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ABSTRACT

A Schema-based Peer-to-Peer Infrastructure for Digital Libraries

in
English

In today’s connected world, users are not content with searching only one local library or

archive, but want and need to take a substantial number of collections into account when

looking for relevant information. Currently, most digital libraries and catalog systems only

support local search, and only few facilities offer federated search over several libraries. One

reason is that central federation instances cause significant infrastructure costs, and there are

only limited incentives for libraries to offer such services. An appealing solution is to avoid

a central federation instance and use a completely distributed infrastructure instead, thus also

distributing the infrastructure efforts. In this thesis, we will present such an infrastructure

which combines peer-to-peer, distributed database and Semantic Web technology to provide

seamless search in an open network of digital libraries.

The proposed solution is based on a super-peer topology, where the most powerful nodes

form a network backbone and take over mediator-like responsibilities to distribute queries and

merge results. The network content is modeled as a database fragmented over all nodes. Our

basic algorithm, SPQR (super-peer-based query routing), allows processing of queries accord-

ing to the classic relational algebra, and is shown to always produce the correct result set with

respect to this fragmented database. We present an implementation of our approach which en-

ables the interconnection of library systems conforming to established Open Archive Initiative

standards. An extension of SPQR for preference-based queries allows users to retrieve ’best

matches’ for their queries instead of only exact matches. Extensive evaluations based on a

peer-to-peer simulation framework show the algorithm’s performance and scalability.

Keywords: peer-to-peer networks, distributed databases, digital libraries
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ABSTRACT

A Schema-based Peer-to-Peer Infrastructure for Digital Libraries

in

Deutsch

Die heutige Vernetzung bringt es mit sich, dass Nutzer von Bibliotheken und Archiven sich

nicht mehr mit einer einzigen Informationsquelle begnügen, wenn sie nach relevanter Informa-

tion suche, sondern eine mehr oder weniger große Anzahl von Informationsanbietern konsul-

tieren wollen und müssen. Momentan unterstützen die meisten Katalogsysteme und digitalen

Bibliotheken nur lokale Suche, und es gibt nur eine geringe Anzahl von Serviceangeboten für

föderierte Suche über viele Bibliotheken hinweg. Ein Grund dafür ist, dass solche Services

merkliche Infrastrukturkosten mit sich bringen, und es für jede einzelne Bibliothek wenig An-

reize gibt, diese Kosten zu tragen. Eine attraktive Lösung für diese Problematik ist, zentrale

Services ganz zu vermeiden, und stattdessen eine vollständig verteilte Infrastruktur zu verwen-

den; auf diese Weise werden auch die Aufwendungen für die Infrastruktur über alle beteiligten

Bibliotheken verteilt. In dieser Arbeit stellen wir eine solche Infrastruktur vor, die Ansätze

aus Peer-to-Peer-Netzwerken, verteilten Datenbanken und dem Semantic Web kombiniert, um

transparente Suche in einem offenen Netzwerk digitaler Bibliotheken zu ermöglichen.

Die vorgeschlagene Lösung basiert auf einer Super-Peer-Topologie, in der die leistungsfähig-

sten Knoten ein Netzwerk-Backbone formen und Mediator-Aufgaben der Verteilung von An-

fragen und Zusammenführung der Ergebnisse übernehmen. Die im Netzwerk angebotenen

Informationen werden als über alle Knoten fragmentierte Datenbank modelliert. Zur Ver-

arbeitung relationaler Anfragen in dieser verteilten Datenbank dient der Algorithmus SPQR

(Super-peer-based Query Routing), dessen Korrektheit gezeigt wird. Weiterhin wird die Im-

plementierung eines auf SPQR basierenden Netzwerks beschrieben, mit dem Bibliothekssys-

teme vernetzt werden können, die konform zu etablierten Standards der Open Archive Initia-

tive sind. Aufbauend auf SPQR stellen wir einen Algorithmus für die Verarbeitung präferenz-

basierter Anfragen vor, der es erlaubt, ’beste Treffer’ für Benutzeranfragen zu identifizieren.

Umfangreiche Evaluierungen mit Hilfe eines Simulationsframeworks für Peer-to-Peer-

Netzwerke zeigen die Effizienz und Skalierbarkeit der präsentierten Algorithmen.

