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Abstract 
 
The ability to reliably and cheaply localize mobile terminals will allow users to 
understand and utilize the what, where and when of the surrounding physical world. 
Therefore, mobile terminal location information will open novel application 
opportunities in many areas. 
 
The mobile terminal positioning problem is categorized into three different types 
according to the availability of (1) initial accurate location information and (2) motion 
measurement data. Location estimation refers to the mobile positioning problem when 
both the initial location and motion measurement data are not available. If both are 
available, the positioning problem is referred to as position tracking. When only motion 
measurements are available the problem is known as global localization. These 
positioning problems were solved within the Bayesian filtering framework in order to 
work under a common theoretical context. Filter derivation and implementation 
algorithms are provided with emphasis on the radio mapping approach. The radio maps 
of the experimental area have been created by a 3D deterministic radio propagation tool 
with a grid resolution of 5 m. Real-world experiments were conducted in a GSM 
network, deployed in a semi-urban environment, in order to investigate the performance 
of the different positioning algorithms. 
 
A method is proposed to compute the Cramér-Rao lower bound (CRLB) in order to 
asses the performance of the received signal strength (RSS) based location estimation 
algorithm (database correlation method). The fingerprinting databases are usually 
constructed using complex 3D radio propagation prediction tools. Thus, the RSS-
location mapping function is neither continuous nor differentiable everywhere as 
required by the Cramér-Rao bound calculations. The key approach is reconstructing the 
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fingerprinting database using an empirical path loss formula that sufficiently 
characterizes the wireless propagation environment of the test area. The Cramér-Rao 
lower bound is derived and calculated for the reconstructed database in the experimental 
area. Furthermore, the posterior Cramér-Rao lower bound (PCRLB) is derived and 
computed in order to asses the performance of the position tracking algorithm. 
 
Keywords: Mobile location estimation, received signal strength (RSS) fingerprinting, 
database correlation, Bayesian filtering, nonlinear filtering, inertial measurement unit 
(IMU), position tracking, global localization, Cramér-Rao lower bound (CRLB), 
posterior Cramér-Rao lower bound (PCRLB), sensor fusion, data fusion. 



 
 
 
 
 
Kurzfassung 
 
Die Fähigkeit, zuverlässige und kostengünstige Lokalisierung von mobilen Endgeräten, 
wird dem Nutzer zu verstehen und zu nutzen, was, wo und wann der umgebenden 
physikalischen Welt. Deshalb, öffnen Standortinformationen von mobilen Endgeräten 
neue Anwendungsmöglichkeiten in vielen Bereichen. 
 
Das Positionierungsproblem von mobilen Endgeräten ist in drei verschiedene Typen 
kategorisiert, abhängig von (1) der Verfügbarkeit der ersten genauen Informationen 
über den Ort und (2) der Bewegungsmessdaten. Location Estimation 
(Standortschätzung) bezieht sich auf das mobile Positionierungsproblem, wenn sowohl 
die erste Position und die Bewegungsmessdaten nicht verfügbar sind. Wenn beide 
verfügbar sind, das Positionierungsproblem wird Position Tracking 
(Positionsverfolgung) benannt. Wenn nur Bewegungsmessungen zur Verfügung stehen, 
das Problem ist bekannt als Global Localization (globale Lokalisation). Diese 
Positionierungsprobleme wurden gelöst innerhalb des Bayes-Filter-Frameworks, um 
Arbeiten im Rahmen eines gemeinsamen theoretischen Kontexts zu ermöglichen. 
Filterableitung und Durchführungsalgorithmen werden geliefert, wobei der 
Schwerpunkt auf dem Radio-Mapping-Ansatz liegt. Die Radio-Karten des 
experimentellen Bereichs wurden durch ein 3D-deterministischen 
Wellenausbreitungstool mit einer Rasterauflösung von 5 m erstellt. Reale Experimente 
wurden in einem GSM-Netz, eingesetzt in einem semi-urbanen Umfeld, durchgeführt, 
um die Leistung der unterschiedlichen Positionierungsalgorithmen zu untersuchen. 
 
Eine Methode wird vorgeschlagen, zur Berechnung der Cramér-Rao untere Schranke 
(CRLB), um die Leistung der empfangenen Signalstärke (RSS) basierender Location 
Estimation Algorithmus (Datenbankkorrelationsmethode) zu prüfen. Die 
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Fingerabdruck-Datenbanken der Signalstärke werden in der Regel mithilfe komplexer 
3D-Wellenausbreitungstool konstruiert. Deswegen, ist der RSS-Ort-Abbildungsfunktion 
weder kontinuierlich noch differenzierbar überall wie von der Cramér-Rao-Schranke-
Berechnungen benötigt. Der Schlüssel ist eine Rekonstruktion der Fingerabdruck-
Datenbank mit einer empirischen Pfadverlustformel, die die drahtlose 
Wellenausbreitungsumwelt des Test-Bereiches genügend charakterisiert. Die Cramér-
Rao untere Schranke ist abgeleitet und berechnet für die rekonstruierte Datenbank in 
den experimentellen Bereich. Auch die Posterior Cramér-Rao untere Schranke 
(PCRLB) ist abgeleitet und berechnet, um die Leistung des Position Tracking 
Algorithmus zu prüfen. 
 
Schlagwörter: Mobilgerätstandortschätzung, empfangene Signalstärke (RSS)-
Fingerabdrucklokalisierung, Datenbankkorrelation, Bayes'sche Filterung, nichtlineare 
Filterung, Trägheitsmesseinheit (IMU), Positionsverfolgung, globale Lokalisation, 
Cramér-Rao untere Schranke (CRLB), Posterior Cramér-Rao untere Schranke 
(PCRLB), Sensorfusion, Datenfusion. 
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Chapter 1 
 
Introduction 
 
1.1 Motivation 
 
Mobile terminal (MT) positioning is a key problem in wireless environments. It is the 
most fundamental problem to providing customers with tailored and location-aware 
services. MT positioning is defined as the determination of the MT position using 
location-dependent parameters in a specific coordinate system. It is also termed 
radiolocation and wireless geolocation. The key driver for developing MT geolocation 
technologies in the USA was E-911. In the EU, it was commercial services in the first 
place, and later E-112 that utilizes the same techniques. Emergency call location has 
become a requirement in fixed and cellular networks in the USA in 1996 [FCC1996], 
[FCC2001] and in the EU in 2003 [EU2003]. Phase II of the Federal Communications 
Commission (FCC) E-911 mandate has set requirements on the location accuracy for 
the 67% and the 95% of all emergency calls using both network-based and mobile-
based solutions as given in TABLE 1.1. 
 
 

TABLE 1.1: Phase II of the FCC’s E911 program requirement on location accuracy. 
 

 Network-
based 

Mobile-
based 

67% 100 m 50 m 
95% 300 m 150 m 
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Positioning of a MT is considered more critical because MT users and hence MT 
originated emergency calls are continually increasing. It is estimated that about 50% of 
all emergency calls in the EU are MT originated, and the expected tendency is rising 
[EU2003]. In the USA, it was estimated that one third of the daily E-911 calls, about 
170,000, originate from MTs [FCC1996], [NJ1997]. 
 
The first application of MT geolocation dates back to World War II (WWII), when it 
was critical to locate military personnel rapidly and precisely in emergency situations 
[Pah2005]. Furthermore, non-military interest in this field dates back to about 40 years 
ago [Fig1969], [Ott1977]. While emergency call location could be considered the most 
important of location-based services (LBS) due to its urgency for life and property 
safety, commercial LBS are believed to make increasing revenues for network operators 
who could provide customers with attractive and tailored services [Ran2000]. 
Therefore, a lot of research is being carried out in this area. Examples of location-based 
services and applications include: 
 

• Emergency response, i.e. E-911, E-112 and search and rescue (SAR) 
• People tracking and navigation 
• Environmental monitoring 
• Health care 
• Ubiquitous computing 
• Location-specific advertising 
• Mobile marketing 
• Location-sensitive billing 
• Enquiry and information services 
• Mobile gaming 
• Asset tracking 
• Fleet management and logistics 
• Fraud protection 
• Mobile yellow pages 
• Tourist and travel information 
• Wireless system design and management 
• Intelligent transportation systems 
• Traffic telematics 
• Toll systems 
• Homeland security 
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Positioning Systems are usually categorized according to the application environment 
into indoor, outdoor, or hybrid indoor/outdoor, or according to the place where location 
calculations are performed into network-based or mobile-based. If the measurements are 
carried out by the MT and sent to the network for position calculations, the resulting 
hybrid approach is termed mobile-assisted network-based. The reverse configuration is 
referred to as network-assisted mobile-based, where necessary data for location 
calculations are sent from the network to the MT. The main approaches of positioning 
are global or satellite-based techniques, and local or terrestrial-based methods. 
Terrestrial-based methods have two variants: Geometric techniques, and mapping 
approaches. These methods differ relatively in terms of accuracy, coverage, cost, MT 
power consumption, and wireless system impact as shown in TABLE 1.2. 
 
 

TABLE 1.2: Basic aspects of the different positioning techniques. 
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1.2 Synopsis of Related Work 
 
The importance of MT geolocation to the research community has been confirmed by 
the appearance of several special issues on the topic in well-known journals and 
magazines, see [Tek1998], [Ant2004], [Dog2005], [Kai2006], [Sav2007], [Lin2007], 
[Fra2008], [Bar2008], and [Lab2008]. A lot of PhD theses have also been conducted in 
the field, e.g. [Ken1996], [Hal2002], [Nyp2004], [You2004c], [Pri2005], [Wal2005], 
[Zhu2006], [Zim2006], and [Sir2007]. Examples of patent applications include 
[Son1991], [Mal1997], [Wax1998], [Mes1998], [Rao2000], and [Per2000]. Review 
and/or survey literature on wireless geolocation technology are provided in many books, 
e.g. [Caf1999], [Jag2003], [Kar2004], [Küp2005], and [Kol2006], book chapters, e.g. 
[Stü1999], [Pah2002, Ch. 14], [Stü2002], [Wec2003], [Pah2005, Ch. 13], and 
[Caf2005], and articles, see [Rit1977], [Rot1977], [Rap1996], [Stü1998], [Caf1998a], 
[Caf1998b], [Dra1998], [Zha2000], [Zha2002], [Sun2005], [Say2005], and [Gus2005]. 
 
The concept of using previously measured signal strength contours for positioning was 
first documented in [Fig1969]. The effect of fast fading was avoided by taking the 
median of the sample measurements over a sufficiently long time window. 
 
A Kalman filter (KF) based on a locally linear MT motion model was suggested in 
[Hel1999] to help reduce the location error by filtering the initial location estimation. 
This has improved the linear regression smoothing procedure presented in [Hel1997]. 
The work in [Hel1999] has been extended by different assumptions on the motion 
model or by including human control factors, see [McG2002], [McG2003], and 
[Lee2003]. 
 
RADAR [Bah2000a], [Bah2000b] is an in-building location-aware tracking system 
based on the IEEE 802.11 network. Positioning is performed either by received signal 
strength (RSS) fingerprinting or by a mathematical model of the indoor RF propagation 
within WLAN infrastructures. The accuracy is within 2 m to 3 m with 50% probability. 
Similar approaches have also been presented in [Pra2002]. Including probabilistic 
schemes is presented in the Ekahau system [Roo2002a], [Roo2002b], the Nibble system 
in [Cas2000], [Cas2001] which uses the signal to noise ration (SNR) as the location-
dependent parameter, and in [Wal2005] and the Horus system in [You2002], 
[You2003a], [You2003b], [You2004a], [You2004b], [You2004c] which uses the RSS 
as the location-sensitive parameter. 
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The system in [Hil1997] takes advantage of the multipath phenomenon by using pattern 
recognition as its fundamental means for MT positioning. It identifies a radio frequency 
(RF) signature based on multipath phase, amplitude, delay, direction, and polarization 
characteristics of a cellular telephone call. A single base station (BS) is required for the 
position estimation process. 
 
MIT Cricket [Pri2000], [Pri2001], [Smi2004], [Pri2005] is an indoor positioning system 
for pervasive and sensor-based environments. Accuracy achieved ranges between 1 m to 
3 m. Cricket location-aware applications enable users to discover resources in their 
physical proximity with the help of wall- and ceiling-mounted active beacons. Beacons 
of the Cricket system, which advertise location information, do not need any 
infrastructure for communications among themselves [Kol2006]. Passive positioning of 
users is achieved by a combination of radio frequency (RF) and ultrasound signals. 
 
Different correlation methods have been suggested for the RSS database correlation 
approach. In [Lai2001], the correlation criterion is based on the least mean square 
(LMS) approach. The criterion presented in [Zim2004] is made exponentially based on 
the normal distribution. The hidden Markov model (HMM) has been utilized by the 
RSS database correlation method in [Ken1994], [Man1999]. The utilization of particle 
filtering (PF) has been presented in [Pes2006]. Database correlation of the channel 
impulse response (CIR) has been carried out using the Kalman filter (KF) with the Box-
Cox metric [Nyp2002a] and the HMM [Nyp2002b]. 
 
A location estimation method based on a statistical signal strength model is presented in 
[Ton2001]. The utilization of propagation models used to predict signal strength has 
been made. The described approach was called the statistical modeling approach. 
 
The Ekahau system [Roo2002a], [Roo2002b] utilizes a wireless local-area network 
(WLAN) to track tags equipped with WLAN access cards [Kol2006]. The system works 
by measuring the RSS and comparing it with an RSS radio map of the environment. The 
achieved accuracy is between 1 m and 3 m. Site survey and calibration of the radio map 
requires up to 1 h/1200 m2. Ekahau provides an off-site planning tool, the Ekahau 
Planner, and an on-site verification and network optimization tool, the Ekahau Site 
Survey (ESS), in order to benefit from the combination of both tools. 
Rosum’s technology [Rab2002], [Rab2003], [Rab2005], [Spi2004] uses high-power, 
high-bandwidth, unmodified analog and digital broadcast TV signals in order to 
determine a receiver’s position in indoor and outdoor environments [Kol2006]. The 
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timing of the TV signal is measured by synchronization information contained in all 
standard TV signals. The receiver’s location is determined by a distance measuring 
technique called multilateration, using signals from three or more TV transmitting 
towers with well-known fixed coordinates. Due to the planar geometry of the TV 
stations, TV-based location systems do not provide accurate vertical information. This 
limitation can be overcome by employing pseudo-TV transmitters in order to augment 
the local TV signals. Rosum’s TV/GPS hybrid positioning system provides a seamless 
indoor/outdoor positioning with an accuracy of 50 m RMS using the TV signals only. 
 
Place Lab [Sch2003], [LaM2005], [Hig2006] and Skyhook’s Wi-Fi Positioning System 
(WPS) use the map-based pinpointing approach [Kol2006]. The basic idea is having a 
kind of an address book containing wireless access points (APs), each associated with 
its unique ID and physical location, as landmarks. Any Wi-Fi capable device would be 
able to locate itself by matching broadcasted IDs to the entries in the address book or 
database. Both systems are accurate to about 20 m to 40 m and can be used outdoors as 
well as indoors. In less populated areas Place Lab uses the GSM and fixed Bluetooth 
devices, as well as 802.11 APs, in order to construct the wireless map of the 
environment. Once a year, the database is updated by performing street drives. 
 
A GSM-based indoor fingerprinting localization system for large multi-floor buildings 
has been presented in [Ots2005a], [Ots2005b]. A wide fingerprint is used, along with 
the traditional six strongest neighbour cells, which includes signal strength records from 
extra cells that are strong enough to be detected but too week for efficient 
communication. Achieved median accuracy is reported to be 5 m. 
 
A mobile location scheme based on the ratios of distances between MT and BSs derived 
from the differences of signal attenuations is introduced in [Lin2005]. No hardware 
modifications are required for the existing wireless infrastructure, and no perfect path 
loss and shadowing models are needed. 
 
AeroScout’s Wi-Fi positioning systems [Kol2006] utilize the wireless infrastructure to 
locate any standard 802.1b and g MT using both TDOA and RSSI techniques. The RSSI 
technique is used for tight indoor environments and the TDOA algorithm is used for 
outdoors, and large, open, indoor environments. 
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1.3 Thesis Objectives and Contributions 
 
The main objective of the thesis is to provide a systematic and unified approach to the 
mobile terminal positioning problem in wireless environments capable of utilizing 
different sources of information. Accordingly, the following research questions have 
arisen: 
 

1. Which theoretical framework can efficiently combine different information and 
measurement data? 

2. How to classify the positioning problems when different combinations of 
information and measurements are available? 

3. Which preprocessing steps are required in order to get the best of the available 
radio profile maps? 

4. How to overcome difficulties that can prevent the Cramér-Rao lower bound 
(CRLB) analysis? 

5. Does the resolution of radio mapping significantly affect the positioning 
accuracy of the location estimation algorithm? 

 
The Bayesian filtering framework is the answer to the first question. This is a 
convenient mathematical formulation that allows utilizing different sources of 
measurements and information as discussed in chapter 4. 
 
Three different combinations of information and measurements are defined in chapter 4. 
Consequently, the MT positioning problem has been categorized into three classes, 
location estimation, position tracking, and global localization, according to the presence 
of initial accurate information and the availability of motion measurements. 
Implementable algorithms to solve the resulted three positioning problems have been 
developed, see chapter 4, and their performances have been evaluated, see chapter 6. 
The developed position tracking algorithm is a practical alternative to the Kalman-like 
nonlinear filters. However, such filtering techniques require quite an accurate initial 
position estimate in order to maintain good convergence. If such information is difficult 
or impossible to obtain, as is the case in many practical applications, then the global 
localization algorithm comes into play. 
 
The location estimation algorithm, which is equivalent to the database correlation 
method, is based solely on the world model and the online network measurements. 
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Necessary preprocessing steps to extract as much information as possible in order to 
enhance the correlation procedure and increase positioning accuracy are explained in 
chapter 3. 
 
