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SUMMARY 
 

 

Summary 
 
Vitamin A and its analogues (retinoids) regulate a broad range of physiological processes 
such as differentiation and proliferation. In contrast some retinoids are shown to be biologi-
cally inactive degradation products. All-trans-retinoic acid (at-RA) is considered as the most 
active endogenous occurring retinoid in mammalians which mediates its function via Reti-
noid acid receptors (RAR). Recently, a novel major retinoic acid metabolite was identified 
and characterised as S-4-oxo-9-cis-13,14-dihydro-RA (S-4o-9c-dh-RA). The present work 
describes the recognition of S-4o-9c-dh-RA as a biological active RA metabolite in vivo and 
in vitro investigating its potential to mimic the action of at-RA. 
Using cell based model systems, it has been demonstrated that S-4o-9c-dh-RA induce RAR-
dependent transcriptional activity from transfected luciferase reporter plasmids in different 
cell lines. S-4o-9c-dh-RA was shown to have a positive and dose-dependent effect on RARE 
(RAR responsive element) regulated genes, both from a simple 2xDR5 element, but also 
from a more complex promoter region derived from the natural retinoid target gene, RA 
receptor beta 2 (RARβ2), in P19, HC11, Hela, Hepa-1, and CV1 cells. The potential of S-4o-
9c-dh-RA was about factor 200 lower compared to at-RA. S-4o-9c-dh-RA was able to medi-
ate the transcriptional activity of RARE regulated genes via both RAR subtypes -α or -β in 
partnership with retinoid X receptor-β (RXR-β). On the other hand, S-4o-9c-dh-RA was not 
capable to activate the transcription from the RXR-element, DR1, in combination with 
RXRα or RXRβ. Using quantitative real-time PCR (qRT-PCR) it has been found out, that 
treatment of P19-cells with S-4o-9c-dh-RA induced the expression of the direct at-RA target 
gene RARβ2 endogenously. The effect was dose-dependent and increased with treatment 
time. Compared to the untreated controls, S-4o-9c-dh-RA induced the relative expression of 
RARβ2 mRNA transcripts significant (P < 0.05) already after 1 hour of treatment (2-fold at 1 
µM and 4-fold at 10 µM). After 24 hours of treatment the relative expression levels were 
significantly increased to a 3-fold induction at 1 µM and 32-fold induction at 10 µM, respec-
tively. Compared to at-RA, S-4o-9c-dh-RA was 200-fold less active at inducing RARβ2 gene 
induction. 
Mechanistically, S-4o-9c-dh-RA induced changes in the protein conformation of RARα and -
β in the same manner as at-RA. This effect was observed in digestion experiments of la-
belled RA receptors incubated with the new metabolite. S-4o-9c-dh-RA provoked the resis-
tance of receptor fragments to Trypsin-proteolysis, resulting in accumulation of a 30-kDa 
resistant proteolytic fragment. The proved effect is a direct result of a ligand binding reac-
tion. Taken together, the data from the different in vitro and biochemical experiments 
strongly suggests that the new RA-metabolite is a novel endogenous ligand for the RAR 
subtypes -α and -β, thus can regulate gene transcription in vitro.  
S-4o-9c-dh-RA causes morphological effects in the developing chick wing and hence has a 
biological activity also in vivo. S-4o-9c-dh-RA induced digit pattern duplications with addi-
tional digits in a dose-dependent fashion after local application to the wing bud in form of 
beads soaked in a solution containing the retinoid. Wing patterns with additional digit 2 be-
came most prevalent at soaking concentrations of 0.2 and 0.5 mg/ml S-4o-9c-dh-RA, 
whereas patterns with additional digit 3 and 4 were seen at soaking concentrations equal or 
greater that 1 mg/ml. Using qRT-PCR analysis, it was shown that S-4o-9c-dh-RA can control 
the expression of RA-target genes in the limb buds. S-4o-9c-dh-RA induced the expression 
of genes which are involved in limb morphogenesis (Sonic hedgehog shh; Homeobox gene-
8, hoxb8; and Bone morphogenetic protein-2, bmp2), as well as direct at-RA regulated genes 
(RARβ2; Cytochrome P450, Cyp26; and hoxb8) which are known to contain a evolutionary 
conserved RARE in their promoter region. This work has clearly shown that S-4o-9c-dh-RA 
is a biologically active retinoid metabolite in vitro and in vivo. 
 
Keywords: RAR-ligand, gene expression, vitamin A 



ZUSAMMENFASSUNG 
 

 

Zusammenfassung 
 
Vitamin A und dessen Derivate (Retinoide) sind an der Regulation einer Vielzahl physiolo-
gischer Prozesse beteiligt z.B. Differenzierung und Proliferation. Einige Retinoidmetaboliten 
scheinen aber inaktive Abbauprodukte zu sein. In Säugetieren gilt all-trans-Retinsäure (at-
RA) allgemein als der Metabolit mit der höchsten biologischen Aktivität. At-RA vermittelt 
seine Wirkung über Retinsäurerezeptoren (RAR). Vor einiger Zeit wurde ein neuer endogen 
vorkommender Retinsäuremetabolit in Mäusen und Ratten entdeckt, der als S-4-oxo-9-cis-
13,14-dihydro-RA (S-4o-9c-dh-RA) charakterisiert wurde. Die vorliegende Arbeit beschreibt 
die biologische Aktivität von S-4o-9c-dh-RA in vivo und in vitro durch die Anwendung un-
terschiedlicher Techniken zur Untersuchung des Potenzials von S-4o-9c-dh-RA die gleichen 
Effekte wie at-RA zu induzieren. 
Durch die Verwendung zellbasierter Modelsysteme wurde gezeigt, dass S-4o-9c-dh-RA eine 
RAR-abhängige Transkriptionsaktivität von Luziferasereporterplasmiden in verschiedenen 
Zelllinien aktiviert. S-4o-9c-dh-RA induzierte die Transkription von Luziferase-gekoppelten 
Genen in transfizierten P19, HC11, Hela, Hepa-1 und CV1 Zellen. Die Gene wurden durch 
regulatorische RAR-Sequenzen (RAR responsive Elemente, RAREs) gesteuert. Die Aktivität 
von S-4o-9c-dh-RA in diesen Modelsystemen war verglichen mit at-RA um den Faktor 200 
geringer. S-4o-9c-dh-RA konnte die transkriptionale Aktivität von RARE regulierten Genen 
durch zwei RAR subtypen (-α oder -β) in Verbindung mit dem Retinoid X Rezeptor-β 
(RXR-β) regulieren. S-4o-9c-dh-RA zeigte keine transkriptionelle Aktivität bei RXRE- 
(RXR-responsives Element, DR1) regulierten Genen in Kombination mit RXRα- oder 
RXRβ. S-4o-9c-dh-RA induzierte die endogene Expression des at-RA-Zielgenes RARβ2 in 
P19 Zellen. Die Expression war bereits nach 1 Stunde Behandlung signifikant (P < 0.05) 
induziert (2-fach bei 1 µM bzw. 4-fach bei 10 µM) gegenüber der unbehandelten Kontrolle. 
Die relativen Expressionsraten (RER) stiegen nach 24 Stunden Behandlung auf bis zu 32-
fache Induktion bei 10 µM bzw. 3-fach bei 1 µM an. Im Vergleich zu at-RA war S-4o-9c-dh-
RA ebenfalls etwa 200-fach geringer aktiv.  
S-4o-9c-dh-RA induzierte allosterische Konformationsänderungen an RARα und -β-
Proteinen in der gleichen Weise wie at-RA. Dieser Effekt wurde in proteolytischen Ver-
dauungsexperimenten festgestellt, wo markierte RAR Proteine mit S-4o-9c-dh-RA inkubiert 
und anschließend in Proteolysereaktionen mittels Trypsin verdaut wurden. S-4o-9c-dh-RA 
induzierte die Resistenz eines 30-kDa Fragmentes, welches in unbehandelten Kontrollproben 
nicht detektiert werden konnte. Der nachgewiesene Effekt ist die direkte Folge einer Ligan-
denbindungsreaktion. Die Daten der verschiedenen in vitro und biochemischen Experimente 
zeigen, dass S-4o-9c-dh-RA ein neuer endogener Ligand für die RAR-Subtypen -α und -β ist 
und dadurch die Transkription von Genen regulieren kann.  
Der neue Metabolit zeigte auch in vivo eine biologische Aktivität. Ionenaustauschkügelchen 
wurden in einer Lösung mit S-4o-9c-dh-RA getränkt und in anteriore Regionen sich entwi-
ckelnder Hühnchenflügel appliziert. Dort induzierte S-4o-9c-dh-RA dosisabhängig die Dup-
likation des Fingerstrahlenmusters. Flügelmuster mit einem zusätzlichen Finger 2 (Muster 
2234, von anterior nach posterior) wurden bei Konzentrationen von 0,2 und 0,5 mg/ml Trän-
kungslösung festgestellt, während Muster mit einem zusätzlichen Finger 3 bzw. 4 (32234 
bzw. 432234) bei Konzentrationen ab 1 mg/ml vorherrschten. Mittels qRT-PCR wurde fest-
gestellt, dass S-4o-9c-dh-RA die Expression von Genen kontrolliert, die zum einen an der 
Flügelknospenmorphogenese beteiligt sind (Sonic hedgehog, shh; Homeobox Gen-8, hoxb8; 
Bone morphogenetic protein-2, bmp2) und zum anderen direkte at-RA Zielgene sind, die ein 
RARE in ihrer Promotorregion beinhalten (RARβ2; Cytochrome P450, Cyp26; Hoxb8). Die 
vorliegende Arbeit hat eindeutig gezeigt, dass S-4o-9c-dh-RA in vitro und in vivo ein biolo-
gisch aktiver Retinoidmetabolit ist. 
 
Keywords: RAR-ligand, Genexpression, Vitamin A 
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1. Introduction 

1.1. Vitamin A and retinoids 

1.1.1. Nomenclature and structure 
 
Vitamin A (CAS-Nr. 68-26-8) is a generic term that summarises all lipophilic com-

pounds which possess the same biological activity of all-trans- retinol and its esters 

(BLOMHOFF et al., 1992; SPORN & ROBERTS, 1985), whereas the term retinoids 

describes the class of natural and synthetic compounds that are chemically related to 

all-trans-retinol but are not necessarily active in biological systems. The parent com-

pound all-trans-retinol is an unsaturated isoprenoid alcohol with five conjugated all-

trans double bounds (fig.1.1) and the molecular weight of 286. The most important 

naturally occurring retinoids include all-trans-retinol, all-trans-retinal, all-trans-

retinoic acid (at-RA) and retinyl esters (conjugates of all-trans-retinol with fatty ac-

ids, such as palmitine-, stearine-, and linolic acid). In the following the abbreviation 

RA refers to the term retinoic acid. The predominant retinoid in the tissue of most 

animals is retinyl palmitate beside retinyl oleate and retinyl stearate. The structure of 

retinoids can be generally classified into a hydrophobic β-inone ring, a conjugated 

tetraen side-chain and a polar end group. Most of these metabolites occur in the all-

trans configuration, although several stereo-isomers of RA, such as 9-cis-RA, 11-cis-

RA, 13-cis-RA and 9,13-di-cis-RA exist beside the all-trans-form. The 11-cis alde-

hyde form, 11-cis-retinal, is present in retina of eyes.  

 

Retinol and its derivatives are highly unstable compounds which isomerise easily in 

presence of oxygen, acid and light. All natural vitamin A is ultimately derived from 

the provitamin A carotenoids which belongs to a class of compounds that generally 

contain eight isoprenoid units and is synthesised by plant and microorganisms. The 

most abundant provitamin A carotenoid is β-carotene which has the greatest potential 

in vitamin A activity. 
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Fig.1.1: Molecular structures of important retinoids. 
 

A) All-trans-retinol (most abundant natural occuring retinoid), B) all-trans-retinal (intermedi-
ate in the „activation“ of all-trans-retinol to at-RA & active principle in the visual cycle), C) all-
trans-retinyl palmitate (most abundant storage form of retinol), D) b-carotene (provitamin A, 
precursor of retinol); E-I) Main RA isomers, E) at-RA, F) 13-cis-RA, G) 9-cis-RA, H) 9,13-di-
cis-RA, I) 4-oxo-9-cis-13,14-dihydro-RA; J-N) Most important polar metabolites, J) 4-OH-all-
trans-RA, K) 4-oxo-all-trans-RA, L) all-trans-5,6-epoxy-RA, M) 4-oxo-13-cis-RA, N) 18-OH-
all-trans-RA; O) all-trans-3,4-didehydro-RA (active retinoid principle in chick limb buds). 
 

1.1.2. Absorption and transport 
 
The main dietary sources of Vitamin A are provitamin A carotenoids from plant 

sources and preformed vitamin A, mostly retinyl esters, from animal tissues. Retinyl 

esters are enzymatically hydrolised to retinol in the intestinal lumen prior to absorp-

tion by enterocytes solubilised in mixed micelles (ONG, 1993) (schematic illustra-

tion of major retinoid pathways see fig.1.2). These reactions are catabolised by leci-

thin:retinol acyltransferase (LRAT) and acyl-CoA:retinol acyltransferase (ARAT) 

(HELGERUD et al., 1982; HELGERUD et al., 1983; MACDONALD & ONG, 

1988; ONG et al., 1987). Carotenoids are absorbed unchanged by a passive mecha-

nism (ONG, 1993). Within the enterocytes, provitamin A carotenoids are partially 
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converted to retinol which is esterified to long-chain fatty acids. Most of the retinyl 

esters are packaged in nascent chylomicrons (HUANG & GOODMAN, 1965). Chy-

lomicrons are released into lymph and subsequently blood stream where they are 

converted to chylomicron remnants. Approximately 75% of the chylomicron retinoid 

is finally taken up as part of the chylomicron remnants by the liver (BLOMHOFF et 

al., 1991). The liver is the major storage site for vitamin A containing 50-80% of the 

total body retinol stores in mammals (BLOMHOFF et al., 1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.2: Major pathways for retinoids in the body.  
See text for details. Abbreviations (see also abbreviation list): CM, chylomicrons; CM-RE, 
chylomicron remnants; RBP, retinol binding protein; RE, retinyl esters; ROL, retinol; TTR, 
transthyretin. 
 

Within the hepatocytes retinol is re-esterified with long-chain fatty acids catabolised 

by LRAT and ARAT (MACDONALD & ONG, 1988; ROSS, 1982). Vitamin A is 

stored in form of retinyl esters in hepatocytes, primarily in stellate cells (ROSS, 

1982). Although stellate, or also called Ito cells, comprise about 7% of the total 
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number of cells in livers, which is only about 1% of tissue by mass, these cells con-

tain 90-95% of total retinoids present in livers (BLANER et al., 1985; BLOMHOFF 

et al., 1985). Prior to the mobilisation, stored retinyl esters are hydrolysed by car-

boxyl esterases to retinol which is secreted from hepatocytes bound to serum retinol 

binding protein (RBP) (reviewed in HARRISON, 2000). The transport form of the 

hydrophobic retinol molecule in the hydrophil bloodstream is a complex of RBP-

bound retinol and transthyrethin which transfers retinol to the extrahepatic target 

tissues and prevents a glomerular filtration in the kidneys (VAN BENNEKUM et al., 

2001). In target tissue retinol is taken up by cells where retinol can either be stored as 

retinyl ester, released back into the circulation, enter the RA synthesis pathway, or 

metabolised to catabolic forms. The exact mechanism responsible for the regulation 

of homeostasis is not fully understood.  

 

1.1.3. Metabolism 
 
Retinoic acid biosynthesis 

All-trans-retinol is the main precursor metabolite for at-RA which is the active vita-

min A metabolite in most biological systems. Bioactivation of all-trans-retinol to at-

RA is divided into two steps. First all-trans-retinol is oxidised to all-trans-retinal in a 

reversible rate-limiting step, followed by an irreversible oxidation step of all-trans-

retinal to at-RA (reviewed in BLANER et al., 1999 and BLANER & OLSON, 1994). 

The all-trans-retinol oxidation is catalysed by retinol dehydrogenases (RDH1 and 

RDH2) as well as several alcohol dehydrogenases (ADH1-4), whereas all-trans-

retinal is metabolised to RA by retinal dehydrogenases (RALDH1-4). These enzymes 

belong to several distinct families of cytosolic and membrane-bound dehydro-

genases. 

 

Retinoid binding proteins 

Retinoid binding proteins play an important role in regulation of retinoid metabolism 

(reviewed in NAPOLI, 1999a and ONG et al., 1994). Specific cellular retinoid bind-

ing proteins are widely expressed in different tissues and are associated with a wide 

range  of  functions  in the retinoid metabolism, such as protecting retinoid molecules 
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Fig.1.3: RA biosynthesis process and involved enzymes.  
Retinoid metabolising enzymes regulate the synthesis of the bioactive RA in a fine tuned 
interplay together with retinoid binding proteins. For details see text. Abbreviations (see also 
abbreviation list): CRBP, cellular retinol binding protein; CRABP, cellular RA binding protein; 
MDR, medium-chain dehydrogenase/reductase; REH, retinyl ester hydrolase; RAL, retinal; 
ROL, retinol; SDR, short-chain dehydrogenase/ reductase. 
 

from reactive cellular nucleophiles, electrophiles and oxidants, protecting cells from 

membranolytic effects, directing retinoids to specific metabolising enzymes, and as 

enhancers of transcriptional activity by delivering the retinoids to a transcription fac-

tor (NAPOLI, 1999b; NOY, 2000). Intracellular occurring RA is bound to specific 

enzymes, the cellular retinoic acid binding proteins, CRABPI and CRABPII, whereas 

the predominant intracellular fraction of retinol and retinal is bound to the cellular 

retinol binding proteins, CRPBI and CRPBII (ONG, 1994). The metabolism of RA 

bound to CRABP is about 7-times more efficient compared to free RA (REGAZZI et 

al., 1997). Every cell type has the essential enzymes and binding proteins that are 

necessary to regulate the specific need of RA for several cellular processes. 

 

Retinoic acid metabolism and catabolism 

Several metabolites of at-RA have been reported that are generated in vivo, including 

13-cis-RA, 9-cis-RA, retinoyl-glucuronide, all-trans-5,6-epoxy-RA, 4-OH-all-trans-

RA, 4-oxo-all-trans-RA, and all-trans-3,4-didehydro-RA (BLANER & OLSON, 

1994), whereas mammalian plasma and tissues additionally contains retinoids such 

as 9,11-di-cis-RA, 4-oxo-13-cis-RA (NAU & ELMAZAR, 1999) and the new me-
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tabolite 4-oxo-9-cis-13,14-dihydro-RA (SCHMIDT et al., 2003a). All-trans-3,4-

didehydro-RA does not occur in most mammalian species, however, this metabolite 

was detected in chicken (THALLER & EICHELE, 1990), especially in developing 

limb buds of embryos (SCOTT, JR. et al., 1994). Moreover, the likely precursor of 

all-trans-3,4-didehydro-retinol has also been detected in chick embryos (THALLER 

& EICHELE, 1990). Information about the formation of cis-configurated RA me-

tabolites is very rare, with exception of the isomerisation of all-trans retinoids to 11-

cis-isomers catalysed by specific enzymes. The formation of the stereoisomer 9-cis-

RA in cells has not been clearly established yet. Various pathways of 9-cis-RA for-

mation have been discussed including isomerisation of at-RA, probably through non-

enzymatic processes or enzymatic oxidation of 9-cis-retinol to 9-cis-retinal and then 

to 9-cis-RA (LABRECQUE et al., 1995; MERTZ et al., 1997; ROMERT et al., 

1998; URBACH & RANDO, 1994a; URBACH & RANDO, 1994b). In several in-

vestigations the enzymes RDH, RALDH1 and RALDH2 have been shown to oxidise 

9-cis-retinol and 9-cis-retinal to form 9-cis-RA in vitro (EL AKAWI & NAPOLI, 

1994; LABRECQUE et al., 1995; MERTZ et al., 1997; PAIK et al., 2000). These 

findings were supported by the detection of 9-cis-retinol and 9-cis- retinyl esters in 

livers of mice, albeit in much lower levels compared to all-trans-retinol (PAIK et al., 

2000). PIJNAPPEL et al. (1998) reported the identification of 4-oxo-9-cis-RA as an 

in vivo retinoid metabolite in Xenopus embryos. Some other 9-cis isomers of at-RA 

were detected in mice by TZIMAS et al. (1994) after administration of 9-cis-RA. 

9,13-di-cis-RA was found as a major metabolite in plasma, whereas a number of po-

lar metabolites including β-glucuronides of 9-cis-RA and 4-oxo-9-cis-RA were also 

detected. SHIRLEY et al. (1996) reported the occurrence of 13-cis-RA, 9,13-di-cis-

RA and at-RA, as well as 4-OH-9-cis-RA, 4-oxo-9-cis-RA, and 9-cis-13,14-dihydro-

RA in a minor degree after the administration of 9-cis-RA to rats.  

 

Oxidative metabolism of retinoic acid 

After processing their physiological actions at-RA and its isomers are catabolised by 

specific enzymes and excreted. In this phase-I-metabolism polar metabolites such as 

all-trans-5,6-epoxy-RA, 4-OH-all-trans-RA, and 4-oxo-all-trans-RA are formed 
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(BLANER & OLSON, 1994). It must be pointed out that the metabolism of at-RA 

may on the one hand form catabolic metabolites in terms of protecting cells of tera-

togenic levels of at-RA, but can on the other hand also lead to biologically active 

metabolites. Although some oxidised RA metabolites have been suggested to be bio-

logically active as well (cf. chapter 1.2.7) (IDRES et al., 2002; PIJNAPPEL et al., 

1993). Oxidation is generally viewed to be the first step in the elimination pathway 

of RA in vivo.  

 

Role of cytochrome P450 system in the retinoic acid oxidation 

It is likely that members of the microsomal cytochrome P450 mono-oxygenase su-

perfamily play a key role in the oxidative inactivation pathways of RA. Several re-

search groups have confirmed that various cytochrome P450 enzymes – including 

members of the CYP1A, CYP2B, CYP2C and CYP3A families – can oxidise RA to 

polar metabolites (AHMAD et al., 2000; MARILL et al., 2000; MARTINI & 

MURRAY, 1993; ROBERTS et al., 1992). Other studies showed that the oxidative 

RA metabolism is inhibited by P450-inhibitors (PIGNATELLO et al., 2002; STOP-

PIE et al., 2000) and that acute administration of at-RA induces CYP26 expression in 

the early mouse embryos (RAY et al., 1997). Initially RA is converted by a hydroxy-

lation on the β-inone ring at the C4- or C18-position (ROBERTS & FROLIK, 1979; 

VAN WAUWE et al., 1992; WILLIAMS & NAPOLI, 1985). The liver is the princi-

ple organ for RA inactivation, because it receives the bulk of retinoids circulating in 

blood and due to a tailored machinery of retinoid-metabolising enzymes. Therefore 

the liver plays a key role in homeostasis of retinoid metabolism. MCSORLEY & 

DALY (2000) reported that CYP2C8 and CYP3A4 are the major at-RA 4-

hydroxylating cytochrome P450 enyzmes in human liver microsomes. Additionally 

MARILL et al. (2002) demonstrated that these enzymes also metabolise 9-cis- and 

13-cis-RA to 4-OH- and 4-oxo-metabolites. The CYP26 subfamily, also called 

P450RAI (retinoic acid inducible) is connected to C4-hydroxylation, too. In vitro 

studies showed that CYP26 catalysed the hydroxylation of at-RA as well as 9-cis- 

and 13-cis-RA to form 4-OH- and 4-oxo-metabolites and 18-OH-RA (ABU-ABED 

et al., 1998; FUJII et al., 1997; NADIN & MURRAY, 1996; WHITE et al., 1996). 
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CYP26 transcripts have been detected in many human tissues. Highest levels were 

found in fetal and adult liver, heart, pituitary gland, adrenal gland, placenta and re-

gions of the brain (TROFIMOVA-GRIFFIN & JUCHAU, 1998). A possible major 

role of CYP26 in embryos could be the protection of specific tissues from excess RA 

levels during development (TROFIMOVA-GRIFFIN & JUCHAU, 1998). Many 

questions about the exact role of this enzyme family in the RA metabolism and ca-

tabolism remain to be unknown. 

 

Other metabolism of retinoic acid 

Another metabolic pathway of retinoids beside the phase-I oxidative metabolism is 

the glucuronidation of the carboxyl group to form retinyl β-glucuronide (the glu-

curonide form of all-trans-retinol) and retinoyl β-glucuronide (the glucuronidated 

form of RA) (GENCHI et al., 1996; MELOCHE & BESNER, 1986; TUKEY & 

STRASSBURG, 2000; ZILE et al., 1982). 

 

1.1.4. Endogenous levels of retinoids 
 
All-trans-retinol is by far the most predominant retinoid in most tissues such as 

plasma, liver and kidney (BRINKMANN et al., 1995; NAU & ELMAZAR, 1999; 

SCHMIDT et al., 2003a). BRINKMANN et al. (1995) detected also a low proportion 

of other retinol isomers (9-cis-, 13-cis-, 9,13-di-cis-retinol) in liver samples. The en-

dogenous levels of at-RA are very low compared to all-trans-retinol. Tab.1.1 sum-

marises the levels of several RA metabolites detected in serum and liver of mice and 

humans from diverse studies. It has been shown by several researchers that the in-

crease of levels of RA and its isomers is not identical in certain tissues after vitamin 

A supplementation (ARNHOLD et al., 1996; ECKHOFF & NAU, 1990; SCHMIDT 

et al., 2002; SCHMIDT et al., 2003a). Feeding experiments with mice and vitamin A 

supplementation studies with humans revealed that the increase of at-RA levels in 

tissues such as liver and kidney was relative low (ARNHOLD et al., 1996; ECK-

HOFF & NAU, 1990; SCHMIDT et al., 2003a). In contrast, the increase of levels of 

other RA metabolites such as 13-cis- and 4-oxo-13-cis-RA was more pronounced in 

several tissues of mice and human followed by vitamin A supplementation or liver 
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consumption (ARNHOLD et al., 1996; ECKHOFF & NAU, 1990; SCHMIDT et al., 

2003a). The levels of at-RA are very stringently regulated and therefore do not fluc-

tuate that obviously, which is clearly reflected in the serum levels. Metabolites such 

as 13-cis- and 4-oxo-13-cis-RA seem to be the prominent plasma metabolites, espe-

cially in human (ECKHOFF et al., 1991; ECKHOFF & NAU, 1990; NAU, 1990). 

