
 
 
 
 
 
 

An empirical analysis of behavioral finance theories 

in international equity markets 

 
 

 

Von der Wirtschaftswissenschaftlichen Fakultät der 

Gottfried Wilhelm Leibniz Universität Hannover 

zur Erlangung des akademischen Grades 

 

Doktor der Wirtschaftswissenschaften 

− Doctor rerum politicarum − 

 

 

genehmigte Dissertation 

von 

 

 

Diplom-Ökonom Maik Schmeling 

geboren am 29.04.1978 in 21423 Winsen/Luhe 

 

 

 

 

2007 



 

 

 

 

 

Referent: Prof. Dr. Lukas Menkhoff 

Korreferent: Prof. Dr. Olaf Hübler 

Tag der Promotion: 7.11.2007 



Kurzfassung 

 

Finanzmärkte spielen eine zentrale Rolle in modernen Volkswirtschaften und sind 

daher Gegenstand unzähliger theoretischer und empirischer Untersuchungen. Dennoch 

können die bisherigen Ansätze im Rahmen des neoklassischen, rationalen Theoriegebäudes 

das Geschehen auf Finanzmärkten weder erklären noch prognostizieren.  Daher wurden in der 

jüngeren Vergangenheit neue Theorien im Feld "Behavioral Finance" entwickelt, die zum 

Ziel haben, das Verhalten von Investoren auf Finanzmärkten realistischer zu modellieren und 

vom Ideal eines vollkommen rationalen Investors - angesichts psychologischer und 

informatorischer Beschränkungen - abzurücken. 

Die fünf Kapitel dieser Dissertation beinhalten empirische Tests von grundlegenden 

Erkenntnissen der Behavioral Finance und untersuchen, ob die Annahme irrationaler oder 

beschränkt rationaler Investoren sinnvoll ist, um Finanzmarktprozesse und das beobachtete 

Verhalten von Investoren zu verstehen. 

Hinsichtlich der Ergebnisse können zwei zentrale Schlussfolgerungen gezogen 

werden. Erstens wird gezeigt, dass nicht-rationale Entscheidungsprozesse einen signifikanten 

Einfluss auf Finanzmarktbewegungen und Investorenverhalten ausüben. Dieses Ergebnis zieht 

sich durch alle fünf Kapitel der Arbeit und zeigt sich in der Prognosekraft von 

Investorenstimmungen für zukünftige, langfristige Renditen, der empirischen Erklärungskraft 

von Kurzfristorientierung und Verlustaversion für das Verhalten von erwarteten 

Querschnittsrenditen und den systematischen Verzerrungen im Anlageverhalten von 

institutionellen Investoren und Privatanlegern. 

Eine zweite Schlussfolgerung betrifft die Rolle von institutionellen und privaten 

Anlegern. Wie die empirischen Ergebnisse dieser Arbeit zeigen, verhalten sich diese beiden 

Gruppen von Marktteilnehmern signifikant unterschiedlich. Während institutionelle Anleger 

dem Ideal des rationalen Investors deutlich näher kommen, unterliegen private Anleger 

stärker systematisch verzerrtem Verhalten und stellen durch ihr Verhalten tendenziell ein 

Hindernis für effiziente Märkte dar. 

 

Schlagwörter: Vermögenspreise, Behavioral Finance, Erwartete Renditen, Verlustaversion 

    



Abstract 

 

Financial markets play a key role in modern economies and are thus subject to a 

huge amount of theoretical and empirical research. Yet there is little evidence that standard 

neoclassical, rational models explain determinants of financial market movements, let alone 

forecast these movements. Therefore, new theories have been put forward under the roof of 

"behavioral finance" that aim at a better description of real-world behavior of investors who 

do not confine to the ideal of the rational decision-maker due to psychological and 

information-processing constraints.  

The five chapters of this dissertation empirically test several key concepts of 

behavioral finance and investigate, whether the hypothesis of non-rational decision making is 

helpful for understanding the behavior of financial market movements and the behavior of 

investors.   

Summarizing the evidence, two major conclusions can be drawn from the empirical 

results presented here. First, it is found that behavioral biases matter for asset prices and 

investment behavior. This conclusion is rooted in all five chapters and manifests itself through 

the predictive power of investor sentiment for expected long-horizon returns, the empirical 

success of myopic loss aversion for explaining the cross-section of expected stock returns and 

the systematic portfolio biases of laymen and professionals.  

A second conclusion can be drawn for the role of institutional versus individual 

investors. As the results document, there is a significant difference between the two investor 

groups. Whereas institutions seem to be more in line with the ideal of rational investors who 

collect and aggregate fundamental information, individuals are more heavily plagued by 

systematic biases in their investment behavior and seem to represent a source of noise trader 

risk in financial markets. 

 

Keywords:  Asset Pricing, Behavioral Finance, Expected Returns, Loss Aversion 
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 IV

Motivation and summary of main results 
 

 
It has become an almost common exercise in the empirical finance literature to 

discover “anomalies”, “conundrums”, and “puzzles”, i.e. behavior of investors or 

behavior of financial prices that is sharply at odds with standard neoclassical theory.  

Βossaerts (2002, p. x) for example concludes that “[…], asset pricing is paradoxical. 

On the one hand, the theory is so persuasive that it is widely believed to be correct, 

[…]. Yet there is little evidence that the theory explains the past, let alone that it 

predicts the future.” Since many researchers find it hard to stick to a theoretical 

framework whose predictions are routinely rejected by empirical findings, new theories 

have been put forward that aim at a better description of real-world behavior of 

investors who do not confine to the ideal of the rational decision-maker due to 

psychological and information-processing constraints.  

Specifically, the literature tends to view individual investors as noise traders 

who base portfolio decisions on non-fundamental or pseudo-information (Black, 1986). 

Verification or rejection of this hypothesis can have far-reaching implications for the 

efficiency of financial markets as a whole and also raises a number of normative and 

positive issues in economics. Regarding possible normative implications, Shleifer 

(2000) for example points out, that individuals should not be allowed to manage their 

savings for retirement if it was known that they make irrational portfolio choices. 

Furthermore, if noise trader sentiment becomes systematic and does not wash out in the 

aggregate, then it also challenges the efficient market hypotheses since persistent waves 

of systematic overoptimism or –pessimism by noise traders drive a wedge between 

fundamental values and market prices which cannot be eliminated by riskless arbitrage 

(these are the so-called limits to arbitrage, see Shleifer and Vishny, 1997). As with the 

policy issue raised above, this is not just a side-show for behaviorally oriented finance 

researchers but has serious implications for the real economy and a positive implication. 

If irrational sentiment drives up (down) prices above (below) fundamentally warranted 

levels for e.g. some industries of the economy, then these industries have incentives to 

issue new shares and raise additional capital (e.g. through a channel based on Tobin’s 

Q-theory of investment) which leads to a misallocation of resources in the economy. 

Polk and Sapienza (2006) do indeed find evidence for such a misallocation of capital 

and conclude that sentiment has real economic consequences so that systematic 

irrational sentiment is not neutral. 



 V

Clearly, the literature has identified several behavioral biases and the above 

described sentiment phenomenon is just one of several potential departures from 

rational decision making. The five chapters of this thesis deal with some of the most 

widely studied behavioral anomalies and their consequences for sources of 

predictability in financial markets, asset prices and portfolio choices of different types 

of investors. These five chapters are briefly described in the following paragraphs. 

The first chapter “Institutional and individual sentiment: Smart money and 

noise trader risk” deals with the question whether sentiment matters for asset prices and 

whether individuals and institutions differ in this respect. The main part of the chapter 

uses a predictive regression approach to test the hypothesis that individuals are noise 

traders and that institutions are rational market participants who correctly aggregate 

fundamental information (so-called “smart money", e.g. Campbell and Kyle, 1993). As 

noted above, individuals are commonly thought of as being noise traders because of 

their low sophistication and the fact that they are just too time-constrained to access and 

process the sheer volume of fundamental information about corporate and economic 

fundamentals available every day. Due to their low sophistication, individuals are 

thought of as being subject to several biases in decision making such as e.g. herding, 

and non-Bayesian updating of prior beliefs. The latter two arguments naturally lead to a 

simple test of the hypothesis that individuals represent noise traders: If individuals 

become overly optimistic (pessimistic) about a sequence of good news, then their 

buying (selling) pressure will drive financial prices above (below) fundamentally 

warranted levels. This overvaluation can persist for some time since it is risky to 

arbitrage this misevaluation when sentiment (overoptimism or –pessimism) is 

persistent.  

However, in the long-run, all mispricing will eventually be corrected and 

prices must return to fundamental values. Therefore, a test of the noise trader hypothesis 

can be conducted by regressing future returns on current individual sentiment. 

Theoretically, the noise trader paradigm suggests that the coefficient of sentiment 

should be negative. Higher optimism (sentiment) leads to an overvaluation today that 

has to be corrected in the future, i.e. expected returns must be lower in the future 

holding everything else equal. 

Contrary to the individual investors, institutions are commonly thought of as 

representing the rational part of the market, i.e. fundamentally oriented investors who 

correctly aggregate and process the relevant information. If this hypothesis is true, a 
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regression of future returns on current institutional sentiment should produce a positive 

slope coefficient estimate. This result would indicate that institutional expectations are 

correct on average. 

The first chapter tests these two hypotheses and analyzes a range of related 

topics or robustness issues. The main conclusion is that – at least for the data set of 

German investors investigated – individuals seem to be noise traders and that 

institutions seem to be smart money. 

The second chapter “Investor sentiment, herd-like behavior and stock returns: 

Evidence from 18 industrialized countries” builds on the same assumptions and 

theoretical background as the first chapter but goes one step beyond and conducts an 

out-of-sample test of the noise trader hypotheses (due to data availability, institutional 

sentiment is not analyzed). I test whether a proxy for individual sentiment has the 

expected effect as discussed above on expected returns in 18 industrialized countries 

around the world, covering among others, the major markets in the U.S., U.K., Japan, or 

Germany. This out-of-sample test seems useful since most of the earlier work in this 

area is based exclusively on U.S. data and the resulting evidence might be subject to the 

usual data-mining problem. It is found that the sentiment-return relation differs a lot 

between countries and that there is a significant effect of sentiment on returns for only 

10 out of 18 countries.  

In a second step I investigate possible sources that may explain why there is a 

strong and significant sentiment effect on returns for some countries but not for others. 

The results show that those countries tend to have a higher noise trader impact, that 

have less developed institutions, lower levels of education, and a culturally anchored 

tendency to show herd behavior and overreaction. Especially the latter finding 

corroborates empirical evidence by Chui, Titman and Wei (2005) who show that 

cultural factors might play an important role in explaining market anomalies 

internationally. 

The third chapter "A prospect-theoretical interpretation of momentum returns" 

deals with a different fundamental behavioral approach, namely loss aversion and 

myopic behavior. This so-called myopic loss aversion is a cornerstone of modern 

behavioral finance and models agents as having short planning horizons (myopic 

behavior) and as being much more sensitive to losses than to gains of the same size, i.e. 

there is kink in the utility function at a pre-specified reference level. Myopic loss 

aversion has been employed in several asset pricing studies throughout the years and in 
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various contexts (sees e.g. Benartzi and Thaler, 1995, Barberis and Huang, 2001, 

Barberis, Santos, and Huang, 2001, or Barberis, Huang, and Thaler, 2006). In this 

chapter, we apply myopic loss aversion to the puzzling behavior of momentum returns. 

Momentum strategies boil down to buying past winning stocks while 

simultaneously selling (short) past loser stocks. While this strategy is one of the 

simplest asset allocation rules one might think of, the returns to momentum portfolios 

are extremely high and largely unexplained by standard risk factors employed in the 

literature (see e.g. Jegadeesh and Titman, 2001).  

Although momentum returns seem to offer a free lunch under a rational asset 

pricing framework, the chapter shows that there is considerable risk following these 

strategies when investors have short planning horizons (as is well documented for fund 

managers and individual investors) and when they are loss averse. Therefore, 

momentum returns seem to offer an equilibrium compensation for risk under a more 

realistic utility specification (and no riskless excess returns). 

The fourth chapter "Myopic loss aversion and the cross-section of U.S. stock 

returns: Empirical evidence" extends the third chapter in two dimensions. First, the 

sample of test assets is expanded from just looking at momentum returns to a large set 

of 115 investment styles (e.g. value versus growth stocks, small vs. large stocks, 

industry portfolios). This seems to be an important test given recent critical comments 

in the academic literature (Cochrane, 2006, Lewellen, Shanken, and Nagel, 2006) who 

complain about the fact that ostensibly successful asset pricing models often work for 

specific samples of test assets only (e.g. only for small versus large stocks but not for 

industry portfolios). Second, the chapter explicitly tests whether a risk factor 

constructed from the myopic loss aversion framework is priced cross-sectionally when 

including other prominent risk factors from the earlier literature. 

It is found that myopic loss aversion seems relatively successful in capturing 

the risk of different investment strategies and that the risk factor constructed from the 

myopic loss aversion framework is dominant relative to other risk factors employed in 

the literature.  

Finally, the fifth chapter "Does professionalism consistently affect portfolio 

biases" deals with the question whether behavioral biases (as e.g. documented in the 

first four chapters) may be overcome by professionalism of market participants. 

Contrary to economic intuition, professionalism does not seem to uniformly lead to 

more rational behavior and the existing literature does not paint a clear picture on this 
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point. While e.g. Haigh and List (2005) or Dasgupta et al. (2006) show that 

professionals may perform even worse than laymen, there are other studies showing that 

professionalism may be a performance enhancing factor (e.g. List, 2003, Locke and 

Mann, 2005, Alevy et al., 2007). Therefore, we conduct a survey study of about 500 

investors covering institutional investors, investment advisors and individual investors 

to investigate whether different dimensions of professional behavior drive out 

behavioral biases (such as home bias, high turnover and the disposition effect) or not. 

The survey approach is helpful here, since it allows investigation of 

unconstrained behavior. Especially institutional investors are often constrained in their 

portfolio choice due to legal restrictions or restrictions and incentives of their employer, 

so that actual trading data must be polluted by these influences. Therefore, we rely on a 

survey approach that does not impose restrictions on the participants and which 

provides new insights into the behavior of the three types of investors.  

It is found that three different dimensions of professionalism (occupation, 

experience, and "market knowledge") are uniformly beneficial for investment behavior 

and reduce portfolio biases. The estimated effects are statistically significant, 

economically large and robust to different regression specifications.  

Summarizing the evidence, two major conclusions can be drawn. First, it is 

found that behavioral biases matter for asset prices and investment behavior. This 

conclusion is rooted in all five chapters and manifests itself through the predictive 

power of sentiment (chapters 1 and 2), the empirical success of myopic loss aversion for 

asset pricing (chapters 3 and 4) and the portfolio biases documented in chapter 5. 

Especially chapter 4 shows that incorporating observed real-world elements into agents’ 

utility function, drastically increases the performance of asset pricing models for a 

variety of test assets. 

A second conclusion can be drawn for the role of institutional versus 

individual investors. Both chapter 1 and chapter 5 show that there is a significant 

difference between the two investor groups. Whereas chapter 1 shows that institutions 

seem to be rational investors who collect and aggregate fundamental information, 

chapter 5 shows that institutions do indeed show significantly less biased behavior than 

individuals. As discussed in the beginning of this motivation, these findings contrast 

sharply with the findings for individuals and may have far-reaching implications for the 

real economy and for the design of retirement security systems. 



Chapter 1:

Institutional and individual sentiment:

Smart money and noise trader risk?∗

1.1 Introduction

This chapter empirically investigates two questions that have been subject to

a large amount of research effort and debate in financial economics, namely (i) does

investor sentiment matter for stock returns, and (ii) what is the difference between

individual and institutional investors in financial markets?

While it seems to be generally accepted that institutions differ from individuals

due to their size and sophistication (Kaniel, Saar and Titman, 2005) there is con-

siderable disagreement in how these two investor groups differ from each other and

how this difference affects market processes like price formation and liquidity pro-

vision. Several studies find institutions to be informed investors or ”smart money”1

(e.g. Chakravarty, 2001, Jones and Lipson, 2004, Sias, Starks and Titman, 2006)

and individual investors to be irrational noise traders or ”dumb money” (Frazzini

and Lamont, 2005, Bange, 2000). However, this evidence is accompanied by the

finding that institutions deliberately herd in and out of stocks (see e.g. Nofsinger

and Sias, 1999, Sias, 2004) and that they heavily rely on momentum-style strategies

(Badrinath and Wahal, 2002, Griffin, Harris and Topaloglu, 2003). Furthermore,

”dumb” individuals seem to earn excess returns by providing immediacy for in-

stitutional trading demands at high frequencies (Kaniel, Saar and Titman, 2005,

Campbell, Ramadorai and Voulteenaho, 2005). Therefore, the evidence from real-

world trading data so far is not conclusive regarding the role of these two investor

groups.

The question whether sentiment, or the mood and expectations of investors,

matter for stock returns is more controversial and supporters from the behavioral

∗This chapter is based on a paper published in the International Journal of Forecasting 23, p.

127-145 (2007), used with permission from Elsevier.
1We refer to institutions as smart money in the sense of informed investors (e.g. Campbell and

Kyle, 1993) and not in the narrower context of mutual fund flows only as in Zheng (1999).
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side (e.g. Shiller, 2003) and critics from the rational camp (e.g. Fama, 1998) have

arguments in favor of this view or against it. While theoretical models have early

incorporated the existence of noise traders into equilibrium asset pricing (Kyle, 1985,

DeLong et al., 1990), empirical evidence on the relevance of investor sentiment does

not provide clear findings (see e.g. the polar results in Brown and Cliff, 2005 and

Wang, Keswani and Taylor, 2006).

We affiliate these two questions and investigate whether sentiment of institu-

tional investors and individuals matters for aggregate stock market movements and

whether the influence of sentiment of these two groups is systematically different.

Using a new data set that covers both institutional and individual investors we find,

first, that sentiment matters for several stock markets around the world and over

intermediate horizons of up to one year and a half. Second, there is a sharp dif-

ference between the two investor groups. Institutional investor sentiment forecasts

stock returns correctly on average. Individual sentiment negatively predicts mar-

ket movements in a way that is consistent with the hypothesis that overoptimistic

(-pessimistic) noise traders drive markets away from intrinsic values. This overop-

timism or -pessimism has to be corrected eventually so that prices return to their

intrinsic values over intermediate to long horizons which gives rise to the negative re-

lation between individual sentiment and expected stock returns (see e.g. Brown and

Cliff, 2005 or Lemmon and Portniaguina, 2006). Third, in line with these findings,

institutional investors become more pessimistic (optimistic) when they expect indi-

viduals to be more optimistic (pessimistic) since they recognize that prices might

have been driven above (below) fundamental values. Also, institutional investors

become more optimistic (pessimistic) when they expect individuals to become even

more (less) optimistic (pessimistic) since they recognize that noise traders might

push prices even higher above (further below) fundamental values as discussed in

the behavioral finance literature (see Shleifer, 2000).

Therefore, our contribution to the literature is twofold. We first employ a new

data set that covers genuine investor sentiment from a weekly survey, twice-separated

on individual and institutional investors as well as on short and medium forecasting

horizons based upon several major stock markets around the world. This data set

allows us to analyze investor sentiment while controlling for factors such as the

geographical location of a market, forecast horizon and sophistication of investors.
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This is new to the literature since previous studies have to rely on proxies for (mostly

institutional) sentiment (e.g. Neal and Wheatley, 1998 or Bodurtha, Kim and Lee,

1995), experimental data (DeBondt, 1993) or rather examine sentiment of investors

for the US market exclusively (Kumar and Lee, 2006, Lee, Jiang and Indro, 2002,

or Wang Keswani and Taylor, 2006).

Second, we contribute to the literature by directly extending a new empirical

modelling approach from Brown and Cliff (2005) to the case of two investor groups.

Earlier studies employing sentiment data have focussed on short run predictability

in first or second moments (Lee, Jiang and Indro, 2002, Wang, Keswani and Taylor,

2006). Following Brown and Cliff (2005) we investigate longer term effects of senti-

ment on stock markets since the building up of excessive optimism or pessimism, i.e.

sentiment, is likely to be a persistent process whose effects on stock prices would be

hard to detect over short horizons of one or two months. Whereas Brown and Cliff

limit their analysis to individuals, we jointly analyse the impact of both individuals

and institutions on stock prices and complement their approach with further analy-

ses that all point to the main result of this chapter: individual sentiment is a proxy

for noise trader risk and institutions seem to be smart money.

The rest of the chapter unfolds as follows: the next section derives testable

hypotheses from earlier studies and section 1.3 describes the data set. Section 1.4

shows results from long-horizon regressions, section 1.5 presents evidence from trad-

ing strategies based on sentiment, section 1.6 deals with the influence of individual

sentiment on institutional investors and section 1.7 investigates structural stability.

Section 1.8 concludes.

1.2 Hypotheses and earlier literature

One of the basic issues related to studies of investor sentiment deals with the

question whether sentiment contains unique information for asset pricing. Indeed,

there is lots of evidence that investor sentiment, moods or the awareness of investors

for certain topics affect conditional moments of equity returns. This includes among

others the high-volume premium documented by Gervais and Kaniel (2001), index

additions and deletions (see e.g. Chen, Noronha and Singal, 2004) or rumors and

talks in internet chatboards investigated by Antweiler and Frank (2003).
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On a theoretical level, the model of Barberis, Shleifer and Vishny (1998) gives

room for systematic under- and overreaction of stock returns due to shifts in investor

sentiment. Using several proxies for investor sentiment Neal and Wheatley (1998)

and Baker and Wurgler (2006) find that sentiment proxies heavily affect the cross-

section of stock returns, e.g. that they affect the size effect or the relative prospects

of different groups of stocks sorted by characteristics like volatility and dividend

payments. These results seem to carry forward to the realm of real economic ac-

tivity. Polk and Sapienza (2006) even find sentiment to have effects on the real

economy by influencing managers’ decisions to issue new shares when sentiment is

high. Ang, Bekaert and Wei (2007) find survey measures of investor expectations to

beat all traditional forecasting methods when predicting inflation in the U.S. which

highlights the information contained in investor surveys. Therefore we expect that

sentiment, as measured by genuine investor surveys, matters for stock returns for

a period of intermediate to long horizons as in Brown and Cliff (2005) or Lemmon

and Portniaguina (2006).

Since financial economists typically view individuals and institutions differ-

ently due to their relative size and sophistication and many researchers find that

both groups often take opposite positions when trading (e.g. Kaniel, Saar and

Titman, 2005) we expect sentiment of individuals to have a different effect than

sentiment of institutions.

Regarding the nature of the difference between individuals and institutions, we

observe that e.g. Barber, Odean and Zhu (2005), Brown and Cliff (2005), or Lem-

mon and Portniaguina (2006) find strong evidence for the hypothesis of excessive

overoptimism which holds that noise traders who get overly optimistic (pessimistic)

about a series of good (bad) news tend to push asset prices above (below) intrin-

sic values (see also Barberis, Shleifer and Vishny, 1998). Since many researchers

view individuals as the proverbial noise traders (Kaniel, Saar and Titman, 2005) it

implies that individual sentiment forecasts returns negatively, i.e. higher individ-

ual sentiment implies lower expected returns since asset prices eventually return to

their fair values. Therefore our first hypothesis is, that individual investors’ senti-

ment negatively predicts returns at longer horizons. Reliably identifying individual

investors as noise traders has quite severe implications as outlined by Shleifer (2000).

Individuals who have consistently wrong expectations should e.g. not be allowed to

4



manage their own Social Security savings and their presence might hinder arbitrage

that makes markets informationally efficient.

Evidence from trading data implies that institutions are informed investors

(e.g. Chakravarty, 2001) although, as noted in the introduction, there is also evi-

dence on non-sophisticated behavior of institutions like herding. However, for the

functioning of financial markets there must be at least some market participants who

collect and interpret fundamental information to calculate fair asset prices. More-

over, recent research indicates that the influence of fundamental risk factors on re-

turns is state dependent and therefore needs to be interpreted by investors (see inter

alia Bacchetta and van Wincoop, 2004, Boyd, Hu and Jagannathan, 2005 or Con-

rad, Cornell and Landsman, 2002). Since this is a demanding task, we would expect

institutions due to their size and sophistication to fulfill this function. Therefore,

we expect institutional sentiment to be positively correlated with expected stock

returns, i.e. institutional sentiment correctly predicts market returns over longer

horizons. This makes up our second hypothesis.

Finally, given that there is noise trader risk in financial markets, DeLong et

al. (1990) show that equilibrium asset prices reflect a corresponding risk premium.

Furthermore, smart investors should take into account the expected level and ex-

pected future changes in irrational sentiment (Shleifer, 2000). Therefore, we test

whether institutions who expect a higher level of optimism (pessimism) by indi-

viduals get more pessimistic (optimistic) since they heed that noise traders have

driven prices above (below) intrinsic values. This deviation from fundamentals has

to be corrected eventually, so that a higher level of optimism (pessimism) by noise

traders should decrease (increase) expected returns of smart investors. This sets

up hypothesis 3a. Complementary to this test, we investigate whether institutional

investors get more optimistic (pessimistic) when they expect individual sentiment

to increase (decrease) over the near future. If increasing individual optimism drives

stock prices up, rational institutions should take into account this relationship and

expect higher (lower) returns when they expect individuals to become more bullish

(bearish) over the near future. This is hypothesis 3b. The two hypotheses 3a and

3b are two sides of the same token. In the short run (hypothesis 3b), noise trader

sentiment drives prices and smart money should rationally factor this relationship

in when forming expectations which implies a positive relation between changes in

5



institutional and changes in individual sentiment. Over longer horizons, deviations

from fundamentals will eventually be corrected so that one should find a negative re-

lation between changes of institutional sentiment and levels of individual sentiment

(hypothesis 3a).

1.3 Data and descriptive statistics

We use data based on a weekly survey, called sentix (sentiment index). These

are collected by ”sentix - behavioral indices” and are available on the internet via

www.sentix.de to frequent participants of the survey. They are also obtainable

inter alia via Bloomberg, Thomson Financial, Ecowin or Reuters. The survey dis-

tinguishes between answers from institutional and individual investors. Although

everybody who wishes to join-in the survey is allowed to, once registered online,

there is an identity check in the case of institutional investors: Only investors who

register with an e-mail address of an institutional investment firm (e.g. banks, bro-

kers, asset managers) are allowed to vote for the category ”institutional investor”.

Survey participation is not compulsory but frequent participation allows users to

both access the time series of sentiment indices as well as special analyses by the

operators of the survey - hence this provides an incentive to participate on a regular

basis.

Participants are being asked anonymously what they think about the direction

of the market upon short (one month) and medium (six months) horizons for several

major stock markets in Europe, the USA and Japan. They can choose three answers,

namely ”up”, ”unchanged” and ”down” for both time horizons separately. We centre

our investigation upon the medium horizon answers2 of both private and institutional

investors for the DAX30 (DAX), EuroStoxx50 (ESX), NASDAQ100 (ND), S&P500

(SP) and Nikkei225 (NK).3

Our sample covers the period from February 23, 2001 to May 5, 2006 and

consists of 263 observations, as some weeks were not evaluated due to official holidays

2As we find short run sentiment to be very noisy which confirms the results in Brown and Cliff

(2004) or Wang, Keswani and Taylor (2006).
3There is data on one more market, the German TecDAX, which is similar to the NASDAQ

indices. However, this index experienced a major reconstruction in the middle of the sample,

consequently we do not use the data on this market.
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taken place during this time. The number of responses in the survey totalled to 52

immediately after the start of the survey in February 2001 and steadily increased to

750 towards the end of the sample. The average response is 363 participants and the

average share of institutional responses is about 25%. A disadvantage of the data is

the relatively small number of respondents at the beginning of the survey in 2001.

At this time, it would have been possible to manipulate the sentix index. However,

this becomes more and more unrealistic towards the end of the sample with more

than 700 survey respondents each week.

In order to make our data operational we first need a sensible measure to

aggregate the survey answers. A common way to do this is to use the so-called bull-

bear-spread (Brown and Cliff, 2004) which is computed by the number of positive

minus negative answers divided by the total number of survey participants. We thus

define our bull-bear-spread Sit for each of the five stock indices as

Si,mt =
#POSi,mt −#NEGi,m

t

#OBSi,mt
(1.1)

where i denotes institutional (i = I) or individual (or private, (i = P )) investors.

The superscript m indicates the respective stock market, i.e. m= DAX, ESX, ND,

SP or NK. #POSt (#NEGt) being simply the number of positive (negative) voters

in week t. Finally, #OBSt denotes the total number of survey participants in week

t which is made up by positive, negative and neutral voters.

As a basic ingredient for the following analysis we also use log returns for each

respective stock index. Descriptive statistics of the variables used can be found in

Table 1.1. As one can see from Panel A of the table, stock returns display a typical

behavior: they are not autocorrelated but show signs of heteroscedasticity. Panels

B and C deal with institutional and individual investors’ sentiment. In short, the

mean and median of each series is positive and the maxima and minima are far from

their natural bounds minus one and plus one. Thus, there are no really extreme

aggregate expectations in the sample. Furthermore, all sentiment series are highly

persistent as can be seen from the low test statistics of the Ljung-Box (1987) test

who clearly reject the null of no autocorrelation. This persistent behavior of the

series will be taken special care of in the following analysis. As one might expect,

most sentiment series are highly non-normal as indicated by the Jarque-Bera test in

the last two rows of each panel.
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Figure 1.1 plots the evolution of the stock market index (right axis and bold

dark line), individual (left axis and thin dark line) and institutional sentiment (left

axis and thin grey line) for all five markets over the whole sample. As can be seen,

the two sentiment indices covary negatively over the first half of the sample and

mostly positively over the second half. Only for the NIKKEI 225 there seems to be

a clear positive correlation between individual and institutional sentiment. Indeed,

for the four European and US American markets, the correlation coefficients of

individual and institutional sentiment are low between 0.10 and 0.25 whereas there

is a correlation of roughly 0.80 for the Japanese market.

Finally, one might be concerned that the sentiment indices presented in Figure

1.1 are not only very persistent as indicated by the Ljung Box tests presented above

but may even be unit-root nonstationary. Theoretically, there is a strong prior

that the sentiment indices are stationary in the long run, because they are bounded

between plus and minus one by construction. However, the series may well be

nonstationary in a finite sample like ours. This poses a problem, because as it

is well known, the question whether a time series has a unit root or is just very

persistent is unanswerable in finite samples (see e.g. the discussion in Hamilton,

1994, p. 444-447). We present several unit-root tests for all ten sentiment indices

in Table 1.2. On the 5% level, the null of a unit root is always rejected by the

Phillips-Perron (1998) and Augmented Dickey-Fuller (1979) test. It is also rejected

on the 10% level for all time series with the only exception being the institutional

S&P500 sentiment when using the more recent DF-GLS test of Elliot, Rothenberg

and Stock (1996). Therefore, the test results point towards stationarity although

there is clear evidence of persistence in the time series. Since we are mainly interested

in the information contained in the levels of sentiment4, we will present analyses that

explicitly take into account the high persistence in the sentiment indices. In section

1.5 we analyze trading strategies that are not subject to this problem and in section

1.6, we investigate an implication of the so obtained results on the first differences of

sentiment indices. Encouragingly, all approaches yield results that are confirmative

to each other.

4It is intuitive that e.g. a positive change in sentiment may have quite different effects on stock

returns depending on whether the change occurs on a yet extremely bullish level or on a neutral

level near zero.
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1.4 Long-horizon return regressions

This section performs a simple and intuitive test for the existence of noise

trader risk and smart money effects and establishes the main result of the chapter.

Extending the empirical framework of Brown and Cliff (2005) to the case of two in-

vestor groups we run predictive regressions of stock returns on past sentiment of both

individuals and institutions. The results show that individuals consistently forecast

the wrong direction whereas institutional sentiment forecasts returns correctly.