Stichworte:Peer-to-Peer-Netzwerke, Verteilte Datenbanken, digitale Bibliotheken
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Chapter 1

Introduction

Most experts agree that the future of libraries lies in entering the digital information realm.

By combining their experience in selection and provisioning of high-quality information with

the dissemination opportunities offered by new technology, libraries will be able to play an

important role in the information age. Some even go so far to state that “digital libraries

can become the universal knowledge repositories and communication conduits of the future,

a common vehicle by which everyone will access, discuss, evaluate, and enhance information

of all forms” [76]. While this may be a bit exaggerating, we can safely assume that it will at

least become partly true. A major requirement for this vision is that digital libraries become

open not only from a social, but also from a technical point of view [174]. As long as users

searching for information have to consult each library separately, it too tedious for them to find

relevant documents, and they will favor the classic Web as information source instead. On the

other hand, if users could search transparently on a network of interconnected library sites as

easy as they can now on the Web, they presumably would often prefer the controlled and thus

more reliable content offered by libraries and other managed digital archives.

In this chapter, we identify characteristics of libraries, especially their catalogs, from library

history and derive requirements for the envisioned search capabilities. Based on this require-

ments analysis, we conclude with the problem statement for our work, and an overview of the

remaining chapters.

1.1 A Short History of Library Catalogs

Since over 2000 years libraries and archives are formed by their main purpose: preserving

documents for later use, and thus also preserving the knowledge embedded in them. For this

aim, they need first to ensure safe storage of these documents, and second to provide means

1



1.1 A Short History of Library Catalogs 2

for retrieving documents when requested. We only consider the second point in this thesis.

Already the first famous library, the Alexandrina, in existence about from 300 BC to 400 AD,

exhibited a structure which is still (of course now in a very developed form) prevalent1:

• A unique identification for each document was established. At the Alexandrina, the

author’s name and a kind of title were used to identify a work2.

• A catalog was maintained to decouple search for documents from the physical document

storage. With catalogs, people can look for relevant items first, and fetch them later (or

let librarians fetch them) using their identification. At the Alexandrina, documents were

classified into subjects, such as Drama, Laws, Philosophy, History, Medicine, Mathe-

matics, etc. Probably subcategories were also in use, but for them no firm historical

evidence exists. The catalog consisted of a document list for each category, containing

the author/semi-title pair used as identification.

Since then, both identification and classification have evolved significantly. Regarding iden-

tification, with the advent of printed books, the now common bibliographic metadata prop-

erties publisher and publication date complemented the already established author and title

attributes. Over time, more properties were added to this list, but the mentioned core properties

are still prevailing.

Until the 19th century, each library had its own rule set for identification. Typical examples

where rules widely varied were the issues of books with anonymous author or books published

by an institution, but without explicit author or editor. One of the driving forces behind stan-

dardization of these rules was the aim to union complete library catalogs. In the 1850s, a team

of librarians under Charles Coffin Jewett started to compile a union catalog of US libraries, and

found many difficulties in identifying duplicates, due to differing identification policies. Con-

sequently, he formulated a new set of unified rules which formed the starting point for further

initiatives reconciling cataloging rules. This was (and is) a very tedious and long-lasting effort.

For example, the institution-as-author issue mentioned above was resolved in the US only in

1967 with AACR (Anglo-American Cataloging Rules, [8]). While some minor differences

between identification approaches on international level still exist, nowadays an agreement on

all substantial issues has been achieved.

The main reason these standardization efforts are so difficult to perform is that no hierarchical

organization is imposed on libraries. Each library is funded locally, and between most libraries

no strong organizational ties exist. Of course, umbrella organization have been founded, but

still libraries have a tendency to cultivate their independence and autonomy.
1The description of catalog history presented here mainly follows [185].
2At that time, titles were not yet common. Therefore, typically the first few words of the document served as

title supplement.



1.1 A Short History of Library Catalogs 3

LC Control Number: 97002959
Type of Material: Book (Print, Microform, Electronic, etc.)
Personal Name: Kant, Immanuel, 1724-1804.
Main Title: Critique of pure reason / translated and edited

by Paul Guyer, Allen W. Wood.
Uniform Title: Kritik der reinen Vernunft. English
Published/Created: Cambridge ; New York : Cambridge University Press, 1998.
Related Names: Guyer, Paul, 1948-

Wood, Allen W.
Description: xi, 785 p. ; 23 cm.
ISBN: 0521354021 (hardcover)
Notes: Includes bibliographical references (p. 77-80) and index.
Subjects: Knowledge, Theory of.