The endogenous occurrence of 9-cis-RA in mammals is still debated. HEYMAN et 

al. (1992) reported the occurrence of relative high 9-cis-RA levels in liver and kid-

ney of untreated wild type mice. Such high levels were not detected in any other 

study again. Other investigators reported the occurrence of 9-cis-RA and 9,13-di-cis-

RA in human plasma only after consumption of liver or vitamin A supplementation 

(ARNHOLD et al., 1996), whereas these compounds were under the detection limit 

in “normal” plasma. It was the first time that these RA metabolites were identified in 

humans. However, the plasma levels of 9-cis-RA after liver consumption decreased 

within a few hours to levels at or below the analytical detection limit of 0.2 ng/ml. It 

is still unclear, if 9-cis-RA is occuring endogenously in mammalian blood or tissue, 

including the embryo. If at all, the concentrations appear to be very low. Regarding 

to these facts the role of 9-cis-RA in retinoid signaling pathways as a putative RXR 

ligand is difficult to evaluate (NAU & ELMAZAR, 1999; WERNER & DELUCA, 

2001). 

 

1.1.5. The retinoic acid signaling pathway 
 
Molecular mechanism of action of retinoic acid 

With exception of the visual process, where retinal is the active principle, the major 

effects of retinoids are linked to RAs, whereas at-RA is viewed as the most active 

naturally occurring retinoid. The activity of at-RA on the cellular level is mediated 

through two families of nuclear receptors, the retinoic acid receptors (RARs), and the 

retinoid X receptors (RXRs) (reviewed in BASTIEN & ROCHETTE-EGLY, 2004). 
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Tab.1.1: Levels of important RA metabolites in mouse and human. 
(Mean levels are marked in bold) 

  at-RA  9-cis-
RA  

13-cis-
RA  

9,13-di-
cis-RA  

4-oxo-13-
cis-RA  

S-4o-
9c-dh-
RA  

Reference 

Human  c[ng/ml]  
Plasma Mean 3.5 - - - - - (DE LEENHEER et 

al., 1982)  Range  2.7-4.2 - - - - - 
 Mean  4.9 - - - - - (NAPOLI et al., 

1985)  Range  2.8-6.6 - - - - - 
 Mean  0.8 n.d. 1.1 n.d. 2.4 - (ARNHOLD et al., 

1996)  Cmax (a) 2.0 2.7 21.5 17.1 32.1 - 
 Mean 1.3 n.d. 1.6 n.d. 3.7 - (ECKHOFF & NAU, 

1990)  Cmax (b) 3.9 - 9.8 - 7.6 - 
Serum Mean  1.4 - 1.4 - - - (TANG & RUS-

SELL, 1990)  Range  1.1-1.9 - 1.0-2.2 - - - 

 Mean 1.4 - 1.8 - 2.4 < d.l. (SCHMIDT et al., 
2003a) 

Liver  c[ng/g]  
 Mean 15.8 0.6 1.1  2.1&0.6 (c) 10.3 (d) (SCHMIDT et al., 

2003a) 

Mouse  c[ng/ml]  
Serum Mean (e) 1.1 0.3 - - - 0.6 (SCHMIDT et al., 

2002)  Mean (f) 0.5 0.4 - - - 6.6 

  c[ng/g]  

Liver Mean (e) 5.6 - 1.2 - - 11.4 (SCHMIDT et al., 
2002)  Mean (f) 7.6 - 1.5 - - 117 

  - < d.l. - - < d.l. - (SCHMIDT et al., 
2003a) 

  - 4.0 - - - - (HEYMAN et al., 
1992) 

(a) After liver consumption 
(b) max. concentration after a diet of 833 IU vitamin A/kg bw, max. 6 h after dosing 
(c) only detected in two samples 
(d) only detected in one sample 
(e) fed with a diet of 15,000 IU vitamin A (retinyl palmitate)/kg bw 
(f)  fed with a diet of 150,000 IU vitamin A (retinyl palmitate)/kg bw 
< d.l. = under detection limit 

 

RARs and RXRs are members of the superfamily of nuclear receptors, which are 

ligand-dependent transcription factors that regulate the expression of large gene net-

works (GRONEMEYER & LAUDET, 1995; PERLMANN & EVANS, 1997). These 

receptors consist of six domains (A-F, see fig.1.4), the A/B region is responsible for 

ligand independent transactivation, the C domain containing two zinc fingers is re-

sponsible for DNA-binding, the E domain for ligand binding and ligand-dependent 

transactivation (CHAMBON, 1994; MANGELSDORF & EVANS, 1995).  
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Fig.1.4: Schematic domain structure of retinoid nuclear receptors.  
For details see text, Abbr.: DBD, DNA-binding domain; LBD, ligand binding domain. 
 

Within the retinoid receptor subfamily there are different receptor subtypes with mul-

tiple isoforms. The RAR exists in the three subtypes α, β or γ (BENBROOK et al., 

1988; GIGUERE et al., 1987; KRUST et al., 1989; PETKOVICH et al., 1987) as 

well as RXR (HAMADA et al., 1989; LEID et al., 1992; MANGELSDORF et al., 

1990; YU et al., 1991). Each subtype is encoded by a single gene. Every RAR and 

RXR subtype is expressed in a tissue and developmental specific manner, suggesting 

that each receptor subtype may have a specific role in regulating gene activity in a 

certain developmental stage of tissue (JAVIER PIEDRAFITA & PFAHL, 1999). All 

cells which have been studied so far express one or several retinoid receptors. There-

fore it is likely that retinoids are involved in cell regulatory mechanisms of every 

single cell in the organisms.  

 

At-RA binds to the ligand-binding domain (LBD) of RAR (fig.1.5A), which func-

tions as a heterodimer together with RXR (fig.1.5B). The ligand-receptor-

heterodimer complexes act as transcriptional regulators of a number of retinoid regu-

lated genes, while the DNA-binding domain (DBD) of the heterodimer-complex 

binds to specific RA responsive elements (RARE) (fig.1.5C) in the promoter region 

of target genes and thus initiates the transcription (see fig.1.5). RAREs generally 

consist of 6-base pair repeated motifs that are either a direct or invert repeats of these 

sequence (5’AGGTCA) separated by two (DR2) or five (DR5) base pairs      

(CHAMBON, 1994; MANGELSDORF & EVANS, 1995). The DR5 type is most 

frequent on RA-regulated genes, whereas the DR2 type is very rare (BALMER & 

BLOMHOFF, 2005). Gene transcriptional activation by RAR/RXR heterodimers is 

mainly activated by RAR-selective ligands (FORMAN et al., 1995). 

 

A/BA/B CC

DBD                          LBDDBD                          LBD

E/FE/FDDA/BA/B CC

DBD                          LBDDBD                          LBD

E/FE/FDD
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The RXRs can, beside being a heterodimerisation partner for the RARs, also form 

RXR/RXR-homodimers, and regulate transcription of certain genes via a retinoid X 

responsive element (RXRE), characterised by a DR1 (reviewed in BASTIEN & 

ROCHETTE-EGLY, 2004). RXRs are viewed as a “silent-partner” since they can 

also function as heterodimer partners for several other receptors of the nuclear recep-

tor superfamily. Via the mentioned pathways retinoid receptors regulate the expres-

sion of a multitude of target genes involved in development such as growth factors, 

growth factor receptors, cell adhesion molecules, intercellular matrix molecules, 

other transcription factors such as hox genes, some hormones and cytokines, as well 

as other receptors of the hormone receptor superfamily. In addition, the retinoid 

pathways themselves are affected through the control of expression of retinoid bind-

ing proteins, metabolising enzymes and autoregulation of retinoid receptors  

(CHAMBON, 1996; DOLLE et al., 1990; KASTNER et al., 1995; MORRISS-KAY 

& SOKOLOVA, 1996; NAU & ELMAZAR, 1999; SMITH et al., 1998; VAN DER 

SAAG, 1996). Regarding to this diverse receptor-mediated effects, at-RA is an im-

portant regulator of cell growth and differentiation in both embryonic development 

and adult organism (CHAMBON, 1996; COLLINS & MAO, 1999).  

 

Several researchers observed synergistic effects between RAR and RXR-selective 

ligands. Co-administration of RAR- and RXR-selective agonists to developing mice 

revealed strong synergistic responses in regard to a number of teratogenic effects 

such as spina bifida, craniofacial and urogenital malformations, whereas single ad-

ministration of RAR-specific ligands had a weaker effect and RXR ligands had no 

effect, respectively (ELMAZAR et al., 1997). Similarly, LU et al. (1997b) observed, 

that the expression of certain genes such as RARβ and Hoxb-1 was more effectively 

activated by a combination of RAR- and RXR-selective ligands in the chick wing 

bud. Taken together these results suggest that the activation of certain genes profits 

from the presence of ligand-bound RAR and ligand-bound RXR and therefore results 

in a synergistic teratogenic response. 
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Fig.1.5: Molecular mechanism of action of RA.  
A) The initial step in the retinoid regulated expression of target genes is the binding reaction 
of the ligand to the LBD of the corresponding receptor, whereas at-RA binds to RARs and 9-
cis-RA binds to both RAR or RXR. In response of the ligand binding, the receptor changes 
its allosteric conformation in the LBD, which allows the interaction with co-activators (not 
shown). B) These coactivators can activate the formation of RAR/RXR heterodimers or 
RXR/RXR homodimers. C) The ligand-receptor-dimer complex binds to the specific re-
sponse elements (RARE or RXRE, for details see text) in the promoter regions of target 
genes and activates the transcription machinery. Abbreviations are listed in the abbreviation 
list. 
 
 
1.1.6. Physiological functions 
 
Retinoids control numerous processes which are critical for reproduction and devel-

opment such as differentiation of epithelial tissues, proliferation, apoptosis and 

morphogenesis, while another major task of retinoids, apart from the gene regulatory 

pathway of retinoids, is the function of 11-cis-retinal as a chromophore in the visual 

signal transduction cascade (for reviews see NAU & BLANER, 1999 and SPORN et 

al., 1994). Effects of retinoids are extensive and comprehensive. This chapter pre-

sents only a brief overview. 
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Proliferation and differentiation of epithelial tissues 

Vitamin A is one of the critical factors regulating processes such as differentiation, 

proliferation and cell death (apoptosis). While providing a balance between those 

processes, retinoids contribute to the maintenance of tissue homeostasis in adult tis-

sues and directs normal development during embryonic morphogenesis (HARVAT 

& JETTEN, 1999). The role of retinoids in promoting proliferation, differentiation or 

apoptosis has been extensively described both in vivo (reviewed in LU et al., 1999; 

MADEN, 1999; PACKER & WOLGEMUTH, 1999 and ZILE, 1999) and in vitro 

(reviewed in AGADIR & CHOMIENNE, 1999; HARVAT & JETTEN, 1999; NA-

SON-BURCHENAL & DIMITROVSKY, 1999 and VAKIANI & BUCK, 1999). 

Proliferation processes are controlled through retinoids by modulating the action of 

negative and positive growth factors, including EGF, TGFα, TGFβ, insulin, IL1α, 

IL6, interferon γ, estrogen and vitamin D3 (for reviews see BLUTT et al., 1997; 

KOLLA et al., 1996; MATIKAINEN et al., 1996), whereas the regulation can occur 

at the level of expression of growth factors or cytokines, their corresponding recep-

tors, binding proteins or downstream genes in the signaling pathway. In leukemia 

cells retinoids provoked the inhibition of growth, proliferation and the induction of 

differentiation, as well as in both normal and malignant cells (AGADIR & 

CHOMIENNE, 1999). The regulating function of retinoids on growth and differen-

tiation is also vital for the maintenance of epithelial cell integrity in most superficial 

linings (e.g. mucous membranes) of the body (DE LUCA, 1991). Vitamin A defi-

ciency causes squamous metaplasia in epithelial tissues, primarily in mucous secre-

tory tissues, provoked by an overall increase in Keratin synthesis (DE LUCA et al., 

1985; DE LUCA, 1991). This regulating function of retinoids in epithelial cells is 

inevitable at all phases of life from conception, to growth of the embryo and mainte-

nance of the adult organism (DE LUCA, 1991).  

 

Reproduction 

Vitamin A is essential in both male and female reproduction. In male all-trans-retinol 

is required by the testis to maintain spermatogenesis, whereas in the female all-trans-

retinol is essential for oogenesis as well as for the placental and embryonic develop-
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ment to avoid fetal resorption (reviewed in ESKILD & HANSSON, 1994 and 

PACKER & WOLGEMUTH, 1999). 

 

Optic process 

11-cis-retinal has an important role in phototransduction process of visual cycle of 

vertebrates, where it functions as a light-sensitive molecule in the photoreceptor cells 

of the retina. 11-cis-retinal is a cofactor of the visual pigment Rhodopsin together 

with the protein Opsin, where it is covalently bound to. In presence of light 11-cis-

retinal isomerises and changes its configuration which results in a nerve impulse in 

the ocular system of the central nervous system (reviewed in SAARI, 1994 and 

SAARI, 1999). 

 

Immunfunction 

Retinoids are involved in interactions of immune cells and soluble factors and there-

fore act as important regulators in the immune system (HAYES et al., 1999). Both 

clinical and experimental work has shown that vitamin A deficiency is associated 

with decreased resistance to infection (SEMBA et al., 1993; WOLBACH & HOWE, 

1978). Furthermore, retinoids are associated with a functioning immune system 

while maintaining epithelial barriers which are the first defence lines of immune sys-

tems and normally counteract environmental pathogens (reviewed in ROSS & 

HÄMMERLING, 1994). 

 

Vitamin A deficiency and excess 

It is known for a long time that a correct balance of vitamin A is required for devel-

opment of the CNS, eye, face, dention, ear, limb, urogenital system, cardiovascular 

system, thyroid, thymus, vertebral column, skin, and lungs, and any disturbance of 

that balance either in excess vitamin A (COBERLY et al., 1996; LAMMER et al., 

1985; NAU, 1993; reviewed in NAU et al., 1994) or in deficiency (WILSON et al., 

1953; reviewed in ZILE, 1999 and ZILE, 2001) will result in a disturbed develop-

ment.  

 



 
16                                                                                                INTRODUCTION 

Vitamin A is required when the primitive heart and the cardiovascular system forms 

up and the hindbrain begins to specify (ZILE, 1999). The absence of sufficient vita-

min A at this critical time results in abnormalities, such as failed embryo segmenta-

tion, growth, and vascularisation, and can eventually cause early embryonic death 

(THOMPSON et al., 1969; WELLIK & DELUCA, 1995). Beside heart and CNS, 

major target tissues, which are influenced by vitamin A deficiency, include structures 

derived from these organs such as the circulatory, urogenital and respiratory system, 

and other organs which are dependent on these systems like the skull, skeleton and 

limbs (ZILE, 1999). The spectrum of congenital malformations in vitamin A defi-

cient embryos resembles that of embryos exposed to excess vitamin A (reviewed in 

HOFMANN & EICHELE, 1994; LU et al., 1999 and MADEN, 1994). 

 

Vitamin A and retinoids are classical teratogenes in various species. Retinoid treat-

ment of fetuses during early organogenesis resulted in abnormalities of central nerv-

ous and cardiovascular systems, defects of the genitourinary tract, and the palate 

(NAU et al., 1994). Limb malformations, including missing, fused and misshaped 

elements, are typically observed in the mouse following excessive systemic at-RA 

exposure at fetal stages (KOCHHAR, 1973; KWASIGROCH & KOCHHAR, 1980). 

Nearly all tested retinoids induced the same spectrum of malformations, which were 

depended on dose and developmental stage of embryos (NAU et al., 1994; NAU & 

BLANER, 1999). 

 

In adult organisms vitamin A deficiency and excess severely changes the differentia-

tion state of cells from epithelial tissues. Epithelial cell from vitamin A deficient 

adult organisms cannot differentiate normally and due to a loss of the ability to se-

crete glycoproteins they change their structure and become stratified and cornified 

(reviewed in DE LUCA et al., 1985 and DE LUCA, 1991). On the other hand, excess 

vitamin A is membranolytic and hepatotoxic in adult organisms (NAU et al., 1994). 

The intake of high vitamin A quantities, via supplementation or liver consumption, 

over a prolonged time causes a hypervitaminosis A with its characteristic appear-

ances. Chronic symptoms emerge after a daily vitamin A dose of 20.000-50.000 IU 
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over a longer period (HATHCOCK et al., 1990). An example for negative effects of 

vitamin A excess are disturbed bone development and function (FORSYTH et al., 

1989; HOUGH et al., 1988; MELLANBY, 1941). MELHUS et al. (1998) reported a 

decreased bone mineral density and an increased risk for hip fractures in humans 

already after a daily dietary vitamin A intake of 5.000 IU. 

 

Retinoids in the embryonic development 

Retinoids are critical signaling molecules for cell growth and differentiation during 

embryogenesis (for reviews see DE LUCA, 1991; GUDAS et al., 1994; GUDAS, 

1994; MENDELSOHN et al., 1992; REICHEL & JACOB, 1993; SUMMERBELL 

& MADEN, 1990; and TABIN, 1992). The effects of vitamin A deficiency in em-

bryonic development are already described (see above). The action of retinoids in 

normal and teratogenic development cannot be explained by a single mechanism 

(ROSS et al., 2000). Rather at-RA is part of a cascade of signaling molecules regu-

lating morphogenetic events within the embryo. Beginning with the first cell divi-

sion, several combined processes regulate the organisation and septation of different 

tissues, which leads to an embryo and thereafter to a fetus. These events, comprising 

the determination of axial polarity and cell differentiation, are directed by signaling 

substances, whose concentrations vary locally within the embryo. Cells are exposed 

to different concentrations of at-RA depending on their position. At-RA, in partner-

ship with its different receptors (RARs and RXRs), creates a specific gene expression 

pattern which is in the end translated into a specific phenotype with discrete struc-

tures (ROSS et al., 2000). The RARs and RXRs play an important role in the 

morphogenesis. Mice mutants from retinoid receptor knockouts, lacking complete 

genes or certain isoforms of RARs and RXRs, display discriminative abnormalities 

(LOHNES et al., 1993; LUFKIN et al., 1993), which resemble those observed in the 

offspring of vitamin A deficient wild type mice (ROSS et al., 2000). At-RA 

(THALLER & EICHELE, 1987) as well as the certain RARs and RXRs 

(MICHAILLE et al., 1994; SMITH et al., 1995; SMITH & EICHELE, 1991; VIAL-

LET & DHOUAILLY, 1994) exhibit a specific spatial and temporal distribution pat-

tern within developing embryos. RARα and RXRβ are expressed ubiquitously, 
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whereas the expression of certain subtypes and isoforms of RARs and RXRs is lim-

ited to specific tissues and specific stages of the embryonic development. The 

mechanisms responsible for the regulation of the spatial and temporal differences in 

at-RA concentrations during the embryogenesis are widely unknown. It is likely that 

the RA binding proteins (CRBP-I and CRABP-I) are involved in these regulation 

processes, which are also expressed in a spatiotemporally confined manner within 

the developing embryo (MORRISS-KAY & SOKOLOVA, 1996; ROSS et al., 

2000).  

 

Retinoids in the limb development 

The developing limb has been extensively used to study morphogenesis (reviewed in 

EICHELE, 1989; HOFMANN & EICHELE, 1994 and LU et al., 1999). The undif-

ferentiated mesenchymal cells of limb buds differentiate into muscle, cartilage, and 

bone cells of the later wing. The digits of the wing, oriented along the anterior-

posterior (APo) axis of the wing bud, are ordered by the zone of polarising activity 

(ZPA) in the posterior region of the bud (KOUSSOULAKOS, 2004) (cf. fig.1.6). 

The fate of mesenchymal cells along the APo axis is dependent on the distance to the 

ZPA. Cells next to ZPA form a digit 4; cells farther away become a digit 3 or 2, re-

spectively. 

 

1.1.7. Chick limb bud model 
 
In developing chick limbs it was discovered that local application of at-RA released 

from a carrier bead placed to the anterior margin of a chick limb bud evokes digit 

pattern duplications in a dose-dependent fashion (see also methods and SUMMER-

BELL, 1983; TICKLE et al., 1982; TICKLE et al., 1985; reviewed in HOFMANN & 

EICHELE, 1994). The normal digits pattern of 234 is invariable changed into a six 

digit mirror-image duplication pattern with a full set of additional digits (432234, 

43234 pattern) Reducing the concentration of at-RA produced fewer additional digits 

with an additional digit 2 and 3 (2234, 32234 pattern). The effect is thus dependent 

on the dose of applied at-RA but also on the position of implantation (application of 

at-RA to the posterior side of the limb bud had no effect)  (HOFMANN & EICHELE, 
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Fig.1.6: Embryology and signaling regions in the chick limb bud. 
A) At day 3 (HH-stage 20) cells from the wing field begin to grow distally and form the limb 
bud which is at that time about 1 mm wide, by day 10 (stage 36) the development of the wing 
with the skeletal elements humerus, radius, ulna and the three digits is completed. B) There 
are two major signaling regions that mediate patterning and growth of developing limb buds. 
The apical ectodermal ridge (AER) promotes the distal outgrowth of the limb. The ZPA (posi-
tioned posteriorly) acts as an organiser for the anterioposterior axial pattern. The cells from 
the progress zone (PZ) at the distal tip receive growth signals from the AER and ZPA. Re-
moving any of theses zones results in a truncated limb. 
 

1994). At-RA has to be implanted into Hamburger-Hamilton (HH-)stage 22 (HAM-

BURGER & HAMILTON, 1951) old chick embryos, whereas the minimum period 

of approximately 10-12 h treatment time is required to induce duplications 

(EICHELE et al., 1985).  

 

Implanted beads release constantly at-RA which diffuses into the mesenchymal tis-

sue and forms a concentration gradient across the APo axis (EICHELE & 

THALLER, 1987). This asymmetrical spatial distribution is responsible for the in-

duction of duplications (EICHELE & THALLER, 1987). It has been proposed that 

at-RA mimics the ZPA (TICKLE et al., 1975), by initiating a cascade of signaling 
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molecules [HoxD gene products, SHH (gene product of shh), Fibroblast growth fac-

tors (FGFs) and presumably other molecules] that, when expressed together, bring 

about the formation of additional digits (HELMS et al., 1994). In other words at-RA 

induces effector genes that regulate the limb development. Examples of such genes 

are Bone morphogenetic protein-2 (bmp-2) (FRANCIS et al., 1994), various Ho-

meobox genes including Hoxb-8 (CHARITE et al., 1994; HAYAMIZU & BRY-

ANT, 1994; HELMS et al., 1994; IZPISUA-BELMONTE & DUBOULE, 1992; LU 

et al., 1997a; STRATFORD et al., 1997) and Sonic hedgehog (shh) (HELMS et al., 

1994; RIDDLE et al., 1993). Cytochrome P450 (Cyp26; (MARTINEZ-CEBALLOS 

& BURDSAL, 2001; SWINDELL et al., 1999) and RA receptor beta 2 (RARb2; 

(HAYAMIZU & BRYANT, 1994; LU et al., 1997a) are also locally induced in the 

limb bud by exogenously applied at-RA although their role in normal limb develop-

ment is not fully understood. Nonetheless they are likely mediators of the well-

known teratogenic effects of retinoids on limb development. The local application of 

RA in from small ion-exchange beads implanted into embryos is a suitable tool for 

studying the action of vitamin A compounds in vertebrate development by several 

reasons: The chick limb bud is very easily assessable for experimental manipula-

tions, and the local placement of the retinoids provides the advantage to mimic the 

action of retinoids in a special region (WEDDEN et al., 1990). 

 

1.1.8.  “Biological active” retinoid metabolites 
 
Several endogenous occurring RA metabolites have shown to be biologically active 

in vivo and in vitro, including those which are viewed as catabolic products. 4-oxo-

all-trans-RA is a highly active modulator in embryonic development and influenced 

the development of the APo body axis of Xenopus embryos in a way similar to at-RA 

(PIJNAPPEL et al., 1993). Additionally, 4-oxo-all-trans-RA was able to induce cell 

differentiation in F9 mouse teratocarcinoma cells equipotent to at-RA (NIKAWA et 

al., 1995). VAN DER LEEDE et al. (1997) showed that 4-oxo- and 4-OH-all-trans-

RA could inhibit the proliferation of RA-sensitive breast cancer cell lines in a con-

centration-dependent fashion. 4-OH-all-trans-RA, 4-oxo-all-trans-RA as well as all-

trans-5,6-epoxy-RA showed significant biological activity in human keratinocytes, 
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mouse melanoma cells and in mouse skin (REYNOLDS et al., 1993). IDRES et al. 

(2001) have shown induced maturation (inhibited cell growth, blocked cell cycle 

progression and induced differentiation) of NB4 promyelocytic leukemia cells by the 

four at-RA metabolites 4-oxo-all-trans-, 4-OH-all-trans-, 18-OH-all-trans-, and all-

trans-5,6-epoxy-RA. 9,13-di-cis-RA induced the expression of RARα, RARβ and the 

production of a plasminogen activator in human liver stellate cells (IMAI et al., 

1997). As already mentioned, at-RA is viewed as the retinoid with the highest bio-

logical activity in mammals. However, it seems likely that this is not the case in sev-

eral other vertebrate classes, since THALLER & EICHELE (1990) demonstrated that 

all-trans-3,4-didehydro-RA is the principle active retinoid in the developing limb 

bud of chick embryos. All-trans-3,4-didehydro-RA was equipotent at inducing digit 

duplications in chick limbs compared to at-RA, but it was detected in 4-6-fold higher 

concentrations (SCOTT, JR. et al., 1994; THALLER & EICHELE, 1990). Even 

though 9-cis-RA was not identified in chick wings, it was shown to be morphoge-

netically active in this system (THALLER et al., 1993). 9-cis-RA evokes digit dupli-

cations with a greater potency compared to at-RA. Findings from BLUMBERG et al. 