1.4.1 Econometric methodology

We closely follow Brown and Cliff (2005) in the empirical setup to ensure com-

parability of our results. However, contrary to them we include both institutional

and individual sentiment in our analysis to jointly test for the existence of noise

trader risk and smart money. Towards this end we estimate long-horizon return

regressions of the form

1

k

k∑
κ=1

rmt+κ = β
(k),m
0 + β

(k),m
1 SI,mt + β

(k)
2 SP,mt + Θm

t γ
(k),m + ε

(k),m
t (1.2)

with the average k−period log return5 for market m as endogenous variable and

several predictors on the RHS. These predictors include sentiment of individual

SP,m and institutional investors SI,m as well as typical macro and micro factors

used in the asset pricing literature. These additional risk factors are collected in the

matrix Θ and are detailed below. We employ known up-to-week t information to

forecast cumulative excess returns beginning in week t+ 1 only.

Equation (??) can be used to test hypotheses 1 and 2 discussed in section 1.2.

If sentiment matters for stock returns the coefficients β1, β2 should be nonzero. For

the existence of noise trader risk and overoptimism among individuals (hypothesis

1) we expect β
(k)
2 < 0 since overoptimism which pushes prices above intrinsic values

eventually has to be reversed which implies that higher individual sentiment leads

to low expected returns. For institutions to form correct expectations (hypothesis 2)

β
(k)
1 > 0 must hold, i.e. higher institutional sentiment is followed by higher returns.

Since the regression approach measures net effects of each regressor (net of all other

5Using excess returns over the risk-free rate yields qualitatively identical results.
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regressors) it is possible to determine if institutional sentiment correctly predicts

market movements net of fundamental (Θ) risk factors and noise trader risk (SP ).

A common and nowadays well known problem with long-horizon regressions

of the form above is, that they cannot simply be run by standard econometric tools

even if robust covariance matrices are used. Several authors (see Stambaugh, 1999,

Valkanov, 2003, or Ferson et al., 2003) have documented this problem, which is

mainly caused by highly persistent regressors that evolve as stochastic processes

themselves. In this case OLS estimation results are at best consistent but no longer

unbiased although all regressors are predetermined. For simple regressions with only

one predictor it can be shown analytically that the bias in coefficient point estimates

increases, the stronger the persistence of the regressor gets (Stambaugh, 1999).

As we show in Table 1.1 our sentiment indices are highly persistent.6 A further

complication arises from the overlapping of the sums of returns, which induces a

moving average structure of order k − 1 to the error terms ε
(k)
t .

Different ways have been proposed to circumvent these problems, mostly re-

lying on some form of simulation procedure (see e.g. the application in Brown and

Cliff, 2005) or auxiliary regressions (Amihud and Hurvich, 2004). In order to es-

tablish comparability with the results of Brown and Cliff (2005) we follow them by

simulating small sample confidence intervals and test statistics for the coefficient

estimates of each return regression separately to overcome this spurious regression

problem (Ferson et al., 2003). The procedure used is described in the Appendix.

There we also describe the ingredients to the matrix of control factors Θ which is

slightly different across markets due to data availability for the respective countries.

1.4.2 Estimation results and interpretation

Results of this estimation-simulation procedure are depicted in Figure 1.2.

The figure shows the estimated effect of a one standard deviation movement in

institutional (left column of the figure) and individual (right column) sentiment

for each horizon k = 1, . . . , 75 weeks and simulated small sample 95% confidence

intervals.

The results are clear-cut and confirm our hypotheses 1 and 2. Institutional

investors’ sentiment correctly predicts long-horizon index excess returns for most

6Brown and Cliff (2005) also find individual sentiment in the U.S. to have high serial correlation.
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horizons in all five stock markets. Thus institutional investors are found to forecast

future stock returns correctly if noise trader and fundamental risk is held fixed.

This does not necessarily mean that their forecasts are always correct. It rather

verifies that, on average and net of unpredictable factors, institutional sentiment

gets the direction of future stock market movements right. This fits well for the

assumption of institutions being rational arbitrageurs who collect and aggregate

fundamental information since their sentiment contains information beyond that of

several fundamental risk factors alone (which we include via Θ).

On the contrary, individual sentiment is negatively related with future stock

returns although this relationship is significant mostly for longer horizons. This

stands in line with the hypothesis that excessive optimism (pessimism) of noise

traders drives prices above (below) fundamental values. These misvaluations even-

tually cause a subsequent reversal to intrinsic values so that individual sentiment

and expected returns should indeed covary negatively. Thereby we confirm the find-

ings of Barber, Odean and Zhu (2005), Brown and Cliff (2005) and Lemmon and

Portniaguina (2006) for markets outside the U.S., namely that individual sentiment

matters, that it covaries negatively with future returns and that the effects of indi-

vidual sentiment take time to transmit to stock returns since excessive overoptimism

(-pessimism) is a persistent process.

Interestingly, the results are very strong for institutional investors in all five

markets, whereas the results for individual investors are best for the US, weaker

for the two European markets and almost non-existent for Japan. According to

the noise trader vs. smart money hypothesis this would imply that institutions are

smart money in all countries (or regions) considered while the influence of noise

traders is different for the different regions.

Since our investors are asked about their expectations regarding a six months

horizon we also present estimation results of the two relevant parameters β1 and β2

for this horizon, i.e. k = 24 in Table 1.3. Reported are bias adjusted coefficients

and p-values based upon simulated critical values for the t-test. We also report the

percentage bias in coefficient estimates, denoted ψi,m7 , the simulated upper and

lower critical values for the t-test on the 5% significance level, denoted tu and tl,

and an analysis of the forecast root mean squared error (RSME) and Theil’s U. It

7Remember that i indexes institutional (I) and individual (P ) investors respectively.
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can be inferred, that on this special forecasting horizon, that sentiment is significant

for all four European and US markets whereas individual sentiment is significant

only for the two US indices. Therefore, the most impressive results stand for the

NASDAQ100 and S%P500 which have the highest R2s, the highest covariance pro-

portion of the root mean squared errors (RMSE) and the lowest p-values. However,

it is unlikely that investors report exact ”24 week” sentiment but rather their gen-

eral medium term expectations. These might be based upon a somewhat longer or

shorter period which would explain the strong results for other periods as presented

in Figure 1.2. Finally, from a technical point of view, the simulated critical values

for the t-statistics are much larger in absolute value than those employed in stan-

dard coefficient tests, which clarifies the need to adjust for the effects of persistent

regressors.

The results shown in Figure 1.2 are also significant in economic terms and

somewhat higher in absolute magnitude than those in Brown and Cliff (2005). There

they find that a one standard deviation shock in sentiment leads to a cumulative

decrease in excess returns of 7% over three years. We cannot examine this long

horizons but our analysis shows that net effects of individuals over horizons of one

year are approximately -10% whereas institutional sentiment has an effect of roughly

+10% across markets. However, these results should not be interpreted easily as be-

ing evidence against the efficient markets hypothesis. First, there is large parameter

uncertainty as can be seen from the rather wide standard errors in Figure 1.2 which

might distract arbitrageurs from exploiting these relationships. Second, results for

individual sentiment take a lot of time to be significant. These longer horizon could

well be outside the usual investment horizon of many investors. Third, individual

sentiment is likely to be a proxy for noise trader risk. Therefore, positive excess

returns from a trading strategy based on sentiment should carry significant risk not

captured by standard methods currently employed in practice (see Shleifer (2000)

for a discussion of how risky it is to do arbitrage in the presence of noise traders).

However, we implement a simple trading strategy based on the two sentiment se-

ries in the next section and indeed find signs of profitability when using standard

techniques of controlling for risk.
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1.5 Results based on sentiment trading strategies

This section investigates some easy to implement trading strategies for the sen-

timent and return series to examine whether the information contained in investor

sentiment is exploitable. This serves to check the results from the long-horizon pre-

dictive regressions for robustness and to see whether the forecasting relationship

between the two sentiment series and returns is likely to hold when leaving the spe-

cific in-sample regression context. As it turns out, even when the simplest possible

strategies (which are not fitted or optimized in any way) are used, there is clear

evidence of profitability.

When implementing trading strategies there is a danger of obtaining spurious

results from overfitting and/or data-snooping, i.e. the researcher tries a wide range

of possible strategies and reports only those strategies that yield results in favor of

his null hypothesis. Although tests have been constructed to account for this bias

(Sullivan, Timmermann and White, 1999) we employ a more robust way here by

using the simplest possible trading strategies that are particularly easy to imple-

ment and that are based on the intuition of smart money and noise trader effects.

Furthermore, we report results not for specific optimized parameters of the strategy

but summary statistics for a wide range of plausible parameters.

Specifically, we report results for trading strategies based on the following

simple algorithm for each market m:

1. Compute Ωm
t = 1

1+k

∑k
j=0

(
SI,mt−j − S

P,m
t−j

)
where k = 0, . . . , 49 weeks.

2. Hold the respective stock market index in week t + 1 if Ωm
t ≥ 0, i.e. earn the

(log) market return rmt+1 in week t+ 1.

3. If Ωm
t < 0 we consider two different possibilities:

(a) Short the respective stock market index, i.e. earn −rmt+1 in week t + 1.

We refer to this as the ”Long/Short strategy”.

(b) Hold a short term bond in week t+ 1, i.e. earn the risk-free rate rf,mt+1 in

week t+ 1. We refer to this as the ”Long strategy”.

As mentioned above, we do not optimize the smoothing period k and we do not

optimize by setting any thresholds which Ωm
t has to surmount before generating
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trading signals.8 The mechanics of the trading strategy have some additional nice

properties namely that it (a) is easy to implement in practice and (b) is rooted in

the economic intuition of the smart money and noise trader effects outlined above

in this chapter. As we have argued, excessive optimism by noise traders implies

lower expected returns (and vice versa) since stock returns will eventually return to

fundamentals. Contrary to this, the expectations of smart money should correctly

aggregate fundamental information, and thus get the direction of aggregate stock

market movements right. Our strategy balances these two forces in the most simple

way: Buy (sell) when institutional investors are more optimistic (pessimistic) than

individuals.9

For each market m and each smoothing period k = 0, . . . , 49 we compute

weekly returns for (a) the Long/Short strategy, (b) the Long strategy, (c) a buy&hold

portfolio that just holds the stock market index, and (d) a zero-cost strategy that

is long in a trading strategy and short in the buy&hold portfolio. The zero-cost

portfolio construction is common in finance (e.g. Jegadeesh and Titman, 2001)

and serves to investigate whether completely self-financing trading strategies are

profitable. For each of the so constructed weekly return series we calculate several

statistics which are shown in Table 1.4.

Table 1.4, Panel A, shows results for the Long/Short strategies for all five

markets. Since we have 50 results per market due to the different smoothing

parameters k, k = 0, . . . , 49, we report several summary measures. The mean

r̄ = (1/50)
∑49

k=0 r̄k gives the average mean return of all 50 strategies for each mar-

ket which is about 8% p.a. Median r̄ shows the median of the fifty mean returns.

The measure %r̄ > 0 shows the share of strategies that yield a positive mean return

whereas σ(r̄) reports the standard deviation of mean returns. Finally, mean σ and

mean q5 show the average of the fifty return standard deviations and five percent

8Doing so easily generates far more extreme figures of profitability than reported below. How-

ever, the results would be hard to interpret in terms of statistical and economic significance.
9According to this story, the most profitable situations should arise when institutional investors

and individuals hold very different expectations. This can be easily incorporated into a trad-

ing strategy by constructing portfolios of stocks and bonds with time-varying investment shares

depending on the disagreement between the two groups. Again, doing so may increase the prof-

itability compared to the simple rule employed here but will be based on a more or less arbitrary

rule for computing the portfolio shares.
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points, respectively.

The first section shows results for the trading strategy whereas the second

section shows results for the buy&hold strategy. As can be seen, the strategies

based on the sentiment series consistently generate higher average and median mean

returns than the buy&hold strategy. Compared to the latter, the trading strategies

also tend to generate a higher percentage of mean returns that are larger than

zero. Interestingly, the standard deviation of mean returns is higher for the trading

strategy than for the buy&hold portfolio whereas the mean standard deviation and

the mean five percent point are uniformly lower for the trading strategy than for

holding the market portfolio. All in all, there is evidence in favor of the hypothesis

that sentiment contains useful information for forecasting stock returns.

This is naturally confirmed by the third section which details results for the

zero-cost portfolio. Average and median mean returns are positive for all markets

and the shares of self-financing strategies that yield mean returns larger than zero

range from 56% for the NIKKEI225 to 100% for the EuroStoxx50 and the NAS-

DAQ100.

The fourth section shows some results regarding the statistical significance of

risk-adjusted returns. The first row (median α) shows the median of Jensen’s alpha

estimated from the market model. The average and median alphas imply a weekly

risk-adjusted excess return of about 0.2% per week which (roughly) translate into

a risk adjusted return of ten percent p.a. However, the median t-statistic (median

tα) only ranges from about 1 to 1.8 which indicates that individual strategies (for

fixed k) are not statistically significant. This is confirmed by the share of t-stats

(%tα sign.) that is significant on the 5% level.10 This share ranges from only 16%

for the NIKKEI225 to 44% for the NASDAQ100. Also reported is the median of

the estimated βs from the market model. The medians indicate that the betas are

lower than unity. Therefore, the trading strategies do not seem to carry a lot of

systematic risk.

Finally the last three rows show results for the median Sharpe ratios of the

trading strategy (SRTS) and the buy&hold portfolio (SRBH). The median Sharpe

Ratios of the trading strategies are uniformly higher than those for the buy&hold

portfolio. The share of the 50 strategies that yield higher Sharpe ratios than the

10All test statistics are based on Newey-West HAC standard errors.
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buy&hold portfolio (%(SRTS > SRBH)) is almost 100% for the four European and

US American markets but significantly lower at 56% for the Japanese markets.

Panel B of Table 1.4 shows results for the Long strategy in the same manner

as for the Long/Short strategy. The results are quite similar in the sense that the

trading strategies considered tend to yield positive profits that are larger than for

the buy&hold portfolio. Most notably, the percentage shares of significant alphas

from the market model (%tα sign.) are higher than for the Long/Short strategy.

Furthermore, the Sharpe ratios are somewhat smaller than those for the Long/Short

strategy but the share of Sharpe ratios from the Long trading strategies that are

higher than those of the buy&hold portfolio (%(SRTS > SRBH)) are slightly better

than for the Long/Short strategy.

Transaction costs are unlikely to explain these findings. The trading strategies

operate in highly liquid stock market indexes (the strategies would be implementable

via futures) and not in illiquid stocks. As an example, adding rather high transaction

costs of 0.5% per trade do not change our findings, since most strategies do not

switch very often between long and short positions. However, a detailed analysis

of more complex trading strategies and an exact evaluation of trading costs via

microstructural data is beyond the scope of the chapter.

All in all, there is evidence that a strategy based on the two sentiment series

might be profitable even after controlling for systematic risk in a standard way.

Again, results for the US and Europe seem to dominate the results for Japan as

documented above for the long-horizon regressions and in line with the findings of

Chui, Titman and Wei (2005). The trading strategies might be best seen as a proxy

for an out of sample test of the results obtained from long-horizon regressions. Here

we do not optimize the strategy with sample information and show that a zero-cost

trading strategy almost surely generates a higher expected profit than a buy and

hold portfolio for the four European and US markets.

1.6 The effect of individual sentiment on institutional expectations

The results obtained by using bias-adjusted long-horizon regressions and the

trading strategies indicate that individual sentiment is a proxy for noise trader risk

and that institutional sentiment is conformable with expectations of smart traders
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who correctly aggregate fundamentals to form expectations. Given these results

we would expect institutional investors to also take into account noise trader risk

by individual investors (hypothesis 3a and 3b). This argument implies that the

change in the sentiment of institutions should be affected by their expectations

about the sentiment of individuals. We investigate this issue as a further plausibility

check of our results obtained so far. Furthermore, since institutional sentiment

seems to forecast aggregate market returns one might wonder if individual traders

take advantage of this forecasting relationship and try to infer future institutional

sentiment. If individual sentiment really represents noise, they should not exploit

this presumably fundamentals based information contained in institutional investors’

expectations.

In order to test these predictions, starting with hypothesis 3a, we estimate

regressions of the following form:

4SI,mt = µI,m + αI,mSP,mt + βI,m(L)4SI,mt + γI,m(L)rmt + εI,mt (1.3)

4SP,mt = µP,m + αP,mSI,mt + βP,m(L)4SP,mt + γP,m(L)rmt + εP,mt (1.4)

where β(L) and γ(L) are polynomials in the lag operator and we are mainly inter-

ested in the parameter estimates of αI,m and αP,m whereas the remaining terms are

included as control variables (see for example Wang, Keswany and Taylor (2006) for

the importance of controlling for past returns).

Some comments regarding these equations are in order. First, putting the first

difference of sentiment on the left hand side and the level of the other group’s senti-

ment on the right hand side serves to estimate whether changes in institutional and

individual sentiment can be explained by the level of the other group’s sentiment

as discussed above. Second, since the level of the other investor group’s sentiment

is unknown, and, more seriously, the regressions as stated above will suffer from si-

multaneity, we have to instrument for the level of sentiment in both equations. This

IV approach also makes sense from an economic viewpoint, since we are essentially

asking the following question for each of the two investor groups: how does my ex-

pectation of the other’s group sentiment influence the change in my own sentiment?

We do so by using as instruments all predetermined variables on the right hand side

of the respective equations, i.e. lags of market returns and own changes in sentiment,

and by further adding lagged levels of the sentiment we want to instrument for. As
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an example, consider the first of the above two equations concerning the change

in institutional sentiment. Here we use lagged changes in institutional sentiment,

lagged log returns and lagged values of individual sentiment SP,mt−1 , S
P,m
t−2 , .... In order

to free residuals from autocorrelation we use two lags of all variables. Estimation is

carried out via GMM where t-values are based on Newey-West (1987) HAC standard

errors.

The results are presented in Table 1.5 and show that institutional investors

(left part of the table) consistently adjust their sentiment downwards (upwards)

when they expect individual sentiment to be high (low) which is consistent with the

noise trader risk story of Brown and Cliff (2005) and Lemmon and Portniaguina

(2006) as well as our hypothesis 3a. Furthermore, as can be seen from the right part

of Table 1.5, individual investors do not take into account expected institutional

sentiment, thereby neglecting relevant information.

A second implication of the noise trader story is, that optimism (pessimism)

of these irrational investors drives stock values above or below intrinsic values. As

in the model of DeLong et al. (1990) rational investors take into account these

mechanism. Therefore, one should find that institutional sentiment rises (falls) if

they expect individual investors’ sentiment to become more optimistic (pessimistic)

over the near future. We test this prediction via the following regression

4SI,mt = µI,m + αI,m4SP,mt,t+4 + βI,m(L)4SI,mt + γI,m(L)rmt + εI,mt (1.5)

which estimates the impact of expected changes in individual sentiment over the next

four weeks 4SP,mt,t+4 on current institutional sentiment changes 4SI,mt . Again, we use

GMM with Newey West HAC standard errors and the same set of instrumental

variables as in equation (??).11 Results are shown in Table 1.6 and reveal that the

estimated impact α̂I,m is positive, statistically significant and of similar magnitude

for all five markets, although the result for the NASDAQ100 is significant on the

10%-level only. This again is evidence in favor of the smart money vs. noise trader

idea and confirms hypothesis 3b.

11Again, results for individual investors are not significant, so we omit them for the sake of

brevity
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1.7 Some stability considerations

A possible explanation for this puzzling finding might be, that individual in-

vestors need time to learn about the forecasting power of institutional sentiment

for future stock returns as this relation was not obvious right from the beginning of

this investor survey. Therefore, one might expect individual investors to rely more

heavily on institutional sentiment towards the end of the sample when they had the

chance to learn about the information contained in institutional sentiment. Indeed,

taking a second look at Figure 1.1, it seems that both sentiment indices track each

other more closely in the second half of our sample which might indicate a structural

break.

Stability analyses for the long-horizon regressions are difficult since we need a

long sample to reliably estimate these models and not just the last 100 observations

or so. If we do estimate these models on the last 100 or 150 weeks anyway, we find

somewhat weaker results than over the full sample. Although institutional sentiment

still forecasts future excess returns, individual sentiment is no longer associated with

statistically significant negative future returns. This clearly questions the validity of

the noise trader risk story although the results for institutions being smart money

is not affected.

A more direct investigation of structural stability can be carried out in the

GMM regressions of the last section. We employ Wald tests put forward by Andrews

(1993) and Andrews and Ploeberger (1994). The test for a structural break in their

framework is briefly described below. The sample is divided into two subsamples

according to a proportion π, 0 < π < 1, so that the first subsample T1 is made up

by observations 1, . . . , [πT ] where T is the full sample and [πT ] denotes the integer

part of πT . Thus, the second subsample consists of observations [πT ] + 1, . . . , T .

The division in the two subsamples should obviously be guided by the structural

break point to be tested. One then estimates the parameters of the model in the

two subsamples and forms the Wald test statistic WT according to

WT (π) =
[
β̂1(π)− β̂2(π)

]′ {
V̂1(π) + V̂2(π)

}−1 [
β̂1(π)− β̂2(π)

]
. (1.6)

where β1, β2 denote the coefficient vectors for the two subsamples and V1,V2 denote

the covariance matrices of the coefficients. However, since the timing of a possible
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structural break in our sample is a priori unclear, we rely on the method outlined

in Anrdews (1993) and Andrews and Ploeberger (1994) and estimate the models

detailed in (??) and (??) over different partitions of the sample. A common choice

is to let π vary from 0.15 to 0.85 and to estimate the ingredients to (??) over these

different subsamples to form a sequence of test statistics. The sequence can the be

used to construct the Sup WT (maximum of the test statistics), Avg WT (average

test statistic) and the Exp WT statistic which is computed as

Exp WT (π) = ln

[
1

R

R∑
r=1

exp [0.5WT (πr)]

]
. (1.7)

where R is the number of sample partitions.

Results from these tests applied to the IV regressions of institutional sentiment

changes on levels (??) and changes (??) in individual sentiment can be found in Ta-

ble 1.7. As can be seen, there is ample evidence of structural change in the sample,

especially for the two European markets DAX30 and EuroStoxx50. An inspection of

the sequence of test statistics12 reveals, that the structural break most likely takes

place in the fourth quarter of 2003 for the European and Japanese markets and most

likely in the middle of 2005 for the two US markets. For the European and Japanese

markets this break might be due to the regime change from a bear to a bull stock

market. However, this explanation does not fit the break for the US market which

seemed to occur much later. Therefore, it is unclear what causes this structural

instability and it will be interesting to see whether a longer time series of sentiment

and stock returns or time series from other countries support or contradict the find-

ings of this chapter. However, the instability uncovered here clearly weakens the

earlier evidence (Brown and Cliff, 2005, Lemmon and Portniaguina, 2006) of smart

money and noise trader risk for our sample.

1.8 Conclusion

Evidence on the role of individuals and institutions in financial markets is

mixed. While several papers find evidence that individual sentiment proxies for noise

trader risk (Barber, Odean, Zhu, 2005, Brown and Cliff, 2005, Kumar and Lee, 2006,

12Not shown here to conserve space

20



Lemmon and Portniaguina, 2006) there is rare evidence on genuine institutional

sentiment. We jointly investigate sentiment from both institutions and individuals

and find that (i) individuals seem to proxy for noise trader risk in a new data set

and that (ii) institutional sentiment seems to proxy for smart money which confirms

our first two hypotheses.

These results show up in both long-horizon regressions where we adjust for the

disturbing effects of persistent regressors and also in the analysis of simple trading

strategies . The former show that institutions (individuals) consistently have correct

(incorrect) expectations for all five markets over medium horizons. The trading

strategies show tendencies of being profitable on a risk-adjusted basis.

As a final check for plausibility of the noise trader interpretation of our re-

sults, we investigate cross effects of one group’s sentiment on the change of the

other group’s sentiment. Consistent with the previous findings, a higher (lower)

level of expected individual sentiment decreases (increases) institutional sentiment

which fits the view that overly optimistic (pessimistic) noise traders have driven

prices above (below) intrinsic values which will eventually cause a reversal in stock

prices to correct this deviation from fundamentals. Furthermore, if institutions ex-

pect noise traders to become more optimistic (pessimistic) over short horizons they

rationally incorporate this price pressure into their expectations and raise (lower)

their sentiment which is in line with the behavioral finance literature and our hy-

pothesis 3b.

Although there is lots of statistically and economically significant evidence of

the noise trader vs. smart money view as in earlier papers, we find that structural

stability is an issue. Especially the results for the influence of individual investors

show clear signs of being subject to structural change. Their negative effect on fu-

ture returns becomes statistically insignificant towards the end of the sample and

institutional sentiment is no longer influenced by individual sentiment. This some-

what weakens the clear in-sample evidence. However, institutional sentiment still

significantly forecasts stock returns later in the sample.
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Appendix

The simulation procedure we employ is based on simulating new time series

for each regressor to obtain bias adjusted confidence intervals for point estimates.

Therefore we regress average excess returns on the two sentiment variables and

control variables

1

k

k∑
κ=1

ret+κ = β
(k)
0 + β

(k)
1 SIt + β

(k)
2 SPt + Θtγ

(k) + ε
(k)
t (1.8)

where ret+1 is the market excess return over the risk-free rate from week t to t + 1.

For all five markets we investigate, the control variables in Θ include log changes

in the respective countries’ CPI and monetary aggregate M3 (the monetary base

for Japan). We further include changes in dividend yields13, short term (1 month)

interest rates and the term spread (difference of yields for maturities of 10 years

and 3 months) and the lagged market return. For the two US markets we further

include the quality spread (difference of yields for bonds rated Baa and AAA) and

the HML and SMB factors.

The simulation for each of the five stock market indices works as follows. We

estimate a VAR(1)-Model that includes all variables in the above equation and

imposes the null hypothesis that β1 and β2 are zero by setting the corresponding

coefficients in the VAR to zero. The residuals are stored. Next, we bootstrap the

residuals and recursively generate 10,000 new time series of the original length for

all variables. With these simulated time series in hand we estimate equation (??) for

horizons of 1, 2, . . . , 60 weeks and save the estimated coefficients β̃
(k)
1 , β̃

(k)
2 for each

horizon k over the 10,000 simulations. Note that the same 10,000 simulated time

series can be used for every horizon. Standard errors of all regression coefficients in

the simulation are corrected for autocorrelation up to lag k − 1. This provides us

with the empirical distribution of the point estimates which can in turn be used to

perform bias-adjustments.

13Taken from Bloomberg, on a daily frequency.

22



Table 1.1 Descriptive Statistics
This table shows descriptive statistics for several variables employed in the empirical
analysis separately for each stock market index. DAX denotes the DAX30, ESX the
EuroStoxx50, ND stands for the NASDAQ100, SP for the S&P500 and NK for the
NIKKEI225. Panel A shows statistics for log returns. Q(10) denotes tenth order
autocorrelation and the p-value for the Ljung-Box test statistic for autocorrelation
up to the tenth order. Q2(10) shows the same statistics squared residuals. The
residuals employed are filtered from an MA(1) model. JB gives the value of the
Jarque-Bera test statistic computed with the filtered residuals described above to
eliminate the effect of autocorrelation. Panel B and Panel C give the same statistics
for institutional and private investors’ sentiment. P-values are in parentheses.

Panel A: Return statistics
DAX ESX ND SP NK

mean 0.000 0.000 -0.001 0.000 0.001
median 0.004 0.004 0.000 0.002 0.004
max. 0.129 0.136 0.206 0.075 0.095
min. -0.139 -0.179 -0.192 -0.123 -0.077
std. dev. 0.034 0.031 0.041 0.023 0.028
skew -0.243 -0.655 -0.049 -0.679 -0.090
kurt 4.853 7.879 6.669 7.359 2.826
Q(10) 0.068 0.037 0.053 0.088 0.075

(0.09) (0.39) (0.41) (0.35) (0.93)
Q2(10) 0.094 0.065 0.067 0.023 0.068

(0.00) (0.00) (0.00) (0.00) (0.07)
JB 40.055 278.570 147.065 227.564 0.686

(0.00) (0.00) (0.00) (0.00) (0.71)

Panel B: Institutional sentiment statistics
DAX ESX ND SP NK

mean 0.155 0.164 0.041 0.233 0.044
median 0.174 0.186 0.044 0.273 0.049
max. 0.476 0.452 0.389 0.633 0.400
min. -0.156 -0.205 -0.286 -0.517 -0.350
std. dev. 0.131 0.133 0.119 0.205 0.114
skew -0.351 -0.514 0.086 -0.701 -0.139
kurt 2.493 2.648 2.813 3.496 3.561
Q(10) 0.248 0.284 0.179 0.209 0.553

(0.00) (0.00) (0.00) (0.00) (0.00)
Q2(10) 0.035 0.073 0.043 0.078 0.162

(0.00) (0.00) (0.00) (0.00) (0.00)
JB 8.230 12.956 0.711 24.242 4.293

(0.02) (0.00) (0.70) (0.00) (0.12)
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Table 1.1 (continued)

Panel C: Individual sentiment statistics
DAX ESX ND SP NK

mean 0.111 0.121 0.042 0.036 0.162
median 0.098 0.108 0.041 0.034 0.211
max. 0.433 0.424 0.426 0.386 0.562
min. -0.188 -0.184 -0.222 -0.229 -0.289
std. dev. 0.126 0.116 0.117 0.112 0.199
skew 0.336 0.250 0.364 0.174 -0.282
kurt 2.575 2.597 3.160 3.032 2.180
Q(10) 0.209 0.186 0.202 0.197 0.549

(0.00) (0.00) (0.00) (0.00) (0.00)
Q2(10) 0.158 0.107 -0.049 -0.023 0.017

(0.00) (0.00) (0.00) (0.00) (0.00)
JB 6.942 4.522 6.080 1.340 10.853

(0.03) (0.10) (0.05) (0.51) (0.00)

Table 1.2 Unit root tests for sentiment indices
This table shows unit root tests for the ten sentiment indices over the whole sample.
PP denotes the Phillips-Perron test, ADF the Augmented Dickey Fuller test and
DF-GLS is the Dickey Fuller test with GLS detrending. P-values are in parentheses.