Causation.
Reason.

Series: Kant, Immanuel, 1724-1804. Works. English. 1992.
Variant Series: The Cambridge edition of the works of Immanuel Kant
LC Classification: B2778.E5 G89 1998
Dewey Class No.: 121 21
Language Code: eng ger

Figure 1.1: Sample Library of Congress Catalog Entry

Let’s now turn to the classification issue: To keep collections manageable, structuring by

subject was the dominating principle from the start. First, each library invented its own clas-

sification scheme to bring structure into its collection. Until the enlightening period starting

in the 18th century, subject classifications were not very detailed. Monastic libraries often

only divided their collection only into religious and secular works. But with the encyclopedia

movement in Europe, the vision of ordering all existing knowledge into one coherent system

developed, and this had a deep impact on libraries. In Paris, Jacques-Charles Brunet wrote

the Manual du libraire, originally targeted to book sellers. But the classification scheme de-

scribed in this book soon became a guide for classification activities of librarians, too. A

breakthrough in classification systems was the Dewey Decimal Classification (DDC), pub-

lished first by Melvil Dewey in 1876. This system forms the core from which several classifi-

cation schemes still in use evolved. In 1895 Henry LaFontain and Paul Otlet started work on a

European version of DDC which resulted in the Universal Decimal Classification (UDC). At

about the same time, the Library of Congress librarians adapted the DDC for their purposes,

and published a first version of the Library of Congress Classification (LCC) in 1911. The

latter classification became predominant in the US, because libraries could buy catalog cards

from the Library of Congress containing all bibliographic and classification information for

each book published in the US. This freed especially small and medium-sized libraries from

the tedious work of classifying new items on their own. A sample Library of Congress catalog

entry is shown in Figure 1.1.

In Germany, the effort to create a normative classification started very late (in the 1970s), but

nowadays RSWK (Regeln für den Schlagwortkatalog, [152]) and SWD ( Schlagwort-Norm-

Datei, [176]) are used by most major libraries. Similar initiatives and classifications exist for

other countries as well. Of course, differences in culture lead to different design choices in
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these classifications. For example, the DDC is much more coarse-grained in German history,

German law, and German literature than SWD. It seems unlikely that a unified world-wide

subject classification for libraries will ever come into existence.

Libraries were one of the first institutional users of computers. Already in mid-1960s, libraries

started to employ the new technology for cataloging purposes [142]. Unfortunately, the de-

velopment of catalog systems and related metadata schemas took different directions in the

US and in Europe. In US, MARC (Machine Readable Cataloging) was developed and es-

tablished in 1968 [115]; the current version is MARC 21 [112]. In Europe, the Netherlands

became leaders of IT usage in libraries, and a group of libraries developed the PICA (Project

for Integrated Catalogue Automation) catalog system from 1969 on. This system became also

widely used by libraries in Belgium, France, Germany, and later in the UK. Neither the MARC

nor the PICA metadata schema is defined by a standard committee; both are proprietary for-

mat. However, their widespread use make them de-facto standard schemas for library catalog

systems.

As long as each library maintained its electronic catalog independently, the diversity with

respect to bibliographic record structure did not pose any obstacle. But with the advent of

computer and subsequently library networks, catalog interoperability became crucial. As a

remedy, the Dublin Core Metadata Initiative (DCMI) was founded in 1995, with the goal

to create a unifying document archive metadata standard. In 1998, the first DCMI standard

was released, the Dublin Core Metadata Element Set, Version 1.0 [184]. The current version

is [47]. It focuses on the 15 most important metadata attributes, therefore MARC as well

as PICA entries can be transformed to DC in a rather straightforward way. DC became the

dominant exchange format for document metadata in the internet world. On the other hand,

DC only provides a rather limited set of metadata, compared to MARC and PICA. Therefore,

it is not going to replace these schemas. With the advent of multimedia documents, libraries

face new challenges regarding catalog metadata, because the current catalog standards are

text document centric. One solution is to complement existing schemas with new multimedia

specific attributes, e.g., from the MPEG-7 standard [113].