(1996) in early Xenopus embryos showed that at- and 9-cis-RA isomers were not 

detectable, rather all-trans-4-oxo-retinal and -retinol have been identified and charac-

terised as the major bioactive retinoids in these embryos. 

 

The natural retinoids which are known to act as retinoid receptor ligands in vitro can 

be divided into two groups: Ligands that activate only RAR-RXR heterodimers via 

RARs and those which activate both RARs and RXRs. The first group of ligands 

involves beside at-RA (reviewed in CHAMBON, 1996) other metabolites such as 4-

oxo-all-trans-retinol and 4-oxo-all-trans-retinal (ACHKAR et al., 1996;         

BLUMBERG et al., 1996), 9,13-di-cis-RA (IMAI et al., 1997; OKUNO et al., 1999), 

4-oxo-all-trans-RA (IDRES et al., 2002; PIJNAPPEL et al., 1993), all-trans-5,6-

epoxy-RA, 13-cis-RA, 18-all-trans-OH-RA, 4-OH-all-trans-RA (IDRES et al., 

2002),  all-trans-3,4-didehydro-RA (ALLENBY et al., 1993; SANI et al., 1997; 

THALLER & EICHELE, 1990) and all-trans-3,4-didehydro-retinol (COSTARIDIS 

et al., 1996). The second group of RXR and RAR ligands and transactivators in-
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cludes 9-cis-RA (ALLENBY et al., 1993; DURAND et al., 1992; HEYMAN et al., 

1992; IDRES et al., 2002; LEVIN et al., 1992; NAPOLI, 1996), 9-cis-3,4-didehydro-

RA (ALLENBY et al., 1993) and 4-oxo-9-cis-RA (PIJNAPPEL et al., 1998). The 

mentioned retinoids were shown to bind and transactivate RAR- or RXRα, -β or -γ, 

respectively, in several in vitro systems, predominantly binding and transactivation 

assays. 9-cis-RA has been shown to activate RAR-RXR heterodimers more effi-

ciently than natural RAR ligands (MINUCCI et al., 1997). Other retinoids, such as 

14-OH-4,14-retro-retinol, anhydro-retinol (BUCK et al., 1991; BUCK et al., 1993) 

and 13,14-di-OH-retinol (DERGUINI et al., 1995; EPPINGER et al., 1993) which 

are essential for the proliferation of lymphocytes, mediate their function independ-

ently from the retinoid receptors. 

 

1.1.9. Identification and characterisation of the new metabolite 
 
Recently, a novel major endogenous retinoid metabolite, occurring primarily in the 

liver of mice and rats in comparatively high levels has been isolated and character-

ised by SCHMIDT et al. (2002). It was found that the levels of the new metabolite 

increase dose-dependently in serum, kidney, and especially in liver of mice supple-

mented with retinyl palmitate (SCHMIDT et al., 2002). These findings were surpris-

ingly because this increase was complementary to a dose-dependent decrease of at-

RA levels in serum, kidney, and brain in the samples from the same animals. The 

metabolism of the new metabolite seems to be sensitive for exposure to environ-

mental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD expo-

sure had a profound effect on the hepatic levels of the new metabolite in mice, with a 

decrease of approximately 90% (HOEGBERG et al., 2005). Altered retinoid homeo-

stasis has been known for a long time as one of the most sensitive markers of expo-

sure to environmental pollutants such as TCDD (reviewed in NILSSON & 

HAKANSSON, 2002). Recent studies analysing the tissue levels of the new metabo-

lite after dioxin exposure show that it is an extremely sensitive marker in both mice 

(HOEGBERG et al., 2005) and rats (SCHMIDT et al., 2003b). 
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The newly discovered metabolite was isolated from mouse livers and characterised by 

mass spectral- (MS), ultraviolet- (UV-Vis), and nuclear magnetic resonance analyses 

(NMR) as 9-cis-4-oxo-13,14-dihydro-RA (4o-9c-dh-RA) (SCHMIDT et al., 2002). To 

obtain sufficient material to record an 1H-NMR spectrum and to perform further 

studies, it was necessary to isolate the new metabolite preparatively extent with sev-

eral pooled livers (described in SCHMIDT et al., 2002). The chemical structure of the 

isolated new RA-metabolite (fig.1.7) was finally assigned by its proton-nuclear mag-

netic resonance (1H-NMR) spectrum. 4o-9c-dh-RA is characterised by a chiral car-

bon at C13 (fig.1.7). 

 

 

 

 

 

To investigate the biological activity of the new metabolite, it was necessary to develop 

a synthetic pathway for S-4o-9c-dh-RA to generate sufficient quantities of the com-

pound. This work has been recently accomplished by M. Stefan and is described in a 

dissertation thesis (STEFAN, 2006). More precisely the thesis describes the develop-

ment of an enantio-selective synthesis pathway of the new metabolite S-4o-9c-dh-RA, 

and other diastereomers of 4-oxo-13,14-dihydro-RA (4-o-dh-RA) such as all-trans-, 11-

cis-, 9,11-di-cis-4-oxo-dh-RA. The diastereomers were separated and collected using 

column chromatography. Collected fractions were characterised by standard spectro-

scopic techniques (NMR, MS, IR and UV-Vis) and circular dichroism (CD) spectros-

copy, and fractions were assigned by their NMR spectra. The chiral identity of the natu-

ral occurring new metabolite was evaluated by comparing the retention times of the 

new RA-metabolite isolated from mice liver (described in SCHMIDT et al., 2002) 

with the synthesis product, which was a racemic mixture of 4o-9c-dh-RA isomers. 

Identical retention time of authentic isolated metabolite and synthetic S-4o-9c-dh-RA 

on different HPLC columns, reversed and normal phase conditions, together with all 

spectroscopic results, confirmed the assigned structure. Chromatogram comparison 

of synthetic and isolated metabolite on a Chiracel OJ column showed that the new 
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Fig.1.7: Molecular structure 
of the new RA-metabolite,  
S-4o-9c-dh-RA. 
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metabolite derived from mice livers is the pure S-enantiomer (see fig.1.8). A minor 

content in the sample of the S-4o-9c-dh-RA sample isolated from mice livers appears 

to be the S-enantiomer of the 4-oxo-all-trans-isomer (4o-at-dh-RA), which is most 

likely a contamination due to isomerisation processes of S-4o-9c-dh-RA during the 

separation and purification procedure, where the retinoids were exposed to a slightly 

acidic phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.8: Comparison of the new RA-metabolite with synthetic S-4o-9c-dh-RA 
separated by chiral phase HPLC (modified from STEFAN et al., 2005). 
 

A) Racemic standard mixture of synthetic 4o-9,11dc-dh-RA and 4o-9c-dh-RA containing 
both enantiomers (R- & S-type). B) New RA-metabolite isolated from liver samples of NRMI 
mice. Note that isolated new RA-metabolite is the pure S-enantiomer of 4o-9c-dh-RA. 
(Chiracel OJ-H column, 4.6 x 250 mm, 10 µm particle size). 
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2. Aim of the thesis 
 
 
The new metabolite S-4o-9c-dh-RA is occurring endogenously in considerably high 

concentrations in the liver of mice and rats (SCHMIDT et al., 2002; SCHMIDT et al., 

2003a). It has been found out, that the metabolic formation of S-4o-9c-dh-RA within 

the liver is highly dependent on vitamin A intake (SCHMIDT et al., 2002), with dra-

matically increasing levels after vitamin A supplementation. Based on this facts it 

seems likely that this new metabolite has a significant role the metabolism of reti-

noids. To contribute to the understanding of the physiological role of S-4o-9c-dh-RA 

in the multiple pathways of retinoids in the body, this work aims to clarify the ques-

tion if this metabolite exhibits a biological activity in terms of mimicking the well-

known effects of at-RA. Different in vivo and in vitro techniques have been used to 

answer this question. By using the classical chicken embryo limb bud model, it was 

investigated whether this new retinoid metabolite is morphogenetically active in vivo. 

Further, it was examined if S-4o-9c-dh-RA mediates its potential function via the same 

pathway such as at-RA and was able to regulate cellular signaling pathways by acti-

vating the nuclear retinoid receptors. Similar to at-RA, other RA metabolites mediate 

their biological effects also via binding and activating RARs or RXRs. To get 

knowledge about a possible physiologic role of the new metabolite, it is interesting to 

reveal if this metabolite has the ability to bind and activate these retinoid receptors, 

and thus is capable to regulate gene transcription. Using reporter cell systems at this 

early stage was the most efficient way to analyse the question whether S-4o-9c-dh-

RA could be a novel ligand for retinoid receptors. 

 

To analyze the possible transcriptional activity of S-4o-9c-dh-RA, several cell lines 

were transiently transfected with different luciferase reporter plasmids under the 

regulation of a minimal RARE (2xDR5 element), or a more complex regulated 

sequence, a part of the promoter region of a direct target gene for retinoids, the 

RARβ2 gene. Both the 2xDR5 element and the natural RARE sequence are 

exclusively recognized by ligand activated RAR heterodimers. Since it was found 

out that the natural occurring 4o-9c-dh-RA enantiomer, derived from mice liver, is 
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the S-type, it was interesting to observe, whether both the R- and the S-enantiomer 

could transactivate RAR/RXR heterodimers and if there are differences between both 

types in the potency. Equally, it was interesting to examine, whether the two 

enantiomers of 4o-at-dh-RA exhibit a potential to induce transcriptional activity on 

RARE-regulated genes. It has been reported by MOISE et al. (2005) that 4o-at-dh-

RA is occurring in vivo, albeit in transgenic mice gavaged with all-trans-13,14-

dihydro-retinol and in comparatively low concentrations. However, it is likely that 

both isomers, S-4o-9c-dh-RA and S-4o-at-dh-RA, exist endogenously under certain 

circumstances which are not known so far. Hence, the function of all four 

compounds to transactivate RAR/RXR heterodimers has been tested in the described 

reporter cell systems. The possibility that S-4o-9c-dh-RA could have antagonistic or 

synergistic effects against at-RA, regarding ligand properties towards RAR/RXR 

heterodimers, was analysed in comparative experiments. By testing the potency of S-

4o-9c-dh-RA to induce transcriptional activation of RXRE regulated genes through 

RXR activation, it was evaluated, whether S-4o-9c-dh-RA as well as S-4o-at-dh-RA 

could be novel endogenous ligands for some RXR isoforms rather than being RAR 

ligands. 

 

Using quantitative real-time polymerase chain reaction analysis (qRT-PCR), the po-

tency of S-4o-9c-dh-RA to induce the endogenous expression of the at-RA regulated 

gene RARβ2 was investigated in a mouse embryonic carcinoma cell line (P19). 

Mechanistically, the effect of S-4o-9c-dh-RA on ligand-induced conformational 

changes of retinoid receptors has been studied in limited proteolytic digestion ex-

periments. Hormone binding to a nuclear receptor induces conformational changes 

within the receptor, which renders the ligand binding domain to become resistant to 

protease digestion. Using a chicken embryo model, the potency of exogenously ap-

plied S-4o-9c-dh-RA to mimic patterning activities of at-RA has been investigated in 

the limb bud. Additionally, using qRT-PCR, the effect of S-4o-9c-dh-RA to regulate 

the expression of at-RA target genes in the chick wing bud has been examined. 
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3. Material and Methods 

3.1. Material 

3.1.1. Retinoids 
 
At-RA, 13-cis-RA and 9-cis-RA were purchased from Sigma-Aldrich (Steinheim, 

Germany). 4-oxo-13-cis-RA, 4-oxo-all-trans-RA, all-trans-Acitretin (RO101670) 

and all-trans-3,4didehydro-RA were used in this study were kindly provided by F. 

Hoffmann-La Roche (Basel, Switzerland or Nutley, NJ, USA). All retinoids were 

diluted in ethanol. The 8 diastereomers (isomers and enantiomers) of 4o-dh-RAs, 

including the new metabolite S-4o-9c-dh-RA, were synthesised and characterised (cf. 

1.1.10.) by our collaborator M. Stefan under the supervision of H. Hopf and is 

described in STEFAN (2005). The synthesis of such compounds has been performed 

both as racemic as well as eantio-selectiv for configuration assignment (cf. chapter 

1.1.10). A stereo-specific synthesis was not investigated because during synthesis, 

due to light, heat or acid influence, isomerisation occurs, which makes an HPLC 

separation steps anyway obligatory. Even small amounts of isomerisation products 

can influence the biological activity. To avoid such misleading results, HPLC 

purification was always performed prior to biological tests (described in chapter 

3.2.1.2.). Additionally, the stock solutions were also regularly checked for purity using 

reversed-phase high performance liquid chromatography (HPLC) analysis (described in 

3.2.2.) and did not show contamination (cf. 3.2.1.1.). 

 

3.1.2. Cell culture reagents, additives and media 
 
Product Manufacturer & sources of supply  
Ampicillin Sigma-Chemical Co., St. Louis, USA 

Dulbecco`s modified eagle medium (DMEM) GibcoTM Invitrogen, Karlsruhe, Germany 

Epidermal growth factor (EGF) Sigma-Chemical Co., St. Louis, USA 

Fetal bovine serum (FBS) GibcoTM Invitrogen, Karlsruhe, Germany 

Gelatin, G-6650, Bovine skin Sigma-Chemical Co., St. Louis, USA 

Geneticin® (G418) GibcoTM Invitrogen, Karlsruhe, Germany 

Gentamycin GibcoTM Invitrogen, Karlsruhe, Germany 

Insulin GibcoTM Invitrogen, Karlsruhe, Germany 



 
28                                                                                   MATERIAL AND METHODS 

LB medium Sigma-Chemical Co., St. Louis, USA 

L-Glutamine GibcoTM Invitrogen, Karlsruhe, Germany 

Low glucose Dulbecco`s modified  
eagle medium (DMEM) 

GibcoTM Invitrogen, Karlsruhe, Germany 

Non essential amino acids GibcoTM Invitrogen, Karlsruhe, Germany 

Phosphate-buffered saline (PBS) Biochemica-MikroSelect, Fluka, Munich, Germany 

Penicillin/Streptomycin solution (PEST) GibcoTM Invitrogen, Karlsruhe, Germany 

Pyruvate GibcoTM Invitrogen, Karlsruhe, Germany 

RPMI 1640+ medium GibcoTM Invitrogen, Karlsruhe, Germany 

Trypsin-EDTA (10x) GibcoTM Invitrogen, Karlsruhe, Germany 

 
 
3.1.3. Other reagents and sources of supply 
 
Product Manufacturer & sources of supply  
β-Mercaptoethanol Sigma-Chemical Co., St. Louis, USA 

Acetic acid Merck, Darmstadt, Germany 

Acrylamid (Liqui-Gel 40%,  
N,N’Methylene-bis-acrylamide) 

ICN Biomedicals Inc., Aurora, OH, USA 

Alcian Blue dye Sigma-Aldrich, Steinheim, Germany 

Ammonium acetate Sigma-Aldrich, Steinheim, Germany 

Amplify, NAMP 100 V Amersham Pharmacia Biotech AB, Upp-
sala, Schweden 

Calcium chloride Merck, Darmstadt, Germany 

Chloroform for sample preparation,  
Uvasol grade 

Merck, Darmstadt, Germany 

Chloroform (as HPLC eluent), ROTISOLV HPLC Carl Carl Roth GmbH, Karlsruhe, Ger-
many 

Dithiothreitol (DTT), 1 M Carl Roth GmbH, Karlsruhe, Germany 
Diethylpyrocarbonat (DEPC) Carl Roth GmbH, Karlsruhe, Germany 
Ethanol, Uvasol grade Merck, Darmstadt, Germany 
Ethylene-diamine-tetraacetic acid (EDTA) Sigma-Aldrich, Steinheim, Germany 
iQ SYBRGreen Supermix Bio-Rad Laboratories, Munich, Germany 
Helium 5.0 Linde, Wiesbaden, Germany 
Hydrogen peroxide (30 w/w-% sol. in water) Sigma-Aldrich, Steinheim, Germany 
Hydrochloride (HCL) Merck, Darmstadt, Germany 
Isoamylalcohol zur Analyse Merck, Darmstadt, Germany 
Isopropanol, Uvasol grade Carl Roth GmbH, Karlsruhe, Germany 
Isopropyl alcohol Merck, Darmstadt, Germany 
[35S]methionine Amersham Pharmacia Biotech AB, Upp-

sala, Schweden 
Methanol, HPLC gradient grade Mallinckrodt-Baker, Greisheim, Germany 

Methyl salicylate Sigma-Aldrich, Steinheim, Germany 
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Phenol (Aqua PhenolTM water saturated  
for DNA and RNA Extractions) 

Qbiogene, Carlsbad, CA, USA 

Phenol red Sigma-Aldrich, Steinheim, Germany 

Potassium acetate Merck, Darmstadt, Germany 

Protein-Standard, Precision Plus ProteinTM,  
all Blue Standards 

Bio-Rad Laboratories, Munich, Germany 

Sodium-dodecylsulfate (SDS) Sigma-Chemical Co., St. Louis, USA 

Sodium hydroxide Sigma-Aldrich, Steinheim, Germany 

Tetramethylethylendiamin (TEMED)  Carl Roth GmbH, Karlsruhe, Germany 

Trichloroacetic acid Carl Roth GmbH, Karlsruhe, Germany 

Tris Riedel-de Haen, Seelze, Germany 

 
 
3.1.4. Consumables 
 
Product Manufacturer & sources of supply  
6-well culture plate Falcon Labware, Cockeysville, MD, USA 

96-well-PCR-Plates iCyclerTM, Bio-Rad Laboratories, Munich, 
Germany 

96-well-PCR-Plate-Tape iCyclerTM, Bio-Rad Laboratories, Munich, 
Germany 

AG1-X2 ion-exchange beads Bio-Rad, Richmond, CA, USA 

Aminopropyl phase cartridge Bakerbond,  
C18 ODS cartridge 

Phenomenex, Aschaffenburg, Germany 

Cell culture plates NuncTM, Roskilde, Denmark 

Cling film Melitta, Minden, Germany 

Cryo tubes, CryoPlus 1 ml Sarstedt AB, Landskrona, Sweden 

Dissection needle Carl Roth, Karlsruhe, Germany 

Falcon tubes Falcon Labware, Cockeysville, MD, USA 

Glass vials, Wheaton dispossible scintillation vials Obtained from Carl Roth, Karlsruhe, Ger-
many 

Micro centrifuge polypropylene tube Eppendorf, Hamburg, Germany 

Milli-Q system Millipore, Eschborn, Germany 

Multidish 12- and 24-well plates NuncTM, Roskilde, Denmark 

Nail scissors Carl Roth, Karlsruhe, Germany 

Parafilm ® M America National CanTM, Neehnah, WI, 
USA 

Pipettes for cell culture Sterilin, Bibby Sterilin Ltd., UK 

Polypropylene Round-Botton Tube Falcon Labware, Cockeysville, MD, USA 

RP18 column, Spherisorb (ODS 2 mm,  
150 x 2.1 mm, 3 µm particle size)  

Waters, Eschborn, Germany 

SPE NH2, 500 mg, 3 ml Mallinckrodt-Baker, Griesheim, Germany 
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Tungsten wire (0.3 mm diameter) Bio-Rad, Richmond, CA, USA 

Watchmaker’s -forceps (type 5) Carl Roth, Karlsruhe, Germany 

X-ray-film (Curix, Ultra UV-G, 18x24) Agfa Health Care, Stockholm, Sweden 

 
 
3.1.5. Machines 
 
Product Manufacturer & sources of supply  
Analytical balance, Satorius MC 210P Satorius AG, Göttingen, Germany 

Automated solid-phase extraction  
ASPEC XLi (equipped with a 10-ml dilutor) 

Gilson, Bad Camberg, Germany 

Centrifugal evaporator system  
Alpha RVC  

Christ, Osterode, Germany 

Centrifuge, AvantiTM J-25, JA17 rotor Beckman Coulter, Krefeld, Germany 

CO2-Inkubator, Inco II  Memmert GmbH, Schwabach, Germany 

Corex tube for centrifuge, 30 ml Corning Glassworks, Corning, NY, USA 

Dissection microscope (equipped with  
low-voltage illumination, heat protection filter 
& green filter)      

Wild Leitz, Rockleigh, NJ, USA 

Electrophorese-System, Hoefer Migthy Small II Amersham Pharmacia Biotech AB, Uppsa-
la, Schweden 

Film Developer, X-OMAT 1000Processor Eastman Kodak Co., Rochester, NY, USA 

Freezer (-20), Huskvarna VSM Sverige AB, Huskvarna, Sweden 

Freezer (-80 °C)  Forma Scientific Co., Marietta, Ohio, USA 

Fridge, Huskvarna VSM Sverige AB, Huskvarna, Sweden 

HPLC-system  
LC-10AD pumps    

 SCL-10AVP system controller  
 SUS-mixer (0.5 ml)     

CTO-10AVP column oven    
UV-detector, SPD-10AVVP UV/Vis

 Autosampler, AS-4000  
 Degaser, Degasys DG-1200 
 Fraction Controller, FRC-10A 

 
Shimadzu, Duisburg, Germany  
Shimadzu, Duisburg, Germany  
Shimadzu, Duisburg, Germany  
Shimadzu, Duisburg, Germany  
Shimadzu, Duisburg, Germany  
Merck, Darmstadt, Germany  
VDS Optilab, Montabaur, Germany 
Shimadzu, Duisburg, Germany  

Homogenizer, Potter S B. Braun Biotech International, Melsun-
gen, Germany 

Incubator for Bacteria, Minitron Infors AG, Switzerland 

Luminometer Rosys Anthos Lucy 2 Anthos Labtec Instruments, Krefeld, Ger-
many 

Micro centrifuge, Universal 32R and MIKRO 22R Hettich Labinstruments, Sollentuna, Swe-
den 

Microscope (cell work), Leica DMIL Leica Microsystems Wetzlar GmbH, 
Wetzlar, Germany 

Pipettor, Pipetboy Integra Biosciences GmbH, Fernwald, 
Germany 

Rocking platform, WT14 Biometra, Göttingen, Germany 
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RT-PCR System, iCyclerTM iQ Bio-Rad Laboratories, Munich, Germany 

RT PCR System, ABI Prism® 7500 Applied Biosystems, Stockholm, Sweden 

Security guard Phenomenex, Aschaffenburg, Germany 

Spektrophometer, Ultrospec ® 3000 pro Amersham Pharmacia Biotech, USA 

Sterile hood Holten LaminAir, Allerød, Denmark 
Tablecentrifuge Universal 32 R Hettich Labinstruments, Sollentuna, Swe-

den 
Thermoblock, TB1 Biometra, Göttingen, Germany 

Thermocycler, Gene Amp PCR System 2400 Applied Biosystems, Darmstadt, Germany 

Thermomixer compact Eppendorf, Hamburg, Germany 

Transferpipette (10-100 µl) BRAND GMBH + CO, Wertheim, Ger-
many 

Vacuum concentrator DNA-Speedvac, DNA110 Savant Instruments, Hicksville, NY, USA 

Vacuum gel dryer, Slab Gel Dryer SGD2000 Savant Instruments, Hicksville, NY, USA 

Vortexer Janke & Kunkel IKA-Labortechnik VF2 
Staufen, Gernamy 

Water bath, A100 Lauda, Lauda-Königshofen, Germany 

 
 
3.1.6. Enzymes 
 
Enzyme Manufacturer & sources of supply  
DNAse I Invitrogen, Karlsruhe, Gernamy 

Lysozyme ICN Biomedicals Inc., Aurora, OH, USA 

RNAse A Roche Diagnostics, Mannheim, Germany 

RNAse T1 Roche Diagnostics, Mannheim, Germany 

RNase H Invitrogen, Karlsruhe, Gernamy 

RNasin Invitrogen, Karlsruhe, Gernamy 

Trypsin Promega, Mannheim, Germany 

T7 RNA Polymerase Amersham Pharmacia Biotech, USA 

 
3.1.7. Kits and ready-made material 
 
Kit Manufacturer & sources of supply  
Galacto-Light Plus chemiluminescent - Reporter 
gene assay systems 

Tropix, Bedford, USA 

LipofectAMINE and Plus Reagent Invitrogen, Karlsruhe, Gernamy 

Luciferase Assay Kit BioThema AB, Sweden 

Power CyberGreen MasterMix (ABI) Applied Biosystems, Stockholm, Sweden 

Rabbit reticulocyte lysate cell-free system Promega, Mannheim, Germany 
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RNeasy® Kit   Quiagen, Hilden, Germany 

SuperScript II RT-PCR-System Invitrogen, Karlsruhe, Gernamy 

ThermoScriptTM RT-PCR-System Invitrogen, Karlsruhe, Gernamy 

TRIZOL® Invitrogen, Karlsruhe, Gernamy 

 
 
3.1.8. Bacteria strains and cell lines 
 
Abbreviation Full name & attributes Origin/ ATCC ® -No. 

E.coli XLBlue 
DH5α Utilization for isolation of plasmids Invitrogen, Karlsruhe, Germany 

CV1 African green monkey kidney cells CCL-70™ 

P19 Pluripotent mouse embryonic  
carcinoma cells CRL-1825™ 

HeLa Human cervical cancer cells CCL-2.2™ 

Hepa-1 Murine Hepatoma cells CRL-1830™ 

HC11-RARE Mouse mammary gland epithelial cells 
Stable transfected with RARE Malin Hedengren-Faulds * 

* Department of Biosciences and Nutrition, Karolinska Institute Stockholm – Novum 

 
 
3.1.9. Chicken Embryos 
 
For the chicken embryo experiments, fertilised White Leghorn chicken eggs (VALO 

SPF-eggs, specified pathogen free) were purchased from Lohmann Tierzucht, Cux-

haven, Germany. 