Chapter 5 shows how inherent difficulties that prevent performance assessment of the 
location estimation algorithm based on the CRLB analysis are overcome. The 
theoretical approach used to assess the position tracking filter is also provided. 
 
Impact of the radio mapping resolution on the location estimation accuracy has been 
extensively studied and the results are presented in chapter 6. 
 
The journal paper [Kha2008a] contains solely the global localization (or positioning) 
algorithm (or filter). Mathematical foundations of the three positioning algorithms along 
with performance evaluation in terms of the root square error (RSE) and success rate are 
published in [Kha2008b]. The journal paper [Kha2008b] also investigates the influence 
of different grid resolutions on the accuracy of the location estimation algorithm, and 
includes further preprocessing of the wireless world model to discriminate between 
different land features. Parts of the position tracking and global localization results are 
published in the three conference/workshop papers [Kha2007a], [Kha2007b], and 
[Kha2007c]. A preliminary version of the location estimation algorithm without any 
preprocessing of the wireless world model is published in [Kha2006a]. Versions with 
preprocessing steps are published in [Kha2006c] and [Kha2006d]. Comparison of the 
results in [Kha2006a] and [Kha2006c] are presented in [Kha2006b]. 

 
1.4 Thesis Outline 
 
The rest of the thesis is structured as follows. An overview of the fundamental 
positioning systems is given in chapter 2. Chapter 3 discusses the mapping-based 
positioning approach and the preprocessing steps applied to the utilized wireless world 
model. The Bayesian filtering formulation for mobile terminal positioning and the 
developed algorithms for the different positioning problems are introduced and 
discussed in chapter 4. Chapter 5 describes and explains the theoretical approach used to 
asses the developed algorithms. Performance evaluation of the different positioning 
filters are presented and discussed in chapter 6. Chapter 7 concludes the thesis work and 
gives some outlook comments for possible extensions and future work. 



 
 
 
 
 
Chapter 2 
 
Positioning Systems 
 
This chapter discusses the fundamental aspects of the basic positioning systems. 
Satellite-based positioning systems are introduced in section 2.1. An overview of 
ground-based or terrestrial positioning systems is presented in section 2.2. Section 2.3 
includes two similar examples on augmentation systems for enhancing positioning 
solutions. The inertial navigation system is briefly described in section 2.4. The chapter 
is completed by giving few examples on hybrid positioning systems in section 2.5.  

 
2.1 Satellite-Based Systems 
 
Satellite-based positioning methods are global techniques that provide timing, position, 
and velocity information in a quick, accurate, continuous, and inexpensive manner on 
the globe where the satellite signals can be received, i.e. they are mainly employed for 
outdoor applications. The current generation of satellite-based location systems are 
usually referred to as global navigation satellite system (GNSS). The satellite-based 
approach is the most accurate MT positioning technique, and it was only made 
accessible for commercial applications in the nineties. Also, the European Union (EU) 
is most likely to follow the US and Japan in requiring high positioning accuracy of 
mobile emergency calls when the Galileo system will be fully operational [Ber2006]. 
However, the benefits of satellite-based positioning could be limited where location 
information is still needed due to signal blocking or degraded accuracy caused by 
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multipath propagation. In such cases, other positioning methods should be triggered in 
order to backup the failed or degraded satellite signals. 
 
2.1.1 Global Positioning System 
 
The global positioning system (GPS) is operated and maintained by the US Department 
of Defence (DoD) with the basic mission of providing passive, real-time, 3D 
positioning, navigation and velocity data for land, air, and sea-based strategic and 
tactical forces operating anywhere in the world [US2003]. However, civil positioning 
has become the most predominant, although secondary, application. The nominal 
constellation of the system consists of 24 satellites in high-altitude orbits with 4 
satellites in each of the 6 evenly spaced orbital planes inclined at 55° to the equator, in 
order to make distance measurements between any receiver antenna and 4 to 10 
satellites in view possible. The average life of a GPS satellite is approximately 8 years. 
Full operational military capability of the GPS constellation was declared in 1995. The 
GPS satellites transmit two coded carrier signals: The L1 for public use and the L2 for 
military and authorized users. The 3D position is determined from the adjusted 
intersections of the range vectors, which is equivalent to the trilateration method used in 
terrestrial applications. The GPS positioning principle is based on time of arrival (TOA) 
measurements and the ephemeris1 data. 
 
GPS satellites transmit ranging code and navigation data by using code-division 
multiple access (CDMA) on two carrier frequencies, L1 (1575.42 MHz) and L2 
(1227.60 MHz). The carrier frequencies are modulated by spread-spectrum signals to 
carry information to the receivers. Three pseudorandom noise (PRN) ranging codes are 
associated with each satellite. The C/A code modulates the L1 carrier phase, and the P 
code modulates both L1 and L2 carrier phases. 
 
The two basic operating modes for positioning are absolute point positioning and 
differential positioning2. Most commercial hand-held GPS receivers provide 3D real-
time absolute positioning with accuracies in the range of 10 m to 30 m. Differential 
positioning provides accuracies at the meter level for code phase observations and at the 
centimeter level for carrier phase tracking. 

                                                 
1 A tabular statement of the positions of a celestial body, i.e. satellite, at regular intervals. 
2 See section 2.3.1. 
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Thorough description of GPS techniques and applications is given in the GPS blue 
books [Par1996a], [Par1996b], and the GPS red books [ION1980], [ION1984], 
[ION1986], and [ION1994]. 
 
Absolute Point Positioning 
 
Only a single passive receiver is involved in the distance or range measurements to the 
GPS satellites. The 3D point position determination is achieved using trilateration 
resulting in a 3D coordinate relative to the geocentric reference system. Theoretically, at 
least 3 satellites are required for the computation. In practice, at least 4 satellite ranges 
are required in order to resolve timing differences. Using more satellite ranges provides 
redundancy and hence more accuracy in the position calculation. Pseudoranges3, i.e. 
approximate ranges, which are derived from the broadcast satellite signal, are based on 
code or carrier phase measurements. Doppler observable were one of the first solutions 
for GPS positioning as with the TRANSIT4 system. Usually, point positioning with 
code pseudoranges is performed when using a single receiver. 
 
The pseudoranges are determined in the GPS receiver by precisely measuring the time it 
takes a coded signal to travel from the satellites to the receiver antenna by the help of 
precisely synchronized atomic clocks in the satellites. Using the code measurements, the 
pseudorange to a selected satellite is denoted R  and is given by 
 
 dtcRR true +∆⋅+=             (2.1) 

 
Where  is the unknown true range to the satellite, c  is the signal propagation speed, 

 is the bias of receiver and satellite clocks, and  is the propagation delays due to 
atmospheric conditions, and can be usually estimated from atmospheric models. The 
true range  is written as 

trueR

t∆ d

trueR

 

 222 )()()( rsrsrstrue zzyyxxR −+−+−=          (2.2) 

                                                 
3 In case the position and bias errors are uncorrelated, pseudorange and range measurements are 
equivalent. 
4 TRANSIT was the first satellite navigation system, and was primarily used by the US Navy to provide 
accurate location information to ballistic missile submarines. TRANSIT was also used as a general 
navigation system by the US Navy, as well as in the field of hydrographic and geodetic surveying. 
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Where , ,  are the known satellite geocentric coordinates from the ephemeris 

data, and , ,  are the unknown geocentric coordinates of the receiver. 

Rearranging (2.1) to get  explicitly and substituting the result into (2.2), we get 

sx sy sz

rx ry rz

trueR

 

 222 )()()( rsrsrs zzyyxxdtcR −+−+−=−∆⋅−        (2.3) 

 
In Equation (2.3) we have four unknowns, namely , ,  and . Therefore, at 
least four pseudorange measurements are needed in order to yield a receiver’s 3D 
position fix. Position determination using the previous procedure is referred to as 
circular multilateration. 

rx ry rz t∆

 
Carrier phase differences are based on a comparison between received satellite signals 
and signals generated by the receiver. The phase pseudorange Φ  is modeled by 
 
 Nc r ⋅+⋅+=Φ⋅ λδρλ            (2.4) 
 
Where λ  is the carrier wavelength, ρ  is the distance between the satellite at the 

transmission time t  and the receiver at reception time tt ∆+ , rδ  is the receiver clock 
error, and  is the integer number of cycles between the satellite and the receiver 
which is initially unknown. Most applications do not need carrier phase measurements. 
They are only used in case of increased accuracy requirements, e.g. relative positioning. 

N

 
Derivation of (2.4) w.r.t. time [Hof2003], yields the expression for the observed 
Doppler shift  scaled to range rate as D
 
             (2.5) rcD δρλ &&& ⋅+=Φ⋅=

 
The Doppler shift is measured in the carrier tracking loop of a GPS receiver, and can be 
used to estimate the receiver’s velocity if the satellite velocity is known. 
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Errors and Impairments 
 
Aside from satellite and receiver clock errors, further error sources are grouped into 
three classes: Satellite, propagation, and receiver errors. Satellite errors are due to, e.g. 
orbital errors. Signal propagation errors include ionospheric and tropspheric refraction. 
Receiver errors are caused mainly by multipath signal propagation and variation of the 
antenna phase center. The main impairments of the stand-alone mobile-based GPS 
solution are the short battery life and the need of clear view to at least 4 satellites, which 
cannot always be guaranteed in urban areas. Another drawback of any satellite-based 
positioning system is the short life span of the satellites, i.e. it is necessary to 
permanently replace them. 
 
GPS Modernization 
 
The key feature in the GPS modernization concept, announced in Jan. 1999, is the 
implementation of new signal structures in future satellites. In order to make the system 
more independent, the capability to transmit data between satellites is planned to be 
included. Civilian users will not only access the C/A-code on the L1 carrier, but also a 
C/A-code on the L2 carrier known as L2c. This will provide them with dual-frequency 
operation to correct ionospheric errors. New military codes or M-codes will be 
implemented on the L1 and L2 carriers to provide more security, increased jamming 
resistance, and enhanced acquisition options. The L2c signal and the M-code 
implementations are planned for full operational capability (FOC) in 2010. Also a new 
frequency called L5 will be provided for use in safety-of-life (SoL) and critical 
applications, e.g. civil aviation applications. The FOC of the L5 signal is planned for 
2014 [FRP2001]. 
 
2.1.2 GLONASS 
 
GLONASS (GLObal NAvigation Satellite System)1 is the Russian counterpart to the 
GPS. The development of the system began in 1976 with the goal towards global 
coverage by the year 1991. However, the satellite constellation was completed in 1995. 
The system fell down due to the collapse of the Russian economy. In 2001, it was 
decided to restore the system. The introduction of the Indian government as a system 

                                                 
1 GLObalnaya NAvigationnaya Sputnikovaya Sistema. 
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partner has accelerated the restoration efforts with the goal towards global coverage by 
2009. 
 
The full functional constellation consists of 24 satellites, 21 operating and 3 on-orbit 
backups, deployed in 3 orbital planes separated by 120° with each plane containing 8 
equally spaced satellites. If the constellation is fully populated, a minimum of 5 
satellites are in view from any point at any time. At peak efficiency the GLONASS 
provides, with a probability of 99.7%, horizontal positioning accuracy within 57-70 m, 
vertical positioning accuracy within 70 m, velocity vector measuring within 15 cm/s 
accuracy, and time transfer within 1 µs [Mil2000]. 
 
2.1.3 Other Satellite-Based Systems 
 
EGNOS 
 
EGNOS (European Geostationary Navigation Overlay Service) is Europe’s first activity 
in the field of GNSS and is a precursor to Galileo. The system consists of 3 
geostationary satellites and a network of ground stations. The goal of EGNOS is to 
augment both GPS and GLONASS and makes them suitable for safety critical 
applications by transmitting a signal containing information on the reliability and 
accuracy of the positioning signals sent out by the GPS and GLONASS, in order to 
allow users in Europe and beyond to determine their position to within 2 m accuracy. 
This approach is also known as satellite-based augmentation system (SBAS). 
 
Galileo 
 
The EU decided in 1998 to design a GNSS for civilian use called Galileo. Full 
compatibility with the GPS system is one key goal of the Galileo project. Galileo will 
provide five levels of services [Kap2006], namely: open service with no direct charges, 
commercial service combining value-added data to a high accuracy positioning service, 
safety-of-life (SOL) service for safety critical applications, public regulated service for 
government-authorized users requiring higher levels of protection, e.g. increased 
robustness against jamming or interference, and search and rescue (SAR) service. 
Galileo will offer more accuracy and faster position fixing than GPS and greater 
penetration capacities in urban areas and canyons, indoors, and under tree coverage. 
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BeiDou 
 
BeiDou is a Chinese multistage regional satellite navigation program designed to 
provide its navigation and communication services to Chinese military and civil users 
[Kap2006]. The system requires two-way range or TOA measurements. Position 
calculations for all subscribers are carried out at an operations center. The current 
constellation consists of 3 satellites that provide limited coverage in and around China. 
BeiDou can also be used to augment the GPS and GLONASS systems [Rab2006]. 
Under the BeiDou-2 program it is planned to deploy 14-30 satellites. 
 
QZSS 
 
The Japanese government and industry are developing a regional satellite navigation 
system known as the quasi-zenith satellite system (QZSS) in order to meet commercial 
demands [Rab2006]. The constellation will consist of 3 highly inclined geosynchronous 
orbits, each containing one satellite, to serve Japan and all of Asia with positioning, 
velocity, and timing services. QZSS will also provide broadcast and communication 
services in the S-band to Japan [Rab2006]. The first satellite is expected to be launched 
in 2008, and the other two in 2009. QZSS will use the GPS L1, L2, and L5 signals to 
ensure operability with the GPS system. The future constellation of the QZSS system 
will contain 7 satellites. 
 
IRNSS 
 
The Indian Regional Navigational Satellite System (IRNSS) is to be constructed and 
controlled by the Indian government. The constellation would consist of 7 satellites and 
would provide an absolute positioning accuracy of better than 20 m in and around India. 

 
2.2 Terrestrial Systems 
 
The terrestrial or land-based methods that will be discussed in this section are also 
called local, regional, or area-based systems, because they rely on transmitting sources 
that cover only a restricted area. Coverage also depends on the geometry of the 
transmitting stations and the transmitting power. 
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2.2.1 LORAN-C 
 
LORAN is an acronym for the US system LOng-RAnge Navigation developed during 
World War II (WWII) at the Radiation Laboratory of the Massachusetts Institute of 
Technology (MIT)2. It was a development of the British GEE radio navigation system. 
LORAN-C is the enhanced version of the original LORAN-A, and became in first 
operation in 1958. Other configurations like LORAN-B, LORAN-D, or LORAN-F are 
no longer in use [Hof2003]. Chayka (English: seagull) system is the Russian counterpart 
to LORAN-C. 
 
LORAN-C is a low-frequency radio transmitter system working in the 90-110 kHz band 
with a carrier of 100 kHz corresponding to a wavelength of 3 km [Hof2003]. Therefore, 
LORAN-C signals are not easily blocked or reflected by man-made constructions, 
unlike GNSS signals which have poor penetration characteristics. It is a hyperbolic3 
system based on time difference measurements of radio signals received from 3 or more 
synchronized stations of a chain in order to provide position fixing to maritime, air, and 
– to a limited extent – land applications. All transmitters of a chain use the same 
frequency. The transmission power of the LORAN-C signals is very high and varies 
between 250 kW and 12 kW. Thus, the signals have a long range propagation 
capability. Therefore, the LORAN-C signals are less vulnerable to interferences and less 
influenced by obstructions. 
 
The time difference (TD) between the times of arrival (TOA) of two transmitted radio 
signals is measured by the LORAN-C receiver for at least 2 pairs of transmitting 
stations. Using the time differences, the speed of radio wave propagation and 
considering the earth curvature, a line of position (LOP) can be calculated for each pair 
of transmitting stations. The intersection of the hyperbolic LOPs provides the position 
fix of the receiver. The i-th TOA measurement is given as 
 

                                                 
2 The LORAN system was originally known as LRN for Loomis radio navigation, after millionaire and 
physicist Alfred Lee Loomis, who invented LORAN and played a crucial role in military research and 
development during WWII. 
3 The hyperbolic positioning is a typical positioning approach, where 3 transmitters are required in order 
to determine a 2D position. A hyperbola is a line on which all receiving points have a constant difference 
in distance from two fixed and synchronized transmitting points called the foci. The receiver’s 2D 
position is thus defined by the intersection of two hyperbolic lines. Because of the geometry of the 
terrestrial transmitters relative to any receiver close to the earth surface, hyperbolic approaches do not 
generally provide accurate estimates of height. 
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A minimum of 2 TD measurements derived from 3 TOA measurements are necessary to 
determine the 2D position of the receiver. This method is termed hyperbolic 
trilateration, because three range measurements are required for a 2D position fix. For 
the 3D case the method is referred to as hyperbolic multilateration. 
 
The absolute accuracy of LORAN-C is poor and is in the range of about 460 m 
[Hof2003] with an availability of 99.6%. However, the strong signals used by LORAN-
C are difficult to jam. US and European governments have agreed to maintain and 
upgrade their LORAN systems. 
 
2.2.2 Cellular and Wireless Communication Networks 
 
The techniques presented in this section are network-based unless otherwise is 
mentioned. However, most of these techniques can be implemented at the MT as well. It 
will be assumed that the MT and the base stations (BSs) are located on a relatively flat 
plane, i.e. the goal is to determine the 2D geolocation of the MT. The mathematical 
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expressions describing these techniques are given without considering measurement 
errors. 
 