Metadata exchange does not only require a unified format, but also a communication proto-

col between the participating libraries. In 1999, the Open Archive Initiative (OAI, [183]) was

founded, with the goal to define such a protocol. OAI released a protocol for metadata harvest-

ing (OAI-PMH, [91]) in 2001. This protocol allows to exchange complete catalogs between

archives. To keep these replicas up-to-date in the face of changes, each entry is associated

with a timestamp, and on request only items changed after the last update are sent. However,

OAI-PMH is only meant to facilitate replication, search in foreign catalogs is not supported.

OAI-PMH and other replication protocols (such as Z39.50 [191]) have enabled the creation

of large joint catalogs by replication; the most prominent is WorldCat [40]. In the last years,
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several small-scale systems for distributed on-line search have been created, e.g. [128, 89, 41],

but this hasn’t lead to a search protocol standard (yet).

1.2 Digital Libraries

With the advent of the Web, libraries have started to provide not just document metadata in

digital form, but also document content. In the late 1980s and early 1990s, several universi-

ties established on-line access to articles of selected journals (e.g. Mercury [117]). In 1991,

the publisher Elsevier started the project TULIP (The University Licensing Project), which

finally provided nine leading universities with articles from over 40 journals [21]. These first

initiatives lead to a rapidly growing interest in on-line provision of library collections. First,

such collections were called electronic libraries [95], but soon the term digital libraries was

established [94]. Since then, a vast variety of digital libraries has come into existence, mainly

providing scientific information, but also offering items from cultural heritage, politics, learn-

ing resources, etc. The size of these libraries ranges from small local archives to large article

collections (such as the ACM Digital Library with over 50.000 items).

It is hard to specify exactly what constitutes a digital library. Deegan states that “there are

many different kinds of digital libraries creating, delivering and preserving digital objects that

derive from many different formats of underlying data, and it is very difficult to formulate a

definition that encapsulates all of these” [49]. Nevertheless, we can at least identify some

characteristics (although not all of them have to be fulfilled for every digital library). Of

course, it is essential that resources are provided in digital form. In almost all definitions,

these resources have to be available via a distributed network (although some view also a

document collection on CD or other media as digital library [187]).

The most important difference between digital libraries and any other digital information re-

source is that their collections are institutionally maintained and organized, with a specific user

group in mind. According to Witten, “it is in the selection and organization of information

by librarians that digital libraries are distinguished from the Web” [187]. However, this insti-

tution does not necessarily have to be a library in the traditional sense. Archives, museums,

and any other institutions selecting, preserving and providing documents can turn into digital

libraries when they start to use the digital realm for information provision.

It is not required that a digital library offers all of its resources in digital form. Often, for

a significant fraction of the collection only metadata is provided on-line. For a while, such

libraries have been called hybrid libraries, but this distinction is not made anymore.

Borgmann points out that every digital library has a technical and a social foundation: “Digital
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libraries are a set of electronic resources and associated technical capabilities for creating,

searching, and using information. In this sense they are an extension and enhancement of

information storage and retrieval systems that manipulate digital data in any medium (text,

images, sound [...]) and exist in distributed networks.

Digital libraries are constructed – collected and organized – [...] In this sense, they are an

extension, enhancement, and integration of a variety of information institutions as physical

places where resources are selected, collected, organized, preserved, and accessed in support

of a user community.” [23]3

The difference between a traditional and a digital library is increasingly blurring:

• Digital and non-digital documents are often maintained in the same digital catalog

• Libraries provide extended metadata and relations between documents (citations, ab-

stracts, recommendations, etc.) for printed items in the same way as for digital re-

sources.

• For some collections, users can order digitized versions of printed material on-line, and

the requested documents are scanned on demand (e.g., subito [173]).

Summarizing, nearly every large library is turning gradually into a digital library. Levy and

Marshal [97] even state that the term ’digital’ library is unnecessary. They argue that libraries

have always adapted to new types of documents, from clay tablets, papyrus rolls, and parch-

ments up to printed books, gramophone records, and tapes. In the same way, they adapt today

to the preservation and provision of digital material. This assessment probably will become

true in the next few decenniums, when the dust has settled, and methods and technologies for

digital libraries have become commonplace.

One of the key opportunities of digital libraries is their integration in a distributed network.

This does not only allow online access by users, but also opens up the option of interconnecting

the library systems themselves. Therefore, it is not surprising that very early digital library

research projects started to tackle the issue of seamless search over a library network, e.g.

[90, 149]. In his article about the Berkeley Digital Library Project Wilenski writes: “For

digital libraries to succeed, we must abandon the traditional notion of ‘library’ altogether.

