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that sense that they are capable of breaking the bonds in the rate determining step of 

the mechanism. Thermal desorption experiments revealed that stepped surface are 

often capable of adsorbing and decomposing surface species such as adsorbed 

hydrocarbons or diatomic gases at significantly lower temperatures than flat surface.  

In this thesis, a short introduction of the applied experimental techniques and a 

description of the experimental setups are presented in chapters 2 and 3, respectively. 

After the critical review, results are shown in chapter 4 and 5.  

In chapter 4 the adsorption and dissociation of oxygen and ammonia on Pt(443) 

are studied in a UHV system equipped with low energy electron diffraction (LEED), 

Auger electron spectroscopy (AES), Kelvin probe and photoelectron emission 

microscopy (PEEM). Here, in situ work function measurement, LEED and PEEM 

measurements permit us to relate the presence of certain adsorbates and the variation 

of surface structure to the catalytic activity. And the stationary reaction kinetics 

studies of ammonia oxidation on five different Pt surfaces are presented, Pt(100), 

Pt(533), Pt(443), Pt(865) and Pt foil. The experiments were systematically 

performed in the pressure range from 10-7 to 10-2 mbar.  

The activities of ammonia oxidation over Pt surfaces with different structure are 

compared under identical reaction conditions. The influence of the total pressure on 

reactivity and selectivity is investigated in the pressure range from UHV to 

intermediate pressures (10-3 to 10-2 mbar) for Pt(533), Pt(443), Pt(865)and Pt(100). 

The variation of the surface structure was studied before and after reaction via LEED 

in order to compare the stability of surfaces with different orientations. Surface 

topographical changes are studied via SEM, and element analysis of the catalytic 

surface is carried out by Energy Dispersive X-ray (EDX) analysis. All these results 

are described in chapter 5.  

Finally, conclusions are drawn, and the efforts to bridge the pressure gap and 

material gap in ammonia oxidation reaction are briefly summarized in chapter 6. 
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Chapter 2  Experimental Techniques 

2.1 Introduction 

Surface characterization is an essential part of surface science and heterogeneous 

catalysis. Spectroscopy, microscopy, diffraction and methods based on adsorption 

and desorption or bulk reactions all offer tools to investigate the nature of an active 

catalyst. With such knowledge we hope to understand catalysts better. In the 

fundamentally oriented studies in UHV system, model catalysts are applied, which is 

better defined. With such kind of catalyst we are in the domain of surface science, 

where a wealth of analytical techniques is available that do not work on technical 

catalysts. And these surface sensitive techniques can help us to provide different 

information of catalytic reactions, for example, depending on the variation of 

structure, morphology, coverage and composition of the surface. 

In this work several techniques were used to study the reaction mechanism of 

ammonia oxidation over Pt model catalysts: low energy electron diffraction (LEED) 

determining the geometrical surface structure, Auger electron spectroscopy (AES) 

for the elemental composition of the surface, Kelvin probe measurements giving 

information about work function changes in situ under different conditions, 

photoelectron emission microscopy (PEEM) for spatio-temporal dynamics studies, 

traditional temperature-programmed techniques for desorption studies and rate 

measurement, and scanning electron microscope (SEM) which was used for the 

observation of the variation of surface morphology. A brief introduction to the 

principle of the above techniques and their applications in this thesis is presented in 
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this chapter.  

 

2.2 Notation of Surface Structures 

Many of the technologically most important metals possess the face centred 

cubic (fcc) structure: for example the catalytically important precious metals (Pt, Rh, 

Pd) all exhibit an fcc structure.  

The fcc(100) surface is that obtained by cutting the fcc metal parallel to the front 

surface of the fcc cubic unit cell - this exposes a surface with an atomic arrangement 

of 4-fold symmetry, as shown in Fig. 2.1a.  

The fcc(110) surface is obtained by cutting the fcc unit cell in a manner that 

intersects the x and y axes but not the z-axis - this exposes a surface with an atomic 

arrangement of 2-fold symmetry, as shown in Fig. 2.1b.  

The (111) surface is obtained by cutting the fcc metal in such a way that the 

surface plane intersects the x-, y- and z- axes at the same value - this exposes a 

surface with an atomic arrangement of 3-fold (apparently 6-fold, hexagonal) 

symmetry. This layer of surface atoms actually corresponds to one of the 

close-packed layers on which the fcc structure is based, as shown in Fig. 2.1c. 

A notation which is better suited for practical purposes and which is now widely 

in use was proposed by Lang et al. [66]. In this case the surface is considered as 

consisting of terraces of low miller index planes (ht kt lt) with constant widths, and 

step faces of monoatomic height which are characterized by low miller index (hs ks ls). 

A step with kinks corresponds to a higher-index plane, i.e. its face itself is not planar 

but stepped. The resulting notation is then n(ht kt lt)×(hs ks ls), where n gives the 

number of parallel atom rows forming a terrace. Accordingly the (775)-surface is 

denoted by , since 6 atom wide (111) terraces are followed by  

steps. The designation for the (10, 8, 7) surfaces is 7(111)×(310); now the step is 

formed by a (310) plane which itself is “rough”, i. e. contains kinks. Frequently, the 

)111()111(6
−

× )111(
−
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stepped nature of a surface is marked as postscript (S) to the identification, i.e. for 

example Pt(S)-[7(111)×(310)] [67]. 

 

 

 

 

 

 

                   

               (a)                                (b) 

 

 

 

 

 

 

                                     (c)   

Figure 2.1. Ball model of low Miller index surface of the face centered cubic (fcc) metal: (a) 
(100), (b) (110), (c) (111).  

 

2.3 Low Energy Electron Diffraction (LEED) 

Apart from Auger electron spectroscopy, LEED is the most common technique 

used in studies of single crystal surface. For a long time it has been the only method 

to study the structure and morphology of two-dimensional surfaces. It probes the 

long-range order of periodic surface structures and yields valuable information even 

without going through complicated analysis if I/V – curves (intensity vs. voltages 
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curves).  

LEED is used as a standard method for the characterization of the surface quality 

during the sample preparation prior to other UHV experiments.  

1. Generally, the structural information given by a LEED pattern result from the 

position and the intensity of the diffraction spots as well as from the spot profiles. 

2. The positions of the surface atoms are obtained from the so-called I-V curves, 

which means that the spot intensities are measured as a function of the electron 

energy. Measurements of the spot profiles thus provide important statistical 

parameters of the surface, such as the average terrace width distribution. 

The extreme surface sensitivity of electrons with energies in the range of 50 to 

200 eV is one of reason for this capability. With the electrons wavelength of the 

order of inter atomic distance, as shown in the following equations: 

( )eVEm
h

e ⋅
=

2
λ   ,                                           (2.1) 

where  

Planck’s constant: h = 6.62 × 10-34 J·s; mass of electron: me = 9.11 × 10-31 Kg,  

then finally Equ. 2.2 can be derived from the Equ. 2.1   

)(/4.150 eVE=⎟
⎠
⎞

⎜
⎝
⎛Α

°

λ   ,                                       (2.2) 

the atomic arrangement in the surface unit cell is accessible for the measurement 
[68].  

2.3.1 Experimental Set-up of LEED 

A typical LEED experiment setup is shown in Fig. 2.2. Within this standard 

LEED operation the electron energy can be varied between 0 and 1000 eV. The 

cathode is a thoriated Iridium hairpin filament, these filaments may be operated up to 

a pressure in the upper 10-5 mbar range. The grids and the screen in the form of 

calottes with different diameters are arranged concentrically around a common 

center where the sample surface has to be positioned. On the other hand, a 4-grid 
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LEED optics can be used as an electron energy analyzer, or more precisely, a 

retarding field analyzer (RFA). This offers the possibility of recording Auger 

electron spectra (AES). 
 

fluorescent screen

crystal

grid

e-gun

viewport

 

Figure 2.2. Scheme of the experimental set-up for LEED. 

2.3.2 Basic Theory of LEED 

The basis for the interference of electrons at crystal surfaces is the de Broglie 

equation mvh /=λ . In the case of wave scattering at a periodic array in one 

dimension, constructive interference takes place if the scattered waves from 

neighboring lattice points have path differences of multiples of the wavelength λ . If 

the primary wave strikes the surface with an incident angle θ0, normally incidence θ0 

is zero. Interference of the backscattered waves occurs in direction θ, where θ is 

given by the condition 

λθθ nda ==− ) sin(sin 0                                         (2.3) 

then  

λθ na =sin                                                    (2.4) 

where n - integer (..-1, 0, 1, 2.. ), a  is the distance between the periodically 

arranged scatterers and n an integer denoting the order of diffraction, which were 
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shown in the following diagram, Fig. 2.3.  

 

Figure 2.3. Scheme of the diffraction process in one dimension 

2.3.3 Diffraction and reciprocal space 

According to the Equ. (2.1) and Equ. (2.4), scattered electrons will exhibit an 

interference pattern with constructive interference in directions with 

Ema
nh

e2
sin =θ ,                                          (2.5) 

Symbols are defined above. Hence, if the scattered electrons are collected with a 

fluorescent screen, one observes a pattern of spots. Each spot corresponds to a 

direction in which constructive interference takes place.  

Because of the inverse relationship between interatomic distances and the 

directions in which constructive interference between the scattered electrons occurs, 

the separation between LEED spots is large when interatomic distances are small 

and vice versa: the LEED pattern is a projection of the so called reciprocal lattice. In 

two-dimensions the construction of the reciprocal lattice is: if a surface lattice is 

characterized by two base vectors  and , the reciprocal lattice follows the 

definition of the reciprocal lattice vectors  and : 

→

1a
→

2a
*

1

→

a
*

2

→

a
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→

ia ·  = δ
*→

ja ij                                                  (2.6) 

in which  
→

ia         are the base vectors of the real lattice (i = 1,2) 
*→

ja         are the base vectors of the reciprocal lattice (j = 1,2) 

δij          is the Kronecker delta, δ11 = δ22 = 1, δ12 = δ21 = 0 

The observed LEED pattern is a two-dimensional reciprocal lattice of the ordered 

surface projected onto a two-dimensional real plane. The position of the LEED spots 

can be determined using an Ewald construction. So from a LEED pattern we can 

obtain the information about the geometry of the surface and the adsorbates layer 

[69]. 

2.3.4 Characterization of Stepped Surface from the LEED 

Pattern 

Surface with regular arrays of steps and kinks may easily be analyzed by LEED. 

Since each frequently occurring pair distance on the surface gives rise to a 

corresponding spot distance in the diffraction pattern, the latter will reflect both the 

periodicities of the atomic configuration on the terraces and of the steps. 

 

Figure 2.4. Cross section of a surface consisting of terraces separated by periodic steps. 

 If the terrace is composed of (M＋1) atoms separated by a distance a, as shown 

in Fig. 2.4 [67]. The ratio of the spot separation will simply be given by a/M · a, the 

spot from the flat terrace plane will be split into doublets. According to Henzler 

LEED patterns from stepped surface may be analyzed, the scattered intensity I at an 

 13



Chapter 2. Experimental Techniques 

angle φ is derived:  

( ) ( )[ ]
[ ] ( ) ( )[ ]∑

∞+

−∞=

−+++××
+

=
m

mkdgaMk
Mka

I πϕϕδ
ϕ

ϕ
ϕ cos1sin

sinsin
sin1sin

2
1

2
1

2
12

2
12

,(2.7) 

where I is the intensity of electron beam in direction φ, k = 2π/λ, λ is the wavelength 

of the electron beam, M+1 is the number of atom rows on one terrace and a is the 

separation of atom rows, d is the step height, and g is the horizontal shift of the top 

layer of one step compared with the adjacent step [70]. The first term is the normal 

interference function of a periodic array consisting of (M+1) atoms and exhibits 

maximum values if πϕ nka =⋅ sin2
1 . The second term represents a sum of 

δ-function in the limit of an infinite number of steps. This term depends only on the 

width (M·a + g) of the terraces and on the step height d. The separation of two 

adjacent delta functions derived from Equ. (2.7) is given by:  

( ) ϕϕ
λϕ

sincos dgMa −+
=Δ  ,                                   (2.8) 

which simplifies in the vicinity of the (0,0)-spot (φ=0) to  

gMa +
≈Δ

λϕ 0,0  ,                                              (2.9) 

the terrace width (Ma+g) can then be determined from the magnitude 0,0ϕΔ  of the 

splitting of the (0,0)-spot.  

Upon variation of the electron energy the delta function also tend to pass through 

the positions of the normal spots, so that at certain wavelengths these are not split. 

This situation occurs for the (0,0) beam if  

2

2

0,0 4
5.1
d
sE =  ,                                                (2.10) 

where E0,0 are the voltages in volts for observation of a single 00 reflection, d is the 

step height in nm. For all voltages computed from integer values of s (and an 

assumed d) single spots at the site of the 00 beam are expected. For half-integral 

values of s the (0,0)-beam will be split symmetrically into two spots of equal 
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intensity. By observation of voltages necessary to obtain single and double spots and 

by application of equation (2.10) the step height can be derived from observation of 

the LEED pattern alone.   

 

2.4 Auger Electron Spectroscopy (AES) 

AES is a common analytical technique used specifically in the study of surfaces 

and, more generally, in the area of material science. Underlying the spectroscopic 

technique is the Auger effect. The detection of the first “Auger” electrons was 

reported in 1923 by the French scientist Pierre Auger. And the use of Auger electrons 

as a tool for surface analysis was first introduced by Lander in 1953 [71]. In this 

work, the technique has been used daily to check the cleanliness of the surface, and 

more importantly it is also used to provide elemental information after reaction. 

2.4.1 The Auger process 

When a beam of electrons interacts with the atoms in a material, core level 

electrons can be ejected if the energy of the incident electrons (1 keV ~ 10 keV) is 

larger than the ionization threshold. Relaxation of ionized atom can occur by filling 

the core vacancy with an electron from an outer shell. The relaxation energy is then 

dissipated in either of two ways. It can be given to a second electron, an Auger 

electron, which is emitted from the atom with a characteristic kinetic energy Ekin, as 

demonstrated in Fig. 2.5, or it can appear as a characteristic X-ray photon, ΔE = hν.  

The conventional way to assign Auger transitions is to use the X-ray 

spectroscopic nomenclature. Three electron levels are involved in an Auger 

transition, each of which is designed by its principal quantum number n. The capital 

letters K, L, M, N ... are used for states with n = 1, 2, 3, 4 ..., respectively. Different 

subshells are distinguished using the suffices 1, 2, 3, 4 ... which correspond to the 

spectroscopic levels s1/2, p1/2, p3/2, d3/2, d5/2, ..., for example, a vacancy in the 1s1/2 
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level be filled by a 2s1/2 electron and a 2p1/2 electron be ejected, the corresponding 

Auger transition would be designated as K1L1L2. No matter from where the Auger 

electron is emitted, three electronic states participate in the process, and with 

relaxation phenomena neglected, the kinetic energy of the Auger electron can be 

written 

Ekin = E1 – E2 – E3 ,                                            (2.11) 

where E1 denotes the binding energy of the initial core electron prior to ionization, 

E2 that of the electron that fills the core hole, and E3 the binding energy of the 

ejected electron. The essence of using Auger electron spectroscopy as an element 

specific analytical tool is that in each case the emitted electron carries a 

characteristic energy, which arises from the combination of energetically well 

defined atomic levels unique for a given atom.  

 

 

Figure 2.5. Energy-level diagram illustrating the two possible filling mechanisms of a K-shell 
core hole generated. 

For atoms with many electron states, there are many different Auger transitions 

possible. According to the above process, Auger transitions are assigned by capital 

letters denoting the shells, whereby subfigures indicate the participating subshells. 

The sequence of these capitals is chosen according to equation (2.11). Beside KLL 
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transition, KLM, LMM, MNN, and NOO transitions can occur and lead to a wealth 

of Auger emission features for Z elements [72].  

2.4.2 The AES instrumentation 

The retarding field analyzer (RFA) consists of a series of concentric 

hemispherical grid. The sample is struck by a beam of electrons, and some electron 

are re-emitted by the sample and travel towards the grids. The first grid is usually 

grounded. The next grid has a voltage -V applied, so that any electrons lower than 

this energy are reflected back to the sample or the first (grounded) grid. There are 

usually more grids for reasons that will not be entered into here. The high energy 

electrons are detected and form the signal from the RFA. The RFA has a much larger 

solid angle over which electron may be detected than the cylindrical mirror analyzer 

(CMA) or concentric hemispherical analyzer (CHA). However, as it collects 

electrons above a certain energy unlike the CMA or CHA which collect electrons 

within a range of energies, the RFA suffers from greater noise, a poor signal to noise 

ratio. In our experiments, this AES is often applied to check the sample after 

cleaning process. 

 

2.5 Kelvin Probe Measurement 

2.5.1 Work function changes induced by adsorbates 

The work function is the minimum energy (usually measured in electron volts) 

needed to remove an electron from a solid to a point outside the solid surface (or 

energy needed to move an electron from the Fermi energy level in to vacuum). The 

final electron position is far from the surface on the atomic scale but still close to the 

solid on the macroscopic scale. 

The work function at zero temperature: 
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Eф = En-1 + Evac – En ,                                      (2.12) 

or  Eф = Evac – EF .                                            (2.13) 

Even on a clean, well-defined surface in UHV, the microscopic interpretation of 

Eф contains several contributions. On a metal surface a major contribution is due to 

the fact that the electron density “leaks out” from the relatively rigid framework of 

positive ion cores. This gives rise to a dipole layer at the surface, which the emitted 

electron must pass through. Similar effects occur at steps, which thus also modify the 

work function of a clean surface.  

In the case of adsorption, adsorbed atoms and molecules generally have a 

significant influence on the electronic structure of a surface: they rearrange the 

electronic charge within the chemical bond and may also add elementary dipoles if 

the adsorbed molecule has its own static dipole moment. The second contribution is 

due to the relaxation of the substrate induced by the overlayer. But the latter 

contribution is very small. At higher coverages due to the interaction of the 

adsorbates complex depolarization occurs. 

2.5.2 Work function change measurement 

Work function change (Δφ) measurements are very simple to perform and yet 

can provide fairly detailed information about microscopic processes. Moreover, the 

work function is a surface sensitive property, because it contains above all the 

surface potential.  

The Kelvin Probe is an extremely sensitive analytical tool. It measures changes 

in contact potential difference between a reference material and a sample which 

depend upon changes in the work function of the material being studied, not the 

absolute work function. The work function is defined as the amount of energy need 

to release electrons from the materials surface. Many factors can influence contact 

potential difference (CPD), including temperature, stress, strain, adsorption or 

desorption of molecules, depending on the sample material, even photo excitation. 
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The Kelvin probe method was successfully introduced by Mignolet to follow 

work function changes during gas adsorption. The physical principle behind it is the 

followings: one measures the displacement current iD, which flows inside the 

connecting wire of a charged plate condenser as soon as the capacitance is 

periodically modulated. This can be achieved by vibrating one plate with respect to 

the other (fixed) plate, with frequency ω around a distance d0 according to: 

tadtd ωsin)( 0 += .                                            (2.14) 

A permanent alternating displacement current is thus obtained, which is given as  

2
00 )sin(cos/)( −+−== tadtAVadtdQtiD ωωωεε ,                   (2.15) 

where Q= charge on the capacitor; ε, ε0 = permittivity of the dielectricum and 

vacuum; A is plate area; V= voltage applied to the capacitor (V equals the contact 

potential difference, Δφ); d0 = plate distance with plate at rest; ω = frequency of 

vibration, and a = amplitude of vibration. According to Equ. 2.15, iD represent a 

time-dependent periodic function and differs from zero only if the contact potential 

difference V has a finite value. Because its magnitude is proportional to V, iD can be 

utilized to monitor contact potential differences.  

Experimentally, the sample is moved by means of a UHV manipulator in front of 

an inert reference electrode, which consists of a small gold net plate. 

For following work function changes, it is mandatory that the adsorption occurs 

only at the sample surface; gases must not interact with the reference electrode, the 

physical operation is as follows, Fig. 2.6. By applying an external voltage Vex 

between the sample and reference electrode the CPD can be compensated to zero, 

whereby the two Fermi levels are shifted with respect to each other accordingly. Any 

adsorption now changes the surface potential of the sample, and its work function 

leading to build-up of a renewed CPD. The external voltage to compensate this CPD 

again to zero is then equal to work function change on the sample [72]. 
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EF,A=EF,B

solid A solid B

eVAB

A B

Vex = 0

vac.

 

(a) 

 

vac.solid A

EF,A

VAB

solid B

Vex = V

BA

EF,B

 
(b) 

Figure 2.6. Physical principle of the Kelvin method: electrical potential situation with two 
different metals A and B connected to form a condenser. Because the Fermi levels equilibrate, a 
contact potential difference VAB is built up. (a) If an adjustable external voltage Vex is connected 
to the plates of the capacitor, the CPD VAB can be compensated to zero. Then the condition VAB 
= Vex holds. (b) In a self-compensating circuitry device, this is achieved automatically using 
lock-in techniques. 