Cell-ID 
 
Cell-ID4 (cell identifier), also known as cell of origin (COO) or cell global identity 
(CGI), can be considered the simplest and most cost-effective, although the less 
accurate, positioning method in cellular networks. The cell-ID method is based on cell 
and sector information. Cell size varies up to 3 km in urban areas and from 3 km to 20 
km in suburban and rural areas. Thus, the location estimation accuracy depends heavily 
on the cell (sector) size. However, this method does not need any modifications to the 
MT or the network infrastructure. Accuracy improvement can be achieved by using 
timing advance (TA) information in GSM networks, i.e. cell-ID+TA, or round trip time 
(RTT) in UMTS networks, i.e. cell-ID+RTT. The resulting technique is referred to as 
enhanced cell-ID. 
 
Time of Arrival 
 
The time of arrival (TOA) method combines the measurements of the TOA of the MT 
signal when arriving at different BSs. Thus, the distance  between the i-th BS and the 

MT is given by 
ir

 
             (2.9) cttr MTii ⋅−= )(

 
Where  is the time instant at which the MT signal is transmitted,  is the TOA of 

the MT signal at the i-th BS, and  is the wireless signal propagation speed. The 
distance  can also be expressed as a function of the MT and the i-th BS coordinates as 

MTt it

c
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Where ,  and ,  are the unknown MT and the known i-th BS 2D 

coordinates in a Cartesian coordinate system respectively. Substituting (2.9) into (2.10), 
we get 

MTx MTy ix iy

 
                                                 
4 This method is referred to as proximity sensing in indoor wireless geolocation systems. 
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In order to determine the 2D geolocation of the MT, at least 3 TOA measurements at 3 
different BSs are required. And the task is to solve a system of 3 equations of the type 
given in (2.11). If more than 3 TOA measurements are available, the task would be to 
solve an overdetermined system of equations, which should deliver more accurate MT 
location estimates. 
 
The TOA method requires accurate synchronization between the MT and the BSs 
clocks, which is not a mandate in many current wireless system standards. However, a 
few microseconds drift in the MT clock generates a major error in the geolocation 
estimation of the TOA method. Other important sources of error are multipath 
propagation and the case of non-line-of-sight (NLOS) conditions. Typical positioning 
errors caused by NLOS propagation in TOA-based techniques for GSM have been 
measured [Sil1996]. The reported average errors are in the range of 400 m to 700 m. 
 
Time Difference of Arrival 
 
To help avoid the MT clock synchronization errors, the time difference of arrival 
(TDOA) is introduced. TDOA is the difference between the TOAs of the MT signal at 2 
BSs. Only synchronization between the involved BSs is required. The TDOA 
measurement defines a hyperbolic locus on which the MT lies. At least 2 TDOA 
measurements are needed to determine the MT 2D position. In some situations, it is 
possible that two hyperbolas intersect in 2 points. Therefore, a third TDOA, or any a 
priori information, would be required in order to resolve the resulting ambiguity. The 
distance difference  at the i-th and j-th BSs is defined as ijr

 
 cttcttcttrrr jiMTjMTijiij ⋅−=⋅−−⋅−=−= )()()(      (2.12) 

 
In GSM networks, this technique is termed enhanced observed time difference (EOTD) 
for the mobile-based solution, and Uplink TDOA (UTDOA) for the network-based 
implementation. In UMTS systems, the TDOA positioning solution is referred to as 
Observed TDOA (OTDOA). A 1µs error in the BSs clocks is equivalent to a 300 m 
error. Therefore, location measurement units (LMUs) should be deployed to provide 
local calibration. At least one LMU would be required for a sectorized cell. It is 
estimated that up to 50,000 LMUs would be needed to cover the whole USA [Ful2002]. 
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Angle of Arrival 
 
Using an antenna array installed at the BS, the angle of arrival (AOA), also called 
direction of arrival (DOA) or angulation, of the MT signal can be determined by 
measuring the phase difference between the antenna array elements or by measuring the 
power spectral density across the antenna array, which is known as beamforming. In 
order to yield a 2D MT position, at least two AOA measurements are required at two 
different BSs. Each AOA measurement produces a straight line locus or a line of 
bearing (LOB) from the MT to the BS. The intersection of two lines gives the desired 
MT position fix. Utilizing the cell sector information, e.g. in GSM networks, can be 
considered a sort of coarse AOA estimation. The AOA of the transmitted signal from 
the MT at the i-th BS is denoted iφ  and given by 

 

iMT

iMT
i xx

yy
−
−

=φtan           (2.13) 

 
Where iφ  is the angle between the LOB from the i-th BS to the MT and the x-axis.  

 
AOA location estimation requires a lower number of BSs than the TOA and TDOA 
methods. Moreover, the AOA technique does not need BS or MT clock 
synchronization. Antenna array structures are not currently installed in 2G cellular 
systems. In 3G cellular systems such as UMTS, the use of antenna arrays is planned. 
 
Regular sources of error in AOA measurements include noise and interference. 
Multipath propagation, NLOS effects, and error in the angular orientation of the 
installed antenna arrays corrupt AOA measurements. The conduction of test 
measurements helps to calibrate the angular orientation of the antenna array. 
 
The accuracy of the AOA method decreases with increasing distance between the MS 
and BS due to fundamental limitations of the devices used to measure the arrival angles 
as well as changing scattering characteristics. For macrocells, scattering objects are 
primarily within a small distance of the MS, since the BSs are usually elevated well 
above the local terrain. Consequently, the signals arrive with a relatively narrow AOA 
spread at the BSs. For microcells, where BSs are placed below rooftop level, the BSs 
will often be surrounded by local scatterers and the signals arrive at the BSs with a large 
AOA spread. Therefore, AOA is useful for macrocells and impractical for microcells. 
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Received Signal Strength Based Range Estimation 
 
The range information can also be derived from the received signal strength (RSS) by 
utilizing a path loss or attenuation formula, which is a function of the distance between 
the MT and the BS. However, RSS measurements are very inaccurate compared to 
time-based measurements. Transmitted power adjustments in, e.g. CDMA systems, 
have to be reported in order to facilitate the application of path loss models, which is a 
complex process. Path loss models are more applicable in indoor environments, where 
time measurements are hard to carry out due to the extremely short distances between 
the MT and BSs. 
 
Mapping-Based Positioning 
 
The mapping-based method, also known as database correlation method (DCM), is one 
way to improve the positioning accuracy of enhanced cell-ID techniques and is widely 
used in both indoor and outdoor environments. These schemes usually work in two 
stages. The first stage is the offline environment mapping of a location-sensitive 
parameter at reference positions. The location determination is the task of the second 
phase, in which the online location-sensitive parameter measurements are being 
correlated to the environment map or database in order to deduce a location estimate of 
the MT. The mapping-based approach is usually implemented as a terminal-assisted 
network-based solution. Refer to chapter 3 for more details. 
 
TOA, TDOA, AOA, and RSS ranging methods are sometimes referred to as geometric 
techniques. Most of the current positioning solutions are based on the low-cost cell-ID 
techniques, due to their simplicity. The majority of network operators do not deploy 
more accurate methods, e.g. EOTD or A-GPS5, unless they are enforced by law, e.g. E-
911 mandate. 
 
2.2.3 Television Networks 
 
TV signals are 10,000 stronger than GPS signals [Kol2006]. Therefore, TV-based 
positioning is much easier and quicker than GPS positioning. Thus, TV-based 
positioning has better accuracy, acquisition time, and reliability than GPS positioning. 
MTs can be localized by the synchronization signals of TV. TV towers are globally 
                                                 
5 See section 2.5.1. 
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deployed, especially in urban centers, and they transmit analog and digital commercial 
broadcast signals. Every tower often broadcasts multiple channels and utilizes 
frequencies that easily penetrate buildings and man-made structures. TV-based 
positioning can be used where GPS and other methods fail. This technique does not 
require any modifications to the TV broadcast stations. 
 
2.2.4 FM and AM Radio 
 
FM radio signals can be used for positioning mobile users [Cis1994]. Computing the 
location of a device based on signal strengths from FM radio stations has been 
suggested in [Kru2003]. Results showed the ability to correctly infer the device’s 
location about 80% of the time with accuracy down to a suburb level. AM broadcast 
signals have also been used for radiolocation applications, see [Hal2001], [Hal2002]. 
 
2.2.5 Pseudolites 
 
Pseudolites or pseudo satellites are devices that generate GNSS-like navigation signals. 
However, the pseudolite concept is older than the GPS system. Pseudolites mounted on 
high mesas at a desert test range were used to test the GPS concept [Hen1979]. 
Pseudolites have been used to complement the GPS satellites since the earliest days of 
the GPS system. In order to speed up the initial tests of GPS, pseudolites were used as 
direct replacements for satellites which had not been yet launched [Cob1997]. GPS 
Pseudolites have been deployed for indoor use [Kol2006]. They are generally utilized in 
ground-based augmentation systems. As in any GNSS, at least four pseudolites have to 
be available for positioning and navigation, unless additional information sources, e.g. 
altitude sensors, are employed. 

 
2.3 Augmentation Systems 
 
Methods introduced in this section are based only on ground installations, which are 
also referred to as ground-based augmentation systems (GBAS). 
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DGPS 
 
Differential GPS (DGPS) positioning process is based on using at least 2 receivers. 
Both receivers are simultaneously measuring code phase pseudoranges and/or carrier 
phases from at least 4 common GPS satellites, where the position fix of one receiver, 
called reference station, is known, and the position of the second receiver, usually 
moving, is unknown. The known position of the reference station is used to derive 
corrections to the GPS measurements and to the position fix calculated by using these 
measurements. The correction data is then transmitted to the second receiver to allow 
more accurate positioning than the aforementioned absolute point positioning. A 
network of reference stations forms a local-area augmentation system (LAAS) and a 
network of LAASs forms a wide-area augmentation system (WAAS). 
 
DLORAN-C 
 
The basic idea of differential LORAN-C (DLORAN-C) is the same as with DGPS. A 
reference station derives and transmits the correction data, i.e. the difference between 
the nominal values and the actual measurements. The user receiver applies these 
corrections to the measurements in order to reduce the ASF effect. Thus, an absolute 
accuracy in the range of 10 m can be achieved. 

 
2.4 Inertial Systems 
 
An inertial navigation system (INS) provides position fixes by a dead reckoning6 (DR) 
algorithm. DR is the calculation of the current position by utilizing the knowledge about 
the previous position. This is achieved by applying to it (the previous position) the 
course and distance travelled since. A DR system consists of an inertial measurement 
unit (IMU) or several IMUs. An IMU usually contains accelerometer(s) in order to 
compute the travelled distance, after double integration of the measured acceleration 
w.r.t. time, and gyroscope(s) and/or compasses for heading or direction/orientation 
determination. Odometers, which are usually installed in land vehicles, can also deliver 
information about the travelled distance by counting wheel turns. INS is usually used in 
combination with GPS in order to compensate for GPS signal outages. The resulting 
integration is designated as GPS/INS. 
                                                 
6 Originally it is called deduced reckoning or ded reckoning. However, the term has been interpolated into 
dead reckoning. 
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2.5 Hybrid Systems 
 
Assisted-GPS 
 
Integration of GPS into cellular networks will support GPS positioning by additional 
DGPS reference stations as integral part of the cellular infrastructure and by additional 
signalling between BSs and MTs [Küp2005]. This configuration is known as assisted-
GPS or A-GPS and is specified for almost all cellular systems. 
 
Compared with standard GPS, A-GPS provides improved positioning accuracy, 
reduction of position acquisition time, and consequently, less power consumption of the 
GPS receiver installed in MTs. Also it offers an increased sensitivity, and then increased 
availability of the location service, especially in dense urban areas and indoor 
environments. Compared with network-based TOA and TDOA, A-GPS provides much 
better positioning accuracy, and higher cost efficiency due to the avoidance of 
implementing synchronization instruments at each BS. However, the extra signalling 
needed from the GPS reference stations increases the wireless system impact. 
 
It is not required to install a reference station at every BS. One reference station would 
be enough for an area of about 200 km radius. The constellation of DGPS reference 
stations within a cellular network is also known as wide-area DGPS. 
 
TV/GPS 
 
Rosum’s TV/GPS integrated positioning system is an all-environment solution based on 
existing standards for digital TV (DTV) synchronization signals. The mean positioning 
error in tests ranges from 3.2 m to 23.3 m. TV/GPS based positioning is a feasible 
technique for seamless indoor/outdoor positioning capability [Rab2005]. 
 
Map-Aided Positioning 
 
Map-aided positioning is carried out with the help of map information in order to 
correct for errors by utilizing map-matching algorithms. The map used in positioning 
serves as an artificial sensor and its geometric data are considered as artificial signals. 



 
 
 
 
 
Chapter 3 
 
Mapping-Based Positioning 
 
The fingerprinting technique or mapping-based positioning method is discussed in 
section 3.1. Basics of radio propagation modeling necessary for wireless environment 
mapping are introduced in section 3.2. Section 3.3 describes briefly the main matching 
methods used for fingerprinting. The utilized RSS maps of our experimental area and 
preprocessing steps carried out to increase the usability of theses maps are presented in 
section 3.4. 

 
3.1 Wireless Mapping and Fingerprinting for MT Positioning 
 
The mapping technique is also referred to as database correlation or comparison, 
location pattern matching or recognition, location fingerprinting, or location table look-
up. Mapping approaches determine the behaviour of a signal or location-sensitive 
parameter at every reference location in the area of interest. These methods are one way 
to enhance the accuracy of cell-ID and enhanced cell-ID techniques introduced in the 
previous chapter. In these methods, a database or map of location-dependent parameters 
is constructed using radio wave propagation prediction tools [Schm2003], [Zim2004], 
[Kha2006a], field measurements [Lai2001], [Nyp2004], or a combination of both 
[Zhu2006]. Later a moving MT collects measurements to be compared with the entries 
of the database in order to yield location estimates. Location-dependent parameters 
usually used for mapping include received signal strength levels (RxLev) from 
surrounding BSs [Lai2001], [Schm2003], [Zim2004], [Zhu2006], [Kha2006a] and the 
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channel impulse response (CIR) [Aho2003], [Nyp2004], [Lay2006], which is the 
multipath propagation delay profile of the wireless environment. In GSM systems, the 
bandwidth is too small, unlike the UMTS system, for accurate positioning based on 
correlation of CIR only [Nyp2004]. Also the geometric time-based (TOA, TDOA, 
EOTD) and angle-based (AOA) methods could be used as location signatures either 
stand-alone (less accurate) or combined with other location parameters. To the best of 
our knowledge they are not widely used. However, in [Kel2000] a network-based 
fingerprint method composed of TOA and AOA has been proposed for wireless location 
finding in urban environments, and was found that AOA is more significant than TOA 
for location discrimination. 
 
Propagation prediction tools are advantageous in terms of cost and map construction 
time. These tools vary in terms of accuracy according to the degree of geographical 
information precision integrated in the calculations, thus are divided into deterministic 
(3D), semi-deterministic (2~2.5D), or simple empirical formulas. Field measurements 
provide more realistic databases but at higher costs and longer construction time that 
render wide deployment impractical. Nevertheless, field measurements in some parts of 
the deployment environment do help to show the performance upper limit of location 
estimation algorithms using the mapping approach. 
 
The essential location-sensitive parameters defined in GSM standard are location area 
code (LAC), cell-ID of the serving BS antenna, timing advance (TA)1, and the measured 
signal strengths of the serving and up to six neighbouring cells. These parameters are 
known at the MT and the network during the dedicated mode. In the idle mode only the 
LAC is known at the network. Therefore, the other parameters, i.e. cell-IDs and signal 
strengths, measured by the MT have to be transmitted to the location server, e.g. via 
SMS, in order to use them in location calculation during the idle mode. 
 
Mapping methods often utilize prediction data of RxLev and/or CIR produced during 
network planning. In the online positioning phase they use only the network available 
measurements and thus they don't require any expensive hardware installations at BSs 
or in MTs. Also they have short deployment time and cover current and legacy 
handsets. This is advantageous in terms of cost, coverage, and system impact compared 

                                                 
1 The TA value results from the measured round trip propagation delay. It indicates the number of bits the 
MT has to consider, i.e. how early to start transmission, in order to be synchronized with the TDMA 
frame (time between two measurements). TA values determine the MT location within a circular ring of 
about 554 m [Wal2000]. 
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to the other approaches, see chapter 2. Therefore, they seem to be the first alternative to 
take into consideration, especially for European network operators, since EU mobile 
location requirement still does not specify any accuracy levels unlike the US FCC 
mandate. However, mapping-based solutions require continuous update in order to 
adapt to changes in the environment structure and in the wireless network infrastructure, 
and to consider the time-varying nature of wireless channels. As already mentioned, this 
approach is usually implemented as a mobile-assisted network-based solution, which is 
very advantageous in GSM networks, where the MT, in the busy mode, transmits 
permanently RSS values of neighbouring BSs to the network for handover decisions. 
Thus, MTs require no or minor modifications. However, the GSM RSS fingerprinting 
solution is currently not subject to standardization. 
 
The location accuracy of mapping approaches ranges between about 100 m and several 
kilometers depending on cell size, accuracy of reference maps, mapping resolution, 
propagation conditions, accuracy of observed measurements, and significance degree of 
the mapped location-dependent parameter. While CIR maps generally achieve more 
accurate estimates than RxLev mapping in urban and dense urban environments, they 
tend to have comparable performance in suburban and rural areas. Therefore, mapping 
techniques do not fulfil the FCC accuracy requirements in all situations. However, 
mapping methods are advantageous, because no line of sight (LOS) conditions are 
needed, knowledge about the location of the involved BSs are not needed during the 
online positioning phase, it can work even with one BS, its implementation costs are 
pretty low, and in combination with other methods, e.g. GPS, can exploit the cell-ID 
information for 3D positioning to resolve the altitude ambiguity and give accurate 
height estimates. Moreover, mapping techniques will still be needed also when more 
accurate technologies are fully available. They will achieve positioning for applications 
with low accuracy requirements; they will be deployed in areas of the network where 
more accurate methods are not supported; and finally, they will work as backup in case 
the accurate techniques fail for any reason. Therefore, improving positioning accuracy 
of mapping approaches is an active research topic. 