The reason is as follows: The digital ‘library’ will be a collection of distributed information

services; producers of material will make it available, and consumers will find it and use

it.”[186].

OAIster [67] is an exemplary recent representative of such digital library integration projects.
3Computer scientists in the digital library field have already gained a reputation in neglecting this social factor,

and focusing too much on the technological aspects, and we plead guilty in continuing this tradition in the work
presented here, with the lame excuse that solutions for technological problems can be solved quite independently
from sociological considerations.
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OAIster is a provider of technical reports and articles, and integrates documents from over

350 different sources. It employs the OAI Protocol for Metadata Harvesting (cf. 5.1) to collect

document metadata from all connected providers, and also fetches the full documents, if possi-

ble. The advantage of this approach is that search is possible independently of the availability

of connected nodes. However, the disadvantage is that all the work (replicating metadata and

content, storage, query processing, etc.) has to be done by one central server. OAIster shares

this characteristic with other existing services, such as CiteSeer [60] or Google Scholar [63].

Essentially, we can say that these information providers mimic the way Web search engines

work: all information is replicated to huge central services which evaluate queries on these

replicas. One can envision such a scenario for libraries as well, where the existing services

evolve to huge central archives containing a joined catalog and providing the search entry

point to library content, such as current search engines do for the Web.

But we see several disadvantages to the central approach:

• Even Google, the dominant search engine, only indexes a fraction of the Web (not in-

cluding library catalog information at all), due to the ‘Hidden-Web’ issue: a lot of Web

sites (including practically all library sites) do not provide their contents as static, in-

terlinked pages, but create pages dynamically from their content database, taking into

account the current session context (e.g., the user query). These dynamic pages con-

tribute significantly to the Web and often exhibit above-average quality, but they are not

captured by Web search engines.

• No one in the library field would like to give the power of such a central instance to

any single library provider. The risk of becoming dependent on the good will of such a

library search engine would just be to high. Besides, libraries are traditionally organized

in a decentralized fashion, where each library has a lot of freedom to adapt its organi-

zation to the special needs of its user group. A central instance imposing guidelines on

contributing members would be conflicting with this culture.

• From a technical point of view, a top-down-approach integrating all libraries is much

more prone to failure than a bottom-up-approach where some libraries (presumable with

similar focus) start to form networks, and the interconnection can proceed as far as

culture and technology allows.

• From an economic point of view, a centralized infrastructure such as as a Web search

engine incurs significant maintenance costs, which no single library can afford. In this

context, a solution allowing to distribute infrastructure costs is much more appropriate4.

Therefore, our vision is a completely decentralized library network [7], based on peer-to-peer
4Another option would be a fee-based service, but this contradicts with the ‘free access’ policy of most libraries



1.3 Problem Statement and Outline 8

technology. Each library can join this network freely and provide the amount of information

it is willing and able to offer. Users can search for relevant documents, without the need to

identify relevant libraries themselves; this is done by the self-organizing network. Peer-to-peer

networks are especially suited to contexts where budget is limited and no one can (or wants

to) take the burden of funding a central coordinating instance [150].

Summary Since their inception, a core activity of libraries is to maintain and provide cata-

logs of their holdings. To identify documents within these catalogs, they are marked-up with

a well established set of metadata information. The Dublin Core metadata standard is estab-

lished as common denominator to all major metadata schemas for digital libraries. However,

it only covers core information and is complemented by other not so common schemas for

provision of extended metadata. Regarding subject classification, no common standard exists,

and it is difficult to imagine how such a unifying classification could be developed. On the

other hand, the predominant Western classification schemes have a lot in common, because all

of them stem from the same ancestor, the DDC.

The library field is characterized by a large degree of autonomy. Each library maintains its

own catalog, decides on its own about its accessibility guidelines, etc. On the other hand, it

has become clear to the major players in the library area, that to compete with the Web as

information provider, interconnecting libraries is crucial. Modern catalogs are already avail-

able in electronic form, and thus can be made accessible via search techniques, e.g. from the

database or information retrieval area. Indeed, most libraries already provide public search

interfaces for end-users on the Web. Additionally, not only the catalog data, but more and

more the documents themselves become available in electronic form; this increases search and

provision options further.