 
 
3.1.10. Oligo-nucleotides for gene expression analysis  
 
The oligonuleotid primers for gene expression analysis in chick limb bud tissue were 

designed using the software Primer3 and optimised to an annealing temperature of 60 

°C. These oligonucleotides were purchased from MWG-Biotech (Ebersberg, Ger-

many). The forward and reverse PCR primers for RARβ2 and γ-actin expression 

analysis in embryonic carcinoma cells (P19) were published in (POZZI et al., 2006) 

and purchased from DNA Technology A/S (Aarhus, Denmark). 
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Tab.3.1: Oligo-nucleotid primers used for the qRT-PCR expression studies in 
chick limb bud tissue and in P19 cells. 
 
Gene expression analysis in chick limb bud tissue 

Amplified gene  Forward Primer (5’ – 3’) Reverse Primer (5’ – 3’) 

Hoxb-8 Homeobox b 8 CTACCAGACGCTGGAACTGG ACCTGCCTTTCTGTCAATCC 

CYP26 

cytochrome 
P450,family 26, 
subfamily 
A,polypeptide 1 

CTTTCAGTGGGCTCTACCG GCAGTGCATCCTTGTAGCC 

RARβ2 RA receptor, 
beta2 GCATGCTTCAGTGGATTGG AGTGGTGAAGGAGGGCTTG 

shh Sonic hedgehog GGCCAGTGGAAGATATGAAGG GCATTCAGCTTGTCCTTGC 

bmp-2 Bone morphoge-
netic protein 2 CCTACATGTTGGACCTCTATCG AAACTTCTTCGTGGTGGAAGC 

TBP TATA box bind-
ing protein CTGGCAGCAAGGAAGTACG GCTCATAGCTGCTGAACTGC 

Gene expression analysis in P19 cells 

Amplified gene  Forward Primer (5’ – 3’) Reverse Primer (5’ – 3’) 

RARβ2 Retinoic acid 
receptor, beta2 CAGGCTTTTAGCTGGCTTGTCTGT AATCCACTGAGGCAGGCTTTGAGA 

γ-actin  GCCGGCTTACACTGCGCTTCTT TTCTGGCCCATGCCCACCAT 

 
3.2. Methods 

3.2.1. HPLC-Analysis 

3.2.1.1. Reversed phase HPLC 
 
Retinoids were analysed according to a method developed by SCHMIDT et al. 

(2003). The HPLC system was composed of modules from Shimadzu (cf. chapter 

chapter 3.4.1.) controlled by the CLASS-VP 5.0 software with exception of the auto-

sampler. The sample preparation procedure to analyse retinoids in liver-tissue starts 

with homogenising and extracting retinoids using a homogeniser and isopropanol. 

Polar retinoids were separated from apolar retinoids and neutral lipids using amino-

propyl phase cartridges in an automated solid-phase extraction process. The eluates 

were concentrated to dryness via vacuum concentration in a centrifugal evaporator 

system, reconstituted in methanol and diluted 1:1 with PBS. The obtained polar frac-

tion was injected into a HPLC-system using an autosampler equipped with a 200 µl 
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loop and a 0.5 ml dilutor. A multilinear binary gradient was generated from eluent A 

and B with the following gradient settings: 0 min, 20% B; 21 min, 80% B; 22.5 min, 

100% B; 27.5 min, 100% B; 30.5 min, 20% B; and 40 min, 20% B. Eluent A was 

composed of 60 mM ammonium acetate buffer (see appendix), and methanol (1:1), 

whereas eluent B was pure methanol. Both mobile phases were degassed on-line. 

Additionally each eluent was purged for 20 min with helium and degassed for 20 min 

in an ultrasonic-water bath prior to use. The flow rate was 0.25 ml/min. Polar reti-

noids were separated on an analytical RP18 column (Spherisorb ODS2, 2.1 x 150 

mm, 3 µm particle size), which was protected by a security guard equipped with a 

C18 ODS cartridge (4 mm L x 2 mm ID). The column oven was kept at 60°C. The 

HPLC system was coupled with an UV/Vis detector, equipped with a semi-micro 

flow cell (5 mm, 2.5 µl) and chromatograms were assessed using detection wave-

length 340 nm (response 3, sampling frequency 2 Hz). Retinoids were quantitated 

against the appropriate internal standard (IS) all-trans-Acitretin (RO101670). The 

detection limit of the method for at-RA was 0.15 ng/ml or 0.3 ng/g, respectively. 

 

3.2.1.2. Chiral phase HPLC 
 
Chiral separation by HPLC was performed according to a method described by 

STEFAN (2006) using the above described HPLC system equipped with a Chiracel OJ 

column (10 µm, 0.46 x 25 cm) and normal phase conditions. The column and the de-

veloped separation method provide the opportunity to separate the 8 diastereomers (4-

geometric isomers: all-trans, 9-cis, 9,11-di-cis, 11-cis – each of them with the two 

enantiomers R/S) of 4o-dh-RA. To obtain the specific isomers and enantiomers as 

pure material for the biological experiments the corresponding compounds were 

separated from the racemic mixtures. The enantiomers of 4o-9c-dh-RA were sepa-

rated from a synthesis product, which was a racemic mixture of the two isomers 4o-

9c-dh-RA and 4o-9,11dc-dh-RA (fig.3.2). The fractions were collected in beakers 

automatically, while the computer-integrated fraction controller “cut” the specific 

peaks at the defined time points out of the eluate. Each collected fraction was vacuum-

concentrated using the centrifugal evaporator system. This procedure was repeated up 

to three times until the specific compound was pure. Using the same method the R- and 



 
MATERIAL AND METHODS                                                              35 

 

S-type enantiomers of the 4o-at-dh-RA isomer were selectively separated from a race-

mic mixture of 4o-at-dh-RA and 4o-11c-dh-RA (fig.3.2). The enantiomers of 4o-

9,11dc-dh-RA and 4o-11c-dh-RA were not separated.  

 

The eluent, composed of hexane/ isopropanol/ TFA (95/5/0.1), was degassed on-line 

and prior to use by purging 20 min with helium plus 20 min of ultrasonification. The 

isocratic flow rate was 0.9 ml/min. Each run took 100 min. The column oven was 

kept at 28°C. The UV/Vis detector was equipped with a standard flow cell (10 mm, 8 

µl), and chromatograms were assessed using the detection wavelength of 320 nm 

(response 4, sampling frequency 2 Hz). The racemic mixtures were injected in con-

centrations from 300 mg/10ml to 2 g/10ml. The concentration of the obtained frac-

tions containing the different isomers and enantiomers was adjusted gravimetrically. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.1: Chromatograms of synthetic racemic 4o-dh-RA mixtures. 
The racemic mixtures of 4o-dh-RA, consisting of two different stereo-isomers, (A) 9,11dc & 
9c and (B) 11c & at, in each case, were used as base material for the chiral separation of 
specific isomers and enantiomers, which have been tested in the biological experiments. The 
compounds were separated from the racemic mixtures via chiral phase HPLC and a fraction 
controller. (A) The S- and R-enantiomer of 4o-9c-dh-RA were separated from the 9,11dc- & 
9c-4o-dh-RA mixture (dashed lines), whereas (B) the S- and R-enantiomer of 4o-at-dh-RA 
were separated from the 11c- & at-4o-dh-RA mixture (dashed-dot lines). (Chiracel OJ-H 
column, 4.6 x 250 mm, 10 µm particle size). 
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3.2.2. Standard methods in molecular and cell biology 

3.2.2.1. Bacteria culture 
 
Preparation of competent bacteria cells 

A single colony of bacteria was inoculated into 50 ml LB media. 4 ml of this culture 

was added to 400 ml LB media in a 2 l flask and grown at 37°C in an incubator to an 

OD590 of 0.375, which takes approximately 3 h. This culture was aliquoted into 8x50 

ml Falcon tubes and left on ice for 10 min, then it was spinned down at 3000 rpm for 

7 min at 4°C. The supernatant was decanted and each pellet was gently re-suspended 

in 10 ml ice cold CaCl2 solution (see appendix). The mixture was centrifuged at 2500 

rpm for 5 min at 4°C and each pellet was gently re-suspended in 10 ml ice cold 

CaCl2 solution and left on ice for 30 min. After centrifugation at 2500 rpm for 5 min 

at 4°C, each pellet was gently re-suspended in 2 ml ice cold CaCl2 solution and left 

on ice for 6 h. Finally the bacteria suspension was aliquoted to eppendorf tubes (210 

ml each) and immediately frozen in liquid N2. Bacteria stocks were stored at minus 

70°C. 

 

Transformation of bacteria cells 

Competent cells were thawed on ice. 10-50 ng of plasmid-DNA (1 µl) was mixed 

with 95 ml of competent bacteria suspension and incubated for 20 min on ice. After-

wards bacteria were incubated at 42°C for 90 sec in a thermoblock. Tubes were put 

back on ice for 2 min and 900 ml of LB media was added. Bacteria were incubated at 

37°C for 60 min. Tubes were spinned down at 7000 rpm for 1 min and the super-

natant was removed. The bacteria were re-suspended in 100ml LB media and plated 

out on LB media agar plates containing Ampicillin (100 µg/ml). Plates were incu-

bated over night in an incubator at 37 °C. 

 

 

3.2.2.2. Preparation and purification of plasmids 
 
Bacteria were cultured in LB media containing 1 µl/ml Ampicillin. For preparation 

of the starter culture, 5 ml media was inoculated with transformed bacteria cells by 
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picking single colonies from the agar plates. The bacteria were incubated in a round-

bottom tube for 12 h at 37°C on a shacking platform. For the preparation of the main 

culture, the starter culture was added to 200 ml LB media in a 1000-ml-Erlenmeyer 

flask. The main culture was incubated for another 12-15 h at 37°C. The bacteria were 

then centrifuged in a swing out rotor at 4500 rpm for 20-25 min at + 4°C. The super-

natant was decanted and the pellet was re-suspended in 20 ml lysis solution consist-

ing of T50E10 buffer with 0.5 ml Lysozyme (spatula tip / 10  ml). To thoroughly lyse 

bacteria the tubes were incubated for 30-60 min at 37°C in a water bath. Following 

the addition of 750 ml 10%-SDS, tubes were swirled and incubated for 20 min at RT. 

After adding 1.5 ml Kac (see appendix) (5 mM) tubes were swirled and incubated for 

30 min on ice and centrifuged for 1 to 1 ½ h at 14.000 rpm and + 4°C. The super-

natant was carefully collected in 50 ml tubes. 200 µl RNAse A and 10 µl RNAse Ti 

was added and the mixture was incubated for 45 min at 37°C in a water bath. After 

adding 2 ml sodium acetate (3 M, pH 7) and 10 ml buffered Phenol the mixture was 

vortexed and centrifuged at 3000 rpm for 30 min at 4°C. The top fraction was care-

fully transferred to new tubes and 10 ml chloroform/ isoamylalcohol (24:1) solution 

was added. The mixture was vortexed and centrifuged for 20-30 min at 3000 rpm and 

4°C in a desk centrifuge. The top fraction (not more than 18 ml) was carefully trans-

ferred to 30 ml glass Corex tubes. After adding 9,7 ml (0,54 volume) isopropanol, 

tubes were wrapped tightly with Parafilm, vortexed and incubated for 20-30 min at 

RT. After removing the Parafilm, tubes were spinned for 1½ to 2 h at 11500 rpm in a 

swing out rotor at RT. The isopropanol was gently decanted and 15-20 ml ethanol 

(80%) was added. After another spin for 10 min at 11500 rpm in a swing out rotor at 

RT and decantation of the ethanol the DNA was dried in a Speedvac® vacuum con-

centrator. DNA pellets were dissolved in 400 µl TE7,8 for 2 h in a water bath at 37-

42°C. The DNA solution was transferred into sterile Eppendorf tubes and stored at -

80°C. 

 

3.2.2.3. Cell culture 
 
All cell works were performed in a sterile hood with laminar air flow. The hood was 

sterilised with 70% ethanol before and after use and thoroughly once in a week. Cell 
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culture flasks, pipettes, pipettor and all materials which were taken under the hood 

were sprayed with 70% ethanol.  

 

Maintenance of cells 

CV1, P19 and Hela cells were grown in high Glucose DMEM supplemented with 10% 

(v/v) FBS, 1% (v/v) PEST, 1% (v/v) L-Glutamine and 1% NEA (non essential amino 

acids). Hepa-1 cells were grown in low glucose DMEM supplemented with 10% (v/v) 

FBS, 1% (v/v) PEST, 1% (v/v) L-Glutamine and 1% (v/v) Pyruvate. HC11-RARE cells 

were grown in RPMI 1640+ media supplemented with 10% (v/v) FCS, 50 µg/ml gen-

tamycin, 1% (v/v) L-Glutamine, 240 µg/ml Geneticin® (G418), 10 ng/ml EGF, and 5 

µg/ml insulin. All media were freshly prepared at least every week. Cells were cultured 

in an incubator at 37°C in a humidified atmosphere containing 5% CO2. Media and 

other constituents were warmed up to 37°C in a water bath prior to use. Condition and 

density of cells was observed using a Leica DMIL light microscope. To avoid the 

pluripotent P19 cells to differentiate during growth, the cell culture plates were rou-

tinely coated with Gelatin 0.1% (w/v in water) before adding the cells. 4 ml of Gelatin 

was added to a 10 cm plate and spread evenly. Gelatin was allowed to sit at least 15 

min in the incubator before it was removed. Culture media was added gently so that 

gelatine-film was not flushed away. 

 

Cells were split at a confluency of 60-80% (dependent on cell line). Before splitting, 

cells were washed with PBS (10 ml per 10 cm plate) and treated with 0.6-0.7 ml 

Trypsin-EDTA until the cells detached (from 30 sec for P19 until 5 min for CV1). 

Immediately after cell detachment, media was added (10 ml per 10 cm plate) to stop the 

enzymatic reaction. To break up clusters, cells were pressed through the pipette against 

the bottom of the dish 2-5 times for CV1 cells or 8-10 times for P19 cells. The dilution 

factor varied depending on cell type and density. Plates were gently swirled to disperse 

cells in the media. The passage number never excided 5. 
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Cryokonservation and thawing of cells 

Only cells from an early passage were frozen (one 10 cm plate in one cryo tube). The 

cells had a confluency of approximately 70%. First, freeze media was prepared com-

posed of 80% FSB and 20% DMSO and kept on ice. The cells were split normally 

and collected in 50 ml Falcon tubes. The suspension was centrifuged at 1000 rpm for 

10 min at RT. The media was removed and cells were re-suspended in fresh media 

(10 ml/ 10 cm plate). This step removes the Trypsin from the cells completely. Again 

the suspension was spinned at 1000 rpm for 10 min at RT. 0.5 ml of the pre-chilled 

freeze media was put to each cryo tube standing in a cool rack. The media was re-

moved and cells were re-suspended in fresh media (0.5 ml/ 10 cm plate). 0.5 ml of 

the cell suspension was put to each cryo tube and well mixed using a 1 ml tip. In this 

final step the freezing media is diluted to give a final serum concentration of ap-

proximately 50% serum and 10% DMSO. The tubes were frozen immediately for 20-

30 min at -20°C and then transferred to the -80°C for storage. Frozen stocks were 

warmed up in a 37°C warm water bath for 30-60 sec. instantly thawing; cells were 

transferred into warm cell media in cell culture plates. The plate was gently swirled to 

disperse the cells. Thawed cells stocks were split the following day. 

 

Transient transfection 

Cells were generally ready for transfection after the 3rd passage. The day before 

transfection, cells were seeded on 12- or 24-well culture plates so that they were 50-

70% confluent the day of transfection. Transient transfections of plasmid DNA were 

performed using LipofectAMINE and Plus Reagent according to the manufactures 

protocol. The media that was used for the transfections was free of serum and antibi-

otics. The expression vectors were diluted to the appropriate concentrations. The 

plasmid dilutions and Plus Reagent (1 µl/well) were mixed with pre-warmed trans-

fection media and incubated for 15 min at RT. While complexes were formed, cells 

were washed with serum-free media (1 ml/well on a 24-well-plate or 2 ml/well on a 

12-well-plate) to wash away the serum. Cells were washed carefully not to flush cells 

from the culture dish. LipofectAMINE (0.7 µl/well) diluted in media was added to 

the plasmid mix and incubated for 20 min at RT. The volume of the transfection mix 
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was increased to a total of 0.5 ml/well and mixed well by pipetting. The washing 

media was removed from the cells of the first series to be transfected and 0.5 ml of 

the transfection mix was added gently to the cells. The procedure was continued with 

the next series of cells in the same manner. After adding the transfection media cells 

were removed back in the incubator. After 3 h of incubation the volume of media was 

increased by adding normal growth medium containing all referred additives and the 

retinoids (see 3.2.3.2.). 

 

 

3.2.3. Retinoid receptor transactivation studies 

3.2.3.1. Principle of the reporter assay 
 
To analyse the possible transcriptional activity of S-4o-9c-dh-RA, several different 

cell lines were transfected with different luciferase reporter plasmids under the regu-

lation of a RARE (fig.3.2), which is exclusively recognized by ligand activated RAR 

heterodimers. This provides the possibility to investigate if S-4o-9c-dh-RA is able to 

activate these retinoid receptors. The two different reporter plasmids, used in this 

study, share the same vector backbone but have different regulatory RARE se-

quences in front of the luciferase gene; the classic minimal RARE DR5, and a par-

tial/regulatory region of the promoter of the natural retinoid target gene RARβ2. Ad-

ditionally, the assays have been performed with a luciferase reporter construct under 

the control of a RXRE DR1, which responds to RXR homodimer activation, to inves-

tigate the ability of S-4o-9c-dh-RA to activate these retinoid receptors. 

 

 

3.2.3.2. Plasmids 
 
All used plasmids were constructed from either D. Wahlström or K. Pettersson (see 

tab.3.1). The pGL3b2xDR5luc reporter plasmid was designed and constructed by 

using the classic simple minimal RARE DR5 (AGGTCAn5AGGTCA) in a direct 

repeat separated by a restriction site for SphI. The sequence was constructed with a 

minimal TATA-box in front and cleavage sites for NheI and XhoI, and cloned into a  
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Fig.3.2: Schematic illustration of a luciferase assay. 
A) Cells were transfected with a luciferase reporter plasmid which is regulated by a RARE 
and therefore RA-inducible. B) After transfection, cells were treated with S-4o-9c-dh-RA in 
various concentrations and at-RA [100 nM] as a positive control. C) RA binds to the LBD of 
RAR which D) forms a heterodimer together with RXR. E) The ligand-receptor-heterodimer 
complex binds to the RARE of the luciferase reporter and F) the transcription of the Luc-
Gene is activated. The rate of transcription of Firefly Luciferase is dependent on the transac-
tivation potency and concentration of the applied retinoid. G) After adding Luciferin and ATP 
substrate Firefly Luciferase catalyses the conversion of Luciferin to Oxyluciferin which emits 
light. The light emission of Oxyluciferin is linearly correlated with the rate of transcription. 
 

 

pGL3basic vector in front of the luciferase promoter. The minimal mouse RARβ-

promoter (-180 to + 83), was cloned into the pGL3basic vector in the same fashion as 

the 2xDR5 sequence. The plasmids expressing different retinoid receptors (RARα 

and β, RXRα and β) have a pSG5 backbone. pCMW-βGal and pRSV-βGal was used 

as an internal control. 

 

3.2.3.3. Transfection of cell lines 
 
Several different cell lines were transiently transfected with different reporter plas-

mids  under  variable  conditions (tab.3.3),  with  the exception of the HC11 cell line, 
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Tab.3.2: List of plasmids used in retinoid receptor transactivation studies. 

* Department of Biosciences and Nutrition, Karolinska Institute Stockholm – Novum 

 

which has the RARE DR5 element stably integrated. Cells were transfected with the 

luciferase reporter plasmids pGL3basic2xDR5, pGL3b-RARβ2luc or pGL3b-

DR1Luc that allow the expression of the reporter gene Firefly Luciferase upon acti-

vation by the proper ligand activated receptor complex, i.e. RAR/RXR heterodimer 

complex. To normalise the variations in transfection efficiency pCMW-βGal and 

pRSV-βGal, expressing β-Galactosidase, were used as internal controls. CV1 cells 

were transiently co-transfected with the reporter-plasmid pGL3basic2xDR5 in com-

bination with the retinoid receptor- expression vectors RARα and RXRβ. Transfec-

tion was carried out as described above. Stable transfected HC11 cells were kindly 

provided from M. Hedengren-Faulds (Department of Biosciences and Nutrition, 

Karolinska Institute Stockholm – Novum). Therefore, HC11-RARE cells were grown 

in 10-cm plates and transfected with 10 µg of the reporter plasmid pGL3b2xDR5luc 

using Lipofectamine reagent. Stable clones were selected in 240 µg/ml Geneticin in 

RPMI 1640 medium. 

Name Attributes Reference 

pGL3b-2xDR5luc 
 synthetic minimal RARE-promotor 
 drives luciferase-gene 
 Ampicillin-Resistence 

D. Wahlström * 

pGL3b-RARβluc 

 region of RARE-promotor from natural 
RARβ gene 

 drives luciferase-gene 
 Ampicillin-Resistence 

D. Wahlström * 

pGl3b-DR1luc 
 RXRE-promotor 
 drives luciferase-gene 
 Ampicillin-Resistence 

D. Wahlström * 

pSG5-RARα  contain mouse RARα 
 Ampicillin-Resistence K. Pettersson * 

pSG5-RARβ  contain mouse RARβ 
 Ampicillin-Resistence K. Pettersson * 

pSG5-RXRα  contain mouse RXRα 
 Ampicillin-Resistence K. Pettersson * 

pSG5-RXRβ   contain mouse RXRβ 
 Ampicillin-Resistence K. Pettersson * 

pCMW-bGal   CMV-driven β-Galactosidase 
 Ampicillin-Resistence K. Pettersson * 

pRSV-βGal   RSV-driven β-Galactosidase 
 Ampicillin-Resistence K. Pettersson * 



 
MATERIAL AND METHODS                                                              43 

 

Tab.3.3: Transfection scheme of the different cell lines. 
 

Cell line                     Plasmids 

 

Luc-Reporter           

[ng/well] 

Retinoid-receptor
expression-vector 

[ng/well] 

β-Galactosidase 
reporter-enzyme 

[ng/well] 

CV1 pGL3basic2xDR5  10    + pSG5-RARα &  2      + pCMW-βGal 30 

   pSG5-RXRβ 2   

 pGL3basic2xDR5  100   + pSG5-RARβ & 2      + pCMW-βGal 30 

   pSG5-RXRβ 2   

 pGL3b-DR1Luc 100   + pSG5-RXRα 20    + pCMW-βGal 30 

 pGL3b-DR1Luc 100   + pSG5-RXRβ 20    + pCMW-βGal 30 

HeLa pGL3basic2xDR5 200 --- ---    + pCMW-βGal 30 

Hepa-1 pGL3b-RARβ2luc 100 --- ---    + pCMW-βGal 30 

P19 pGL3basic2xDR5 400 --- ---    + pRSV-βGal 100 
HC11-
RARE pGL3basic2xDR5 400 --- ---    + --- 100 

 

 

3.2.3.4. Retinoid treatment 
 
3 h after transfection, cells were treated with the appropriate retinoids. All experi-

mental procedures involving treatment with retinoids were light-protected (light was 

shut off, rooms were dimmed, all mix tubes containing retinoids were wrapped with 

aluminium foil). Prior to each experiment, the retinoid stock solutions were diluted in 

the culture media to the final concentration indicated (see tab.3.4). 0.5 ml media con-

taining all referred additives and the retinoids was added per well. The final concen-

tration of ethanol did not exceed 1% in the culture media, which should not disturb cell 

growth.  
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Tab.3.4: Overview about retinoid treatments of the different cell lines. 
 
 

Cell line  Transfection Treatment 

  single/ 
double retinoid concentration 

     

CV1 2xDR5/RARα/RXRβ single ethanol 
at-RA 
S-4o-9c-dh-RA 
R-4o-9c-dh-RA 
S-4o-at-dh-RA 
R-4o-at-dh-RA 

- 
100 nM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 

     

 2xDR5/RARβ/RXRβ single ethanol 
at-RA 
S-4o-9c-dh-RA 
R-4o-9c-dh-RA 
S-4o-at-dh-RA 
R-4o-at-dh-RA 

- 
100 nM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 

     

 DR1/RXRα single ethanol 
9c-RA 
S-4o-9c-dh-RA 
S-4o-at-dh-RA 

- 
100 nM 
10 nM; 1 µM, 10 µM 
10 nM; 1 µM, 10 µM 

     

 DR1/RXRβ single ethanol 
9c-RA 
S-4o-9c-dh-RA 
S-4o-at-dh-RA 

- 
100 nM 
10 nM; 1 µM, 10 µM 
10 nM; 1 µM, 10 µM 

     

HeLa 2xDR5 single ethanol 
at-RA 
S-4o-9c-dh-RA 
R-4o-9c-dh-RA 
S-4o-at-dh-RA 
R-4o-at-dh-RA 

- 
100 nM 
1 nM; 10 nM; 100 nM; 1 µM 
1 nM; 10 nM; 100 nM; 1 µM 
1 nM; 10 nM; 100 nM; 1 µM 
1 nM; 10 nM; 100 nM; 1 µM 

     

Hepa-1 RARβ2 single ethanol 
at-RA 
S-4o-9c-dh-RA 

- 
100 nM 
100 nM; 1 µM; 10 µM 

     

 RARβ2 double ethanol 
at-RA 
at-RA + S-4o-9c-dh-RA 

- 
1 nM 
1 nm + 1 nM; 10 nM; 100 nM; 1 µM 

     

P19 2xDR5 single ethanol 
at-RA 
S-4o-9c-dh-RA 
R-4o-9c-dh-RA 
S-4o-at-dh-RA 
R-4o-at-dh-RA 

- 
100nM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 
1 nM; 10 nM; 100 nM; 1 µM, 10 µM 

     

 2xDR5 double ethanol 
at-RA 
at-RA + S-4o-9c-dh-RA 

- 
10 nM 
10 nM + 1 nM; 10 nM; 100 nM; 1 µM; 
10 µM 

     

HC11-
RARE 

2xDR5 single ethanol 
at-RA 
S-4o-9c-dh-RA 
R-4o-9c-dh-RA 
S-4o-at-dh-RA 
R-4o-at-dh-RA 

- 
100 nM 
10 nM; 100 nM; 1 µM, 10 µM 
10 nM; 100 nM; 1 µM, 10 µM 
10 nM; 100 nM; 1 µM, 10 µM 
10 nM; 100 nM; 1 µM, 10 µM 
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3.2.3.5. Harvesting of cells 
 
The cells were harvested 24 h after treatment by removing the media from the wells 

and adding the lysis buffer (100 µl/well for 24 well plates or 130 µl/well for 12 well 

plates, respectively). For the preparation of lysis buffer, 0.5 µl 1M DTT was added to 

1 ml lysis-solution (Tropix®). The plates were incubated with the lysis buffer at RT 

until cells clearly disintegrate (dependent on cell line between 10 and 60 min). To 

avoid evaporation, plates were wrapped in Parafilm. 