 
3.2 Synopsis of Radio Propagation Modeling 
 
Prediction models used to describe radio wave propagation are used during network 
planning for feasibility and interference studies, and for initial deployment. Basic 
understanding of these models is of great importance for their employment in 
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positioning systems within wireless communication networks, since these models are 
functions of the distance to the BSs. 
 
Radio wave propagation, in mobile communication environments, is generally 
influenced by three phenomena or mechanisms: path loss or attenuation, shadowing or 
slow fading, and multipath or fast fading [Stü1996]. For the practical utilization of 
propagation models in positioning systems, it is required to digitize the propagation 
environment and store the result in a database. This step is followed by the development 
and/or definition of mathematical approximation techniques that sufficiently describe 
the physical propagation mechanisms. The preceding process outputs deterministic and 
empirical models for implementation in different environments or cell types. 
 
3.2.1 Radio Channel Model Components 
 
Path Loss 
 
Path loss is a large-scale signal fading component of the radio channel model. It is the 
loss of received power at the MT and is completely characterized by the distance 
between the MT and the BS, the operating frequency, the antenna height, and the 
surrounding terrain properties. 
 
Shadowing 
 
Shadowing, also shadow fading, is a medium-scale slow varying component of the 
radio channel model. Shadowing is a lognormally distributed random process caused by 
terrain configurations between the BS and the MT. Shadowing occurs when an obstacle 
blocks the signal path to the MT. 
 
Multipath 
 
Multipath fading is a small-scale fast varying component of the radio channel model 
with a Rician or Rayleigh distribution, depending on the presence or absence of the 
LOS situation respectively. Multipath is generated due to the constructive and 
destructive superposition of many reflected, diffracted, and scattered plane waves 
arriving at the MT with different time delays, phase shifts, and attenuations. Reflection 
and diffraction occur if the wavelength of the signal is much shorter than the size of the 
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obstacle. Reflected signals suffer additional attenuation depending on the angle of 
incidence and the surface properties of the obstacle. Diffraction is caused by obstacle 
irregularities, e.g. corners or edges, bending the transmitted signal. Scattering occurs 
when the size of the obstacle is the same as or is less than the wavelength of the signal. 
As such, several copies of the signal are generated, each being much weaker than the 
original signal and further propagating in different directions. 

 
3.3 Methods of Fingerprint Matching 
 
The most straightforward algorithm to estimate the MT location is calculating the 
Euclidean distance or the root mean square error (RMSE) in signal space between the 
measured parameters or parameter vector and each fingerprint in the database. This 
algorithm is also referred to as nearest neighbour or NN algorithm, or the maximum 
likelihood estimator (MLE), see section 4.2.2. A variant of the NN algorithm is 
searching for the k location candidates with the minimum RMSE in signal space and 
estimating the MT location by averaging the coordinates of these k locations. This 
procedure is known as the k-nearest neighbour or KNN algorithm. KNN algorithm is 
also termed trimmed average estimation (TAE), see section 4.2.2. When the MT 
location is determined by the weighted averaging of the involved location candidates, 
the algorithm is called weighted average estimation (WAE), see section 4.2.2. 
 
If motion information is available, the Bayesian filtering technique provides a powerful 
tool to manage the situation by probabilistic data fusion. Refer to chapter 4 for the 
formal treatment of these matching methods. 

 
3.4 Predicted Signal Strength Map of the Experimental Area 
 
The utilized RSS maps or databases of the semi-urban test area of about 9 km2 around 
the campus of Leibniz University of Hannover, Germany, have been constructed using a 
3D deterministic radio propagation prediction model, described in [Kür2002]. These 
RSS maps are represented by 2D raster arrays with a uniform grid spacing of 5 m. Each 
2D array corresponds to a GSM cell antenna working at 1800 MHz, see Figure 3.1. The 
experimental area contains 6 BSs, each with 3 sectors, and 4 indoor antennas, so that the 
total number of considered cells equals 22. The databases are a by-product of the 
network planning stage and contain location dependent parameter values (signal 
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strength) in a working E-Plus GSM network at reference locations. The provided cell 
information in the interest area include antenna geographical location, antenna height, 
azimuth and tilt, effective isotropic radiated power (EIRP), channel numbers, cell 
identifiers, etc. Figure 3.2 illustrates the geometry of the involved BSs and distances 
from the area-centric BS to the rest. 
 
The MT acquires information about its environment (or world) through the network 
measurements. However, the MT wireless environment is a stochastic system. 
Therefore, the network signal strength measurements are often noisy and deviate from 
the predicted RSS values, which are in turn not precise. 
 
 

 
 

Figure 3.1: Map of RxLev (dBm) generated by the radio wave propagation prediction tool for a 
base station antenna. The simulation is performed over an area of approx. 9 km2 divided into 

pixels (621 x 588 pixels in the longitudinal and latitudinal directions respectively) with a 
resolution of 5 m. 

 
 
In order to enhance the prior information to be fused into the location estimation 
algorithm, as much information as possible could be extracted from the prediction 
databases. This would enhance the correlation process of measurements with knowledge 
about the MT world. Achieving this needs reorganization, partitioning, and clustering of 
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the initial prediction databases. The previous steps are referred to as database 
preprocessing or off-line phase of the database correlation method. 
 
 

 
 

Figure 3.2: Geometry of the base stations in the experimental area generated by Google Earth. 
Base stations and indoor antennas are represented by triangles and circled dots respectively. 

 
 
3.4.1 Primary Database Preprocessing 
 
The localization algorithm can take advantage if the locations that are served by every 
cell antenna are determined. In this case, it is guaranteed that no position outside the 
coverage area of the BS cell antenna would be returned by the algorithm when the 
deviation between predicted and measured signal power levels are large or when the 
situation is highly ambiguous due to an increased number of possible location 
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candidates. Thus, every cell antenna of the test area has acquired a separate database, 
called cell database (CDB), which contains only the locations served by it. Each 
database entry consists of location ID, location coordinates, predicted RSS from serving 
cell, predicted RSS values and IDs of the strongest neighbour cells, and distance to the 
serving cell antenna. Figure 3.3 shows example results of this preprocessing step. Here, 
the BS has three sector cell antennas. The locations served by each cell antenna are 
depicted by different colors. The black dot represents the location of the BS. 
 
 

 
 

Figure 3.3: Results of the first preprocessing step for three sector cells. 
 
 
Furthermore, every CDB has been divided into sub-databases according to all possible 

TA values (with an assumed error of 
2
1

±  bits); each called cell TA database (CTADB) 

and labelled with a stamp indicating its TA value, see Figure 3.4. The location 
algorithm will process only the CTADB matching the TA measurement, thus, reducing 
the online computational burdens to a minimum. 
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Figure 3.4: Locations served by the same sector cell antennas of Figure 3.3 up to distances 
corresponding to TA = 0. The other sector cell and indoor antennas’ locations of the test area 

are depicted in black circles and squares respectively. 
 
 
3.4.2 Secondary Database Preprocessing 
 
GIS (Geographical Information System) data, with very high resolution of 30 cm, was 
used to assist in discriminating between the different environmental features, e.g. 
indoor, outdoor, water, green, etc. Moreover, the GIS data resolution was adapted to the 
5 m resolution of the original radio propagation prediction maps, before the CTADBs 
were further divided according to the different environmental features. This is also very 
helpful for the computational efficiency of the localization algorithms. 
 
Figure 3.5 shows outdoor pedestrian locations served by their main sector cell antennas 
for TA = 0. Databases as depicted in Figure 3.5 were the ones used in the proposed 
positioning algorithms presented in chapter 4. Moreover, these databases have been re-
sampled to 10 m, 15 m … and 50 m resolutions in order to investigate the impact of grid 
spacing on the location accuracy of the location estimation algorithm. 
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Figure 3.5: Outdoor pedestrian locations served by sector cell antennas up to distances 
corresponding to TA = 0. 

 
 



 
 
 
 
 
Chapter 4 
 
Bayesian Filtering Algorithms for Mobile 
Terminal Positioning 
 
This chapter describes and formalizes the mobile terminal (MT) positioning problem 
within the Bayesian filtering framework which makes the flexibility and power of the 
developed algorithms clear and readable. Section 4.1 is dedicated to the theoretical 
background of the recursive Bayesian filter. The proof of the recursive Bayesian 
filtering formulation is included together with a listing of the basic algorithm. The 
implementation approach of the theoretical Bayesian filter, namely the discrete 
Bayesian filter, and a discussion on point estimation methods are presented in section 
4.2. Categorization of the MT positioning problem into three types is provided in 
section 4.3, which also introduces implementable algorithms of the different types of 
the MT positioning problem. Before delving into details, a brief discussion on 
estimation is given in the following few paragraphs. 
 
Estimation can be briefly defined as the process of extracting information from data1. 
The extracted information in turn can be estimates of parameters (or system states), and 
data is usually measurements (related somehow to the estimated parameters) corrupted 
by noise or measurement errors. System states and measurement data are categorized 
according to whether they are static or dynamic, continuous or discrete, and linear or 
non-linear [Gel1974]. The principal task of estimation methods is to compute parameter 

                                                 
1 The problem of predicting a discrete random variable from another random variable is called 
classification, discrimination, or pattern recognition. 
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values from measurements, taking into account prior knowledge of parameters and 
measurement errors. 
 
The estimation problems are divided into three categories [Gel1974]. The problem is 
defined as filtering if the last measurement point coincides with the time at which an 
estimate is required. When the time of the desired estimate falls within the span of 
available measurement data, the problem is referred to as smoothing. If the time of 
estimate occurs after the last available measurement data, the problem is known as 
prediction. 
 
The main approaches to stochastic parameter (or state) estimation are the maximum 
likelihood (ML), or Fisher method2 [Fis1912], [Fis1922], and the maximum a posteriori 
(MAP) or Bayesian method [Bay1763], [Jaz1970], [Rob2001]. The Fisher method is 
concerned with fixed and unknown parameters or constants. These parameters (together 
with measurements or observations) are treated as random unknowns or stochastic 
variables in the Bayesian paradigm where their initial or prior distributions are assumed 
to be known. However, ML and MAP may generate same estimates under certain 
circumstances. Here only the Bayesian filtering technique will be further discussed 
focusing on nonlinear recursive3 state estimation for dynamical systems in the discrete-
time case. Surveys on nonlinear recursive estimation can be found in [Sor1988], 
[Kul1996]. Information on linear recursive estimation is provided in [Kai2000], 
[And1979]. 

 
4.1 Recursive Bayesian Filtering 
 
The recursive Bayesian filter (RBF) [Jaz1970] is a probabilistic framework for state 
estimation. It estimates the posterior belief or distribution of the MT position given its 
prior belief, motion or action information, wireless network measurements, and the 
model of the environment or world. The prior belief is a probability distribution over all 
possible positions before taking the MT actions and network measurements into 
account. The posterior belief is the conditional distribution of these probable positions 
after incorporating the MT motion information and network measurements. The world 
model is a radio profile map containing, at every location reference, single predicted 
received signal strength (RSS) value from each BS in the environment. Reaching the 
                                                 
2 See [Ald1997] for a historical perspective. 
3 See [Ber1985], [Box1992], [Con2003] for treatment of the non-recursive case. 
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final formulation of the RBF requires utilization of the Bayes’ rule, the Markov 
property or assumption, and the theorem of total probability. 
 
Definition 4.1 (Probabilistic Inference) 
Let A denote a random variable and  denote a specific value that a A  might take. 
Random variables can take on multiple values according to specific probabilistic laws. 
Calculating these laws for random variables which are derived from other random 
variables using measurement data is termed probabilistic inference4. Thus, probability 
theory, which is the formal language of uncertainty, is the basis of probabilistic 
inference. 
 
Remarks 
(1) The basic problem in probability theory is calculating the properties of data 
generated by a process. Probabilistic or statistical inference is the inverse of probability. 
Thus, its basic problem is: given the data, what can we say (infer) about the process that 
generated that data. 
 
(2) Probabilistic inference is sometimes called machine learning, data mining, or data 
analysis depending on the context [Was2004]. 
 
(3) Estimation, classification, and clustering5 are special cases of probabilistic inference. 
 
Definition 4.2 (Conditional Probability) 
Often we have the case that knowledge or information about random variables is 
included in other random variables. In other words, we would be interested to compute 
the probability that A  will take the value  knowing that the random variable a B  took 
the value . This can be formally expressed as b
 
            (4.1) )|()|( bBaApbap ===

 
Expression (4.1) is called conditional probability and is defined as 
 

 
)(
),()|(

bp
bapbap =             (4.2) 

                                                 
4 Probabilistic inference and estimation are referred to as learning in the computer science community. 
5 Classification and clustering are known in computer science as supervised learning and unsupervised 
learning respectively. 
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Where . If 0)( >bp A  and B  are independent, we get 
 

 )(
)(

)()()|( ap
bp

bpapbap ==            (4.3) 

 
Thus knowing the value of B  does not help in inferring the value of A . Such a 
situation is called conditional independence which has a fundamental role in the 
following discussion. 
 
Theorem 4.1 (Bayes’ Rule) 
The Bayes’ rule is a formula for calculating the conditional probability giving more 
insight to the state estimation problem at hand. Equation (4.2) is written using Bayes’ 
rule as 
 

 
)(

)()|()|(
bp

apabpbap =            (4.4) 

 
The conditional probability  is referred to as posterior probability, while  
is referred to as prior probability, which is the subjective initial degree of belief

)|( bap )(ap
6. In the 

absence of prior knowledge, a uniform prior distribution should be chosen for discrete-
valued random variables. The inverse conditional probability  is called 
measurement likelihood or measurement model, where b  is the measurement data. As 

 is independent of a , it is often referred to as the normalizer 

)|( abp

)(bp η , and hence (4.4) 
can be written as 
 
 )()|( )|( apabpbap η=            (4.5) 
 
Proof 
Exchanging the positions of  and b  in (4.2), and considering the fact that 

, we have 
a

),(),( abpbap =

 
            (4.6) )()|(),( apabpbap =

 
                                                 
6 The prior probability distribution function assumed in any problem is often a subjective assessment of 
that problem. It helps to integrate knowledge gained through previous experiences or information that is 
analytically difficult or impossible to model. 



4.1 Recursive Bayesian Filtering 39

Inserting (4.6) back into (4.2) completes the proof. 
 
Remarks 
(1) There is usually some prior knowledge about any process being studied. Throwing 
this knowledge away is nothing but waste of information. The Fisher or frequentist 
approach use only measurement data to know about the process at hand, hence the 
objectivity property of the approach. On the other, the Bayesian methods utilize both 
sources of information, i.e., prior knowledge and measurement data, and combine them 
using Bayes’ rule. 
 
(2) Bayes’ rule is the only tool used by the Bayesian techniques in all situations. In 
contrast, frequentist methods require many different tools in order to do their job. 
 
(3) Bayesian methods always marginalize7 nuisance parameters8 out of the joint 
posterior distribution. In other words, the Bayesian approach gets rid of nuisance 
parameters by integrating them out. This is an efficient straightforward way of dealing 
with nuisance parameters. Frequentist techniques do not have any general procedure to 
deal with them and they have no alternative but to estimate the nuisance parameters. 
Therefore, the Bayesian approach does not suffer from the problem of the frequentist 
approach in which nuisance parameters may invalidate an estimator [Kay1993]. 
 
(4) It is important however to mention that Bayesian and frequentist techniques are 
generally dealing with different problems. Bayesian approaches are used to formally 
combine prior belief with measurement data. Frequentist methods construct procedures 
with guaranteed long run performance, e.g. confidence intervals. 
 
(5) Probabilities in Bayesian inference are only a measure of our state of knowledge 
about the world, not a measure of the world itself. 
 
Definition 4.3 (Markov Property) 
The random process , where , is called Markov or Markovian, iff ta It∈
 
 )|(),|( Ttt aapTaap =≤ττ   tT ≤∀         (4.7) 

                                                 
7 See Appendix 4.A for the definition of marginalization. 
8 A nuisance parameter is one which we do not want to make inference about. Also we do not want that 
parameter to interfere with the inferences we are making about the parameters of interest. 
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Informally stated, if the present state is known, past and future are conditionally 
independent. In other words, the state at time T  fully describes and characterizes the 
past up to time T , i.e., once at a given state, the probability law of the process in the 
future does not depend on how the process arrived at that given state [Jaz1970]. The 
Markov property is also referred to as the generalized causality principle9 and it is a 
basic assumption necessary in the study of stochastic dynamical systems. The right-
hand side of (4.7) is called the transition probability density of the Markov process10. 
The Markov chain is a special case of the Markov process where the system occupies a 
finite number of states. 
 
Remark 
Because the future is independent of the past for a known present, the position 
prediction of a MT will not depend on the past MT positions if the current position is 
known. However, given a map of the environment and considering constraints, e.g., 
maximum pedestrian speed, the Markov property can be violated in many situations. 
Practical implementations therefore should be tolerant in such cases in order to make 
value of useful knowledge not modeled or to prevent total fall down when system 
model does not precisely map reality. Thus, positioning algorithms should implement a 
flexible formulation of the Markov principle. They should be able to decide if past 
positions are essential for the prediction of the future position. 
 
Theorem 4.2 (Total Probability Theorem) 
Let  be mutually exclusive, i.e., nib ...1= 0),( =ji bbp  ji ≠∀  and exhaustive, i.e., 

. Following Definition 4.2 (Conditional Probability) and the axioms of 

probability measures, the total probability theorem states that 
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9 The future can be predicted from knowledge of the present. 
10 The Markov process is named after the Russian mathematician Andrei Andreyevich Markov (1856-
1922) who introduced the concept for discrete parameter systems with a finite number of states in 1907. 
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The total probability theorem is mainly employed in obtaining state estimates in the 
presence of model and/or measurement uncertainties. 
 