Current initiatives to integrate distributed catalogs and digital document archives are using

a central instance. This instance typically replicates all information from connected sources

to provide seamless search over all collections. Our vision is to replace such a central co-

ordinating instance with a network of loosely coupled nodes, providing a search service in a

cooperative fashion, based on peer-to-peer technology.

1.3 Problem Statement and Outline

Based on digital library characteristics, we can identify the following requirements for the

envisioned network:

• Due to the autonomy of libraries we need a completely decentralized network infras-
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tructure which allows information providers to join and leave easily.

• This network needs to route and process queries in an efficient manner. In particular, a

query should be routed only to relevant providers to avoid needless query processing at

library servers.

• Query capabilities offered by this network should be as good as with current online

catalog search interfaces.

• To cater to the trend of digital document provision, keyword search on document full

text should be supported – preferably in combination with metadata-based search –,

returning only the most relevant documents to the user.

• While standardization of metadata schemas has progressed quite well, still different

schemas and differences in their usage exist between libraries. Optimally, this hetero-

geneity is bridged by automatic mapping between queries and each respective library

schema.

• The main competitive advantage of libraries is their information quality and control.

Therefore, mechanisms to maintain quality and filter out low-quality or spam providers

are required.

A complete coverage of these requirements would exceed by far the scope of a thesis. There-

fore we focused our research on metadata search and provision which is at the core of (digital)

libraries. Our main contribution is an approach for efficient metadata search in a decentralized

library network. We designed and implemented a schema-based peer-to-peer network (SPN)

which combines techniques from distributed databases and peer-to-peer systems to achieve

efficient database-like query processing on metadata in a fully distributed context. Addition-

ally, we present an extension of this approach which supports the notion of ‘best matches’ and

provides combined keyword and metadata search capabilities. The issues of schema mapping

and quality maintenance have not been tackled. However, the proposed network allows for

coexistence of different catalog schemas.

Outline Chapter 2 gives an introduction to the fields which form the foundations of our work.

As mentioned, the most important areas are distributed (relational) databases and peer-to-peer

networks. The Semantic Web standards we use for metadata representation are also introduced

here. Chapter 3 analyzes the design dimensions of SPNs and outlines possible approaches for

each design challenge. The resulting design space is used to review and classify related work.

Our own approach to these challenges, super-peer-based query routing (SPQR), is described

in Chapter 4. We present the algorithms for indexing and routing and show the results of

a simulation-based evaluation. Chapter 5 describes the design and implementation of OAI-
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P2P, an infrastructure to interconnect OAI-conformant library systems. The next step toward

a full solution is the extension to best-match querying. In chapter 6, we describe the database

foundations for preference-based queries and our approach to support them in a peer-to-peer

context. Chapter 7 gives a summary and outlook5.

5Chapters 3–6 discuss in detail the author’s research conducted at L3S Research Center under the supervision of
Prof. Dr. Wolfgang Nejdl on schema-based peer-to-peer systems and library networks, and are based the following
publications:

Chapter 3 Design issues and challenges for RDF- and schema-based peer-to-peer systems.
SIGMOD Record, September 2003, pp. 41-46.
Co-authors: W. Nejdl, M. Sintek

Schema-based peer-to-peer systems.
In Ralf Steinmetz and Klaus Wehrle (Eds.). Peer-to-Peer Systems and Applications. Springer, 2005.
Co-author: W. Nejdl

Chapter 4 Super-peer-based routing and clustering strategies for RDF-based peer-to-peer networks.
In Proceedings of the 12th International World Wide Web Conference (WWW2003),

Budapest, Hungary, May 2003.
Co-authors: W. Nejdl, M.n Wolpers, C. Schmitz, M. Schlosser, I. Brunkhorst and A. Löser.

Super-peer-based routing strategies for RDF-based peer-to-peer networks.
Web Semantics 1 (2), Feb. 2004, pp. 137-240.
Co-authors: W. Nejdl, M.n Wolpers, C. Schmitz, M. Schlosser, I. Brunkhorst and A. Löser.

A simulation framework for schema-based query routing in P2P networks.
In Proceedings of the Workshop on Peer-to-Peer Computing and Databases, EDBT, 2004
Co-author: U. Thaden.

Chapter 5 OAI-P2P: A peer-to-peer network for Open Archives.
In Proceedings of the Workshop on Dist. Comp. Architectures for Digital Libraries, ICPP, 2002.
Co-authors: B. Ahlborn, W. Nejdl.