 

3.2.3.6. Reportergene-assays  
 
Measurement of luciferase activity 

Luciferase activity in the reporter gene studies was measured using a Luciferase As-

say Kit (BioThema) according to the manufactures protocol at RT. First the cell ex-

tracts were homogenised by pipetting, followed by transferring the samples (40 

µl/well) from the 12- or 24-well plates to 96-well microplates. Luciferin and ATP 

were delivered lyophilised and were reconstituted by adding Tris-EDTA-buffer (de-

livered). Luciferin substrate was added to the wells with the cell extracts (100 

µl/well). The plate was placed in the luminometer (Lucy 2) and after adding the same 

volume of reconstituted ATP substrate (100 µl/well), light emission was measured. 

 

Measurement of β-Galactosidase activity 

β-Galactosidase activity of transfected cells was detected using the Tropix® Galacto-

Light Plus chemiluminescent reporter gene assay systems according to the manufac-

tures protocol using the luminometer Lucy 2. The assays were performed at RT. First 

the reaction buffer was prepared by diluting Galacton-Plus® substrate with reaction 

buffer diluent at a rate of 1:100. The cell extract was transferred to a 96-microplate 

(20 µl/well) and the reaction buffer was added (70 µl/well) using a transfer pipette. 

The microplate was covered with aluminium foil and incubated for 60 min. 2 µl 

H2O2 was added to the Accelerator-II. To stop the reaction, Accelerator-II solution 

was added to the samples (100 µl/well). Galacton Plus® substrate emits light at a near 
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constant level with a half life of approximately 180 min after addition of Accelerator-

II. The plate was placed in the luminometer and light signal was measured. 

 

Evaluation of luciferase activity 

Ratios of luciferase activity to β-galactosidase activity were determined to control 

transfection efficiency. The relative induction of luciferase activity is defined as a 

quotient of luciferase levels between treated and untreated control samples. Relative 

luciferase induction/ activity was calculated as follows: [Normalised luciferase level 

treated sample (luciferase level treated sample / b-galactosidase level treated sample) / Normalised 

luciferase level untreated sample (luciferase level untreated sample / b-galactosidase level untreated 

sample)]. 

 

 

3.2.4. RARβ2 gene expression analysis in P19 cells 

3.2.4.1. Treatment of P19 cells with retinoids 
 
P19 cells were cultured on Falcon 6 well culture plates two days before the start of 

each experiment so that they reach 80% confluency at the day of treatment. Each 

experiment started by treating all cells at the same time point during dark conditions. 

Cells were treated with increasing amounts of S-4o-9c-dh-RA (100 nM, 1 μM and 10 

μM) and at-RA (100 nM) as positive control diluted in culture media 2 ml/well). 

Prior to each experiment, the retinoid stock solutions were diluted in the culture media 

to the final concentration. The final concentration of ethanol did not exceed 0.5 ppm in 

culture media. 

 

3.2.4.2. Harvesting P19 cells and Isolation of RNA 
 
The cells were treated from 2 to 24 h. The cell lysis was combined in a single-step 

with the RNA isolation by using TRIZOL® according to the manufacturer’s protocol. 

Cells were lysed and homogenised by adding 1 ml of TRIZOL Reagent per well and 

passing the cell lysate a several times through a pipette. For the phase separation ho-

mogenised samples were incubated for 5 minutes at 15 to 30°C. After adding 0.2 ml 
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of chloroform to each well, culture plates were caped securely and vigorously shaked 

by hand for 15 seconds, followed by incubation at RT for 2 to 3 minutes. Samples 

were centrifuged at 12,000 × g for 15 min at 4°C. For RNA precipitation aqueous 

phase was transferred to a fresh tube and 0.5 ml of isopropyl alcohol was added. 

Samples were incubated for 10 min at RT and centrifuged at 12,000 × g for 10 min at 

4°C. After supernatant was removed, the RNA pellet was washed once with 1 ml 

75% ethanol. Sample were mixed by vortexing and centrifuged at 7,500 × g for 5 

min at 4°C. At the end RNA pellet was dried and redissolved in RNase-free water by 

passing the solution a few times through a pipette tip, and incubated for 10 min at 55 

to 60°C. In order to eliminate genomic DNA 2μg of total RNA from each extracted 

sample was treated with DNAseI. 

 

3.2.4.3. Reverse transcription of RNA into cDNA 
 
Total RNA was transformed to cDNA using SuperScript II. 1-2 μg of total RNA was 

DNase treated (together with 1 ul 10x reaction buffer and water in a total volume of 

10 ul) in RT for 15 min. The reaction was stopped by adding 1 ul of [25 mM] EDTA 

and heated at 65°C for 15 min. After adding 1 ul random hexamer primers [50 ng/μl] 

and 1 ul dNTP [10 mM] to each sample, the volume was adjusted to 11 μl with 

RNase free water. The samples were heated for 5 min at 65°C to denature primers 

and RNA and put immediately on ice. After a brief centrifugation in a table top cen-

trifuge specialised for PCR strips for a few sec, the following additives were supple-

mented (in a master mix prepared in advance): 4 μl of 5x 1st strand buffer (delivered 

with Superscript II enzyme), 2 μl 0.1M DTT [0,1M] (delivered with Superscript II 

enzyme), 1 μl RNase OUT (recombinant Ribonuclease inhibitor). The samples were 

gently mixed with the additives and incubated for 10 min at 25°C and equilibrated 

for 2 min at 42°C. After adding 1 μl of Superscript II, samples were incubated at 

42°C for 50 min in a thermocycler and reaction was inactivated at 70°C for 15 min. 

In the end, 1 ul of RNase H was added to each cDNA sample followed by incubation 

for 20 min at 37°C. To limit variations all RNA samples were reverse transcribed 

simultaneously. 
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3.2.4.4. Absolute quantification of RARβ2 transcript levels in P19 cells using 
qRT-PCR analysis 

 
Prior to q-RT-PCR analysis the cDNA stocks was diluted 5x in water. The quantita-

tive Real-Time PCR was performed on 96-well-PCR-plates using an ABI Prism 7500 

Real-Time PCR System (Applied Biosystems) with the software version 1.3 in com-

bination with Power CyberGreen MasterMix (ABI). The reaction volume per well 

was 12 µl in total and contained the following components: 0.36 µl Foreward primer 

[300 nmol], 0.36 µl Reverse primer [300 nmol], 6 µl Power CyberGreen MasterMix, 

3.28 ul water and 2 µl 5x diluted cDNA-template. To minimise the pipetting errors a 

master mix containing primers, CyberGreen MasterMix and water was prepared in 

advance. The PCR-plate was closed with tape, centrifuged and placed into the ABI 

Prism 7500 rotor. A dilution curve was added to each run in order to trace artefacts in 

individual samples. 

 

Tab.3.5: qRT-PCR reaction profile for RARβ2 and γ-actin transcript amplifica-
tion. 
 
Program Temperature (°C) Time 

Initial denaturation  95 10 min 
Amplification & quantification    
(40 cycles)             Denaturation: 95 15 sec 

                           Annealing: 60 60 sec 
Melting curve 60-95 15 sec 

Cooling step 4 ∞ 

 

 

The amplification and quantification program was performed with a single fluores-

cence measurement. The specificity of the qRT-PCR products was determined by 

performing the melting curve analysis after each PCR. The dissociation curve was: 

95°C in 15 sec down to 60°C for 1 min and again up to 95°C for 15 sec with an in-

creasing set point temperature after cycle 2 by 0.5 ºC per second and a continuous 

fluorescence measurement. The melting temperatures of RARβ2 and γ-actin tran-

scripts were approximately 83°C and 86°C, respectively. Oligonuleotid primers (see 
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tab.3.2) were optimised to an annealing temperature of 60°C. γ-actin is a housekeep-

ing gene that should be equally expressed in all cells and was used as an internal 

standard (endogenous control). 

 

3.2.4.5. Mathematical model for the calculation of the relative expression 
ratios 

 
The expression levels of the RARβ2 gene was determined based on the relative quan-

tity levels using the ΔΔct-method (comparative threshold method). The determina-

tion of the Ct values for each transcript and the calculation of the qRT-PCR efficien-

cies (E) from the given slopes were performed using the ABI Prism 7500 Real-Time 

PCR System software version 1.3. The relative expression ratio (RER) of the target 

gene RARβ2 is calculated based on E and Ct deviation of a treated sample (sample) 

versus a control (ctrl), and expressed in comparison to the reference gene γ-actin 

(Equation 1). All values are expressed in arbitrary units relative to the control treated 

cells from 1h time point (the calibrator). 

 

( )
( ) sample)(controlΔCt

ref

sample)(controlΔCt
target

ref

target

RER −

−

=
E

E

 
 
Fig.3.3: Equation for the calculation of the relative expression ratios. 

Etarget:   real-time PCR efficiency of the target gene transcript 

Eref:   real-time PCR efficiency of the reference gene transcript 

ΔCttarget:  Ct deviation of the control minus sample from the target gene transcript 

ΔCtref:   Ct deviation of the control minus sample from the reference gene transcript 

 
 
3.2.5. Limited proteolytic digestion assays 

3.2.5.1. In vitro translation of RARα and RARβ proteins 
 
Mouse RARα and RARβ protein was synthesised in vitro using the rabbit reticulo-

cyte lysate cell-free system coupled with T7 RNA polymerase and incorporation of 

[35S]methionine. Expression vectors pSG5-RARα and -RARβ were used as DNA-

templates. TNT Rabbit Reticulocite Lysate, TNT Reaction buffer, T7 RNA Poly-

merase, Amino Acid Mix, RNasin and expression vectors were stored at -70°C, 



 
50                                                                                   MATERIAL AND METHODS 

[35S]methionine at 5°C. Upon removal from storage, all components were immedi-

ately placed on ice. “Lysate-reaction-mix” (tab.3.6) was prepared on ice and incu-

bated at 30°C for 90 min in a Thermomixer. 

 
Tab.3.6: Composition of a “lysate-reaction-mix”. 
 

Components Standard reaction 
 (50 µl) 
TNT Rabbit Reticulocite Lysate 25 µl 

TNT Reaction buffer 2 µl 

T7 RNA Polymerase 1 µl 

Amino Acid Mix –Methionine 1 µl 

[35S]-Methionine 2 µl 

RNasin 1 µl 

DNA-Templatea) (1 µg/µl) 1 µl 

Water (to final volume of 50 µl) 17 µl 
                a) pSG5-RARα and –RARβ 
 
 
3.2.5.2. Ligand incubation and limited proteolysis reactions with Trypsin 
 
A 3.5 µl aliquote of the “lysate-reaction-mix” containing [35S]Methionine labelled 

retinoid receptor was incubated with 1.5 µl retinoid (100 nM at-RA or 10 µM S-4o-

9c-dh-RA, respectively) dissolved in ethanol for 45 min at 30°C in a Thermomixer 

(lids were covered with tinfoil to keep reactions light-protected). Controls were incu-

bated with ethanol alone. Final concentration of ethanol was < 1%. To 5 µl aliquots 

of retinoid-treated receptor proteins, 19 µl “digestion-mix” (tab.3.7) and 4 µl “en-

zyme-buffer-mix” (Trypsin dissolved in 50 mM acetic acid) in concentrations of 30, 

60, 120, 240 ng/µl) was added and incubated for 10 min at 25°C in a Thermomixer. 

This step includes a second ligand-incubation. The reaction was stopped by adding 6 

µl 5xSDS-loading buffer (see appendix) containing 500 µM EDTA and boiling for 5 

min in a water bath.  
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Tab.3.7: Composition of “digestion-mix” and 2nd ligand-Incubation. 
 

Components Single Reaction Mixture 

2 x BSB (see appendix) 10 µl 

DTT (0,1 M) 2 µl 

CaCL2 (40 mM) 3 µl 

WCEB (see appendix) 2 µl 

H2O 1 µl 

+ EtOH 1 µl 

+ retinoid-solution (to final conc. of 100 nM) 1 µl 
 
 
3.2.5.3. Separation of protein-fragments using SDS-PAGE 
 
Protein fragments were separated using SDS-polyacrylamide gel electrophoresis on 

10% (w/v) polyacrylamide gels (see appendix). Gels were gently filled into a cham-

ber between two 10x10 cm glass-sheets parted by two 3 mm wide spacers jammed 

into the electrophorese-system. After filling the separation gel into the chamber, it 

was covered with a layer of water to obtain a horizontal border of the gel. After po-

lymerisation, the water was removed and the stacking gel (see appendix) was poured. 

To create wells for loading the samples onto the gel, a comb to create 1 cm wide 

chambers was plugged into the gel. Proteins were separated in a vertical apparatus 

and 1x running buffer (see appendix) at 120 mV for approximately 1 ½ h. For fixa-

tion of the proteins, gels were soaked in 25% isopropyl alcohol and 10% acetic acid 

aqueous solution for 30 min followed by Amplify for 30 min to intensify the signal. 

Gels were gently put on absorbent paper, covered with cling film and dried in a vac-

uum drier for 30 min at 60°C, followed by 45 min at 80°C. The dried gels were 

autoradiographed over night at -80 °C. The X-ray-film was developed in an auto-

matic process using a Film Developer. 
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3.2.6. Chicken embryo limb bud model 
 
The procedure of the chicken experiments is schematically illustrated in fig.3.3 and 

the appropriate experimental conditions are summarised in tab.3.8. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.4: Schematic representation of A) bead-implantation-experiments and 
the following procedures for B) limb duplication assays and C) gene expres-
sion analysis. 
 
 
Fig.3.4A) Ion-exchange beads were soaked in ethanolic solution containing different 

concentrations of S-4o-9c-dh-RA or at-RA (see tab.3.8) and implanted in a created 

hole under the AER at the anterior margin of a right wing bud from a stage 20 chick 

embryo (3 ¼ days of incubation). Retinoids diffuse continuously into the mesenchy-

mal tissue and set up a concentration gradient, which results in the induction of the 

expression of certain genes. By placing the bead opposite to the ZPA, the RA-

gradient is formed mirror-symmetrically to the endogenous ZPA-signal gradient, 

which disturbs the patterning process of the skeletal limb elements. The embryos 

were returned back into the incubator and left to develop for a certain time depending 

on the purpose of the experiment. Embryos where the influence of the novel RA-

metabolite on the patterning process was investigated (limb duplication experiments) 

Stage 20 Chick Embryo

6 hour
Incubation

cut buds, count anterior & posterior side separatly

7 days
Incubation

24 hour
Incubation

RNA-
Extraktion RT-PCR

stainingfixing clearing

qRT-PCR

Lift AER Insert bead impregnated
with retinoid

release of 
retinoid

somites

16

17

18

19

20 ZPA

Concentration
Gradient

of  ZPA signal

Wing with an additional set
of digits

Wing bud with
bead implant

A Bead implantation B Limb duplication assays Digit pattern analysis

C Gene expression analysis

4 3
2
2

4

3

* *
*

remove bead, 
cut off bud

posterior half

anterior half

Stage 20 Chick Embryo

6 hour
Incubation

cut buds, count anterior & posterior side separatly

7 days
Incubation

24 hour
Incubation

RNA-
Extraktion
RNA-

Extraktion RT-PCRRT-PCR

stainingfixing clearing

qRT-PCR

Lift AER Insert bead impregnated
with retinoid

release of 
retinoid

somites

16

17

18

19

20 ZPA

Concentration
Gradient

of  ZPA signal

Wing with an additional set
of digits

Wing bud with
bead implant

A Bead implantation B Limb duplication assays Digit pattern analysis

C Gene expression analysis

4 3
2
2

4

3

* *
*4 3

2
2

4

3

* *
*

remove bead, 
cut off bud

posterior half

anterior half



 
MATERIAL AND METHODS                                                              53 

 

were incubated for 7 days followed by sacrificing the embryo and inspecting their 

skeletal pattern (fig.3.3B). Embryos were sacrificed and their limbs stained to visual-

ise the skeletal pattern. The treatment of the limb buds with bioactive retinoids leads 

to an aberrant skeletal pattern. The normal digit pattern 234 (from anterior to poste-

rior) is invariable changed in a pattern with one to three additional digits (marked by 

asterisks) arranged in a mirror-symmetrical manner. In a second set of experiments it 

was examined whether S-4o-9c-dh-RA can regulate the expression of certain at-RA 

target genes in the limb bud tissue using qRT-PCR analysis. Therefore buds were cut 

off after 6 or 24 h of incubation, respectively (fig.3.3C). Transcript levels of the di-

rect target genes RARβ2, Cyp26, and Hoxb-8 were analysed after 6 h of incubation, 

whereas levels of the indirect target genes shh and bmp-2 were analysed after 24 h. 

Buds removed after 6 h were homogenised completely, whereas buds from 24 hour 

time-point were cut into anterior and posteroir part.  

 

3.2.6.1. Incubation of eggs 
 
Fertilised White Leghorn chicken eggs (VALO SPF-eggs) were incubated at 37.5°C, 

and a humidity of ~ 60% in a horizontally orientation. 

 

3.2.6.2. Preparation of embryos 
 
After 65 h of incubation the eggs were taken out of the incubator and flipped twice 

by 180 ° (embryo detaches from the inner shell membrane). This was done while the 

eggs were disinfected with ethanol spray from all sides. Dissection needles were used 

to make first small holes into the blunt end of the eggshell followed by creating an-

other 3-4 mm wide hole on the flat eggshell above the embryo, which ought to float 

on the top. This step was done very carefully not to injure the embryo. After the un-

derlying opalescent membrane was cautiously punctured the embryo instantly de-

tached from the shell membrane and sunk, and an airspace formed. The hole on the 

flat top of the egg was sealed with tape and a hole of app. 12 mm diameter was cre-

ated with the help of small scissors. The embryos should be in the center of the hole.  
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Tab.3.8: Experimental conditions of the chicken embryo experiments. 
 
 

     

Experiment Treatment Soaking  
conc. 

Embryos 
per group 
 

Incubation time  
after bead  
implantation 

  [mg/ml] n  
     

Limb duplication at-RA 0.025 12 7 d 
assays  0.1 8 7 d 

  0.2 9 7 d 
  0.5 8 7 d 

     

 S-4o-9c-dh-RA 0.2 8 7 d 
  0.5 7 7 d 
  1 10 7 d 
  2.5 9 7 d 
  5 11 7 d 
  10 13 7 d 

 
ethanol - 8 7 d  

     

Gene expression at-RA 0.2 3 6 h 
analysis  0.2 3 6 h 

  0.2 3 6 h 
  0.2 2 24 h 
  0.2 2 24 h 
  0.2 2 24 h 

     

 S-4o-9c-dh-RA 2 3 6 h 
  2 3 6 h 
  2 3 6 h 
  2 2 24 h 
  2 2 24 h 
  2 2 24 h 

     

 ethanol - 3 6 h 
  - 3 6 h 
  - 3 6 h 
  - 2 24 h 
  - 2 24 h 
  - 2 24 h 

 
 
If not, the eggs were slightly jiggled until the embryos were centered. The embryos 

were staged according to Hamburger & Hamilton (HAMBURGER & HAMILTON, 

1951) and should be in the stage of 17. In order to provide the embryos in the same 

stage for the operations, they were synchronised by leaving them at RT for up to 5 h. 

After staging the hole was covered with another piece of tape and the eggs were re-

turned back into the incubator for another 15-18 h to bring them in the stage of 20. 
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3.2.6.3. Preparation of material before operating embryos 
 
The surgical manipulations of the limb buds were accomplished with the help of a 

electronically sharpened tungsten needle. Therefore a 3 cm long piece of tungsten 

wire (0.3 mm thick) was clamped into a bracket and one outlet of a transformer (set 

on 6 Volt) is connected to the tungsten wire with a clip. The other outlet is connected 

to a solution of 2 N sodium hydroxide. While dunking the tungsten wire into the hy-

droxide solution up and down the tungsten wire form a sharp, fine needle. All em-

bryo works were carried out under a dissecting microscope with a magnification 

range from x10 to x50 on a clean bench, which was cleaned with 70% ethanol to-

gether with all necessary tools prior to the experiments. 

 

3.2.6.4. Impregnation of the beads with retinoids 
 
All works with retinoids were carried out under shade conditions. Approximately 15 

AG1-X2 ion-exchange beads of 200 – 250 µm diameters were placed by forceps into 

a 1.5 ml micro centrifuge polypropylene tube and soaked in 30 µl ethanolic solution 

containing the retinoids. The soaking concentration for at-RA ranged from 25 to 500 

µg/ml for limb duplication experiments and was 200 µg/ml for gene expression 

analysis, whereas the soaking concentration for S-4o-9c-dh-RA was 0.2 to 10 mg/ml 

for limb duplication experiments and 2 mg/ml for gene expression analysis (for de-

tails see tab.3.8). As controls, beads were soaked in ethanol. The micro centrifuge 

tubes containing beads and soaking solution were vigorously shaken in a microtube 

shaker for 20 min at RT. After removing the retinoid solution, beads were washed 

twice for 20 min in 200 µl of phenol red-containing phosphate-buffered saline (100  

ml PBS and 500 µl of a 2 mg/ml phenol red solution in ethanol) while tubes were 

shacked. Beads were placed with the last washing solution in form of a drop on a 35 

mm Petri dish. 

 

3.2.6.5. Bead-Implantation at the anterior wing bud margin 
 
The embryos in stage 20 were taken out of the incubator. After removing the tape the 

serosa and amnion membrane were torn away with two watchmaker’s forceps. Using 
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the electronically sharpened tungsten needle a slit was cut between the AER and the 

underlying mesenchyme (cf. chapter fig.3.3). The ridge was carefully lifted up to 

create a loop in which the bead was then carefully maneuvered using the forceps. 

The method is precisely described in TICKLE et al. (1985) and WEDDEN et al. 

(1990). Fig.3.4 shows an image of a stage 20 chick embryo with a bead implant im-

mediately after implantation. The eggs were sealed with tape and returned back to 

the incubator for either 6 or 24 h for gene expression analysis and 7 days for analysis 

of wing patterns (cf. chapter fig.3.3B, C and tab.3.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.6.6. Continuing procedures for limb duplication assays 
 
Sacrificing, fixing, staining and clearing of the embryos 

After another 7 days of incubation embryos were removed out of the egg with blunt 

forceps and sacrificed by decapitation. The specimens were washed three times in 

water, fixed over night in 5% (w/v) trichloroacetic acid, stained for 8 h in Alcian 

Blue dye solution (0.5 g of dye in 500 ml 70% (v/v) ethanol containing 1% HCl) and 

washed for 6 h in acidic ethanol (70% ethanol containing 1% HCl) to remove excess 

dye. Subsequently the embryos were dehydrated in absolute ethanol for 6 h. Finally 

specimens were dropped in methyl salicylate to clear the embryos and enable the 

Fig.3.5: Picture of a HH-stage 22 old chick 
embryo with bead-implant. 
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inspection of the skeletal pattern under a dissecting microscope. All listed steps were 

performed in densely closed glass vials slightly shaking on a rocking platform. 

 

Analysis of wing patterns and data analysis 

In order to generate dose-response curves that quantitatively reflect the effects of 

retinoids on the digit pattern, the extent of pattern duplication is stated in percentage 

respecification values (PRV) in which the wing patterns are expressed in numerical 

terms. Patterns were scored as follows: A pattern with the anteriormost additional 

being a digit 4 scored 100%. A wing with an additional digit 3 anteriorly scored 

66%, while a wing with an additional digit 2 scored 33%. A digit of equivocal iden-

tity obtained a score of 0%. For the calculation of a PRV of a group treated with a 

certain concentration the scores of specimens treated with particular dose are added 

and divided by embryos per group (n). These values, which range from 0 to 100%, 

were plotted against the soaking concentration in the retinoid solution to generate a 

dose-response curve. The validation of limb duplication results in the form of a dose-

response-curve is exemplarily shown in fig.3.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.6: Validation of the limb duplication results in a dose-response curve.  
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3.2.6.7. Continuing procedures for gene expression assays 
 
Dissection of limb bud tissue 

After 6 and 24 h of incubation embryos were dissected out of the egg and rinsed in 

ice-cold PBS. Before cutting off the right buds with bead implantion using small 

scissor the beads were removed off the bud (see fig.3.3C). From each embryo the 

untreated left buds were collected additionally to obtain tissue material for analysis 

of endogenous expression levels of the target genes. In addition, buds from the 24 

hour time point were cut into anterior and posterior parts using a fine tungsten needle 

(see fig.3.3C.), whereas whole buds were used from the 6 hour time point. The parti-

tion was a quite delicate procedure since the buds possess a size of a small pinhead 

(~ 2-2.5 mm diameter). For each time point 3 buds were pooled, and experiments 

were carried out in triplicate. Dissected buds were collected in sterile micro centri-

fuge vials. Before tissue was rinsed in 600 µl disruption buffer (RLT-lysis buffer 

from RNeasy® kit containing 10 µl β-Mercaptoethanol/ ml), the left-over PBS was 

removed by pipetting. After 10 min of incubation on ice the tissue was homogenised 

by pushing the extract a several times through a needle with a syringe. 