Theorem 4.3 (Recursive Bayesian Filter) 
Let the posterior belief distribution be expressed as 
 
 )          (4.10) ,,|()( :0:0 maospsBel tttt =

 
Where  is the posterior belief over the state (or position) of the MT at time , 

 is the state at time ,  and  are the network measurement data (network 

observations or perceptions) and the actions (or movements) performed by the MT from 
time  up to time respectively, and m  is the world (or environment) model. 

)( tsBel t

ts t to :0 ta :0

0 t
 
The recursive Bayesian filter equation is given as 
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Proof 
Applying Theorem 4.1 (Bayes’ Rule) to (4.10) we get 
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Here, actions and network measurements are assumed to occur in an alternative 
sequence, although in reality they take place concurrently. They are separated only for 
convenience and clarity of the mathematical treatment. 
 
Employing Definition 4.3 (Markov Property) to the first term in the nominator in (4.12), 
and noting that the denominator, denoted η , is a constant probability relative to , i.e., 

is a normalizing factor, (4.12) is rewritten as 
ts

 
        (4.13) ),,|(),|()( :01:0 maospmsopsBel tttttt −=η
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In order to ensure that  represents a valid probability distribution, )( tsBel η  will help 

keeping the resulting product in (4.13) always sum up to1. 
 
Expanding the right most term in (4.13) using Theorem 4.2 (Total Probability Theorem) 
will result in 
 

    (4.14) 1:01:01:01:01 ),,|(),,,|(),|()( −−−−−∫= ttttttttttt dsmaospmaosspmsopsBel η

 
Applying Definition 4.3 (Markov Property) to the first term in the integration and 
noting that the second term is simply  will complete the proof. )( 1−tsBel

 
Remarks 
(1) Expression (4.11), also called the Chapman-Kolmogorov equation, is of great 
importance in the study of discrete stochastic dynamical systems (stochastic difference 
equations). It is usually computed in two steps termed prediction and update. The 
prediction step is given as 
 
       (4.15) 1111 )(),,|()( −−−−

− ∫= tttttt dssBelmasspsBel

 
Where  is the posterior belief just after executing the action  and before 

incorporating the network measurement , and  is the MT motion 

model, i.e., the transition probability density that tells us how the state evolves over time as a 
function of the MT movements. It is the kernel of (4.11). The update step is given as 

)( tsBel − ta

to ),,|( 11 massp ttt −−

 

         (4.16) )(),|()( tttt sBelmsopsBel −=η

 
Where  is the network measurement model that specifies the probabilistic 

law according to which these measurements are generated from the state, i.e. 
measurements are simply noisy projections of the state. 

),|( msop tt

 
(2) Both motion and network measurement models describe the dynamical stochastic 
system of the MT and its environment. The state at time  is stochastically dependent 
on the state at time  and the action . The network measurement depends 

stochastically on the state at time . Such a temporal model is also known as hidden 

t
1−t ta

t



4.1 Recursive Bayesian Filtering 43

Markov model (HMM) or dynamic Bayes network (DBN) [Thr2005]. TABLE 4.1 shows 
a single iteration of the RBF algorithm. 
 
(3) The posterior inference modifies the prior belief by the information contained in the 
measurement data. Therefore, the posterior estimate is a compromise between the prior 
belief and the likelihood function (measurement model). 
 

TABLE 4.1: The basic recursive Bayesian filter algorithm. 
 

1: Algorithm Basic_RBF( ) moasBel ttt ,,),( 11 −−

2:    for all do ts

3:       // Prediction 1111 )(),,|()( −−−−
− ∫= tttttt dssBelmasspsBel

4:               // Update )(),|()( tttt sBelmsopsBel −=η
5:    endfor 
6:    return( ) )( tsBel

 
 
 
 
 
 
 
 

 
4.2 Implementation Approach and Point Estimation 
 
4.2.1 The Discrete Bayesian Filter 
 
The multidimensional integrals involved in (4.11) permit analytical or closed-form 
solutions only in few special cases, e.g., the well studied case, when the dynamical 
model is linear and both measurement data errors and initial conditions are Gaussian or 
normally distributed. An analytical solution is already existing and is known as the 
Kalman filter. The Kalman filter (KF) provides the optimal solution to this case where 
all the involved densities are Gaussian and only linear operations are being performed. 
Thus, the state will also be Gaussian all the time. When the dynamical model is 
nonlinear or the measurement data noise is non-Gaussian, the recursive Bayesian filter 
equation of (4.11) has no analytical solution. 
 
Nonparametric filters (NPF) [Thr2005] provide implementable algorithms for the RBF. 
They approximate posteriors by a finite number of parameters, each corresponding to a 
region in the state space, i.e., they do not rely on a fixed functional form of the 
posterior. Moreover, the number of the parameters used to approximate the posterior 
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can be varied. The quality of approximation depends on the number of these parameters. 
As the number of parameters approaches infinity, NPF tends to converge uniformly to 
the correct posterior. The NPF approach discussed here approximates posteriors over 
finite spaces by decomposing the state space into finitely many regions and represents 
the cumulative posterior for each region by a single probability value. Such an approach 
is known as discrete Bayesian filter (DBF). The DBF is also referred to as the forward 
pass of a hidden Markov model. Particle filters also can numerically approximate the 
posterior belief by using Monte Carlo techniques, i.e., random parameters that cover the 
state space are chosen to approximate posteriors. Thus, the particle filter is a special 
case of the discrete Bayesian filter. 
 
The DBF approximates the belief  at any time by a set of n  weighted candidates 
as 

)(sBel

 
          (4.17) ni

ii wssBel :1
)()( },{)( =≈

 
Where  is the i-th MT position (or state) candidate and  is a 

normalized probability value (also called weight) that determines the importance of . 
The sum of all weights equals 1 so that  represents a valid probability 
distribution. However, normalization is not a crucial issue for practical algorithm 
implementation. 

},{ )()()( iii yxs = )(iw
)(is

)(sBel

 
4.2.2 Point Estimation Methods 
 
The aim is not just to find the belief distribution of the MT state, but to provide a single 
best guess of the state referred to as point estimate. This point estimate is simply the 
final MT location estimate that is output by the employed algorithm. There are several 
ways to calculate point estimates, e.g. maximum a posteriori (MAP), weighted average 
estimate (WAE), and trimmed average estimate (TAE). 
 
Definition 4.4 (Point Estimation) 
Point estimation of a parameter is the process of taking the probability distribution 
function, that represents the knowledge about that parameter, as an input, and 
performing a data reduction procedure, i.e. information processing, in order to output a 
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single optimal value or best guess that is believed to summarize the information about 
that parameter. Methods that achieve this process are called (point) estimators. 
 
Remarks 
(1) It is important to state that information is generally subjective, i.e. the probability 
distribution function that represents the information about a given system parameter 
does not represent the real state of that parameter, but it represents all information that 
we believe, as observers, have collected about the parameter. On the contrary, 
information processing is an objective procedure. 
 
(2) Sources of collected information include prior knowledge about the system, current 
measurement data, and data from the past. 
 
Definition 4.5 (Maximum a Posteriori Estimator) 
The maximum a posteriori (MAP) estimator is the maximum of the posterior belief 
distribution  and is expressed as )( tsBel

 
      (4.18) )()|,(maxarg)(maxargˆ 1−== ttttsts
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Thus, the MAP estimator is simply the location candidate with the highest assigned 
weight. 
 
Remarks 
(1) Within this framework, the prior belief represents a degree of belief in a certain 
range of parameter values rather than representing the distribution of the parameter 
values. This is due to the fact that the measurement likelihood is expected to dominate 
the content of our knowledge about the system behaviour and the prior belief is locally 
uniform in the region where the likelihood function is appreciable. 
 
(2) If the measurement likelihood function has only one peak, i.e. unimodal density 
function, then the MAP estimator selects the mode (maximum point) of the a posteriori 
distribution. 
 
(3) If the measurement likelihood function is normally distributed, the mode and the 
mean coincide, i.e. the MAP estimator is equivalent to the mean-square error estimate. 
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Definition 4.6 (Maximum Likelihood Estimator) 
The maximum likelihood estimator (MLE) is a special case of the MAP estimator, 
where the prior belief distribution  is uniformly distributed, i.e. non-

informative. Non-informative distributions are also called diffuse or improper 
distributions [Bar2001]. The MLE is written as 

)( 1−tsBel
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Remarks 
(1) The MLE is a non-Bayesian estimator. Therefore, the unknown parameters are 
treated as non-random variables. This helps to asses the MLE performance using the 
Cramér-Rao bound, which applies to non-random parameters, see Chapter 5. 
 
(2) The MLE coincides with the MAP estimator only in case of complete prior 
ignorance, i.e. the a priori knowledge approaches zero. Thus, Bayesian and non-
Bayesian approaches to estimation can be philosophically unified. In this case, 
maximizing  is equivalent to maximizing . )|,( ttt saop ),|( ttt aosp

 
(3) When a linear model can describe the data, and the errors are normally distributed 
with zero means, the least squares (LS) solution to the problem is equivalent to the 
MLE. 
 
Definition 4.7 (Weighted Average Estimator) 
The weighted average estimator (WAE) of the posterior belief  is defined as )( tsBel
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Remarks 
(1) The WAE is the mean value of the posterior belief distribution and it will only 
coincide with the MAP estimator in case of unimodal and symmetric distributions, 
which is not often the case in the context handled here. 
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(2) The WAE is equivalent to the minimum mean square error (MMSE) estimate as 
long as the weighting procedure minimizes a mean-square criterion, as in Expression 
(4.23). 
 
Definition 4.8 (Trimmed Average Estimator) 
Averaging only a number  of the best weighted candidates yields the trimmed average 
estimator (TAE) as 
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Where  and  is the total number of location candidates. nk < n

 
4.3 A Taxonomy of Positioning Problems 
 
Estimation of the MT position in its environment involves using a map of a location-
dependent parameter of the environment, network measurement data, and motion 
information. The estimation accuracy could even be enhanced by utilizing any prior 
knowledge of the MT location when available. 
 
Motion information is generally the most difficult piece of information to extract. 
Without dedicated motion sensors, e.g., an inertial measurement unit (IMU), motion 
estimation is either impossible or very inaccurate due to the noisy signal behaviour used 
to derive the MT motion pattern. Accordingly, the MT positioning problem could be 
divided into location estimation and tracking based on the availability of motion 
measurements. Location estimation (LE) algorithms calculate the MT location without 
incorporating any motion information or any prior knowledge about the initial MT 
position. Tracking algorithms can be further categorized according to the availability of 
prior knowledge into position tracking and global localization. In position tracking 
(PT), the initial position of the MT is known, and the problem is to find adequate 
procedures in order to compensate incremental errors in the motion sensor 
measurements. In the more challenging global localization (GL) problem, the initial 
location of the MT is unknown, and consequently the MT position has to be determined 
from scratch. This positioning problem is more difficult because multiple and distinct 
hypotheses have to be handled. Properties of the three defined positioning problems are 
summarized in TABLE 4.2. 
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4.3.1 Location Estimation 
 
As mentioned above the location estimation algorithm calculates the MT position 
without any prior information about the accurate initial location of the MT or any 
motion measurements from dedicated sensors. Thus line 3 in TABLE 4.1 could not be 
executed. Consequently, the algorithm computes only the output probability of the 
network measurements, which is merely a table-lookup procedure. 
 
 

TABLE 4.2: Comparison of the three positioning problems. 
 

 
Prior 

knowledge 
available? 

Motion 
information 
available? 

Location 
Estimation No No 

Position 
Tracking Yes Yes 

Global 
Localization No Yes 

 
 
TABLE 4.3 depicts a single iteration of the location estimation algorithm to estimate the 
MT state at time t . It is initialized (in line 2) by allocating memory space for the 
location belief  and the final MT location estimate . The inputs (lines 2 and 3) 

are the network measurements  and the world model . Where  is the 

database that contains location information and expected RxLev (received signal level) 
values (of the main and neighbouring cell antennas) of the areas covered by the main (or 
serving) BS cell antenna at time t , and  is the measured received signal level 

from the j-th observed BS. The weight of the location candidate i  is calculated (in line 
5) as 
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Where , , and  are the weights according to the measurement model, 

neighbourhood degree, and strongest neighbour respectively. They are calculated as 
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Where M  is the number of observed BSs (main and neighbouring), i.e.  in 

typical GSM network measurements, 

7max =M

RxLevσ  is the standard deviation of the measured 

RxLev, and  is the database RxLev prediction value of the j-th observed BS at 
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Where  is the number of observed neighbour BSs that coincide with the list of the 
predicted six strongest neighbour BSs at , i.e. 

l
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Where SNα  is a constant bonus value and equals1. It is assigned if the strongest 

observed neighbour BS coincides with the predicted first or second strongest neighbour 
BS at . Otherwise, . )(i

ts 0)( =i
SNw

 
After weight calculation the location candidate is added to the belief (line 6) together 
with the assigned weight. This is done for all location candidates before sorting them 
(line 8) in a descending order w.r.t. their weights. 
 
 

TABLE 4.3: The location estimation algorithm. 
 

 1: Algorithm LocationEstimation( o ) tt m,
2:    ,0)( =tsBel 0ˆ =ts , IDcellt DBm −=  

3:    o  },,{ )( j
tttt RxLevTAIDcell −=

:1=4:    for i do n
5:       Compute the weight  )(i

tw
6:        },{)()( )()( i

t
i

ttt wssBelsBel ∪=
7:    endfor 
8:     // Descending sort ))(()( tt sBelsortsBel =
9:    Calculate  tŝ
10:  return( ) tŝ
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Remark 
When using Expression (4.19) to calculate , line 9 in TABLE 4.2, many candidates 
may have the same weight. Thus, the returned location estimate will depend on the 
stability of the sorting scheme utilized. Stable sorting algorithms maintain the relative 
order of the location candidates, i.e. a location candidate with the highest weight that 
appeared first in the unsorted belief will also appear first in the sorted belief. This is 
very disadvantageous as an arbitrary candidate could be returned as the location 
estimate though other candidates, also assigned with the same highest weight, would be 
more accurate. However, the effect of this negative aspect could be reduced by 
computing  using Expressions (4.20) or (4.21). 

ŝ

ŝ
 
4.3.2 Position Tracking 
 
A single iteration of the position tracking algorithm is given in TABLE 4.4. The inputs 
are the initial position (line 2) ),( 111 −−− = ttt yxs , the IMU data (line 3) 

),( 111 −−− = ttt transa θ , where  and 1−ttrans 1−tθ  are the translation (e.g. after twice 
integration of the IMU acceleration measurement) and orientation (IMU compass) in a 
2D Cartesian coordinate system at time 1−t  respectively, the network measurement  
(line 4), and the corresponding world map (line 5) where  is the weight of the j-th 
location candidate and initially set to zero. Note that the proposed algorithm updates 
only one position hypothesis, i.e.,  in Expression (4.17) equals 1. 

to

tm jw
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The position tracking algorithm propagates the known initial MT location  using 

IMU data in the prediction step (lines 6 and 7). The propagated location is then updated 
by matching it to the set of candidate locations (lines 8-10) that are covered by the 
current serving cell antenna, after descending sort of the candidates w.r.t weight (line 
11), the new MT position (line 12) is simply the candidate of the minimum Euclidean 
distance to the location computed in the prediction step. 

1−ts

 
Remarks 
(1) The proposed position tracking algorithm assumes that  is generally greater 

than or equal to the resolution of the underlying world map. If this is not the case, the 
algorithm could be modified so that lines 6 and 7 will only be executed when the 
travelled distance is greater than or equal to the world map resolution in order to allow 
position state transition. 

1−ttrans
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(2) The developed position tracking algorithm is a nonlinear recursive filter. Its 
flexibility, ease of implementation, and computational cost effectiveness make it an 
attractive alternative to the Kalman-type nonlinear filters. 
 
 

TABLE 4.4: The position tracking algorithm. 
 

1:  Algorithm PositionTracking( ) tttt moas ,,, 11 −−

2:     // Input ),( 111 −−− = ttt yxs
3:  ),( 111 −−− = ttt transa θ   // … 
4:    // … },{ ttt TAIDcello −=
5:  >=<= − jjjIDcellt wyxDBm

t
,,  // … 

6:   // Prediction 111 cos −−−
− ⋅+= tttt transxx θ

7:   // … 111 sin −−−
− ⋅+= tttt transyy θ

8:    for do   // Update nj :1=

9:       
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j
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10:   endfor 
11:   m    // Descending sort )( tt msort=

ttt12:   s ),(),( 11 yxyx ==  
13: return( ) ts

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3.3 Global Localization 
 
The global localization algorithm has no information about the accurate MT position at 
the beginning. Thus, it has to resolve the location ambiguity and converge to the true 
position of the MT by tracking all probable location candidates and determine their 
weights every time the algorithm is run. When this task is successfully fulfilled, the 
algorithm is allowed to run in the position tracking mode (line 30 in TABLE 4.5). 
 
As depicted in TABLE 4.5, the global localization algorithm is initialized by setting the 
travelled distance as measured by the IMU ( ) to , and  also to , 
i.e., global localization mode (line 3). The inputs (lines 4-7) are the same as in TABLE 
4.4 except (line 5) that the global localization algorithm tracks a number of hypothetical 

disttrvld _ 0 Mode 0
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candidates, unlike the position tracking algorithm. The global localization mode will run 
as long as the number of location candidates  in the belief distribution  is 

greater than a certain threshold 

n )( 1−tsBel

α  (line 9). During this mode, the prediction and update 
steps will only run if the MT’s travelled distance is greater than or equal to the database 
(or map) resolution  (line 11), in order to allow position state transition using the 

world model. The updated candidate will only be added to the new belief, if the location 
it is matched to is not greater than  away (lines 19-21). Therefore, the number of 

location candidates  will decrease after every run of the algorithm until their total 
number is equal to or less than the threshold 

resDB

resDB

n
α . In this very event, the updated MT 

position is simply estimated as the average of the remaining candidates, and the 
algorithm is switched to the position tracking mode (lines 25-28). Note that the 
algorithm returns no position estimates in the global localization mode. First after 
switching to the position tracking mode, location estimates are returned at the end of 
every update run, see TABLE 4.4. For both the global localization and position tracking 
algorithms no RxLev values have been used. Only the cell-ID and TA measurement of 
the network measurement report (NMR) have been utilized, see line 4 in TABLE 4.4 
and line 7 in TABLE 4.5 respectively. 
 