PP ADF DF-GLS
SI,DAX -8.267 -4.685 -3.074

(0.00) (0.00) (< 0.01)
SP,DAX -5.821 -3.875 -1.677

(0.00) (0.00) (< 0.10)
SI,ESX -8.364 -4.944 -2.278

(0.00) (0.00) (< 0.05)
SP,ESX -5.631 -4.018 -2.704

(0.00) (0.00) (< 0.05)
SI,ND -10.451 -6.126 -1.672

(0.00) (0.00) (< 0.10)
SP,ND -6.087 -4.474 -2.914

(0.00) (0.00) (< 0.01)
SI,SP -10.102 -6.331 -1.001

(0.00) (0.00) (> 0.10)
SP,SP -6.278 -4.711 -2.542

(0.00) (0.00) (< 0.01)
SI,NK -5.051 -3.67 -1.82

(0.00) (0.00) (< 0.10)
SP,NK -3.411 -2.954 -2.914

(0.01) (0.04) (< 0.01)
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Figure 1.1 Sentiment and stock market indices
This figure shows the time series of stock market indices (thick dark line and right
axis) and the time series of both individual (thin dark line and left axis) and insti-
tutional sentiment (thin grey line and left axis).
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Figure 1.2 Long-horizon regressions at different horizons
This figure presents results from long-horizon regressions of excess returns on insti-
tutional and private sentiment as well as several other control factors. Displayed are
the average weekly returns for one standard deviation movements in both sentiment
variables for horizons up to 75 weeks. The left (right) side shows institutional (indi-
vidual) sentiment. The vertical axis measures average log returns per week and the
horizontal axis displays the horizon.
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Table 1.3 Results from long-horizon regressions
This table shows results from long-horizon regressions of the form

1
k

∑k
κ=1 r

e,m
t+κ = β

(k),m
0 + β

(k),m
1 SI,m

t + β
(k),m
2 SP,m

t + Θm
t γ

(k),m + ε
(k),m
t

where re,m is the (log) excess return for market m (m = DAX, ESX, . . .), SI,m

(SP,m
t ) is the sentiment index of institutional (individual) investors for market m,

and Θm
t is time t vector of market specific control variables detailed in Appendix 1. k

represents the horizon in weeks. The second column of the table shows bias-adjusted
coefficient estimates of β

(k),m
1 and β

(k),m
2 for the horizon of k = 24 weeks along with

p-values in parentheses which are based on the simulated small sample distribution
of the test statistics. The fourth column shows the bias in the coefficient estimate ψ
(in percent) whereas the fifth column shows simulated 5% critical values (tl and tu

for the lower and upper critical value) for the null that the respective coefficient is
zero. RMSE represents the root mean square error of the forecast, Bias %, Var. %
and Covar. % show the decomposition of the RMSE and TU is Theil’s U.

coef. adj. R2 bias % tl / tu Theil’s U
SI,DAX 0.023

0.128
0.084

-2.362 RMSE 0.008

0.672
(0.026) 2.717 Bias % 0.000

SP,DAX -0.012
0.176

-2.633 Var. % 45.190
(0.536) 2.868 Covar. % 54.810

SI,ESX 0.018

0.140
0.060

-2.471 RMSE 0.006

0.655
(0.011) 2.583 Bias % 0.000

SP,ESX -0.009
0.163

-2.680 Var. % 43.583
(0.519) 2.928 Covar. % 56.416

SI,ND 0.023

0.357
-0.096

-2.742 RMSE 0.006

0.495
(0.001) 2.217 Bias % 0.000

SP,ND -0.030
-0.399

-3.408 Var. % 24.465
(0.013) 2.054 Covar. % 75.535

SI,SP 0.011

0.263
-0.021

-2.564 RMSE 0.004

0.556
(0.006) 2.418 Bias % 0.000

SP,SP -0.014
-0.259

-2.362 Var. % 31.123
(0.044) 2.717 Covar. % 68.877

SI,NK 0.022

0.108
-0.342

-3.597 RMSE 0.006

0.686
(0.155) 1.496 Bias % 0.000

SP,NK -0.004
-0.847

-4.763 Var. % 50.485
(0.649) 0.859 Covar. % 49.515
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Table 1.4 Trading Strategy results
This table shows results for trading strategies based on investor sentiment indices.
Panel A shows results for the Long/Short strategy whereas Panel B shows results
for the Long strategy.

Panel A: Long/Short strategy
DAX ESX ND SP NK

Trading strategy statistics
mean r̄ 0.252 0.221 0.374 0.216 0.247
median r̄ 0.235 0.203 0.380 0.215 0.265
%r̄ > 0 100% 100% 98% 98% 100%
σ(r̄) 0.113 0.096 0.124 0.077 0.100
mean σ 3.297 2.943 3.458 2.108 2.718
mean q5 -5.821 -4.827 -5.336 -3.175 -4.484
Buy & hold strategy statistics
mean r̄ 0.059 0.003 0.032 0.057 0.171
median r̄ 0.062 0.010 0.030 0.059 0.181
%r̄ > 0 80% 56% 72% 100% 100%
σ(r̄) 0.052 0.041 0.054 0.027 0.058
mean σ 3.308 2.953 3.480 2.120 2.725
mean q5 -6.103 -5.180 -6.051 -3.326 -4.606
Zero-cost strategy statistics
mean r̄ 0.193 0.217 0.341 0.159 0.076
median r̄ 0.179 0.200 0.341 0.154 0.062
%r̄ > 0 96% 100% 100% 98% 56%
σ(r̄) 0.103 0.085 0.139 0.078 0.154
mean σ 3.818 3.734 5.498 2.959 1.997
mean q5 -4.154 -3.719 -8.296 -3.735 -0.153
Summary test statistics
median α 0.224 0.204 0.369 0.218 0.110
median tα 1.047 1.238 1.835 1.628 1.025
%tα sign. 18% 30% 44% 28% 16%
median β 0.298 0.186 -0.270 0.036 0.722
SRTS 0.054 0.052 0.095 0.083 0.097
SRBH 0.005 -0.014 -0.003 0.009 0.068
%(SRTS > SRBH) 96% 100% 100% 98% 56%
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Table 1.4 (continued)

Panel B: Long Strategy
DAX ESX ND SP NK

Trading strategy statistics
mean r̄ 0.170 0.127 0.230 0.155 0.209
median r̄ 0.165 0.130 0.229 0.168 0.213
%r̄ > 0 100% 100% 100% 100% 100%
σ(r̄) 0.067 0.056 0.066 0.042 0.028
mean σ 2.683 2.269 2.110 1.504 2.528
mean q5 -4.683 -4.169 -3.158 -2.468 -4.406
Buy & hold strategy statistics
mean r̄ 0.059 0.003 0.032 0.057 0.171
median r̄ 0.062 0.010 0.030 0.059 0.181
%r̄ > 0 80% 56% 72% 100% 100%
σ(r̄) 0.052 0.041 0.054 0.027 0.058
mean σ 3.308 2.953 3.480 2.120 2.725
mean q5 -6.103 -5.180 -6.051 -3.326 -4.606
Zero-cost strategy statistics
mean r̄ 0.110 0.123 0.198 0.098 0.038
median r̄ 0.105 0.117 0.202 0.096 0.031
%r̄ > 0 98% 100% 100% 98% 56%
σ(r̄) 0.049 0.040 0.069 0.039 0.077
mean σ 1.913 1.871 2.749 1.480 0.998
mean q5 -2.024 -1.808 -4.108 -1.804 -0.076
Summary test statistics
median α 0.152 0.141 0.227 0.147 0.055
median tα 1.403 1.675 2.389 2.217 1.034
%tα sign. 30% 34% 80% 62% 16%
median β 0.648 0.592 0.364 0.517 0.861
SRTS 0.044 0.037 0.097 0.089 0.084
SRBH 0.005 -0.014 -0.003 0.009 0.068
%(SRTS > SRBH) 100% 100% 100% 98% 58%
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Table 1.6 The effect of expected individual sentiment changes on institu-
tional sentiment
This table shows results for GMM regressions of institutional sentiment changes on
expected changes in individual sentiment over the next four weeks (see equation
(5)). P-values in parentheses are based on Newey-West HAC standard errors and
Q(10) reports the tenth order autocorrelation and the p-value for the Ljung-Box test
statistic at the tenth lag and Q2(10) reports the same statistics for squared residuals
at lag ten (p-values in parenthesis).

DAX ESX ND SP NK
const. 0.001 0.001 0.003 0.001 0.002

(0.903) (0.795) (0.607) (0.804) (0670)

4SP,m
+4 0.394 0.408 0.347 0.348 0.346

(0.008) (0.007) (0.059) (0.045) (0.036)

4SI,m
−1 -0.536 -0.519 -0.590 -0.570 -0.488

(0.000) (0.000) (0.000) (0.000) (0.000)

4SI,m
−2 -0.180 -0.192 -0.241 -0.240 -0.135

(0.033) (0.014) (0.001) (0.002) (0.083)
rm
−1 0.352 0.519 0.381 0.896 0.200

(0.096) (0.022) (0.046) (0.003) (0.462)
rm
−2 0.102 -0.107 0.075 0.070 -0.068

(0.605) (0.609) (0.790) (0.847) (0.829)
adj. R2 0.079 0.108 0.131 0.084 0.013
Q(10) 0.013 0.054 0.079 0.083 0.066

(0.345) (0.174) (0.054) (0.114) (0.005)

Table 1.7 Tests for Model Stability
Tests of structural stability for the IV regressions. Stars refer to the level of signi-
ficance: ***, **, *: α = 0.01, 0.05, 0.10. Significance results are based on Table 1 in
Andrews (1993) and Table 1 and 2 in Andrews and Ploeberger (1994).

DAX ESX ND SP NK
Expected sentiment levels
Avg WT (π) ***22.70 ***20.64 8.05 8.82 7.16
Sup WT (π) ***44.08 ***42.42 ***34.70 ***27.16 13.29
Exp WT (π) ***39.50 ***36.96 ***28.91 ***21.83 ***9.63
Expected sentiment changes
Avg WT (π) ***13.25 ***17.71 5.96 5.64 *6.206
Sup WT (π) ***29.93 ***47.53 ***31.73 14.70 11.85
Exp WT (π) ***25.53 ***41.87 ***26.07 ***10.42 **8.44

31



 32

Chapter 2: 

Investor sentiment, herd-like behavior and stock returns: 

Empirical evidence from 18 industrialized countries 
 

 

2.1 Introduction 

 

The recent literature has seen a rise of studies investigating the effect of 

individual investor sentiment on stock returns. Several papers document a strong link 

between the two variables both in the time series and cross-sectionally. These papers 

estimate predictive regressions of the form 

 t 1 t tr sentiment+ = α +β ⋅ + η  (2.1) 

where rt+1 is the return of the aggregate stock market or a (zero-cost) portfolio at 

time t+1 and sentimentt is a proxy for (lagged) investor sentiment. A common finding 

for the US stock market is a statistically and economically significant negative 

coefficient estimate for β.  Therefore, periods of higher investor optimism tend to be 

followed by significantly lower returns for the aggregate market (e.g. Brown and Cliff, 

2005) and even more pronouncedly for firms that are hard to price and thus difficult to 

arbitrage (e.g. Baker and Wurgler, 2006, Lemmon and Portniaguina, 2006).  

In order to assess the relation of sentiment and returns out-of-sample, we 

investigate whether consumer confidence – as a proxy for individual investor sentiment 

– affects stock returns along the lines of (2.1) in 18 countries internationally. We find, 

first, that for about half of the markets considered, there is a significant impact of 

investor sentiment on aggregate stock returns even after controlling for commonly 

employed macro risk factors as in Brown and Cliff (2005). Second, in cross-sectional 

regressions we provide some first evidence that the impact of sentiment on stock returns 

is stronger in countries in that are culturally more prone to herd-like behavior as 

predicted by Chui, Titman and Wei (2005). The effect also seems to be stronger in 

countries with less efficient markets. 

The general finding of a sentiment-return relation is at odds with standard 

finance theory which predicts that stock prices reflect the discounted value of expected 

cash-flows and that irrationalities among market participants will be erased by 

arbitrageurs. Sentiment does not play any role in this classic framework. The behavioral 
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approach instead suggests that waves of irrational sentiment, i.e. times of overly 

optimistic or pessimistic expectations, can persist and affect asset prices for significant 

time spans. DeLong et al. (1990) show in their seminal paper, that correlated sentiment 

of irrational investors is a priced risk factor. Assets with higher levels of noise trader 

risk have higher expected returns. Thus, there is both empirical evidence for a link 

between sentiment and stock returns and a sound theoretical underpinning of this 

relationship. 

On the available empirical evidence for the US, overlooked rational factors that 

drive the relation between sentiment and stock returns are a possible but less and less 

likely explanation. Several authors (Baker and Wurgler, 2006, Brown and Cliff, 2005, 

Kumar and Lee, 2006, Lemmon and Portniaguina, 2006, Hvidkjaer, 2006 to name just a 

few) document empirically that the link between sentiment and future returns is most 

likely due to overly optimistic (pessimistic) investors who drive prices above (below) 

intrinsic values, a misevaluation that is corrected eventually and leads to the observed 

negative influence of sentiment on stock returns. Data mining is a somewhat more 

likely possibility. There is little evidence for this relationship outside the US so that the 

effects of sentiment on returns might well be a statistical artifact. Out-of-sample tests of 

an anomaly are one means to investigate this possibility.14  

Therefore, we investigate the link between asset prices and investor sentiment 

for 18 industrialized countries around the world. "Geographical" out-of-sample tests are 

a common way to amass or to weaken earlier evidence (e.g. Ang, Hodrick, Xing, and 

Zhang, 2006, Griffin, Ji, and Martin, 2003). This is the first major contribution of this 

chapter.  Furthermore, to assess the behavioral explanation from a different viewpoint, 

we also examine whether cross-sectional variation in demographic, cultural and market 

efficiency related factors systematically affects the magnitude of the link between 

sentiment and stock returns. To the best of our knowledge, we are the first to investigate 

this issue and this makes up the second major contribution of the chapter. 

The investigation whether cultural factors play a role is motivated by the paper 

of Chui, Titman and Wei (2005) who investigate whether individualism as measured by 

Hofstede (2001) is a cross-country determinant of momentum profits.  The authors 

argue that countries with a more individualistic culture are more prone to certain 

behavioral biases that benefit the existence of momentum profits. Their findings support 

                                                 
14 Jackson (2003) finds no evidence for short-run reversals after waves of optimism and 
pessimism for Australia for the period 1991 - 2002. Schmeling (2006) finds evidence of such 
reversals for Germany for a period spanning 2001 to 2006.  
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this hypothesis. As for the case considered here, if the impact of investor sentiment on 

stock returns is truly due to correlated behavior of irrational traders, one should expect 

this effect to be higher in countries that are collectivistic since collectivism boosts “herd 

like overreaction” (see Chui, Titman and Wei, 2005, p.28).  Therefore, an alternative 

test of the implicit assumption that the effect of sentiment on stock returns is due to 

overreaction on the part of noise traders and not due to time-varying fundamental risk 

factors can be conducted by investigating whether the sentiment-return relationship 

varies according to this cultural dimension cross-sectionally between different 

countries.   

As noted above, we also check whether institutional quality or informational 

efficiency of a country explains the cross-section of the sentiment-return relation. We 

find some evidence for this hypothesis although less pronounced than for the cultural 

factors. Therefore, this chapter also contributes to a growing literature that cross-

sectionally relates market outcomes to market institutions (cf. La Porta et al. 1998). 

The plan of action is as follows. The next section selectively reviews the 

existing literature. Section 2.3 describes the data and provides some descriptive 

statistics. Section 2.4 provides estimates of predictive regressions of returns on 

sentiment similar to equation (2.1). Section 2.5 investigates cross-country results and 

section 2.6 concludes. 

 

2.2 Literature review 

 

As Baker and Wurgler (2006, p. 1648) point out, “a mispricing is the result of 

both an uninformed demand shock and a limit to arbitrage” (emphasis added). 

Regarding the first ingredient, uninformed demand shocks, Brown and Cliff (2005) 

argue that sentiment is most likely a very persistent effect so that demand shocks of 

uninformed noise traders may be correlated over time to give rise to strong and 

persistent mispricings. However, the second ingredient, limits of arbitrage, deter 

informed traders from eliminating this situation (cf. Black, 1986, or more formally, 

Shleifer and Vishny, 1997) since it is a priori unclear how long buying or selling 

pressure from overly optimistic or pessimistic noise traders will persist. However, every 

mispricing must eventually be corrected so that one should observe that high levels of 

investor optimism are on average followed by low returns and vice versa. 
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As discussed in the introduction, there is now substantial empirical evidence 

for the U.S that (proxies for) investor sentiment indeed forecast stock returns negatively 

in the time series (cf. Brown and Cliff, 2005, Lemmon and Portniaguina, 2006).  

An influence of sentiment is also found in the cross-section of U.S. stock 

returns. Baker and Wurgler (2006) document that those stocks are more affected by 

shifts in sentiment that are (a) hard to value because valuations are highly subjective 

and (b) for those stocks that are hard to arbitrage. Indeed they find that sentiment effects 

are stronger among stocks that can reasonably be assumed to fulfill at least one of these 

criteria, e.g. young, small, unprofitable, distressed, extreme growth or dividend-

nonpaying firms. For the U.S. this finding for distressed stocks is underscored by the 

finding of Kumar and Lee (2006) who show that retail investors, which are commonly 

thought of being noise traders (Kaniel, Saar and Titman, 2005), tend to overweight 

value stocks relative to growth stocks and that shifts in the buy-sell imbalance of these 

retail investors are positively correlated with returns of value stocks. This clearly is a 

prime example of noise trader risk.  

Also in this spirit, Barber, Odean and Zhu (2005) investigate returns of stocks 

that are heavily bought and sold by U.S. individual retail traders and provide somewhat 

even more direct evidence on the story that individuals are noise traders. They show that 

stocks heavily sold by individuals outperform stocks heavily bought by a hefty 13.5% 

the following year. They also document strong herding among individual investors so 

that the notion of correlated trading by irrational investors seems to be a likely cause for 

these return differentials.  Hvidkjaer (2006) sorts stocks from NYSE, AMEX and 

NASDAQ based on past difference between sell and buy volume from small trades, i.e. 

trades that most likely come from individual traders. He finds that stocks with large 

individual selling pressure outperform stocks with large individual buying pressure over 

horizons of up to three years. Depending on the sorting procedure, Hvidkjaer (2006) 

tends to find large return differences of up to 0.94% per month for a portfolio long in 

stocks that have been sold most heavily by individuals over the last 6 months and short 

in stocks that have most heavily been bought by individuals over the last 6 months. As 

with the results from Barber, Odean and Zhu (2005), these numbers suggest that 

irrational trading of noise traders is an important determinant of expected stock returns. 

A natural question that arises when attempting to quantify the influence of 

sentiment on stock returns is how to measure (unobserved) sentiment? Existing studies 

have used different proxies, of which closed-end fund discounts are one major vehicle 
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(c.f. Lee, Shleifer, and Thaler, 1991, or Neal and Wheatley, 1998). Baker and Wurgler 

(2006) construct a sentiment proxy from several market price based variables such as 

closed-end fund discounts, number of IPO’s, turnover etc. Recent studies have started to 

use micro trading data, such as Kumar and Lee (2006) who use broker data or Barber, 

Odean and Zhu (2005) who use the TAQ/ISSM data. Finally, some studies use data 

from investor surveys (cf. Brown and Cliff, 2005). Charoenrook (2005) and Lemmon 

and Portniaguina (2006) use consumer confidence indexes to proxy for sentiment, based 

on the observation that Brown and Cliff (2004) find no evidence that closed-end fund 

discounts reflect sentiment and  that Qiu and Welch (2005) report only weak correlation 

of these fund discounts with UBS/Gallup surveys of investor sentiment. The consumer 

confidence indexes do better in this respect. Furthermore, Fisher and Statman (2003) 

provide evidence that consumer confidence correlates well with other sentiment proxies 

such as the sentiment measure from the American Association of Individual Investors 

(AAII) whereas Doms and Morin (2004) find that consumer confidence contains an 

irrational element since it responds to the tone and volume of economics news reports 

while being hardly affected by the content of news. All these findings make consumer 

confidence seem to be a reasonable proxy for individual sentiment and we follow these 

findings by using measures of consumer confidence as a sentiment proxy throughout the 

chapter. 

Finally, given the accumulated evidence of the influence of sentiment on returns 

the question remains whether one should expect this relation to hold outside the U.S. as 

well. Evidence from a different market anomaly based most probably on behavioral 

biases by market participants, namely the abnormal size of momentum profits 

documented by Jegadeesh and Titman (1993), suggests that this does not necessarily 

need to be the case. Momentum profits, though large and significant in the U.S. and 

most of Europe (Rouwenhorst, 1998), are completely absent in Japan and almost non-

existent in the rest of Asia.  

Recently, Chui, Titman and Wei (2005) propose that cultural differences might 

play a role for the relative strength of behavioral biases between countries.15 

Specifically, they argue that individualism as measured by Hofstede (2001) drives 

certain behavioral biases that are assumed to generate the apparent momentum profits. 

                                                 
15 Guiso, Sapienza and Zingales (2006) and Chuah et al. (2006) document that culture may 
significantly affect economic outcome although yet little attention has been paid to these factors 
in economics. However, there seems to be even less empirical evidence for the role of culture in 
finance than in economics.  
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The authors also argue that a lack of individualism, i.e. collectivism, might drive certain 

biases “that generate even more important market inefficiencies” (p. 28) than the 

momentum premium. Collectivistic countries have societies in which people are 

integrated into strong groups and, as such, “may place too much weight on consensus 

opinions, and may thus exhibit herd-like overreaction …” (emphasis added). Herd-like 

overreaction, i.e. correlated actions of noise traders based on overly optimistic or 

pessimistic expectations, is precisely what is assumed to drive the sentiment-return 

relation in financial markets. Therefore, one may expect that collectivistic countries 

show a stronger impact of sentiment waves on returns whereas individualistic countries, 

in which people tend to put more weight on their own information and opinion, should 

be less affected by these behavioral biases. 

 

2.3 Data and descriptive statistics 

 

As noted above, we are interested in measuring the effect of noise trader demand 

shocks on stock markets. Doing this in a consistent way is exacerbated by the fact that 

there is no consensus on what kind of proxies to employ when measuring individual 

sentiment for a single country. This problem naturally aggravates when attempting to 

find a proxy that is available for different countries.  

However, given the recent detailed analysis of consumer confidence as measure 

for investor sentiment by Lemmon and Portniaguina (2006) it seems natural to use this 

metric for an international analysis. First of all, consumer confidence is available for 

several industrialized countries and, second, it is available for reasonable time spans. 

Third, consumer confidence, albeit measured slightly different in various countries, 

seems to be the only consistent way to obtain a sentiment proxy that is largely 

comparable across countries.  

Therefore, we use data on stock returns and consumer confidence for 18 

industrialized countries around the globe to investigate the sentiment-return relation 

internationally. Our sample of countries is largely dictated by data availability but 

consumer confidence is available for several countries on horizons of up to 20 years. 

We include the U.S., Japan, Australia, New Zealand and 14 European countries (see 

Table 2.1 for a complete list of countries). These markets cover the lion’s share of 

international stock market capitalization, cover the most liquid markets in the world - 

namely the U.S., Europe and Japan - and thus provide a representative sample.  
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Consumer sentiment for the European countries is available from a single source so the 

comparability of sentiment data is especially attractive for this large sub-sample of 

countries. 

For each of the 18 countries we collect a monthly measure of consumer confidence, 

monthly returns for (a) the aggregate stock market, (b) a portfolio of value stocks and 

(c) a portfolio of growth stocks.16 We investigate aggregate market returns as well as 

value and growth stocks for the following reasons. First, there is evidence (Baker and 

Wurgler, 2006) that sentiment affects the cross-section of returns differently for 

different investment styles, e.g. value and growth. Second, Shiller (2001, p.243) quotes 

Paul Samuelson with the following claim: "I [hypothesize] considerable macro 

inefficiency, in the sense of long waves in the time series of aggregate indexes of 

security prices below and above various definitions of fundamental values.” Therefore, 

it seems to make sense to look for these macro inefficiencies in aggregate market 

returns, too. 

 Stock market data come from Prof. Kenneth French’s web site and are 

employed because they are collected in a consistent manner across countries, are 

relatively free of survivorship bias (Fama and French, 1998) and were used in other 

studies before (e.g. Chui, Titman and Wei, 2005, motivate their herding and 

collectivism result with this data). 

Furthermore, for each country we collect data on consumer confidence. For all 

14 European countries the data comes from the “Directorate Generale for Economic and 

Financial Affairs” (DG ECFIN)17  which, among other things, conducts research for the 

European Union. Confidence indices for the remaining countries are obtained from 

Datastream. There are several possible high-quality consumer confidence indices for the 

U.S. We employ the Michigan Survey (see Lemmon and Portniaguina, 2006).  Finally, 

the consumer confidence index for Japan is available on a quarterly frequency only. We 

convert it to a monthly frequency by using the last available values for months without 

data as in Baker and Wurgler (2006).  

Table 2.1 provides descriptive statistics for returns and consumer confidence 

indices. Column three shows the time spans available for each country. We include the 

time from January 1985 to December 2005 wherever possible. Data limitations enforce 
                                                 
16 Stock market returns are from value-weighted portfolios in local currency. The value portfolio 
consists of the top three deciles of stocks sorted by B/M whereas the growth portfolio comprises 
the bottom 30% of stocks sorted by B/M. 
17 These consumer confidence indices have also been used by Jansen and Nahuis (2003). Data 
can be downloaded from: http://ec.europa.eu/economy_finance/indicators_en.htm.  
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somewhat shorter periods for several countries. However, we have a minimum of 120 

monthly observations even for the most data-constrained country Austria. 

As can be seen, value stocks have higher mean returns than growth stocks for 

most countries, a fact documented before in a voluminous literature on the so-called 

value premium (Fama and French, 1998). The descriptive statistics for the consumer 

confidence indices show a high degree of serial correlation in the time-series. First order 

autocorrelations (ρ-1) are extremely high and uniformly above 90%. We will take 

special care of this high serial correlation in our empirical analyses. 

Table 2.2 shows correlation coefficients of the consumer confidence above the 

main diagonal and correlations for monthly changes in consumer confidence below the 

main diagonal. As can be seen from both the correlation coefficients computed in levels 

and in changes, the comovement across countries is not prohibitively strong, i.e. we are 

not using essentially one sentiment series. There are several countries that show a large 

correlation (e.g. Austria and Germany), essentially no correlation (e.g. Australia and 

Switzerland) or a negative correlation (e.g. Sweden and Japan). 

 

2.4 Predictive regressions of stock returns on consumer confidence 

 

2.4.1 Methodology 

 

Brown and Cliff (2005) argue that the building up of overly optimistic or 

pessimistic views is a persistent process which might not be detectable over short 

horizons. Information about the degree of optimism or pessimism is contained in 

sentiment levels rather than changes. Therefore, it is necessary to measure the impact of 

past sentiment levels on returns. Furthermore, both Brown and Cliff (2005) as well as 

Hvidkjaer (2006) document that the effect of individual sentiment can have long lasting 

effects of several months up to two or three years. To accommodate these prior findings 

we estimate long-horizon return regressions of the form 

 
k

i i,(k) i,(k) i i i,(k) i,(k)
t t t0 1 t 1 t k

1

1 r sent+κ + +
κ=

′= δ + δ + Ψ γ + ξ
κ ∑  (2.2) 

with the average k-period return18 for country i as dependent variable and 

several predictors on the right-hand side. These predictors include consumer confidence 

as a proxy for individual sentiment (sent) and additional macro variables which are 
                                                 
18 As in Hong et al. (2007) we use raw returns since reliable data on risk-free rates is hard to 
obtain outside the U.S. 
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collected in matrix Ψ. Specifically, we include annual CPI inflation, the annual 

percentage change in industrial production, the annual change in employment and the 

term spread in Ψ to net out effects of macro risk factors on returns. The component of 

consumer confidence that is not attributable to these macro factors yields our proxy for 

individual sentiment.19 As usual, we employ known up-to-week t information to 

forecast mean excess returns beginning in month t+1 only. Furthermore, to facilitate 

comparisons of the sentiment-return relation between countries we standardize all 

variables used in (2.2). 

A well known problem with regressions of the form in (2.2) is, that standard 

econometric inference, even when accounting for the serial correlation in the standard 

errors induced by overlapping horizons, most probably yields biased estimates of the 

slope coefficients. Several authors (see Stambaugh, 1999, Valkanov, 2003, or Ferson et 

al., 2003) have documented this problem, which is caused by highly persistent 

regressors. In this case OLS estimation results are still consistent but suffer more than 

likely from severe biases in finite samples although all regressors are predetermined. 

For simple regressions with only one predictor it can be shown analytically that the bias 

in coefficient point estimates increases in the degree of persistence of the regressor (see 

Stambaugh, 1999). As we show in Table 2.1 the consumer confidence indexes 

employed are highly persistent.20 As noted above, a further complication arises from the 

overlapping of the means of returns, which induces a moving average structure of order 

(k-1) to the error terms. 

There are several, necessarily imperfect ways to handle this problem. Several 

authors (e.g. Brown and Cliff, 2005) rely on some form of simulation procedure. 

Another way is to use auxiliary regressions (Amihud and Hurvich, 2004).21  In order to 

establish comparability with the results of Brown and Cliff (2005) which is closest to 

our approach of detecting an influence of past sentiment on aggregate market returns, 

we exactly follow their method which consists of simulating small sample p-values and 

test statistics for the coefficient estimates of each country's return regression separately. 

                                                 
19 Baker and Wurgler (2006) and Lemmon and Portniaguina (2006) also net out macro risk 
factors from their sentiment proxy to obtain an explanatory variable that is unrelated to 
fundamental risk factors. 
20 Brown and Cliff (2005) also find individual sentiment from direct investor surveys in the U.S. 
to be highly correlated over time. Therefore, the high degree of persistence is not special to the 
consumer confidence indices employed here. 
21 Campbell and Yogo (2006) provide a method for efficient tests of stock return predictability 
in the presence of near unit-root regressors. However, their method does not extend directly to 
multiple regressors and multi-period forecasts.  
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A detailed description of the method employed can be found in Appendix 1 of 

Brown and Cliff (2005). Here we only note the main steps for completeness. First, we 

estimate a VAR(1) that consists of all variables used, i.e. returns, consumer confidence 

and all macro factors for country i. The residuals are stored. Next we simulate artificial 

time series for all endogenous variables by bootstrapping from the residuals obtained in 

the first step. Importantly, to simulate time series under the null of no influence of 

sentiment in returns, we turn off this influence by setting the coefficient of lagged 

sentiment on returns in the VAR coefficient matrix to zero. In this fashion, we simulate 

10,000 artificial time series for all variables without return predictability. With these 

series in hand, we estimate equation (2.2) 10,000 times on the new time series to obtain 

the bootstrapped distribution of slope coefficients. This distribution can then be used to 

measure the bias in coefficient estimates 1̂δ  introduced by the persistence in regressors 

and to obtain bootstrap p-values for the significance of the estimated coefficients. We 

report bias-adjusted coefficient estimates and bootstrap p-values throughout the rest of 

this section. 

 

2.4.2 Results 

 

Results of this estimation procedure are shown in Table 2.3 for aggregate stock 

market returns. We provide coefficient estimates for forecasting horizons of one, three, 

six, twelve and 24 months to document the time pattern of the sentiment-return relation. 

As is evident, the estimated coefficients for the impact of sentiment on expected returns 

are negative for the majority of markets and horizons. This is in line with earlier 

findings for the U.S.  

The estimated coefficients are directly comparable across countries since we 

have standardized both dependent and independent variables for each country. As can 

be inferred from the magnitude of coefficients, the impact of sentiment on returns varies 

quite a lot across markets. For example, for the U.S. a two standard deviation shock of 

sentiment leads to a decline in returns in the following month of only 0.12%.22 The 

same calculations for e.g. Austria, Italy and Japan give numbers of about 0.25%, 0.50% 

and 1.20%, respectively. Therefore, the effect of sentiment waves on returns is not 

                                                 
22 This effect is smaller than the effect reported in Brown and Cliff (2005) where a two standard 
deviation shock leads to a monthly decline of roughly 0.29% over three years (calculated from 
Table 5 of their paper). However, the paper uses a different sentiment proxy and different 
sample period so that direct comparisons may be misleading. 
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overly strong for the U.S. but much stronger for several countries in Europe and, 

surprisingly, for Japan. 

Looking at another dimension of predictability, the incremental adj. R2s, i.e. the 

differences between the adj. R2 when including macro factors and consumer sentiment 

jointly and the adj. R2 when including macro factors only, are of economic significance 

for the same set of the markets. For example, the adj. R2 for Italy rises from 0% to 3% 

on a monthly horizon and from 5% to 18% on a 6 months horizon when adding lagged 

sentiment to the predictive regression. It seems that sentiment has quite some 

explanatory power in these markets.  

Overall, statistical significance is only obtained for 10 of 18 countries, indicating 

that the negative effect of sentiment on stock returns does not seem to be a universal 

phenomenon across countries. We will investigate the nature of this cross-sectional 

pattern in section 2.5. 

Looking at the forecasting performance at different horizons more closely one 

can see that statistical significance of the sentiment predictor does not seem to 

uniformly increase with horizon. It is often argued that long-horizon regressions with 

nearly integrated regressors spuriously generate significant results at increasing 

horizons (cf. Hong et al. (2007), p. 17 for a discussion). If there was a bias in our results 

not eliminated by the bootstrapping procedure that mechanically generated significant 

results over longer horizons,  one would expect to see exactly such a result. Yet, this is 

not the case here. In fact, there are several countries, e.g.  Japan, Spain or Switzerland, 

where sentiment predicts aggregate market returns only at short horizons but not at 

longer horizons. Furthermore, the estimated coefficients tend to decrease in horizons 

and do not increase. Both findings are comforting and suggest that our regressions are 

informative and not just due to estimation biases. 