2.5.3 Experimental setup of Kelvin probe 

The design of the Kelvin probe used in our lab is shown in Fig. 2.7. A vibrating 

gold grid is used as reference electrode, the reference electrode is driven by a 
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piezoceramic. And the setup proposal for Kelvin probe and specimen are also shown.  

 

Figure 2.7. Design of Kevin probe and the set-up proposal for Kelvin probe and specimen. 

 

2.6 Photoelectron Emission Microscopy (PEEM) 

Photoemission electron microscopy (PEEM) is based on imaging the secondary 

electrons that are produced in the filling of the core-hole created in the primary 

photoexcitation processes. These processes depend upon the transition probability 

from the ground state to the unoccupied states above the Fermi level. High resolution 

imaging of surfaces and interfaces with topographical, elemental, chemical, 

orientational and magnetic contrast can be obtained. 

2.6.1 Application of PEEM 

PEEM provides a real space image of the sample surface under controlled 

conditions in ultra-high vacuum or in a reactive gas mixture. Real time experiments 

became possible by the development of an UHV compatible PEEM, which is 

capable of following work function changes over macroscopic surface areas in situ. 

This technique thus offers the unique opportunity of studying, both the surface 
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morphology and the geometrical distribution of adsorbed reactants during a 

heterogeneous catalytic reaction. The contrast of the PEEM image during the 

reaction is due to local changes of the work function Φ caused by the laterally 

varying adsorbate concentration.  

According to Fowler’ theory, 

Y ∝ (hν –Φ)2,                                               (2.16) 

where Y is photoelectron yield, hν is the photo energy and Φ is the work function. 

As shown in Fig. 2.8, the wavy line approaching the sample under about 75o from 

the  

 

eh

 

Figure 2.8. Schematic drawing on the principle of PEEM. 

surface normal represent UV-light. It is possible to determine the absolute work 

function of the surface, clean or covered, to an accuracy of several meV, by plotting 

the square root of the total yield of photoelectrons versus the photon energy when 

the photon energy is varied from values 0.5 eV below Φ to about 1 eV above the 

threshold. In a practical application of PEEM, since the grey scale intensity of the 

image is proportional to the photoelectron yield, the square root of the intensity 

value is shown to follow linearly the negative work function change. This means, 

high work function areas are imaged as dark, low work function change areas as 

bright in PEEM. By plotting the PEEM intensity versus time or temperature, one can 

in situ study the surface work function change during the reaction. 
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2.6.2 Instrumentation of PEEM 

The PEEM is a parallel imaging instrument, and creates at any given moment a 

complete picture of the photoelectron distribution emitted from the imaged surface 

region [7]. The viewed area of the sample must therefore be illuminated 

homogeneously with appropriate UV-light, typically about 7 eV for work on Pt 

surfaces. The imaged area has a typical size between 40-600 μm in diameter. As an 

image intensifier a channel plate is utilized in front of the phosphorous screen.  

 

  

 

Figure 2.9. Schematic drawing of the photoemission electron microscope (PEEM), not to scale. 

Normally the channel plate is restricting the operating total pressure in the 

electron optical column to less than 10-6 mbar. The PEEM is therefore differentially 

pumped, allowing a reactants total pressure up to 10-3 mbar in the chamber. To 

maintain three orders of magnitude pressure difference, an aperture of 300 μm 

diameter has to be incorporated at the focus of the objective lens. The PEEM is 

schematically reproduced in Fig. 2.9. 

In principle, the resolution is inversely proportional to the accelerating field 

strength at the surface but proportional to the energy spread of the electrons. For the 
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PEEM illustrated in Fig 2.9 the resolution r is approximately: 

eUEdr /Δ≈ ,                                                         (2.16) 

with d being the distance between the sample and the objective, ΔE being the 

distribution width of the initial electron energies and U the accelerating voltage. 

Using typical values of d = 4 mm, ΔE = 0.5 eV and U = 20 kV results in a theoretical 

resolution of r = 100 nm. 
 

2.7 Temperature Programmed Techniques 

The experimental setup of temperature programmed reaction spectroscopy, is 

shown in Fig. 2.10. A QMS is used to monitor the reaction on the surface as a 

function of temperature, and the surface is heated with a constant heating rate. 

Temperature programmed desorption and reaction spectroscopy are commonly used 

on qualitative basis. The interest is often confined to the total amount of reactants 

consumed or products evolved. Fragmentation patterns from the mass spectrometer 

data are used to identify molecules desorbing from the surface, for example, for mass 

28, it could be N2 or CO, so fragmentation of mass 14 (N) and 12 (C) also should be 

monitored during reaction.  

In modern implementations of the technique the detector of choice is a small, 

quadrupole mass spectrometer (QMS) and the whole process is carried out under 

computer control with quasi-simultaneous monitoring of a large number of possible 

products. The data obtained from such an experiment consists of the intensity 

variation of each recorded mass fragment as a function of time or temperature. 

Typically the sample is very close to the QMS cone, and QMS is pumped  

differentially via turbo-pump. 
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Figure 2.10. Scheme of the experimental setup for temperature-programmed techniques. 

In TPRS a number of desorption products will normally be detected – this is 

where mass spectrometric detection and multiple ion monitoring really becomes 

essential. TPRS gives the most important information to describe the rate equation of 

the reaction, i.e., the way in which reaction rate depend on the temperature and the 

partial pressure of the gases. In this thesis, TPR experiments were used to determine 

the stationary reaction kinetics in different pressure ranges. 

 

2.8 Scanning Electron Microscope (SEM) 

The scanning electron microscope (SEM) is a type of electron microscope 

capable of producing high-resolution images of a sample surface. Due to the manner 

in which the image is created, SEM images have a characteristic three-dimensional 

appearance and are useful for judging the surface structure of the sample. X-rays, 

which are also produced by the interaction of electrons with the sample, may also be 

detected in an SEM equipped for energy dispersive X-ray spectroscopy (EDS). In 

this way, it possible to perform an element analysis of the sample surface region.  

The lateral resolution of electron probe techniques, such as AES, SEM and EDS, 

is related to the size and distribution of the interaction volume between the incident 

electrons and the material, as shown in Fig. 2.11.  
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Figure 2.11. An electron beam impinging on a sample will create a pear shaped interaction 
volume [71]. 

When the primary electron beam interacts with the sample, the electrons lose 

energy by repeated scattering and absorption within a peardrop shaped volume of the 

specimen known as the interaction volume, which extends from less than 100 nm to 

around 5 µm into the surface. The size of the interaction volume depends on the 

electrons' landing energy, the atomic number of the specimen and the specimen's 

density. The energy exchange between the electron beam and the sample results in 

the emission of electrons and electromagnetic radiation, which can be detected to 

give a map of signal intensity coming from the sample, leading to the SEM image. 

The beam electrons interact with atoms in the specimen. The signals resulting 

form these interaction escape from different depths within the sample. Secondary 

electrons, backscattered electrons and characteristic X-rays are the most widely 

utilized signal in a SEM.  

Characteristic X-rays (sample depth is in the μm range) are generated by 

inelastic interactions of the probe electrons with specimen atom. By analysing the 

characteristic X-rays, the elements that constitute the specimen can be identified, and 

also quantitative calculation of their weight concentrations can be made. A widely 

used method of analysing characteristic X-rays is by the EDXS. 
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Chapter 3  Experimental Setup 

3.1 Introduction 

The general intention of the thesis work is to bridge the pressure gap and 

material gap in the study of ammonia oxidation on Pt catalysts. This means that, the 

studies of reaction under both ultrahigh vacuum conditions and intermediate pressure 

conditions are included in this thesis. Therefore a UHV system and a high-pressure 

reaction cell are combined in order to characterize the surface before and after the 

reaction in the intermediate pressure range. Different single crystal Pt surfaces and 

polycrystalline Pt are studied in order to investigate the structure sensitivity of the 

reaction. In this chapter, detailed descriptions of these experimental setup are given, 

some of the important operation methods of the instruments and experiments are 

presented as well. 

3.2 The UHV System 

Figure 3.1 shows a schematic drawing of the UHV system which was equipped 

with various scientific instruments: low energy electron diffraction (LEED), Auger 

electron spectroscope (AES) combined with LEED, quadrupole mass spectrometer 

(QMS), scanning tunneling microscopy. A standard ion gun was used for the sample 

cleaning via ion sputtering. A high precision UHV specimen manipulator supports  
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Fig. 3.1. Schematic drawing of the UHV system which was equipped with LEED & AES, QMS, STM. 
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sample movements in the chamber in all directions (x, y and z axis, rotation 360°). 

All the instruments were well calibrated to make sure the measurements are reliable 

and reproducible. The sample was heated indirectly by a filament behind the 

backside of the crystal either via radiation or via electron bombardment. Sample and 

sample holder are shown in Fig. 3.2.  

 

a

 

 

 

 

 

 

 

 

 

 

b

c 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Sample holder in the STM UHV chamber, (a) Pt sample; (b) thermocouple 
connection; (c) heating filament in the shielding case. 
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During rate measurements the cone (opening 2 mm), which connected the 

differentially pumped QMS with the main chamber, was brought 1 mm in front of 

the surface. In this way reaction products from the backside of the sample and from 

filaments were excluded.  

And Fig. 3.3 shows a schematic drawing of the other standard UHV system for 

the measurement of work function change. The chamber is equipped with an ion gun, 

a differential pumped quadrupole mass spectrometer (QMS), a photoelectron 

emission microscope (PEEM) and a Kelvin probe for work function measurements. 

And LEED and a retarding field analyzer for Auger electron spectroscopy (AES) are 

also in conjunction with this chamber to characterize the catalyst surface. The Pt 

crystal (2mm thick, D = 8 mm) is held by two Ta wires which also served for 

resistive heating. The temperature was monitored by means of a chronel-alumel 

thermocouple spot welded to the edge of the crystal. 

 

window

ion gun

PEEM

UV-light

LEED & AES

QMS

Kelvin Probe

 

Figure 3.3. Schematic drawing of the UHV system which is equipped with LEED & AES, QMS, 
PEEM and Kelvin probe. 

In PEEM the sample is illuminated with UV light from a deuterium discharge 
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lamp with maximum emission of 5.2-6.2 eV photon energy was focused onto the 

sample into a small spot (≈ 2 mm2). The emitted photoelectrons were collected by 

an electrostatic three-lens system, amplified by a channel plate and then imaged onto 

a phosphorous screen. The images were then recorded with a CCD camera and 

digitalized. 

3.2.1 Ultrahigh Vacuum 

The base pressure in both chambers was 2 × 10-10 mbar. Ultrahigh vacuum is 

necessary mainly because it provides the condition to work with a clean sample and 

since the analytical techniques rely on electrons as probes. To get such a low 

pressure condition (10-10 – 10-9 mbar), an initial vacuum (10-2 – 10-3 mbar) should be 

established prior to starting vacuum pump by roughing pumps. The pumps that are 

regularly used in the UHV regime are the turbomolecular pump, the ion pump and Ti 

sublimation pumps. QMS and PEEM are differentially pumped according to the 

requirement of their operations.  

An important step in achieving UHV conditions in the main chamber is the 

bake-out process. When the inner walls of the UHV chamber are exposed to air, they 

become covered with a water film (H2O sticks well due to its high dipole moment). 

On pumping down the chamber, these H2O molecules would slowly desorb. In order 

to get rid of this water film the whole equipment has to be baked in vacuum for 

about 10 h at a temperature of 420 － 450 K. After the bake-out, all the filaments 

should be degassed to clean them from all impurities while the chamber is still hot. 

3.3 Samples and Preparation 

Five samples were used and mounted into the UHV system: stepped surfaces, 

Pt(533), Pt(443); kinked surface, Pt(865); planar surfaces, Pt(100); polycrystalline Pt 

foil. 
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3.3.1 Structural models and LEED patterns of clean surface 

The surface structures of model catalysts used in this thesis are shown in Fig. 

3.4. 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 

 

 

 

 

(d) 

 

Figure 3.4. The LEED patterns and structure model of different Pt single crystal surface, (a) 
Pt(443), E= 100 eV; (b) Pt(533), E= 93 eV; (c) Pt(865), E= 110 eV; (d) Pt(100), E= 66 eV. 
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3.3.2 The standard procedure for cleaning surfaces 

In the UHV chamber, the Pt surfaces were cleaned by repeated cycles of Ar ion 

bombardment, followed by annealing the sample, the details are shown as following: 

(a) Sputter the surface for 15 min using Ar ion at room temperature, Ar ion 

energy is 1500 eV, p(Ar) = 2 × 10-5 mbar; 

(b) Turn off Ar and ion gun, heat the sample to 1100 K with a rate of 3 K/s, 

hold the temperature of 1300 K for 15 s in UHV condition; 

(c) Apply oxygen treatment to get rid of the main contamination: C. Hold the 

sample temperature on 650 K for 15 min in the oxygen environment, p(O2) 

= 5 × 10-7 mbar; 

(d) Anneal the sample to 1100 K, and hold it for 15 s after switching off 

oxygen.  

 

3.4 Gas Calibration 

The gas inlet system is connected to the UHV system by an all-metal valve. All 

gases are introduced via leak valves, and the gas grade purity of all gases we used 

are shown in table 3.1.  

 

Gas Grade 

Ar 5.0 

O2 4.8 

NH3 5.0 

NO 2.5 

N2 5.0 

Table 3.1. The gas grade purity of all gases used in this study 
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Calibration gases (NH3, O2, N2 and NO) are applied in order to relate the QMS 

signal to the partial pressure in the chamber.  

Firstly, the relative gauge sensitivities for various gases should be considered. 

The sensitivity, Sg, supplied by gauge manufacturers, is valid only for the gas for 

which it is specified and the readout of the controller provides a direct pressure 

reading only for that specific gas. The standard gas, used by the entire industry for 

gauge specification, is nitrogen and, unless gas correction factors are applied, all 

readings are considered to be ‘nitrogen-equivalent pressures’. So normally Snitrogen = 

1, relative ionization gauge sensitivity factor, Rg, to convert nitrogen-equivalent 

readings into direct pressure readouts for gases, is equal to Sg. So nominal gas 

correction factors for gases used in this work are shown in the table 3.2. 

 

Gas Sensitivity factor, Sg

N2 1.0 

NO 1.2 

NH3 1.2 

O2 1.0 

Table 3.2. Nominal gas correction factors 

Nominal relative sensitivity factors cannot be relied upon for accurate 

measurements since they are known to vary significantly between seemingly 

identical gauges and even more for different gauge types, filament materials, and 

operating potentials. For general vacuum use, the discrepancy in the reported 

measurements is not greater than 10% for common gases. 

Secondly, different gases were introduced into the chamber in the different 

pressure range, from 10-7 – 10-4 mbar. Then the mean value of the ratio of gas 

pressure to ion current of QMS could be obtained for the different gases. These 

factors are shown in the table 3.3. It should be mentioned that these factors would 
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vary with time because of a variation of emission of filament. Therefore, after a 

certain period calibration have to be done again.  

 

Gas Factor (mbar/mA)

N2 3 × 104

NO 4.5 × 104

Table 3.3. The factors relating gas pressure to QMS ion current 

 

3.5 Rate Measurement 

3.5.1 Calculation of reaction rate 

We should stress the fact that whenever we encounter the gas constant R, we deal 

with the unit “mol”, while whenever we encounter Boltzmanns constant k we deal 

with the particle unit “atom” or “molecule”. It is shown in the Equ. 3.1.   

TknT
N
RnVp part

A
part ⋅⋅=⋅⋅=⋅ ,                                  (3.1) 

where V is the volume of the chamber, npart is now the number of particles in V; 

Avogadros constant NA. 

Thermal desorption is important step in the process of surface reaction, 

according to Equ. 3.2,  

dtdn
V

TkAdtdp // ⋅
⋅⋅

= ,                                        (3.2) 

where A denote the area of sample surface; p is partial pressure of gases. 

In the pumped system, pressure change attributed to the pump speed could be 

described in the Equ. 3.3 

V
pSdtdppump
⋅

=/ ,                                              (3.3) 

where S is the pumping speed of the chamber; p is partial pressure of gases.  
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For an equilibrium system, Equ. 3.2 and Equ. 3.3 should be equal. Accordingly,  

V
pSdtdn

V
TkA ⋅

=⋅
⋅⋅ / ,                                                (3.4) 

then the reaction rate of certain product dn/dt should be: 

TkA
pSdtdnr
⋅⋅

⋅
== / ,                                           (3.5) 

unit of r is molecule·cm-2s-1, gas temperature is assign to 300 K. 

Since the pumping speed of the main chamber, S, is 210 L/min, the diameter of 

sample surface is 8 mm,  

Finally r = 1.01 × 1022 p,                                         (3.6) 

where the unit of p is mbar, and the unit of r is molecule·cm-2s-1.  

3.5.2 Reaction sticking coefficient 

Sticking coefficient is the term used in surface physics to describe the ratio of the 

number of adsorbate atoms (or molecules) that do adsorb on a surface to the total 

number of atoms that impinge upon that surface during the same period of time.  

In our experimental set-up the differentially pumped QMS is behind a cone 

whose tip is about 1 – 2 mm away from the sample surface. Due to this geometric 

arrangement to a good approximation only molecules reflected from the surface can 

enter the cone to be detected by the QMS: we can thus determine the reactive 

sticking coefficient sreac in situ from the measured variation of the reactant partial 

pressures, i.e. of O2 or NH3. Denoting the signal of a gas without reaction by I0 and 

during reaction with I we calculate the reactive sticking coefficient sreac as 

0

0

I
IIsreac

−
= ,                                                  (3.7) 

where we take the signal at 300 K for I0 assuming a negligible reaction rate at this 

temperature.  
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3.5.3 Order of reaction 

The order of reaction with respect to a certain reactant is defined, in chemical 

kinetics, as the sum of all the exponents of the reactants involved in the rate equation. 

For our experiments, there are two reactants, NH3 and O2. It is difficult to measure 

the order of reaction rate.  

ba BAkr ][][= ,                                                 (3.8) 

in order to find the order of reaction with respect to one of the reactants, a common 

solution is to keep the concentration of the reactant constant, e.g. [B]0 is constant, 

then 

aAkr ]['= ,                                                    (3.9) 

where k´ = k[B]0 

'ln]ln[ln kAar += ,                                           (3.10) 

finally a plot of r and [A] gives  as the slope, then  is the order of reaction with 
respect to A. 

a a

3.6 High Pressure Reaction Cell 

In order to investigate the reaction in an intermediate pressure range between 

10-3 and 1 mbar, a high-pressure reactor was connected with the UHV system via a 

transfer system. A transfer rod moves the sample between two chambers that are 

separated by a UHV gate valve. After cleaning, the single crystal sample is 

transferred into the reaction chamber. The whole setup is shown in Fig. 3.5. In order 

to keep the gases pressure stable, mass flow controllers from MKS are used in the 

gas inlet system, the full scale range is 10 sccm of nitrogen. The pressure in the higer 

pressure chamber is measured by an MKS Baratron. The samples are heating by a 

lamp behind them, up to 840 K. A programmable temperature and process controller 

from Eurotherm is used to control the temperature.  
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Figure 3.5. Schematic drawing of the high pressure reaction cell. 
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Chapter 4  The Steady-State Kinetics of 

Ammonia Oxidation over Pt 

 

4.1 Introduction 

The high temperature (T > 800 K) oxidation of ammonia with oxygen to NO on 

platinum in the so-called Ostwaldt process is one of the most important industrial 

chemical reactions. The catalyst of choice for this process is an alloy of Pt and Rh. 

At low temperature (T < 800 K) mainly N2 and as to a smaller degree also N2O are 

obtained, and N2O appears as byproduct at pressures above 10-1 mbar. Under these 

conditions the reaction is used in environmental catalysis to remove excess NH3, in 

the selective catalytic reduction (SCR) process of NO with NH3, Pt can be used as a 

catalyst for the selective production of N2 [20]. 

For the catalytic process to take place, apart from the actual chemical reaction, 

adsorption and desorption processes are of importance for the progress of the overall 

reaction. Diffusion processes in the gas phase are neglected since mass transport 

limitations play no role in a UHV system at low pressure (p < 10-3 mbar).  

A number of UHV studies on adsorption, desorption of pure oxygen or pure 

ammonia and decomposition of ammonia over Pt surface have been performed with 

a variety of surface sensitive techniques. Those studies focus on Pt(100) and on flat 

and stepped Pt(111) surface as model catalysts.  

The adsorption of oxygen on a platinum surface plays an important role in 

ammonia oxidation and has been the subject of numerous studies. It has been found 

by Artsyukhovich et al. that at low coverages all the adsorbed molecules thermally 

dissociate upon heating, it follows that the minimum energy pathway leading to 
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thermal dissociation of adsorbed oxygen lies below the energetic barrier for thermal 

desorption [73]. Campbell et al. indicate that oxygen adsorption occurs through a 

weakly-held state, failure to stick is largely related to failure to accommodate in the 

molecular adsorption state [74].  

The material and pressure gap has been a long standing challenge in the field of 

heterogeneous catalysis. In heterogeneous catalysis, the material gap refers to the 

discontinuity between well-defined model systems and industrially relevant catalyst. 