Remark 
The update step of the position tracking and global localization algorithms has different 
roles. In the position tracking algorithm, the position estimate is decided upon the result 
of the update step, where in the global localization algorithm, the update step works to 
reduce the size of the position belief and makes it converge to a single estimate before 
allowing the position tracking algorithm to run. 
 
4.3.4 How Global Localization Works 
 
Solving the global localization problem for an MT in a GSM network is described and 
illustrated in Figure 4.1. Location state space, MT location belief, ground truth, and 
position estimation (when available) are depicted in green, red, solid blue diamond, and 
black respectively. At start, the MT location is not known and the algorithm has to 
handle all probable locations. Therefore, the location belief covers the whole state 
space, see Figure 4.1-a. After approximately 27 m of motion, many location candidates 
have been found improbable and thus have fallen out of consideration, as in Figure 4.1-
b. After another 38 m of movement, the location belief has concentrated on two parallel 
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streets, see Figure 4.1-c. As the MT moved further, the location belief has almost 
converged to the true position as in Figure 4.1-d. Figure 4.1-e shows how the MT 
location ambiguity has been resolved after a total movement of about 145 m with a 
position estimation error of approximately 16 m. 
 
Remark 
If the competing parallel street was longer than the true street where the MT is located, 
the number of location candidates  may reach the threshold n α  before performing a 
turn. Thus, the position belief would converge to a false position due to the 
concentration of location candidates on the wrong street. However, in practical 
situations the true street may be known and can be input to the algorithm by modifying 
the initial prior belief. 
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TABLE 4.5: The global localization algorithm. 

 
1: Algorithm GlobalLocalization( ) tttt moasBel ,,),( 11 −−

2:   // Initialization, only at the first run of the algorithm 
3:   trvld , 0_ =dist 0=Mode  
4:    // Inputs 
5:   niyxDBsBel iiIDcellt t

...1,,)( 1 =>=<= −−  

6:   qjwyxDBm jjjIDcellt t
...1,,, =>=<= − , 0>=< jw  

7:   ,   },{ ttt TAIDcello −= ),( 111 −−− = ttt transa θ  
8:    if  // Global localization mode 0==Mode
9:       if α>n  

10:         
2

11
2

11 )sin()cos(

__

−−−− ⋅+⋅

+=

tttt transtrans

disttrvlddisttrvld

θθ
 

11:         if trvld  resDBdist >=_
:1=12:            for i do n

13:                  // Prediction 1cos_ −
− ⋅+= tii disttrvldxx θ

14:                  // … 1sin_ −
− ⋅+= tii disttrvldyy θ

15:               for do qj :1=

16:                  
22 )()(

1

jiji

j
yyxx

w
−+−

=
−−

 // Update 

17:               endfor 
18:               )( ><>=<  // Descending sort jj wsortw

19:               if ( resDB
w

≤
1

1
) 

20:                  add ( to  ), 11 yx )( tsBel
21:               endif 
22:            endfor 
23:         trvld  0_ =dist
24:         endif 
25:      else if α≤n  
26:          1=Mode

27:         ),(
n

y

n

x
s i

i
i

i

t

∑∑
=  

28:      endif 
29:   else if  // Position tracking mode 1==Mode

30:      PositionTracking( ) // Table 4.3 tttt moas ,,, 11 −−

31:   endif 
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Figure 4.1: Global localization of a mobile terminal in a GSM environment. 
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APPENDIX 
 
4.A Marginalization 
 
Definition 4.A.1 (Marginalization) 
The probability density function  contains information that determines how 
the values of the variables 

),,( ZYXp
X ,  and Y Z  can occur together. Marginalization is defined 

as the process to extract or derive information about X  and Y , given all possible 
values of Z . Marginalization is mathematically expressed as 
 

          (4.26) ∫= Z
dzZYXpYXp ),,(),(

 
This is simply integrating  over all possible values of),,( ZYXp Z . 



 
 
 
 
 
Chapter 5 
 
Performance Bounds 
 
Lower bounds give an indication of performance limitations. Therefore, they are used to 
determine whether imposed performance requirements are realistic or not. Performance 
evaluation of MT positioning algorithms, and in particular RSS-based techniques, is an 
interesting research topic. This is achieved by obtaining a lower bound on the 
covariance matrix of positioning errors. The Cramér-Rao lower bound (CRLB) is 
defined as the inverse of the Fisher information matrix (FIM) and provides an objective 
indication of the achievable accuracy of constant parameter estimation. The CRLB has 
been extended for random parameter estimation in [Tre1968]. Section 5.1 shows how to 
asses the performance of the database correlation method (DCM), i.e. the location 
estimation algorithm, using the CRLB. The performance evaluation of the position 
tracking algorithm requires the consideration of the dynamics involved in the problem. 
This is achieved by computing the posterior Cramér-Rao lower bound (PCRLB), which 
is presented in section 5.2. 

 
5.1 Lower Bound for the Location Estimation Algorithm  
 
The CRLB [Tre1968], [Kay1993], [Pap2002] and the Barankin lower bound [Bar1949] 
have been used in [Wei2003] and [Koo2004] respectively to compute achievable 
accuracies of RSS-based positioning methods. The work in [Wei2003] gives simulation 
results for a triangulation method based on a distance attenuation model of the signal 
strength. However, this approach is not suitable for the database correlation method if 
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the RSS signatures are constructed by complex propagation prediction tools or by 
tedious survey measurements, because the RSS-location mapping function is not always 
continuous and differentiable everywhere in order to derive the CRLB. This 
disadvantage has been tackled in [Koo2004] by calculating the Barankin bound, which 
does not require the mapping function to be continuous and differentiable everywhere, 
for a database correlation method, in which the database was constructed by field RSS 
measurements. The difficulty in choosing the right points that contribute to the 
computation of the bound is the main problem of accuracy assessment using the 
Barankin bound. 
 
The following subsections show how the RSS location mapping function is 
approximated by a suitable path loss empirical formula in order to derive the CRLB for 
investigating the DCM performance. 
 
5.1.1 Propagation Modeling and Database Reconstruction 
 
The original database of RSS-fingerprints, utilized in this work, is constructed by using 
a 3D deterministic radio propagation prediction model. Therefore, calculating the CRLB 
is infeasible due to the discontinuity of the RSS-location mapping function. However, 
this can be tackled by parameterization of the RSS-location relationship. The 
parameterization is achieved by employing a path loss model that can sufficiently 
characterize the wireless propagation environment of the experimental area. 
 
The path loss model applied here is the well known COST-231-Hata model [COS1991], 
[COS1999], which extended the Hata model [Hat1980], which in turn is based on 
Okumura’s correction functions [Oku1968], to cover the frequency band 

by analyzing Okumura’s curves in the upper frequency 
band. The COST231-Hata model for path loss 

2000MHz1500MHz << f
L (dB) prediction is given as1

 
            (5.1) GEdBFL +−⋅+= log
 
Where 
 
 BShfF log82.13log9.333.46 ⋅−⋅+=          (5.2) 

                                                 
1 throughout this chapter. 10loglog =



5.1 Lower Bound for the Location Estimation Algorithm 59

            (5.3) BShB log55.69.44 ⋅−=

 
 )8.0log56.1()7.0log1.1( −⋅−⋅−⋅= fhfE MS         (5.4) 

 

        (5.5) 
⎪⎩

⎪
⎨
⎧

=
centersan metropolitfor dB3

areassuburban  andcity  sized-mediumfor dB0
G

 
And  is the distance between the BS transmitter and the MT receiver (in km),  is 

the height of the BS antenna (in m), and  is the height of the MT antenna (in m). 

d BSh

MSh

 
The COST231-Hata model predicts the path loss only in large and small macro cells 
(cell radius: 1 km – 30 km and 0.5 km – 3 km respectively), which is the common 
wireless layout in medium-small cities. The application range of the parameters is 
 
 : 1500 – 2000 MHz f

 : 30 – 200 m BSh

 : 1 – 10 m MSh

 
Substituting the known parameter values of , , and , for a certain cell antenna 

of the experimental area, in Equations (5.2) – (5.4), then Expression (5.1) is rewritten as 

f BSh MSh

 
 daaL log21 ⋅+=             (5.6) 
 
The parameter values used for the calculation were 
 
  MHz 1800=f

  m

m

 60=BSh

   5.1=MSh

  dB 0=G
 
Assuming isotropic antennas at the base and mobile stations, the average received signal 
level  at any location can be predicted as rP
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 LEIRPPr −=             (5.7) 
 
Where EIRP  is the effective isotropic radiated power. In order to reconstruct the RSS-
signature database using the COST231-Hata model (COST-Hata DB),  and  in 
Expression (5.6) have to be computed using the existing database (3D-DB) built by the 
3D deterministic radio propagation model. This is done by a least-squares procedure 
which will minimize 

1a 2a

 

             (5.8) 2

1

3 )(∑
=

−−=
n

i

DBD
ii LLR

 
Where n  is the number of reference locations and  is the path loss of the 3D-DB, 
which is given as 

DBDL −3

 
            (5.9) DBD

r
DBD PEIRPL −− −= 33

 
The resulting COST-Hata DB is used by an unbiased estimator to calculate the MT 
position. The corresponding CRLB is derived in Section 5.3.2. 
 
5.1.2 Problem Formulation and Location Estimation 
 
Each database location (entry) is defined by a 2D Cartesian coordinate  
associated with a column vector  of length 

Tyxs ],[=
)(sP M  containing predicted RSS values 

from the M  control channels. The measurement  on channel  is given by io i

 
           (5.10) iii esPco ++= )(

 
Where  is a common attenuation factor due to the MT’s RF properties,  is the 

average predicted RSS at location  from the i-th BS, and  is an unpredicted 

measurement error. Thus, all measurements can be expressed in vector form as 

c )(sPi

s ie

 
           (5.11) eP(s)Jo ++= c
 
Where all vectors are of length M  and are defined as 
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  T
Moo ],...,[o 1=

  T[1,...,1]J =

  T
M sPsP )](),...,([P(s) 1=

  T
Mee ],...,[e 1=

 
The least-squares location estimator is written as 
 
          (5.12) 2||Jc-P(s)-o||minˆ =s
 
Equation (5.12) is called the maximum likelihood estimator (MLE) if errors are 
assumed to be Gaussian with zero means. The factor c  is estimated by 
 
        (5.13) P(s))-o(JP(s))-o(JJ)J(ˆ 1-1 TTT Mc −==

 
Substituting (5.13) into Expression (5.12), we get 
 
          (5.14) 2||P(s))-(oB||minˆ ⋅=s
 
Where  and  is the TM JJ-IB 1−= I MM ×  identity matrix. Equation (5.14) is 
minimized by searching all candidate locations stored in the COST-Hata DB. Note that 
Expression (5.14) is equivalent to the MLE given in Equation (4.19). 
 
5.1.3 Cramér-Rao Bound 
 
5.1.3.1 Preliminaries 
 
Definition 5.1 (Unbiased Estimator) 
The estimator  is called an unbiased estimator for the non-random parameter s  if ŝ
 
 ,          (5.15) ssE =]ˆ[ bsa <<

 
Where  denotes the range of possible values  can take. ),( ba s
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It means that the expected value of an unbiased estimator is equal to the true value of 
the parameter being estimated. 
 
Remarks 
(1) The expectation in (5.15) is over the estimate which is a random variable as it is a 
function of the measurement. 
 
(2) An unbiased estimator guarantees that on the average it will attain the true value, 
and it does not necessarily mean that it is a good estimator. 
 
(3) A biased estimator will for some reason on average over- or underestimate the 
parameter being estimated, i.e. it is characterized by a systematic error. 
 
(4) If  and  are both unbiased estimators for , the one with lower error variance is 
preferable. The problem now is how to find an unbiased estimator with the lowest 
possible error variance and if it is possible to obtain an expression on the lower bound 
for the estimation error variance of all unbiased estimators. 

1̂s 2ŝ s

 
(5) The extension of Definition 5.1 to the multi-parameter case is straightforward.  is 
said to be unbiased if 

ŝ

 
  , ii ssE =]ˆ[ , iii bsa << ni ,...,2,1=        (5.16) 

 
Where 
 
  T

nssss ] ...  [ 21=

  T
nssss ]ˆ ... ˆ ˆ[ˆ 21=

  T
ni sEsEsEsE ]]ˆ[ ... ]ˆ[ ]ˆ[[]ˆ[ 21=

 
(6) In the Bayesian case, where  is a random variable with a known prior probability 
density function, we have the unbiasedness property as 

s

 
            (5.17) ][]ˆ[ sEsE =

 
Where the expectation on the right-hand side is with respect to the prior pdf. 
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Definition 5.2 (Mean Square Error) 
A natural optimality criterion for estimators is the mean square error (MSE) which is 
defined as 
 
 ]           (5.18) )ˆ[()ˆ( 2ssEsMSE −=

 
MSE measures the average mean squared deviation of the estimate from the true value. 
Thus, the MSE of an unbiased estimator is simply the variance. 
 
Remarks 
(1) The adoption of the MSE criterion leads to unrealizable estimators, because the 
MSE is composed of the variance error and the bias [Kay1993]. A useful approach is to 
constrain the bias to be zero and find the minimum variance unbiased (MVU) estimator 
which minimizes the error variance. 
 
(2) Generally, the MVU estimator does not always exist, and if it exists, we may not be 
able to find it. If the MVU estimator exists, it will only be produced by the maximum 
likelihood approach. 
 
Definition 5.3 ( Norm of a Vector) 2l
The inner product of a vector with itself is given as 
 
            (5.19) 2||||, aaa =〉〈

 
Which is the squared  norm of this vector. This also applies for the inner product of 
two real n-vectors in a Euclidean space or for any other properly defined inner product. 
Thus, the  norm is the length or magnitude of the vector. 

2l

2l
 
Definition 5.4 (Schwarz Inequality) 
The Schwarz inequality states the relationship between the magnitude of the inner 
product of two vectors and their  norms as 2l
 
           (5.20) |||| ||||  |,| baba ≤〉〈

 
The generalization of (5.20) is the Schwarz inequality for real-valued functions or 
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        (5.21) ∫
∞

∞−

≤=〉〈 |||| |||| )()(|,| 212121 ffdoofofff

 
Where 
 

        (5.22) ∫
∞

∞−

=〉〈= 2/122/1 })({},{|||| dooffff iiii

 
The equality in (5.21) holds iff 
 
 ,          (5.23) )()( 21 ocfof = o∀
 
Where c  is some constant not dependent on o . 
 
A theoretical lower bound on the minimum error variance (second order or mean 
squared error) or minimum error covariance matrix attainable by any unbiased estimator 
can be formulated by the Cramér-Rao lower bound (CRLB) [Tre1968], [Kay1993], 
[Pap2002]. The CRLB applies to non-random parameters2 and uses the MLE, as 
described in 4.2.2 and 5.1.2. CRLB is the basic metric of accuracy for an estimate. This 
lower bound was given by Rao in [Rao1945]. It was also obtained independently by 
Cramér in [Cra1946a], hence the name of the bound. However, the Cramér-Rao 
inequality was first stated by Fisher [Fis1922] and proved by Dugué [Dug1937]. 
Historically, the Cramér-Rao inequality was apparently discovered, according to 
[Sto1996], for the single-parameter case in [Doo1936] and rediscovered in a more 
elegant manner in [Fré1943]. Generalizations of the Cramér-Rao inequality for the 
multi-parameter case were presented in [Dar1945], [Cra1946b], and [Rao1946]. The 
CRLB is a useful benchmarking tool to asses the performance of the proposed unbiased 
location estimator; see Expression (5.14) in Section 5.1.2. Therefore, the CRLB is a 
common ingredient in any wireless geolocation system feasibility study. 
 
The key step for calculating the Cramér-Rao bound (CRB) for the multi-parameter case 
is the construction of the Fisher information matrix (FIM)3 using the probability density 
function (pdf) of the wireless network measurements (or observations) given the MT 

                                                 
2 The posterior Cramér-Rao bound [Tre1968] applies to random variables. Hybrid Cramér-Rao bounds, 
proposed in [Roc1987], apply to the joint estimation of non-random parameters and random variables. 
3 Also called the observability matrix. 
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location . Alternatively, the CRLB can be derived from information matrices of 
marginals of the joint probability density function. In this chapter, only the first 
approach is followed. 

)|( sop

 
The term  is also called the measurement likelihood function where  is the 
network measurement and  is the MT location and is written as 

)|( sop o
s
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      (5.24) 

 
Where  is a positive definite covariance matrix of the error vector e . Substituting the 

minimized term in (5.14), which is an expression for the error  in (5.11), in Equation 
(5.24) we get 

eC

e

 

 }
2

P(s))]-(oB[)(P(s))]-(oB[
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Theorem 5.1 (Cramér-Rao Inequality) 
If  is an unbiased estimator, then for the single-parameter case ŝ
 
         (5.26) 1))]}|((ln[{)ŝVar( −∇∇−≥ sopE ss

 
i.e. 
 