Table 2.4 (Table 2.5) show estimated coefficients for the relation between 

sentiment and value (growth) stocks internationally. Baker and Wurgler (2006) argue 

that the sentiment-return relation should be notably strong for firms that are hard to 

value and hard to arbitrage and find that both value and glamour stocks are prone to the 

influence of sentiment whereas Lemmon and Portniaguina (2006) find slightly weaker 

evidence for sentiment effects on these groups of stocks and document an effect mainly 

for value stocks. Our results for value and glamour stocks are by and large consistent 

with Baker and Wurgler’s findings. Almost all stock markets that are statistically 

significantly affected by lagged sentiment also show a statistically significant effect of 
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sentiment on value and growth stocks. However, these effects are on average only 

marginally larger than for the aggregate market. Continuing with the countries 

mentioned above, we find an impact of a two standard deviation sentiment movement 

on value (growth) stocks for the U.S. of 0.11% (0.13%), for Austria of about 0.40% 

(0.30%), for Japan of 1.37% (1.25%) and for of Italy of roughly 0.7% (0.45%).  

Finally, we note that our results are also in line with the scant earlier evidence 

for other countries. As in our results, Jackson (2003) finds no significant evidence for 

return reversals in Australia while Schmeling (2006) finds evidence for a significant 

impact of individual sentiment on aggregate market returns in Germany.  

 

2.4.3 Some perspective on robustness 

 

A natural objection might be that consumer confidence indices are not collected 

in a consistent way across countries which leads to spurious findings for some countries 

but to no significant results for others. This argument clearly overlooks, that we obtain 

sentiment measures for the 11 European countries from a single source, so that 

sentiment in these countries is collected in exactly the same way and at the same time. 

However, the results on the sentiment-return relation vary markedly among the 11 

European countries. This cannot be attributed to differences in the survey design. 

A second objection might be that econometric results based on predictors with 

such a hefty autocorrelation as documented in Table 2.1 are unreliable so that results 

seem to be spurious. However, several confidence indexes compiled from the same data 

collector (DG ECFIN) are available for the European countries. These other confidence 

indices share almost the same degree of serial correlation and describe measures of 

economic expectations too, such as the "DG ECFIN economic confidence index" that 

analyzes economic expectations for several groups including consumers, manufacturers 

etc.. Employing these sentiment indices as predictors in regression (2.2) produces 

hardly any significant results.23 The estimated coefficient is actually positive for most 

countries. Therefore, the high degree of persistence in the confidence indices does not 

seem to drive the results. These are obtained by consumer sentiment only, as it is 

predicted by the notion that irrational individuals drive markets above or below 

fundamentally warranted levels. 

                                                 
23 Results are not reported to conserve space but are available from the authors upon request. 
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As a third test, we estimate the specification (2.2) on sub samples and with a 

varying number of macro factors included. We do not report the results for brevity but 

note that our conclusions are qualitatively unchanged. 

Finally, we look at the correlation of unexpected returns and sentiment 

innovations as suggested by Pastor and Stambaugh (2006). The idea in the sentiment-

return context here is that in a predictive regression of the form  

 i i i i i i i
t 1 0 1 t t t 1r sent+ +

′= δ + δ + ϒ γ + ξ  (2.3) 

 i i i i i
t 1 0 1 t t 1sent sent+ += α + α + η  (2.4) 

a plausible result would be that the innovations i
tξ  , i.e. the unexpected return, and i

tη , 

i.e. the innovation in noise trader optimism, are positively correlated since it is 

presumably a wave of unexpected optimism that boosts prices. Therefore, under a 

behavioral story one would expect to see a positive correlation of i
tξ  and i

tη  whereas 

one would most probably expect to see a negative correlation under a rational story (see 

the discussion in Pastor and Stambaugh, 2006) where consumer confidence is 

informative about discount factors. 

We report the correlation of i
tξ  with i

tη  for all countries i in Table 2.6. It is 

obvious that the typical correlation of unexpected returns with sentiment shocks is 

positive. Furthermore, countries that show a significant relation between returns and 

sentiment tend to have higher correlation coefficients of the two shocks. This is in line 

with the story that irrational noise trader sentiment drives price away from 

fundamentally warranted levels. 

 

2.5 Cross-sectional analyses 

 

2.5.1 Possible determinants of cross-sectional variation in the sentiment-

return relationship 

 

In this section we discuss possible explanatory variables for the cross-sectional 

analysis of the sentiment-return relation for our 18 countries. We start by identifying 

behavioral factors based on the analysis by Chui, Titman and Wei (2005) and then move 

on to some often used proxies for market efficiency that might drive cross-country 

results. 
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Behavioral factors 

The behavioral explanation of the sentiment-return relation says that individuals 

herd and overreact. Therefore, our findings could be explained by systematic cross-

country differences in herd-like overreaction. As noted in the introduction, Chui, 

Titman and Wei (2005) suggest that differences in collectivistic behavior might be a 

driver of the tendency of investors to herd. Therefore, we employ a measure of 

collectivism constructed by Hofstede (2001) which serves to quantify the degree to 

which people in different countries are programmed to act in groups and not as 

individuals.24  

However, herd-like behavior, or correlated behavior across individuals, is not 

the only ingredient to this behavioral story. Individuals also have to overreact to create 

the negative relation between sentiment and returns. This point is crucial and is 

suggested by the findings of Jackson (2003). Jackson (2003) shows with broker level 

trading data for individual investors in Australia, that there is considerable systematic 

trading by individuals, i.e. trading decision are correlated and do not wash out on an 

aggregate level. However, he does not find evidence for short-run return reversals after 

waves of correlated behavior. Therefore, any empirical test of the behavioral story must 

take into account both dimensions, herding and overreaction.  

We employ a second index by Hofstede to capture the likely degree of 

overreaction across countries. The uncertainty avoidance index (UAI) measures the 

degree to which a culture programs its members to react to unusual and novel situations. 

While this is not directly addressed in our analysis here, Hofstede documents that 

people in more uncertainty avoiding countries act and react more emotional compared 

to countries with low levels of uncertainty avoidance. People in the latter countries act 

more contemplative and thoughtful. Therefore, we employ the uncertainty avoidance 

index as a rough proxy for the tendency of individuals to overreact. Furthermore, it is 

known that UAI is correlated with the collectivism index since the UAI also captures 

cross-country differences in the tendency of people to follow the same sets of rules and 

thus behave in the same manner. This is correlated with collectivism and in our sample 

the correlation between collectivism and uncertainty avoidance indeed is about 0.50. 

Therefore, higher levels of the uncertainty avoidance index (UAI) should indicate both a 

tendency towards more overreaction-like behavior and herd behavior.  

                                                 
24 Chui, Titman and Wei (2005) use the same index to measure individualism which is the original index 
by Hofstede (2001) where higher values mean higher individualism. We just pre-multiply index values by 
-1 to obtain our measure for collectivism. 
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We are well aware of the data-mining problem involved here. While the index 

on collectivism has proved powerful in the paper by Chui, Titman and Wei (2005) and 

is thus less affected from this problem, we are not aware of a finance paper that uses the 

UAI of Hofstede. Therefore, we will carefully investigate whether this measure has its 

predicted effect on the sentiment-return relationship individually and in combination 

with other factors. 

 

Market integrity 

As a second set of explanatory variables we use proxies for what Chui, Titman and Wei 

(2005) call "stock market integrity". The idea behind these variables is that markets with 

higher institutional quality should have a more developed flow of information and are 

consequently more efficient. In order to allow for a direct comparison with Chui, 

Titman and Wei (2005) we include the same variables as in their study. However, we 

collect additional variables related to the informational efficiency of a country which 

are detailed and grouped into “other factors” below. 

The market integrity variables include a dummy for the legal origin of a country 

(DL, the dummy equals one when a country is common law and zero for civil law), the 

index of anti-director rights (a higher index means better investor protection), the 

corruption perception index (Cpix, higher levels mean less corruption) and accounting 

standards (acct, a higher index means better accounting standards). These variables are 

taken from La Porta et al. (1998). Additionaly, we follow Chui, Titman and Wei (2005) 

and include the risk of earnings managements index (emgt., a higher value means a 

higher risk of earnings management in that country).  

 

Other factors 

As highlighted above, superior institutional characteristics should alleviate the 

impact of noise traders on markets. The market integrity factors are not the only proxies 

which might intuitively be related to the sentiment-return relation. We consider 

additional factors, most of which have been employed in earlier studies, and document 

these below. 

As proxies for the information environment we employ the following variables 

from Chang, Khanna and Palepu (2000): (average) number of analysts, the average 

forecast error, and the forecast dispersion per stock. These variables are included since 

it might be expected that a higher number and forecast quality of analysts leaves less 
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room for systematic misevaluations and reduces limits to arbitrage, respectively. 

Griffin, Nardari and Stulz (2007) also use these variables as explanatory variables to 

single out rational vs. behavioral factors. 

As another potentially important determinant we include in the analysis is the 

share of institutional investors in a country. A larger market share of institutions should 

benefit market efficiency since it is implicitly assumed that institutions fulfill the role of 

informed investors or rational arbitrageurs due to their size and relative sophistication 

(compared to irrational individual investors). We would therefore expect to see a lower 

impact of sentiment on returns in countries with a large market share of institutions. 

Data come from the OECD. 

Also, we collect data on turnover and data on market capitalization in relation to 

GDP as two proxies for the activity and size (maturity) of a country, respectively. These 

variables capture the conjecture that more liquid and larger markets leave less room for 

misevaluation due to overreaction of individual traders. The turnover data is the average 

turnover in relation to market capitalization from Griffin, Nardari and Stulz (2007) 

whereas the ratio of market capitalization to GDP is from the World Bank data base. 

We furthermore employ a dummy variable that equals one if short-selling is 

practiced in a respective country and zero otherwise. Short-selling might allow rational 

investors to better arbitrage overvaluations and could therefore lower the impact of 

sentiment on returns. The short-selling dummy (SSD) is constructed from the paper by 

Bris, Goetzmann and Zhu (2007) who show that short-selling benefits market efficiency 

and price discovery. 

Finally, we employ World Bank data on education since it may be reasonably 

assumed that countries with a superior level of education accommodate fewer irrational 

noise traders. We take the percentage of a country’s population that enjoyed enrolment 

in tertiary education as our proxy for education. 

 

2.5.2 Results 

 

To investigate the potential determinants of the cross-sectional variation in 

sentiment-return relation we start by running regressions of the following form 

 

 i,(k)
1 0 1 i i

ˆ x′δ = β + β + ϑ  (2.5) 
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where i,(k)
1δ̂  is the estimated impact of individual sentiment on average returns over k 

months and xi is a scalar or column vector of characteristics (detailed in the previous 

subsection) for country i and iϑ  is an error term. We will generally work with the direct 

impact of this month’s sentiment on next month’s return, i.e. k=1, but note, that results 

reported in the following are very similar for other horizons k>1. For future 

interpretation of results we note, that lower values of the dependent variable i
1δ̂  imply a 

stronger effect of sentiment on returns. 

Table 2.7 shows results for simple OLS regressions with White standard errors. 

As for the behavioral factors, both higher levels of collectivism and higher levels of the 

UAI (recall that higher levels of this index mean more emotional and blindfolded 

actions by people in that country) are significantly related to a stronger sentiment-return 

relation, i.e. the coefficients are negative. This is well in line with the predictions of 

Chui, Titman and Wei (2005) that collectivism boosts herd like overreaction and our 

discussion in the preceding subsection about the influence of UAI on the link between 

noise trader sentiment and returns. The adj. R2s of roughly 23% (collectivism) and 36% 

(UAI) are quite large and suggest that cultural factors might play a key role for the 

occurrence of market anomalies across countries as suggested by Chui, Titman and Wei 

(2005).  

From the group of variables belonging to the market efficiency proxies, only the 

Cpix and the index on earnings management play a significant role with similarly high 

adj. R2s of 30% for the Cpix and 17% for the earnings management index. 

Additional variables often have the expected sign, e.g. larger forecast errors, 

larger forecast dispersion, less institutional investors as well as higher turnover and a 

larger size of the market as measured by market cap. to GDP that are associated with 

larger effects of return on sentiment. However, all of these additional variables fail to be 

significant or to provide an acceptable explanatory power in terms of their adj. R2 

except for the education variable. Better education significantly reduces the effect of 

sentiment on returns as one would intuitively expect with an adjusted R2 of roughly 

16% which comes close to the explanatory power of the behavioral factors. 

A natural question to ask is whether the cultural factors are more powerful in 

explaining the cross-section compared to the market efficiency proxies. Since our 

sample of 18 countries is too small to allow for a large set of regressors we proceed in 

the following way. We use the first principal component of the collectivism index and 

the UAI of all 18 countries as a culture proxy 



 49

 

 PC culture 0.71 collectivism 0.71 UAI= ⋅ + ⋅  (2.6) 

 

which captures 76% of the covariance of the two series. Both loadings are positive, so 

we would expect to see a larger impact of past sentiment on returns in countries with a 

high value of this first principal component. For the market efficiency proxy we obtain 

the first principal component of the market integrity factors25 for all 18 countries 

  

PCmarket efficiency = -0.58 Acct-0.47 Anti-0.32 Cpix+0.58 Emgt⋅ ⋅ ⋅ ⋅  (2.7) 

 

which captures about 65% of the total covariation between the four series. Due to the 

scaling of the involved indices, a higher value of the principal component indicates 

worse institutions. Running regression (2.5) with both principal components as 

explanatory variables yields the following result: 

 
i 2
1 i i

ˆ 0.014 0.013PCculture 0.00 PC market efficiency , R 0.41
(0.02) (0.04) (0.99)

δ = − + − =  (2.8) 

with p-values in parentheses. Evidently, as in Chui, Titman and Wei (2005), the cultural 

factors heavily dominate the market integrity variables in terms of cross-country 

explanatory power. 

As a next step we follow Chui, Titman and Wei (2005) and conduct a bootstrap 

analysis which is build on randomly assigning values of an explanatory variable to the 

dependent variable of country i. We use 10,000 simulations for each country and 

explanatory variable and compute the slope coefficient each time. As before, we denote 

the estimated slope coefficient from equation (2.5) as β̂ , the average of the 10,000 

bootstrap estimates of the slope coefficient as β̂  and the standard deviation of these 

slope coefficients by ( )ˆσ β  . The bootstrap t-values of a slope coefficient can then be 

computed via 

 ( ) ( )
2

boot
ˆ ˆ ˆt /= −β β σ β . (2.9) 

                                                 
25 We only use the 4 non-dummy variables used by CWT since they seem to have most 
explanatory power as documented in Table 7. Other combinations yield qualitatively identical 
results. 
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The results of this procedure are shown in Table 2.8 and are confirmative of the 

conclusions drawn from Table 2.7. The behavioral factors, i.e. collectivism and the 

overreaction proxy (UAI) are statistically significant and so is the first principal 

component of the two cultural dimensions shown in equation (2.7). Likewise, the only 

other significant variables are the Cpix and Emgt and education as before. 

As a final robustness check, we employ a binary logit model where the 

dependent variable equals one if the coefficient of sentiment in regression equation (2.2) 

is significant, i.e. when there is a statistically significant effect of sentiment on returns, 

and zero otherwise. We employ the same explanatory variables on the right hand side. 

Results are presented in Table 2.9 and show that the cultural and market integrity 

factors also do a reasonable job in explaining whether a certain country has a significant 

sentiment-return relationship or not. Note that education is not significant in this setting. 

 

2.6 Conclusions 

 

We investigate the relation between investor sentiment and future stock returns 

for 18 industrialized countries in the world and find, that sentiment plays a role in only 

one half of the countries in our sample. As a pure out of sample test of the sentiment-

return relation uncovered for the U.S., this is not very compelling evidence that noise 

traders move stock prices above or below fundamentally warranted levels. This is true 

for aggregate market returns as well as for value and growth stocks. The story seems to 

be more complex than this. 

In order to investigate this issue, we look at possible determinants of the strength 

of the relation between sentiment and returns and find that the influence of noise traders 

on markets varies cross-sectional in a way that is economically intuitive. The impact of 

sentiment on returns is higher for countries that are culturally more prone to herd-like 

investment behavior as hypothesized by Chui, Titman and Wei (2005) and for countries 

that have less efficient regulatory institutions or less market integrity. 

All in all, the findings do not support the notion that irrational noise traders 

move markets uniformly across countries. Rather than that, institutional quality and 

more trading culture are strong determinants of the sentiment-return relation. 
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Table 2.1 Descriptive statistics 
This table shows descriptive statistics for all countries used in the analysis. In particular, the table shows the start month of the sample (all series end 
in December 2005) and the source of the data. Furthermore, it shows means (µ) and standard deviations (σ) for the market return (Market), returns 
of value stocks (High B/M) and growth stocks (Low B/M). Finally, the last three columns show the mean, standard deviation and first order 
autocorrelation for the consumer confidence indices employed. 
 

 

Market High B/M Low B/M Consumer Confidence Country Label Start Source 
µ σ µ σ µ σ µ σ ρ-1 

Australia ATRL  1985 M1 Datastream 1.24 4.86 1.55 5.11 1.06 5.55 100.59 12.66 0.92 
Austria ATR  1996 M1 DG ECFIN 1.40 4.67 1.91 6.45 0.80 4.54 -1.36 6.41 0.91 
Belgium BEL  1985 M1 DG ECFIN 1.29 5.09 1.83 6.69 1.13 5.30 -7.00 9.53 0.95 
Denmark DEN  1989 M1 DG ECFIN 1.06 5.13 1.24 5.93 1.03 6.10 5.38 8.36 0.95 
Finland FIN  1995 M11 DG ECFIN 1.46 8.97 1.54 7.16 1.69 10.90 14.90 3.84 0.89 
France FRA  1985 M1 DG ECFIN 1.23 5.89 1.54 6.99 1.10 5.83 -18.60 8.49 0.94 
Germany GER  1986 M1 DG ECFIN 0.79 6.16 1.42 6.65 0.69 6.93 -8.98 8.79 0.97 
Ireland IRE  1991 M1 DG ECFIN 1.33 5.26 1.87 7.66 1.05 6.33 -3.87 13.52 0.97 
Italy ITA  1985 M1 DG ECFIN 1.29 7.09 1.25 8.14 1.26 7.20 -12.78 7.06 0.93 
Japan JAP  1985 M1 Datastream 0.49 5.80 1.11 6.70 0.20 6.40 43.26 4.62 0.97 
Netherlands NET  1985 M1 DG ECFIN 1.11 5.07 1.62 7.15 1.04 4.90 4.02 11.68 0.97 
New Zealand NEWZ  1989 M1 Datastream 0.64 5.30 -0.35 8.51 0.80 5.95 112.95 12.00 0.99 
Norway NOR  1992 M9 Datastream 1.44 5.86 2.05 9.57 1.27 5.97 20.06 13.38 0.97 
Spain SPA  1988 M1 DG ECFIN 1.20 5.75 1.74 5.69 0.77 6.28 -10.34 8.96 0.95 
Sweden SWE  1995 M9 DG ECFIN 1.29 6.69 1.65 6.53 1.10 8.35 7.39 7.21 0.94 
Switzerland SWI  1985 M1 Datastream 1.08 4.97 1.31 6.82 0.97 4.84 -10.83 21.66 0.99 
United Kingdom UK  1985 M1 DG ECFIN 1.07 4.64 1.25 5.48 0.99 4.75 -8.25 7.81 0.93 
United States US  1985 M1 Datastream 1.08 4.43 1.23 4.10 1.09 4.88 95.29 12.90 0.84 
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Table 2.2 Correlations of international consumer confidence indices 
This table shows correlation coefficients of consumer confidence indices across countries. The upper right triangular corresponds to consumer 
confidence levels whereas the lower left triangular shows correlations for changes in consumer confidence. 
 

 
 
 
 
 
 

 ATRL ATR BEL DEN FIN FRA GER IRE ITA JAP NET NEWZ NOR ESP SWE SWI UK US 
ATRL -0.04 -0.02 0.66 -0.26 0.15 -0.30 0.43 0.03 -0.41 -0.02 0.76 0.33 0.20 -0.11 -0.05 0.48 0.31 
ATR 0.22 0.75 -0.07 0.27 0.77 0.71 0.17 0.42 -0.29 0.17 -0.14 -0.41 0.33 0.76 0.72 -0.07 0.13 
BEL 0.02 0.14  0.09 0.52 0.83 0.65 0.58 0.61 -0.02 0.55 -0.23 0.06 0.73 0.80 0.50 0.35 0.35 
DEN -0.01 -0.07 0.08 0.32 0.27 -0.10 0.66 0.27 -0.37 0.26 0.55 0.73 0.34 0.13 0.07 0.62 0.24 
FIN 0.06 0.12 0.18 0.00 0.52 0.43 0.77 0.07 0.15 0.75 -0.47 0.26 0.63 0.61 0.37 0.54 0.61 
FRA 0.04 0.11 0.30 0.12 0.05 0.63 0.67 0.54 -0.10 0.55 0.08 0.06 0.66 0.83 0.59 0.34 0.36 
GER -0.02 0.19 0.11 -0.09 0.11 0.03 0.48 0.67 0.25 0.55 -0.31 -0.01 0.62 0.70 0.83 -0.01 0.26 
IRE 0.03 0.17 0.15 0.12 0.10 0.16 0.07 0.50 -0.17 0.82 0.18 0.44 0.82 0.47 0.71 0.74 0.66 
ITA 0.06 0.22 0.17 0.24 0.08 0.03 -0.01 0.09 -0.03 0.56 -0.05 0.27 0.73 0.24 0.60 0.34 0.34 
JAP 0.08 -0.05 0.20 0.01 0.08 0.12 0.00 0.05 0.06  0.01 -0.38 0.50 -0.06 -0.10 0.22 -0.29 0.02 
NET 0.03 0.16 0.24 0.25 0.13 0.17 0.11 0.24 0.19 0.04 -0.17 0.33 0.76 0.44 0.52 0.35 0.60 
NEWZ 0.11 -0.05 0.01 -0.06 0.05 0.12 0.02 0.00 -0.03 -0.03 -0.05 0.32 -0.08 -0.38 -0.07 0.33 0.05 
NOR -0.01 0.16 0.07 0.04 0.19 -0.01 0.01 0.09 0.02 0.11 0.17 0.13 0.33 -0.19 0.11 0.49 0.28 
SPA -0.02 -0.02 0.13 0.11 0.07 0.26 0.15 0.03 0.25 0.02 0.16 -0.05 0.05 0.55 0.70 0.60 0.57 
SWE 0.16 0.27 0.13 0.13 0.25 0.19 0.18 0.04 0.17 0.14 0.14 -0.06 0.13 0.02 0.69 0.18 0.45 
SWI -0.02 0.00 0.14 -0.03 0.10 0.12 0.23 0.11 0.12 0.03 0.14 -0.04 0.16 0.09 0.06 0.22 0.44 
UK 0.12 0.08 0.19 0.21 0.09 0.00 0.00 0.24 0.21 0.00 0.08 0.09 0.14 0.22 0.18 -0.07  0.46 
US 0.20 0.14 0.14 0.16 0.05 0.09 -0.05 0.11 0.09 0.00 0.17 -0.01 -0.10 0.05 0.17 0.02 0.13  
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Table 2.3 Predictive regression results: aggregate stock market 
This table shows predictive regression results for the model specified in (2.2) with aggregate 
market returns as dependent variables. ∆ 2R  denotes the incremental adj. R2 when sentiment is 
included in the regression specification. Reported coefficient estimates are bias adjusted and bootstrap 
p-values are shown. Stars refer to the level of significance: *** 1%, ** 5%, * 10%. 

 
 
 

1 month 3 months 6 months 12 months 24 months 
 coef./ 

p-val 
2R / 

∆ 2R  
coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

0.001 -0.01 0.000 0.00 0.000 0.01 0.001 0.00 0.002 -0.01ATRL 
(0.96) 0.00 (0.74) 0.00 (0.80) 0.00 (0.95) 0.00 (0.79) 0.00
-0.028 0.00 -0.031 0.08 -0.038 0.28 -0.023 0.22 -0.005 0.36ATR 

**(0.03) 0.02 **(0.03) 0.07 **(0.01) 0.22 **(0.02) 0.17 (0.54) 0.01
-0.021 0.07 -0.021 0.12 -0.021 0.23 -0.020 0.42 -0.018 0.54BEL 

***(0.00) 0.04 ***(0.00) 0.10 ***(0.00) 0.21 ***(0.00) 0.38 ***(0.01) 0.54
0.008 0.03 0.005 0.00 0.003 0.00 0.002 0.03 0.005 0.04DEN 
(0.56) 0.00 (0.76) 0.00 (0.94) 0.00 (1.00) -0.01 (0.75) 0.01
0.020 0.01 0.032 0.10 0.039 0.24 0.015 0.42 0.007 0.50FIN 
(0.65) -0.01 (0.42) 0.01 (0.20) 0.04 (0.37) 0.01 (0.76) 0.00
-0.018 0.00 -0.012 0.01 -0.007 0.02 -0.007 0.06 -0.015 0.23FRA 

*(0.09) 0.01 (0.21) 0.01 (0.37) 0.01 (0.35) 0.02 **(0.01) 0.16
-0.015 0.03 -0.018 0.04 -0.019 0.10 -0.017 0.17 -0.015 0.30GER 

**(0.05) 0.01 **(0.02) 0.05 **(0.02) 0.11 *(0.05) 0.18 *(0.06) 0.27
0.003 0.04 0.002 0.07 0.001 0.14 0.000 0.20 -0.004 0.41IRE 
(0.78) 0.00 (0.97) -0.01 (0.99) -0.01 (0.82) 0.00 (0.22) 0.08
-0.035 0.03 -0.033 0.10 -0.033 0.18 -0.028 0.24 -0.009 0.09ITA 

***(0.00) 0.03 ***(0.00) 0.08 ***(0.00) 0.13 ***(0.01) 0.17 (0.38) 0.03
-0.102 0.06 -0.075 0.11 -0.057 0.16 -0.029 0.09 -0.019 0.06JAP 

***(0.00) 0.05 ***(0.00) 0.07 **(0.02) 0.07 (0.21) 0.04 (0.22) 0.03
0.002 0.03 0.002 0.03 0.001 0.05 0.000 0.08 -0.003 0.12NET 
(0.96) 0.00 (0.95) 0.00 (0.86) 0.00 (0.75) 0.00 (0.48) 0.05
0.009 0.06 0.006 0.13 0.004 0.09 0.002 0.21 -0.001 0.19NEWZ 
(0.44) 0.00 (0.66) 0.00 (0.86) 0.00 (0.89) 0.00 (0.68) 0.02
-0.005 -0.01 -0.003 0.00 -0.003 0.04 -0.005 0.14 -0.003 0.28NOR 

*(0.09) 0.01 (0.24) 0.02 (0.25) 0.04 (0.14) 0.11 *(0.09) 0.14
-0.017 0.09 -0.015 0.13 -0.015 0.15 -0.013 0.20 -0.012 0.18SPA 

*(0.06) 0.01 **(0.05) 0.04 *(0.07) 0.08 (0.21) 0.12 (0.30) 0.16
-0.002 0.04 -0.008 0.10 -0.009 0.21 -0.016 0.40 -0.011 0.45SWE 
(0.77) -0.01 (0.53) 0.00 (0.52) 0.01 *(0.09) 0.06 (0.32) 0.05
-0.020 0.04 -0.019 0.14 -0.013 0.21 -0.009 0.37 -0.010 0.48SWI 

***(0.01) 0.03 **(0.03) 0.07 (0.11) 0.06 (0.17) 0.07 (0.15) 0.16
-0.006 0.00 -0.007 0.02 -0.003 0.08 -0.004 0.15 -0.004 0.20UK 
(0.31) 0.00 (0.28) 0.01 (0.50) 0.01 (0.40) 0.03 (0.36) 0.04
-0.013 0.02 -0.014 0.10 -0.009 0.13 -0.005 0.17 -0.004 0.12US 

**(0.02) 0.03 ***(0.01) 0.09 *(0.07) 0.09 (0.20) 0.07 (0.29) 0.08
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Table 2.4 Predictive regression results: value stocks 
This table shows predictive regression results for the model specified in (2.2) with returns of 
value stocks as dependent variables. ∆ 2R  denotes the incremental adj. R2 when sentiment is 
included in the regression specification. Reported coefficient estimates are bias adjusted and bootstrap 
p-values are shown. Stars refer to the level of significance: *** 1%, ** 5%, * 10%. 

 
 
 

1 month 3 months 6 months 12 months 24 months 
 coef./ 

p-val 
2R / 

∆ 2R  
coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

-0.001 -0.01 -0.003 0.00 -0.003 0.03 -0.002 0.14 -0.002 0.14ATRL 
(0.65) 0.00 (0.45) 0.00 (0.50) 0.01 (0.49) 0.02 (0.46) 0.03
-0.030 0.00 -0.030 0.04 -0.031 0.14 -0.022 0.24 -0.010 0.33ATR 

**(0.04) 0.02 *(0.06) 0.06 **(0.02) 0.16 **(0.01) 0.23 **(0.04) 0.10
-0.013 0.04 -0.013 0.05 -0.011 0.08 -0.009 0.13 -0.007 0.18BEL 

**(0.04) 0.01 **(0.02) 0.04 **(0.03) 0.08 *(0.06) 0.14 (0.16) 0.19
0.011 0.01 0.011 0.00 0.008 -0.01 0.008 0.01 0.007 0.08DEN 
(0.37) 0.00 (0.35) 0.01 (0.61) 0.01 (0.59) 0.02 (0.54) 0.04
-0.023 0.00 -0.014 0.03 -0.031 0.10 -0.033 0.21 -0.020 0.50FIN 
(0.49) 0.00 (0.64) 0.00 (0.21) 0.04 **(0.03) 0.11 **(0.04) 0.24
-0.018 0.00 -0.013 0.02 -0.008 0.04 -0.008 0.10 -0.015 0.24FRA 

*(0.10) 0.01 (0.17) 0.01 (0.26) 0.01 (0.33) 0.02 **(0.03) 0.18
-0.015 0.04 -0.017 0.05 -0.018 0.09 -0.017 0.17 -0.015 0.30GER 

*(0.09) 0.01 **(0.05) 0.04 **(0.04) 0.09 *(0.06) 0.18 (0.11) 0.26
0.002 -0.02 0.004 -0.02 0.003 -0.02 0.004 0.06 0.004 0.18IRE 
(0.92) -0.01 (0.79) 0.00 (0.84) 0.00 (0.70) 0.01 (0.26) 0.06
-0.041 0.04 -0.041 0.12 -0.041 0.22 -0.038 0.33 -0.012 0.12ITA 

***(0.00) 0.04 ***(0.00) 0.11 ***(0.00) 0.19 ***(0.00) 0.29 (0.21) 0.05
-0.102 0.06 -0.071 0.10 -0.064 0.20 -0.049 0.24 -0.027 0.19JAP 

***(0.00) 0.05 ***(0.01) 0.07 **(0.04) 0.11 *(0.06) 0.12 *(0.10) 0.08
-0.007 0.05 -0.006 0.04 -0.006 0.06 -0.005 0.12 -0.005 0.25NET 
(0.19) 0.01 (0.22) 0.02 (0.16) 0.04 (0.19) 0.07 (0.14) 0.18
0.007 0.04 0.006 0.06 0.006 0.08 0.006 0.21 0.007 0.48NEWZ 
(0.34) 0.00 (0.42) 0.01 (0.46) 0.02 (0.35) 0.06 *(0.10) 0.21
-0.010 0.03 -0.009 0.10 -0.010 0.15 -0.010 0.18 -0.005 0.31NOR 

**(0.03) 0.03 **(0.03) 0.06 *(0.07) 0.12 *(0.08) 0.19 (0.14) 0.17
-0.006 0.04 -0.006 0.09 -0.005 0.06 -0.003 0.06 -0.003 0.02SPA 
(0.45) 0.00 (0.29) 0.00 (0.34) 0.01 (0.65) 0.01 (0.65) 0.01
-0.040 0.04 -0.037 0.14 -0.033 0.22 -0.015 0.17 -0.004 0.52SWE 

**(0.02) 0.04 ***(0.00) 0.11 ***(0.00) 0.17 *(0.10) 0.08 (0.45) 0.02
-0.013 0.04 -0.014 0.14 -0.009 0.24 -0.007 0.36 -0.011 0.46SWI 

*(0.09) 0.01 *(0.08) 0.03 (0.24) 0.03 (0.34) 0.02 (0.14) 0.14
-0.009 0.01 -0.010 0.03 -0.006 0.09 -0.007 0.14 -0.006 0.11UK 
(0.17) 0.00 (0.19) 0.02 (0.39) 0.02 (0.27) 0.05 (0.23) 0.07
-0.014 0.02 -0.015 0.09 -0.009 0.13 -0.003 0.23 -0.002 0.15US 

**(0.02) 0.03 ***(0.01) 0.09 *(0.09) 0.08 (0.34) 0.03 (0.18) 0.06
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Table 2.5 Predictive regression results: growth stocks 
This table shows predictive regression results for the model specified in (2.2) with returns of 
growth stocks as dependent variables. ∆ 2R  denotes the incremental adj. R2 when sentiment is 
included in the regression specification. Reported coefficient estimates are bias adjusted and bootstrap 
p-values are shown. Stars refer to the level of significance: *** 1%, ** 5%, * 10%. 