It has been established that catalyst surface structures play an important role in the 

catalytic reaction. Therefore, single crystal metal surfaces have been used as model 

systems to elucidate the role of surface defects and the mobility of reaction 

intermediates in catalytic reactivity and selectivity.  

In this chapter, firstly we present a study of oxygen and ammonia on Pt(443) 

using a Kelvin probe in the conjunction with other techniques of QMS and LEED. 

Secondly, in order to extend the studies on Pt(533) and Pt(443) which were 

carried out intensively by Scheibe et al. to other orientation, we also present a steady 

state kinetic study of ammonia oxidation over Pt(865), Pt(100), and Pt foil 

(polycrystalline). Those studies are conducted at pressures in the range of from 10-6 

to 10-2 mbar. With these results we would try to build a connection between surface 

structure, and reaction conditions (e.g. feed composition, temperature) and catalytic 

activity and selectivity. 

 

4.2 Oxygen and Ammonia Adsorption over Pt 

4.2.1 NH3 on Pt(443) 

The motivation for studying the interaction of NH3 with Pt surfaces lies in 

elucidating the role of NH3 behavior in catalytic reactions. Ammonia is importance 

as a reactant or as a product in several reactions over transition metal catalysts, 

 40



Chapter 4. The Steady-State Kinetics of Ammonia Oxidation over Pt 

particularly in ammonia oxidation over Pt. Ammonia adsorption and decomposition 

have been studied on different Pt surface. By means of density functional theory 

calculations Offermans et al. also investigated ammonia activation on Pt(111) in 

quantum chemical studies [10]. 

Atomic adsorbates usually tend to occupy surface sites with high chemical 

coordination. Molecular adsorbates are on those sites with a low coordination 

number.  

Measurement of work function changes occurring upon adsorption is a valuable 

supplement to electron spectroscopy. Several methods can be used to measure work 

function changes, but the most advantageous method for our purpose here is the 

vibrating capacitor (Kelvin probe). It has a high sensitivity, and most importantly can 

be used in the presence of adsorbing gases [75]. 
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Figure 4.1. Work function change of Pt(443) during a heating/cooling cycle in a NH3 
environment, p(NH3) = 10-8 mbar, and the ramping speed is 0.5 K/s. 
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Figure 4.2. Work function change of Pt(443) during heating/cooling cycle in a NH3 environment, 
p(NH3) = 2 × 10-6 mbar, and the ramping speed is 0.5 K/s, heating to different maximum 
temperature. (a) ~800 K, (b) 500 K, (c) 420 K. 
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Figures 4.1 and 4.2a show work function changes as a function of surface 

temperature on Pt(443), the ammonia pressure are 10-8 and 2 × 10-6 mbar 

respectively. Under these pressures we got saturation ammonia covered surface from 

freshly cleaned surface at room temperature, which was indicated by work function 

change, then temperature cycling experiments were applied to get work function 

changes vs temperature via Kelvin probe.  

Low work function values are found for the most open surfaces. The work 

function can also be lowered locally by adsorbed electropositive species (electron 

donator), like Alkali atom, NHx (x = 1～3). Both figures show work function levels 

off when the temperature is high enough under different NH3 pressure, 470 K under 

10-8 mbar and 570 K under 10-6 mbar range. These results indicate that ammonia 

over a Pt surface desorbed completely above a certain temperature. If we set the 

work function on clean surface to zero, work function change due to ammonia 

adsorption according to Fig. 4.1 and Fig. 4.2a, are -1.0 eV and -1.3 eV respectively. 

Obviously the difference is due to the variation of ammonia coverage under different 

pressure. Compared to Pt(100), the work function change due to ammonia 

adsorption on Pt(100) is relatively smaller, which is around -0.6 eV [11]. This work 

function difference depends not only on ammonia coverage over the surface, but also 

on the interaction between ammonia molecular and Pt surface, because the induced 

dipole is due to the interaction with Pt, the resulting dipole is also influenced by the 

net charge transfer from NH3 to Pt.  

Figure 4.1 also shows work function change simultaneously during heating/ 

cooling process in a NH3 environment. At p(NH3) = 10-8 mbar, there is no hysteresis 

between heating up and cooling down branch, at a ramping speed 0.5 K/s, the work 

function change is linear with the temperature up to 480 K. This indicates that 

ammonia coverage is a function of temperature, and that the adsorption is direct and 

non-activated on the Pt(443), this observation is consistent with the results of Pt(100) 

[11] and Pt(111) [41]. Fisher et al. studied the electronic structure of molecular 
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ammonia adsorbed on Pt(111) by work function measurement, they found that at low 

coverage (θ ≤ 1/4) the change of work function induced by the adsorption of 

ammonia on Pt(111) is linearly proportional to the ammonia coverage. For 

comparison, Fig 4.2a shows the overall work function change at 2 × 10-6 mbar, 

which exhibits a change in the slope of curve during the heating up branch, this 

change happens at around 400 K. Kelvin probes can access extremely low coverage 

with a sensitivity which is not available in TDS experiments. Since work function is 

sensitive to the electronic interaction on the surface, adsorption into a different type 

of site is often associated with a different charge transfer, the change is reflected in 

the work function too. The straightforward interpretation of the above observation 

would be: (ⅰ) a switch between different adsorption sites; initially ammonia would 

like to adsorbate at the top site, denoted α, oriented as an inverted umbrella as N 

bonds to surface. Part of ammonia molecular could adsorb on hollow sites due to the 

relatively high pressure and adsorption time; and (ⅱ) possibly to the switch between 

ammonia adsorption in state α and β-NH3, which also denotes a high coverage state, 

the β state is less tightly bound and appears to be hydrogen-bonded to the initial 

layer of ammonia. Jennison et al. calculated the adsorbate hydrogen bond strength of 

ammonia on Pt(111), and discovered that the H-bond on the surface is almost three 

times stronger and the bond length appreciably shorter compare to that of two 

molecules in the gas phase [40]. 

Figure 4.2b and Fig. 4.2c show the experimental results which followed the 

same temperature cycling experimental process as in Fig. 4.2a, except reaching a 

different temperature maximum, 500 K and 420 K respectively. Compared to Fig. 

4.2a, the major difference appears to be the plateau at Tmax = 500 K. There is broad 

hysteresis during this temperature cycling experiment, and the value of the work 

function in the cooling down branch is relatively lower, this observation indicates 

that possibly a partial decomposition of ammonia happened in a temperature range 

from 420 K to 500 K. When Tmax is 740 K, the fragment of ammonia e.g. NHx (x = 
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1～2), are all desorbed. Ammonia does not start to decompose below 420 K. Fig. 

4.2b shows that the work function in the cooling branch is lower than that in heating 

branch, compared to figures 4.2a and 4.2c. In this sense we speculate that some 

fraction of ammonia fragments didn’t desorb because of a high energy barrier. It is 

these fragments on the surface that are responsible for the decrease in surface work 

function. Some authors studied ammonia adsorption and decomposition over Pt, 

including polycrystalline, stepped surface and planar single crystal surface. Loeffler 

et al. and Guthrie both agreed that ‘open’ surfaces or low coordination surfaces are 

more reactive for the decomposition of ammonia to N2 and H2 than the flat (111) or 

(100) surface [27, 33, 38]. According to the intensely studies carried out by 

Gohndorne et al., the adsorption of ammonia on platinum is not structure sensitive 

since the vibrational spectrum of adsorbed ammonia and the basic structure of the 

TPD spectrum of ammonia is identical on all of the faces they examined. They also 

point out that there are some variations in the binding energy and sticking probability 

of ammonia depending on the surface orientation. These variations produce a large 

difference in the rate of ammonia decomposition over different surfaces. The rate of 

ammonia decomposition on Pt is mainly affected by residence time and sticking 

probability [39].  

The surface structure of Pt(443) is studied by LEED during the temperature 

cycling experiments in an ammonia environment. Figure 4.3 show the LEED pattern 

at different conditions, the distance between the split spots which is corresponds to a 

terrace width has no change, no variation in LEED pattern was observed as a whole. 

The terrace width distribution doesn’t change not only during adsorption at room 

temperature but also in T-cycling according to the LEED patterns. The step 

meandering at 300 K which was proved by STM dose not show up in LEED. Except 

a slight increase in the background intensity, only the FWHM (Full Width at Half 

Maximum) of spots increased and maximum intensity of spots dropped. These 

observations indicate that some disorder exists caused by ammonia adsorption on the 
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surface.  

In the cooling branch of T-cycling, a (2×2) surface structure at around 400 K 

was observed, as shown in Fig. 4.3d. This indicates a transition from disordered to 

ordered surface structure. Since such a transition couldn’t be observed in the heating 

branch, the absence of ordering demonstrates that the mobility of adsorbate over the 

Pt surface is rather low at low temperature and high NH3 coverage. 
 
 
 
 
 
 
 
 
 
 
 
                    (a)                                       (b)     
 
 
 
 
 
 
 
 
 
 
 

(c)                                     (d) 
                                                             

Figure 4.3. LEED pattern of Pt(443) at E = 90 eV under different conditions, (a) clean surface; 
(b) after ammonia adsorption at room temperature; (c) at 332 K after temperature cycling in 
ammonia, p(NH3) = 2 × 10-6 mbar; (d) at ~ 400 K during cooling branch, a (2×2) structure 
formed. 

 

 

 46



Chapter 4. The Steady-State Kinetics of Ammonia Oxidation over Pt 

4.2.2 Oxygen on Pt(443) 

The stability of stepped metal surface in their clean state or when covered by 

adsorbate has been the subject of extensive studies. Many of these surfaces, in their 

clean state, appear to maintain their “ideal” structure over a large temperature range, 

i.e. low Miller index terraces separated by monatomic steps are stable. However, 

when heated in the presence of gases (O2, CO) many the stepped surfaces lose their 

stability and reconstruct or facet [76]. Here we study work function variation and the 

reconstruction behaviors of Pt(443) during oxygen chemisorption using a Kelvin 

probe and LEED. The experiments are conducted in a range of temperature between 

300 to 800 K with a oxygen partial pressure around 10-6 mbar. The adsorption of 

oxygen on platinum single crystal surfaces including planar [74, 75, 77-90] and 

stepped surfaces [91-96], have been the subject of numerous studies.  

Figure 4.4a shows work function change as a function of temperature at poxygen= 

10-6 mbar, and ramping speed is equal to 0.5 K/s. At room temperature the work 

function increase over Pt(443) due to oxygen adsorption is about 0.25 eV. Initially 

the work function increases with rising surface temperature, the maximum change 

reached is about 0.36 eV at 610 K, above 610 K the work function decreases due to 

increasing rate of O2 desorption. Compared to the work function change induced by 

oxygen adsorption on Pt(443), the work function change on Pt(111) is about 0.15 eV 

with an oxygen coverage of 0.25 monolayers [85]. The work function increases 

monotonously with oxygen coverage. The results show that oxygen adsorption on 

Pt(443) is an activated process, which needs elevated temperatures to overcome the 

energy barrier. The line shape to work function show much complexity for oxygen 

over Pt(443) compare to ammonia.  

Wang et al. studied oxygen adsorption and dissociation on Pt(335) with 

high-resolution electron energy loss spectroscopy (HREELS) and temperature 

programmed desorption [96]. Five adsorption state are found, atomic oxygen on 

terraces and steps, molecular oxygen on terraces and steps, and one metastable state  

 47



Chapter 4. The Steady-State Kinetics of Ammonia Oxidation over Pt 

 
0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4. Work function change on Pt(443) during heating/cooling cycle, (A) in oxygen 
circumstance, p(O2) = 10-6 mbar, with a ramping rate 30 K/min; (B) turning off oxygen, 
background pressure is ~ 10-9 mbar, temperature cycling with the same ramping speed as (A); (C) 
right after (B), annealling the sample to 800 K. 
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Dissociation of O2 occurs almost exclusively at the steps: at saturation coverage 

about 95% of the step O2 species dissociates before desorbing, while 95% of the 

terrace O2 desorbs directly without dissociation. Dissociation of the edge O2 occurs 

in part directly and partially through a metastable state. In our case from work 

function measurements it is impossible to draw conclusions of what kind of species 

being present on the Pt(443) surface. At low coverage (<0.25 ML) oxygen 

adsorption into the atomic state proceeds probably through a molecular precursor 

state; and Campbell et al. suggested that at a coverage above 0.25 monolayers the 

dissociation step becomes activated on the (111) surface. Under these conditions 

dissociative adsorption probably proceeds via a route other than via direct 

dissociation [74]. That is the reason why either elevated temperature (and pressure) 

or atomic oxygen in the gas phase is required to achieve a high coverage. 

We also investigate the surface structure via LEED when Pt(443) is exposed to 

oxygen. In the heating branch no LEED pattern change is observed except that the 

intensity of background abruptly becomes much stronger. We do observe a (2×2) 

structure at room temperature as shown in Fig. 4.5a, the formation of this (2×2) 

differs from ammonia adsorption over Pt(443), which also leads to a (2×2) pattern. 

Oxygen induced a step coalescence and a terrace broadening on the Pt(443) surface 

at around 610 K. This occurs only in the cooling down branch as shown in Fig. 4.5b, 

whereas no step coalescence can be observed during heating. The structure after step 

coalescence is stable at room temperature. This observation differs from the 

investigation by Lindauer et al. [92]. They found that the terrace broadening on 

Pt[6(111)×(100)] is accompanied by the appearance of the (2×2) layer. The heating 

of the sample, however, was conducted step by step which is more close to a static 

experiment at T-constant. Firstly the disagreement that the coalescence is only seen 

during cooling down, could be caused by kinetic effect. We heat up the sample by 

temperature-programmed controller, ramping 0.5 K/s. so it could be that atomic 

oxygen does not have enough time to equilibrate. Second, The distribution of oxygen  
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Figure 4.5. LEED pattern of Pt(443) at E = 90 eV under different condition, which are marked in 
corresponding to work function change profile in Fig. 4.4, (a) in oxygen at room temperature, a 
(2×2) structure is formed; (b) beginning of step coalescence only during cooling branch at 
around 610 K; (c) LEED pattern of step coalescence; (d), (e), (f), (g) are corresponding to 
conditions in Fig. 4.4. 
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at terraces site and oxygen at step sites could be difference in heating and cooling 

when the mobility is not high enough. 

Once we got step coalescence followed by turning off oxygen until that 

pressure is below 10-9 mbar, the sample is annealed to 800 K to generate a clean 

surface. We investigate work function and structural change of Pt(443) via a Kelvin 

probe and LEED, the results are shown in Fig. 4.4b and 4.4c. The step coalescence 

vanished at around 600 K, we attribute this to oxygen desorption from terrace site. 

And during the cooling down branch, work function change levels off. These 

observations in previous work on O2/Pt(111) system has been summarized. Briefly, 

three basic states exist for oxygen on this surface: one molecular (desorbing at 

around 170 K), one atomically chemisorbed above the surface (desorbing from 600 

to 1100 K), another atomic, subsurface oxygen (desorbing above 1250 K).  

LEED shows that a restructuring of the surface during temperature-programmed 

experiments takes place. Initially the work function increases during heating up until 

around 400 K. This increase is due to the desorption of residual gases. There is no 

change of LEED pattern until 400 K, as Fig. 4.5c shows. Commonly heating Pt 

causes desorption of oxygen first from the terrace sites, and then from the step sites 

[93]. Above around 600 K we can observe the disappearance of step coalescence, as 

shown in figures 4.5d, 4.5e and 4.5f. After reaching 800 K, the clean surface is 

restored, as shown in LEED Fig. 4.5g. No work function change during cooling 

down branch is seen.  

The same thermal annealing procedure is applied to a mixture of ammonia and 

oxygen. The composition NH3:O2 is 1 to 10, i.e. oxygen is in excess with a oxygen 

pressure 10-6 mbar. No step coalescence was observed in this experiment. The 

steady-state Oad concentration is expected to decrease when NH3 is present due to 

the consumption of Oad by NO and H2O production during the oxidation reaction. 

We can assume that atomic oxygen does not accumulate enough to induce step 

coalescence. Therefore no change in the LEED pattern was observed. This 
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observation is different from ammonia oxidation on Pt(533) where oxygen induced a 

doubling of the step height, it is this different that is responsible for the broad 

hysteresis in the reaction rate on Pt(533) compared to Pt(443). We expect that this 

difference is due to the different step orientation on Pt(533) and Pt(443).   
 

4.3 Stationary Reaction Kinetics 

4.3.1 Temperature dependence and influence of reactant 

ratio 

4.3.1.1 Pt(865) 

A structural model of the single crystal surface Pt(865) which exhibits kinks is 

displayed in Fig 3.4c together with a characterization of the surface by LEED. Fig. 

4.6 shows a TPR spectrum over Pt(865) obstained at a various mixing ratio p(NH3) : 

p(O2) = 1:1, 1:3 or 1:10, respectively, from ammonia excess to oxygen rich, for 

p(NH3) = 5×10-6 mbar. The TPR was recorded in a heating/cooling cycle with a 

ramping speed 15 K/min, starting always with freshly prepared surface. For the 

steady-state ammonia oxidation reaction, N2 and H2O were the major products at low 

temperature, whereas the selectivity toward NO and H2O changed at higher 

temperatures. Under different feed composition, profiles of the reaction rates of the 

nitrogenous products (N2 and NO) are similar, nitrous oxide (N2O) wasn’t observed 

under our experimental conditions, these observation are consistent with mechanistic 

and kinetic studies of ammonia oxidation on Pt in UHV. Only when the total 

pressure is above 10-1 mbar [25], nitrous oxide forms according to several other 

ammonia oxidation studies, the absence of N2O at low pressure is believed to be part 

of effect of pressure gap.  

The comparison of the reaction rate of nitrogenous products under different feed  
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Figure 4.6. Temperature programmed reaction spectrum over Pt(865) at various mixing ratios of 
p(NH3):p(O2), p(NH3) is fixed to 5 × 10-6 mbar, the ramping speed is 15 K/min. (a) 1:1; (b) 1:3; 
(c) 1:10.  

composition shows that, firstly, the reaction rate depends on the ratio 
23 ONH pp . 

The surface is more active when the oxygen partial pressure is increased. Compared 

to the ratio of 1:1, the reaction rate of N2 is around 2 times higher, and that of NO 

being 6 times higher when the ratio is 1:10. Evidently the reaction rate of NO is 
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more sensitive to oxygen partial pressure than the N2 production. Obviously, the 

distribution of products changes from N2 to NO with increasing of oxygen partial 

pressure. According to Fig. 4.6 the temperature of the rate of maxima of N2 and NO 

shift from 590 K to 500 K of N2 and from 900 K to 720 K of NO, respectively. These 

temperature shifts also reflect the temperature at which the change in the 

N-selectivity occurred. The desorption of N2 is fast because repulsive interactions 

from neighboring NO(a) and O(a) coverages reduce the N2 desorption temperature. 

Therefore, the N2 and NO formed in this reaction desorbs at a lower temperature 

with the increasing oxygen partial pressure of feed composition. Commonly, kinetic 

studies of ammonia oxidation show distribution of production are dominated by the 

surface composition during the reaction at different surface temperature. N2(g) is 

formed when the surface is covered with an N-containing species and NO(g) is 

formed when O(a) is the majority surface species. The occurrence of this reaction is 

controlled by the NO desorption and the NO dissociation reaction. At low 

temperature, the coverage of N-containing species is relatively high, NO(a) can 

dissociate to N(a) and O(a). At high oxygen coverages and high temperature NO 

dissociation is impossible since the empty sites required for NO dissociation are 

blocked, under these conditions there exists a route to NO formation.  

 

 
p(O2)/p(NH3) 

 
Reaction  
rate (a. u.) 

1:1 1:3 1:10 

N2 15 40 40 

NO 9 33 60 

Table 4.1. Maximum reaction rate under different reactant composition on Pt(865). Here the unit 
of reaction rate are arbitrary unit, but the data are comparable since the results were acquired at 
the same condition. p(NH3) = 5 × 10-6 mbar. 

Table 4.1 shows the change of maximum reaction rate under different reactant 
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composition. And with the increasing of oxygen ratio of feed composition, N2 

reaction rate become to saturate, as comparison of 1:3 and 1:10, whereas NO 

reaction rate at the ratio of 1:10 is about double of that at the ratio of 1:3. In this 

sense, main product under oxygen excess reaction condition is NO.  

Figure 4.7 shows the change of sreac of oxygen during heating and cooling 

cycles. Increasing the O2/NH3 ratio didn’t result in a change of the temperature at 

which the reaction starts, this temperature is around 480 K. These results suggest that 

the onset of ammonia oxidation is not only dominated by the oxygen partial pressure, 

but also by the N-species on the surface. The inhibition of the reaction by these 

N-species exists until a certain temperature. The inhibition is lifted roughly at the 

desorption temperature expected for ammonia and nitrogen. For comparison, oxygen 

desorbs at much higher temperature. The observation that the temperature of 

maximum oxygen consumption, i.e. highest sreac shifts to high temperature with 

increasing mixing ratio O2:NH3 is coincident with the variation of production 

distribution from N2 to NO. NO is the main product at high temperature. The 

selectivity of the reaction depends on the temperature, as well as on the mixing ratio 

of the reactants. 