 1
2

2

]})|(ln{[)ŝVar( −

∂
∂

−≥
s

sopE         (5.27) 

 
Or equivalently4

 

 12 ]}))|(ln[({)ŝVar( −

∂
∂

≥
s

sopE         (5.28) 

                                                 
4 See Appendix 5.A for the proof of the equivalence. 



5 Performance Bounds 66 

Assuming that the following regularity condition is satisfied: 
 

 0])|(ln[ =
∂

∂
s

sopE ,          (5.29) s∀

 
The expectation in (5.27) is given by 
 

 dssop
s

sop
s

sopE )|()|(ln])|(ln[ 2
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=
∂

∂        (5.30) 

 
The Fisher information  for the data  is defined as )(sI o
 

 ])|(ln[)( 2

2

s
sopEsI

∂
∂

−=          (5.31) 

 
In other words, the CRLB on the error variance is the inverse of the Fisher information 
or 
 
           (5.32) 1)()ŝVar( −≥ sI
 
Expression (5.26) indicates that the more information, the lower the bound. 
Furthermore, Fisher information has the following properties, which are essential of an 
information measure: Nonnegative, and additive for independent measurement data. 
 
For the multi-parameter case, e.g. 2D MT location estimator 
 
           (5.33) 1FIM)ˆ( −≥sCOV
 
Where 
 
 ]          (5.34) )ˆ)(ˆ[()ˆ( TssssEsCOV −−=

 
         (5.35) 1-1 ))]}|((ln[{FIM −∇∇−= sopE ss
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Proof 
The first and second derivatives of  w.r.t.  exist and are absolutely integrable. 
From (5.17) we have 

)|( sop s

 

         (5.36) ∫
∞
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=−=− 0)|(]ˆ[]ˆ[ dosopssssE

 
The derivation of (5.36) w.r.t.  yields s
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   (5.37) 

 
Utilizing the identity 
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And noting that , from Equation (5.37) we get ∫
∞

∞−

= 1)|( dosop

 

 1)|()|(ln]ˆ[ =
∂

∂
−∫

∞

∞−

dosop
s

sopss         (5.39) 

 
Expression (5.39) can be rewritten as 
 

 1})|()|(ln}{)|(]ˆ{[ =
∂

∂
−∫

∞

∞−

dosop
s

sopsopss       (5.40) 

 
The left-hand side of (5.40) is an inner product of two functions. Therefore, utilizing 
Expression (5.21) of the Schwarz inequality, will majorize the left-hand side of (5.40) 
as 
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 1})|(])|(ln[{})|(]ˆ[{ 2/122/12 ≥
∂

∂
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dosop
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Or 
 

 122 }])|(ln[{}]ˆ{[ −
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s

sopEssE         (5.42) 

 
Where the equality holds iff 
 

 ]ˆ)[()|(ln sssc
s

sop
−=

∂
∂ , o∀         (5.43) 

 
Expression (5.42) is equivalent to Equation (5.28), and thus the proof of the Cramér-
Rao inequality for the single-parameter (non-random scalar parameter) case is 
completed. See [Kay 1993] pp. 70-72 or [Pap2002] pp. 343-345 for the proof of the 
multi-parameter (vector-valued parameters) case. 
 
Remarks 
(1) Expressions (5.26)-(5.28), (5.32), and (5.33) are called the Cramér-Rao inequality or 
information inequality. The right-hand side of these equations are known as the 
Cramér-Rao lower bound (CRLB). 
 
(2) If an estimator achieves the bound, it is called an efficient5 estimator, because it 
efficiently uses the data, or a minimum variance bound estimator. But an unbiased 
estimator which attains that minimum variance bound does not, in general, always exist. 
However, under certain regularity conditions, the MLE is the only estimator that may 
uniquely achieve the CRLB [Ken1961]. 
 
(3) The efficient estimator must be a MVU estimator. However, an MVU estimator is 
not necessarily efficient. 
 
(4) If an unbiased estimator has the CRLB as its variance, it must be a sufficient 
statistic6 for the parameter. A sufficient statistic for a parameter captures all the possible 

                                                 
5 All existing information has been extracted. 
6 The variance of an efficient estimator is a sufficient statistic. 
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information, about the parameter, that is included in the data. See Appendix 5.B for a 
mathematical definition of the sufficient statistic. 
 
(5) The FIM is considered as a quantification of the maximum available or existing 
information about the parameters included in the measurement data; see Appendix 5.C 
for the definition of information. 
 
(6) The FIM is calculated at the actual parameters’ values. Thus, it is possible to 
compute the CRLB for real situations only if the actual states are known. However, the 
CRLB can be used to assess estimators in simulation studies where the true values of 
the state parameters are known. 
 
5.1.3.2 Derivation of the CRLB for MT Location Estimation 
 
Substituting Equation (5.25) into Equation (5.35), we obtain the FIM as 
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Where 
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The CRLB is the inverse of the FIM or 
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Assuming errors are i.i.d. (independent and identically distributed); the covariance 
matrix  can be written as eC

 
            (5.49) I2 ⋅= σeC

 
Inserting Expression (5.49) into Expression (5.45) we get 
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Thus, Equations (5.44) and (5.48) are rewritten respectively as 
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Recalling Equations (5.6) and (5.7),  is expressed as )(sPi
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Inserting (5.53) into Equations (5.46) and (5.47), we get7

 

                                                 
7 See Appendix 5.D for a detailed derivation. 
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Assuming  where  is the variance of the location estimator error, 

we finally get 
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5.1.4 Other Bounds 
 
The Cramér-Rao bound will not be tight if an efficient estimator does not exist. In such 
situations, the variance of the MVU estimator will be larger than the CRB. Therefore, it 
is interesting to investigate techniques that may tighten the CRLB. A natural approach 
would be to further analyze the situation using higher-order derivatives8 of the 
likelihood function, assuming that they exist. This improvement can be obtained by the 
Bhattacharyya bound [Bha1946-48], [Tre1966], which do better lower bounds than the 
Cramér-Rao inequality. Bhattacharyya bound is straightforward but computationally 
tedious [Tre1968]. 
 
Another alternative to the CRB is the aforementioned Barankin bound [Bar1949]. It has 
two major advantages over the CRB. It does not require the probability density function 
to be continuous or to be differentiable everywhere, and it provides the greatest lower 
bound. However, the Barankin bound is obtained by maximization over a function and 
the approach for finding this maximum is usually not straightforward [Tre1968]. 
 
 
 
 
 

                                                 
8 The CRB only makes use of the first-order derivative of the likelihood function. 
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5.2 Posterior Cramér-Rao Bound 
 
The position tracking algorithm is a nonlinear recursive filter. In order to asses its 
performance we have to compute the FIM recursively. The resulting lower bound is 
known as the posterior9 Cramér-Rao lower bound (PCRLB) [Tre1968], [Tic1998], 
[Sim2001], [Ber2001]. Unlike the CRLB for the deterministic (non-random or constant) 
parameters10 introduced in the previous section, the estimator is not required to be 
unbiased11 in order to compute the PCRLB. The only requirement is that both sides of 
the Cramér-Rao inequality must exist. Also it is supposed that the state transition pdf 
exists and is twice differentiable w.r.t. both its arguments. Similarly, it is supposed that 
the measurement pdf exists and is twice differentiable w.r.t. the state at the desired time 
index. 
 
Pre-1989 attempts to formulate the CRLB for continuous- and discrete-time nonlinear 
filtering is presented in [Ker1989]. The modern discrete-time nonlinear filtering key 
reference for the recursive calculation of FIM is [Tic1998]. The recursive computations 
of the PCRLB for the discrete-time nonlinear prediction and smoothing are derived in 
[Sim2001]. 
 
Theorem 5.2 (Posterior Cramér-Rao lower bound) 
The posterior Cramér-Rao lower bound is the inverse of the recursively computed 
Fisher information matrix. The recursive computation is given as 
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Where  is the Jacobian matrix of the state transition function  evaluated at the 

true values of the state ,  is the Jacobian matrix of the measurement function 

 evaluated also at the true values of the state ,  is the covariance matrix of 

the process noise, and 

tF )( tsf

ts 1+tH

)( 1+tsh 1+ts Q

R  is the covariance matrix of the measurement error. Note that 
the expectation  is taken over the whole number of Monte Carlo trials. ][⋅E
 

                                                 
9 Also called Bayesian CRLB, global CRLB, or Van Trees bound. 
10 Can also be termed as parametric CRLB. 
11 The PCRLB also holds for estimators of unknown bias provided that the prior pdf tends to zero at 
infinity. 
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Proof 
See [Tic1998] for an elegant and simple derivation, [Sim1999], [Sim2001], or 
[Ber1999]. The key assumption of the derivation of the CRLB for the filtering nonlinear 
state estimation is to regard the whole state history as an unknown vector. 
 
The state transition matrix of the position tracking algorithm at time t  is defined as 
 

          (5.58) 
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Where , , , and tx ty td tφ  are the MT x, y coordinates, travelled distance, and 

orientation respectively, that build the state at time t . Therefore,  is written as tF
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The measurement function  contains only the TA measurement from the main or 

serving BS, which roughly estimates the distance between the MT and the serving BS. 
The definition of  is given as 
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Where , , , , and  are the MT x, y coordinates, serving BS x, y 

coordinates, and the TA distance measurement of the serving BS all at time 
1+tx 1+ty BS

tx 1+
BS
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Therefore,  is written as 1+tH
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The covariance matrix of the process error Q  is given as 
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Where , , , and  are the error variances of the MT x, y, and total 

translation, and orientation respectively. Note that . 
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The measurement noise R  is calculated as 
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Where 277≈TAD
σ  m assuming a TA measurement error of 

2
1  bit. 
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APPENDICES 
 
5.A Proof of the Equivalence of Expressions (5.27) and (5.28) 
 
This appendix will prove that the right-hand side of the inequalities (5.27) and (5.28) 
are two equivalent forms of the Fisher information. 
 
We begin with considering the identity 
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The derivation of (5.64) w.r.t.  yields s
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Utilizing the identity (5.38), Expression (5.65) can be rewritten as 
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Deriving (5.66) w.r.t.  yields s
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This completes the proof. That is, the Fisher information expression with the second 
partial derivative of the log-likelihood function is equivalent to the Fisher information 
expression with the square of the first partial derivative. 
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5.B Sufficient Statistic 
 
Definition 5.5 (Sufficient Statistic) 
A statistic  is sufficient for  precisely if the conditional probability distribution 
of the data O , given the statistic , is independent of the parameter . This is 
expressed as 

)(OT s
)(OT s
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Or in concise form as 
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5.C Definition of Information 
 
The two most popular definitions of information are Fisher information (FI) and 
Kullback-Leibler information (KLI) [Sch1995]. Fisher information is a measure of how 
much information, about a parameter in a parametric family, is included in a data set 
assuming some smoothness conditions. 
 
Kullback-Leibler information measures in the sense of likelihood how far apart two 
distributions are. In other words, if a measurement was generated from one distribution, 
the KLI tells how likely that it was not produced by the other distribution. KLI does not 
need any smoothness conditions on the densities. Furthermore, it is not affected by 
parameterization changes and it can be used even if the considered distributions are not 
all members of a parametric family. In general, KLI is not a metric as well as the 
Kullback-Leibler divergence which fails the triangle inequality. 
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5.D Derivation of Expressions (5.54) and (5.55) 
 
Considering Equation (5.53), Expression (5.46) is rewritten as 
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Recall that 
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Applying the rule in (5.71) to (5.70), we get 
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Substituting (5.74) and (5.75) into (5.72) yields (5.54). Expression (5.55) can be 
analogously obtained by partial derivation of Equation (5.53) w.r.t. y . 



 
 
 
 
 
Chapter 6 
 
Performance Evaluation 
 
Performance evaluation of the location estimation, position tracking, and global 
localization algorithms, introduced in chapter 4, is the topic of this chapter. Section 6.1 
describes the setup of the experimental measurements conducted. Positioning accuracy 
of the location estimation algorithm in terms of the root square error (RSE), and the 
maximum achievable accuracy as suggested by the CRLB, explained in section 5.1, for 
mapping resolutions of 5 m up to 50 m in 5 m steps are discussed in section 6.2. Section 
6.3 presents the positioning accuracy of the position tracking algorithm in terms of 
reliability or success rate and RSE, and the maximum achievable accuracy as proposed 
by the PCRLB, described in section 5.2, for the 5 m database resolution. Performance 
evaluation of the global localization algorithm in terms of reliability for a database 
resolution of 5 m is given in section 6.4. 

 
6.1 Experimental Setup 
 
Measurements have been carried out in an E-Plus GSM 1800 MHz network by a 
pedestrian along a route of about 1940 m long in a 9 km2 semi-urban environment in 
Hannover, Germany, see Figure 6.1. There were six BSs, each with three sectors, and 
four indoor antennas in the test area. RxLev measurements of the serving BSs and up to 
6 neighbouring stations along with GPS position fixes for ground truth have been 
logged into a file for later offline evaluation. Furthermore, the GPS positions have been 
used to generate IMU pseudo measurements to simulate real ones in order to investigate 
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the feasibility of real IMU employment. Experimental results are based on a single 
Network Measurement Report (NMR) at 172 data points made during active calls. Each 
NMR contains cell-IDs and signal strength levels of the serving BS antenna and up to 6 
neighbour BS antennas, and TA of the serving BS. Signal strength levels from the 
serving BS recorded during active calls are those of the traffic channel which undergoes 
power management. However, the position tracking and global localization algorithms 
depend only on the TA measurements that correspond to the serving BS wireless 
coverage, which can be sufficiently determined offline, taking account of power 
management effects. Thus, both algorithms are not affected by power management 
operations. For the location estimation algorithm, the network operator would need to 
keep prediction information for all possible ranges of the power management scheme in 
order to avoid the decrease in accuracy performance. 
 
 

 
 

Figure 6.1: Path of the GSM measurements generated by Google Earth. 
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6.2 Location Estimation Results 
 
6.2.1 Positioning Accuracy 
 
The positioning accuracy of the location estimation algorithm in terms of the RSE has 
been investigated for the three presented point estimators and using different mapping 
resolutions. Figures 6.2-6.4 show the mean, 67th percentile, and 95th percentile 
positioning error respectively, of the different point estimators with varying world 
model resolution. 
 
It can be seen that WAE and TAE always outperform the MAP estimator. This is 
logical as both WAE and TAE consider more location candidates of the posterior belief 
and not only one candidate as the MAP estimator does. Because in the context of 
mobile terminal positioning using RxLev mapping, multi-modal posterior belief 
distributions are generated; MAP estimation will choose only one peak of the posteriors 
which is not a suitable estimation decision. On the contrary, WAE and TAE consider 
more than the one peak and thus can better represent the multi-modal property of the 
posterior distributions. 
 
Figure 6.3 also shows that TAE outperforms WAE at the 67th percentile positioning 
error for all mapping resolution. This might be due to the fact that WAE represents the 
whole posterior belief distribution, while TAE considers only the upper areas of the 
posteriors, i.e., location candidates of higher weight. In Figure 6.2 we can see that the 
TAE mean positioning error outperforms that of WAE only up to the resolution of 25 
m. For the 30 m and 35 m resolutions both TAE and WAE perform almost the same. 
Starting from the 40 m resolution, the TAE further slightly outperforms the WAE. 
However, this does not imply the superiority of TAE for all cases. In Figure 6.4 at the 
95th percentile positioning error, the TAE is slightly better than the WAE up to the 10 m 
resolution. From the 15 m resolution the WAE starts to perform obviously better than 
the TAE. 
 
The explanation is that for lower mapping resolution, considering only upper areas of 
the posterior belief distributions to calculate a point estimate, as the TAE, will not 
correctly keep the information represented by the posterior distributions, and thus 
considering the whole distribution area, as the WAE, is more representative. 
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In Figures 6.2, 6.3, and 6.4, TAE was calculated by averaging the best 10% weighted 
location candidates, i.e.  in Equation (4.21). The explanation in the previous 
paragraph can be confirmed if we look at the results obtained when k  is increased up to 

. 

nk ∗= 1.0

n∗9.0
 
Figures 6.5 and 6.6 show that increasing the number of location candidates to average 
( - ) for TAE with decreasing mapping resolution enhances the 
performance of TAE at the mean and 67

nk ∗= 2.0 n∗5.0
th percentile errors and always outperforms the 

WAE. We can notice the same tendency in Figure 6.7. However, k  had to be over 
 in order to outperform the WAE at the 95n∗2.0 th percentile positioning error with 

decreasing mapping resolution. 
 
In Figure 6.8 we can see that for lower resolutions, increasing k  over  does not 
enhance the TAE mean positioning error anymore. TAE will even perform worse than 
WAE for  over . Also at 67

n∗7.0

k n∗8.0 th percentile positioning error in Figure 6.9 no TAE 
accuracy enhancement was achieved by increasing k . However, at the 95th percentile in 
Figure 6.10 TAE performed better till  reached k n∗7.0 . 
 
From the previous discussion we can conclude that TAE performs better with lower 
resolution mapping, i.e., up to 15 m, when  is increased up to k n∗5.0 . 
 
We can also generally notice that for all point estimation methods, there is no 
significant decrease in the positioning accuracy with decreasing mapping resolution. 
Therefore, it was interesting to calculate how the run time of the location estimation 
algorithm changes with varying mapping resolution. Figure 6.11 depicts the average 
computation time needed for a single iteration on a standard PC with 2.2 GHz 
processor. At the 5 m resolution the execution time was only 23 msec. Computation 
time then drops down exponentially to under 3 msec as the mapping resolution 
decreases. However, execution time is linearly proportional to the number of location 
candidates. 
 
These results can even suggest providing mobile-based implementation for the location 
estimation algorithm, which will supply customers with position information for low 
accuracy applications at very low costs. World models can initially be installed in the 
mobile terminals and updated as needed. 
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Figure 6.2: Mean positioning error of the location estimation algorithm at different mapping 

resolutions. 
 
 

 
Figure 6.3: 67th percentile positioning error of the location estimation algorithm at different 

mapping resolutions. 



6 Performance Evaluation 84 

 
Figure 6.4: 95th percentile positioning error of the location estimation algorithm at different 

mapping resolutions. 
 