 
 
 

1 month 3 months 6 months 12 months 24 months 
 coef./p-

val 
2R / 

∆ 2R  
coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

coef./ 
p-val 

2R / 
∆ 2R  

0.003 0.00 0.001 0.03 0.000 0.04 0.001 0.01 0.001 0.00ATRL 
(0.72) 0.00 (0.91) 0.00 (0.81) 0.00 (0.97) 0.00 (0.95) 0.00
-0.033 0.01 -0.036 0.11 -0.039 0.27 -0.025 0.19 -0.006 0.39ATR 

**(0.02) 0.03 ***(0.01) 0.10 ***(0.01) 0.21 *(0.09) 0.13 (0.68) 0.00
-0.020 0.06 -0.022 0.14 -0.021 0.24 -0.021 0.44 -0.018 0.53BEL 

***(0.00) 0.03 ***(0.00) 0.11 ***(0.00) 0.23 ***(0.00) 0.41 **(0.02) 0.52
-0.001 0.03 -0.003 0.02 -0.005 0.04 -0.006 0.06 0.000 0.00DEN 
(0.75) 0.00 (0.59) 0.00 (0.55) 0.01 (0.44) 0.02 (0.96) -0.01
0.033 0.00 0.034 0.09 0.044 0.23 0.019 0.39 0.011 0.49FIN 
(0.42) 0.00 (0.35) 0.01 (0.12) 0.06 (0.27) 0.01 (0.64) 0.00
-0.019 0.00 -0.011 0.00 -0.006 0.01 -0.005 0.03 -0.012 0.19FRA 

*(0.10) 0.01 (0.27) 0.01 (0.48) 0.00 (0.50) 0.01 *(0.10) 0.09
-0.014 0.04 -0.018 0.04 -0.018 0.09 -0.016 0.16 -0.016 0.33GER 

*(0.08) 0.01 **(0.02) 0.05 **(0.02) 0.10 *(0.07) 0.17 **(0.04) 0.31
-0.001 0.04 -0.003 0.11 -0.004 0.22 -0.004 0.25 -0.007 0.52IRE 
(0.73) 0.00 (0.51) 0.00 (0.46) 0.01 (0.41) 0.03 (0.14) 0.15
-0.031 0.02 -0.029 0.09 -0.029 0.16 -0.024 0.21 -0.008 0.11ITA 

***(0.00) 0.02 ***(0.00) 0.06 ***(0.00) 0.10 **(0.02) 0.12 (0.45) 0.02
-0.098 0.06 -0.070 0.10 -0.051 0.14 -0.020 0.07 -0.012 0.05JAP 

***(0.00) 0.04 ***(0.00) 0.06 **(0.01) 0.06 (0.32) 0.02 (0.36) 0.01
-0.002 0.02 -0.001 0.02 -0.002 0.04 -0.004 0.10 -0.007 0.24NET 
(0.51) 0.00 (0.53) 0.00 (0.43) 0.01 (0.30) 0.04 (0.16) 0.17
0.008 0.06 0.005 0.18 0.003 0.20 0.001 0.38 -0.001 0.32NEWZ 
(0.58) 0.00 (0.81) 0.00 (0.96) 0.00 (0.66) 0.00 (0.66) 0.03
0.000 -0.02 0.002 -0.02 0.002 -0.01 -0.002 0.07 -0.003 0.26NOR 
(0.47) 0.00 (0.78) -0.01 (0.79) 0.00 (0.36) 0.04 (0.19) 0.12
-0.022 0.14 -0.020 0.20 -0.020 0.27 -0.018 0.37 -0.014 0.30SPA 

**(0.02) 0.02 **(0.01) 0.06 **(0.02) 0.14 *(0.06) 0.22 *(0.10) 0.21
0.004 0.06 -0.001 0.11 -0.002 0.21 -0.017 0.39 -0.011 0.43SWE 
(0.99) -0.01 (0.79) -0.01 (0.79) 0.00 (0.19) 0.05 (0.41) 0.04
-0.023 0.05 -0.022 0.16 -0.016 0.22 -0.012 0.41 -0.012 0.59SWI 

***(0.00) 0.04 ***(0.01) 0.11 **(0.03) 0.10 *(0.06) 0.11 **(0.04) 0.20
-0.002 0.00 -0.001 0.02 0.002 0.08 0.000 0.14 -0.001 0.21UK 
(0.59) 0.00 (0.64) 0.00 (0.96) 0.00 (0.77) 0.00 (0.65) 0.01
-0.013 0.02 -0.013 0.09 -0.007 0.11 -0.004 0.16 -0.004 0.16US 

**(0.02) 0.03 **(0.01) 0.08 (0.13) 0.06 (0.28) 0.05 (0.38) 0.05
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Table 2.6 Correlation of consumer confidence innovations and unexpected returns 
This table shows correlation coefficients for unexpected returns and sentiment innovations 
from the predictive system in equations (2.3) and (2.4) for market returns and returns of value 
and growth stocks. 
 
 
 
 
 

 market value growth 
ATRL 0.03 0.05 0.04
ATR 0.13 0.03 0.11
BEL 0.08 0.02 0.12
DEN 0.02 0.06 0.02
FIN 0.03 -0.03 0.04
FRA 0.14 0.16 0.12
GER 0.02 0.02 0.01
IRE 0.03 0.09 0.07
ITA 0.09 0.10 0.07
JAP 0.10 0.16 0.07
NET 0.13 0.14 0.12
NEWZ 0.20 -0.02 0.22
NOR 0.15 0.10 0.13
SPA 0.16 0.07 0.17
SWE 0.15 0.15 0.11
SWI 0.02 0.05 0.02
UK 0.12 0.12 0.12
US 0.12 0.17 0.10
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Table 2.7 Cross-sectional analysis of the sentiment-return relation 
The table shows univariate regression results for the cross-section of countries. Each row 
represents a regression with the impact of consumer confidence on next month’s stock return 
as dependent variable and the row’s variable as the explanatory variable. The second column 
(+ / −) shows the theoretically expected effect of a respective regressor on the dependent 
variable. Statistically significant results (at least at the 10%-level) are in bold numbers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
  

slope 
coef. t-stat 2R  

Behavioral factors   
Collectivism − -0.109 -2.442 0.23 
Uncertainty avoidance − -0.077 -3.267 0.36 
PC culture − -1.371 -3.533 0.40 
Market integrity   
Legal origin  1.672 1.229 0.03 
Anti-director rights + 0.111 0.243 -0.06 
Corruption perception + 1.524 2.907 0.30 
Accounting standards + 0.137 1.606 0.09 
Earnings management − -0.157 -2.083 0.17 
Other factors   
No. of Analysts + -0.024 -0.282 -0.06 
Forecast dispersion − 0.675 0.068 -0.06 
Forecast error − -4.559 -0.712 -0.03 
Share inst. investors + 2.823 0.825 -0.02 
Marketcap. / GDP + 0.006 0.473 -0.05 
Turnover + 0.189 0.180 -0.06 
Short selling + -2.073 -1.271 0.03 
Education + 0.096 2.071 0.16 
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Table 2.8 Bootstrap analysis 
This table shows results from a bootstrap analysis where values of explanatory variables are 
randomly permuted across countries. Specifically, each country is assigned its own value of 
the regressand, the impact of sentiment on returns, and the explanatory variable for each 
country is drawn randomly from the pool of all countries. For the first univariate regression 
for example, Australia is assigned the education level of Belgium, Belgium is assigned the 
education level of Austria and so. This procedure is repeated 10,000 times and the empirical 
distribution of slope coefficients is used to construct bias adjusted test statistics as indicated in 
the text. The second column (+ / −) shows the theoretically expected effect of a respective 
regressor on the dependent variable. Statistically significant results (at least at the 10%-level) 
are in bold numbers. 
 
 
 
 

 
 
 
 
 
 
 
 
 

slope 
coefficient 

mean slope 
coefficient from 

bootstrap  

stand. dev. 
from bootstrap 

bootstrap 
t-statistic 

 β̂  β̂  ( )β̂σ  ( ) ( )β̂σ/β̂β̂ −  
Behavioral factors    
Collectivism − -0.109 0.000 0.051  -2.137
Uncertainty avoidance − -0.077 0.001 0.029  -2.635
PC culture − -1.371 0.002 0.499  -2.745
Market integrity    
Legal origin  1.672 0.006 1.383  1.209
Anti-director rights + 0.111 -0.008 0.449  0.247
Corruption perception + 1.524 -0.004 0.618  2.469
Accounting standards + 0.137 0.001 0.090  1.517
Earnings management − -0.157 0.000 0.084  -1.872
Other factors    
No. of Analysts + -0.024 0.000 0.082  -0.293
Forecast dispersion − 0.675 0.143 9.506  0.071
Forecast error − -4.559 0.021 6.276  -0.727
Share inst. investors + 2.823 0.001 3.369  0.838
Marketcap. / GDP + 0.006 0.000 0.012  0.482
Turnover + 0.189 -0.022 1.016  0.186
Short selling + -2.073 0.023 1.673  -1.239
Education + 0.096 0.000 0.050  1.925
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Table 2.9 Probit regressions 
This table shows results from univariate probit regressions where the dependent variable 
equals one if there is a significant sentiment-return relation for country i and zero otherwise. 
The second column (+ / −) shows the theoretically expected effect of a respective regressor on 
the dependent variable. Statistically significant results (at least at the 10%-level) are in bold 
numbers. 
 
 
 

 
slope 

coefficient t-stat Mc-Fadden's R2 
Behavioral factors   
Collectivism + 0.051 1.707 0.14 
Uncertainty avoidance + 0.090 2.026 0.52 
PC culture + 1.023 2.325 0.39 
Market integrity   
Legal origin  -1.344 -1.828 0.15 
Anti-director rights − -0.273 -1.172 0.06 
Corruption perception − -1.550 -2.473 0.45 
Accounting standards − -0.114 -2.019 0.23 
Earnings management + 0.096 2.023 0.21 
Other factors   
No. of Analysts − 0.055 1.285 0.07 
Forecast dispersion + 6.213 1.251 0.07 
Forecast error + 5.317 1.585 0.11 
Share inst. investors − -2.349 -1.015 0.06 
Marketcap. / GDP − -0.002 -0.351 0.00 
Turnover − 0.495 0.928 0.04 
Short selling dummy − 0.684 0.837 0.03 
Education − -0.023 -0.938 0.04 
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Chapter 3: 

A prospect-theoretical interpretation  

of momentum returns∗ 

 

3.1 Introduction 

 

According to standard theory, returns on investment strategies might be higher 

than returns on holding the market portfolio if they carry a higher systematic risk. It is 

therefore surprising that simple momentum investment strategies seem to contradict this 

conventional wisdom by offering high returns that are not explained by conventional 

risk factors. The challenge to traditional capital market theory is particularly bold as 

momentum strategies are extremely simple by just buying those assets which performed 

best in the past reference period and selling short the worst performing assets. Thus 

momentum strategies do not require any fundamental understanding of asset markets 

and also no effort to forecast future returns. Despite this effrontery to capital market 

theory, the observation of highly significant momentum returns in the US stock market 

(Jegadeesh and Titman, 1993) was abundantly confirmed (e.g., Jegadeesh and Titman, 

2001) and extended to other markets as well (Rouwenhorst, 1998). Thus, momentum 

returns represent a fascinating puzzle. 

We contribute towards a possible understanding of high momentum returns by 

following the analytical perspective suggested by Benartzi and Thaler (1995).
 26

 We 

find, indeed, that risk considerations as implemented by prospect theory might be a key: 

the prospect utility of US stock momentum returns is not higher than that of a 

comparable market portfolio. Therefore, prospect theory provides a possible direction 

for explaining the puzzle. 

We proceed as follows: Section 3.2 introduces data and the puzzling multi-factor 

interpretation of US stock momentum returns. Section 3.3 demonstrates the riskiness of 

momentum and market returns by highlighting the higher-order statistical moments. 

                                                           
∗
 This chapter is based on a paper published in Economics Letters 93, p. 360-366 (2006), used 

with permission from Elsevier, co-authored with Lukas Menkhoff (Leibniz Universität 

Hannover). 
26

 The failure of traditional models to explain the puzzling findings has stimulated a large body 

of behavioral models which inter alia include Barberis et al. (1998), Daniel et al. (1998) and 

Hong and Stein (1999). 
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Section 3.4 consequently presents the application of prospect theory to the momentum 

and market strategies respectively. Section 3.5 concludes. 

3.2 Data and the multi-factor interpretation of momentum returns 

 

We use data on the US stock market from July 1963 to December 2005. This 

monthly data set comprises the CRSP market return, the risk free rate, the market excess 

return and momentum returns from NYSE-AMEX stocks.
 

The construction of 

momentum returns follows the method employed in Fama and French (1996). Stocks 

are ranked into deciles based on their returns in the formation period over the last year. 

Decile portfolios are equally weighted and momentum returns are obtained by taking a 

long position in the stocks of the tenth decile (P10) and shorting stocks in the first decile 

(P1). Portfolios are rebalanced monthly and one month is skipped between the end of 

the formation and the beginning of the holding period. The holding period is one month. 

At the core of the momentum puzzle is the fact that this strategy is self-financing 

and has a significantly positive mean return, which does not seem to be compensating 

for any kind of conventional measure of risk. Neither traditional beta-factors nor multi-

factor analyses inspired by Fama and French have been successful in capturing 

momentum returns (see Fama and French, 1996, Grundy and Martin, 2001). Consider 

for example the popular Fama-French three factor model that “explains” returns by their 

exposure to three risk factors. A time-series regression using GMM applied to our data 

leads to the following result 

        MOMt =  1.50  –  0.24 ERt  –  0.02 SMBt  –  0.21 HMLt   ,  R
2
 ≈ 1%                (3.1) 

                       [3.05]      [-1.99]         [-0.13]            [-1.17] 
 

with t-statistics in parentheses and MOM, ER, SMB and HML denoting monthly 

momentum returns, market returns in excess over the risk free rate and the SMB (size) 

and HML (leverage) factor, respectively. As can be directly inferred, a conventional 

momentum strategy yields risk adjusted returns of about one and a half per cent each 

month over the whole sample of 42 years. A similar conclusion can be drawn from 

using a simple one factor market model. Seen from the viewpoint of these models, 

momentum strategies offer a free lunch. 

 

3.3 Comparing statistics of market and momentum returns 

 

Linear factor models look at first and second-order (cross-)moments of return 

distributions. However, there is a tendency in economics and finance to consider more 
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complex and in particular asymmetric approaches to measure risk (see e.g. Ang, Chen 

and Xing, 2006). Therefore, let us take a look at the return distributions of market 

excess
27

 and momentum returns as shown in Table 3.1 for both monthly returns and 

rolling 12-months returns. Unconditional average monthly returns of the momentum 

portfolio are about 1.29 percent p.m. and therefore somewhat lower compared to the 

intercept of 1.5 percent in (3.1). However, a t-test employing Newey-West standard 

errors yields a test statistic of 2.45 for the null of mean zero when applied to raw 

momentum returns. Less advantageous for the momentum strategy is the fact that both 

the standard deviation and the maximum one-month loss of the momentum portfolio of 

55.84 percent are much higher than the same statistics of market excess returns. A 

further key to understanding riskiness is provided by the more negative skewness (see 

also Harvey and Siddique (2000) in this respect) of momentum returns and their higher 

kurtosis compared to market excess returns. Except for the skewness, the ordering of 

these statistics for the two portfolios is unchanged when using smoother 12-months 

returns. 

The higher maximum loss as well as the third and fourth-order statistical moments 

of the momentum return distribution are unattractive for loss averse investors since the 

latter weigh losses more heavily than gains of the same size. In this setting, and holding 

first and second order moments fixed, an increasingly negative skewness indicates that 

losses occur more often and an increasingly high kurtosis indicates that extreme return 

realizations become more likely. Both, negative skewness and higher kurtosis are 

clearly unattractive for loss averse investors. 

 

3.4 A prospect-theoretical interpretation of momentum returns 

 

As a way to consider loss aversion in investment decisions we follow Benartzi 

and Thaler's (1995) approach of myopic loss aversion which includes two modifications 

of the traditional capital market approach. First, they substitute the traditional 

symmetric risk-return approach by the empirically well established prospect theory 

(which incorporates loss aversion) to gauge the attractiveness of portfolio return 

distributions. Second, they take into account the fact that evaluation horizons of risky 

                                                           
27

 The market excess return over the risk free rate is an appropriate benchmark for momentum 

returns since it can be thought of representing an investment strategy that uses short-term loans 

to finance the market investment. This avoids to invest own capital and thus makes it 

comparable to momentum returns. 
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investments often do not span over decades but over months (in the case of fund 

managers) or a year (as sometimes assumed for private investors). Loss aversion in 

combination with short horizons leads to myopic loss aversion, a behavior which is 

increasingly confirmed by recent empirical evidence (e.g. Haigh and List, 2005, or 

Bellemare et al., 2005). The impact of myopic loss aversion on investment behavior can 

be analyzed by using prospect theory. This theory provides an empirically well 

established approach to assess – among others – risk-return profiles of different 

portfolios. Moreover, the element of a reference point in prospect theory fits well with 

the notion of short horizons. Therefore, prospect utility seems to be a promising 

approach to directly compare US momentum returns with US market excess returns in 

terms of the investors’ utility. 

Regarding the exact methodology, we follow Benartzi and Thaler (1995), who 

evaluate stock and bond returns with a cumulative prospect utility function to find a 

behavioral explanation for the equity premium puzzle. The key to their analysis is the 

nonlinear value function, as proposed and estimated by Kahnemann and Tversky (1979) 

and Tversky and Kahnemann (1992) which has the following form: 

0,xif

0xif

x)λ(

x
v(x)

β

α

<

≥





−−

=
 

(3.2) 

where v is the value function, x denotes returns and λ is the coefficient of loss aversion, 

which Tversky and Kahnemann (1992) estimate to be 2.25. The estimated values for α 

and β are both 0.88, creating a concave shape in the domain of gains and a convex shape 

for the value function in the domain of losses. This procedure models agents as risk-

averse for positive and risk-seeking for negative outcomes, relative to the reference 

point. Since the coefficient of loss aversion is larger than one, agents put more weight 

on losses than on gains of the same size. 

The prospective utility is just the weighted sum of these values: 

∑=

i

ii ),v(xπV(G)  (3.3) 

where πi is a transformation of the probability pi of obtaining the ith outcome. In 

cumulative prospect utility this transformation depends not only on pi, but also on the 

probabilities of the other outcomes. Specifically, πi can be computed by taking the 

difference of the weighted probability of obtaining an outcome at least as good as the xi 

(denoted Pi) and the weighted probability of obtaining an outcome that is better than xi 

(denoted P
*
i), formally 
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)w(P)w(Pπ *

iii −=  (3.4) 

and the weight w is 

/γ1γγ

γ

)p)(1(p

p
w(p)

−+

= , (3.5) 

with an estimated value for γ of 0.61 and 0.69 for the domains of gains and losses 

respectively. 

To perform the comparison of momentum and market excess returns over 

different horizons of evaluation, we simulate the return distributions of both strategies 

by drawing 1,000,000 n-month returns (with replacement, n = 1, 2, …, 30) from both 

return series and rank them in descending order. For each of these simulated 

distributions, one hundred intervals of 10,000 observations are formed and the mean 

return for each is computed.
28

 Using these returns, the prospective utility for both series 

and evaluation horizon is easily obtained. 

In order to get more realistic results we further take into account transaction costs 

of the momentum strategy. These might well be substantial since the strategy demands 

portfolio adjustments each month and has to deal with comparatively large bid-ask 

spreads of small and illiquid stocks. The existing literature often employs no transaction 

costs (Jegadeesh and Titman, 2001) although Korajczyk and Sadka (2004) find costs of 

up to five percent. 

Figure 3.1 plots the result of this simulation exercise for both the momentum 

(dashed lines) and market excess returns (solid line) for evaluation horizons ranging 

from one to 36 months and for transaction costs (for the momentum strategy) ranging 

from zero to ten percent p.a.. As can be expected, the lowest dashed line represents the 

cumulative prospective utility of the momentum strategy when transaction costs equal 

ten percent p.a. whereas the uppermost dashed line shows the prospective utility without 

transaction costs. Two implications of this figure stand out. First, similar to the results 

in Benartzi and Thaler (1995), all self-financing stock portfolios only yield positive 

utility for evaluation horizons of about one year and beyond. Investors evaluating their 

portfolios more often are better off avoiding the two investment strategies under 

consideration here.
29

 Second, even for very moderate transaction costs of only one 

                                                           
28

 Effectively, this procedure proposed by Benartzi and Thaler (1995) simulates the distribution 

of returns and calculates mean returns conditional on observing an outcome in one of the 

hundred percentiles of the distribution. Note also, that we implement a finer grid than Benartzi 

and Thaler (1995) who use only twenty intervals. 
29

 In our view, the fact that momentum portfolios are rebalanced monthly does not necessarily 

conflict with investors employing longer evaluation horizons for at least two reasons. First, 

rebalancing is a purely mechanical activity that does not force investors to evaluate the 
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percent p.a., investors with evaluation horizons of more than two years do not prefer 

momentum portfolios to the self-financing market portfolio.  

This is a possible explanation for the puzzling observation that momentum returns 

do not attract arbitrageurs who exploit this opportunity of seemingly risk free profits. 

The fact that prospective utility investors are loss averse prevents them from holding a 

momentum portfolio that has a more extreme return distribution than the comparable 

market portfolio. Although longer evaluation horizons tend to erase some of the 

skewness and kurtosis (see Table 3.1), a conventional momentum strategy does not 

clearly outperform the self-financing market portfolio in terms of the investors’ utility 

over any reasonable evaluation horizon and for reasonable transaction costs. 

Figure 3.2 documents further analyses in the spirit of Benartzi and Thaler (1995). 

Panel (A) shows cumulative prospective utilities for different portfolio allocations of the 

momentum strategy and the self-financing market portfolio at a 12 months evaluation 

horizon. The different lines correspond to transaction costs of zero to ten percent p.a. As 

was shown in Figure 3.1, a pure momentum strategy yields a marginal positive utility at 

the 12 months horizon. Adding transaction costs, this utility becomes negative 

immediately. However, combining the momentum strategy with the self-financing 

market portfolio can improve utility. This is easily explained by the apparent lack of 

correlation between momentum and market excess returns as indicated in equation 

(3.1). However, the optimal share of the momentum portfolio ranges from 24 percent to 

32 percent only and imposing transaction costs of more than seven percent p.a. does not 

yield positive utilities anymore. This clearly reduces the possibility to arbitrage 

momentum strategies. 

Finally, Panel (B) of 3. 2 shows the implied momentum premium investors with 

evaluation horizons from one to fifteen years demand for holding the momentum 

portfolio. Again, the figure has intuitive appeal and is similar to the results in Benartzi 

and Thaler (1995). Leaving transaction costs aside, short-termism of investors demands 

a high momentum return of almost 16 percent p.a. in order to make this strategy 

attractive to investors with a one year evaluation horizon. Patient investors with an 

evaluation horizon of e.g. 15 years only demand a premium of about four percent p.a. to 

compensate for the higher order moment risk associated with momentum returns.
30

 

                                                                                                                                                                          

performance of their investment strategy. Second, momentum investing can be delegated to 

asset managers so there is no monthly activity on behalf on the investor at all. 
30

 All results are qualitatively identical when using the popular UMD momentum data (available 

from Kenneth French's web site) over a period of 80 years or data for a strategy of a six months 

formation and six months holding period as applied in Chordia and Shivakumar (2002). 
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3.5 Conclusion 

 

The interpretation of US stock momentum returns over 42 years from the 

viewpoint of prospect theory suggests that loss adverse investors may be (partially) 

compensated for the higher probability of extreme losses and risk in higher order 

moments over reasonable evaluation horizons. Thus prospect theory seems to provide a 

fruitful access to analyze financial risks, which was shown earlier regarding portfolio 

choice (Berkelaar et al., 2004), the equity premium puzzle (Benartzi and Thaler, 1995 or 

Barberis et al., 2001) and is shown here regarding the puzzle of high momentum 

returns. 
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Table 3.1 Descriptive statistics of momentum and market excess returns 

MOM and ER denote momentum returns and the market excess return over the risk free 

rate, respectively. 12-month returns are obtained by chaining monthly returns. The 

sample period is 1963:07 to 2005:12. 

 

           Monthly returns (in %)       12-months returns (in %) 

          MOM              ER          MOM             ER 

Mean 1.29 0.47  17.01 5.63 

Median 1.84 0.76  13.98 8.13 

Maximum gain 31.91 16.05  204.77 54.17 

Maximum loss -55.84 -23.13  -70.38 -45.76 

Standard deviation 10.77 4.42  43.25 16.00 

Skewness -0.94 -0.50  0.66 -0.29 

Kurtosis 5.89 5.06  4.32 2.98 

      
 

 

 

Figure 3.1 Prospective utility of momentum and market excess returns for 

different evaluation horizons and different transaction costs 

The horizontal axis displays the evaluation horizon under which prospective utility 

(vertical axis) is calculated and the vertical axis measures the cumulative prospective 

utility of an investment strategy. The solid line represents market excess returns (ER), 

whereas the dashed lines represent momentum returns (MOM) for annual transaction 

costs from zero to ten percent. The sample period is 1963:07 to 2005:12. 
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Figure 3.2 Optimal portfolio allocation and implied momentum premium 

Panel (A) shows prospective utility (y-axis) for different portfolio shares (x-axis) of the 

momentum portfolio at a 12 months evaluation horizon. The lines correspond to 

transaction costs ranging from zero to ten percent p.a. The remaining portfolio share is 

allocated to the self-financing market portfolio. Panel (B) shows implied momentum 

premiums for evaluation horizons from one to fifteen years (no transaction costs 

imposed). The sample period is 1963:07 to 2005:12 for both panels. 
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Appendix to "A prospect-theoretical interpretation of momentum returns" 

 

This appendix documents robustness of earlier findings by applying the identical 

method to two different, but popular momentum strategies. Appendix A shows results 

for the UMD momentum portfolio which is different from the earlier analysis in two 

important respects: first, the data period is much longer (including periods where 

momentum returns have been tentatively worse) and, second, winner and loser 

portfolios are formed by relying on the extreme 30 percent of stocks each, instead of ten 

percent. The formation period is 12 months. Data are taken from Kenneth French's web 

site and the sample is 1927:01 to 2004:12.  Appendix B shows results for the strategy 

proposed by Jegadeesh and Titman (1993). Formation and holding period are 6 months 

both, and the strategy buys (sells) the top (bottom) decile of stocks. The sample period 

is 1961:01 to 1999:12 and data are from Chordia and Shivakumar (2002). 

 

 

Appendix A. UMD momentum strategy 

 

A1. Equation (3.1) 
This equation shows results from regressing the monthly UMD momentum returns 

(MOMt) on a constant and the three risk factor model of Fama and French (1996) using 

GMM and Newey-West standard errors. T-statistics are in parenthesis. 

 

        MOMt =  1.12  - 0.21 ERt – 0.16 SMBt – 0.43 HMLt   ,  R
2
 = 22.5%            

                       [7.62]    [-2.77]         [-2.11]          [-3.08] 

 

 

 

 

A2. Descriptive statistics of momentum and market excess returns 

MOM and ER denote UMD momentum returns and the market excess return over the 

risk free rate, respectively. 12-month returns are obtained by chaining monthly returns. 

The sample period is 1927:01 to 2004:12. 

 

 

           Monthly returns (in %)       12-months returns (in %) 

         MOM       ER         MOM       ER 

Mean 0.75 0.65  9.09 8.19 

Median 0.94 0.98  9.97 8.63 

Maximum gain 18.38 38.18  76.70 154.73 

Maximum loss -50.92 -29.03  -75.80 -66.43 

Standard deviation 4.73 5.49  15.27 21.61 

Skewness -3.00 0.21  -1.06 0.43 

Kurtosis 30.86 10.63  9.11 6.53 
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A3.  Prospective utility of momentum and market excess returns for different 

evaluation horizons and different transaction costs 

The horizontal axis displays the evaluation horizon under which prospective utility 

(vertical axis) is calculated and the vertical axis measures the prospective utility of an 

investment strategy. The solid line represents market excess returns (ER), whereas the 

dashed lines represent UMD momentum returns (MOM) for annual transaction costs 

from zero to ten percent. The sample period is 1927:01 to 2004:12. 
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A4. Optimal portfolio allocation and implied momentum premium 

Panel (A) shows prospective utility (y-axis) for different portfolio shares (x-axis) of the 

momentum portfolio at a 12 months evaluation horizon. The lines correspond to 

transaction costs ranging from zero to ten percent p.a. The remaining portfolio share is 

allocated to the self-financing market portfolio. Panel (B) shows implied momentum 

premiums for evaluation horizons from one to fifteen years (no transaction costs 

imposed). 
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Appendix B.  Momentum strategy with a six months formation and holding period 

 

B1. Equation (3.1) 

This equation shows results from regressing the monthly momentum returns (MOMt) on 

a constant and the three risk factor model of Fama and French (1996) using GMM and 

Newey-West standard errors. T-statistics are in parenthesis. 

 

        MOMt =  1.13  –  0.11 ERt  –  0.69 SMBt  –  0.52 HMLt   ,  R
2
 = 17.64%                                              

                        [5.79]      [-1.20]         [-3.71]            [-3.73] 

 

 

 

 

B2. Descriptive statistics of momentum and market excess returns 

MOM and ER denote momentum returns and the market excess return over the risk free 

rate, respectively. 12-month returns are obtained by chaining monthly returns. The 

sample period is 1961:01 to 1999:12. 

 

           Monthly returns (in %)       12-months returns (in %) 

         MOM       ER         MOM       ER 

Mean 0.78 0.57  9.19 6.45 

Median 1.39 0.83  10.96 8.49 

Maximum gain 14.48 16.05  62.14 54.16 

Maximum loss -36.52 -23.13  -46.32 -45.76 

Standard deviation 5.41 4.38  18.15 15.36 

Skewness -2.64 -0.51  -0.50 -0.33 

Kurtosis 17.01 5.40  3.44 3.16 
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B3.  Prospective utility of momentum and market excess returns for different 

evaluation horizons and different transaction costs 

The horizontal axis displays the evaluation horizon under which prospective utility 

(vertical axis) is calculated and the vertical axis measures the prospective utility of an 

investment strategy. The solid line represents market excess returns (ER), whereas the 

dashed lines represent momentum returns (MOM) for annual transaction costs from 

zero to ten percent. The sample period is 1927:01 to 2004:12. 