 

RNA-Isolation from limb bud tissue 

Total RNA was extracted and purified using universal tissue RNeasy® Kit according 

to the manufacturer’s instructions. 1 Volume (600 µl) of 70% ethanol was added to 

the homogenised lysate and mixed by well pipetting. Samples were applied in two 

steps (600 µl each time) to RNeasy mini columns (containing silica gel membrane) 

and centrifuged for 15 sec at 10000 rpm in a micro centrifuge. The flow-through was 

discarded. In a washing step 700 µl RW1 buffer was added to the columns, followed 

by 15 sec centrifugation at 10000 rpm and discarding the flow-through together with 

the collection tubes. The columns were placed in new sterile RNase free tubes and 

500 µl RPE buffer was added. Columns were centrifuged for 15 sec at 10000 rpm 

and flow-through was discarded. This step was repeated with 2 min centrifugation 

time. The flow-through was discarded. Columns were placed in new sterile RNase 

free tubes and centrifuged for 1 min at full speed. For the elution of RNA columns 

were placed again in new 1.5 ml RNase free tubes and 50 µl of RNase-free DEPC-
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H2O was added and columns were centrifuged for 1 min. at 10000 rpm. The step was 

repeated with the same eluate. 

 
Reverse transcriptase reaction (cDNA-synthesis) 

Total RNA was reverse transcribed using ThermoScriptTM RT-PCR-System (Invitro-

gen) with oligo-(dt)20 primers. For priming polyadenylated RNA 1 µg total RNA was 

combined with 1 µl oligo-(dt)20 primers (50 pmol), 2 µl dNTP Mix (10 mM) and 

DEPC-H2O (up to volume of 12 µl). To denature primers and RNA the samples were 

incubated at 65°C for 5 min in a thermocycler followed by chilling on ice. A master-

mix for the reverse transcription was produced (see fig.3.9). cDNA synthesis buffer, 

RNaseOUT & ThermoScriptRT are very temperature-sensitive, therefore solvents 

were thawed directly before use. 5 X cDNA synthesis buffer was vortexed immediate 

before pipetting. All pipetting steps were performed on ice. The sample was reversed 

transcribed at 52°C for 60 min in a thermocycler. After cDNA synthesis and termina-

tion of the reaction by incubating at 85°C for 5 min, the reaction mixture was incu-

bated with RNase H (1 µl per sample) at 37°C for 20 min. To limit variations all 

RNA samples were reverse transcribed simultaneously. 

 
Tab.3.9: Composition of master-mix for qRT-PCR. 
 

Components per Reaction 

5 X cDNA synthesis buffer 4 µl 

0,1 M DTT 1 µl 

RNaseOUT (40 U/µl) 1 µl 

DEPC-H2O 1 µl 

ThermoScriptRT (15 units/µl) 1 µl 

 
 
Absolute quantification of RA-target gene transcript levels in limb bud tissue 

The expression rates of the corresponding RA-target genes in proportion to the en-

dogenous controls were analysed using qRT-PCR performed on an iCyclerTM in 20 

µl reaction mixtures (conditions see fig.3.10). For the reactions a master mix of the 

following reaction components was prepared to the indicated end-concentration: 2,5 
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µl Foreward primer (350 nmol), 2,5 µl Reverse primer (350 nmol) and 10 µl Farst 

start iQTM SYBR Green Supermix. The SYBRGreen-Primer-Mix (15 µl) was filled 

in 96-well-PCR-plates and 5 µl cDNA was added as PCR template. The PCR-plate 

was closed with tape, centrifuged and placed into the iCyclerTM rotor. 

 

Tab.3.10: qRT-PCR conditions for Hoxb-8, RARβ2, Cyp26, shh, and bmp-2 
transcript amplification. 
 
Program Temperature (°C) Time 

Initial denaturation  95 10 min 
Amplification & quantification    
(50 cycles)             Denaturation: 94 15 sec 

                            Annealing: 60 25 sec 
                           Extension: 72 20 sec 

Melting curve 50-94 10 sec 

Cooling step 4 ∞ 

 
The amplification and quantification program was performed with a single fluores-

cence measurement. The specificity of the qRT-PCR products was determined by 

performing the melting curve analysis after each PCR from 50-94°C with an increas-

ing set point temperature after cycle 2 by 0.5 ºC per second and a continuous fluores-

cence measurement. Oligonuleotid primers (see tab.3.2) were optimised to an anneal-

ing temperature of 60°C. TBP (TATA box binding protein) is a housekeeping gene 

that should be equally expressed in all cells and was used as an internal standard. 

 

Calculation of relative expression ratios 

Expression levels of target genes were determined by the standard curve method. The 

standard curve of each target gene is performed with coincidental samples over 3.5 

log levels on each plate. The absolute quantity of target RNA was determined by the 

iCyclerTM iQ Optical Software. The expression level of each target gene was normal-

ised by dividing it by the TBP expression level. All assays were performed in tripli-

cate and the results represent three repeated experiments. The RER of each target 

gene is defined as a quotient between treated and untreated samples, based on the 

absolute quantity levels, and is expressed in arbitrary units (RER = [absolute target 



 
MATERIAL AND METHODS                                                              61 

 

gene quantity treated sample (absolute quantity target gene / absolute quantity TBP)] / [abso-

lute target gene quantity untreated sample (absolute quantity target gene / absolute quantity 

TBP)]). Since shh is a gene which is not expressed endogenously in the anterior sec-

tion of the limb buds, the RER for shh (RERshh) is determined as a quotient between 

at-RA and S-4o-9c-dh-RA-treated samples (RERshh = [absolute shh quantity at-RA-treated 

sample (absolute quantity shh / absolute quantity TBP)] / [absolute shh quantity S-4o-9c-dh-

RA-treated sample (absolute quantity shh / absolute quantity TBP)]). The difference in RER 

levels between retinoid treated and untreated samples were assessed using the un-

paired t-test. The level of significance was selected as p<0.05. 

 

3.2.7. Statistical analysis of transactivation and qRT-PCR results 
 
The statistical analysis of the data from the transactivation studies (relative luciferase 

activity/ induction) as well as the data from the gene expression studies (relative ex-

pression ratios) were assessed by paired t-tests using Sigmastat Statistical software 

(Jandel Scientific, Erkath, Germany). The reported data are the arithmetric mean ± 

standard deviation (SD) for individual groups of different treatments. When the data 

were normally distributed (Kolmogorov-Smirnov test) the paired t-tests was used to 

test the statistic significance between control vs. treated sample. Group sizes are in-

dicated in result figures. 
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4. Results 

4.1 Chemical purity of the synthetic S-4-oxo-9-cis-13,14-dihydro-
retinoic acid used in biological experiments 

 
For purity check aliquots of the standard stock solutions were injected in concentra-

tions between 10 and 100 ng/ml. Fig.4.1 shows three typical chromatograms of polar 

retinoids separated by reversed phase HPLC. Fig.4.1A shows the typical polar frac-

tion of liver retinoids from NRMI-mice and displays the high endogenous concentra-

tion  of  the  new  RA-metabolite  in comparison to at-RA. The purity of the synthetic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4.1: Chromatograms of polar retinoids separated by reversed phase HPLC. 
 
 

A) Polar fraction of liver retinoids from NRMI-mice. B) Standard mixture consisting of several 
RA derivatives 1: 4-oxo-13-cis-RA , 2: 4-oxo-all-trans-RA, 3: S-4o-9c-dh-RA, 4: internal 
standard (IS) all-trans-Acitretin, 5: all-trans-3,4-didehydro-RA, 6: 13-cis-RA, 7: 9-cis-RA, 8: 
at-RA. C) Aliquot of the purified synthetic S-4o-9c-dh-RA-stock solution used for biological 
investigations. The 50-times magification of the signal demonstrates the purity of the stock 
solution. (RP18 column, Spherisorb ODS 2 mm, 2.1 x 150 mm, 3 µm particle size). 
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material used in the biological experiments is demonstrated by comparing the chro-

matograms of an aliquot of the synthetic S-4o-9c-dh-RA-stock solution (fig.4.1C) 

with a standard mixture containing a number of RA derivatives (fig.4.1B). The tiny 

peak right in front of the S-4o-9c-dh-RA-peak (fig.4.1C) cannot be assigned to a cer-

tain compound, since the signal is smaller than the signal-to-noise ratio (S/N) of 2. 

Fig.4.2 demonstrates the purity of the specific enantio-selective isomers after three 

separation steps in comparison to the initial racemic mixtures.  
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.2: Chromatograms of purified 4o-dh-RA stock solutions separated by 
chiral phase HPLC. 
 
 

A) Aliquot of synthesis product containing both enantiomers of 4o-11c-dh-RA and 4o-at-dh-
RA. B) Aliquot of S-4o-at-dh-RA and C) R-4o-at-dh-RA after purification with chiral phase 
HPLC. D) Aliquot of synthesis product containing both enantiomers of 4o-9,11dc-dh-RA and 
4o-9c-dh-RA. E) Aliquot of S-4o-9c-dh-RA (new metabolite) and F) R-4o-9c-dh-RA after 
purification with chiral HPLC. Chromatograms of B, C, E, and F) demonstrate the purity of 
stock-solutions, which were used in the biological investigations. (Chiracel OJ-H column, 4.6 
x 250 mm, 10 µm particle size). 
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4.2 Transcriptional activation of retinoid receptor dependent 
luciferase reporter plasmids transfected to different cell lines 

 
To analyse the possible transcriptional activity of 4o-dh-RAs several different cell 

lines were transfected with different luciferase reporter plasmids. The luciferase syn-

thesis from these plasmid constructs is under the regulation of a RARE or RXRE, 

which are exclusively recognised by either ligand activated RAR/RXR heterodimers 

or ligand activated RXR/RXR homodimers, respectively. The retinoid-receptor-

dimer-complexes bind to the corresponding regulatory sequence of the plasmids, 

which is the 2xDR5 element for RAR/RXR-heterodimers or the DR1 element for 

RXR/RXR-homodimers, respectively. This results in transcriptional activation and 

the expression of the luciferase gene (for details see methods). The level of luciferase 

expression is positively correlated to the rate of transcription, which is in turn related 

to the specific capacity of a ligand to activate signaling through the retinoid recep-

tors. In all experiments at-RA was used as a positive control. The control treated 

cells were set to one, meaning all the treated sample values are relative to untreated 

cells. 

 

4.2.1. Transcriptional regulation of the synthetic 2xDR5 element in HC11-
RARE, Hela, and P19 cells 

 
HC11-RARE, HeLa and P19 cells express several retinoid receptors and thus have a 

functioning retinoid signaling system. These cell lines are thus suitable model sys-

tems for investigating retinoid dependent signaling. The pGL3basic2xDR5luc re-

porter vector was stably transfected to HC11 cells (fig.4.3) and transiently to Hela 

(fig.4.4) and P19 cells (fig.4.5). After transfection, cells were subsequently treated 

with increasing doses of 4o-9c-dh-RA or 4o-at-dh-RA, respectively. In each case 

both enantiomers were tested to observe, whether differences exist between the       

S- and the R-type.  

 

Transcriptional activity in HC11-RARE cells 

The first picture (A) in figure 4.3 shows the stable transfected HC11-RARE cells, 

treated with four concentrations of S-4o-9c-dh-RA for 24 hours. Beside a 3.2-fold 
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induction of the at-RA treated cells (fig.4.3A lane 2), a dose dependent increase in 

transcriptional activity from the luciferase reporter upon treatment with S-4o-9c-dh-

RA was observed. The increase in transcriptional activity among the S-4o-9c-dh-RA 

-treated cells compared to the control treated became significant from a concentration 

of 1 μM of S-4o-9c-dh-RA, with a 1.7-fold increase, whereas 10 µM resulted in a 

2.4-fold increase (fig.4.3A lanes 5-6). At lower concentrations (10 nM and 100 nM), 

only a slight increase in transcriptional activity was observed (fig.4.3A lanes 3 and 

4). The effect of R-4o-9c-dh-RA on transcriptional activation was very weak and 

failed to show any statistically significance (fig.4.3B lane 3-6). Whereas at-RA 

treatment induced the luciferase activity 2.1-fold, the highest induction of R-4o-9c-

dh-RA was 1.2-fold at 10 µM (fig.4.3B lane 6).  

 

The situation in HC11-RARE followed by 4o-at-dh-RA treatment was different. 

Both enantiomers, and in particular the S-type, were able to induce the luciferase 

reporter activity. S-4o-at-dh-RA treatment of the cells showed a significant induction 

of the luciferase activity already at the lowest tested concentration with 1.8-fold at 10 

nM (fig.4.3C lane 3 & 4) and reached a 3.3-fold induction at 10 µM (fig.4.3B lane 6) 

compared to a 4.2-fold induction of at-RA treatment. R-4o-at-dh-RA (fig.4.3D lane 

3-6) was less active and didn’t show the same clear dose-response compared to S-4o-

9c-dh-RA or S-4o-at-dh-RA. The fold-induction of the luciferase activity followed 

by R-4o-at-dh-RA was 1.4 at 10 nM and 2.0 at 10 µM compared to 3.0 after at-RA 

treatment. 

 

Transcriptional activity in Hela cells 

Figure 4.4 shows transiently transfected Hela cells, which were treated in a similar 

shape but already at lower concentrations. The transcriptional activity of S-4o-9c-dh-

RA in Hela cells is similar to the results from HC11-RARE cells. The luciferase ac-

tivity at low concentrations (between 1 and 100 nM) was not significantly induced 

(fig.4.4A lanes 3-5). However, S-4o-9c-dh-RA treatment in concentration of 1 µM 

led to a 2-fold increase of luciferase activity (fig.4.4A lane 6), compared to a 3.7-fold 

increase followed by control treatment with at-RA (fig.4.4A lane 2). 
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Fig.4.3: Transcriptional activation of the minimal RARE (2xDR5) by 4o-9c-dh-
RA and 4o-at-dh-RA, in HC11-RARE cells. 
 
 

HC11 were stable transfected with a simple RARE in direct repeat (2xDR5), which has been 
cloned into a pGL3basic-luc vector. Luciferase expression (represented in relative amounts 
by the different bars) results only upon transcriptional activation of the luciferase reporter 
plasmids by ligand activated RAR/RXR heterodimers (for details see methods). After 3 h of 
transfection cells were treated with A) S-4o-9c-dh-RA, B) R-4o-9c-dh-RA, C) S-4o-at-dh-RA, 
or D) R-4o-at-dh-RA in the indicated concentrations. In each experiment at-RA [100 nM] was 
used as a positive control. After 24 h of incubation, cells were collected by lysis and assayed 
for luciferase activity as described in methods. The relative luciferase induction is defined as 
a quotient of luciferase levels between treated and untreated control samples. Presented 
results are mean values of three experiments carried out in duplicates. Statistical analyses 
are described in methods. Stars indicate significant difference from controls (Ctrl), whereas * 
P < 0.05, ** P < 0.01, and *** P < 0.001, respectively. 
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Similar to the results from HC11-RARE cells in fig.4.3B, R-4o-9c-dh-RA showed 

only marginal or no transcriptional activity on luciferase expression in Hela cells at 

any concentrations (fig.4.4B lane 3-6) compared to the robust induction followed by 

at-RA control treatment (fig.4.4B lane 2). As can be seen in fig.4.4C, S-4o-at-dh-RA 

had a distinct effect on RAR-mediated transcription and induced luciferase activity 

already at low concentrations (fig.4.4C lane 3-6). The effect was dose-dependent and 

reached – with 3.4-fold at 1 µM – a noticeable induction compared to the effect of at-

RA. In contrast, the transcriptional activity of R-4o-at-dh-RA (fig.4.4D lane 3-6) in 

Hela cells was again weaker compared to S-4o-at-dh-RA and did not reach its poten-

cy. 

 

Transcriptional activity in P19 cells 

In P19 cells S-4o-9c-dh-RA treatment induced the luciferase reporter activity already 

at low concentrations from 1 nM or 10 nM (fig.4.5A lane 3 and 4). The induction – 

1.2-fold at 1 nM and 1.3-fold at 10 nM – was weak but statistically significant and 

reached a 2.8-fold increase at the highest treatment concentration of 10 µM (fig. 

4.5A lane 7) compared to a 6.8-fold increase followed by at-RA treatment (fig. 4.5A 

lane 2). The R-type enantiomer of 9c-4o-dh-RA (fig. 4.5B lane 3-7) was also able to 

induce luciferase activity in this system at low concentrations, whereas the effect was 

a bit less strong compared to S-4o-9c-dh-RA treatment thought. In contrast, a clear 

dose-dependent effect on luciferase activity was observed following S-4o-at-dh-RA 

(fig.4.5C lane 3-7) treatment.  

 

S-4o-at-dh-RA induced the luciferase reporter activity at the lowest treatment con-

centration of 1 nM (1.6-fold, fig. 4.5C lane 3) and reached a 4.1-fold induction at 10 

µM (fig. 4.5C lane 7). Similar to the results from HC11-RARE and Hela cells shown 

in fig.4.3D and 4.4D, R-4o-at-dh-RA had a weak(er) effect on transcriptional activa-

tion of luciferase expression, with the exception of the highest concentration (10 

µM), where the luciferase activity is 4.6-fold induced compared to the untreated con-

trols (fig. 4.5D lane 7). 
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Fig.4.4: Transcriptional activation of the minimal RARE (2xDR5) by 4o-9c-dh-
RA and 4o-at-dh-RA, in transfected Hela cells. 
 
 

Hela were transiently transfected with a simple RARE in direct repeat (2xDR5), which has 
been cloned into a pGL3basic-luc vector. Luciferase expression (represented in relative 
amounts by the different bars) results only upon transcriptional activation of the luciferase 
reporter plasmids by ligand activated RAR/RXR heterodimers (for details see methods). 
After 3 h of transfection cells were treated with A) S-4o-9c-dh-RA, B) R-4o-9c-dh-RA, C) S-
4o-at-dh-RA, or D) R-4o-at-dh-RA in the indicated concentrations. In each experiment at-RA 
[100 nM] was used as a positive control. After 24 h of incubation, cells were collected by 
lysis and assayed for luciferase activity as described in methods. The relative luciferase in-
duction is defined as a quotient of luciferase levels between treated and untreated control 
samples. Presented results are mean values of three experiments carried out in duplicates. 
Statistical analyses are described in methods. Stars indicate significant difference from con-
trols (Ctrl), whereas * P < 0.05, ** P < 0.01, and *** P < 0.001, respectively. 
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Fig.4.5: Transcriptional activation of the minimal RARE (2xDR5) by 4o-9c-dh-
RA and 4o-at-dh-RA, in transfected P19 cells. 
 
 

P19 were stable transfected with a simple RARE in direct repeat (2xDR5), which has been 
cloned into a pGL3basic-luc vector. Luciferase expression (represented in relative amounts 
by the different bars) results only upon transcriptional activation of the luciferase reporter 
plasmids by ligand activated RAR/RXR heterodimers (for details see methods). After 3 h of 
transfection cells were treated with A) S-4o-9c-dh-RA, B) R-4o-9c-dh-RA, C) S-4o-at-dh-RA, 
or D) R-4o-at-dh-RA in the indicated concentrations. In each experiment at-RA [100 nM] was 
used as a positive control. After 24 h of incubation, cells were collected by lysis and assayed 
for luciferase activity as described in methods. The relative luciferase induction is defined as 
a quotient of luciferase levels between treated and untreated control samples. Presented 
results are mean values of three experiments carried out in duplicates. Statistical analyses 
are described in methods. Stars indicate significant difference from controls (Ctrl), whereas * 
P < 0.05, ** P < 0.01, and *** P < 0.001, respectively. 
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The results show similarities for all three cell lines: S-4o-9c-dh-RA is actually able to 

induce transcriptional activity in a similar manner as at-RA compared to control 

treated cells. The transcriptional activity induced by S-4o-9c-dh-RA from the 

pGL3b-2xDR5luc reporter does not reach exactly the same level as at-RA in these 

experiments. Even though, the clearly observable increase in transcriptional activity 

induced by S-4o-9c-dh-RA compared to controls showed to be statistically signifi-

cant in concentrations from of 1 nM in P19 cells (fig.4.5A lane 3) and 1 µM in 

HC11-RARE (fig.4.3A lane 5) and Hela cells (fig.4.4A lane 6). Although the effect 

at lower concentrations is not statistically significant altered in some cases, the data 

clearly show a trend suggesting that the effect is dose-dependent. The effect of R-4o-

9c-dh-RA on the transcriptional activation of the pGL3b-2xDR5luc reporter was 

throughout weaker compared to S-4o-9c-dh-RA in all three cell lines and failed to 

show a clear dose-dependency. In this respect the difference in the effectiveness be-

tween the S- and the R-enantiomer was also observed among the two 4o-at-dh-RA 

enantiomers. Whereas S-4o-at-dh-RA was thus able to transactivate luciferase ex-

pression in a dose-dependent fashion, R-4o-at-dh-RA was consistently less active in 

all three cell systems. 

 

Additionally, the possibility that S-4o-9c-dh-RA could have antagonistic or synergis-

tic effects against at-RA, regarding ligand properties towards RAR/RXR het-

erodimers was investigated. To investigate this, P19 cells were transfected with the 

pGL3b-2xDR5luc reporter in the same fashion and subsequently co-treated with at-

RA together with different doses of S-4o-9c-dh-RA, ranging from 1 nM to 1 µM 

(fig.4.6 lanes 3-6). All retinoid treatments with at-RA or S-4o-9c-dh-RA induced the 

luciferase reporter activity statistically significant (P < 0.001) between 4.2- and 5.0-

fold. The results from these experiments failed to show any statistically significant 

difference (marked by #) between the effects from co-treated cells (fig.4.6 lane 3-6) 

compared to cells treated only with at-RA (fig.4.6 lane 2). 



 
RESULTS                                                                                                                   71 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6: Transcriptional activation of the minimal RARE (2xDR5) in transfected 
P19 cells after co-treatment with at-RA and S-4o-9c-dh-RA.  
 

P19 were stable transfected with a simple RARE in direct repeat (2xDR5), which has been 
cloned into a pGL3basic-luc vector. Luciferase expression (represented in relative amounts 
by the different bars) results only upon transcriptional activation of the luciferase reporter 
plasmids by ligand activated RAR/RXR heterodimers (for details see methods). In this set of 
experiments P19 cells were double-treated with at-RA and increasing concentrations of S-
4o-9c-dh-RA to investigate antagonistic or synergistic effects of S-4o-9c-dh-RA towards at-
RA. In each experiment at-RA single treatment [100 nM] was used as a positive control. 
After 24 h of incubation, cells were collected by lysis and assayed for luciferase activity as 
described in methods. The relative luciferase induction is defined as a quotient of luciferase 
levels between treated and untreated control samples. Presented results are mean values of 
three experiments carried out in duplicates. Statistical analyses are described in methods. 
Stars indicate significant difference from controls (Ctrl), whereas * P < 0.05, ** P < 0.01, and 
*** P < 0.001, respectively. # indicates no statistical significant difference between double vs. 
at-RA single treatment. 
 
 
Resume of the results from HC11-RARE, Hela, and P19 cells 
 
To sum up the results briefly, all three cell lines that were transfected with the 

pGL3b-2xDR5luc reporter showed a robust dose dependent increase in transcrip-

tional activity upon treatment with S-4o-9c-dh-RA, compared to controls. Co-

treatment with at-RA and increasing dose of S-4o-9c-dh-RA in P19 cells did not 

show either antagonistic or synergistic effects. 
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4.2.2. Transcriptional regulation of the natural RARβ2 gene promoter in 
Hepa-1 cells 

 
Hepa-1 cells also express several retinoid receptors, and are therefore also appropri-

ate for studying retinoid signaling. Hepa-1 cells were transiently transfected with the 

luciferase reporter plasmid pGL3b-RARβluc, regulated by a partial RARβ2 promoter 

sequence, which is more complex than the simple 2xDR5 RARE. As seen in figure 

4.7A, treatment of the transfected Hepa-1 cells with S-4o-9c-dh-RA induced tran-

scriptional activity also from this more naturally regulated RARE sequence. The 

treatment of 10 μM S-4o-9c-dh-RA was followed by a 1.6-fold induction of the 

luciferase reporter activity compared to the controls (fig.4.7.A lane 1 & 5), whereas 

the lower concentrations of S-4o-9c-dh-RA had no effect (fig.4.7A lane 3 and 4).   

At-RA treated cells showed a 2.8-fold increase (fig.4.7A lane 2).  

 

Again, the possibility of antagonistic or synergistic effects between at-RA and S-4o-

9c-dh-RA in activating the retinoid receptors was investigated (see figure 4.7B). The 

treatment condition was similar as for the P19 cells in fig. 4.6. First of all, at-RA 

treatment induced the luciferase reporter activity 3.9-fold compared to untreated con-

trols (fig. 4.7B lane 2). Co-treatment with 1 nM and 10 nM of S-4o-9c-dh-RA led to 

a slightly increased luciferase expression, which was induced approximately 4.5-fold 

(fig. 4.7B lane 3-4). Co-treatment with 1 and 10 μM (fig. 4.7B, lanes 5-6) led to a 

greater induction, approximately 6-fold (1.5 times higher than at-RA single treat-

ment). The variations were greater between the repeated experiments here compared 

to those in fig. 4.6. Nevertheless, an interesting trend is clearly observable, whereas 

double-treatment of these cells resulted in a more robust transcriptional activation 

than at-RA single treatment, especially at concentrations from 1 μM S-4o-9c-dh-RA. 

This effect of double treatment was not seen in P19 cells. This difference is more 

likely to be dependent on difference between the cell types rather than the regulatory 

sequences of the transfected reporter plasmids. Any how, there is a clear difference 

between the results from these two double treatment experiments (fig. 4.6 & 4.7B). 
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Fig.4.7: Transcriptional activation of the natural RARE by S-4o-9c-dh-RA, in 
transfected Hepa-1 cells. 