 

 
Figure 6.5: Mean positioning error of the location estimation algorithm using WAE and TAE, 

( nnk ∗−∗= 5.01.0 ). 
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Figure 6.6: 67th percentile positioning error of the location estimation algorithm using WAE 

and TAE, ( nnk ∗−∗= 5.01.0 ). 
 
 

 
Figure 6.7: 95th percentile positioning error of the location estimation algorithm using WAE 

and TAE, ( nnk ∗−∗= 5.01.0 ). 
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Figure 6.8: Mean positioning error of the location estimation algorithm using WAE and TAE, 

( nnk ∗−∗= 9.06.0 ). 
 
 

 
Figure 6.9: 67th percentile positioning error of the location estimation algorithm using WAE 

and TAE, ( nnk ∗−∗= 9.06.0 ). 
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Figure 6.10: 95th percentile positioning error of the location estimation algorithm using WAE 

and TAE, ( nnk ∗−∗= 9.06.0 ). 
 
 

 
Figure 6.11: The average execution time needed for a single iteration of the location estimation 

algorithm using different mapping resolutions on a standard PC with 2.2 GHz processor. 
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6.2.2 CRLB 
 
The CRLB depends mainly on the following factors [Wei2003], [Zhu2006]: 
 
(1) BS geometry and the number of involved BSs. Ill-conditioned BS-MT layouts, e.g., 
insufficient number of BSs, and colinearity or coplanarity conditions [Qi2005] may 
cause the CRLB to suggest in some situations that the positioning error variance is 
infinite. Ideal BS configurations, e.g., all BSs are evenly distributed, are usually 
assumed when calculating the CRLB in simulation-based scenarios [Wei2003], 
[Zhu2006]. 
 
(2) BS separation distance and cell size. Increasing separation distances and cell sizes 
contribute to the generation of less accurate position estimates. Thus, FCC requirements 
could not always be fulfilled. 
 
(3) Variance of the measurement error. Large variance leads to lower positioning 
accuracy. 
 
(4) Number of measurement reports. Using more measurement reports in a single 
position estimation increases the accuracy. However, after exceeding a certain number 
of measurement reports, e.g., 10 reports, no noticeable improvement in the positioning 
accuracy could be achieved [Zhu2006]. Note that in real life using many measurement 
reports for position estimation is valid only for the stationary case. For moving MTs, 
generally one measurement report is available at each position. 
 
(5) Measurement correlation. Correlated measurements reduce the amount of 
information included in all measurements. Usually for CRLB computation, 
measurements are assumed to be uncorrelated. 
 
(6) Path loss exponent. High values indicate higher RSS signature uniqueness leading to 
less position estimation errors. 
 
Due to the variance of measurement error assumed and the linear regression treatment 
(see section 5.1), the CRLB yields, in many cases, infinite positioning error variance 
because of the rank deficiency of the FIM. The employment of simple mapping 
functions that ignore useful information available in cellular networks which helps to 
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enhance the positioning accuracy, e.g., TA (timing advance), cell identity of sector 
antennas, also contributes to the rank deficiency problem of the FIM. Such information 
is very complex or infeasible to model. Also knowledge about cell size and coverage 
could not be easily modelled for the CRLB computation. To overcome the problem one 
should consider only situations that certainly contribute to the CRLB calculation. In 
theses situations, the maximum error variance as given by the CRLB should not exceed 
certain constraints such as maximum cell size, sector information, and range 
information included in TA measurements. Moreover, reducing the assumed variance of 
measurement error helps in avoiding rank deficiency problems when calculating the 
CRLB. 
 
Considering the above discussion, the CRLB could only be computed for 110 sample 
locations out of the total 172 data points. All computations are based on a single 
measurement report at each location sample, which is the case for moving MTs. Figure 
6.12 illustrates the computed CRLB, MLE using the original 3D DB, and MLE using 
the reconstructed COST-Hata DB. It can be seen that the Cramér-Rao inequality holds 
except at lower cumulative distribution function (CDF) values (under 23% of all 
cases)1. The CRLB suggests that the 67th and 95th percentile positioning errors can not 
be better than 183 and 480 m respectively. Figure 6.12 also shows that the COST-Hata 
DB MLE performs slightly better than the 3D DB MLE at CDF values between 23% 
and 83%. Otherwise both achieve almost similar accuracy, which implies that the 
assumed empirical formula adequately characterizes the underlying wireless 
environment. The 67th and 95th percentile positioning errors of both MLEs are 292, 671 
m, and 359, 667 m respectively. 
 
Estimators that achieve or reach the CRLB are often referred to as efficient estimators. 
If an efficient estimator exists it will be a MLE. Suboptimal estimators that stay in the 
vicinity of the CRLB imply that these estimators are performing quite well. They can be 
called subefficient estimators. Staying away from the CRLB does not necessarily imply 
that the estimator under investigation is weak, because for the underlying estimation 
problem, an efficient or a subefficient estimator might not exist at all [Tre1968]. 
 
If the performance of an estimator falls below the CRLB, then such an estimator is 
referred to as superefficient estimator [Sto1996] w.r.t. the MLE,. The superefficiency 
stems from the fact that such estimators have a strictly lower asymptotic variance and 

                                                 
1 See the remark at the end of section 4.3.1. 
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therefore are statistically more efficient than efficient and subefficient estimators. 
Superefficient estimators are naturally biased estimators. Statistics provides two 
different implications for the expression bias. The bad implication refers to some 
undesired characteristic, and the good one refers to providing more useful and closer to 
the truth results, which could not be obtained while insisting on being unbiased. 
 
 

 
Figure 6.12: Positioning performance comparison of the Cramér-Rao lower bound (CRLB) and 

the maximum likelihood estimator (MLE) using both the original 3D and the reconstructed 
COST-Hata databases. 

 
 
In Figure 6.13 we can see that both the WAE and TAE have similar performance. They 
perform clearly better than the MLE due to their bias that reduced the loss of 
information contained in the measurements. The WAE and the TAE perform better than 
the CRLB, i.e. superefficient, only at the 95th percentile positioning error. Figures 6.14 – 
6.16 summarize the comparative performance of the CRLB, MLE, WAE, and TAE of 
the mean, 67%, and 95% positioning error respectively for mapping resolutions of 5 m 
up to 50 m. The superefficiency of WAE and TAE can be seen in the majority of cases 
of the mean positioning error of Figure 6.14 and in all cases of the 95th percentile 
positioning error in Figure 6.16. However, none of them could reach below the CRLB at 
the 67th percentile positioning error as seen in Figure 6.15. It is also shown in Figures 
6.14 – 6.16 that the CRLB is almost the same irrespective of the mapping resolution, 
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which means that no enhancement in the positioning accuracy could be obtained by 
varying the mapping resolution in the range between 5 m and 50 m. Also the 
performance of the MLE is always far away from the computed CRLB. 
 
 

 
Figure 6.13: Positioning performance comparison of the Cramér-Rao lower bound (CRLB), the 
maximum likelihood estimator (MLE), the weighted average estimator (WAE), and the trimmed 

average estimator (TAE) using the reconstructed COST-Hata database. 
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Figure 6.14: Mean positioning error of the Cramér-Rao lower bound (CRLB), the maximum 
likelihood estimator (MLE), the weighted average estimator (WAE), and the trimmed average 

estimator (TAE) using the reconstructed COST-Hata database at different mapping resolutions. 
 
 

 
Figure 6.15: 67th percentile positioning errors of the Cramér-Rao lower bound (CRLB), the 

maximum likelihood estimator (MLE), the weighted average estimator (WAE), and the trimmed 
average estimator (TAE), using the reconstructed COST-Hata database at different mapping 

resolutions. 
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Figure 6.16: 95th percentile positioning errors of the Cramér-Rao lower bound (CRLB), the 

maximum likelihood estimator (MLE), the weighted average estimator (WAE), and the trimmed 
average estimator (TAE), using the reconstructed COST-Hata database at different mapping 

resolutions. 
 

 
6.3 Position Tracking Results 
 
6.3.1 Positioning Accuracy 
 
Within position tracking experiments the initial location of the MT is known. We have 
investigated the performance of the tracking algorithm by varying the standard 
deviation of the translation measurement error ( transσ ) from 1% to 10% of the 

performed translation and the standard deviation of orientation measurement error 
( orientσ ) between 1° and 6°. The performance is evaluated in terms of reliability or 

success rate and the RSE in meters. We consider the MT position is reliably or 
successfully tracked if the final position estimation error over the whole experiment 
route of 1940 m is not greater than 50 m. All experiments have been repeated 100 times 
in order to get reasonable results. It can be seen in Figure 6.17, as expected, that the 
higher the transσ  and/or the orientσ  are, the lower the reliability of the tracking algorithm 

along the test route. However, for transσ  up to 4% and orientσ  up to 2°, reliability is over 
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90% of all repeats. With orientσ  up to 2° and transσ  up to 10%, slightly less than 70% of 

the cases are successfully tracked. When orientσ  is increased up to 5°, reliability is at 

least about 60% of all repeats even with the worst case of transσ . For orientσ  equals 6°, 

the reliability drops below 60% as transσ  is over 4%. Note that almost all algorithm 

failures are because of the underlying non-smoothed world model (maps). These 
utilized maps contain many location gaps and discontinuities that prohibit successful 
tracking. 
 
Figure 6.18 shows that the mean positioning error for the different cases is between 15 
m and 20 m. This is accurate enough for most positioning applications and confirms the 
suitability of IMU employment for reliable position tracking. The 67th percentile 
positioning error is always less than 20 m for all cases as illustrated in Figure 6.19. 
Figure 6.20 depicts the 95th percentile position tracking error which is almost always 
between 52 m and 56 m and less than 62 m in the worst cases. 
 
 

 
Figure 6.17: Reliability of position tracking with varying standard deviation (SD) of IMU 

translation and orientation. 
 
 



6.3 Position Tracking Results 95

 
Figure 6.18: Mean position tracking error. 

 
 

 
Figure 6.19: 67th percentile position tracking error. 
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Figure 6.20: 95th percentile position tracking error. 

 
 
6.3.2 PCRLB 
 
The posterior Cramér-Rao lower bound (PCRLB) has been computed for all cases of 

transσ  and orientσ . The mean positioning error suggested by the PCRLB illustrated in 

Figure 6.21 is always less than 10 m for all values of transσ  and orientσ  up to 4°. For 

values of orientσ  greater than 4°, the PCRLB is always less than 12 m. The mean 

positioning error of the position tracking algorithm is always in the vicinity of the 
PCRLB and is never more than 10 m away. Similar behaviour can be seen for the 67th 
and 95th percentile positioning errors depicted in Figure 6.22 and Figure 6.23 
respectively. The 67th percentile positioning error of the PCRLB is almost always less 
than 8 m, and the 67th percentile positioning error of the position tracking algorithm 
stays in the vicinity of the PCRLB and is always less than 20 m. For the 95th percentile 
positioning error, the PCRLB is always less than 20 m and the accuracy of the position 
tracking algorithm is almost always less than 60 m. The similar performance of the 
PCRLB in all cases is due to the 5 m mapping resolution, which damps the differences 
of the produced positioning errors within the ranges assumed for transσ  and orientσ . 
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Figure 6.21: Mean positioning errors of the posterior Cramér-Rao lower bound (PCRLB) and 

the position tracking algorithm. 
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Figure 6.22: 67th percentile positioning errors of the posterior Cramér-Rao lower bound 

(PCRLB) and the position tracking algorithm. 
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Figure 6.23: 95th percentile positioning errors of the posterior Cramér-Rao lower bound 

(PCRLB) and the position tracking algorithm. 
 

 
6.4 Global Localization Results 
 
In the global localization experiments, the reliability for the different values of transσ  

and orientσ  has been investigated. Global localization is considered reliable, i.e., 

successful, if the MT position estimation error just before switching to the position 
tracking mode (line 30 in TABLE 4.5) is not greater than 50 m in order to allow reliable 
position tracking as well. As shown in Figure 6.24, the global localization reliability is 
over 80% and 65% for orientσ  up to 3° and 6° respectively. The effect of transσ  on the 

results is almost not significant, because of the 5 m map resolution that makes the 
update step insensitive to the range of translation errors assumed. Moreover, there is a 
slight tendency to increase the reliability of global localization with increasing transσ  

especially when orientσ  also increases, which seams counter intuitive. However, the fact 
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is that large errors caused by high orientσ  values are compensated by increasing transσ  

and the given map resolution that prevents quick deviation from the true path. As was 
the case with position tracking, the non-smoothness or location discontinuities of the 
utilized maps played a significant role in reducing the success rate of the global 
localization algorithm. 
 
 

 
Figure 6.24: Reliability of global localization with varying standard deviation (SD) of IMU 

translation and orientation. 
 



 
 
 
 
 
Chapter 7 
 
Conclusions and Outlook 
 
This thesis laid a theoretical foundation for using diverse sources of measurements and 
information to determine the position of a mobile terminal (MT) within wireless 
environments, based on the Bayesian filtering equation. Position information about 
mobile users is a fundamental element of any location-based service (LBS). The 
developed algorithms are widely applicable approaches that are neither restricted to any 
type of environment nor are tied to any particular technology. Research results were 
published in two journal and seven conference/workshop/symposium papers. The 
following five paragraphs are summarized answers to the five research questions 
formulated in section 1.3. 
 
(1) A positioning algorithm based on the Bayesian filtering formulation has many 
attractive properties. Firstly, it is very fast and simple. Secondly, it is to a large extent 
modular. That is, when changing the problem one need only change the expressions for 
the prediction and update phases in the code. This enables the efficient employment and 
integration of further measurement data. Finally it provides a complete description of 
the posterior distribution not just a single point estimate. 
 
(2) The mobile terminal positioning problem was first classified into three types 
according to the availability of (1) prior knowledge about the accurate initial position of 
the MT and (2) motion measurement data. When both sources of information are not 
available, the problem is termed location estimation. If both sources are available, the 
problem is known as position tracking. When only motion measurement data can be 
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obtained, the problem is referred to as global localization. These algorithms can be 
implemented either as mobile-assisted network-based or as network-assisted mobile-
based to ensure security and privacy. Definitions of the last two problems, i.e. position 
tracking and global localization, follows the terminology used within the robotic 
research community. 
 
(3) The wireless world model utilized and the preprocessing steps applied to it have 
been described. The locations that are served by every cell antenna in the experimental 
area were determined and grouped in separate databases according to all possible TA 
values and different land features. 
 
(4) The measures needed in order to compute the Cramér-Rao lower bound (CRLB) for 
the location estimation algorithm have been discussed. The key approach was to 
parameterize the RSS-location mapping function by reconstructing the fingerprinting 
database using an empirical path loss formula that sufficiently characterizes the wireless 
propagation environment of the test area. Thus, the RSS-location mapping function 
became continuous and differentiable everywhere as required by the Cramér-Rao bound 
calculations. 
 
(5) Experiments showed that mapping resolutions varied between 5 m to 50 m have 
almost no impact on the accuracy of the location estimation algorithm. Experimental 
results in a live GSM network deployed in a semi-urban environment showed that the 
FCC accuracy requirements for the location estimation case could not be achieved, also 
when using different mapping resolutions, except in only few cases at the 95th percentile 
positioning error, i.e. 300 m for the network-based solution. This has also been 
confirmed by the Cramér-Rao lower bound analysis. However, the execution time 
required for a single position calculation is pretty low. 
 
In some cases, rank deficiency problems of the FIM cause the CRLB to suggest infinite 
positioning error variance. Therefore, calculations should consider non-modelled useful 
information and a proper choice of the RSS measurement error variance. 
Superefficiency, i.e. reaching below the CRLB, at the 95th percentile positioning error 
was observed for two biased estimators, namely the weighted average estimator (WAE) 
and the trimmed average estimator (TAE). 
 
Performance analysis of the position tracking filter showed that a reliable and accurate 
MT positioning, compared to GPS, can be obtained and maintained by incorporating 
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data from a simulated inertial measurement unit (IMU). Information obtained from an 
IMU allows further positioning with the help of suitable maps even if the contact to the 
wireless communication network is interrupted. The positioning error has always been 
in the vicinity of the posterior CRLB. 
 
The absence of any prior knowledge, i.e. total ignorance, about the initial position of the 
mobile terminal was overcome by the global localization filter. The efficiency of the 
filter has been confirmed by its good success rate (convergence property). 
 
Positioning methods within next generation mobile networks will be different from the 
classic ones, in order to utilize global navigation satellite systems, use different system 
measurements, e.g. WLAN, GSM, and UMTS, fuse IMU data which can be integrated 
in user terminals, and benefit from further sources of information. However, reliable 
positioning is only a single element of any successful LBS. Other elements that have to 
be considered are not always technical, but also social and ethical ones which may 
sometimes prove to be more challenging. 
 
A modern positioning system has to prove a seamless behaviour in, e.g. outdoor/indoor 
transitions, and to have mechanisms for early detection of faults and failures in order to 
easily counteract and handle them. This can be partially achieved by an integrated IMU 
combined with a suitable map. Also a vision sensor can still provide and extract 
valuable information. A significant landmark offers so much more information than just 
the relative position to the MT. It gives strong evidence about the location. A speech 
input/output system can increase the interaction with the positioning algorithm. This 
speech system could decrease the time required to input instructions or useful 
restrictions. Thus, increasing the accuracy and decreasing the time needed to output a 
location estimate. 
 
An objective performance comparison of different positioning algorithms and systems 
requires a standardized test environment (or benchmark), which is still not existed. It is 
only by building and testing real world systems that make new problems and issues 
arise, which in turn require research efforts to tackle. Another important point that 
should be taken into consideration is the need for really long term experiments in as 
many different environments as possible. The length of tests should be measured in 
days and weeks and not hours. 
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Developing theoretical performance bounds, taking false measurements or missed 
detections and different environment restrictions into account, is an interesting topic 
that needs more research efforts. 
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