In Fig. 4.8, the reactive sticking coefficient, sreac, of ammonia is shown as 

measured under different feed composition. We find that the peak of the reactive 

sticking coefficient shifts slightly to lower temperature with increasing oxygen 

partial pressure. The onset of the oxidation doesn’t depend on the feed composition, 

it is always around 480 K. The hysteresis observed in sreac of ammonia and in the 

formation of H2O (shown in Fig. 4.9) was due to relative fast ramping rate compared 

to the desorption of ammonia and H2O. Since a pronounced hysteresis is not 

observed in Figures 4.6 and 4.7, so it is quite likely that the hysteresis just result 

from a heating/cooling rate. Table 4.2 shows the maximum reactive sticking 

coefficient of ammonia and oxygen under different feed composition. The data show 

that sreac of ammonia increases drastically with the increasing oxygen partial pressure, 
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up to 24% when the ratio (NH3/O2) is of 1:10. It is also easy to understand that sreac 

of oxygen decrease when the feed composition changes from ammonia rich to 

oxygen in excess.   
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Figure 4.7. Variation of sreac (O2) on Pt(865) during temperature cycling at different feed 
composition of p(NH3) : p(O2), and p(NH3) is fixed to 5 × 10-6 mbar, the ramping speed is 15 
K/min. (a) 1:1; (b) 1:3; (c) 1:10.  
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Figure 4.8. Variation of sreac (NH3) on Pt(865) during temperature cycling at different feed 
composition of p(NH3) : p(O2), and p(NH3) is fixed to 5 × 10-6 mbar, the ramping speed is 15 
K/min. (a) 1:1; (b) 1:3; (c) 1:10. 
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Figure 4.9. Variation of pressure of water production in ammonia oxidation on Pt(865) during 
temperature cycling at different feed composition of p(NH3) : p(O2), and p(NH3) is fixed to 5 × 
10-6 mbar, the ramping speed is 15 K/min. (a) 1:1; (b) 1:3; (c) 1:10. 
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p(O2)/p(NH3) 1:1 1:3 1:10 

sreac(O2) 10 % 7.4 % 4.5 % 

sreac(NH3) 8 % 18 % 24 % 

Table 4.2. Maximum reactive sticking coefficient of ammonia and oxygen under different feed 
composition on Pt(865) 

Figure 4.9 shows the formation rate of water as a function of temperature. 

Water(g) formed beyond 500 K, upon heating which is a little bit above the onset of 

reaction at 480 K. A sudden increase in the pressure was observed at this certain 

temperature for the products H2O. The formation of H2O(g) doesn’t depend on the 

feed composition.  

AES experiments were also carried out after heating and cooling cycles to check 

species were present on the surface. However, no significant build-up of N or O on 

the sample surface was found after evacuation of reactants. This result could be 

caused by clean-off reactions which come into play due to the relative long time 

required for AES measurements. 

 

4.3.1.2 Pt(100) 

In the same UHV chamber we used for the previous samples, we investigate 

ammonia oxidation on Pt(100) via TPR experiments. The ramping speed in the TPR 

experiments is 15 K/min. And p(NH3) is 5 × 10-6 mbar, the mixing ratio of ammonia 

to oxygen varies from 1:1, 1:3 to 1:10 respectively. 

As shown in Fig. 4.10, the reaction ignites at around 370 K as the sample is 

heated, and the onset temperature of the reaction doesn’t depend on the mixing ratio  
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Figure 4.10. Variation of the product formation of N2, NO and H2O on Pt(100), of the partial 
pressure of the reactant O2, the variation of reactive sticking coefficient of ammonia is also 
shown in this figure. The ammonia partial pressure was kept fixed at p(NH3) = 5 × 10-6 mbar, the 
feed composition of p(NH3) : p(O2) is 1:1. The ramping speed is 15 K/min.  
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Figure 4.11. Variation of the product formation of N2, NO and H2O on Pt(100), of the partial 
pressure of the reactant O2, the variation of reactive sticking coefficient of ammonia is also 
shown in this figure. The ammonia partial pressure was kept fixed at p(NH3) = 5 × 10-6 mbar, the 
feed composition of p(NH3) : p(O2) is 1:3. The ramping speed is 15 K/min. 
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Figure 4.12. Variation of the product formation of N2, NO and H2O on Pt(100), of the partial 
pressure of the reactant O2, the variation of reactive sticking coefficient of ammonia is also 
shown in this figure. The ammonia partial pressure was kept fixed at p(NH3) = 5 × 10-6 mbar, the 
feed composition of p(NH3) : p(O2) is 1:10. The ramping speed is 15 K/min. 

of the reactants. Under a mixing ratio of 1:1 the rate of N2 formation, after passing a 
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first peak at around 430 K, drops and then approaches a second high temperature 

peak at about 520 K. The H2O production has similar profile of the reaction rate. 

During the cooling branch the reactivity is quite low. A pronounced hysteresis is thus 

present in the temperature cycling experiment. The hysteresis is reproduced in a 

second cycle, which means that it cannot be caused by irreversible changes of the 

catalyst surface but rather has to be caused by differences in the adsorbate coverages 

and surface structure.  

The (100) plane of platinum is known to undergo a reconstruction from the 

bulk-like (1×1) surface to the “hex” reconstructed surface. The clean Pt(100) surface 

is stable in its well known hexagonal form and exhibits a complex LEED pattern 

which is commonly termed “hex” (T < 1100 K) or R0.7o-hex (T > 1100 K), the 

LEED pattern of hex surface structure is shown in Fig. 3.4d. Griffiths et al. 

investigated the interaction of oxygen with Pt(100) [81]. They found two adsorption 

state, the oxygen coverages associated with saturation of the two phases are 0.44 and 

0.63 monolayers, on the hex phase the oxygen coverage is less than 0.1 monolayers. 

Above 750 K, the stable surface structure is the hex phase in an oxygen atmosphere. 

This is in agreement with the observation that Pt(100) surface is inert for the 

ammonia reaction at high temperature. In the cooling branch ammonia cannot lift the 

reconstruction from the hex to the bulk-like (1×1) phase due to a too small heat of 

adsorption of ammonia [36]. Therefore the surface remains in the hex structure 

during cooling until O2 adsorption lifts the hex reconstruction.  

Figures 4.10, 4.11 and 4.12 display the variation of the formation of the 

products N2, NO, and H2O; and the consumption of the reactants (NH3 and O2) under 

different feed composition. As shown in Fig. 4.10, two peaks of formation rate of N2 

and H2O are observed. The explanation could be that there are two routes for N2 

production. At low temperature (around 430 K) N2 is formed by recombination of 

N(a), which is produced by stripping hydrogen from NH3, involving O(a) and OH(a). 

At higher temperature (about 520 K) N2 is formed from the dissociation of NO 
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followed by recombination of the N adatoms. With the transition from N2 to NO 

formation occurs at a surface temperature when NO has a too short surface residence 

time to take part in secondary reactions, then NO starts to desorb substantially from 

the surface.  

Except its practical applications in environmental chemistry and HNO3 

production, NO is also interesting from a purely scientific reasons. The dissociation 

energy of NO (628 kJ/mol) is much lower than that of the similar molecule, CO 

(1071 kJ/mol) [97, 98]. Therefore there is great probability of finding both, 

molecular and dissociated NO species on a surface. NO dissociation over Pt(100) 

was investigate by Ge et al. using the density functional theory [55]. They 

demonstrated that both, the presence of defects and the local geometry of the defects, 

are important in determining the reactivity of a surface. The dissociation of NO is 

characterized by a transition state, in which surface Pt atoms with a square 

arrangement, e.g. (100)-1×1, provide the preferential active site for NO dissociation. 

The square arrangement is favorable because this arrangement avoids that metal 

atoms are sharing N and O bonding at the transition state. 

The TPRS obtained with variation of the oxygen partial pressure are displayed 

in figures 4.10, 4.11, and 4.12. After passing through two peaks in the N2 rate the N2 

production starts to drop. Surface is almost inert when the temperature is above 600 

K. With increasing oxygen partial pressure from 1:1 to 1:10, two peaks between 430 

and 520 K combine to form one peak at ~470 K. The temperature of the N2 rate 

maximum shifts to lower temperature, from 520 to 470 K, due to increase of oxygen 

partial pressure. 

 Note that the y-scale in each panel is proportional to the gas pressure. So 

despite arbitary units, they can be compared directly with the results from Pt(865) 

since all experiments were carried out in the same UHV system with the same 

defection. The comparison with N2 production over Pt(865) in Fig. 4.6 reveals 

surprising facts. When 
23 ONH pp  is 1:1, the reaction rate of N2 on Pt(865) is almost 
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5 times higher than that on Pt(100); but once the mixing ratio is 1:10, the reaction 

rate of N2 on both surface is equivalent. On Pt(100) reaction rate of N2 strongly 

depend on the oxygen partial pressure, basically this could be attributed to the 

surface phase transition induced by oxygen.  

For NO production over Pt(100) it is not surprising that reaction rate of NO in 

TPRS is quite low since the transition from (1×1) to the hex phase happens when T > 

600 K. As the oxygen sticking coefficient on hex structure is low, and since the 

oxygen coverage plays an important role in NO formation. The NO formation rate 

will be low too. A similar conclusion can be inferred from the variation of oxygen 

pressure in figures 4.10 – 4.12. Under different mixing ratios from ammonia rich to 

oxygen in excess, oxygen pressure firstly would pass through a minimum point in 

the temperature range of 400 and 500 K during heating. Then oxygen pressure keeps 

increasing towards higher temperature. This observation indicates that the maximum 

reactivity on Pt(100) exist in a range of 400 ~ 500 K, the surface is inert at T > 600 

K. The surface resident time of oxygen becoming too short for reaction to occur 

would be possible factors responsible for this observation.  

Figures 4.10, 4.11 and 4.12 also show a comparison of the reactive sticking 

coefficient of ammonia, sreac(NH3), on Pt(100) for the different mixing ratios. The 

ammonia partial pressure was kept fixed at p(NH3) = 5 × 10-6 mbar in all 

experiments. The data shown were obtained from the heating part of a 

heating/cooling cycle with a heating rate of 15 K/min. Apparently, the maximum 

sreac(NH3) increases drastically with increasing oxygen partial pressure from 1.6% at 

a ratio of 1:1 to 13% at a ratio of 1:10 during heating. During cooling sreac(NH3) is 

close to zero. Compared to sreac(NH3) on Pt(865) in Fig. 4.8 under the same reaction 

condition (pressure, mixing ratio, heating/cooling rate), the maximum in sreac(NH3) is 

much higher at Pt(865) varying from 8% to 24% with the composition changing 

from ammonia rich to oxygen excess. This indicates Pt(865) is more active at whole 

temperature range, but the selectivity towards N2 is higher on Pt(100). Actually the 
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main difference between the two surfaces is the capability of NO formation at high 

temperature (> 600 K) which is better on Pt(865). The maximum in sreac(NH3) on 

Pt(100) is in a temperature range between 450 and 500 K, whereas it is between 500 

and 700 K on Pt(865). 

 

4.3.1.3 Pt foil 

The TPRS obtained in the 10-5 mbar range with different mixing ratios are 

displayed in Fig. 4.13. The feed composition are 1:1, 1:3 and 1:10, and the 

temperature ramping rate is 10 K/min. Note that the y-scale in each panel has been 

calibrated according to the total pressure. Figure 4.14 shows the reactive sticking 

coefficient, sreac, of ammonia as measured from the variation of the feed composition 

are shown. After comparison of NO and NO2 TPD data from Pt foil with TPD data 

from the Pt(111), Pt(100) and Pt(110) surface, Wickham et al. concluded that the 

surface of Pt foil mostly resembles a Pt(111) surface, with some contribution of (110) 

and (100) planes as well as steps and kinks [99].  

No broad hysteresis could be found at different mixing ratios, but slight 

deactivations appear in TPRS as shown in Fig 4.13. These experiments were aimed 

at investigating the product selectivity and catalytic activity as a function of surface 

temperature and of gas phase composition. The rate maxima shift towards low 

temperature as the proportion of oxygen in the gas phase is increased from 1:1, 1:3 

to 1:10 (
23 ONH pp ). The temperature N2 rate maximum reaction rate of N2 

decreased from 600 to 480 K, while that of NO decreased from 900 to around 680 K. 

This indicates that also on Pt foil, the adsorption of O2 plays an important role. 

Above a certain higher temperature, the reaction rate start to drop. This drop is 

explained by the fact that Oad starts to desorb (as O2), resulting in a lower Oad 

concentration, and thus lower reaction rate for all products. 
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Figure 4.13. Temperature programmed reaction kinetics of ammonia oxidation on a Pt foil in the 
10-5 mbar range, the ramping speed is 10 K/min, (a) total pressure is 3 × 10-5 mbar, the ratio of 
p(NH3) : p(O2) is 1:1; (b) total pressure is 4 × 10-5 mbar, the ratio of 1:3; (c) total pressure is 5.5 
× 10-5 mbar, the ratio is 1:10. 

Here we compare the values of rmax(NO)/rmax(N2) in TPRS at different mixing 

ratios of the reactants. This ratio increases from 0.91, 1.14, to 2.7 on Pt foil with the 

increasing of oxygen partial pressure, i.e. the 
23 ONH pp  ratio variated from 1:1, 1:3 

and 1:10. Compared to (100) surface, selectivity towards NO is much higher on the 

Pt foil. This observation is consistent with the previous studies on decomposition of 

NO on differently orientated single crystal surfaces. NO decomposition over Pt(111) 

exhibit low activity, as investigated by Gorte et al. Comparing NO adsorption and 

decomposition on Pt(111), Pt(110) and Pt(100), they found that the (100) surface 

binds NO more tightly than the (110) or (111) surface. The Pt(100) surface also 

produces the largest amount of NO dissociation, around 50% dissociates to yield N2 
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and O2. The other planes desorb without significant decomposition, the fraction of 

decomposed NO is less than 2% on the (111) surface [100].  
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Figure 4.14. Variation of the reactive sticking coefficient of ammonia as a function of 
temperature on Pt foil in the 10-5 mbar range, the ramping speed is 10 K / min, (a) total pressure 
is 3 × 10-5 mbar, the ratio of p(NH3) : p(O2) is 1:1; (b) total pressure is 4 × 10-5 mbar, the ratio is 
1:3; (c) total pressure is 5.5 × 10-5 mbar, the ratio is 1:10. 

The strong dependence of the activity of the Pt foil surface on the oxygen partial 

pressure is clearly shown in Fig. 4.14, which depicts the ammonia reactive sticking 

coefficient, sreac at different reactant mixing ratios. The amount of the reactive 

sticking coefficient of ammonia provides a good measure of the reaction activity for 

three different ratios. With increasing oxygen partial pressure the ammonia sticking 

coefficient increased dramatically from 6.5%, 23% to 25%. sreac of ammonia is thus 

about 4 times higher for the 1:10 ratio than for the 1:1 ratio. This clearly shows that 

25

20

15

10

5

0

-5

s r
ea

c /
 %

11001000900800700600500400300

 sreac(NH3)_heating
 sreac(NH3)_cooling

T / K

 68



Chapter 4. The Steady-State Kinetics of Ammonia Oxidation over Pt 

oxygen acts as a promoter for ammonia oxidation on a Pt surface. One additional 

observation is that the temperature at which the reaction starts decreased, from 470 

K, 430 K to 415 K with increasing O2/NH3. 

 

4.3.1.4 Pt(533) and Pt(443) 

Ammonia oxidation over Pt(533) and Pt(443) have been intensively studied in 

UHV system by Scheibe et al. [12-14], the pressure range is 10-5 and 10-4 mbar range. 

In order to attempt to bridge the pressure gap to intermediate pressure range, we 

investigated ammonia oxidation on Pt(533) and Pt(443) in the pressure range of 10-3 

and 10-2 mbar, these experiments were carried out in high pressure reactor (from 10-4 

to 10-1 mbar).  

Figures 4.15 and 4.16 show that investigation of reaction rate as a function of 

temperature with different feed composition over Pt(553) and Pt(443), and the total 

pressure is 10-3 mbar. The mixing ratio (NH3/O2) is of 1:1 and 1:3. The temperature 

range is from 400 K to 850 K, which was limited by the ability of the heating lamp. 

Therefore only the maximum peak of N2 formation rate could be observed in TPRS. 

On Pt(533) quite large hysteresis effects are observed at 10-2 mbar, and as compared 

with (533) the hysteresis on Pt(443) are generally small. There is at least qualitative 

consensus from TPRS at intermediate pressure that N2 rate curve still exhibits a dip 

as the observation from Scheibe et al. at 10-5 and 10-4 mbar range [14], which was 

attributed to the surface restructures. And this dip is relatively weak at intermediate 

pressure range compared to the TPRS in UHV. After passing through this dip the 

reaction rate of N2 increased abruptly; the observation under different mixing ratio 

show that the NO product strongly depends on the feed composition. When the 

mixing ratio is 1:1, the NO formation rate is quite small on Pt(533) as we observed, 

whereas, if the feed composition is oxygen rich, e.g. 1:3, NO production was 

observed to increase dramatically, as shown in Fig. 4.15.  
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Figure 4.15. Variation of the reaction rate as a function of temperature with different feed 
composition over Pt(533), and the pressure range is 10-3 mbar, the ratio p(O2): p(NH3) is (a) 1:1, 
and (b) 1:3. 

The observation of abrupt increasing of N2 production indicates that an inhibition 

of the reaction could exist, and this effect is more likely due to the adsorption of 

N-containing species, which blocks the adsorption of oxygen on the surface. 

Compared to Pt(443) this inhibition is more pronounced on Pt(533), the major 

differences between Pt(533) and Pt(443) are the step density and the orientation of 

step. This also could be the reason why the selectivity towards NO on Pt(443) is 

relatively higher than that of Pt(533), as comparison between Fig. 4.15b and Fig. 

4.16b. In temperature programmed desorption experiments it was shown that about 
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50% of the initially molecularly adsorbed NO decomposes on Pt(100), whereas 

Pt(111) and Pt(110) exhibit a rather low dissociation probability [100]. Since Pt(533) 

contains (100) steps where NO can dissociate, it is plausible that NO(g) production 

is more preferred on Pt(433) where NO can easily desorb without dissociation. 
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Figure 4.16. Variation of the reaction rate as a function of temperature with different feed 
composition over Pt(433), and the pressure range is 10-3 mbar, the ratio p(O2): p(NH3) is (a) 1:1, 
and (b) 1:3. 
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4.3.2 Partial Pressure Dependence 

The dependence of the kinetics of NO and N2 production on the oxygen or 

ammonia partial pressure at three temperatures, T = 550 K, 650 K and 800 K, were 

studied on Pt(865).  

 

4.3.2.1 Oxygen 

Figure 4.17 show the variation in product yield at a catalyst temperature of 550 

K (around the peak of the N2 production curve in TPR studies), 650 K and 800 K 

(around the peak of the NO production curve) with fixed oxygen pressure as a 

function of ammonia pressure. Ammonia pressure is 5 × 10-6 mbar, oxygen pressure 

increased stepwise from 5 × 10-7 to around 5 × 10-5 mbar, and the corresponding 

reaction orders of N2 and NO with respect to oxygen obtained under steady state 

conditions, are shown in table 4.3.  

First we discuss the results for Pt(865) in Fig. 4.17a. The data in Fig. 4.17a for 

550 K show that at low temperature N2 formation is the preferred reaction channel. 

With increasing oxygen partial pressure, N2 formation increases abruptly, and till 

oxygen pressure is around 1.3 × 10-5 mbar N2 formation starts to level off while no 

NO formation can be observed. Only when oxygen is much in excess, a small 

quantity of NO is formed. This observation is consistent with previous TPRS studies: 

NO(g) starts to form above 550 ~ 600 K. From the slope of the linear least squares 

fit to the data, the reaction order of N2 with respect to oxygen before the leveling off 

of reaction rate is obtained as 1.24 ± 0.11. Obviously the positive order of reaction 

suggests that there is no inhibition of the reaction induced by oxygen partial pressure 

at 550 K. 
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Figure 4.17. Dependence of the N2 and NO formation rate on Pt(865) on oxygen partial pressure 
at different temperature over Pt(865), the ammonia pressure is fixed to 5 × 10-6 mbar, (a) 550 K, 
(b) 650 K, (c) 800 K. 

The data in Fig. 4.17b for 650 K display a more complicate situation compared 

to the reaction at 550 K since NO starts to form under this reaction condition. We 

observe that with increasing oxygen partial pressure, N2 production increases until 
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oxygen pressure is around 1.3 × 10-5 mbar, and the ratio of 
32 NHO pp  is about 2.6:1. 