 

 

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

1 6 11 16 21 26

Evaluation Horizon (Months)

P
ro

sp
ec

ti
v

e 
U

ti
li

ty

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 74 

B4. Optimal portfolio allocation and implied momentum premium 

Panel (A) shows prospective utility (y-axis) for different portfolio shares (x-axis) of the 

momentum portfolio at a 12 months evaluation horizon. The lines correspond to 

transaction costs ranging from zero to ten percent p.a. The remaining portfolio share is 

allocated to the self-financing market portfolio. Panel (B) shows implied momentum 

premiums for evaluation horizons from one to fifteen years (no transaction costs 

imposed). 

 

Panel (A) 

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Share of Momentum Portfolio

P
ro

sp
ec

ti
v

e 
U

ti
li

ty

 
 

Panel (B) 

 

0%

2%

4%

6%

8%

10%

12%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Length of Evaluation Horizon (Years)

Im
p

li
ed

 M
o
m

en
tu

m
 P

re
m

iu
m

 p
.a

.

 
 



 75

Chapter 4: 

Myopic loss aversion and the cross-section of  

U.S. stock returns: Empirical evidence∗ 
 

4.1 Introduction 

 

This chapter shows that an application of prospect theory to asset pricing helps to 

explain the cross-section of U.S. stock returns. Of course, there are plenty of models 

which claim to explain cross-sectional returns. However, the recent study by Lewellen, 

Nagel and Shanken (2006) has convincingly demonstrated that these models lack 

generality. All of them perform well on the 25 Fama-French portfolios but almost none 

of them is very useful in explaining other kinds of cross-sections of U.S. stock returns 

that have been used in earlier empirical research. These cross-sections include the 

sorting of U.S. stocks according to their book to market ratio, to their prior returns or to 

their industry classification. Understanding generality of an asset pricing model in this 

sense, existing models seem to be somewhat specific. 

As a contribution towards identifying an asset pricing approach with a higher 

degree of generality, we rely on Benartzi and Thaler (1995) who apply prospect theory 

to explain the U.S. equity premium puzzle. Prospect theory assumes that investors are 

loss averse, i.e. utility functions have a kink at an exogenous reference point. Reference 

points are set according to particular situations from the viewpoint of individuals. 

Furthermore, Benartzi and Thaler (1995) use the observation that individual and 

institutional investors often evaluate portfolios after one-year-periods to introduce 

myopic behavior.31  

Combining these elements yields myopic loss averse investors who suffer more 

from losses than from gains of the same size and who pay attention to moments of short 

horizon returns and not to long horizon properties of return distributions. Under this 

modeling device, Benartzi and Thaler show that investors’ utility from holding a 

                                                 
∗ This chapter is based on a paper with the same title co-authored with Lukas Menkhoff 
(Leibniz Universität Hannover). 
31 Myopia and loss aversion have become widely used tools to describe individual decision 
making (see Thaler, Tversky, Kahneman, and Schwartz, 1997, Waldfogel, 2005, or Langer and 
Weber, 2007, for applications and discussions). 
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diversified stock portfolio is not significantly different from earning the risk-free rate.32 

This result motivates to transfer this approach from pricing the market to pricing the 

cross-sections of returns and we find indeed that a universe of 115 different portfolios – 

covering the focus of interest of most empirical asset pricing papers – yields the same 

prospective utility as the broad market portfolio. This is a new finding as one approach 

is helpful in explaining not just one but all relevant cross-sections examined before. 

Prospect theory (Kahneman and Tversky, 1979) and its main constituent, loss 

aversion, have long been a promising way to address asset pricing puzzles. As noted 

above, Benartzi and Thaler (1995) provide an early application. Barberis and Huang 

(2001) show how a high mean of stock returns, excess volatility and a value premium in 

the cross-section of stocks may occur in an economy with loss averse investors. 

Barberis, Huang and Santos (2001) demonstrate in calibration exercises how loss 

aversion over financial wealth fluctuations helps explain several aggregate market 

phenomena such as the equity premium puzzle, the risk-free rate puzzle and 

predictability in the time-series of stock returns. Most recently, Berkelaar, Kouwenberg 

and Post (2004) show that loss aversion significantly reduces the share of stock holdings 

in an optimal portfolio when investors have short planning horizons, Barberis, Huang, 

and Thaler (2006) apply the prospect-theoretical framework to make sense of the stock 

market participation puzzle (cf. Mankiw and Zeldes, 1991), and Menkhoff and 

Schmeling (2006) use prospect utility to explain high momentum returns (Jegadeesh 

and Titman, 2001). 

This chapter addresses another important issue which is yet not well understood: is 

myopic loss aversion helpful in understanding the cross-sectional spread in U.S. stock 

returns? Motivated by recent advice of Lewellen, Nagel and Shanken (2006) we 

examine a comprehensive set of portfolios to test the power of this approach in 

explaining several market anomalies (e.g. value stocks, momentum stocks, contrarian 

strategies) and standard benchmark portfolios (e.g. the 25 Fama-French portfolios or 30 

industry portfolios). We find that several cross-sectional stock return anomalies are well 

captured under the prospect-theoretical metric. Specifically, the ostensibly anomalous 

returns of e.g. momentum, value or contrarian portfolios do not outperform the market 

portfolio from a utility perspective when investors are characterized by myopic loss 

aversion. 

                                                 
32 Empirical and experimental evidence suggests that both laymen and professional investors are 
subject to myopic loss aversion (see for example Haigh and List, 2005). 
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This finding indicates that the way investors assess the utility of portfolios may be 

important for asset pricing. In a next step, we thus interpret myopic loss aversion itself 

as a price relevant risk factor and include it into a conventional multi-factor asset 

pricing approach in the Fama-MacBeth (1973) regression tradition. We show that 

portfolios with unfavorable distributional properties for loss-averse investors demand a 

higher premium cross-sectionally. The inclusion of this prospect-theory based factor 

robustly generates insignificant alpha estimates of an economically sensible size and 

easily survives the inclusion of a variety of risk factors proposed in the literature. 

The rest of the chapter proceeds as follows. Section 4.2 describes the data used in 

the empirical analysis, Section 4.3 details the methodology and results. We perform 

several robustness checks in Section 4.4 and conclude in Section 4.5. 

 

4.2 Data 

 

This empirical analysis fully relies on data of stock portfolios that has been used 

extensively in earlier research. Thus, our contribution with respect to data is that we use 

–inspired by Lewellen, Nagel and Shanken (2006) – a broader set of portfolios 

compared to earlier studies in this line of literature which mostly analyze the 25 Fama-

French portfolios. 

Specifically, we include the following portfolios in our empirical analysis:33 

(a) 10 portfolios formed on book-to-market (BE/ME) 

(b) 10 portfolios sorted on the dividend-price ratio (D/P) 

(c) 10 portfolios sorted on size (ME) 

(d) 25 Fama-French portfolios (FF) 

(e) 10 portfolios sorted on short-term performance, i.e. the return over the prior month 

(Prior 1-0) 

(f) 10 portfolios sorted on momentum, i.e. the return over the prior 12 months (Prior 

12-2) 

(g) 10 portfolio sorted in long-term performance, i.e. the return over the prior five years 

(Prior 60-13) 

(h) 30 industry portfolios (30 Industries), 

which gives a total of 8 portfolio cross sections and 115 portfolios under consideration 

which will be examined jointly and separately. Returns are monthly and the sample 

                                                 
33 All portfolio return data is obtained from Prof. Kenneth French’s web site. 
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period is January 1936 to December 2005. We deflate all returns with monthly CPI data 

obtained from Prof. Robert Shiller’s web page. Returns on the market portfolio, the 

HML and SMB factors used in this study are again collected from Prof. French’s web 

site. 

We will provide only short descriptions of these portfolios because they are 

subject to a large amount of previous research and are described in detail on the website 

of Prof. French. First of all, the portfolios sorted on BE/ME and D/P are a means to look 

at the return spread of glamour (low BE/ME, D/P) versus value stocks (high BE/ME, 

D/P) (cf. Fama and French, 1998). The portfolios sorted on size (ME) have been 

constructed to investigate the so-called size premium (cf. Fama and French, 1992). The 

25 Fama-French portfolios (FF) have become the benchmark each asset-pricing model 

has to surmount (Fama and French, 1993). The following three sets of portfolios are 

formed on past prices. The Prior 1-0 portfolios are formed on short-term performance. 

Jegadeesh (1990) found that past short-term losers (over the last month) earn higher 

returns than past winners subsequently. The ten momentum portfolios (Prior 12-2) were 

analyzed in Jegadeesh and Titman (1993, 2001). Portfolios are formed on prior 12 

months performance. Past winners continue to outperform past losers. The long-term 

reversal portfolios (Prior 60-13) originate from the study of DeBondt and Thaler (1985) 

who show that past long-term losers outperform past long-term winners by a substantial 

amount. Finally, the 30 industry portfolios are common in empirically testing asset-

pricing models (cf. Lewellen, Nagel and Shanken, 2006) since they are based on a 

somewhat more natural sorting procedure that does not include past security prices. So 

we also include these industry portfolios here. 

Descriptive statistics are given in Table 4.1 and reveal the usual pattern observed 

in the spread of returns for these portfolios. For example, value stocks (high BE/ME) 

earn higher returns than growth stocks (low BE/ME), small stocks (Low ME) command 

a larger return than large stocks (high ME), and past winners (high prior 12-2 return) 

outperform past losers (low prior 12-2) by a significant amount. Large differences of up 

to 0.65% p.m. can be observed even among the industry portfolios. 

However, apart from the first moments, there is also considerable spread in higher 

order moments. For example, small stocks (low ME) have a much higher kurtosis than 

large stocks (high ME) which is quite unattractive to a loss averse investor and might 

(partially) compensate for the higher returns of small stocks. The same is true for 

portfolios sorted on BE/ME. Value stocks have a kurtosis that is higher by a factor of 
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about three compared to growth stocks which might make the higher returns of value 

stocks less attractive. For the prior 12-2 (momentum) portfolios we observe that past 

winners not only have higher returns than past losers but also a much lower skewness, a 

feature clearly being unattractive to loss averse investors. 

That said, the ultimate goal of the next sections is to cast this informal discussion 

of cross-sectional moments into a fully developed utility framework. This serves to 

analyze whether stock returns are in equilibrium when looking at them from the 

perspective of myopically loss averse investors. 

 

4.3 Empirical approach and results 

 

 4.3.1 Methodology 

 

We closely follow the methodology employed by Benartzi and Thaler (1995) in 

their seminal paper to ensure comparability of results. Their intuition is to apply the 

prospect theory to investment decisions because prospect theory is a positive theory of 

decision making with a very robust empirical foundation. So, we assume that investors 

assess stock portfolios relative to the total stock market by effectively showing short-

term evaluation horizons of one year, loss aversion and miscalibrated probability 

judgments (cf. recently Barberis, Huang and Thaler, 2006). 

Therefore, we employ cumulative prospective utility in the sense of Kahneman 

and Tversky (1979) and Tversky and Kahneman (1992) which has a value function v(·) 

 ( )
if x 0

v
( ) if x 0

α

β

 χ ≥
χ = 
−λ −χ <

 (4.1) 

where χ denotes a payoff, α and β are curvature parameters and λ is the coefficient of 

loss aversion. Tversky and Kahneman (1992) estimate α and β to be 0.88 yielding risk 

averse (risk seeking) behavior in the domain of gains (losses). They also estimate λ to 

be 2.25 which leads to the result that a loss causes a (more than) twofold reduction in 

the value of a return compared to the value increase for a gain of the same absolute size. 

Furthermore, under cumulative prospect utility investors also have miscalibrated 

probability judgments in the sense of an overweighting of very unlikely outcomes and 

on underweighting of highly probable outcomes. Tversky and Kahneman (1992) 
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employ the following parameterization for the perceived probability πi and outcome i 

which is adopted by Benartzi and Thaler (1995): 

 ( ) ( )*
i i iw P w Pπ = −  (4.2) 

where πi is the weighted probability of obtaining outcome i, Pi is the actual probability 

of outcome i and *Pi  is the probability of realizing an outcome as least as good as i. The 

weighting of probabilities is obtained via the following weighting function: 

 

( )( )
1

pw(p)
p 1 p

γ

γ γ γ

=
+ −

. (4.3) 

From (4.2) it can be seen that the perceived probability of event i does not only 

depend on that event’s probability but also on the probabilities of the other outcomes. 

The parameter γ in (4.3) is estimated to be 0.61 (0.69) for the domain of gains (losses). 

Assembling the pieces in (4.1)-(4.3), the cumulative prospect utility (henceforth CPT) 

of a gamble G, V(G), is computed in the standard way by summing over the probability 

weighted values, i.e.  

 ( )i i
i

V(G) v= π χ∑ . (4.4) 

In order to empirically calculate the CPT of a given portfolio it is necessary to 

calculate πi which in turn depends on the “true” probabilities Pi. Benartzi and Thaler 

(1995) obtain the Pi’s by bootstrapping and discretizing the return distribution which is 

also the method we employ here. For a given evaluation horizon n, e.g. n = 12 months 

for an annual horizon, one draws with replacement 1,000,000 n-months returns from the 

return history and ranks them in descending order. One hundred intervals of 10,000 n-

months returns (beginning with the highest returns) are formed and then the mean return 

for each interval is computed. This yields one hundred pairs of (χi, Pi) where Pi=1/100 

for all i. With these pairs in hand it is straightforward to compute the CPT in (4.4) for a 

desired return series and sample period. 

 

4.3.2  Portfolio performance under cumulative prospect utility 

 

The prospect utility of all 115 portfolios under consideration is not significantly 

different from the market portfolio’s utility, although many of these portfolios have 

significant excess returns compared to the aggregate market which cannot be easily 

explained by standard asset pricing models (cf. Cochrane, 2006). 



 81

In order to provide an easily accessible graphical presentation of the portfolio 

performances under consideration here, we compute CPT’s for all portfolios over 

rolling 60 months periods with a 12 months skipping. That means we compute the first 

CPT for portfolio k over the period January 1936 to December 1940, the second CPT 

for portfolio k over the period January 1937 to December 1941 and so on. This yields a 

total of 66 CPT’s for each of the 115 portfolios. Following Benartzi and Thaler (1995) 

we compare the CPT of a portfolio to a benchmark. Whereas they use the bond return as 

a natural benchmark for comparison with the aggregate stock market return, we rely on 

the latter as the benchmark for our portfolio returns. We do this, since for a typical 

investor the aggregate market seems to be the natural benchmark when evaluating the 

performance of a specific stock portfolio.34 Therefore, we also compute the CPT of the 

aggregate U.S. stock market return over the 66 five year samples and report the 

difference between a portfolio’s CPT and the market’s CPT in Figure 4.1. Shown are 

the median as well as 10 and 90 percent point of these CPT’s for each portfolio k. All 

calculations are CPI deflated. 

As can be seen from Figure 4.1, all portfolios have median (and mean, though not 

shown) CPT’s near zero. Although some (median) utilities are higher or lower than the 

utility from holding the market portfolio, the distribution of CPT’s around the median – 

as shown by the 90% confidence interval presented in these graphs – does not indicate 

that the utility from any portfolio is significantly different from that of the aggregate 

market: all portfolios fail to systematically yield positive utility compared to the 

aggregate real market returns over the last 70 years. 

We conclude that, assuming myopic loss aversion correctly describes the utility 

which investors receive from holding certain portfolios, the returns of various kinds of 

portfolios seem to be consistent with the notion of market equilibrium in such a kind of 

economy. 

 

4.3.3  Cross-sectional analysis for all portfolios: Fama-MacBeth regressions 

 

This section examines a core implication of the above analysis by showing that the 

risk of a portfolio as perceived by myopic and loss averse investors via prospective 

utility is a priced factor in the cross-section of returns. We find that prospective utility 

                                                 
34 Descriptive statistics for the market (excess) return can be found in Appendix 1. 
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robustly explains cross-sectional returns in the presence of other pricing factors and that 

its relative contribution is remarkable. 

In this section we run cross-sectional regressions of portfolio returns on risk 

factors (such as HML or SMB), portfolio characteristics (such as firm size) and on a 

pricing measure based on cumulative prospect theory. This CPT-based factor measures 

how much return a loss averse investor demands for holding a certain stock or portfolio 

with given risk characteristics. The construction of this measure proceeds as follows. 

We calculate the prospective utility given (as shown in (4.4)) for the real market return 

(call it VM). Then, for a given portfolio k we first demean the time series of returns to 

obtain a mean zero return series k
tr  and numerically solve for the return kθ  that makes 

the prospective utility of the return series equal to the prospective utility of the market 

portfolio. Thus we numerically solve for the kθ  that makes the left- and right-hand side 

of the following equation hold as close as possible 

 ( )k k M
tV r V+ θ = . (4.5) 

Since we are still employing (monthly overlapping) annual returns, kθ  directly 

gives the annual return that a myopic loss averse investor demands for holding portfolio 

k with all its other moments, e.g. variance, skewness, kurtosis, being unchanged. 

Therefore, portfolios with second or higher order return moments that are unfavorable 

for a loss averse investor – most importantly a large variance, negative skewness or high 

kurtosis – should demand a higher return kθ  and vice versa. We therefore expect to see 

cross-sectionally that at a given point in time, t, k
tθ  is a priced factor. 

Moreover, this required return (derived from prospective utility) has an intuitive 

meaning. A one percent increase in this factor should lead to a one percent increase in 

returns. Therefore, when cumulative prospect utility as calibrated by Tversky and 

Kahneman (1992) is the correct utility function for investors, we should find a one to 

one relation between our estimate of the factor kθ  and returns rk. 

For the Fama-MacBeth regressions we calculate the required return kθ for periods 

of 60 months that have an overlapping structure of twelve months. This means for 

example, that we estimate the required return for January 1936 to December 1940 to 

obtain an estimate of kθ for January 1940 to December 1940 and then shift the 

estimation window to January 1937 to December 1941 which yields the estimated 

return for January 1941 to December 1941 and so forth. Therefore, our sample 

effectively starts in January 1940. In the cross-sectional regressions we regress returns 
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on the estimated risk factor kθ and other factors from the earlier literature, e.g. HML, 

SMB or firm size.35 

Results from the regressions for all 115 portfolios jointly are shown in Table 4.2. 

The first specification (1) just includes the estimated required return as defined above 

( θ̂ ) and shows that the coefficient on θ̂  is significantly positive, albeit smaller than 

one.  

It is noteworthy, however, that this factor is powerful for pricing the large cross-

section of portfolios and that the estimated intercept is not significantly different from 

zero. Furthermore, following Lewellen, Nagel and Shanken (2006) we take serious the 

size of the estimated intercept. The value of 0.11% p.m. (see column (1) in Table 4.2) 

corresponds to a real risk-free rate of roughly 1.3% p.a. which seems to be a much more 

reasonable number than the implied risk-free rates from traditional asset pricing models 

(cf. Lewellen, Nagel and Shanken, 2006). 

The next columns (2) to (7) include further cross-sectional pricing factors in the 

Fama-MacBeth regressions as they were employed in earlier papers. Specifically, the 

second specification picks up the core ingredient of consumption based asset pricing 

models and thus adds log real consumption growth (cf. Cochrane, 2004). Interestingly, 

it does not enter significantly and does not change the general conclusion for the 

intercept and slope obtained from specification (1). Column (3) adds HML and SMB as 

the most prominent pricing factors in the literature. Again, the alpha from this 

regression is small and the coefficient on θ̂  is highly significant although HML enters 

significantly. For comparison, we also show results for the Fama-French (1996) three 

factor model in column (4). For this large cross-section of returns the estimated alpha is 

highly significant and much too large to represent a reasonable risk free rate (0.62 × 12 

≈ 7.4%) whereas the estimated risk premium on the beta factor is not significant and 

much too small, implying an annual equity risk premium of only 0.09 × 12 ≈ 1.1%. 

However, we know that this risk premium is above 6% p.a. from the early paper of 

Mehra and Prescott (1985) and the real annual market excess return is indeed about 7 % 

in our sample. 

Column (5) adds firm size which enters significantly negative as can be expected 

from earlier studies which show that the characteristic itself is priced although the 

                                                 
35 Descriptive statistics for the three Fama-French risk factors can be found in Appendix 1. 
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corresponding risk factor (here SMB) is included in the cross-sectional regression 

(Daniel and Titman, 1997).  

Finally, we add other measures of non-linear risk in column (6), namely downside 

and upside betas as well as coskewness and cokurtosis. This serves to investigate 

whether the use of our CPT risk premium θk is dominated by these variables that also 

proxy for non-linear risk. Downside betas ( β− ) and upside betas ( β+ ) are computed as 

in Ang, Chen and Xing (2006): 

 
( )
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where µm denotes the mean return. Intuitively, upside and downside betas measure how 

much covariation an asset has with the market in good and bad times. Therefore, 

portfolios with higher upside betas (downside betas) should command lower (higher) 

mean returns. 

Coskewness (coskew) and cokurtosis (cokurt) are computed as follows (see Ang, 

Chen and Xing, 2006): 
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Harvey and Siddique (2000) predict that lower coskewness should be associated with 

higher expected returns since portfolios that have low returns when the market realizes 

more extreme returns are riskier. Similarly, assets with higher cokurtosis (cf. Dittmar, 

2002) should show higher returns in order to compensate for the risk of obtaining 

unfavorable returns when market returns are negatively skewed.  

As can be seen from column 6 in Table 4.2, the down- and upside risk measures as 

well as the higher-order co-moments are not helpful in pricing this large cross-section of 

returns. This is different from the significant findings of Ang, Chen and Xing (2006) but 
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may be explained by the fact that we use portfolio returns and not individual stocks as 

in their study. Portfolio returns are different from individual stock returns, since 

portfolio characteristics are much more stable than characteristics of individual firms 

(cf. Cochrane, 2004).  

The last column in Table 4.2 shows results when we include the CPT-based factor 

and all other factors considered above jointly in the regressions. The CPT factor seems 

to dominate all other variables which is evident from the large t-statistic of more than 

six and which dwarfes the significance of all other variables. Therefore, it seems 

unlikely that risk, as perceived by myopically loss averse investors, is well proxied for 

by linear and non-linear pricing factors employed in earlier work. 

 

 4.3.4 Cross-sectional analysis for the different groups of portfolios 

 

Given the results in Table 4.2 it is natural to ask whether this approach is also 

helpful for pricing smaller cross-sections of portfolio returns. Therefore, we run Fama-

MacBeth regressions for each of the eight groups of portfolios separately, e.g. for the 

ten BE/ME portfolios etc. 

Results are shown in Table 4.3. For each group of portfolios we give results for 

the model where the market beta is replaced by the estimate of θk.(the CPT based 

model) and for the Fama-Fench three factor model. As is evident from the table, results 

for the coefficent θk are remarkably stable when employing each of these smaller cross-

sections. Moreover, estimated intercepts are insignificant and of economically sensible 

size for the CPT based model, which is not true for the pure Fama-French three factor 

model. 

This finding is especially comforting, since prospect theory is a general 

framework of decision making under risk which should give valid results no matter 

which particular set of portfolios one concentrates on.  

 

4.4 Robustness tests 

 

 4.4.1 Randomization of test assets and test periods 

 

As a first robustness check we randomize over the test assets used in the Fama-

MacBeth regressions, i.e. we run 5,000 Fama-MacBeth regressions with the premium 
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kθ , HML and SMB as explanatory variables where in each run only 60 portfolios are 

randomly selected (without replacement) as test assets. 

The first column of Table 4.4, Panel A, reports the mean of the 5,000 estimated 

coefficient vectors along with empirical 95% confidence intervals in curly brackets. As 

is evident from this exercise, the results shown in Table 4.2 are not sensitive to the 

specific choice of test assets used. The estimated α is still around 0.2 per month and 

insignificant while the CPT risk premium factor θk still is significantly priced with a 

mean coefficient of around 0.6 and tight confidence intervals. 
Secondly, we investigate whether the specific test periods used are critical to our 

results. Therefore, we run 5,000 repetitions of the Fama-MacBeth procedure with the 

same risk factors as above, where in each repetition we randomly select 396 out of the 

available 792 months as the test period (again, drawing is without replacement). The 

months selected need not be consecutive. Mean coefficient vectors and empirical 

confidence intervals can be found in the second column of Table 4.4, Panel A. The 

results are highly similar to the results obtained above so we conclude that the specific 

choice of test period does not seem to drive our results. 

Finally, column three of the same table and panel shows results when we jointly 

randomize over test assets and test periods as described above. Again, the results remain 

unchanged. 

 

 4.4.2 Randomization of explanatory variables 

 

As an alternative robustness check we test whether our results are spurious in the 

sense that the estimate of θk used in the Fama-MacBeth regressions has unfavorable 

statistical properties of some (unknown) form that accidentally generates the results 

documented above. 

Therefore, we proceed as follows. We randomly match each asset return series 

with the estimated factor risk premia (θk, HML, SMB) of another series (drawing with 

replacement), apply the Fama-MacBeth procedure, save the estimated coefficients and 

repeat this procedure 5,000 times. This procedure allows us to test, whether our 

coefficient estimates obtained from the original cross-sectional regressions are spurious. 

Table 4.4, Panel B gives the original coefficient estimates in the second column 

and the mean coefficient estimates from the bootstrap procedure in the third column. 

These show that our estimated slope coefficients are uniformly zero on average, i.e. 
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unbiased. The fourth and fifth column of the same Panel B shows the standard deviation 

of estimated slope coefficients and bootstrap t-test statistics, respectively. It can be seen, 

that the coefficient on the CPT risk premium is significantly different from zero and that 

HML also adds some statistically significant explanatory power. 

 

4.5 Conclusions 

 

Prospect theory is an established and empirically robust positive theory of 

decisions under risk (Kahneman and Tversky, 1979). We follow the method introduced 

by Benartzi and Thaler (1995) to apply prospect theory in order to investigate the cross-

section of U.S. stock returns. We find that myopic loss aversion helps to explain the 

returns of a large universe of portfolios to a degree that could make it an interesting 

ingredient for asset pricing models in general. 

Indeed, under the prospect-theoretical metric, portfolios’ return distributions 

deliver near zero utility when compared to the market portfolio and the perceived 

riskiness of return distributions under myopic loss aversion is a systematically priced 

factor in the cross-section of returns that tends to dominate other popular measures of 

risk. Furthermore, the inclusion of this perceived risk for a myopic loss averse investor 

yields empirically plausible estimates of the real risk-free rate, a point recently 

reinforced by Lewellen, Nagel and Shanken (2006). 

The approach chosen here is not derived from a formal theoretical model but relies 

on an empirically well established positive theory of decision making under risk. Some 

earlier successful applications – in particular Benartzi and Thaler (1995) – suggest that 

myopic loss aversion may be helpful in explaining another big open question, namely 

the cross-sectional pricing of U.S. stock returns. Findings are quite supportive to this 

approach and may stimulate further research to better integrate myopic loss aversion 

into a more general understanding of asset prices. 
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Table 4.1 Descriptive statistics 
This table shows the mean, standard deviation (std), skewness (skew) and kurtosis 
(kurt) for monthly portfolio returns used in the empirical analysis. The sample is 
January 1936 to December 2005 
 

 mean std skew kurt  mean std skew kurt 
BE/ME     FF25     

Low 0.87 5.03 -0.24 5.20 Small - Low 0.72 9.14 0.36 7.14 
2 0.96 4.83 -0.42 6.31 2 1.16 7.76 0.37 9.01 
3 0.96 4.73 -0.47 6.67 3 1.33 7.18 0.87 15.15 
4 0.96 4.74 -0.35 7.04 4 1.49 6.48 0.28 10.77 
5 1.10 4.40 -0.47 6.45 Small - High 1.67 7.52 1.77 27.12 
6 1.14 4.62 -0.54 6.51 2 - Low 0.94 7.39 0.18 8.00 
7 1.14 4.93 0.07 8.09 2 1.20 6.29 -0.07 8.32 
8 1.29 4.98 -0.21 7.32 3 1.32 5.69 -0.21 7.83 
9 1.32 5.80 0.41 12.86 4 1.40 5.81 -0.21 8.08 

High 1.41 7.23 0.70 17.85 2 - High 1.56 6.84 0.21 10.53 
D/P     3 - Low 0.95 6.49 -0.24 5.78 
Low 0.98 5.70 -0.36 5.60 2 1.20 5.62 -0.47 7.00 

2 0.97 5.06 -0.35 5.89 3 1.24 5.37 -0.39 7.92 
3 0.97 4.86 -0.27 6.94 4 1.34 5.22 -0.25 6.53 
4 1.03 4.52 -0.39 5.22 3 - High 1.48 6.48 0.07 9.24 
5 0.95 4.45 -0.36 6.13 4 - Low 0.99 5.68 -0.29 5.34 
6 1.01 4.45 -0.35 5.58 2 1.01 5.22 -0.50 7.22 
7 1.08 4.45 -0.43 5.30 3 1.25 5.09 -0.58 6.72 
8 1.18 4.55 -0.28 6.89 4 1.27 5.32 -0.16 7.21 
9 1.16 4.43 -0.25 5.70 4 - High 1.43 6.59 0.22 9.98 

High 1.07 4.71 0.23 9.59 Big - Low 0.90 4.75 -0.27 5.73 
ME     2 0.93 4.55 -0.32 6.47 
Low 1.42 8.10 2.05 26.39 3 1.06 4.32 -0.37 6.10 

2 1.28 7.07 0.57 12.95 4 1.11 4.88 0.05 7.80 
3 1.26 6.34 -0.22 6.94 Big - High 1.17 6.18 0.49 13.95 
4 1.24 6.11 -0.12 7.80      
5 1.22 5.84 -0.36 7.15      
6 1.16 5.51 -0.39 6.67      
7 1.17 5.43 -0.39 7.34      
8 1.09 5.11 -0.46 5.87      
9 1.05 4.78 -0.37 6.33      

High 0.91 4.32 -0.40 6.20      
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Table 4.1 (continued) 

 

 mean std skew kurt   mean std skew kurt 
Prior 1-0      30 Industries     

Low 1.40 7.03 0.29 8.06  Autos 1.01 6.33 -0.08 5.66 
2 1.39 5.93 0.66 10.14  Beer 1.16 5.77 0.12 6.82 
3 1.32 5.20 0.27 8.68  Books 1.02 6.01 -0.23 6.31 
4 1.09 4.98 0.05 7.88  BusEq 1.11 6.37 -0.29 5.19 
5 1.05 4.83 0.27 10.49  Carry 1.17 6.78 0.17 7.54 
6 1.03 4.62 -0.21 7.26  Chems 0.94 5.23 0.01 6.03 
7 0.90 4.55 -0.39 7.11  Clths 1.11 6.31 -0.09 6.05 
8 0.91 4.59 -0.65 5.75  Cnstr 1.02 5.93 -0.12 7.51 
9 0.67 4.81 -0.77 6.59  Coal 1.45 8.67 1.32 12.12

High 0.53 5.72 -0.31 7.15  ElcEq 1.16 6.19 -0.15 5.25 
Prior 12-2      FabPr 1.01 5.96 -0.13 6.82 

Low 0.32 7.48 0.56 9.26  Fin 1.10 5.22 -0.33 5.92 
2 0.74 6.16 0.46 11.82  Food 1.02 4.28 -0.19 6.08 
3 0.84 5.37 0.47 11.92  Games 1.17 7.05 -0.27 5.59 
4 0.91 4.99 0.24 11.02  Hlth 1.12 5.01 0.00 5.14 
5 0.88 4.79 0.20 12.82  Hshld 1.00 4.76 -0.37 5.12 
6 0.98 4.84 -0.19 9.83  Meals 1.24 6.49 -0.26 5.00 
7 1.06 4.72 -0.28 7.96  Mines 0.93 6.38 -0.04 5.39 
8 1.18 4.73 -0.33 6.45  Oil 1.15 5.37 0.02 5.46 
9 1.26 5.08 -0.68 6.08  Other 0.80 5.80 -0.36 6.28 

High 1.62 6.15 -0.55 5.18  Paper 1.02 5.16 -0.19 5.78 
Prior 60-13      Rtail 1.07 5.33 -0.24 5.66 

Low 1.33 6.88 0.59 7.89  Servs 1.17 7.04 -0.11 5.76 
2 1.17 5.36 -0.05 8.21  Smoke 1.15 5.71 -0.05 5.92 
3 1.18 4.96 -0.27 7.86  Steel 0.95 7.03 0.23 7.33 
4 1.02 4.49 -0.47 6.63  Telcm 0.83 4.21 -0.13 5.20 
5 1.05 4.51 -0.53 7.01  Trans 1.00 6.11 0.00 7.39 
6 1.01 4.41 -0.65 6.79  Txtls 1.03 6.47 -0.26 6.53 
7 1.05 4.67 -0.28 7.24  Util 0.89 4.46 0.01 5.60 
8 1.00 4.87 -0.21 8.12  Whlsl 1.06 5.93 -0.36 6.33 
9 0.97 5.19 -0.23 7.86       

High 0.93 6.00 -0.39 5.84       
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Figure 4.1 Prospective utilities of all 115 portfolios in excess of the aggregate 
market 
Simulated cumulative prospective utilities for the 115 portfolios under consideration 
minus the cumulative prospective utility of the market return. The middle line shows the 
median, the upper and lower line shows the simulated 90% confidence interval. 
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Table 4.2 Fama-MacBeth regressions for all portfolios  
Results from Fama-MacBeth two-step regressions for the whole sample period January 
1940 to December 2005 and for all 115 portfolios. T-statistics are in brackets. 