Towards a modification exchange language for distributed RDF repositories.
In Proceedings of the International Semantic Web Conference (ISWC), 2002.
Co-authors: W. Nejdl, B. Simon, J. Tane.

Chapter 6 Top-k query evaluation for schema-based peer-to-peer networks.
In Proceedings of the 3rd International Semantic Web Conference (ISWC), 2004.
Co-authors: W. Nejdl, U. Thaden, W.-T. Balke.

Progressive distributed top-k retrieval in peer-to-peer networks.
In Proceedings of the 21st International Conference on Data Engineering (ICDE) 2005.
Co-authors: W.-T. Balke, W. Nejdl, U. Thaden.

DL meets P2P — Distributed document retrieval based on classification and content.
In Proceedings of the 9th European Conference on Research and Advanced Technology,

for Digital Libraries (ECDL 2005), Vienna, Austria, September 2005. Best paper award.
Co-authors: W.-T. Balke, W. Nejdl, U. Thaden.

Querying the Semantic Web with Preferences.
In Proceedings of the 5th International Semantic Web Conference (ISWC), 2006.
Co-authors: J. Z. Pan, U. Thaden.

A complete publication list can be found in Appendix B.



Chapter 2

Foundations

In this chapter, we review the fundamental techniques and algorithms underlying SPNs. First

and foremost this is database technology: SPNs can be seen as an evolution of distributed

database systems. We also give an overview about Semantic Web concepts and standards for

data representation, as these techniques are used for metadata representation and querying

in OAI-P2P. Nowadays peer-to-peer networks are a research area in their own right, and we

review the state of the art in this area as well.

2.1 Relational Databases

The relational model was invented in the 1970s as reaction to the issues of hierarchical data-

bases, which had been prevalent at that time: in hierarchical databases, applications worked

direct on the physical record structure and had to be adapted each time the record structure

changed. This called for a decoupling of logical record view and physical storage layout.

Additionally, data could only be structured in a tree-based fashion which is often inappropriate.

In 1970, Ted Codd presented an alternative approach, the relational model [39], with a very

simple data organization: All data records are stored as tables, and links between records are

modeled by using the key of an object as reference attribute (foreign key) in another table.

With the implementation of System R [9], the first efficient relational database system, and the

subsequent release of IBM DB/2, the relational model became the dominant data organization

and storage principle.

The basic notion in the relational model is the relation, defined over a set of attributes. Let

A = {a1, a2, . . . , an} be the set of attributes, and A1, A2, . . . , An the sets of allowed values

for each attribute ai. Then we can see a relation R as set of tuples:

11
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R = {(v1, v2, . . . , vn)|vi ∈ Ai}
We call a each tuple database object.

Such a relation can be viewed as table, where each attribute specifies a column, and each tuple

is a row. The attribute set A in conjunction with the sets Ai of allowed value form the table

schema. We denote set of all table schemas of a database database schema. The set Ai of all

allowed values for attribute i is the attribute domain.

Codd proposed a relational algebra to express queries on a set of relations, consisting of union,

set difference, Cartesian product, selection and projection. We can define union, intersection

and difference on relations as on any sets:

R1 ∪ R2 = {t|t ∈ R1 ∨ t ∈ R2}
R1 ∩ R2 = {t|t ∈ R1 ∧ t ∈ R2}
R1 − R2 = {t|t ∈ R1 ∧ t /∈ R2}

These are only defined if R1 and R2 have the same table schema.

The Cartesian product of two relations R1 and R2 is

R1 × R2 = {(r1, . . . , rm, s1, . . . , sn)|(r1, . . . , rm) ∈ R1 ∧ (s1, . . . , sn) ∈ R2}
In addition to classic set operators, two further operators are introduced to represent queries on

relational databases, the projection and selection operator. The projection operator produces

from the input a new relation with only a subset of the original attributes. We can see it as

kind of vertical selections. For R defined as above, the projection on attributes B1, . . . , Bk is

defined as

πB1,...,Bk
(R) =

{
(w1, . . . , wk)|∃t = (v1, v2, . . . , vn)∀k

i=1∃jBi = Aj ∧ wi = vj

}
While projection gives us a column subset, we can choose a row subset using the selection

operator. Given a boolean function f on the tuples of R, selection is defined as

σf (R) = {t|t ∈ R ∧ f(t)}
If R1 and R2 share some attributes, the Cartesian product often is not what you want because

the resulting relation contains duplicate attributes. This is where the join operator comes in.