After this crucial point NO product starts to form, while the rate of N2 decreases. The 

straightforward interpretation of this observation is that the oxygen coverage 

increases with increasing oxygen partial pressure, the selectivity between NO and N2 

is determined by the oxygen coverage. With further increasing of oxygen coverage 

the formation rate of NO increases too, the rate of N2 formation starts to drop 

immediately. When the mixing ratio 
32 NHO pp  is below 2.6, the reaction order of 

N2 with respect to oxygen is 1.12 ± 0.13, the reaction order of NO with respect to 

oxygen is zero, apparently no NO formed; and after this crucial point the reaction 

order of N2 with respect to oxygen is –2.61 ± 0.24, meanwhile the reaction order of 

NO with respect to oxygen is 0.87 ± 0.07. Therefore these observations demonstrate 

O adatom on the surface can inhibit the formation of N2, in the mean time, NO 

production is favored if the oxygen coverage is above a critical value, this value on 

Pt(100) is around 0.2 monolayers (ML), which was reported by Bradley et al. [22].  

The data in Fig. 4.17c for 800 K shows that NO is preferred at high temperature. 

No N2 production can be found during this whole process. Formation of NO start 

when the ratio of 
32 NHO pp  is above 2:5, with oxygen partial pressure 2 × 10-6 

mbar. When the ratio is around 6:1, the reaction rate of NO saturates. Before the 

saturation, the reaction order of NO with respect to oxygen is 0.43.  

At 800 K, nitrogen-containing species have short resident time on the surface, 

so oxygen can adsorb uninhibitedly. We did not find a clue about ammonia 

dissociation via QMS under our experimental conditions. Even at very low oxygen 

partial pressure NO and N2 production were not detected. With increasing oxygen 

partial pressure the oxygen coverage increases. Therefore NO is formed while NO 

dissociation is inhibited under high oxygen coverage, therefore gaseous NO is the 

main product of the reaction at 800 K.  
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Reaction Order with respect to O2Temperature / K 
N2 formation NO formation 

550 1.24 ± 0.11 0 
1.12 ± 0.13 0 

650 
-2.61 ± 0.24       0.87 ± 0.07    (1)

800 0 0.43 ± 0.03 

Table 4.3. Reaction order for Pt(865) with respect to oxygen under different temperature, p(NH3) 
= 5 × 10-6 mbar. (1) when p(O2) > 1.2 × 10-5 mbar. 

 

4.3.2.2 Ammonia 

The dependence of the reaction kinetics of Pt(865) on the ammonia partial 

pressure are displayed in Fig. 4.18 for T = 550, T = 650 K and T = 800 K. The 

oxygen pressure is fixed to 5 × 10-6 mbar, the ammonia pressure variates from 5 × 

10-7 mbar to 5 × 10-5 mbar. Experimentally, it is difficult to stabilize the pressure of 

ammonia in the UHV chamber, due to the adsorption at the walls, so we start the 

experiments from p(NH3) = 5 × 10-5 mbar, then stepwise decrease ammonia pressure 

to 5 × 10-7 mbar. The corresponding reaction orders of N2 and NO with respect to 

ammonia obtained under steady state conditions, are shown in table 4.4. 

The data in Fig 4.18a for 550 K show that with increasing ammonia partial 

pressure the formation of N2 increase steeply; the reaction order of N2 with respect to 

ammonia is 1.33 ± 0.29. Then the rate starts to level off when the ammonia pressure 

is around 5 × 10-6 mbar, the mixing ratio is 1:1. As expected, there is no NO 

production to be observed at low temperature, N2 is the dominant product at 550 K, 

even under the condition of excess oxygen.  
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Figure 4.18. Dependence of the N2 and NO formation rate on Pt(865) on ammonia partial 
pressure at different temperature over Pt(865). The oxygen pressure is fixed to 5 × 10-6 mbar, (a) 
550 K, (b) 650 K, (c) 800 K 

The data in Fig. 4.18b for 650 K demonstrate that initially increasing ammonia 

partial pressure promotes both reaction rate of N2 and NO. Reaction order with 
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respect to ammonia is 1.56 ± 0.49, when p(NH3) > 3 × 10-6 mbar, both reaction rate 

of N2 and NO productions start to decrease slightly, this inhibition can be attributed 

to the blocking of adsorption sites by N-containing species. The selectivity change 

induced by variation of the ammonia partial pressure can be attributed to the change 

in surface coverage. From a mainly oxygen covered surface to a mainly 

N-containing species covered surface. The data in Fig. 4.18c for 800 K exhibit the 

reaction rate of N2 and NO variate as a function of ammonia partial pressure. The 

data show that N2 production increase weakly with ammonia partial pressure, 

yielding a reaction order of 0.26 ± 0.02. Above a ratio of 6:1 (NH3/O2) the reaction 

rate of N2 starts to saturate. The NO rate as a function of ammonia partial pressure 

starts to drop abruptly while the ratio is above 1:2. The observation that the rate of 

NO drop with increasing ammonia partial pressure is in agreement with the 

observation by Gland et al.  

 

Reaction Order with respect to NH3Temperature / K 
N2 formation NO formation 

1.33 ± 0.3 
550 

          0       (1)
0 

1.56 ± 0.50   1.15 ± 0.91 
650 

-0.12 ± 0.02       -0.36 ± 0.06   (2)
800 0.26 ± 0.02      -0.56 ±0.06   (3)

 

Table 4.4. Reaction order for Pt(865) with respect to ammonia under different temperature, p(O2) 
= 5 × 10-6 mbar. (1) when p(NH3) > 1.7 × 10-6 mbar, r(N2) saturated. (2) when p(NH3) > 3 × 10-6 
mbar. (3) when p(NH3) > 2.5 × 10-6 mbar 

4.3.3 Work Function Measurement during Ammonia 

Oxidation 

Work function changes in a surface reaction can be used to characterize 

adsorption states during a catalytic reaction. Work function measurements via a 

Kelvin probe sample an area of about 5 mm2. In order to find out if pattern formation 
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occurs or oscillatory behaviour of ammonia oxidation on Pt(443) exists 

photoelectron emission microscopy (PEEM) was applied to follow surfaces 

processes with a spatial resolution of 1 μm.  
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Figure 4.19. (a) Variation of N2 and NO formation during temperature cycling experiment, the 
total pressure is 6 × 10-5 mbar, the ratio NH3/O2 is 1:1, the ramping rate is 15 K/min. (b) 
Measurement of work function change was carried out using a Kelvin probe under the same 
reaction condition as in (a).  

Figure 4.19a displays the rate of N2 and NO formation of Pt(865) during the 

catalytic reaction, simultaneously the work function change was investigated using a 

Kelvin probe, as shown in Fig. 4.19b. This TPR experiment was carried out under a 

pressure of 6 × 10-6 mbar, the feed composition is a 1:1, and the heating/cooling rate 

is 15 K/min. We see that the profile of work function change vs temperature is quite 

similar to the TPR experiments in an ammonia environment when the temperature is 
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below 500 K. With increasing surface temperature work function increases due to 

desorption of ammonia, and the slope of the curve decrease at around 400 K, which 

is similar to the work function change during heating/cooling cycle in NH3 

environment, as shown in Fig. 4.2. This indicate that the coadsorption of oxygen and 

ammonia on Pt(443) surface has little effect on ammonia adsorption on the surface. 

Since this reaction system has different intermediate species, it is hard to tell what 

the processes on the catalytic surface are in detail using only a Kelvin probe. The 

rate show that the reaction ignites at around 460 K. At this temperature, the slope of 

the curve increases as compared to the slope of the curve in the range below 460 K. 

This change in the slope is attributed to the consumption of ammonia by the reaction. 

The other important point is slightly around 630 K. Above 630 K, the work function 

increases, this might indicate a transition in the surface coverage from N-containing 

species to oxygen adatoms. Simultaneously, the selectivity of the reaction changes 

from preferred N2 production to a domination of NO production.   

In a series of experiments on ammonia oxidation over Pt(443) the total pressure, 

the feed composition and the heating/cooling rate was varied. PEEM showed no 

nonlinear behavior on Pt(443); during reaction, work function changes on the 

catalytic surface occur always homogeneous. Figure 4.20 shows PEEM image of 

Pt(443) surface under different conditions, including clean surface, surface fully 

covered by ammonia and coadsorption of ammonia and oxygen at 10-6 mbar range. 

With a feed composition of 1:1 (NH3/O2) the sample was heated up from 300 K to 

800 K via a temperature programmed controller, the heating rate is 1 K/s. From a 

series of PEEM the mean gray value was plotted, as shown in Fig. 4.20d. We see that 

the surface work function strongly increases in a temperature range from 300 K to 

480 K. From 480 K to 630 K, the rate of N2 formation increases, while the work 

function only increased slowly with temperature continuing going up. And above 

630 K, variation of work function is weak, which is assigned that catalyst surface has 

totally convert N-containing species covered surface to Oad covered. This is 
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coincident with studies of rate measurement via QMS and work function studies 

using Kelvin probe.  
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Figure 4.20. PEEM images of Pt(443) under different conditions, (a) ammonia covered surface 
at p(NH3) = 3 × 10-6 mbar, (b) clean Pt(443) surface, (c) coadsorption of ammonia and oxygen, 
p(NH3) = 3 × 10-6 mbar, and the ratio NH3/O2 is 1:1, (d) the condition of point A, B and C 
correspond to figure a, b and c, the other point denote mean gray value of PEEM images during 
reaction, which start from point B. The heating rate is 1 K/s. The diameter of imaged area is 600 
μm. 
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Figure 4.21 PEEM images showing the fronts-like transitions during heating up a Pt(100) crystal 
in a NH3/O2 atmosphere with pressure ratio NH3:O2 = 1:8 and p(NH3) = 3 × 10-6 mbar. Heating 
rate is 0.5 K/s. The diameter of imaged area is 600 μm. For more detail, see [11]. 

While three kind of reaction front and one homogeneous transition during 

ammonia oxidation were observed on Pt(100) using PEEM under a certain reaction 

condition, which are displayed in Fig. 4.21. And these nonlinear behaviors strongly 

depend on the reaction condition, e.g. mixing ratio and heating rate. As shown above 

in Fig. 4.20, no reaction fronts have so far been observed in ammonia oxidation with 

oxygen on Pt(443). Accordingly, it is believed that the phase transition between 1×1 

and hex structure is actually essential for the transitions via fronts observed.  

 

4.4 Reaction Mechanism 

From the above described findings of the stationary reaction kinetics and 
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different adsorbate coverages and how they relate to the surface reactivity and 

selectivity we can get numerous information concerning the reaction mechanism of 

ammonia oxidation over Pt under low pressure conditions.  

The prominent feature of the reaction mechanism in this system is the 

dissociative adsorption of oxygen and NO dissociation on Pt surface. The PEEM / 

Kelvin probe / LEED / QMS measurement conducted here clearly indicate that the 

decomposition of ammonia without the presence of oxygen is quite weak reaction 

rate, only a small amount of N-containing species could be detected according to 

work function measurements via Kelvin probe on Pt(443). So the first step of this 

reaction is ammonia adsorption and dissociative adsorption of oxygen: 

NH3(g)         NH3(ads)                                      (R1) 

O2(g)          2O(ads)                                        (R2) 

Then ammonia molecules could be stripped of hydrogen by oxygen adatoms to 

form NH2(ads), NH(ads), N(ads), OH(ads) and H2O(ads): 

NH3(ads)  ＋ O(ads)          NH2(ads) ＋ OH(ads)              (R3) 

NH2(ads)  ＋ O(ads)          NH(ads) ＋ OH(ads)               (R4) 

NH(ads)   ＋ O(ads)           N(ads) ＋ OH(ads)               (R5) 

N(ads)    ＋  O(ads)          NO(ads)                         (R6) 

OH(ads)   ＋ H(ads)           H2O(ads)                        (R7) 

According to DFT calculation by Offerman et al., OHads also activates the 

dehydrogenation of all NHx,ads species [10]. So the following reactions cannot be 

rule out: 

NH3(ads) ＋ OH(ads)         NH2(ads) ＋ H2O(ads)              (R8) 

NH2(ads) ＋ OH(ads)         NH(ads) ＋ H2O(ads)               (R9) 

NH(ads) ＋ OH(ads)          N(ads) ＋ H2O(ads)                (R10) 

Bradley, Hopkinson and King performed an exhaustive molecular beam study of 

the reaction, the mechanism deduced suggest that there two routes for N2 production 

[22, 61]:  
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At low temperature, below 350 K, N(ads) from (R5) and (R12) combine to form 

N2(ads), then desorb as gaseous N2 from the surface, and release the adsorption site: 

N(ads) ＋ N(ads)          N2(g) ＋  2＊                       (R11) 

At higher temperature, NO(ads) dissociates to form N(ads) and O(ads), then 

N(ads) combine and desorb to form N2(g): 

NO(ads)          N(ads) ＋ O(ads)                            (R12) 

Actually at higher temperature, another possible route could not be ruled out, 

which is the secondary reaction of NHx and NO, which also can form N2 production: 

NHx(ads) ＋ NO(ads)          N2(ads) ＋ OHx(ads)              (R13) 

All the possible route for N2 production are accompanied by the formation of 

H2O, this is consistent with our TPRS studies presented before.  

For NO formation, there are one routes, as (R6) shown the combination of N(ads) 

and O(ads) form NO(ads). 

In our experiments (10-6 ~ 10-2 mbar), no formation of gaseous N2O was 

observed. N2O production was observed when the total pressure is above 10-1 mbar. 

Two reaction routes for N2O can be formulated [16]: 

NO(ads) ＋ NO(ads)          N2O(ads)                         (R14) 

NO(ads) ＋ NHx(ads)          N2O(ads) ＋ xH(ads)              (R15) 

This N2O formation could represents the pressure gap between technical 

catalysis and traditional surface science. 

The present results cannot discriminate between the various mechanisms. An 

XPS study on Pt(533) carried out by Guenther et al. showed that at temperatures 

below 670 K the surface is covered mainly by the N-containing intermediates 

NHx(ads) (x = 0~3) whereas above this temperature chemisorbed oxygen dominates 

[101]. So the oxygen coverage plays a crucial role for the selectivity of this system.  

According to our TPRS data for different orientations, we find that single crystal 

surfaces with (100) structural unit are more active, for example (533) or (100). Since 

NO exhibits a high dissociation activity on Pt(100), this observation indicates that 
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the dissociation of NO also is critical factor in ammonia oxidation.  

 

4.5 Summary and Conclusion 

In this study we investigated the elementary steps occurring during ammonia 

oxidation on a Pt surface. Including The steady state kinetics of ammonia oxidation 

have been studied over several Pt surface, Pt(100), Pt(533), Pt(443), Pt(865) and 

polycrystalline under low pressure (10-6 to 10-4 mbar) condition and in an 

intermediate pressure from 10-3 to 10-2 mbar. 

During ammonia oxidation on Pt(443) a step coalescence were not observed. The 

reason is probably that oxygen adatoms are reacted away immediately by the 

hydrogen stripping of ammonia, so that the oxygen coverage remains too low to 

induce a restructuring of the surface.  

In principle, all those results on single crystal surfaces agree that the reaction 

between NH3 and O2 leads to N2 and H2O formation at low temperature, but 

selectivity of reaction switch to NO and H2O as dominant production at higher 

temperature. The temperature at which the selectivity switches depends strongly on 

the feed composition and the surface structure. According to our studies, the 

selectivity towards N2 is relatively high on surfaces with (100) structural elements, 

e.g. (533) and (100). Surface with (111) structural elements have a higher selectivity 

towards NO, e.g. (443). Similar behavior appeared on a Pt foil which is believed to 

be consist mainly of (111) surface. All of these phenomena can be assigned to the 

high dissociative ability of NO on Pt(100). 

On Pt(865), at low temperature (~550 K) no NO production occurs; and the 

selectivity is towards N2 at ~ 650 K, selectivity switches to NO if oxygen is in excess. 

Excess ammonia inhibits the reaction to some extent, which is attributed to the 

blocking of adsorption sites by N-containing species.  

The spatiotemporal dynamics of ammonia oxidation on Pt(100) and Pt(443) have 
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been studied by photoelectron emission microscopy (PEEM) in the UHV system. 

Reaction fronts and spatially homogeneous transition were observed on Pt(100). 

Since the reaction proceeds spatially homogeneously over Pt(443), these results 

indicate that nonlinear phenomena of reaction rate on Pt(100) could be assigned to 

the phase transition from active 1×1 to inactive hex phase. 
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Chapter 5  Structure Sensitive Reaction – 

Ammonia Oxidation on Pt 

5.1 Introduction 

The catalytic oxidation of ammonia over platinum is a key step, both in the 

industrial manufacturing of nitric acid and in environmental chemistry where 

ammonia is removed in the so-called selective catalytic reduction (SCR process) [20]. 

Theoretical studies as well as experimental data show that ammonia decomposition 

on platinum is activated through direct interaction of ammonia with chemisorbed 

oxygen or OH species [10, 22, 61]. Single crystal studies have been performed with 

Pt(100) [22, 61], Pt(111) [21, 63] and with stepped Pt(111) orientations [13, 14, 27, 

38]. Already in the very early studies of Gland et al. it was concluded that the 

reactivity of Pt samples in catalytic ammonia oxidation is determined by the density 

of steps [26]. Since two elementary steps of the reaction mechanism, dissociative 

oxygen chemisorption [81, 91, 93, 94, 96, 102] and NO decomposition [56, 100, 103, 

104] are highly structure sensitive on Pt, ammonia oxidation should be structure 

sensitive too. 

In this chapter we compare the activity of Pt(533), Pt(443), Pt(865), Pt(100), and 

a Pt foil in ammonia oxidation up into the 10-2 mbar range. Their kinetics of the 

surfaces Pt(533) and Pt(443) have been studied quite in detail up to 10-4 mbar before 

[13, 14]. The Pt(865) surface or 11(111)×2(5 1 –1) [105] in microfacet notation is a 

kinked surface. The Pt(100) surface is exhibits an adsorbate-induced surface phase 

transition between a catalytically active bulk-like (1×1) termination and a 

quasi-hexagonal reconstruction of the topmost layer (“hex”) which is practically 

inert.  



Chapter 5. Structure Sensitive Reaction – Ammonia Oxidation on Pt 

Catalytic processes on transition metal surfaces were divided into two classes of 

processes by Boudart [106]: structure insensitive and structure sensitive reaction, 

respectively. For structure sensitive reactions the surface structure and the 

restructuring induced by reaction both play important role. Catalytic reactions are 

known to modify the surface of a catalyst, which often associated with an activation 

and deactivation process. And such modification may also lead to real morphological 

changes. Surface restructuring was observed to occur on three different time scales: 

Chemisorption induces restructuring (10-6 sec), surface reconstruction (10-2-102 sec) 

and surface atom transport controlled restructuring (102-104 sec) [64].  

The structure sensitivity of ammonia oxidation contains a dynamic aspect which 

is that the substrate structure is modified by the reaction. This is certainly true for all 

catalytic reactions but the effect is particularly strong for ammonia oxidation on Pt 

where a visible roughening of Pt/Rh gauzes used in the Ostwald process already 

occurs during the first minutes of operation. Phenomenological studies with Pt 

spheres at high pressure [107] and single crystal investigations with Pt(533) and 

Pt(443) in the 10-5 and 10-4 mbar range have been conducted focusing on 

reaction-induced restructuring. On Pt(533) a reversible doubling of the step height 

occurs [12] and on Pt(443) already in pure ammonia the initially straight step edges 

start to meander [14]. The reversible restructuring of Pt(533) shows up in a 

hysteresis of the N2 and NO production rates upon cycling the temperature. The 

obvious questions are which orientations exhibit restructuring orientation, and how 

the restructuring depends on the total pressure? Furthermore, one would like to know 

whether the restructuring is associated with an activation/deactivation and with 

selectivity changes. 

The purpose of the work reported here is to determine to what extent the reaction 

of ammonia oxidation is structure sensitive. In addition, in this study we use 

hysteresis measurements and LEED to follow how reaction-induced restructuring 

changes as we increase the pressure from 10-4 mbar to 10-2 mbar. As will be shown 
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the total pressure has a drastic influence leading to quite unexpected results. 

 

5.2 Structure Sensitivity of the Reaction Rate 

In Fig. 5.1 we compare the activity of two stepped Pt (111) surfaces, Pt(533) and 

Pt(443), with that of a kinked surface, Pt(865), with Pt(100), and with a Pt foil. The 

samples were subjected to heating/cooling cycles in an NH3/O2 atmosphere with a 

1:1 ratio of the partial pressures at a total pressure of 1 × 10-5mbar. The same scaling 

of the Y-axis has been used for all samples so that the curves can be compared 

directly. Structural models of the single crystal orientations are displayed in Figures 

shown in chapter 3. The relatively small hysteresis we observe on Pt(443) and on 

Pt(533) can be attributed to transients caused by a heating/cooling rate of 0.5 K/s 

which is still too large to ensure true steady state conditions. The larger hysteresis we 

see on Pt(865), Pt(100), and the Pt foil are true hysteresis we assign to reversible 

structural changes of the Pt substrate. A broad hysteresis connected to reaction 

induced structural changes has also been observed with Pt(533) but only at a total 

pressure beyond 1 × 10-5 mbar. Therefore we do not see such a hysteresis here. 

Qualitatively the rate curves of all samples are similar. N2 formation is the 

dominant reaction pathway at low temperature whereas at high temperature NO 

production prevails. If we take the maximum in N2 production as a measure of the 

catalytic activity we obtain the following sequence in catalytic activity: Pt foil : 

Pt(533) : Pt(865) : Pt(443) : Pt(100) = 6 : 4 : 4 : 2 : 1 . We also note that with 

exception of Pt(100) the N2 rate maxima shift to lower temperature with increasing 

catalytic activity of the sample.  