 

Hepa-1 cells were transfected with the natural RARE from the RARβ2 promoter, which has 
been cloned into a pGL3basic-luc vector. Luciferase expression results only upon transcrip-
tional activation of the luciferase reporter plasmids by ligand activated RAR/RXR het-
erodimers (for details see methods). A) After 3 h of transfection cells were treated with S-4o-
9c-dh-RA in the indicated concentrations and at-RA [100 nM] as a positive control. B) In 
comparative experiments cells were treated with at-RA together increasing concentrations of 
S-4o-9c-dh-RA to investigate antagonistic or synergistic effects of S-4o-9c-dh-RA towards 
at-RA. After 24 h of incubation, cells were collected by lysis and assayed for luciferase activ-
ity as described in methods. The relative luciferase induction is defined as a quotient of 
luciferase levels between treated and untreated control samples. Presented results are 
mean values of three experiments carried out in duplicates. Statistical analyses are de-
scribed in methods. Stars indicate significant difference from controls (Ctrl), whereas ** P < 
0.01 and *** P < 0.001. # indicates no statistical significant difference between double vs. at-
RA single treatment. 
 
 
4.2.3. Transcriptional activation of the RARE element (2xDR5) in CV1 cells 

via RARα or RARβ 
 
CV-1 cells lack expression of retinoid receptors except small amounts of RARα. This 

makes them a useful tool to investigate whether the 4o-9c-dh-RA metabolites distin-

guish between certain combinations of retinoid receptor isoforms. The experiments 

using CV-1 cells were carried out by transfecting cultured cells with vector plasmids 

expressing certain RAR and RXR isoforms in different combinations, together with 

the reporter plasmid pGL3b-2xDR5luc and pCMW-βGal as internal controls to cor-
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rect for intercellular variations. CV1 cells were transfected with a combination of 

RARα & RXRβ (fig.4.8A&B; fig.4.9A&B) and in a combination of RARβ & RXRβ 

(fig.4.8C&D; fig.4.9C&D). The cells were thereafter treated in the same pattern as in 

the other experiments, with untreated control, at-RA as positive control and S-4o-9c-

dh-RA (fig.4.8A & C), R-4o-9c-dh-RA (fig.4.8B & D), S-4o-at-dh-RA (fig.4.9A & 

C), and R-4o-at-dh-RA (fig.4.9B & D) in increasing concentration, respectively.  

 
Transcriptional effect of 4o-9c-dh-RAs in CV1 reporter cells 

As seen in figure 4.8A and 4.8C, S-4o-9c-dh-RA induced transcriptional activation 

from the 2xDR5-reporter in both combinations in a dose dependent fashion com-

pared to controls. Cells treated with 1 nM S-4o-9c-dh-RA did not differ from con-

trols (Fig.4.8A & C, lanes 1 & 3), but the transcriptional activity increases with 

raised concentration, starting at concentrations from 100 nM in the cells with RARα 

& RXRβ (fig.4.8A, lanes 5-7), ranging from 1.3 to 3-fold change. 10 nM S-4o-9c-dh-

RA led to a 1.4-fold change when RARβ & RXRβ was present and dose dependently 

ranges up to 3.1 (fig. 4.8C, lanes 4-7). These results show that S-4o-9c-dh-RA can 

mediate transcriptional activity from both combinations of retinoid receptors equally. 

The figures 4.8B and 4.8D demonstrate clearly another time, that the effect of R-4o-

9c-dh-RA on transcriptional activation of the 2xDR5 element, this time solely medi-

ated via either RARα (fig. 4.8B) or RARβ (fig. 4.8B), was weaker compared to S-4o-

9c-dh-RA treatment. The effect (fold-induction) was poor at all treatment concentra-

tion and no dose-dependency was observed in both series of experiments compared 

to those seen in fig.4.8A & C. 

 

Transcriptional effect of 4o-at-dh-RAs in CV1 reporter cells 

Both the S- and R-type enantiomer of 4o-at-dh-RA was able to regulate RARE-

dependent transcription in transfected CV1 cells and thus to induce luciferase activity 

via either RARα/RXRβ (fig.4.9A & B) or RARβ/RXRβ heterodimers (fig.4.9C & 

D). A statistically significant increase of the luciferase reporter activity followed by 

treatment of RARα/RXRβ transfected cells with S-4o-at-dh-RA was already ob-

served at 10 nM (2.1-fold, fig.4.9A lane 4), whereas a concentration of 10 µM had a
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Fig.4.8: Differences in transcriptional activation of the 2xDR5-Reporter by S-
4o-9c-dh-RA, R-4o-9c-dh-RA and at-RA in CV1 cells transfected with 
RARα/RXRβ or RARβ/RXRβ. 

 

CV1 cells were transiently co-transfected with the pGL3basic2xDR5luc reporter vector and 
expression vectors for RXRβ together with either RARα (A & B) or RARβ (C & D). Cells 
were subsequently treated with either S-4o-9c-dh-RA (A & C) or R-4o-9c-dh-RA (B & D) in 
concentrations ranging from 10 nM to 10 µM. At-RA [100 nM] was used as a positive control. 
Cells were harvested after 24 h of incubation for assaying luciferase activity as described in 
methods. The relative luciferase induction is defined as a quotient of luciferase levels be-
tween treated and the untreated control samples. Presented results are mean values of 
seven experiments carried out in duplicates. Statistical analyses are described in methods. 
Stars indicate significant difference from controls (Ctrl), whereas * P < 0.05, ** P < 0.01, and 
*** P < 0.001, respectively. 
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distinct effect and was followed by a 5.6-fold increase (fig.4.9A lane 7). Similar to 

the effects in RARα/RXRβ transfected cells seen in fig.4.9A, S-4o-at-dh-RA also 

induced the luciferase reporter activity in RARβ/RXRβ transfected cells already at 

low concentrations (1.4-fold increase at 1 nM, fig.4.9C, lane 3). The variations be-

tween the treatments and the repeated experiments were greater; therefore the effects 

were not statistically significant. However, the effect was dose-dependent and 

reached with a 3.8-fold increase a relative high induction compared to at-RA (4.8-

fold, fig.4.9C, lane 2). Equally, R-4o-at-dh-RA had the same inducing effect on the 

luciferase reporter activity via both RARα/RXRβ (fig.4.9B lane 3-7) and 

RARβ/RXRβ (fig.4.9D lane 3-7) transfected cells. The effect was observable already 

at low concentrations and showed a clearly dose-dependency. 

 

4.2.4. Transcriptional activation of the RXRE element (DR1) in CV1 cells via 
RARα or RARβ 

 
To investigate the ability of S-4o-9c-dh-RA or S-4o-at-dh-RA to induce the transcrip-

tion of the RXRE-regulated luciferase expression in reporter plasmids via RXR me-

diated transactivation, CV1 cells were co-transfected with the luciferase reporter 

plasmid pGl3b-DR1luc together with either RXRα or RXRβ expression vectors. The 

regulatory sequence, DR1, is exclusively activated by ligand activated RXR/RXR 

dimers which lead to the expression of the luciferase gene. In these set of experi-

ments 9-cis-RA [100 nM] was used as a positive control for retinoid induced signal-

ing, since 9-cis-RA is the natural ligand for RXR receptors. The results showed sig-

nificant luciferase induction after treatment with 9-cis-RA in both RXRα 

(fig.4.10A&C lane 2) and RXRβ (fig.4.10B & D lane 2) transfected cells, whereas 

neither S-4o-9c-dh-RA (fig.4.10A&B lanes 3-5) nor S-4o-at-dh-RA (fig.4.10C&D 

lanes 3-5) was able to induce this effect in the RXRE-regulated luciferase reporter 

cells. Only RXRα transfected cells showed a slightly increase of the luciferase induc-

tion followed by treatment with S-4o-9c-dh-RA (fig.4.10A lanes 3-5) with a 1.6-fold 

increase at 10 µM. However, the effect was extremely weak compared to 9-cis-RA 

treatment and did not reveal a statistically difference in the luciferase activity values 

compared to the untreated control cells. 
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Fig.4.9: Differences in transcriptional activation of the 2xDR5-Reporter by S-
4o-at-dh-RA, R-4o-at-dh-RA and at-RA in CV1 cells transfected with 
RARα/RXRβ or RARβ/RXRβ. 

 

CV1 cells were transiently co-transfected with the pGL3basic2xDR5luc reporter vector and 
expression vectors for RXRβ together with either RARα (A & B) or RARβ (C & D). Cells 
were subsequently treated with either S-4o-at-dh-RA (A & C) or R-4o-at-dh-RA (B & D) in 
concentrations ranging from 10 nM to 10 µM. At-RA [100 nM] was used as a positive control. 
Cells were harvested after 24 h of incubation for assaying luciferase activity as described in 
methods. The relative luciferase induction is defined as a quotient of luciferase levels be-
tween treated and the untreated control samples. Presented results are mean values of 
seven experiments carried out in duplicates. Statistical analyses are described in methods. 
Stars indicate significant difference from controls (Ctrl), whereas * P < 0.05, ** P < 0.01, and 
*** P < 0.001, respectively. 
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Fig.4.10: Transcriptional activation of the DR1 element by S-4o-9c-dh-RA and 
S-4o-at-dh-RA, in transfected CV1 cells. 

 

CV1 cells were transiently transfected with the DR1 element together with either RXRα (A & 
C) or RXRβ (B & D) expression vectors. The DR1 element has been cloned into a 
pGL3basic-luc vector, which allows the luciferase expression only upon transcriptional acti-
vation of the reporter plasmids by ligand activated RXR/RXR homodimers (for details see 
methods). Transfected cells were treated with either S-4o-9c-dh-RA (A & B) or S-4o-at-dh-
RA (C & D) in the indicated concentrations and 100 nM 9-cis-RA (9cRA) as a positive con-
trol. Cells were harvested after 24 h of incubation for assaying luciferase activity as de-
scribed in methods. The relative luciferase induction is defined as a quotient of luciferase 
levels between treated and untreated control samples. Presented results are mean values of 
three experiments carried out in duplicates. Statistical analyses are described in methods. 
Stars indicate significant difference from controls (Ctrl), whereas ** P < 0.01, and *** P < 
0.001, respectively. 
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4.3 S-4-oxo-9-cis-13,14-dihydro-retinoic acid induces the expression of 
RARβ2 mRNA levels in P19 cells 

 
In order to investigate whether S-4o-9c-dh-RA is able to affect endogenous gene 

expression in cells, the mRNA expression levels of a well characterised RA target 

gene, RARβ2, was measured. P19 cells were cultured two days before the start of 

each experiment and subsequently treated with increasing amounts [1μM and 10μM] 

of S-4o-9c-dh-RA and [100 nM] at-RA as positive control. Thereafter the cells were 

sequestered at the indicated time points (2 & 24 hours). Total RNA was extracted 

and the specific mRNA expression levels of RARβ2 and γ-actin (endogenous control) 

were analysed by qRT-PCR. No primer-dimers were generated during the applied 40 

real-time PCR amplification cycles. The indicated expression levels in the figure 

were corrected against endogenously expressed γ-actin, the control treated cells at 

the 1 hour time point was used as calibrator (set to 1) for the other samples.  

 

Figure 4.11 shows the resulting relative transcription of RARβ2 mRNA following at-

RA and S-4o-9c-dh-RA treatment. Already after 2 hours of treatment, 1 μM and 10 

μM of S-4o-9c-dh-RA induced transcription of endogenous RARβ mRNA approx-

imately 2 and 4-fold, compared to controls (fig.4.11, lanes 1,3-4), The fold change 

increased significantly with time and did not reach any plateau phase or down regula-

tion within the 24 hour time span. After 24 hours of 10 μM S-4o-9c-dh-RA treat-

ment, the RARβ transcription reached a 32-fold change (fig.4.11, lane 8), 1 μM 

treatment did not increase transcription equally much over time and reaches a fold 

change of 3.2 (fig.4.11, lane 7). One interesting notion was that after 24 hours of 

treatment the difference in fold change between positive control (at-RA) and S-4o-

9c-dh-RA – visible at the early time point – decreased dramatically. The 10 μM con-

centration of S-4o-9c-dh-RA led to a high transcriptional activity, exceeding half of 

the fold change seen for at-RA. In summary, these results further strengthen the evi-

dence that S-4o-9c-dh-RA is able to activate gene transcription through the retinoid 

receptors, both over a transfected RARE construct, but more importantly also from 

endogenous genes by a simple treatment regimen. 
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Fig.4.11: Induction of endogenous gene transcription in P19 cells by S-4o-9c-
dh-RA. 

 

P19 cells were simultaneously treated with 1μM and 10μM of S-4o-9c-dh-RA, and incubated 
for 2 and 24 h. As a positive control for induction of endogenous RARβ2 transcripts, cells 
were treated in parallel with at-RA [100 nM]. PCR primers for RARβ2 and γ-actin were used 
in quantitative realtime-PCR to measure the endogenous levels of RARβ2 mRNA after the 
different treatments (see methods). The relative expression ratio (RER) of RARβ2 showed in 
the diagram is relative to γ-actin (endogenous control) within each sample. The presented 
results are mean values ±SEM from three experiments. Statistical analyses are described in 
methods. Stars indicate significant difference from controls (ctrl), whereas *** P < 0.001. 
 
 
4.4 Induction of conformational changes in RARα and RARβ proteins 

by S-4-oxo-9-cis-13,14-dihydro-retinoic acid 
 
Hormone binding to nuclear receptor induces conformational changes in the receptor, 

which renders the ligand binding domain to become resistant to protease digestion. In 

these experiments it was investigated whether the new metabolite can induce a dis-

tinct conformational change in RARα and RARβ proteins. [35S]Methionine-labeled 
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RARα and RARβ were translated in vitro, incubated with retinoids and digested in 

limited proteolysis reactions with Trypsin (fig.4.12). The labeled receptors were in-

cubated with the retinoid carrier alone (ethanol), S-4o-9c-dh-RA or at-RA, and then 

digested with Trypsin. The digestion products were separated on a 10% SDS-

polyacrylamide gel (see methods). Trypsin digestion of a control-treated RARα and 

RARβ produced a 25-kDa fragment (lane 4 in fig.4.12A & B), which was not detect-

able in samples where RARα and RARβ had been preincubated with at-RA or S-4o-

9c-dh-RA (lane 5,6 in fig.4.12A & B). In the presence of either at-RA or S-4o-9c-dh-

RA, the receptors were only partially digested, resulting in the accumulation of a   

30-kDa resistant proteolytic fragment. The results show that S-4o-9c-dh-RA – similar 

to at-RA – induces a conformational change or a stabilisation of a particular confor-

mation of both RARα and RARβ, and as a consequence alters the pattern of degrada-

tion by Trypsin. These results add proof to what was seen when the CV1 cells were 

transfected with RARα or RARβ together with RXRβ; that S-4o-9c-dh-RA was able 

to perform signal transduction mediated by both RAR subtypes (see fig.4.5). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.12: S-4o-9c-dh-RA inhibits limited Trypsin digestion of RARα and RARβ. 

 

In vitro translated [35S]methionine-labeled RARα (A) and RARβ (B) samples were preincu-
bated with ethanol alone (lanes A1,4 & B1,4) or together with 100 nM at-RA (lanes A2,5 & 
B2,5) or 10 µM S-4o-9c-dh-RA (lanes A3,6 & B3,6), followed by incubation with Trypsin or 
only buffer as indicated (for details see methods). Samples were separated via 10% SDS-
PAGE. For both RARα and RARβ, the 30 kDa proteolytic fragments (marked by a diamond) 
of the receptors were protected from digestion by the presence of either retinoids (lanes A5,6 
& B5,6) in comparison to the samples treated with ethanol only (lanes A4 & B4). The 25 kDa 
fragments of the Trypsin digested receptors (marked by asterisk) were only present in the 
samples treated as controls (ethanol; lanes A4 & B4).  
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4.5 S-4-oxo-9-cis-13,14-dihydro-retinoic acid evokes digit pattern du-
plications in chicken embryos 

 
S-4o-9c-dh-RA induces digit pattern duplications in a dose-dependent fashion. Ion-

exchange beads were soaked in ethanolic solutions of S-4o-9c-dh-RA at concentrations 

that ranged from 0.2 to 10 mg/ml and were implanted at the anterior margin of wing 

buds of Hamburger-Hamilton stage 20 chick embryos (cf. chapter 3.2.6.). At 

concentrations of 0.2 and 0.5 mg/ml wing patterns were mostly normal or had an 

additional digit 2 (fig.4.13A,B; tab.4.1). Patterns with additional digit 3 and 4 (43234), 

some with truncations of digit 2 (4334), became most prevalent as soon as the soaking 

concentrations was equal or greater that 1 mg/ml (fig.4.13C, tab.4.1). Thus within a 

five-fold change in the soaking concentration there was a dramatic change in effect. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.13: Effect of different doses of locally applied S-4o-9c-dh-RA on the chick 
wing pattern. 
 

Beads were soaked in ethanolic S-4o-9c-dh-RA solution and implanted at the anterior mar-
gin of right wing buds of stage 20 chick embryos. The images display the most frequent wing 
digit patterns of the chick embryos in the different treatment groups. A) Normal 234 pattern 
(untreated control and soaking concentration of 0.2 mg/ml); B) 2234 pattern [conc. 0.5 
mg/ml]; C) 43234 pattern [conc. 1 mg/ml]; Digit identities 2, 3, 4 are read from anterior to 
posterior, additional digits are marked by asterisks. 
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The pattern of additional digits was quantified in form of a percent respecification value 

(see methods for a definition) allowing plotting of data in a dose-response curve. The 

efficacy of at-RA in the limb pattern duplication assay has been extensively 

documented (e.g. TICKLE et al., 1985; SUMMERBELL, 1983). As can be seen in the 

dose-response curves (fig.4.14), the profile for S-4o-9c-dh-RA is shifted towards higher 

soaking concentrations indicating that this metabolite has a lower potency than at-RA 

by a factor of ~10.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.14: Dose-response curves for S-4o-9c-dh-RA (circles) & at-RA (triangles). 

 

The percentage respecification value was plotted against the soaking concentration and is a 
measure for the extent of pattern duplication (for definition see methods). The percentage 
respecification value is an average value of each set. The sum of the scores of each wing is 
divided by the number of limbs in each set. 
 
 
S-4o-9c-dh-RA did not evoke the loss of the hand plate or forearm elements, a result 

frequently seen with high doses of at-RA (tab.4.1 and TICKLE et al., 1985). Thus the 

new RA-metabolite is less embryotoxic than at-RA. Control bead implants immersed in 

ethanol had no effect on the wing digit pattern (tab.4.1). 
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Tab.4.1: Digit patterns following local application of at-RA or S-4o-9c-dh-RA to 
stage 20 chick wing buds. 
 
 

Treatment Soaking 
conc.  

Embryos           
per group 

Digit pattern * Number of 
cases 

PRV 

 [mg/ml] n    

at-RA 0.025 12 234 (normal) 1 64 

   d234 1  

   dd234, dd234, d3234 3  

   43234, 43234 7  
 

     

 0.1 8 2234, 2234 4 67 

   43234, 43234 4  

 

     

 0.2 9 2234 1 93 

   43234 2  

   4334 6  
 

     

 0.5 8 234 1 100 

   4334, 4334 3  

   434 1  

   humerus only 3  

S-4o-9c-dh-RA 0.2 8 234 (normal), d32 6 12 

   2234 2  
 

     

 0.5 7 234 (normal) 3 19 

   2234, d234 4  
 

     

 1 10 2234 3 73 

   dd234 1  

   43234 5  

   4334 1  
 

     

 2,5 9 2234 1 85 

   dd234 1  

   4d234 1  

   43234, 43234, 43234  6  
 

     

 5 11 2234, 2234 2 88 

   43234, 43234, 43234 7  

   4d234 1  

   43d234 1  
      

 10 13 dd234 2 90 

   43234, 43234 10  

   4334 1  
 

     

Ethanol  8 234 (normal) 8 0 
* Digit identities are read from anterior to posterior; digits which are not clearly identifiable are marked as d, digits which 
are proximal fused are indicated by underlining  
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4.6 S-4-oxo-9-cis-13,14-dihydro-retinoic acid regulates the transcrip-
tion of RA target genes in the chick limb bud 

 
To assess induction of genes mediating normal limb development, beads, soaked in 0.2 

mg/ml at-RA or 2 mg/ml S-4o-9c-dh-RA, were implanted. These concentrations were 

selected because they evoke pattern duplications to a similar extent (tab.4.1 and 

fig.4.14). The transcript levels of the direct at-RA target genes RARβ2, Cyp26 and 

Hoxb-8 were determined by qRT-PCR in whole buds removed after 6 hours of retinoid 

treatment, whereas the transcripts of the indirect at-RA target genes shh and bmp-2 

were quantified in buds treated for 24 hours since their induction by at-RA is known to 

occur only after prolonged treatment (HELMS et al., 1994; FRANCIS et al., 1994).  

 

Because endogenous shh is expressed only in the posterior part of the limb bud 

(RIDDLE et al., 1993), buds were dissected into posterior and anterior half prior to 

RNA isolation and induction was assessed in both halves independently. Bmp-2 

transcript levels were also measured in both halves because in the HH-stages between 

17 and 26 the occurrence of bmp-2 transcripts is also restricted to the posterior 

mesenchyme, except for a certain extent in the apical ridge of the anterior half 

(FRANCIS et al., 1994).  

 

The PCR-efficiancy was consistently about 100±5% in all experimental qRT-PCR runs 

of each gene (see appendix ch.7.2). No primer-dimers were generated during the 

applied 50 real-time PCR amplification cycles, observed in the melting curve 

analysis (see appendix ch.7.3). The transcript levels of all investigated retinoid 

regulated target genes were significantly increased in limb bud tissue treated with either 

retinoid (fig.4.15). The target genes RARβ2, Cyp26 and Hoxb-8 are induced by both 

retinoids in a range between 2- to 9-fold (fig.4.15A: Induction of RARβ2: 2.1-fold by S-

4o-9c-dh-RA and 2.3-fold by at-RA; fig.4.15B: Induction of Cyp26: 5.7-fold by S-4o-

9c-dh-RA and 8.9-fold by at-RA; fig.4.15C: Induction of Hoxb-8: 2.3-fold by S-4o-9c-

dh-RA and 2.2-fold by at-RA. Whereas in the case of RARβ2 and Cyp26 S-4o-9c-dh-

RA was slightly less active (fig.4.15A, B), Hoxb-8 expression is somewhat stronger 

induced by S-4o-9c-dh-RA (fig.4.15C).  
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Fig.4.15: Transcript levels of RA-induced genes in limb bud tissue. 
Transcript levels of direct at-RA target genes (A-C: RARβ2, Cyp26, Hoxb-8) and indirect at-
RA target genes (D,E: bmp-2, shh) were significantly induced in limb buds treated with S-4o-
9c-dh-RA or at-RA. Note that beads were soaked in a solution of 2 mg/ml S-4o-9c-dh-RA or 
0.2 mg/ml at-RA, respectively. Absolute expression levels were determined by the standard 
curve method (see methods). RER of target genes were normalised to TBP (target 
gene/TBP). A-D) Transcript levels, expressed as relative expression ratios (RER), of treated 
buds were compared to the endogenous expression levels of the appropriate genes in un-
treated buds (Ctrl). E) Relative expression ratio of shh (RERshh) is determined as a quotient 
between at-RA and S-4o-9c-dh-RA treated samples (see methods). Presented results are 
mean values of three experiments carried out in duplicates. Statistical analyses are de-
scribed in methods. Stars indicate significant difference from controls (ctrl), whereas * P < 
0.05, ** P < 0.01, and *** P < 0.001, respectively. 
 

The indirect target genes bmp-2 and shh are also induced by either retinoids (fig.4.15D, 

E). In the case of bmp-2 there was a weak but significant induction in the anterior limb 

bud half with S-4o-9c-dh-RA (fig.4.15D: 1.9-fold) being slightly more efficient than at-

RA (fig.4.15D: 1.3-fold by at-RA). Shh is not endogenously expressed in the anterior 

section of the limb bud and therefore the RER in fig.4.15E is determined as a quotient 

between at-RA and S-4o-9c-dh-RA (RERshh). By this criterion, at-RA is a 6.5-fold 
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stronger inducer of shh expression than S-4o-9c-dh-RA. There was no difference found 

in the expression of target genes in untreated limb bud samples and samples treated 

with ethanol soaked beads. 

 

In conclusion, S-4o-9c-dh-RA can control the expression of genes which are in-

volved in limb morphogenesis, such as shh (RIDDLE et al., 1993), Hoxb-8 (IZ-

PISUA-BELMONTE & DUBOULE, 1992; CHARITE et al., 1994) and bmp-2 

(FRANCIS et al., 1994), and likewise induces the expression of direct at-RA regu-

lated target genes, such as RARβ2, Cyp26 and Hoxb-8, which are known to contain a 

RARE in their promotor region. However, the relative potency of S-4o-9c-dh-RA to 

induce the expression of these RA target genes is less compared to at-RA.  
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5. Discussion 
 
 
The number of identified endogenous retinoids in plasma and tissues of various spe-

cies including the human is limited. The new metabolite, S-4o-9c-dh-RA, was re-

cently discovered and characterised by SCHMIDT et al. (2002). It was shown that   

S-4o-9c-dh-RA is a new abundant endogenous vitamin A metabolite occurring in 

particularly high levels in the livers of rats and mice. Over the last years several 

groups aimed at discovering new endogenous RA metabolites (MOISE et al., 2005;        

PIJNAPPEL et al., 1998; SHIRLEY et al., 1996). In contrast to the findings of other 

groups, which reported the occurrence of novel RA metabolites, especially in trans-

genic animals or after providing certain retinoids exogenously, S-4o-9c-dh-RA is 

occurring endogenously in wild type mice and rats. Additionally, it was found in one 

human liver sample. Whereas SHIRLEY and co-workers (1996) described the reduc-

tion of 9-cis-RA to 9-cis-13,14-dihydro-RA in rats after administration of 9-cis-RA, 

MOISE and co-workers (2005) reported the occurrence of all-trans-13,14-dihydro-

RA (at-dh-RA) in liver of transgenic mice supplemented with retinyl palmitate. 