 

 

 

 

 (1) (2) (3) (4) (5) (6) (7) 

Const. 0.11 
[0.59] 

0.13
[0.58]

0.19
[1.14]

0.62
[4.39]

0.21
[1.24]

0.83 
[5.05] 

0.14
[0.68]

θ̂  
0.61 

[3.61] 
0.41

[2.31]
0.66

[5.09]
0.66

[5.14]  0.86
[6.30]

log ∆c  0.03
[0.39]  

Beta  0.09
[0.46]  

HML  0.22
[2.01]

0.26
[2.24]

0.22
[1.98]

0.19 
[1.65] 

0.18
[1.58]

SMB  0.01
[0.06]

0.14
[1.18]

-0.01
[-0.13]

0.12 
[1.10] 

-0.00
[-0.05]

firm size  -0.29
[-2.57]  -0.26

[-2.99]
Downside 
beta  0.06 

[0.26] 
-0.36

[-1.87]

Upside beta  -0.08 
[-0.40] 

-0.22
[-1.24]

Coskewness  0.17 
[0.24] 

0.11
[0.17]

Cokurtosis  0.02 
[0.12] 

0.18
[1.34]

R2 0.08 0.15 0.29 0.32 0.29 0.37 0.41
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Table 4.3 Fama-MacBeth regressions for different portfolio groups 
Results from Fama-MacBeth two-step regressions for the whole sample period January 
1940 to December 2005 and for different subsets from the universe of all portfolios. T-
statistics are in brackets. 

 

 

 

 

 Const. θ̂  Beta HML SMB R2 

0.18 
[0.84] 

0.62
[2.83]

0.34
[2.68]

-0.08 
[-0.32] 0.34

10 BE/ME 
0.40 

[1.36] 
0.29

[0.86]
0.38

[3.01]
-0.01 

[-0.05] 0.36

0.07 
[0.20] 

0.62
[2.60]

0.45
[3.05]

-0.11 
[-0.45] 

0.31
10 D/P 

0.46 
[1.75] 

0.03
[0.82]

0.30
[1.84]

0.01 
[0.02] 0.34

-0.01 
[-0.02] 

0.76
[2.50]

-0.21
[-0.99]

0.01 
[0.10] 

0.53
10 ME 

0.46 
[1.44] 

0.24
[0.71]

0.03
[0.16]

0.22 
[1.79] 0.55

0.19 
[0.91] 

0.54
[2.99]

0.32
[2.81]

-0.01 
[-0.13] 

0.43
25 FF 

1.06 
[5.89] 

-0.36
[-1.70]

0.48
[3.85]

0.13 
[1.09] 0.45

0.27 
[0.97] 

0.88
[2.94]

0.03
[0.11]

0.13 
[0.59] 

0.27
10 Prior 1-0 

0.05 
[0.15] 

0.61
[1.67]

-0.01
[-0.04]

-0.02 
[-0.09] 0.28

0.33 
[1.28] 

0.55
[2.06]

-0.57
[-2.26]

-0.62 
[-2.74] 

0.38
10 Prior 12-2 

1.20 
[3.31] 

-0.46
[-1.14]

-0.54
[-2.36]

-0.36 
[-1.60] 0.43

0.15 
[0.63] 

0.76
[3.26]

0.33
[1.79]

-0.18 
[-0.99] 

0.36
10 Prior 60-13 

0.78 
[2.82] 

-0.05
[-0.16]

0.12
[0.70]

-0.04 
[-0.22] 0.37

0.04 
[0.22] 

0.75
[4.76]

0.06
[0.46]

-0.07 
[-0.52] 

0.20
 
30 Industries 0.56 

[3.13] 
0.15

[0.65]
0.15

[1.12]
0.11 

[0.78] 0.24
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Table 4.4 Robustness checks 
Panel A shows results from Fama-MacBeth regressions when the test assets and/or test 
periods are randomized. 95% confidence intervals are in curly brackets. Panel B shows 
results from a bootstrap analysis where portfolio returns are matched randomly with risk 
factors. 
 

Panel A: Randomization of Test Assets and Test Periods 

 Random 
portfolios 

Random 
periods 

Random  
portfolios and periods 

Const. 0.20 
{0.08 ; 0.32} 

0.17 
{-0.17 ; 0.51} 

0.20 
{-0.17 ; 0.59} 

θ̂  
0.58 

{0.45 ; 0.72} 
0.63 

{0.40 ; 0.84} 
0.58 

{0.30 ; 0.87} 

HML 0.20 
{0.12 ; 0.28} 

0.24 
{0.02 ; 0.45} 

0.20 
{-0.03 ; 0.44} 

SMB 0.07 
{-0.04 ; 0.18} 

0.07 
{-0.16 ; 0.28} 

0.07 
{-0.19 ; 0.33} 

R2 0.31 
{0.28 ; 0.33} 

0.30 
{0.28 ; 0.31} 

0.31 
{0.28 ; 0.34} 

 

 

Panel B: Bootstrap Analysis 

 
β̂  β̂  ( )ˆσ β  ( ) ( )ˆ ˆ ˆβ β σ β−  

θ̂  0.66 0.00 0.07 9.43 

HML 0.22 -0.00 0.06 3.67 

SMB 0.01 0.00 0.05 0.21 

R2 0.29 0.00 0.01  
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Appendix Descriptive statistics for the Fama-French risk factors 
Descriptive statistics for the three Fama-French risk factors, namely the monthly mean, 
standard deviation (std), skewness (skew) and kurtosis (kurt). MKTRF denotes the market 
excess return (over the risk-free rate). 
 

 

 MKTRF HML SMB 

Mean 0.64 0.45 0.21 

Std 4.55 2.93 2.98 

Skew -0.53 0.74 0.76 

Kurt 6.28 8.95 9.63 
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Chapter 5: 

Does professionalism consistently affect portfolio biases?* 
 
 

5.1 Introduction 

 

Participants in financial markets often show biased behavior that reduces their 

performance (e.g. Barber and Odean, 2000). It may be less expected that not only unso-

phisticated participants but also professionals are plagued by “biased” behavior as dem-

onstrated by excessive turnover (Dow and Gorton, 1997), home bias (Shiller et al., 

1996) and loss aversion (Coval and Shumway, 2005). Professionals’ deficits can be-

come so severe that their decisions are even inferior to those of laymen (e.g. Dennis and 

Strickland, 2002, Glaser et al., 2005, Haigh and List, 2005).36 

                                                           
* This chapter is based on a paper with the same title co-authored with Lukas Menkhoff (Leib-
niz Universität Hannover) and Ulrich Schmidt (University of Kiel). 
36 The list of professionals’ biases includes also herding (Sias, 2004), momentum trading (Grin-
blatt et al., 1995) and overconfidence (Glaser and Weber, 2007). They may even represent noise 
traders in the market (Dasgupta et al., 2006). 

However, professionalism has also proved to be a performance-enhancing factor 

(e.g. List, 2003, Locke and Mann, 2005, Alevy et al., 2007). Clearly, professionalism is 

an important determinant of behavior but whether it has a consistent positive impact on 

decision making in financial markets is not fully clear yet. Accordingly, we provide a 

new kind of evidence by measuring professionalism in three dimensions and examining 

the effect of professionalism on three portfolio biases in a broad cross-sectional study. 

To obtain the necessary data, a survey of about 500 investors has been conducted, cov-

ering institutional and individual investors in a uniform way. 

The blurry evidence about the impact of professionalism provides a strong chal-

lenge to economic reasoning. Markets require rational, i.e. here unbiased, behavior to be 

efficient. Unbiased behavior is also a crucial element in the increasingly popular models 

with heterogeneous agents (e.g. De Long et al., 1990). These models assume that one 

group in the market behaves according to conventional capital market theory, i.e. relies 

on fundamental information and rational decision-making. This group is usually thought 
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to be made up by professionals whereas laymen, such as individual investors, are typi-

cally assumed to belong to the group of noise traders (De Bondt, 1998, Kaniel et al., 

2005). If empirical research could not identify significant differences regarding portfo-

lio biases of these two groups this would pose a clear disappointment for models with 

heterogeneous agents, for the efficient market hypothesis and for the practice of invest-

ment management. 

Our study differs from earlier research on the impact of professionalism on inves-

tor behavior and portfolio biases due to its empirical design. We conduct a survey study 

with almost 500 respondents which makes four contributions: 

A first contribution is measuring “professionalism” in a deepened way. We com-

plement the usual distinction between institutional and individual investors37 by a third, 

intermediate group, i.e. investment advisors. 38 Moreover, we extend this occupation 

measure of professionalism by two more dimensions, i.e. experience and knowledge. 

The impact of experience has been analyzed within groups, such as Feng and Seasholes 

(2005) or Dorn and Huberman (2005) on individual investors and Greenwood and Na-

gel (2007) or Menkhoff et al. (2006) on institutional investors.39 The measure of knowl-

edge has been almost neglected with the exception of Dorn and Huberman (2005) and 

can hardly be identified without using a survey. 

Second, we address the concern voiced that evidence in behavioral finance often 

seems eclectic (e.g. Shiller, 1999). Accordingly, we examine the impact of professional-

ism – in its three dimensions and considering controls – on three portfolio biases which 

can be seen as stylized facts of financial markets, i.e. portfolio churning, home bias and 

reluctance to loss realization.40 Further candidates that have been suggested to help our 

understanding of several behavioral distortions include the wealth of investors (Vissing-
                                                           
37 These studies include Shiller and Pound, 1989, who show that institutional investors rely 
more on fundamental information; Grinblatt and Keloharju, 2000, Barber and Odean, 2007, 
reveal superior performance of institutional investors; Shapira and Venezia, 2001, find a weaker 
disposition effect for institutional investors; Cohen et al., 2002, find a more rational response of 
institutions towards News; see also Glaser et al., 2005, Haigh and List, 2005, introduced above. 
38 Investment advisors are professional in the sense that they work for a financial institution and 
that they give advice to customers. However, they seem to be less professional on average than 
institutional investors because of their job profile: their customers are less qualified in financial 
terms, they have to deal with more clients, they do not have access to first hand information (but 
get financial information from the bank’s headquarter) and they earn usually a lower salary than 
institutional investors. 
39 An important role of experience has been found in other settings too, such as the field study of 
List (2003) and the experiment of Loomes et al. (2003). 
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Jørgensen, 2003), their perceived competence (Graham et al., 2005), their risk aversion 

(Dorn and Huberman, 2005) or their experience (Menkhoff et al., 2006). These studies, 

however, rely on information from either individual or institutional investors and ac-

cordingly do not focus on the impact of professionalism. 

A third contribution is extracting information about the impact of professionalism 

which is undistorted by other determinants of investment decisions, such as different 

incentives or transaction costs. We know that institutional investors have higher turn-

over than individual investors (e.g. Carhart, 1997), we know that institutional investors 

invest less at home (Grinblatt and Keloharju, 2001) and that they sell assets easier con-

ditional on capital losses (Grinblatt and Keloharju, 2001a). However, these studies 

compare institutionals’ job behavior with individuals’ private behavior. Despite their 

appeal in relying on “hard” trading figures, this kind of studies faces the disadvantage 

that institutional investors’ decisions are known to be determined by transaction costs 

and incentives in addition to professionalism.41 Thus, higher turnover or less home bias 

may be the outcome of lower transaction costs, high turnover may be due to portfolio 

churning (Dow and Gorton, 1997) and willingness to sell may be driven by “window 

dressing” as well (Lakonishok et al., 1991). 

As fourth contribution to the literature, the survey allows to consider the most im-

portant determinants being identified before as controls. Some of these variables cannot 

be compiled at all without conducting a survey.42 We discuss the impact of these vari-

ables, such as age, the degree of education, the seniority of position reached, when we 

explain portfolio biases (section 5.3). 

Our study provides three main findings: first, we establish that professionalism – 

in each of its three dimensions – is a statistically significant and economically meaning-

ful characteristic of investors that unambiguously reduces the three portfolio biases con-

sidered here. This suggests that professionalism may be one of the underlying factors 

helping to better structure behavioral finance findings. Second, the novel joint analysis 

of three measures of professionalism shows that they are not necessarily correlated to 
                                                                                                                                                                          
40 There is clear evidence that these biases reduce performance as e.g. Barber and Odean (2000) 
show for high turnover, Lewis (1999) demonstrates for home bias and Odean (1998) proves for 
reluctance to loss aversion. 
41 This is of course no argument against the analysis of (institutional investors’) trading data but 
in favor of using survey data as complementary evidence. 
42 Accordingly, questionnaire surveys have become a standard research tool when information is 
required that cannot be drawn from other sources (see e.g. Blinder, 2000, on central banks’ 
views about credibility, surveys on investors’ beliefs as for example Shiller and Pound, 1989, or 
surveys on investors’ price expectations, such as Frankel and Froot, 1987). 
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each other. Thus professionalism has different dimensions; interestingly, investment 

advisors – although professional in a sense – do not behave similar to the most profes-

sional institutional investors. This emphasizes that the empirical measures of profes-

sionalism deserve careful attention. Third, the survey approach reveals – possibly for 

the first time – investment behavior of professionals in their private domain. This gen-

erates the insight that institutional investors trade less than individual investors in their 

private accounts, although their turnover is higher when taking their behavior in the job. 

Accordingly, surveys provide useful complementary evidence in identifying the impact 

of professionalism. 

The chapter proceeds in the following way. Section 5.2 gives information on the 

data generated, including a discussion of reliability and representativeness. The core of 

the analysis is laid out in section 5.3, where we perform regression analyses to learn 

about the impact of professionalism on portfolio churning, home bias and reluctance to 

loss realization. Conclusions are presented in section 5.4. 

 

5.2 Data 

 

This section shows that the data set is useful to serve our research purpose. The 

data are by and large reliable (section 5.2.1) and they are representative for relevant 

investor groups (section 5.2.2). We find portfolio biases in the data (section 5.2.3), re-

late our three measures of professionalism to each other (section 5.2.4) and describe 

participants’ behavior and beliefs (section 5.2.5). 

 

5.2.1 Data compilation 

 

The data employed here have been compiled to examine our research questions. 

Data come from an online survey of German investors conducted from 4th to 11th No-

vember 2004 in cooperation with sentix®. 

The latter is a large German online platform where registered individual and insti-

tutional investors give their expectations concerning relevant financial and economic 

indicators and asset prices on a weekly basis. As a reward for their participation, users 

can view results of the surveys and market analyses based on these surveys provided by 

the operators of sentix. Thus, sentix users do not represent average but highly commit-
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ted individual investors.43 Moreover, due to their commitment, we expect investors to 

understand the questionnaire well and to respond carefully. We used this platform to 

distribute our own survey questionnaire and received a total of 497 responses during the 

above-mentioned week in November 2004. The absolute response is thus in the same 

dimension as the number of active participants during the first two weeks in November 

2004 (475 and 509 respondents respectively). 

Since the survey is anonymous we asked participants to indicate whether they are 

individual investors, investment advisors or institutional investors. Our 497 responses 

are made up of 75 institutional investors, 78 investment advisors and 344 individual 

investors. This self-indication of respondents can be cross-checked with the database of 

sentix®, which contains information about the affiliation of investors with professional 

financial institutions such as banks, asset managers, or insurance companies; so we can 

be sure that participants did not indicate themselves as professionals although they are 

not. 

Often-voiced concerns regarding survey data are that participants do not fully un-

derstand all questions, that they answer strategically or that they randomly answer with-

out thinking about the questions. However, none of these objections seems to be a prob-

lem in this online survey. First, we conducted a pretest to ensure understandable word-

ing and relevant questions. Nevertheless, investors did not have to answer all questions 

if they did not like to or if they did not understand the questions. Second, since the 

questionnaire was anonymous and announced to be used for academic purposes only, 

there does not seem to be an incentive for strategic answering. Strategies aiming for a 

distortion of the overall level of answers were useless ex ante due to the large number of 

participants addressed; this disincentive has proved to be credible because of the many 

responses realized. Third, since participants in our survey are registered users of sentix® 

and take part in the weekly questionnaire voluntarily, it can be expected that they are 

highly interested in financial market research and have an intrinsic motivation to answer 

correctly. 

Overall, the data seem to be as reliable as can be expected for a survey question-

naire. Further insights can be gained from analyzing participants attributes. 

 

                                                           
43 The online survey among registered users is anonymous and voluntary. Registration is neces-
sary to ensure prudent behavior at the platform and is not restricted otherwise. More details can 
be inferred via www.sentix.de. 
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5.2.2 Participants’ objective attributes 

 

This section shows objective attributes of participants, such as age, education etc., 

which allows comparisons with other data sets describing investors. We find that our 

sample is by and large representative for our target investor groups. 

The average investor of our survey is about 40 years old, has roughly 12 years of 

investment experience, has earned a university degree, is male, occupies a senior posi-

tion, privately invests a securities volume of about 250 thousand Euros and holds an 

equity share of 40%. Therefore, we have a sample of well-qualified investors (details 

are provided in Appendix 1).44 

Investor groups differ in some characteristics to a statistically significant degree. 

Individual investors are older than the two other groups, have the shortest investment 

experience (despite their highest age) and occupy most senior positions on average 

(possibly reflecting their higher age). Investment advisors’ experience is different from 

institutional investors as there are more persons with shorter experience as well as more 

persons with very long experience. Finally, institutional investors are most wealthy – 

indicated by the investors’ private portfolio volume – as about a quarter of them own a 

portfolio of more than one million Euros (significant at the 10% level).45 

Many of these attributes have been compiled in earlier survey studies on institu-

tional investors in Germany and show that our sample is similar to them (see Menkhoff 

et al., 2006 and sources therein). Regarding individual investors, demographic informa-

tion about survey respondents from a June 2000 survey of a German online broker’s 

clients (Dorn and Huberman, 2005) matches our data quite well; data is also similar to 

the UBS/Gallup participants studied by Graham et al. (2005). When we compare our 

individual investors, however, with the total investor population in Germany, it be-

comes obvious that our sample is distorted towards more qualified individual investors 

(see data in Dorn and Huberman, 2005). 

In summary, our sample of investors in Germany is quite representative of institu-

tional investors but reflects characteristics of highly-qualified individual investors. 

                                                           
44 We also use these personal characteristics as control variables because they are related to 
investment behavior (e.g. Agnew et al., 2003, Vissing-Jørgensen, 2003, Graham et al., 2005, 
Menkhoff et al., 2006, Karlsson and Nordén, 2007). 
45 Unfortunately, the low variance of “gender” in our sample does not allow us to include this 
item in any regression. 
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Thus, the difference between groups is narrower than in the full population which 

heightens the stakes to find any effect by professionalism on investment behavior. 

 

5.2.3 Participants’ portfolio biases 

 

In addition to participants’ objective attributes – covered in section 5.2.2 – we 

make use of the survey instrument to learn more about investors in the following sec-

tions. We do indeed find portfolio biases, i.e. too high portfolio turnover, too much 

home investment and too strong reluctance to loss realization. 

The exact questions on portfolio turnover, domestic investment share and reluc-

tance to loss realizations are summarized – as are all further survey questions and state-

ments – in Table 5.1. For our measure of portfolio churning we relate portfolio turnover 

to portfolio volume (see item 1 in Table 5.1). Participants had to choose between four 

categories, where long-term buy and hold investors would select category 1 or possibly 

2, whereas investors with a clear tendency towards portfolio churning would fall into 

categories 3 and 4 accordingly. Figure 5.1 gives the frequency distribution, showing 

that only about 10% of investors belong to the category with very low turnover and 

another 30% to the next category. 60% of our investors, however, have a turnover rate 

of more than 25%, 40% are even above 50%. Figures for the groups of investors, i.e. 

institutional investors, investment advisors and individual investors show that 30%, 

40% and 43% respectively have an annual turnover of more than 50%. Assuming a 

rather conservative midpoint of 75% for the highest turnover category, the mean turn-

over rates for these three investor groups are roughly 38%, 44% and 45%.46 

We will use these four categories of increasingly higher turnover as our measure 

of portfolio churning. We are aware that this is an imprecise measure because there may 

be very different motivations for transactions, such as pure liquidity motives or private 

information. However, the same criticism would also apply to a statistical figure being 

derived from bank accounts and is thus a price that has to be paid when analyzing turn-

over. 

                                                           
46 A typical turnover figure for institutional investors is about 70 to 80% (e.g. Carhart, 1997). 
Turnover figures for individual investors seem to depend on investor and portfolio type. For 
example, investors with an online broker show very high turnover, such as roughly 75% p.a. 
(Barber and Odean, 2000, p.775) for a US case, contrasted by the figure from US single 401(k) 
pension investments with turnover of 16% (Agnew et al., 2003, p.194). 
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To measure our second portfolio bias of interest, i.e. home bias, we ask partici-

pants to allocate an amount of 10,000 € to five world regions (see item 2 in Table 5.1). 

The share being invested in Germany, i.e. in the domestic country, is the figure of inter-

est.47 Figure 5.2 gives the frequency distribution of preferred domestic investment 

share. One can directly infer that only about 4% of these investors prefer a German in-

vestment share of up to 5% and less than 8% would invest up to 10% in Germany. The 

remaining 92% would thus invest 10% and more of their portfolio in the domestic coun-

try. The mean value of home investment is 29.6% and the median is still 20%.48 The 

figures for the groups of institutional investors, investment advisors and individual in-

vestors are 19.2 (17.5), 31.8 (25.0) and 31.5 (20.0) for the mean (median) respectively. 

This preference contrasts with Germany's share in world stock market capitaliza-

tion of 3-5% only, depending on the type of securities considered. So, investment shares 

of 10% and more, as they characterize the preferences of about 90% of investors, can be 

qualified as home bias. Accordingly, we simply take the share being invested in Ger-

many – grouped into six categories – as the degree of home bias.49 

Finally, to measure our third portfolio bias, i.e. the reluctance to loss realization, 

we take the degree of approval to the statement that investors usually wait for a price 

recovery instead of selling those securities in case of loss positions (see item 3 in Table 

5.1). Participants could answer with one of six categories, ranging from complete ap-

proval to complete disapproval. In theory, there is no reason to wait for a price recovery 

which is simply an orientation on past prices. In reality, however, the frequency distri-

bution of answers in Figure 5.3 shows that investors say to behave reluctantly to realize 

losses: 30% of the respondents rather agree with the statement and less than 25% com-

pletely disapprove. The figure also directly visualizes the difference between investor 

                                                           
47 This measure of preferred home investment is thus undistorted by any regulatory require-
ments that effectively limit for example pension funds to invest abroad. 
48 When one analyzes the share of home investment in absolute terms, the mean value of 30% 
seems rather low compared to earlier measures given in the literature (Lewis, 1999, Flavin and 
Wickens, 2006, Lütje and Menkhoff, 2007). A reason may be that our sample is biased towards 
more sophisticated investors as indicators of education, experience, equity share and volume 
reveal. 
49 Two qualifications have to be made here: First, Germany's share in bond markets is higher at 
about up to 7%. So, Germany's total share in world market capitalization may be up to 5%. Sec-
ond, all investors who allocate 3-5% to Germany do not show any home bias. These qualifica-
tions are considered in our analysis, however, as we categorize the degree of home bias into six 
groups, starting with all investors in the same group who allocate less than 10% to the German 
market. 
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groups: whereas 40% of individual investors and even 43% of investment advisors 

rather agree with the statement, only 28% of institutional investors do so. 

 

5.2.4 Three measures of professionalism 

 

This section introduces our third measure of professionalism, which is related to 

the two other measures (see section 5.2.2) but not the same. Nevertheless, all three 

measures of professionalism are inversely related to both portfolio biases. 

Whereas the competent occupation of investors and their investment experience 

do not need further elaboration as measures of professionalism, our third measure does. 

The fourth item in Table 5.2 introduces this knowledge-based measure of professional-

ism. The question in this respect asks investors to give a 90%-interval within which 

they expect the DAX to fall over the next one-month period. Experts should give a more 

precise response. In particular, they should be aware that volatility can be predicted to 

some degree. Therefore, the degree of knowledge being incorporated in the answers can 

be identified by comparing the forecast given with the forecast generated by a standard 

GARCH (1,1) model. Thus, the variable “worse variance forecast” measures the abso-

lute deviation of the investor's forecast from the model-generated forecast (as a percent-

age share and adjusted for the DAX point forecast), i.e. it captures investors' absolute 

variance forecast “errors” (Table 5.2, item 4). Therefore a higher value of this spread 

measures too large or too low interval forecasts and thus indicates poor market knowl-

edge. 

Interestingly, the knowledge measure of professionalism is not related to profes-

sional occupation in a statistically significant manner and thus provides a new aspect of 

professionalism (see Table 5.2). More knowledgeable investors, however, tend to be 

more experienced (at a 6% level of significance only). Finally, institutional investors 

are more experienced than others. So the “worse variance variable” measures a different 

dimension of professionalism than the two other measures do. These other measures, 

occupation and experience, are closely related but not identical. Accordingly, these 

measures of professionalism will not necessarily have the same relation to further vari-

ables. 

As we are interested in three portfolio biases, we examine – as a first approxima-

tion – correlations of professionalism measures with these biases. Table 5.2 shows that 

the biases are not significantly correlated to each other. Furthermore, the nine coeffi-
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cients of correlation between three biases and three professionalism measures are not all 

statistically significant: occupation and experience seem to work unanimously against 

all three biases; knowledge does so against home bias only, whereas its relation to port-

folio churning and reluctance to realize losses has the “correct” sign but fails to be sig-

nificant. 

We have thus gained a first insight into the relations of interest, which will be 

tested more appropriately in a regression approach in section 5.3. This requires a more 

complete set of possibly relevant determinants of portfolio biases, which is discussed 

next. 

 

5.2.5 Participants’ beliefs 

 

Portfolio biases may be influenced by further determinants which we introduce in 

three groups. 

To control the importance of professionalism in explaining portfolio biases, three 

variables are included which are related to decision making in financial markets (see 

Table 5.1, items 5 - 7). First, the general attitude regarding risk aversion in professional 

investment decisions is asked for (see Dorn and Huberman, 2005). Second, it has been 

shown that institutional investors are less affected by the detrimental disposition effect 

than individual investors (Shapira and Venezia, 2001). Including a variable capturing 

the disposition effect (see Shefrin and Statman, 1985, Weber and Camerer, 1998) thus 

allows disentangling the effect of a behavioral distortion from a pure professional ef-

fect. Third, a long-term forecasting horizon when making investment decisions may 

influence behavior and is thus elicited (Klos et al., 2005). Investors in our survey clas-

sify themselves as being somewhat less risk averse than the hypothetical average inves-

tor (detailed responses are documented in Appendix 2). Their self-classification to-

wards a possible disposition effect is well-balanced within the range of possible an-

swers, with institutional investors having a lower degree than individual investors. Fi-

nally, forecasting horizon in investment decisions is distributed around “2-6 months” as 

the median and modus; individual investors have the relatively shortest horizon. 

The following two items 8 and 9 in Table 5.1 address the issue of appropriate self-

evaluation which is important as overconfidence reduces performance (Barber and 

Odean, 2000). As expected from earlier studies, almost all investors in our sample think 

of themselves as having better performance and information than other investors. We 



 105

understand the relative performance question (item 8) as a conventional “better-than-

average” measure of overconfidence (Glaser and Weber, 2007). Somewhat different 

from this, the question on a relative level of information (item 9) also captures per-

ceived knowledge. The perception of being more knowledgeable is a core element of 

the Graham et al. (2005, p. 9) understanding of competence. As a cautious warning, we 

notice the benchmark of self-evaluation, which is here defined as “other investors”. It 

may well be that our sample is not so much overconfident but indeed superior to other 

investors. This applies in particular to the significant differences between more confi-

dent institutional and less confident individual investors, whereas the high self-

evaluation of investment advisors is more surprising. 

The last two items 10 and 11, local information advantage and return optimism, 

are relevant as determinants of home bias only (see French and Poterba, 1991). Obvi-

ously, the belief in a domestic information advantage is not so strong because answers 

tend slightly towards contradiction than approval. Interestingly, individual investors 

believe least in a domestic information advantage and investment advisors most.50 In 

item 11, investors are asked to give their return expectation for Germany's leading stock 

market index, the DAX, because a higher share of investments at home would make 

sense if return optimism were higher too. However, return expectations of respondents 

are distributed around zero. Note that differences within groups are large whereas dif-

ferences between the three groups are not statistically significant. Tentatively, home 

bias is positively related to return optimism in our sample, reflecting the fact that home 

bias has been found to be related to unrealistic return optimism among institutional 

investors (Shiller et al., 1996, Strong and Xu, 2003). 

Up to this point of analysis, lessons from descriptive statistics tentatively confirm 

earlier findings and indicate that professionalism may lead to lower portfolio biases. 

The complex relations give a strong warning, however, not to rely too early on univari-

ate analyses but to perform multivariate regressions. This is done in the following sec-

tion. 

 

 

                                                           
50 Theoretical studies (e.g. Gehrig, 1993) and empirical works (e.g. Coval and Moskowitz, 2001, 
for fund managers and Ivkovic and Weisbenner, 2005, for individual investors) have shown that 
a local information advantage may be real, although others find contradictory evidence (e.g. 
Huberman, 2001, for individual investors, Lütje and Menkhoff, 2007, for institutional inves-
tors). 
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5.3 Regression analysis 

 

We find that all three measures of professionalism are robust determinants of 

portfolio biases. These measures hold simultaneously, indicating the different aspects of 

professionalism being captured. We present results for the three portfolio biases in sec-

tions 5.3.1 to 5.3.3. Finally, we compare these results in section 5.3.4. 

 

5.3.1 Results for portfolio churning 

 

We employ ordered logit regressions to account for the ordered, discrete nature of 

our response variable “portfolio churning”. All statistical inference here and in the fol-

lowing models is based on 250 bootstrap replications. 

In a first regression, all relevant variables that have been discussed in section 5.2 

are included. Table 5.3 gives results for various specifications in explaining turnover. 

We start with a regression including all possibly relevant variables (column 1). As can 

be seen, institutional investors have lower turnover than the two other groups, i.e. in-

vestment advisors and individual investors. More experienced investors have lower 

turnover too and a worse variance forecast is related to higher turnover. Thus each of 

the three professionalism variables has an “economically positive” sign and is statisti-

cally significant. Within the group of personal characteristics, two variables are signifi-

cant here, i.e. age and volume: younger and wealthier investors have higher turnover. 