A hysteresis in the activity can arise (i) due to reversible structural changes or an 

activation/deactivation by oxide formation and reduction (ii) due to the inhibitory 

effect of adsorbates on the adsorption of reactants or (iii) through the formation and 

removal of surface contaminants. Realistic mathematical models of ammonia  
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Figure 5. 1. Comparison of the catalytic activity of Pt(533), Pt(443), Pt(865), Pt(100), and a Pt 
foil in the 10-5 mbar range, and 1:1 mixing ratio of the gases. The ramping speed in T-cycling 
experiments was 30 K/min. Due to the relatively high ramping rate the hystereses with exception 
of Pt(100) are mainly caused by transients. 

oxidation on Pt did not reveal any kinetic multistability which makes (ii) rather 
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unlikely [10]. In situ XPS measurements of Pt(533)/NH3 + O2 showed that up to 1 

mbar no Pt oxide forms [101]. Reversible restructuring and a potential influence of 

surface contaminants remain therefore as possible causes for the hysteresis. For 

Pt(100) the hysteresis in the reaction rates is clearly associated with the (1×1)  

hex phase transition. The low rate branch is connected with inactive hex 

reconstructed surface whereas the high rate branch belongs to the active (1×1) 

termination of the substrate.  

⇔

As will be shown below LEED data taken after completion of the measurements 

reveal a very drastic restructuring of the Pt(865) surface. This indicates that structural 

changes take place in the heating/cooling cycles. For the Pt foil we have no means of 

detecting structural changes but since the texture of the foil contains grains with (100) 

and (111) orientations that have been shown to undergo restructuring, the large 

hysteresis we observe there should have the same origin. 

For characterizing the surface in situ we can measure the reactive sticking 

coefficient of oxygen. Due to the geometric arrangement of the QMS that is shielded 

behind a cone, only molecules reflected from the surface can enter the cone to be 

detected. We obtain the reactive sticking coefficient Sreac following the variation of 

the partial pressures of the reactants, i.e. of O2 or NH3. Denoting the signal of a gas 

without reaction by I0 and during reaction with I we calculate the reactive sticking 

coefficient 
0

0

I
IISreac

−
= . In this case the reaction rate at 300 K was assumed to be 

negligible so that the partial pressures at 300 K should represent I0.  

The variation of the reactive sticking coefficient (Sreac) of oxygen during the 

temperature cycling experiments is reproduced in Fig. 5.2 for the Pt foil, Pt(865) and 

Pt(100). The variation of Sreac reflects in general rather well the behavior of the 

reaction rates during the T-cycling experiments displayed in Fig. 1. For Pt(100), for 

example, the low reactivity of the cooling branch is due to the low oxygen sticking 

coefficient on the hex phase which according to the literature is as low 10-3 for a 
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structurally nearly perfect hex phase. During heating up Sreac does not reach the value 

Soxygen = 0.2 reported for oxygen adsorption on Pt(100)-(1×1) [22]but only goes up to 

0.03. The discrepancy might indicate that the hex phase has not been lifted 

completely during cooling down so that a significant portion of the surface remains 

in the inactive hex state all the time. 
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Figure 5.2. Variation of oxygen reactive sticking coefficient (Sreac) during temperature cycling 
experiment on Pt foil, Pt(865) and Pt(100). The total pressure is in the 10-5 mbar range, and a 1:1 
mixing ratio of the feed composition is used. The ramping speed in the T-cycling experiments 
was 30 K/min. 

In contrast to Pt(100) on the Pt foil the activity is increased by heating up as 
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evidenced by higher rate maxima for N2 and NO and a higher Sreac in Fig. 5.1 and 5.2, 

respectively. Remarkably, between roughly 600 and 800 K the selectivity changes 

drastically from preferential N2 formation on heating up to NO as main product 

during cooling down. The increase in the overall activity after heating is reflected by 

the increase in Sreac in Fig. 5.2. The comparison of the Pt foil with Pt(865) shows that 

on these two samples Sreac reaches about 0.14 and 0.12 respectively. 
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Figure 5.3. Temperature cycling during ammonia oxidation on Pt(533) with different mixing 
ratio, p(NH3)/p(O2). The ramping speed is 10 K/min. The total pressure is around 10-4 mbar. 
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up differently due to a different amount of restructuring under different reaction 

condition. We investigated the influence of the feed composition on kinetics of N2 

and NO production in the 10-5 mbar range. Fig. 5.3 display the results for Pt(533) 

obtained for 1:1, 1:3 and 1:10 ratio NH3/O2 of the reactants and with identical 

ramping speed. It was demonstrated that the doubling of the step height under 

reaction conditions is associated with a change in the selectivity from N2 towards 

NO formation [12]. We also find that the small dip of NO reaction rate around 600 – 

700 K which represents the formation of double steps shifts to lower temperature 

with increasing oxygen partial pressure. The temperature is about 700 K when the 

feed composition (NH3/O2) is of 1:1, and when this ratio is 1:3 or 1:10, the 

temperature shifts to 630 K or 590 K, respectively.  

Since the availability of oxygen controls the selectivity towards NO an increase 

in the oxygen sticking coefficient could explain the observed change in selectivity. 

With oxygen being in excess, anyhow, there is no need to restructure the surface in 

order to increase the oxygen sticking coefficient. So it is plausible that the hysteresis 

become weaker with increasing ratio O2/NH3. For comparison, the data in Fig. 5.4a 

show that upon heating Sreac increases sharply at 700 K which is roughly the 

temperature where we expect the doubling of the step height to occur. Sreac however 

also remains high during the cooling branch, but as shown in earlier LEED 

measurements, during cooling down the steps of the catalyst surface remain 

single-atomic [12]. This demonstrates that besides the step structure also the 

adsorbate coverages determine Sreac through their blocking effect for adsorption. In 

addition, also local structural changes that are not detectable in LEED pattern might 

play a role. Measurements of Sreac with different rations NH3:O2 show that the 

hysteresis becomes smaller the more oxygen is in excess. For a 10-fold excess of O2 

the hysteresis practically vanishes. 
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Figure 5.4. Reactive sticking coefficient of oxygen during ammonia oxidation on Pt(533) under 
different feed composition, from 1:1 to 1:10 (NH3:O2). The ramping speed is 10 K/min. The total 
pressure is at around 10-4 mbar. 
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5.3 Influence of Total Pressure 

We studied the influence of the total pressure on the kinetics of N2 and NO 

production in the 10-5-10-2 mbar range. Figures 5.5 and 5.6 display the results for 

Pt(533) and Pt(443) obtained for a 1:1 ratio NH3/O2 of the reactants with identical 

ramping speed. In all experiments we started with a freshly prepared surface after 

Ar-ion sputtering, oxygen treatment and annealing to 1100K. Experiments with a 

pressure above 10-3 mbar were carried out in the high-pressure chamber, and with a 

pressure below 10-3 mbar in the main chamber.  
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Figure 5.5. Effect of the total pressure on the kinetics of N2 and NO production on Pt(533) in the 
10-5-10-2 mbar range under a feed composition 1:1 and a ramping speed is 0.5 K/s.  
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Figure 5.6. Effect of the total pressure on the kinetics of N2 and NO production on Pt(443) in the 
10-5-10-2 mbar range under a feed composition 1:1 and a ramping speed is 30 K/min. 

 On Pt(443) practically no hysteresis is seen at 10-5 mbar and at 10-4 mbar but 

increasing the total pressure to 1 × 10-3 mbar causes the appearance of a substantial 

hysteresis as evidenced by Fig. 5.6. After a further rise to 1 × 10-2 mbar the 

hysteresis vanishes again similar to the behavior of Pt(533). The hysteresis of Pt(533) 

and Pt(433) are all counterclockwise, i. e. heating up leads to an activation of the 
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catalyst. 

The preceding measurements show an unexpected result: a non-monotonic 

variation of the hysteretic behavior with pressure for both orientations, Pt(533) and 

Pt(443). At low pressure (p < 10-5 mbar) no hysteresis occurs, at intermediate 

pressure a very pronounced hysteresis is observed and at high pressure (10-2 mbar) 

the hysteresis vanishes again. The two orientations Pt(533) and Pt(443) differ in so 

far as on Pt(443) the low p-range without hysteresis extends into the 10-4 mbar range 

whereas on Pt(533) this range ends at roughly 1 × 10-5 mbar.  
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                     (c)                               (d)   

Figure 5.7. TPR spectra of ammonia oxidation over Pt(865) are displayed. These studies were 
carried out in the intermediate pressure range. Panel (a) and (b) were carried out at 10-3 mbar; 
panel (c) and (d) at 10-2 mbar. And the mixing ratios of p(NH3)/p(O2) are 1:1 and 1:3 respectively. 
The ramping speed is 30 K/min. 
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In Fig. 5.7 TPR spectra of ammonia oxidation over Pt(865) are displayed. These 

studies were carried out in the intermediate pressure, at from 10-3 to 10-2 mbar range 

at mixing ratios of p(NH3)/p(O2) of 1:1 and 1:3, respectively. At 10-3 mbar range 

with increasing oxygen partial pressure the peak of N2 formation shifts to lower 

temperature from 700 K to 670 K, and the formation rate of NO increases drastically 

in the temperature range we studied. The NO rate at 1:3 is almost sevenfold 

increased compared to the rate under a feed composition of 1:1. At 10-2 mbar the 

formation rate of N2 and NO both increase with rising oxygen pressure, in particular, 

for NO production, the increase is around 10 fold. This result indicates that oxygen 

coverage on Pt(865) plays an important role in the formation of NO. This 

observation is consistent with the performance of Pt catalysts in UHV system and 

with the behaviour of industrial Pt catalysts. After comparison with different total 

pressure under the same mixing ratio we find that the temperature for the maximum 

rate of N2 shifts to higher temperature with increasing total pressure. Basically no 

hysteresis appeared in all these temperature cycling processes.  

For comparison, we also performed similar TPR experiments with Pt(100) at the 

intermediate pressure range from 10-3 to 10-2 mbar. To some extent quite different 

pressure effects on the reaction rate and selectivity of ammonia oxidation were 

observed on Pt(100). Fig. 5.8 shows the TPR spectrum of ammonia oxidation on 

Pt(100) with different mixing ratios under two different total pressure ranges. The 

observations on Pt(100) are largely different from the results on Pt(865). Pronounced 

hysteresis could be observed due to the well-known phase transition between the hex 

(quasi-hexagonal reconstruction) and the bulk like (1×1) structure. Figures 5.8a and 

5.8b show the variation of the products (N2 and NO) as a function of temperature. 

With increasing oxygen partial pressure, the surface becomes more active; the onset 

of the formation of both products, N2 and NO, shifts to low temperature. The 

formation rate of N2 increased by a factor of around 5 with rising oxygen pressure; 

the yielding of NO is much higher than the previous studied at low pressure in the 
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UHV system. Since the oxygen coverage controls the selectivity in the ammonia 

oxidation, we can safely postulate that oxygen adsorption was strongly dependent 

both on the effective pressure of oxygen at the surface and on the temperature of the 

Pt sample. In our previous studies on Pt(100) at 10-5 mbar, only a small quantity of 

NO product was observed, which was attributed to the hexagonal structure with a 

low oxygen sticking coefficient.  
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Figure 5.8. TPR spectra of ammonia oxidation over Pt(100) are displayed. These studies were 
carried out in the intermediate pressure: Panel (a) and (b) were carried out at 10-3 mbar; panel (c) 
and (d) at 10-2 mbar. The mixing ratios of p(NH3)/p(O2) are 1:1 and 1:3 respectively. The 
ramping speed is 30 K/min. 

Figures 5.8c and 5.8d show the TPR spectrum for Pt(100) in 10-2 mbar range. As 

far as these temperature cycling experiments are concerned, we did six consecutive 

heating/cooling ramps. So irreversible changes of the surface by oxidation, for 
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example, can be ruled out. Three peaks of the formation of N2 can be observed, at 

400 K, 560~500 K and 650 ~ 690 K, respectively, the temperatures depend on the 

mixing ratio. The peak of N2 at 400 K we ascribe to the combination of Nad which 

originates from NH3 stripped of hydrogen. No temperature shift appears with 

increasing oxygen partial pressure. The other two peaks can only tentatively attribute 

two possible causes: (ⅰ) the 1×1 to hex phase transition, and (ⅱ) the different 

adsorption sites of oxygen on Pt(100), in particular, the existence of a high coverage 

β1-state. Since the surface density of Pt atoms differ in the 1×1 and in the hex phase. 

The phase transition involves the mass transport of about 20% of the surface Pt 

atoms [108]. This mass transport necessarily creates structural defects and since 

these defects presumably have a high catalytic activity, the peak at around 400 K 

could be due to the hex to 1×1 phase transition. Oxygen adsorption on Pt(100) was 

studied by Barteau et al. using LEED and thermal desorption spectroscopy. The TD 

spectrum for oxygen showed two peaks, referred to as β1 and β2 (low and high 

temperature, respectively). The β1 peak which is associated with the highest 

coverages desorbed with so-called autocatalytic kinetics, in that the rate accelerated 

with decreasing β1 coverage till the depletion of this kind of coverage. The β2 state 

was found to desorb with first-order kinetics [89]. Accordingly, it should be possible 

to achieve a high oxygen coverage in our experiment where we operate in the 

intermediate pressure range at 10-2 mbar. Therefore, we can speculate that with the 

increase of total pressure it is the change of oxygen coverage that resulted in the 

variation of the product formation profile.  

Due to the heating limitation in the high-pressure cell, only the maximum in the 

rate of N2 could be observed, but not in NO. Figure 5.9 display the variation of 

maximum rate of N2 as a function of total pressure over different orientation surfaces, 

including Pt(533), (443) and (865), with a mixing ratio of ammonia and oxygen of 

1:1. The reaction rates of N2 production over Pt(533) and Pt(865) are close to each 

other in the investigated pressure range. Compared to Pt(533) the rate of N2 
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formation on Pt(443) is weaker, a fact attributed to the step density and the 

orientation of the step, since they have the same (111) terraces. Actually Pt(865) and 

Pt(443) have similar step density, but the difference lies in the kink which only exists 

on Pt(865). The low coordinated kink site could represent a very active site. We also 

found that when the total pressure is around 10-2 mbar, the difference in the reaction 

rates of the three surfaces tends to decrease. A straightforward explanation would be 

that with increasing total pressure, mass transportation limitations of the reactants 

start to play a role. But at 10-2 mbar mass transport through the gas phase should still 

be fast enough. And the other possibility is that surface restructuring eliminates the 

differences in reactivity between the various orientations. Serious restructuring was 

observed on both Pt(533) and Pt(865), while Pt(443) is relatively stable compared to 

the other two surfaces.  
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Figure 5.9. Variation of maximum rate of N2 production as a function of total pressure over 
different Pt orientations, including Pt(533), (443) and (865), the same reaction conditions are 
applied, and the mixing ratio of ammonia and oxygen is 1:1. 
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It was rather unexpected phenomena that the degree of order on the restructured 

surfaces of Pt(533) and Pt(443) depends in a non-monotonous way on the total 

pressure. We performed a series of experiments on Pt(533) in order to rule out the 

effect of contamination on the surface which could be introduced by the reactant 

gases. First ammonia oxidation was carried out at 10-2 mbar, consecutively the total 

pressure was switched to 10-3 mbar, and then the reaction was performed on the 

same sample. These results are displayed in Fig. 5.10. Figure 5.10a show the profile 

of reaction rate on N2 and NO at 10-2
 mbar range, and (b) show the results at 10-3 

mbar acquired using the same sample right after the experiments in Fig. 5.10a. We 

find that a hysteresis still appears only at 10-3 mbar. One possibility to explain the 

non-monotonous variation of hysteresis behavior is by postulating that different 

restructuring processes under different reaction conditions, e.g. different total 

pressure. Even though the results were reproducible, an experimental artifact cannot 

be entirely ruled out. However we are unware of any experimental problems that 

would produce this effect.  

With increasing total pressure in general the risk of a surface contamination rises 

for two reasons. The partial pressure of contaminants in the gas phase rises and the 

higher chemical potential of the reactants enhances the segregation of bulk 

contaminants to the surface. One might suspect that contamination effects are 

responsible for the pressure dependent vanishing of the hysteresis but so far Auger 

electron spectroscopy provided no indication of surface contaminants. Moreover, the 

segregation of Si that leads to SiO2 formation would cause an irreversible reduction 

of catalytic activity, which is not what we see. On the other hand, since we cannot 

completely rule out a potential influence of contaminants, this possibility should still 

be taken into account. 
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Figure 5.10. Panel (a) shows the profile of reaction rate on N2 and NO on Pt(533) at 10-2
 mbar, 

and (b) shows the results acquired using the same sample right after the experiments in panel (a). 
The feed composition is 1:1, and the ramping speed is 30 K/min. 

 

5.4 Stability of surface structure 

In a dynamical model of a catalytic surface, the surface atoms are constantly 

changing their equilibrium positions in response to the changing chemical 

environment. Changing the crystallographic arrangement of the substrate atoms does 

induce a significant modification of the adsorbate bonding which may in return 

affect the chemical reactivity [65]. The non-rigid surface undergoes rapid adsorbate 

-induced restructuring on the time scale of chemisorption, or slower restructuring on 
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the time scale of catalytic surface reactions. The latter involves diffusion-controlled 

faceting, or solid-state reactions. In ammonia oxidation substantial efforts were 

undertaken by Schmidt et al. to systematize the morphological changes but no 

microscopic understanding of the restructuring has been obtained and the driving 

force as well as the connection to activity and selectivity changes remains unknown 

[109, 110]. Especially at high temperature and high pressure reaction conditions 

drastic restructuring happens. The morphological changes of the Pt catalyst in the 

Ostwald process have been ascribed to the formation of a volatile Pt oxide, PtO or 

PtO2, which results in loss of Pt gauze [109, 111, 112].  Here we studied the surface 

modification in adsorption experiments and restructuring under mild reaction 

conditions using LEED and SEM, respectively. 

 

5.4.1 Adsorption on Pt(443) 

We studied the adsorption of ammonia and oxygen over Pt(443), and 

investigated  the variation of terrace width distribution in different environments. In 

the presence of ammonia, Pt(443) was stable, there is really no change in the terrace 

width was detectable on the basis of the splitting point of LEED beams. Scheibe et al, 

however, observed via STM that step meandering took place in the presence of 

ammonia at room temperature [12, 14]. Apparently these change of microstructure 

do not affect the distribution of terrace width as a whole. This result is in contrast to 

the observation of step coalescence during oxygen adsorption on Pt(443).  

Using LEED we also studied the variation of step height in the presence of a 

single reactant over Pt(443). For Pt(443) the (111) layer spacing could be calculated 

from the lattice constants, resulting in a value of ~ 0.226 nm (monoatomic step 

height). The step height is determined by the method described in previous chapter. 

Table 5.1 shows the numerical values of voltages where the split spots coalescence 

into single bright spot of the (0,0) beam. As shown in the table the mean value of the 
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step height and its standard deviation were calculated. From these successive values 

of the energies we obtain the step height. The step height of a surface with step 

coalescence induced by oxygen adsorption is exactly the same as that of a clean 

Pt(443) surface. In particular, no doubling of step height was observed.  

 

Clean Pt(443) Surface  Over oxygen Covered  
Pt(443) Surface s in  

Equ. 2.10 Beam energy 
(eV) 

d (nm) Beam energy 
(eV) 

d (nm) 

2 37.8 0.1992 37.7 0.1995 
3 73.2 0.2147 66.8 0.2247 
4 116.4 0.2270 116 0.2274 
5 177.2 0.2300 177 0.2301 
6 220.3 0.2475 217 0.2494 

Mean 
value of d 

(nm) 
0.2237 ± 0.007 0.2262 ± 0.007 

Table 5.1. Step height analysis before and after oxygen adsorption on Pt(443) at 700 K. Given 
are the voltages where a single bright spot of the (0,0) beam appears.  

 

Pt(443) heated up and cooled down in ammonia  
at p= 2 × 10-6 mbar 

Before heating 800 K After cooling 
to 300 K 

s in  
Equ. 2.10 

energy 
(eV) d energy 

(eV) d energy 
(eV) d 

2 31.3 0.2189 37.7 0.1994 32.6 0.2145
3 79.4 0.2061 74.4 0.2130 79.3 0.2063
4 128.8 0.2158 112.4 0.2310 130.1 0.2148
5 178 0.2295 170.7 0.2343 177 0.2301

Mean value of d 
(nm) 

0.2176±0.004 0.2194±0.007 0.2164±0.004 

Table 5.2 Step height analysis of Pt(443) under different conditions, ammonia adsorption at 
room temperature, at 800 K in ammonia, and after temperature cycling, p(NH3) = 2 × 10-6 mbar. 
Given are the voltages where a single bright spot of the (0,0) beam appears.  
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We also studied the effect of ammonia on the step height of Pt(443). In table 5.2 

the step height analysis is shown for Pt(443) before and after temperature cycling in 

a NH3 environment, including heating to 800 K. No evidence indicates a variation of 

step height. And no faceting phenomena could be found under all condition we 

investigated here. All results show that the terrace width distribution of Pt(443) is 

relatively stable in ammonia, no change of terrace width and step height could be 

observed.  