Moreover, these studies did not take the chirality aspect of dihydro-RAs into consid-

eration. 4o-9c-dh-RA is characterised by a chiral carbon at C13, while it was shown 

that 4o-9c-dh-RA isolated from mouse liver is the S-enantiomer. 

 

The identification of S-4o-9c-dh-RA in some tissues of mice, rats, and humans is very 

remarkable because of several other reasons: Based on the state of knowledge it is the 

first time that a 9-cis configurated isomer of RA has been detected endogenously in 

considerable concentrations. Indeed, some research groups reported the occurrence of 

9-cis-RA and/or other 9-cis-RA-metabolites in vivo as mentioned above. However, in 

most cases after liver consumption or providing certain retinoids exogenously and in 

levels that were slightly above the detecting limit. Other researchers were not able to 

detect 9-cis-RA or any other 9-cis-RA-isomers in any tissue. Contrary, the endogenous 

levels of S-4o-9c-dh-RA in serum, kidney and liver of mice and rats were found to be 

great, and especially in liver significantly higher than the at-RA levels. The second ma-

jor interesting finding was that the metabolism of S-4o-9c-dh-RA appears to be highly 
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regulated and dependent on the retinol intake. The endogenous levels increased dra-

matically in the liver following vitamin A supplementation in mice. The fluctuation in 

the endogenous levels of S-4o-9c-dh-RA depending on the vitamin A provision is an 

interesting sign for an important function of the new metabolite in the maintenance of 

the retinoid metabolism within the body. Furthermore the metabolism of S-4o-9c-dh-

RA seems to be disturbed following exposure to environmental pollutants such as 

TCDD. The hepatic levels of S-4o-9c-dh-RA decreased dramatically in mice     

(HOEGBERG et al., 2005) and rats (SCHMIDT et al., 2003) in consequence of TCDD 

exposure. The evaluation of the biological activity of S-4o-9c-dh-RA is of great concern 

to identify and clarify the function of this new major RA metabolite in diverse RA-

signaling pathways and represents considerable progress towards understanding the 

physiological role of this compound in the body.  

 
 
5.1. S-4-oxo-9-cis-13,14-dihydro-retinoic acid is a new ligand for RARα 

and RARβ 
 
The diverse effects of RA action in controlling miscellaneous cellular processes are 

thought to be due to the multiplicity of retinoid receptors and gene pathways influ-

enced by these receptors. Due to differences between these receptors, ligands may 

also differentially influence the individual receptor isoforms. Therefore it is an im-

portant issue to examine whether the different retinoid receptors are only activated 

by at-RA, or if other endogenous ligands exist, which may selectively activate a sub-

set of receptors.  

 

S-4o-9c-dh-RA had activating effects on signal transduction compared to control 

treated cells in all of the tested reporter cell systems. This was partly unexpected 

since it was anticipated that a different endogenous setup of receptor isoforms, co-

factor proteins, metabolism, differential stage, tissue type and certainly other factors 

could possibly be a limiting factor in some case. Nevertheless, the results show that 

S-4o-9c-dh-RA functions as an activator for RAR-dependent signal transduction in 

all of these transfected cell systems. Further on, no limitations in the capacity to acti-
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vate different combinations of retinoid receptors were observed. S-4o-9c-dh-RA did 

not show particular selectivity between the different combinations of RARs and 

RXRs tested in this study. In the transfection studies, S-4o-9c-dh-RA showed a 

transactivating function via the retinoid receptors from luciferase reporter plasmids 

under regulation of both a minimal but also a more natural and complex RARE, in 

the same fashion as at-RA, the positive control. Mechanistically, S-4o-9c-dh-RA 

induced conformational changes to both RARα and RARβ in the limited proteolysis 

assay, in a similar manner as at-RA. More precisely the observed ligand induced  

accumulation of a resistant proteolytic fragment is a result of an altered LBD con-

formation of these receptors in consequence of ligand binding. On the basis of these 

facts it is obvious that S-4o-9c-dh-RA binds to the LBD of RARα & RARβ and 

hence activates retinoid dependent signal transduction. 

 

The interpretation of the transactivation results could also take the metabolic stability 

of S-4o-9c-dh-RA into consideration, which for the moment is not known. Most 

probably, various cell lines metabolise S-4o-9c-dh-RA different after administration. 

For example it could be expected that a hepatic cell line (like Hepa-1) have a greater 

enzymatic activity compared to an embryonic cell line (like P19) and thereby a 

greater potential to metabolise retinoid metabolites such as S-4o-9c-dh-RA to other 

metabolites. Anyway, the transactivating capacity of S-4o-9c-dh-RA during transfec-

tions was similar between the entire cell lines tested in this study, indicating a rela-

tive strong stability of S-4o-9c-dh-RA. It is unlikely that none of the tested cell lines 

is not able to metabolise S-4o-9c-dh-RA during the 24 hour period of a single ex-

periment. Taken together the data suggest that the transactivating function of S-4o-

9c-dh-RA, seen in this study, could be expected also in vivo, either by administered 

or endogenously produced S-4o-9c-dh-RA. In essence, to gain further information 

about the metabolic stability of S-4o-9c-dh-RA, it would be necessary to measure the 

clearance of S-4o-9c-dh-RA in comparison to at-RA using radiolabeled compounds. 

However, radiolabeled S-4o-9c-dh-RA is currently not available. 
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The data clearly show that S-4o-9c-dh-RA closely mimics at-RA with regard to tran-

scriptional activation of RARE-regulated genes in diverse cell systems. The efficacy 

of S-4o-9c-dh-RA compared to at-RA in these systems was approximately 200-fold 

lower dependent on the cell line (133 to 240-fold). Since it is known that some RA 

metabolites exhibit biological activity in some systems, it should be investigated 

whether there is a specific significance in the fact that most RA metabolites, exhibit a 

lower potency compared to at-RA. On the other hand, the discussion about the rela-

tive potency of the new metabolite in comparison to at-RA should also consider the 

relative high tissue concentration of the new metabolite observed in mice, which ex-

ceeds the corresponding at-RA concentration considerably at least in the liver and 

increases drastically as a consequence of high all-trans-retinol intake with the diet 

(SCHMIDT et al., 2002). For instance the hepatic levels of S-4o-9c-dh-RA increased 

from 11.4 up to 117.0 ng/g in NMRI mice fed with feed containing either 15,000 or 

150,000 IU retinyl palmitate/kg diet, respectively (SCHMIDT et al., 2002). The at-

RA levels increased only from 5.6 to 7.6 ng/g in the tissue of the same animals. Thus 

the level of S-4o-9c-dh-RA is 2-fold higher compared to at-RA and increases up to a 

15-times higher content. Regarding to this fact there is a dramatic change in the rela-

tive efficacy of the new metabolite to transactivate RAR-dependent transcriptional 

activation. An arithmetical estimation of the difference in potency between the two 

compounds can be obtained by dividing the 200-fold difference in responsiveness 

seen in the transactivation assays in this study with the factor 2 and 15 that reflect the 

difference in the actual tissue concentrations of both retinoids in the liver. According 

to this, it appears that S-4o-9c-dh-RA is simply 100-fold or even just 13-fold less 

active than at-RA. 

 
 
5.2. S-4-oxo-9-cis-13,14-dihydro-retinoic acid could not transactivate 

RXRα and RXRβ 
 
The data confirms that the new metabolite is a novel endogenous ligand for at least 

the RARα and β isoforms. The fact that S-4o-9c-dh-RA transactivates RARs was a 

bit surprising. It was assumed that S-4o-9c-dh-RA would bind to the LBD of RXR 
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isoforms because of the 9-cis configuration and preliminary results from molecular 

modeling studies, which suggested binding-affinities to the LBD of certain RXR 

isoforms (data not shown). The ability of S-4o-9c-dh-RA to induce the transactiva-

tion of RXR isoforms was investigated in CV1 cells. The retinoid receptor free CV1 

cells were transfected with a luciferase reporter plasmid under the control of a DR1 

sequence, which is characterised as an RXRE. Cells were simultaneously transfected 

with expressing vectors for RXRα or RXRβ, and subsequently treated with 9-cis-RA 

as positive control. The result showed significant luciferase induction after treatment 

with 9-cis-RA, which was expected since 9-cis-RA is characterized as the strongest 

endogenous ligand for the RXRs so far. Both the new metabolite S-4o-9c-dh-RA and 

S-4o-at-dh-RA were not able to induce the same effect in these reporter cells. The 

results led to the conclusion that neither S-4o-9c-dh-RA nor S-4o-at-dh-RA primarily 

function as endogenous ligands for RXR homodimers. 

 
 
5.3. Potential of other 4-oxo-13,14-dihydro-retinoic acid metabolites to 

transactivate RARα and RARβ 
 
It was of interest to examine whether there is a difference in the potential between 

both the R- and the S-enantiomer to transactivate RARα and RARβ. Therefore R-4o-

9c-dh-RA has been tested in the same reporter cell systems. Additionally the potency 

of 4o-at-dh-RA (again R- and S-type) to activate the transcription of RARE-regulated 

genes was tested. 4o-at-dh-RA was not detected in any sample from various tissues 

and species in our laboratory. Based on the state of knowledge from the literature it 

cannot be confirmed, that 4o-at-dh-RA is a new endogenous occurring retinoid me-

tabolite. However, as mentioned above MOISE and co-workers (2005) reported the 

occurrence of 4o-at-dh-RA traces in liver of transgenic mice supplemented with all-

trans-13,14-dihydro-retinol. It is likely that 4o-at-dh-RA is occurring endogenously 

besides S-4o-9c-dh-RA only in consequence of high vitamin A intake. 

 

All tested compounds were able to regulate RARE-dependent transcription and thus 

induced luciferase activity in most of the tested systems to a different extent. Inter-
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estingly, the data clearly demonstrated that the R-type enantiomers of both the 9-cis- 

and the all-trans-form showed very little till no activity in all of the tested cell sys-

tems. Beside other factors, which are not known so far, the difference in the activity 

could be an explanation for the predominance of the S-type compared to the R-type. 

The potency of S-4o-at-dh-RA to induce luciferase reporter activity was equal to     

S-4o-9c-dh-RA, and in some cases even stronger, which can be possibly explained 

by differences among the cell types. The results show similarities to the findings 

from MOISE and co-workers (2005), who described at-dh-RA as a metabolite which 

can transactivate RAR/RXR heterodimers but nor RXR/RXR homodimers in reporter 

cell assays. At-dh-RA is possibly a precursor metabolite of other 4o-dh-RAs, includ-

ing S-4o-9c-dh-RA. 

 
 
5.4. S-4-oxo-9-cis-13,14-dihydro-retinoic acid induces endogenous gene 

transcription in vitro 
 
After discovering the widespread capacity of S-4o-9c-dh-RA to activate transfected 

reporter plasmids, it was of interest to evaluate how S-4o-9c-dh-RA influences the 

endogenous gene expression. As expected, the gene expression analysis of mRNA 

transcripts from S-4o-9c-dh-RA-treated P19 cells showed a significant 2 to 30-fold 

increase of endogenous RARβ2 expression, dependent on treatment-doses and -time. 

This gene is well known as a direct target gene for the RARs. The regulatory part in 

the promoter region of this gene contains a direct repeat of a AGGTCA motif spaced 

by five nucleotides (DR5) (DE THE et al., 1990; SUCOV et al., 1990). The RARβ2 

gene serves as one of the master regulators in many RA-induced cellular events, such 

as proliferation, differentiation, and apoptosis, by regulating a number of down-

stream effector genes (BAIN et al., 1994; ROY et al., 1995). Compared to at-RA,   

S-4o-9c-dh-RA is 200-fold less active at inducing RARβ2-mRNA levels in the P19 

cells. The reason for this circumstance is not known. Trying to value these results is 

probably also relatively irrelevant, given to the fact that a system with a specific cell 

line can never reflect the environment and the circumstances, where the new metabo-

lite is meant to play a role. The important fact is that S-4o-9c-dh-RA is potently acti-
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vating the retinoid receptors and consequently induces gene transcription out of its 

normal environment. Anyway, this result further establishes the evidence that this 

novel and major retinoid metabolite has the capability to regulate gene transcription, 

mediated through nuclear retinoid receptors. 

 
 
5.5. S-4-oxo-9-cis-13,14-dihydro-retinoic acid evokes digit pattern du-

plications in chick wings 
 
Using the chicken limb bud model, this study demonstrated that S-4o-9c-dh-RA is 

morphogenetically active in this system, suggesting in vivo activity of this compound 

in general. It was shown that S-4o-9c-dh-RA closely mimics at-RA with regard to 

pattern respecification and also in the induction of previously characterised at-RA 

effector genes in the limb bud, which include Hoxb-8, RARβ2, shh, Cyp26 and    

bmp-2. The data suggest that S-4o-9c-dh-RA is less active than at-RA. This conclu-

sion is based on the assumption that the release kinetics from the slow release beads 

and the clearance from the tissue are similar for at-RA and S-4o-9c-dh-RA. In vitro 

release studies (EICHELE et al., 1984) showed that different retinoids are released 

from the used type of ion-exchange beads at similar rates, suggesting that the differ-

ence in activity is not caused by unequal release kinetics. The RA receptor agonist, 

4-(E-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl) benzoic 

acid (TTNPB) is apparently more potent than at-RA in duplication assays when us-

ing solution concentrations as a reference value (EICHELE et al., 1985). However, it 

was shown that the synthetic retinoid is much more metabolically stable and based 

on the actual tissue concentrations of TTNBP and at-RA, both agents have similar 

efficacy (EICHELE & THALLER, 1987). Therefore the difference in clearance may 

account for the difference in efficacy in the present study. To investigate the meta-

bolic stability, it will be again necessary to measure the clearance of S-4o-9c-dh-RA 

in comparison to at-RA using radiolabeled S-4o-9c-dh-RA, which is presently not 

available. However, the discussion about the potency of S-4o-9c-dh-RA in this sys-

tem is only feasible in a theoretical sense in view of the fact that S-4o-9c-dh-RA was 

not detectable in chick limbs (data not shown). 
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5.6. S-4-oxo-9-cis-13,14-dihydro-retinoic acid induces the expression of 
RA-regulated genes in the chick limb bud 

 
It is likely that S-4o-9c-dh-RA induces additional digits in a way similar to that re-

ported for at-RA (SUMMERBELL, 1983; THALLER et al., 1993; THALLER & 

EICHELE, 1990; TICKLE et al., 1982; TICKLE et al., 1985). The role of at-RA 

during the complex interactions and morphogenetic processes in the limb develop-

ment is most likely the initiation of a cascade of signaling molecules via regulating 

the expression of genes coding for such signaling molecules (HELMS et al., 1994). 

The finding that S-4o-9c-dh-RA can control expression of genes which are involved 

in limb morphogenesis, such as shh (RIDDLE et al., 1993), Hoxb-8 (CHARITE et 

al., 1994; IZPISUA-BELMONTE & DUBOULE, 1992) and bmp-2 (FRANCIS et 

al., 1994) is supporting the assumption that S-4o-9c-dh-RA provokes digit duplica-

tion in the same way as at-RA mediates its function. It was already demonstrated in 

embryonic carcinoma cells (P19) that the new metabolite is able to regulate the ex-

pression of the direct at-RA target gene RARβ2 in vitro. Nevertheless, S-4o-9c-dh-

RA induced beside RARβ2 other direct target genes, such as Cyp26 and Hoxb-8, also 

in vivo in the chick limb buds. Cyp26 and Hoxb-8 are also known to contain a RARE 

in their promoter region (DE THE et al., 1990; LOUDIG et al., 2000; 

OOSTERVEEN et al., 2003; SUCOV et al., 1990).  

 
 
5.7. Potential role of S-4-oxo-9-cis-13,14-dihydro-retinoic acid in physi-

ology 
 
It is unlikely that S-4o-9c-dh-RA is a simple degradation product of at-RA without a 

biological function. Rather the results taken together suggest that S-4o-9c-dh-RA is a 

biologically active retinoid metabolite. It is likely that the new metabolite could have 

important transactivation properties under certain physiological circumstances and 

perhaps play an important role in cellular physiology. To establish the physiological 

role of S-4o-9c-dh-RA in controlling gene expression more studies are necessary. For 

example, the micro array technique could be useful to screen for differences in the 

regulation of genes by at-RA compared to S-4o-9c-dh-RA.  
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The previous study revealed S-4o-9c-dh-RA as a major retinoid metabolite in vivo, 

with hepatic levels that correlate with increasing retinyl palmitate content in the diet 

(SCHMIDT et al., 2002). This apparent correlation to dietary intake is not seen for 

at-RA. The at-RA levels within the organism are very stringent regulated. The enzy-

matic pathway responsible for the formation of S-4o-9c-dh-RA and the possible pre-

cursor retinoids are not known. The metabolism of vitamin A is a highly regulated 

process which includes conjugation, decarboxylation, oxidation, double bond isomer-

isation and reduction, carried out by a well-organised interplay of enzymes, such as 

LRAT, ARAT, REHs, MDHs, RALDHs, and P450s, as well as inter- and extracellu-

lar retinoid binding proteins, such as RBP, CRBP, and CRABP. It is of interest to 

examine enzymes, binding proteins and other factors involved in the metabolism of 

the new metabolite. The use of recombinant enzymes, which can possibly be in-

volved in the formation of S-4o-9c-dh-RA, could be a suitable technique to reconsti-

tute the pathway of the new metabolite in vitro. Knock out animals, deficient in cer-

tain enzymes involved in the metabolism of retinoids, could also be an appropriate 

way to answer these questions. The use of siRNA against specific enzymes involved 

in retinoid metabolism could be another way to point out responsible proteins for the 

metabolic pathway of S-4o-9c-dh-RA and other 13,14-dihydro-RAs.  

 

MOISE et al. (2004) described a novel enzyme in mice, which could possibly cata-

lyse the key step in the formation of 13,14-dihydro-RAs. All-trans-retinol:13,14-

dihydroretinol Saturase (RetSat) converts all-trans-retinol to all-trans-13,14-dihydro-

retinol. Their further studies showed that the same enzymes involved in the oxidation 

of all-trans-retinol to at-RA and then to oxidised RA metabolites can also catalyse 

the oxidation of all-trans-13,14-dihydro-retinol to oxidised dihydro-RAs (MOISE et 

al., 2005). These enzymes, CYP26s together with ADHs, SDRs and RALDHs, are 

involved in the regulation of desirable at-RA levels and could therefore be also in-

volved in the formation of S-4o-9c-dh-RA in certain physiological circumstances. 

Adh1 and Raldh1 are somehow involved in protective mechanisms in response to 

pharmacological doses of all-trans-retinol, since Adh1-/- and Raldh1-/- mice showed 

to be more sensitive to retinol-induced toxicity than their wild type counterparts 
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(MOLOTKOV et al., 2004; NIEDERREITHER et al., 2003). MOISE et al. (2005) 

identified increasing levels of at-dh-RA, 4o-at-dh-RA, and other 13,14-dihydro-

retinoids in the tissues of lecithin:retinol acyltransferase (LRAT)-deficient (Lrat -/-) 

mice supplemented with retinyl palmitate. LRAT is basically involved in the esterifi-

cation of all-trans-retinol (RUIZ et al., 1999). Whereas most of the ingested all-

trans-retinol is converted to esters in wild type mice, the uptake and storage of all-

trans-retinol is heavily affected in Lrat -/- mice (BATTEN et al., 2004). Taken these 

results together the following assumption of MOISE et al. (2005) seems to be likely: 

The formation of 13,14-dihydro-retinoid metabolites could be a further degradation 

pathway of all-trans-retinol to protect the body against pharmacological doses of all-

trans-retinol due to fluctuations in the nutritional vitamin A (predominantly all-

trans-retinol) levels, under circumvention of the formation of at-RA, which is also 

generally known to exhibit toxic effects in excess levels. This could be a reasonable 

explanation of the heavily increasing S-4o-9c-dh-RA and the relative stable at-RA 

levels in mice gavaged with retinyl palmitate at high doses (SCHMIDT et al., 2002).  

 
 
5.8. Perspective 
 
S-4o-9c-dh-RA had basically positive effects in mimicking the action of at-RA in all 

of the tested systems. The data suggests that it may not be such a strong activator of 

the retinoid receptors as at-RA, but nevertheless it functions as an activator for reti-

noid dependent signal transduction in these systems. The results demonstrate that the 

new RA-metabolite is a biologically active retinoid and possibly can be involved in 

other signal transduction pathways. With regard to the heavily fluctuating hepatic 

levels in mice after retinol-supplementation on the one hand or TCDD-treatment on the 

other hand, S-4o-9c-dh-RA apparently plays an important role in cellular physiology. 

However, many questions concerning the action, metabolism, and the general role of 

the new RA-metabolite in the body remain still unanswered. 

 

At-RA is known to regulate the expression of hundreds of different genes through the 

activation of nuclear transcription factors. Other mechanisms of action of retinoids 
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apart from the known transactivation effect of retinoids continue to be discovered. It 

has been found out in the latest past that at-RA regulates a large number of noncod-

ing RNAs (reviewed in BLOMHOFF & BLOMHOFF, 2006). Furthermore, extra-

nuclear mechanisms of action of retinoids are also being identified. Therefore the 

role of at-RA and other bioactive RAs may extend beyond the regulation of gene 

transcription. In this study all results reveal that S-4o-9c-dh-RA acts as at-RA in all 

essential aspects, but it is possible that S-4o-9c-dh-RA actually has specific biologi-

cal roles apart from acting in the same manner as at-RA. An obvious suggestion for 

future studies is therefore to evaluate if this metabolite also has specific biological 

roles different from at-RA. 
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7. Appendix 

 Composition of general solutions, buffers and gels 
 
Preparation of 60 mM ammonium acetate buffer (2 l): 

• weight out 9,25 g Ammonium acetate 

• fill slightly less than 2 l of ddH2O in a beaker 

• dissolve the salt in the water 

• adjusted to pH 5.7 with acetic acid (~ ½ Pasteur pipette) 

• fill up with Aqua-bidest to 2 l in a graduated cylinder 

• filtrate the buffer through a membrane filter 

 

Composition of CaCl2 solution: 

• prepare 60 mM CaCl2 

• add 15% glycerol and 10 mM PIPES (pH7.0) 

• Autoclave solution 

 

Composition of PIPES buffer (pH 6.5): 

• 140 mM NaCl 

• 5 mM KCL 

• 0.6 mM MgCl2 

• 1.0 mM CaCl2 

• 5.5 mM glucose 

• 0.1% BSA 

• 10 mM PIPES (pH 7.4) 

 

Composition of 5 mM Kac (100 ml): 

• 60 ml 5 M Kac 

• 11,5 ml Hac  

• 28,5 ml ddH2O 
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Composition of 2 x BSB (10 ml): 

• 6 ml (50%): Glycerol 

• 4 ml (1 M): 40 mM Hepes 7.90 

• 0.1 ml (1 M): 10 mM MgCl2  

• 1 ml (1 M): 100 mM KCL  

• 20 µl: 0.02% Triton X-100  

• ddH2O up to 10 ml final volume 

 

Composition of WCEB (10 ml): 

• 1 ml (1 M): 10 mM Hepes 7.90 

• 0.8 ml (5 M): 0.4 M NaCl  

• 2 µl (0.5 M): 0.1 mM EDTA  

• 1 ml (50%): 5% Glycerol  

• ddH2O up to 10 ml final volume 

 

Composition of 5xSDS-loading-buffer (10 ml): 

• 0.5 ml (1 M): 50 mM Tris-HCL pH 6.8 

• 1 ml (1 M): 100 mM DTT 
• 2 ml (10%): 2 % SDS 

• 1 ml (1%): 0.1 % BFB 

• 2 ml (50%): 10% Glycerol 

• ddH2O up to 10 ml final volume 
 

Composition of running-buffer: 

• 1 l: H2O 

• 94 g: Glycine 

• 83 ml: 1,5 M Tris8.8 

• 50 ml: 10% SDS 
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Composition of 10%-separation gel (25 ml): 

• 12 ml: ddH2O 

• 6,31 ml: 5 M Tris8.8 

• 6,25 ml: 40% Acrylamide 

• 250 µl: 10% SDS 

• 250 µl: 10% APS 
• 30 µl: TEMED 

 

Composition of stack gel (~10 ml): 

• 7,2ml: ddH2O 

• 1,25ml: 1.5M Tris8.8 

• 1,25ml: 40% Acrylamide 

• 100 µl: 10% SDS 

• 100 µl: 10% APS 

• 10 µl: TEMED 
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 Standard curve graphs from qRT-PCR analysis of mRNA transcripts 
in chick limb bud tissue 

 
 

 
 
Fig.7.1: Standard curve graph from qRT-PCR analysis of the target gene Hoxb-8. 
 
 

 
 
Fig.7.2: Standard curve graph from qRT-PCR analysis of the target gene RARβ2. 
 
 

 
 
Fig.7.3: Standard curve graph from qRT-PCR analysis of the target gene Cyp26. 
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Fig.7.4: Standard curve graph from qRT-PCR analysis of the target gene bmp-2. 
 
 

 
 
Fig.7.5: Standard curve graph from qRT-PCR analysis of the target gene shh. 
 
 

 
 
Fig.7.6: Standard curve graph from qRT-PCR analysis of the housekeeping gene TBP. 
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 Melt curve graphs from qRT-PCR products of mRNA transcripts in 
chick limb bud tissue 

 
 

 
Fig.7.7: Melt curve graphs from the qRT-PCR products of Hoxb-8 transcript amplifica-
tion. 
 
 

 
Fig.7.8: Melt curve graphs from the qRT-PCR products of RARβ2 transcript amplifica-
tion. 
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Fig.7.9: Melt curve graphs from the qRT-PCR products of Cyp26 transcript amplifica-
tion. 
 
 

 
Fig.7.10: Melt curve graphs from the qRT-PCR products of bmp-2 transcript amplifica-
tion. 
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Fig.7.11: Melt curve graphs from the qRT-PCR products of shh transcript amplifica-
tion. 
 
 

 
Fig.7.12: Melt curve graphs from the qRT-PCR products of TBP transcript amplifica-
tion. 
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