Coming to the group of control variables, we find that less risk-averse investors, 

investors with a shorter forecasting horizon and confident investors, who believe to per-

form better, show higher turnover. If we leave out only the variable “less performance 

than others” (see column 2) the variable “less information than others” attracts some of 

the former explanatory power but does not become significant. Interestingly, the dispo-

sition effect is not important in explaining portfolio churning. These results are very 

similar to those found in Dorn and Huberman (2005, Table 9).51 

                                                           
51 They also find experience, knowledge (differently defined than here), wealth, risk aversion 
and overconfidence (in their study: perceived own knowledge relative to others) to explain 
turnover as we do. Moreover, they find men to exhibit more turnover, a variable which cannot 
be used in our sample, whereas we find occupation and forecasting horizon to be significant, 
two variables that are not included in Dorn and Huberman (2005). The only variable that comes 
out somewhat differently is age, which loses significance in Dorn and Huberman (2005) when 
they use a larger set of controls. 
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As further robustness checks, we leave out three insignificant variables and also 

include only one of the three professionalism measures at a time (columns 3 - 5). Re-

sults are not too much affected. In particular, the professionalism measures are always 

statistically significant. A last regression is presented in column 6, where all insignifi-

cant variables are excluded, among them the portfolio volume which has turned insig-

nificant. Again, professionalism keeps its high importance. 

An analysis of marginal effects at variables’ medians for the last specification (6) 

in Table 5.3 highlights the economic significance of the professionalism variables. Be-

ing an institutional investor increases the probability of being in one of the “low turn-

over categories” (i.e. x ≤ 25% p.a.) – which has an unconditional probability of about 

25% – by 12.5 percentage points52 and raising the experience level by three categories 

increases the probability of a low turnover by more than 6 percentage points (detailed 

results are presented in Appendix 3, Panel A). A one percent increase in the variance 

forecast error lowers the probability of having a low turnover by 0.7 percentage points. 

 

5.3.2 Results for home bias 

 

This section matches the above finding: all three measures of professionalism 

robustly indicate that more professional investors are less subject to home bias. 

In parallel to the previous section, we estimate ordered logit regressions. The de-

pendent variable is a categorical transformation of our domestic investment variable, 

since this original variable lies in the interval [0,1] and is thus not well captured by 

standard linear regression models. We make use of the ordered nature of our data and 

form six different categories: [0,10), [10,30), [30,50), [50,70), [70,90), [90,100]. The 

two smaller categories in the left-hand and right-hand margins are used to capture the 

observed extreme realizations of home bias. As a robustness check we also employ cen-

sored linear regressions where the censoring takes place at an investment share of zero 

and one hundred percent. 

Results of the ordered logit model are given in Table 5.4. We start – as we did in 

section 5.3.1 – with a regression including all possibly relevant variables (column 1). 

As can be seen, the three measures of professionalism are statistically highly signifi-

cant: institutional investors have a lower home bias than the two other groups, i.e. in-

                                                           
52 This can be seen by adding the first two entries in the table corresponding to the “institutional 
investors” variable (i.e. 0.035 + 0.090 = 0.125 = 12.5 %). 
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vestment advisors and individual investors. More experienced investors have a lower 

home bias and a worse variance forecast is related to more home bias. Coming to the 

group of personal characteristics, we find that older investors prefer home assets com-

pared to younger ones. Whereas this determinant has been found by Karlsson and 

Nordén (2007) and Lütje and Menkhoff (2007) before, further determinants that have 

been claimed by Karlsson and Nordén (2007) are not significant in the extended ap-

proach here. This refers to share of equities, higher wealth and also to better education 

and more senior position.53 

Next, let us discuss the group of further controls to single out the effect from pro-

fessionalism. One can recognize in this regression that the degree of general risk aver-

sion is not important. By contrast, a smaller disposition reduces home bias, independent 

of the professionalism of the investor. We see this as further evidence for the disturbing 

power of the disposition effect in financial decision making. Moreover, the variable 

longer forecasting horizon has some influence in reducing home bias but is significant 

at the 10% level in this specification only. 

Finally, we have added two variables specifically to explain high domestic in-

vestments. These variables – capturing information/transaction costs and return opti-

mism – are among the best-established determinants of home bias according to earlier 

studies and it is thus reassuring that they also hold here.54 This is despite the different 

method for data compilation, the questionnaire survey, and despite many more control 

variables that are included here than before. 

As robustness checks we test further specifications. First, we leave out four statis-

tically insignificant variables which have had less importance in earlier studies; this 

does not affect results (Table 5.4, column 2). Second, due to the focus on professional-

ism, we run a set of further regressions where the measures of professionalism are con-

sidered one after the other. The results presented in columns 3 - 5 in Table 5.4 show that 

each of the professionalism measures keeps its sign and significance. The same applies 

to the main other determinants. Third, we include only statistically significant variables 

in the regression. Column 6 shows that the variable forecasting horizon then loses sig-

nificance but that all three measures of professionalism remain. Fourth, column 7 esti-
                                                           
53 In order to come closer to a replication of Karlsson and Nordén (2007), we have run a regres-
sion explaining individual investors' home bias solely by these personal characteristics. We find 
that in this case higher age and also investment volume (as a proxy for wealth) significantly 
reduce home bias. 
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mates the specification of column 6 with a censored linear regression – again, findings 

are confirmed. 

The professionalism variables are also significant in economic terms (see Appen-

dix 3, Panel B). Marginal effects evaluated at variables’ medians for specification (6) in 

Table 5.4 reveal that being an institutional investor increases the probability of being in 

the “low home bias” categories (w≤30%) – which has an unconditional probability of 

about 60% – by more than 21 percentage points. Increasing the level of experience by 

e.g. three categories increases the probability of being in the low home bias categories 

by more than 12 percentage points whereas increasing the variance forecast error by one 

percent decreases the low home bias probability by more than one percentage point (a 

similar picture emerges from the effects in the censored linear models). 

 

5.3.3 Results for reluctance to loss realization 

 

In analogy to the last two sections we find for all three measures of professional-

ism that more professional investors are less reluctant to realize losses in their portfo-

lios. 

The variable “reluctance to loss realization” has six categories and is thus ana-

lyzed in an ordered logit approach. Table 5.5 gives results for similar specification as 

for the other biases analyzed before. What stands out is that there are less significant 

variables than in the earlier regressions. Interestingly, the three professionalism vari-

ables belong to this group. By contrast, personal characteristics do not seem to be rele-

vant here. Among the control variables, having less disposition effect and a longer fore-

casting horizon reduce the portfolio bias. This result holds through all six specifications 

with one slight qualification in specification (5) where the knowledge measure of pro-

fessionalism marginally falls out of the 5% significance interval. 

As the reluctance to loss realization can be seen and is often analyzed as one ele-

ment of the disposition effect (e.g. Odean, 1998), one may question whether the disposi-

tion effect variable is exogenous. However, eliminating it from an earlier regression 

(column 6) does not qualitatively change the picture as the result in column 7 shows 

(this also holds for the other specifications and regressions in Tables 5.3 and 5.4). 

                                                                                                                                                                          
54 One may question the meaning of the information advantage variable as it is measured as a 
subjective assessment and does not necessarily mean that an information advantage exists. 
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The marginal effects for the reluctance to loss realization variable are based on 

the last specification (6) in Table 5.5 (see Appendix 3, Panel C). Being an institutional 

investor decreases the probability of being in one of the three categories of low reluc-

tance by 13.4 percentage points. This is clearly of economic significance since these 

three categories of low reluctance have an unconditional probability of 39%. Similarly, 

increasing experience by three categories increases the probability of low reluctance by 

almost 11 percentage points. Finally, increasing knowledge (as measured by the vari-

ance forecast) by one percent increases the probability of having a low reluctance to 

loss realization by more than one percentage point. 

 

5.3.4 Comparing the three portfolio biases 

 

A comparative analysis of the determinants of portfolio churning, home bias and 

reluctance to loss realization shows that these are three different problems in investment 

behavior. However, there is one common lesson: professionalism reduces the biases. 

Going through the regressions just discussed in sections 5.3.1 to 5.3.3, the three 

measures of professionalism are the only variables that are always significant and keep 

their sign. As all other variables enter either only one or two regressions or change sign 

(the age variable), we understand that the three portfolio biases are different phenom-

ena. Portfolio churning is – beyond professionalism – driven by age, risk aversion, fore-

casting horizon and a perceived better performance than others. Here, one may recog-

nize a driving force in tentatively overconfident, risk-taking activism. By contrast, home 

bias is – beyond professionalism, information advantage and return optimism – driven 

by higher age and more disposition effect. Age can be understood as proxy of a particu-

lar kind of higher risk aversion and the disposition effect could be seen as behavior to 

avoid (possibly wrong) decisions. Finally, reluctance to loss realization is – beyond 

professionalism – only influenced by a higher disposition effect (which is related to the 

endogenous variable) and by a shorter forecasting horizon. In a sense, the three portfo-

lio biases are thus driven by rather divergent motivations. 

These different origins of portfolio churning, home bias and reluctance to loss re-

alization make the result of professionalism even more interesting: in the case of portfo-

lio churning professionalism helps to reduce unjustified activism, in the case of home 

bias professionalism helps to overcome unjustified risk aversion and in the case of re-

luctance to loss realization professionalism helps to cut losses early. 
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5.4 Conclusions 

 

Recent studies have found that professionals do not necessarily perform better in 

(financial) markets than laymen. Therefore, it is not clear ex ante whether more profes-

sional investors show less portfolio biases which would be important for both market 

efficiency and the investment management industry. 

Earlier studies on the impact of professionalism on portfolio biases are character-

ized by limitations in design which we want to overcome to some extent. Therefore, we 

have conducted a new survey and asked about 500 German investors via a questionnaire 

about their behavior, objective attributes, and beliefs. This effort generates information 

on portfolio behavior that was not available before: it compares investors with different 

degree of professionalism in a uniform way, i.e. regarding their private investment deci-

sions, it allows to test the impact of three dimensions of professionalism in the same 

regressions and it is possible to examine the impact on three portfolio biases in a single 

framework, including the consideration of various relevant control variables. 

We find clear evidence that professionalism reduces the portfolio biases of portfo-

lio churning, home bias, and reluctance to loss realization. It is only professionalism 

measures that keep their significance and sign in explaining these portfolio biases. 

Other variables, however, are either not significant (including wealth of investors), or 

change sign (the age variable) or are significant in only one or two of the three cases. 

Second, we find that all of the three dimensions of professionalism are important be-

cause each of them adds an additional piece of explanatory power to the regressions. 

Moreover, investment advisors – although clearly a professional group – behave more 

like advanced laymen than as institutional investors. Third, the survey approach makes 

a further difference as it shows that institutional investors have lower turnover in their 

private portfolios than individual investors, although institutionals show much higher 

turnover in their job-related trading. 



 112

Table 5.1 Further survey questions and statements 

 

 Item Question, statement Categories 

1. Higher turnover 

What is your annual turnover (sum of 
buy and sell transaction volume) relative 
to the total volume of your portfolio? 

4 categories (1 = <10%,  
2 = 10-25%, 3 = 25-50%, 4 = 
>50%). 

2. More 
home bias 

Please allocate an amount of 10,000 € on 
the following regions so that shares add 
up to 100 percent. 5 regions: Germany, 
Europe (ex Germany), USA and Canada, 
Asia, Emerging Markets. 

In percent between 0 and 100. 

3. 
Less reluctance  
to loss  
realization 

I generally wait for a price recovery of a 
loss position, instead of selling this 
position. 

6 categories from "complete 
approval" (coded as 1) to 
"complete disapproval" (coded 
as 6) 

4. Worse variance 
forecast 

Please give a range within which the 
index will fall with a probability of 90%.

Absolute difference between 
the width of the range divided 
by the individual forecast and 
the width of a GARCH(1,1) 
forecast divided by the point 
forecast. 

5. Less risk averse 

Please classify your personal risk taking: 
With respect to professional investment 
decisions, I mostly act… 

6 categories from "very risk 
averse" (coded as 1) to "little 
risk averse" (coded as 6) 

6. Less disposition 
effect 

I prefer to take profits when I am 
confronted with unexpected liquidity 
demands. 

See item 3. 

7. Longer forecasting
horizon 

What is your typical personal forecasting 
horizon when making investment 
decisions? 

5 categories from "Days" 
(coded as 1), "Weeks", 2-6 
Months", "6-12 Months" to 
"Years" (coded as 5) 

8. Less performance 
than others 

How good is your investment 
performance relative to other investors? 

7 categories from "much 
better" (coded as 1) to "much 
worse" (coded as 7).  

9. Less information 
than others 

How high is the degree of your 
information relative to other investors?  

7 categories from "much 
better" (coded as 1) to "much 
worse" (coded as 7).  

10. 
Less domestic 
information 
advantage 

As a domestic investor I benefit from 
better information compared to foreign 
market players. 

See item 3. 

11. Higher Dax 
optimism 

Please estimate the development of the 
DAX within the next month. 

Point forecast (converted into 
return forecast). 
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Figure 5.1 Distribution of annual portfolio turnover 
This figure shows the distribution of annual portfolio turnover (x) for all investors in the 
left panel. Bars show the percentage response (LHS) in a given interval (x-axis). The 
solid line shows the cumulative percentage response (RHS). The right panel shows 
percentage responses separately for the three investor groups in a given percentage 
interval (x-axis). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2  Distribution of the share of investment in domestic stocks 
This figure shows the distribution of the share of investment in domestic stocks (w) for all 
investors in the left panel. Bars show the percentage response (LHS) in a given 5% 
interval shown on the x-axis. The solid line shows the cumulative percentage response 
(RHS). The right panel shows percentage responses separately for the three investor 
groups in a given percentage interval (x-axis). 
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Figure 5.3 Distribution of the reluctance to loss realization 
This figure shows the distribution of the reluctance to loss realization for all investors in 
the left panel. Bars show the percentage response (LHS) in a given approval category (x-
axis). The solid line shows the cumulative percentage response (RHS). The right panel 
shows percentage responses separately for the three investor groups in a given approval 
category (x-axis). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.2 Correlation of measures of professionalism  
This table shows rank correlation coefficients of professionalism measures with portfolio 
biases. Stars refer to a significance level of: **: 0.01, *: 0.05. 

 
Institutional 

investors 
Investment 

advisors 
More 

experienced 

Worse 
variance 
forecast 

More 
Home 
Bias 

Higher 
turnover 

Institutional 
investors 1.00  

Investment 
advisors  1.00  

More 
experienced 

0.12 
***(0.01) 

0.14
**(0.00) 1.00  

Worse variance 
forecast 
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(0.63) 
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(0.92)
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 Table 5.3 Determinants of (higher) turnover 
All p-values are based on a bootstrap with 250 replications for the respective 
specification. Bold numbers represent coefficient estimates that are significant at least on 
the level of five percent. 

 
 

 
 
 
 
 

Dependent variable: turnover (4 categories) 
 (1) (2) (3) (4) (5) (6) 

Institutional  
investors 

-0.694 
(0.020) 

-0.650
(0.026)

-0.782
(0.005)   -0.608

(0.023)
Investment  
advisors 

-0.384 
(0.189) 

-0.242
(0.388)

-0.515
(0.061)   

More experienced -0.162 
(0.027) 

-0.137
(0.065)

-0.195 
(0.007)  -0.157

(0.030)
Worse variance 
forecast 

4.749 
(0.004) 

4.56
(0.004)  4.472 

(0.004) 
4.241

(0.007)

Higher age -0.282 
(0.002) 

-0.309
(0.001)

-0.302
(0.000)

-0.172 
(0.040) 

-0.259 
(0.001) 

-0.204
(0.017)

University degree -0.219 
(0.318) 

-0.178
(0.412)   

More senior 0.225 
(0.308) 

0.239
(0.269)   

Higher share of 
equities 

0.004 
(0.228) 

0.003
(0.342)

0.004
(0.183)

0.004 
(0.186) 

0.004 
(0.214) 

More volume  0.177 
(0.019) 

0.218
(0.004)

0.104
(0.155)

0.151 
(0.053) 

0.097 
(0.191) 

Less risk averse 0.396 
(0.000) 

0.379
(0.000)

0.413
(0.000)

0.400 
(0.000) 

0.388 
(0.000) 

0.436
(0.000)

Less disposition 
effect 

-0.007 
(0.927) 

0.064
(0.353)

-0.003
(0.096)

0.002 
(0.782) 

0.002 
(0.975) 

Longer forecasting 
horizon 

-0.562 
(0.000) 

-0.571
(0.000)

-0.584
(0.000)

-0.564 
(0.000) 

-0.603 
(0.000) 

-0.547
(0.000)

Less performance 
than others 

-0.373 
(0.000) 

-0.345
(0.000)

-0.310 
(0.000) 

-0.275 
(0.001) 

-0.347
(0.000)

Less information 
than others 

0.028 
(0.775) 

-0.138
(0.127)   

Constant 1 -4.711 -3.326 -4.284 -4.138 -3.610 -4.096
Constant 2 -2.836 -1.497 -2.422 -2.280 -1.763 -2.213
Constant 3 -1.656 -0.355 -1.274 -1.128 -0.617 -1.060

LRT (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Pseudo R2 0.133 0.118 0.124 0.121 0.118 0.128
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Table 5.4 Determinants of (more) home bias 
Dependent variable: home bias (6 categories†) 

 (1) (2) (3) (4) (5) (6) (7)‡ 
Institutional  
investors 

-0.887 
(0.003) 

-0.882
(0.003)

-1.047
(0.000)  -1.041

(0.000)
-9.747

(0.000)
Investment  
advisors 

0.345 
(0.216) 

0.306
(0.251)

0.066
(0.793)  

More experienced -0.220 
(0.002) 

-0.202
(0.003)

-0.257
(0.000)  -0.183

(0.002)
-2.282

(0.000)
Worse variance 
forecast 

5.434 
(0.008) 

4.923
(0.014)

5.094 
(0.011) 

4.550
(0.022)

0.849
(0.005)

Higher age 0.309 
(0.002) 

0.271
(0.005)

0.153
(0.077)

0.308
(0.001)

0.203 
(0.015) 

0.232
(0.010)

3.295
(0.007)

University degree 0.073 
(0.714)  

More senior 0.109 
(0.633)  

Higher share of 
equities 

0.001 
(0.654) 

0.002
(0.469)

0.003
(0.409)

0.003
(0.345)

0.003 
(0.345) 

More volume  -0.000 
(0.996) 

0.004
(0.0958

-0.058
(0.360)

-0.013
(0.843)

-0.078 
(0.211) 

Less risk averse -0.032 
(0.703) 

-0.039
(0.623)

-0.051
(0.514)

-0.033
(0.675)

-0.050 
(0.517) 

Less disposition 
effect 

-0.169 
(0.011) 

-0.172
(0.007)

-0.180
(0.005)

-0.176
(0.006)

-0.191 
(0.003) 

-0.174
(0.006)

-2.315
(0.001)

Longer forecasting 
horizon 

-0.164 
(0.057) 

-0.148
(0.075)

-0.184
(0.025)

-0.149
(0.072)

-0.184 
(0.025) 

Less performance 
than others 

-0.045 
(0.630)  

Less information 
than others 

0.046 
(0.626)  

Less domestic 
information 
advantage 

-0.166 
(0.020) 

-0.166
(0.018)

-0.169
(0.016)

-0.159
(0.022)

-0.155 
(0.025) 

-0.173
(0.012)

-1.891
(0.024)

Higher Dax 
optimism 

0.047 
(0.021) 

0.053
(0.009)

0.052
(0.010)

0.048
(0.017)

0.048 
(0.018) 

0.055
(0.006)

0.562
(0.018)

Constant 1 -4.571 -4.511 -4.745 -4.259 -4.098 -4.146
Constant 2 -1.046 -1.106 -1.385 -0.948 -0.826 -0.794
Constant 3 0.051 -0.023 -0.323 0.113 0.219 0.289
Constant 4 1.015 0.960 0.627 1.090 1.179 1.265
Constant 5 1.693 1.629 1.264 1.756 1.830 1.929

42.690
(0.000)

LRT (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Pseudo R2 0.061 0.057 0.044 0.046 0.036 0.053 0.138
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† The variable home bias is measured in categories, ranging from 0 ≤ w ≤ 10% (coded as 
1), 10 < w ≤ 30% (coded as 2), … , 70 < w ≤ 90% (coded as 5) to 90 < w ≤ 100% (coded 
as 6).  
All p-values are based on a bootstrap with 250 replications for the respective 
specification. Bold numbers represent coefficient estimates that are significant at least on 
the level of five percent. 
‡ This specification shows results from censored linear regressions (censoring at zero and 
100) where the dependent variable is the percentage share of assets allocated to Germany. 
The last row gives the usual adj. R2 and the usual intercept is reported in the “constants” 
row. 
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Table 5.5 Determinants of (less) reluctance to loss realization 
All p-values are based on a bootstrap with 250 replications for the respective 
specification. Bold numbers represent coefficient estimates that are significant at least on 
the level of five percent. 
 

 

 

Dependent variable: reluctance to loss realization (6 categories) 
 (1) (2) (3) (4) (5) (6) (7) 

Institutional  
investors 

0.618 
(0.034) 

0.611
(0.021)

0.723
(0.011)  0.616

(0.010)
0.590

(0.012)
Investment  
advisors 

-0.138 
(0.612) 

-0.152
(0.560)

-0.021
(0.929)  

More experienced 0.167 
(0.012) 

0.166
(0.011)

0.181
(0.006)  0.155

(0.004)
0.175

(0.001)
Worse variance 
forecast 

-4.059 
(0.042) 

-4.043
(0.028)

-4.030 
(0.059) 

-4.657
(0.023)

-4.607
(0.011)

Higher age -0.038 
(0.706) 

-0.035
(0.764)

0.060
(0.563)

-0.078
(0.424)

0.020 
(0.828) 

University degree 0.058 
(0.771) 

0.055
(0.776)  

More senior 0.278 
(0.282) 

0.275
(0.289)  

Higher share of 
equities 

0.001 
(0.577) 

0.002
(0.590)

0.002
(0.538)

0.001
(0.623)

0.001 
(0.654) 

More volume  -0.067 
(0.270) 

-0.070
(0.310)

-0.026
(0.705)

-0.061
(0.359)

-0.020 
(0.763) 

Less risk averse 0.087 
(0.298) 

0.088
(0.275)

0.093
(0.196)

0.074
(0.325)

0.086 
(0.267) 

Less disposition 
effect 

0.282 
(0.000) 

0.276
(0.000)

0.284
(0.000)

0.273
(0.000)

0.288 
(0.000) 

0.234
(0.000)

Longer forecasting 
horizon 

0.212 
(0.012) 

0.214
(0.008)

0.242
(0.002)

0.219
(0.004)

0.243 
(0.003) 

0.201
(0.010)

0.184
(0.010)

Less performance 
than others 

0.037 
(0.658)  

Less information 
than others 

0.150 
(0.089) 

0.164
(0.064)

0.117
(0.172)

0.136
(0.088)

0.082 
(0.362) 

0.165
(0.057)

0.168
(0.023)

Constant 1 -0.860 -0.960 -0.839 -0.922 -1.385 -1.354 -2.104
Constant 2 1.415 1.312 1.399 1.328 0.853 0.884 0.105
Constant 3 2.361 2.257 2.321 2.257 1.774 1.798 0.995
Constant 4 3.305 3.202 3.248 3.182 2.695 2.726 1.884
Constant 5 4.607 4.164 4.536 4.465 3.970 4.019 3.157

LRT (p-value) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pseudo R2 0.041 0.040 0.032 0.032 0.029 0.036 0.025
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Appendix 1. Survey participants' objective attributes 
 

 Responses (in percent)  
  

all 
Institutional 

investors 
Investment 

advisors 
Individual 
investors 

KW 
Test 

<25 years 4.2 0.0 5.3  4.9
25-35 28.6 39.0 42.1  23.3
36-45 34.8 50.6 38.2  30.5
46-55 19.7 10.4 11.8  23.5
56-65 9.5 0.0 2.6  13.1
>65 3.2 0.0 0.0  4.7
mean 41.1 37.1 36.4  43.1

Age 

obs 497 75 78  344

**4.23
  **(0.00)

<4 years 5.1  2.7  0.0  7.0
4-6 20.9 9.5 21.1  23.7
7-9 18.0 14.9 11.8  20.3
10-12 13.3 21.6 5.3  13.3
13-15 9.8 14.9 13.2  7.7
>15 32.9  36.5  48.7  28.0
mean 12.0 13.5 14.2  11.1

(Investment) 
Experience 

obs 497 75 78  344

**3.39
  **(0.00)

 66.8 62.3 63.5  68.6University 
degree (yes) obs 485 75 76  334

**0.17
*(0.87)

 0.98 0.96 0.98  0.96Gender (Male) obs 497 75 78  344
**0.11
*(0.92)

Junior 16.8 17.6 25.0  13.3
Senior 43.1 52.7 54.7  34.3
Head of … 40.1 29.7 20.3  52.4

**2.83
  **(0.01)Hierarchy 

obs 477 74 74  329
0 ≤ x ≤ 10 14.62 10.77 12.5  15.89
10 < x ≤ 50  33.87 33.85 31.25  34.44
50 < x ≤ 250 33.41 24.62 45.31  32.78
250 < x ≤ 1,000  10.44 6.15 7.81  11.92
x > 1,000 7.66 24.62 3.13  4.97
mean 241.2 455.4 173.7  209.3

(Higher) 
Wealth 
in thousand 
EUR 
(Portfolio 
volume) 

obs 491 74 77  340

**1.81
*(0.07)

0 ≤ x ≤ 20% 35.81 32.00 30.77  37.79
20 < x ≤ 40% 19.52 25.33 16.67  18.90
40 < x ≤ 60% 16.30 16.00 19.23  15.70
60 < x ≤ 80% 14.89 10.67 20.51  14.53
80 < x ≤ 100% 13.48 16.00 12.82  13.08

mean 40.1 40.7  43.6  39.2

Share of 
equities† 

 
 

obs 497 75 78  344

0.60
*(0.55)

 
† Share of equities denotes the share of total investment volume that is invested in equities 
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Appendix 2. Responses in percent and descriptive statistics 

Item  all 
Institutional 

investors 
Investment 

advisors 
Individual 
investors 

KW 
Test 

Mean 43.45 38.12 43.70  44.62  1. Higher turnover Obs 457 74 73  310  
2.47

(0.29)
Mean 29.65 19.18 31.75  31.45  2. More 

home bias obs 465 74 76  315  
23.28

**(0.00)
Mean 3.97 4.34 3.77  3.94  3. Less  reluctance to 

loss realization obs 455 74 73  308  
6.05

*(0.05)
Mean 6.09 6.16 6.00  6.10 
Median 5.23 4.83 5.35  5.36 
Minimum 0.01 0.13 0.01  0.07 
Maximum 30.15 26.65 28.06  30.15 

4. Worse variance 
forecast 

obs 450 74 76  300 

0.28
(0.87)

Very risk averse 0.65 0.00 1.32  0.63 
2 9.68 8.11 7.89  10.48 
3 15.05 22.97 14.47  13.33 **0.52
4 20.86 21.62 19.74  20.95 **(0.77)
5 35.27 27.03 38.16  36.51 
Little risk averse 18.49 20.27 18.42  18.10 

5. Less risk averse 

obs 465 74 76  315 
Complete approval 6.85 1.37 6.49  8.13 
2 18.88 20.55 18.18  18.67 
3 24.07 24.66 29.87  22.59 **0.91
4 21.16 26.03 23.38  19.58 **(0.63)
5 13.90 10.96 9.09  15.66 
Complete disapproval 15.15 16.44 12.99  15.36 

6. Less disposition 
effect 

obs 482 73 77  332 
Days 14.88 9.33 11.69  16.87 
Weeks 22.73 18.67 15.58  25.30 
2-6 months 31.20 37.33 36.36  28.61 **6.41
6-12 months 18.60 22.67 20.78  17.17 **(0.04)
Years 12.60 12.00 15.88  12.05 

7. Longer forecasting 
horizon 

obs 484 75 77  332 
Much better 12.63 13.33 19.48  10.91 
2 15.07 28.00 22.08  10.62 
3 25.25 28.00 29.87  23.60 
4 35.64 25.33 24.68  40.41 **27.67
5 5.91 2.67 2.60  7.37 **(0.00)
6 3.05 1.33 0.00  4.13 
Much worse 2.44 1.33 1.30  2.95 

8. Less performance 
than others 

obs 491 75 77  339 
Much better 30.55 56.00 49.35  20.65 
2 28.31 21.33 32.47  28.91 
3 17.72 12.00 14.29  19.76 
4 20.57 10.67 3.90  26.55 **57.02
5 1.22 0.00 0.00  1.77 **(0.00)
6 1.02 0.00 0.00  1.47 
Much worse 0.61 0.00 0.00  0.88 

9. Less information 
than others 

obs 491 75 75  339 
Complete approval 2.70 2.78 3.90  2.40 
2 16.80 22.22 20.78  14.71 
3 26.76 20.83 35.06  26.13 **6.33
4 18.46 25.00 11.69  18.62 **(0.04)
5 20.95 15.28 19.48  22.52 
Complete disapproval 14.32 13.89 9.09  15.62 

10. Less domestic 
information 
advantage 

obs 482 72 77  333 
Mean -0.72 -0.25 -0.88  -0.79 
Standard deviation 4.83 4.50 4.50  4.99 1.16
Skewness -0.68 -0.54 -1.06  -0.62 **(0.56)
Kurtosis 5.53 3.37 6.52  5.63 

11. Higher DAX 
optimism 

obs 450 74 76  300 
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Appendix 3. Marginal effects at variable medians 
 
This table shows marginal effects for the ordered logit models documented in tables 5 and 6, 
respectively. Panel A shows marginal effects for the home bias regressions (table 5, 
specification 6), Panel B shows marginal effects for the turnover regressions (table 6, 
specification 6) and Panel C marginal effects for the reluctance to loss realization (table 7, 
specification6) . All marginal effects are evaluated at variable medians. 

 
Panel A: Marginal effects for determinants of turnover 

Variable Pr(x≤10) Pr(10<x≤25) Pr(25<x≤50) Pr(x>50) 

Institutional 
investors 0.035 0.090 0.018 -0.144 

More experienced 0.005 0.016 0.007 -0.028 
Worse variance 
forecast -0.002 -0.005 -0.002 0.009 

Higher age 0.008 0.026 0.012 -0.046 

Less risk averse -0.019 -0.060 -0.028 0.108 
Longer forecasting 
horizon 0.024 0.075 0.034 -0.133 

Less performance 
than others 0.017 0.053 0.024 -0.094 

unconditional 
probability 0.047 0.199 0.261 0.493 

 
Panel B: Marginal effects for determinants of home bias 

 

Variable Pr(0≤w≤10) Pr(10<w≤30) Pr(30<w≤50) Pr(50<w≤70) Pr(70<w≤90) Pr(w>90)

Institutional 
investors 0.077 0.135 -0.099 -0.062 -0.023 -0.028

More 
experienced 0.008 0.036 -0.016 -0.015 -0.006 -0.008

Worse 
variance 
forecast 

-0.002 -0.009 0.004 0.004 0.002 0.002

Higher age -0.011 -0.045 0.020 0.018 0.008 0.010
Less 
disposition 
effect 

0.008 0.034 -0.015 -0.014 -0.006 -0.007

Less domestic 
information 
advantage 

0.008 0.034 -0.015 -0.014 -0.006 -0.007

Higher Dax 
optimism -0.003 -0.011 0.005 0.004 0.002 0.002

unconditional 
probability 0.048 0.543 0.219 0.109 0.038 0.043
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Appendix 3. (continued) 
 

Panel C: Marginal effects for determinants of reluctance to loss realization 

Variable Complete 
approval 2 3 4 5 Complete  

disapproval 
Institutional 
Investors -0.012  -0.070 -0.051 -0.018 0.058  0.094

More 
experienced -0.004  -0.021 -0.012 0.000 0.017  0.019

Worse variance 
forecast 0.001  0.006 0.004 -0.000 -0.005  -0.006

Longer 
forecasting 
horizon 

-0.005  -0.027 -0.015 0.000 0.023  0.025

Less 
disposition 
effect 

-0.006  -0.032 -0.018 0.000 0.026  0.029

Less 
information 
than others 

-0.004  -0.023 -0.012 0.000 0.019  0.020

unconditional 
probability 0.027  0.177 0.186 0.228 0.237  0.145
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