 

5.4.2 Under Reaction Condition 

5.4.2.1 LEED Studies 

With LEED the surface structure of Pt(533), Pt(443), and Pt(865) was examined 

after exposure to reaction conditions. The beam profiles of the split (0,0)-beam after 

the hysteresis measurements in the 10-2 mbar range are displayed in Fig. 5.11. These 

spot profiles were plotted along spot the direction of splitting. The X-scale is in units 

of the reciprocal lattice in spot splitting direction. On all three surfaces the beam 

intensity strongly decreased in comparison to the initial value. On Pt(865) the 

ordering after the reaction was so poor that the LEED spots were hardly discernible 

from the background. The splitting of the spot is no longer visible and instead a very 

small peak appears at the middle position of the original spot splitting. On Pt(533) 

we observe a widening of the spot splitting by roughly 20%. On Pt(443) the spot 

splitting remained unchanged but the FWHM of the spots increased and the 

maximum intensity dropped by 50%, which means a surface disordered to some 

extent compared to a freshly prepared surface. Apparently the average terrace width 

on Pt(443) has not been changed by the reaction in contrast to Pt(533) where the 

average terrace width decreased. This indicates that Pt(443) is more stable than 

Pt(533), the stability of Pt(865) is the lowest of these three orientation. The different 
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surface energy and the different activity of three crystal planes result in a different 

extent of restructuring, i.e. a different stability during reaction conditions [113].  
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Figure 5.11. LEED spot profile analysis showing reaction-induced restructuring in the 10-2 mbar 
range. The beam profile of the (0,0)-beam was taken between the (0,-1/2) and (0,1/2) beams 
which is the direction of spot split. The sample was exposed to NH3/O2 at 10-2 mbar during 
temperature cycling from 300 to 800 K for 150 min.  
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5.4.2.2 SEM Studies 

The data shown in Fig. 5.11 and table 5.3 indicate that kinked surfaces have a 

low structural stability under reaction conditions followed by stepped surfaces. The 

Pt(100) surface exhibits the highest stability under reaction conditions. This is 

consistent with the results of Schmidt et al. who studied small single crystal spheres 

of Pt in a NH3/O2 atmosphere and found that after exposure to reaction conditions 

only the (111) and (100) orientations survive [107].  
 
 
 
 
 
 
 
 
 
 
 
 
                 (a)                                 (b) 
 

Figure 5.12. SEM micrographs of the clean Pt(865) surface in panel (a), the sample after 
exposure to reaction conditions in panel (b), the temperature cycling reaction from 300 K to 800 
K was carried out at 10-2 mbar range for 5 h. The size of the imaged area is 240 × 180 μm2.  

Under relatively mild reaction condition of an UHV experiment the microscopic 

structural changes are not associated with variations in the macroscopic surface 

topography. Mass transportation on the catalyst surface is not visible on a 

macroscopic scale. Faceting and the growth of smaller crystals from the surface were 

not observed by SEM [25]. Here the surface morphology of Pt(865) was studied by 

SEM after temperature cycling experiments of ammonia oxidation in the high 

pressure cell. The total pressure is 2 × 10-2 mbar. After reaction the sample was 

transferred to the UHV system equipped with LEED, we found drastic restructuring 
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as evidence from a disordered structure. The SEM micrographs of clean Pt(865) (Fig. 

5.12a)and the sample after reaction (Fig. 5.12b) are presented. Occasionally some 

melting dots could be observed, which can’t be restored only by cleaning cycle 

(sputtering and annealing sample), as shown in Fig. 5.12a. Initially, these dots were 

ascribed to the manufacturing procedure of the crystal. And the remainder of the 

surface is quite even. Whereas, except those melting dots we also found the 

formation of some shallow ditches, as shown in Fig. 5.12b. Those ditches indicate 

that a significant mass transport on the surface is involved in the reaction process. 

This mass transport can be restored by a number of cleaning cycles. Element 

analysis of post-reaction sample surface was carried out by SEM which is equipped 

with energy dispersive detectors (EDX). Only Pt element could be observed in the 

whole area we investigated, as shown in Fig. 5.13. Since the depth of the detection is 

several μm (whereas the escape depth of second electron is just in the nm range), so 

we can safely conclude that no significant amount of oxygen can penetrate into the 

bulk during ammonia oxidation, even in the intermediate pressure range (10-2 mbar).  

 
1200

 

 

 

 

 

 

 

 

 

Figure 5.13. Elemental analysis on the whole area we observed, the probed area is about 240 × 
180 μm2 using energy dispersive detectors (EDX) in a SEM instrument. Only Pt element could 
be observed. 
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5.5 Overview of Hysteresis and LEED Pattern Change after 

Reaction 

Table 5.3 displays an overview of hysteresis and restructuring of different Pt 

orientations surface under different reaction conditions. Previous LEED and STM 

investigations of Pt(533)/NH3 + O2 conducted in the 10-5 and 10-4 mbar range have 

shown that the rate hysteresis is connected with reversible structural changes, i. e. a 

reversible doubling of the step height [12]. In the pressure range investigated here no 

in situ methods were available to monitor structural changes during the rate 

hysteresis. The fact that according to Table 5.3 at 10-3 mbar large hysteresis on 

Pt(533) and Pt(443) are connected with a disordered surface seems not to be 

consistent with the previous statement. However, the LEED data in Table 5.3 only 

show the state of the surface after completion of the experiment. This leaves the 

possibility that during the T-cycles an ordered surface may exist in a certain 

parameter range. A second point is that the absence of long range order does not 

exclude that some short range order still exists and that certain local configurations 

of Pt atoms might be associated with different reactivities.  

One rather unexpected phenomenon was the non-monotonic variation of the 

hysteretic behavior and surface ordering with total pressure we observe with Pt(533) 

and Pt(443) (Table 5.3). In principle, one could envision a surface which is 

roughened by the reaction at some intermediate pressure, but which orders again as 

the dynamics of the reaction beyond a certain threshold become large enough to 

overcome certain kinetic barriers preventing ordering. At the present stage, this is 

pure speculation and experiments extending beyond 10-2 mbar are required in order 

to substantiate this.  
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Pt(533) Pt(443) Pt(865) Pt(100) 

Pressur
e range

Hysteresis 
in reaction 

rate 
 

Surface 
ordering / 

LEED  

Hysteresis 
in reaction 

rate 

Surface 
ordering / 

LEED  

Hysteresis 
in reaction 

rate 

Surface 
ordering / 

LEED  

Hysteresis 
in reaction 

rate 

Surface 
ordering / 

LEED 

10-4

mbar 
yes Ordered 

(1×1) no Ordered 
(1×1) yes Ordered 

(1×1) yes Ordered 
(1×1) 

10-3

mbar 
yes disordered yes disordered no disordered yes Ordered 

(1×1) 
10-2

mbar 
no Ordered 

(1×1) no Ordered 
(1×1) no ＊ yes Ordered 

(1×1) 
 

Table 5.3. Overview of hysteresis and restructuring of different Pt orientations surface under different reaction conditions. ＊ indicate that 
split spot turns into a diffuse broad single spot with low intensity. 
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5.6 Summary and Conclusion 

Ammonia oxidations over different Pt surfaces, from single crystals to 

polycrystalline Pt, have been studied in the 10-5 to 10-2 mbar range. The main result 

is that surface structure has a strong effect on the reaction rate and selectivity. In 

addition, the reaction rate changes are associated with structural modifications of the 

surface induced by the reaction. Rough surfaces have higher reaction rate, the 

reactive sticking coefficient of oxygen over a Pt foil reaches 0.14. Compared with 

other single crystal surfaces, the reaction rate over Pt foil is the highest, then the 

activity decreased in the order Pt(865), Pt(533), Pt(443), and Pt(100).  

On Pt(443) no LEED detectable substrate changes and no rate hysteresis occurred 

below 10-3 mbar. But above 10-3 mbar a substantial hysteresis effect were seen. The 

restructuring which tends to increase with rising total pressure was found to depend 

in a non-monotonic way on the total pressure. So on both orientations, Pt(533) and 

Pt(443), a hysteresis was present at 10-3 mbar, but vanished again at 10-2 mbar. LEED 

showed a disordered surface at 10-3 mbar.  

The hysteresis of the reaction rate observed in T-cycling experiments is also a 

function of feed composition and surface structure. Under reaction conditions, 

low-index surface planes have a higher stability than high-index surface planes. 

For Pt(100) we find that the total pressure has a strong effect on the reactivity and 

selectivity. In view of the very low oxygen sticking coefficient of the hex 

reconstructed surface where oxygen sticking coefficient, s(O2), is around 10-4 – 10-3, 

this result is not very surprising. 
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Generally, the task to bridge the gaps between fundamental research and applied 

heterogeneous catalysis is one of the major challenges in catalysis science. As a part 

of this effort, in this work, ammonia oxidation over various model Pt catalysis has 

been studied, following the strategy of systematically increasing the total pressure 

and varying the crystallographic orientations, the reaction kinetics have been 

measured. The aim was to find out the dominant surface species, the influence of 

surface structure, and the effect of restructuring induced by reaction and adsorption. 

First of all, the molecular adsorption and dissociative adsorption of ammonia and 

oxygen on Pt(443) were studied via QMS, Kelvin probe and LEED. With oxygen 

adsorption steps coalesce. This structure is stable at room temperature in UHV. 

During ammonia oxidation process on Pt(443) such step coalescence was not 

observed probably due to oxygen adatoms being reacted away immediately by the 

hydrogen from ammonia.  

The steady state kinetics of ammonia oxidation over Pt surfaces have been 

studied under low pressure (10-6 to 10-4 mbar) and intermediate pressure (10-3 to 10-2 

mbar) range. All single crystal results with different orientations agree that the steady 

state reaction between NH3 and O2 leads to N2 and H2O formation at low temperature, 

but the selectivity switch to NO and H2O as dominant production at higher 

temperature. The exact temperature at which the selectivity change occurs depends 

strongly on the feed composition and the surface structure. 

On Pt(865), at low temperature (~550 K) no NO production occurs; and the 

selectivity is towards N2 at ~ 650 K, selectivity switches to NO if oxygen is in excess. 

Excess ammonia inhibits the reaction to some extent, which is attributed to the 

blocking of adsorption sites by N-containing species.  



Chapter 6. Summary 

Ammonia oxidation over different Pt crystal surfaces, from single crystals to 

polycrystalline Pt, has been studied in the 10-5 to 10-2 mbar range. Surface structure 

has a strong effect on the reaction rate and on the selectivity. The reaction is 

associated with structural modification of surfaces. High-index planes have higher 

reaction rate than low-index planes, the reactive sticking coefficient of oxygen over 

Pt foil reaches 0.14, compared with other single crystal surfaces, the reaction rate 

over Pt foil is the highest one, then the activity decreased in the order Pt(865), 

Pt(533), Pt(443), and Pt(100).  

On Pt(443) no LEED detectable substrate changes and no rate hysteresis occurred 

below 10-3 mbar. But above 10-3 mbar a substantial hysteresis effect were seen. The 

restructuring which tends to increase with rising total pressure was found to depend 

in a non-monotonic way on the total pressure. So on both orientations, Pt(533) and 

Pt(443), a hysteresis was present at 10-3 mbar, but vanished again at 10-2 mbar. LEED 

showed a disordered surface at 10-3 mbar. 

The occurrence of a hysteresis in the reaction rate is also a function of the feed 

composition and of the surface structure. Under reaction conditions, low-index 

surfaces have higher stability than high-index surface planes. 

In a high-pressure reaction cell that is connected to a UHV system, the kinetics of 

ammonia oxidation over Pt surfaces has been studied in 10-3 – 10-2 mbar range. The 

temperature of reaction rate maximum shifts to higher temperature with increasing 

total pressure. The reactivity of Pt(100) strongly depends on the total pressure. A 

wide hysteresis occurs due to an adsorbate-induced phase transition, from an inactive 

hexagonal structure to an active bulk-like (1×1) structure.  

The spatiotemporal dynamics of ammonia oxidation on Pt(100) and Pt(443) have 

been studied by PEEM in the UHV system. Reaction fronts and spatially 

homogeneous transition were observed on Pt(100). Since the reaction proceeds 

spatially homogeneously over Pt(443), these results indicate that nonlinear 

phenomena of reaction rate on Pt(100) could be assigned to the phase transition from 
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active 1×1 to inactive hex phase.

 117





 

Reference  

 

1. Hagen, J., Industrial Catalysis: A Practical Approach. 2006, Weinheim: Wiley-VCH. 
2. Freund, H.-J., et al., Models in Heterogeneous Catalysis: Surface Science Quo Vadis? Phys. 

Stat. Sol. (a), 2001. 187(1): p. 257-274. 
3. Somorjai, G.A., Molecular concepts of heterogeneous catalysis. Journal of Molecular 

Structure: THEOCHEM, 1998. 424(1-2): p. 101-117. 
4. Somorjai, G.A., Directions of theoretical and experimental investigations into the 

mechanisms of heterogeneous catalysis. Catal. Lett., 1991. 9(2): p. 311-328. 
5. Hutchings, G.J., Promotion in heterogeneous Catalysis: a topic requiring a new approach. 

Catal. Lett., 2001. 75(1-2): p. 2001. 
6. Jacobs, P.W. and G.A. Somorjai, Conversion of heterogeneous catalysis from art to science: 

the surface science of heterogeneous catalysis. Journal of Molecular Catalysis A: Chemical, 
1998. 131(1-3): p. 5-18. 

7. Rotermund, H.H., Imaging of dynamic processes on surfaces by light. Surf. Sci. Rep., 1997. 
29: p. 267. 

8. Dellwig, T., et al., Bridging the Pressure and Materials Gaps: High Pressure Sum Frequency 
Generation Study on Supported Pd Nanoparticles. Physical Review Letters, 2000. 85(4): p. 
776-779. 

9. Somorjai, G.A., et al., The evolution of model catalytic systems; studies of structure, bonding 
and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure 
(<10(–3) Torr) to high pressure (>10(–3) Torr) to liquid interfaces. Physical Chemistry 
Chemical Physics, 2007. 9(27): p. 3500-3513. 

10. Offermans, W.K., A.P.J. Jansen, and R.A.v. Santen, Ammonia activation on platinum (111): A 
density functional theory study. Surf. Sci, 2006. 600(9): p. 1714-1734. 

11. Rafti, M., et al., Homogeneous and front-induced surface transformations during catalytic 
oxidation of ammonia over Pt(100). Chemical Physics Letters, 2007. 446(4-6): p. 323-328. 

12. Scheibe, A., S. Gunther, and R. Imbihl, Selectivity changes due to restructuring of the Pt(533) 
surface in the Ammonia + Oxygen reaction. Catal. Lett. , 2003. 86(1-3): p. 33-37. 

13. Scheibe, A., M. Hinz, and R. Imbihl, Kinetics of ammonia oxidation on stepped platinum 
surfaces II. Simulation results. Surf. Sci., 2005. 576: p. 131-144. 

14. Scheibe, A., U. Lins, and R. Imbihl, Kinetics of ammonia oxidation on stepped platinum 
surfaces. I. Experimental results. Surf. Sci., 2005. 577: p. 1-14. 

15. Zeng, Y. and R. Imbihl, Structure sensitive reaction - ammonia oxidation over Pt. To be 
submitted. 

16. Imbihl, R., et al., Catalytic ammonia oxidation on platinum: mechanism and catalyst 
restructuring at high and low pressure Physical Chemistry Chemical Physics, 2007. 9(27): p. 



Reference 

3522-3540. 
17. Kondratenko, V.A. and M. Baerns, Mechanistic and kinetic insights into N2O decomposition 

over Pt gauze. J. Catal., 2004. 225(1): p. 37-44. 
18. Kraehnert, R., Ammonia Oxidation over Polycrystalline Platinum: Surface Morphology and 

Kinetics at Atmospheric Pressure. 2005, der Technischen Universitaet Berlin: Berlin. p. 167. 
19. Stacey, M.H., Catalysis 1980. 3: p. 98. 
20. Chilton, T.H., The manufacture of nitric acid by the oxidation of ammonia Chemical 

Engineering Progress Monograph Series No. 3. Vol. 56. 1960, New York: American Institute 
of Chemical Engineers. 

21. Asscher, M., et al., A Molecular Beam Surface Scattering Study of Ammonia Oxidation on the 
Pt(111) Crystal Face. J. Phys. Chem., 1984. 88: p. 3233-3238. 

22. Bradley, J.M., A. Hopkinson, and D.A. King, Control of Biphasic Surface Reaction by 
Oxygen Coverage: The Catalytic Oxydation of Ammonia over Pt(100). J. Phys. Chem., 1995. 
99: p. 17032-17042. 

23. Fogel, Y.M., et al., Use of secondary ion emission to study the catalytic oxidation of ammonia 
on platinum. Kinetika i Kataliz, 1964. 5(3): p. 496-504. 

24. Pignet, T. and L.D. Schmidt, Kinetics of ammonia oxidation on Pt, Rh and Pd. J. Catal., 1975. 
40: p. 212-225. 

25. Baerns, M., et al., Bridging the pressure and material gap in the catalytic ammonia oxidation: 
structural and catalytic properties of different platinum catalysts. J. Catal., 2005. 232: p. 
226-238. 

26. Gland, J.L. and V.N. Korchak, Ammonia Oxidation on a Stepped Platinum Single-Crystal 
Surface. J. Catal., 1978. 53: p. 9-23. 

27. Löffler, D.G. and L.D. Schmidt, Kinetics of NH3 decomposition on single crystal planes of Pt. 
Surf. Sci., 1976. 59(1): p. 195-204. 

28. Pignet, T. and L.D. Schmidt, Selectivity of NH3 oxidation on platinum. Chemical 
Engineering Science, 1974. 29(5): p. 1123-1131. 

29. Flytzani-Stephanopoulos, M., L.D. Schmidt, and R. Caretta, Steady state and transient 
oscillations in ammonia oxidation on platinum. J. Catal., 1980. 64: p. 346. 

30. Ostermaier, J.J., J.R. Katzer, and W.H. Manogue, Crystallite Size Effects in the 
Low-Temperature Oxidation of Ammonia Over Supported Platinum. J. Catal., 1974. 33: p. 
457-473. 

31. Morrow, B. and I. Cody, Infrared study of adsorption and oxidation of ammonia on platinum 
J. Catal., 1976. 45(2): p. 151-162. 

32. Hannevold, L., et al., Reconstruction of platinum-rhodium catalysts during oxidation of 
ammonia Applied Catalysis a-General, 2005. 284(1-2): p. 163-176. 

33. Löffler, D.G. and L.D. Schmidt, Kinetic of NH3 decomposition on Polycrystalline Pt. J. 
Catal., 1976. 41(3): p. 440-454. 

34. Sexton, B.A. and G.E. Mitchell, Vibrational spectra of ammonia chemisorbed on Pt(111) I. 
Identification of chemisorbed states. Surf. Sci., 1980. 99: p. 523-538. 

35. Sexton, B.A. and G.E. Mitchell, Vibrational spectra of ammonia chemisorbed on platinum 
(111) II. The electron scattering mechanism. Surf. Sci., 1980. 99(3): p. 539-552. 

36. Bradley, J.M., A. Hopkinson, and D.A. King, A molecular beam study of ammonia 

 120



Reference 

adsorption on Pt(100). Surf. Sci., 1997. 371: p. 255-263. 
37. Gland, J.L. and E.B. Kollin, Ammonia adsorption on the Pt(111) and Pt(s)-6(111)x(111) 

surfaces. Surf. Sci., 1981. 104: p. 478-490. 
38. Guthrie, W.L., J.D. Sokol, and G.A. Somorjai, The decomposition of ammonia on the flat (111) 

and stepped (557) platinum crystal surfaces. Surf. Sci. , 1981. 109(2): p. 390-418. 
39. Gohndrone, J.M., et al., Ammonia adsorption and decomposition on several faces of platinum. 

J. Vac. Sci. Technol. A, 1989. 7(3): p. 1986-1990. 
40. Jennison, D.R., P.A. Schultz, and M.P. Sears, Ab initio calculations of adsorbate 

hydrogen-bond strength: ammonia on Pt(111). Surf. Sci., 1996. 368: p. 253-257. 
41. Fisher, G.B., The electronic structure of two forms of molecular ammonia adsorbed on 

Pt(111). Chemical Physics Letters, 1981. 79(3): p. 452-458. 
42. Novell-Leruth, G., et al., DFT Characterization of Adsorbed NHx Species on Pt(100) and 

Pt(111) Surfaces. J. Phys. Chem. B, 2005. 109: p. 18061-18069. 
43. Sun, Y.-M., et al., Electron-induced surface chemistry: Production and characterization of 

NH2 and NH species on Pt(111). Journal of Vacuum Science & Technology A: Vacuum, 
Surfaces and Film, 1996. 14(3): p. 1516-1521. 

44. Papapolymerou, G. and V. Bontozoglou, Decomposition of NH3 on Pd and Ir. Comparison 
with Pt and Rh. J. Mol. Catal. A: Chem., 1997. 120: p. 165-171. 

45. Richardson, D.J., et al., A Study of Ammonia Decomposition Over Pt/Alumina. Trans IChemE, 
Part A, Chemical Engineering Research and Design, 2004. 82(A10): p. 1397–1403. 

46. Bonzel, H.P., G. Broden, and G. Pirug, Structure sensitivity of NO adsorption on a smooth 
and stepped Pt(100) surface. J. Catal., 1978. 53: p. 96-105. 

47. Bonzel, H.P. and G. Pirug, Photoelectron spectroscopy of NO adsorbed on Pt(100). Surf. Sci., 
1977. 62: p. 45-60. 

48. Campbell, C.T., G. Ertl, and J. Segner, A molecular beam study on the interaction of NO with 
a Pt(111) surface. Surf. Sci., 1982. 115: p. 309-322. 

49. Ge, Q. and D.A. King, Energetics, geometry and spin density of NO chemisorbed on Pt(111). 
Chemical Physics Letters, 1998. 285: p. 15-20. 

50. Gland, J.L. and V.N. Korchak, The Catalytic Reduction of Nitric Oxide with Ammonia over a 
Stepped Platinum Single Crystal Surface. J. Catal., 1978. 55: p. 324-336. 

51. Gland, J.L. and B.A. Sexton, Nitric oxide adsorption on the Pt(111) surface. Surf. Sci., 1980. 
94: p. 355-368. 

52. Tsukahara, N., et al., Adsorption states of NO on the Pt(111) step surface. Surf. Sci., 2006. 
600: p. 3477-3483. 

53. Backus, E.H.G., et al., Adsorption and dissociation of NO on stepped Pt (533). Journal of 
Chemical Physics, 2004. 121(16): p. 7946-7954. 

54. Park, Y.O., R.I. Masel, and K. Stolt, An XPS study of CO and NO adsorption on Pt(410). Surf. 
Sci., 1983. 131: p. L385 -389. 

55. Ge, Q. and M. Neurock, Structure Dependence of NO Adsorption and Dissociation on 
Platinum Surfaces. J. Am. Chem. Soc., 2004. 126: p. 1551-1559. 

56. Sugisawa, T., et al., Adsorption and decomposition of NO on Pt (112). Applied Surface 
Science, 2001. 169-170: p. 292-295. 

57. Lombardo, S.J., F. Esch, and R. Imbihl, The NO+NH3 reaction on Pt(100): steady state and 

 121



Reference 

oscillatory kinetics. Surf. Sci., 1992. 271: p. L367-L372. 
58. Katona, T., L. Guczi, and G.A. Somorjai, The Reduction of Nitric Oxide by Ammonia over 

Polycrystalline Platinum Model Catalysts in the Presence of Oxygen. J. Catal., 1992. 135: p. 
434-443. 

59. Lombardo, S.J., T. Fink, and R. Imbihl, Simulations of the nitric oxide + ammonia and nitric 
oxide + hydrogen reactions on platinum(100): steady-state and oscillatory kinetics. J. Chem. 
Phys., 1993. 98(7): p. 5526-5539. 

60. van Tol, M.F.H., et al., Oscillatory behaviour of the reduction of nitric oxide by ammonia 
over the Pt(100) single-crystal surface: the role of oxygen, comparison with the NO-H2 
reaction and a general reaction mechanism for NO reduction by NH3 over Pt. Surf. Sci., 
1992. 274: p. 63-81. 

61. Kim, M., D.A. King, and S.J. Pratt, In Situ Characterization of the Surface Reaction between 
Chemisorbed Ammonia and Oxygen on Pt(100). J. Am. Chem. Society, 2000. 122(10): p. 
2409-2410. 

62. Weststrate, C.J., et al., Ammonia oxidation on Pt(410). J. Catal., 2006. 242: p. 184-194. 
63. Mieher, W.D. and W. Ho, Thermally activated oxidation of NH3 on Pt(111): intermediate 

species and reaction mechanisms. Surf. Sci., 1995. 322: p. 151-167. 
64. Somorjai, G.A., The experimental of the role of surface restructuring during catalytic 

reactions. Catal. Lett., 1992. 12: p. 17-34. 
65. Somorjai, G.A., The structure sensitivity and insensitivity of catalytic reactions in light of the 

adsorbate induced dynamic restructuring of surfaces. Catal. Lett., 1990. 7: p. 169-182. 
66. Lang, B., R.W. Joyner, and G.A. Somorjai, Low energy electron diffraction studies of high 

index crystal surfaces of platinum  Surf. Sci., 1972. 30(2): p. 440-453. 
67. Ertl, G. and J. Kueppers, Low energy electrons and surface chemistry. 1985, Weinheim: 

VCH. 
68. Chorkendorff, I. and J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics. 

2003, Weinheim: Wiley-VCH. 
69. Niemantsverdriet, J.W., Spectroscopy in catalysis: an introduction. 1993, Weinheim: VCH. 
70. Henzler, M., LEED-investigation of step arrays on cleaved germanium (111) surfaces. Surf. 

Sci., 1970. 19(1): p. 159-171. 
71. Brune, D., et al., eds. Surface characterization. Auger electron spectroscopy, ed. C.-O.A. 

Olsson, S.E. Hoernstroem, and S. Hogmark. 1997, Wiley-VCH: Weinheim. 
72. Christmann, K., Introduction to surface physical chemistry. 1991, Darmstadt: Steinkopff  
73. Artsyukhovich, A.N., V.A. Ukraintsev, and I. Harrison, Low temperature sticking and 

desorption dynamics of oxygen on Pt(111). Surf. Sci., 1996. 347: p. 303-318. 
74. Campbell, C.T., et al., A molecular beam study of the adsorption and desorption of oxygen 

from Pt (111)surface. Surf. Sci, 1981. 107(1): p. 220-236. 
75. Derry, G.N. and P.N. Ross, A work function change study of oxygen adsorption on Pt(111) 

and Pt(100). J. Chem. Phys. , 1985. 82(6): p. 2772-2778. 
76. Blakely, D.W. and G.A. Somorjai, The stability and structure of high miller index platinum 

crystal surfaces in vacuum and in the presence of adsorbed carbon and oxygen  Surf. Sci., 
1977. 65(2): p. 419-442. 

77. Avery, N.R., An EELS and TDS study of molecular oxygen desorption and decomposition on 

 122



Reference 

Pt(111). Chem. Phys. Lett., 1983. 96(3): p. 371. 
78. Bonzel, H.P. and R. Ku, On the kinetic of oxygen adsorption on a Pt(111) surface. Surf. Sci., 

1973. 40(1): p. 85-101. 
79. Egl, A.-P., F. Eisert, and A. Rosen, The temperature dependence of the initial sticking 

probability of oxygen on Pt(111) probed with second garmonic generation. Surf. Sci, 1997. 
382: p. 57-66. 

80. Gland, J.L., B.A. Sexton, and G.B. Fischer, Oxygen interaction with the Pt(111) surface. Surf. 
Sci., 1980. 95: p. 587-602. 

81. Griffiths, K., et al., Interaction of O2 with Pt(100) 1. Equilibrium measurements. Surf. Sci., 
1984. 138: p. 113. 

82. Kokalj, A., A. Lesar, and M. Hodoscek, Interaction of oxygen with the Pt (111) surface: a 
cluster model study. Chemical Physics Letters, 1997. 268: p. 43-49. 

83. Lynch, M. and P. Hu, A density functional theory study of CO and atomis oxygen 
chemisorption on Pt(111). Surf. Sci., 2000. 458: p. 1-14. 

84. Ohno, Y. and T. Matsushima, Dissociation of oxygen admolecules on platinum (110)( 1×2) 
reconstructed surfaces at low temperatures. Surf. Sci., 1991. 241: p. 47-53. 

85. Parker, D.H., M.E. Bartramm, and B.E. Koel, Study of high coverages of atomic oxygen on 
the Pt(111) surface. Surf. Sci., 1989. 217(3): p. 489-510. 

86. Parkinson, C.R., M. Walker, and C.F. McConville, Reaction of atomic oxygen with a Pt(111) 
surface: chemical and structural determination using XPS, CAICISS and LEED. Surf. Sci., 
2003. 545: p. 19-33. 

87. Zhdanov, V.P. and B. Kasemo, Simulation of oxygen desorption from Pt(111). Surf. Sci., 1998. 
415: p. 403-410. 

88. Derry, G.N. and P.N. Ross, High coverage states of oxygen adsorbed on Pt(100) and Pt(111) 
surfaces. Surf. Sci., 1984. 140(1): p. 165-180. 

89. Barteau, M.A., E.I. Ko, and R.J. Madix, The adsorption of CO, O2, and H2 on 
Pt(100)-(5×20). Surf. Sci., 1981. 102(1): p. 99-117. 

90. Deskins, N.A., J. Lauterbach, and K.T. Thomson, Lifting the Pt(100) surface reconstruction 
through oxygen adsorption: a density functional theory analysis. J. Chem. Phys., 2005. 
122(18): p. 184709. 

91. Gee, A.T. and B.E. Hayden, The dynamics of O2 adsorption on Pt(533): Step mediated 
molecular chemisorption and dissociation. Journal of Chemical Physics, 2000. 113(22): p. 
10333-10343. 

92. Lindauer, G., P. Légaré, and G. Maire, On the interaction of oxygen with Pt single crystals; 
LEED study of step coalescence. Surf. Sci., 1983. 126: p. 301-306. 

93. Rar, A. and T. Matsushima, Desorption and dissociation of oxygen admolecules on a stepped 
platinum ( 533) surface. Surf. Sci., 1994: p. 89-96. 

94. Savchenko, V.I. and N.I. Efremova, On the kinetics of oxygen adsorption over stepped Pt 
surface. Reaction Kinetics and Catalysis Letters, 1995. 56(1): p. 97-105. 

95. Schwaha, K. and E. Bechtold, The adsorption of oxygen on the stepped Pt(S)-[9(111)×(111)] 
face. Surf. Sci., 1977. 65: p. 277-286. 

96. Wang, H., et al., Adsorption and dissociation of oxygen on Pt(335). Surf. Sci., 1997. 372: p. 
267-278. 

 123



Reference 

97. Godowski, P.J., et al., Investigation of the CO + NO reaction over the Cu(001) surface. 
Chemical Physics Letters, 2005. 406: p. 441-445. 

98. Wee, A.T.S., et al., SIMS study of NO, CO adsorption on Cu(100) and Cu(210) surfaces. Surf. 
Sci., 1994. 304: p. 145-158. 

99. Wickham, D.T., B.A. Banse, and B.E. Koel, The adsorption of nitric oxide and nitrogen 
dioxide on polycrystalline platinum. Surf. Sci., 1989. 223: p. 82-100. 

100. Gorte, R.J., L.D. Schmidt, and J.L. Gland, Binding states and decomposition of NO on single 
crystal planes of Pt. Surf. Sci., 1981. 109: p. 367 - 380. 

101. Günther, S., et al., In situ x-ray photoelectron spectroscopy of catalytic ammonia oxidation 
over a Pt(533) surface. 

102. Freyer, N., et al., Oxygen adsorption on Pt(110)-(1×2) and Pt(110)-(1×1). Surf. Sci., 1986. 
166: p. 206-220. 

103. Gohndrone, J.M. and R.I. Masel, A TPD study of NO decomposition on Pt(100), Pt(411) and 
Pt(211). Surf. Sci., 1989. 209: p. 44 -56. 

104. Gohndrone, J.M., Y.O. Park, and R.I. Masel, A comparison of NO decomposition on Pt(210) 
and Pt(410). J. Catal., 1985. 95: p. 244 - 248. 

105. Hove, M.A.V. and G.A. Somorjai, A new microfacet notation for high-miller-index surfaces 
of cubic material with terrace, step and kink structures. Surf. Sci., 1980. 92: p. 489-518. 

106. Boudart, M., Advances in Catalysis, 1969. 20: p. 153. 
107. Flytzani-Stephanopoulos, M. and L.D. Schmidt, Morphology and etching processes on 

macroscopic metal catalysts. Progress in Surface Science 1979. 9: p. 83-111. 
108. Uchida, Y., G. Lehmpfuhl, and R. Imbihl, Reflection electron microscopy of the catalytic 

etching of platinum single-crystal spheres in carbon monoxide + oxygen. Surf. Sci., 1990. 
234(1-2): p. 27-36. 

109. McCabe, R.W., T. Pignet, and L.D. Schmidt, Catalytic etching of platinum in ammonia 
oxidation. J. Catal., 1974. 32: p. 114-126. 

110. Flytzani-stephanopoulos, M., S. Wong, and L. Schmidt, Surface Morphology of Platinum 
Catalysts. J. Catal., 1977. 49(1): p. 51. 

111. Hannevold, L., et al., Reconstruction of platinum–rhodium catalysts during oxidation of 
ammonia. Appl. Catal. A, 2005. 284(1-2): p. 163-176. 

112. Nilsen, O., A. Kjekshus, and H. Fjellvag, Reconstruction and loss of platinum catalyst during 
oxidation of ammonia. Appl. Catal. A, 2001. 207: p. 43-54. 

113. Schmidt, L.D., From chemisorption to surface reactions to catalysis in catalytic oxidation 
reactions. J, Vac. Sci. Technol., 1975. 12(1): p. 341. 

 
 
 

 124



 

 

List of abbreviations 

AES Auger Electron Spectroscopy 

CPD Contact Potential Difference 

DFG Deutsche Forschungsgemeinschaft (German Research Foundation) 

DFT Density Function Theory 

EDX Energy Dispersive X-ray analysis 

FWHM Full width at Half Minimum 

LEED Low Energy Electron Microscopy 

PEEM  Photoelectron Emission Microscopy 

QMS Quadrupole Mass Spectrometer 

sccm The unit of the flow rate, cm3/min 

SEM Scanning Electron Microscopy 

STM Scanning Tunnelling Microscopy 

TDS Thermal Desorption Spectroscopy 

TPD Temperature-programmed Desorption 

TPRS Temperature-programmed Reaction Spectrum 

UHV Ultrahigh Vacuum 

UV Ultraviolet 
 
 
 

 125





 

 

List of publications 

z Catalytic ammonia oxidation on platinum: mechanism and catalyst restructuring 
at high and low pressure 
Imbihl, R.; Scheibe, A.; Zeng, Y. F.; Guenther, S.; Kraehnert, R.; Kondratenko, V. 
A.; Baerns, M.; Offermans, W. K.; Jansen, A. P. J.; Van Santen, R. A. 
Physical chemistry chemical physics 9 (2007) 3522 

 
z Homogeneous and front-induced surface transformations during catalytic 

oxidation of ammonia over Pt(100) 
Rafti, Matias; Lovis, Florian; Zeng, YingFeng; Imbihl, Ronald 
Chemical Physics Letters 446 (2007) 323 

 
z Structure sensitive reaction—ammonia oxidation over Pt 

Zeng, YingFeng; Imbihl, Ronald  
To be submitted 
 
 

 127





 

 

Curriculum Vitae 

Personal  

Name               Zeng, Yingfeng 
Birth Nov. 28, 1974 in Nanchang, China 
Nationality Chinese 
Marital Status Married 

Education  

8.2003 – present Ph.D. in Prof. Dr. R. Imbihl’s group, 
 Institute of physical chemistry and electrochemistry, 
 Leibniz University of Hanover, Germany 

6.2001 Master Degree in Engineering 
 China University of Petroleum, Beijing  

9.1998 – 6.2001 Prof. Chen Yuezhu’s Group, 
 
 Faculty of Chemical Engineering, 

State Key Laboratory of Heavy Oil Processing, 

 China University of Petroleum, Beijing  

6.1997 Bachelor Degree in Engineering 
 Nanchang University 

9.1993 – 6.1997 Department of Chemical Engineering,  
 Nanchang University 

Professional Experience 

7. 2001 – 7. 2003 Engineer in Lubricant Company, SINOPEC Corp., Beiing, 
China 

7.1997 – 8.1998 Engineer in Guangzhou Tianli PCB Company, Guangzhou, 
China 

 129





 

 

Acknowledgements 

The thesis work was carried out at the Institute of Physical Chemistry and 

Electrochemistry, University of Hanover from August 2003 to December 2007. Here, 

I would like to express my gratitude to all those who gave me help to complete this 

thesis.  

Firstly, I would like to sincerely acknowledge my supervisor Prof. Dr. Ronald 

Imbihl for giving me opportunity to work in his group. And I want to express my 

gratitude to him for valuable help, stimulating and insightful suggestions and 

encouragement he gave to me in all the time of research and writing of this thesis.  

My gratitude goes to former colleague, Dr. Sebastian Guenther for his valuable 

advice, suggestion and help at the beginning of my thesis work. And I also would 

like to thank all of my current and former colleague in the working group of Prof. 

Imbihl. I am indebted to Dr. Monika Hinz, Dr. Ling Zhou, Dr. Tobias Neubrand, Dr. 

Axel Scheibe, Dr. Miguel Pineda, Hong Liu and Florian Lovis. I also want to thank 

Dr. Armin Feldhoff for his kind help on SEM. I am especially grateful to Mrs. 

Carmen Gatzen for her help in the work and my life in Germany. I gratefully 

acknowledge the stimulating and insightful discussion during those project meetings 

with the groups from Berlin and Eindhoven. 

Thanks DFG foundation for financial support, this thesis work was supported by 

the DFG under the priority program 1091 “Bridging the gap between ideal and real 

system in heterogeneous catalysis”.  

Last but certainly not least, I am forever in debted to the love and caring of my 

family. I would thank my parent and sister for their support during my whole 

research. Especially, I would like to give my special thanks to my wife Liqin whose 

patient love and substantial support enabled me to complete this work.

 131



 


	Cover.pdf
	To my parents, my wife Liqin and our daughter Cunhui 

	Abstract.pdf
	Kurzzusammenfassung 

	Thesis.pdf
	Contents
	Chapter 1  Introduction 
	Chapter 2  Experimental Techniques 
	2.1 Introduction 
	2.2 Notation of Surface Structures 
	2.3 Low Energy Electron Diffraction (LEED) 
	2.3.1 Experimental Set-up of LEED 
	2.3.2 Basic Theory of LEED 
	2.3.3 Diffraction and reciprocal space 
	2.3.4 Characterization of Stepped Surface from the LEED Pattern 

	2.4 Auger Electron Spectroscopy (AES) 
	2.4.1 The Auger process 
	2.4.2 The AES instrumentation 

	2.5 Kelvin Probe Measurement 
	2.5.1 Work function changes induced by adsorbates 
	2.5.2 Work function change measurement 
	2.5.3 Experimental setup of Kelvin probe 

	2.6 Photoelectron Emission Microscopy (PEEM) 
	2.6.1 Application of PEEM 
	2.6.2 Instrumentation of PEEM 

	2.7 Temperature Programmed Techniques 
	2.8 Scanning Electron Microscope (SEM) 
	Chapter 3  Experimental Setup 
	3.1 Introduction 
	3.2 The UHV System 
	3.2.1 Ultrahigh Vacuum 

	3.3 Samples and Preparation 
	3.3.1 Structural models and LEED patterns of clean surface 
	3.3.2 The standard procedure for cleaning surfaces 

	3.4 Gas Calibration 
	Ar

	3.5 Rate Measurement 
	3.5.1 Calculation of reaction rate 
	3.5.2 Reaction sticking coefficient 
	3.5.3 Order of reaction 

	3.6 High Pressure Reaction Cell 

	Chapter 4  The Steady-State Kinetics of Ammonia Oxidation over Pt 
	4.1 Introduction 
	4.2 Oxygen and Ammonia Adsorption over Pt 
	4.2.1 NH3 on Pt(443) 
	4.2.2 Oxygen on Pt(443) 

	4.3 Stationary Reaction Kinetics 
	4.3.1 Temperature dependence and influence of reactant ratio 
	4.3.1.1 Pt(865) 
	4.3.1.2 Pt(100) 
	4.3.1.3 Pt foil 
	4.3.1.4 Pt(533) and Pt(443) 

	4.3.2 Partial Pressure Dependence 
	4.3.2.1 Oxygen 
	4.3.2.2 Ammonia 

	4.3.3 Work Function Measurement during Ammonia Oxidation 

	4.4 Reaction Mechanism 
	4.5 Summary and Conclusion 

	Chapter 5  Structure Sensitive Reaction – Ammonia Oxidation on Pt 
	5.1 Introduction 
	5.2 Structure Sensitivity of the Reaction Rate 
	5.3 Influence of Total Pressure 
	5.4 Stability of surface structure 
	5.4.1 Adsorption on Pt(443) 
	5.4.2 Under Reaction Condition 
	5.4.2.1 LEED Studies 
	5.4.2.2 SEM Studies 


	5.5 Overview of Hysteresis and LEED Pattern Change after Reaction 
	 
	5.6 Summary and Conclusion 

	Chapter 6  Summary 
	Reference  
	List of abbreviations
	List of publications 
	Curriculum Vitae 
	Acknowledgements 