It also combines tuples from two relations, but only these which have equal values for all

attributes in an intersection of R1s and R2s schemas. The natural join is just a shortcut for a

combination of the basic operators. When AR1 is the set of attributes of R1, and AR2 the set

of attributes of R2, then the natural join of R1 and R2 is

R1 � R2 = πAR1
∪(AR2

\AR1
)(σc(R1 × R2))

with c(t) = true ⇔ ∀Ai ∈ AR1 ∪ AR2 : R1.Ai(t) = R2.Ai(t)

All modern RDBMS are based on relational bag algebra, not on set algebra as described above.

This means, that duplicate tuples stay in the relation as distinct rows, and some laws pertain-

ing to sets do not hold (e.g., the distributive law). To keep our model simple, we will continue
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with set-based formalization as usual in database models; a generalization to bags is straight-

forward.

Another simplification of our model is that we do not take into account grouping and sorting

operations (γ rsp. τ operator).

2.1.1 Query Plans

Any database system is a complex piece of software, and principles of software engineering

need to be applied to to arrive at a robust and efficient system. For large systems, modulariza-

tion is the key to a good software architecture, where the system is decomposed into encapsu-

lated components with well defined interfaces. Such a modularization has been achieved early

in the evolution of relational databases, in the seminal System R [9]. The separation of con-

cerns proposed in this system is (with modifications) still in use in all major database products.

We won’t discuss the issue of modifications to the database (transaction management, logging,

recovery, etc.), because this is out of scope of our work. However, the query processing ap-

proach can be seen as model for our context, too, and thus it is worth to look at it in detail. One

of the many ideas in system R is the division of query processing into several phases, query

parsing, query plan generation and plan execution (see Fig. 2.1.1). During query parsing, the

query is checked for validity (syntactical well-formedness, existence of all referenced tables

and columns, conformance of attribute types with used operators), and – if it is a valid query

– transformed into a logical query plan. Now the crucial phase, query plan creation, starts. In

this phase, the query is converted from a relational algebra representation into a physical query

plan. In the first step, rewriting, the query is transformed into an optimized relational algebra

expression; afterwards that expression is translated into a tree of physical database operations.

Both parser and rewriter/optimizer rely on the metadata about the database relations, foremost

the database schema. All metadata is stored in a (logically) separate database, the catalog.

Let’s review the query plan generation with a simple example. Suppose, we have the tables

PUBLICATION, PERSON and AUTHOR, where the last one describes a persons authorship

of publications:

PUBLICATION(ID, TITLE, DATE, LANGUAGE)
PERSON(ID, NAME, SURNAME)
AUTHOR(PUB ID, PERSON ID)

The standard language to access relational databases is SQL [34, 168]. If we want to find

English translations of the works by Immanuel Kant, we could express that query in SQL as
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Figure 2.1: Query Processing Overview

SELECT PUBLICATION.ID, PUBLICATION.TITLE
FROM PUBLICATION, PERSON, AUTHOR
WHERE AUTHOR.PUB ID = PUBLICATION.ID AND AUTHOR.PERSON ID = PERSON.ID

AND PERSON.NAME = ’Kant’ AND PERSON.SURNAME = ’Immanuel’
AND PUBLICATION.LANGUAGE=’en’.

A straightforward logical query plan is to join all tables, then select according to the person

constraints and finally project the title:

πID, TITLE(σNAME=’Kant’∧SURNAME=’Immanuel’∧LANGUAGE=’en’((PERSON � AUTHOR) � DOC))

Obviously, this would require access to all objects of all three tables, a very inefficient query

plan. A better solution is to perform selections based on the right person first, then join with the

author and document tables, select with respect to the language constraint, and finally project

id and title:

πID, TITLE(σLANGUAGE=’en’((σNAME=’Kant’∧SURNAME=’Immanuel’(PERSON) � AUTHOR) � DOC))

How query plan optimization works is sketched later.

Physical query plan While the RDBMS interface is set (or, more correctly, bag) based, in-

ternally at some point the declarative style must finally be converted to an imperative one,

because current processor instruction sets are based on the imperative paradigm. The physical

query plan is the connection between the declarative and imperative world. It is produced by

transforming the declarative logical query plan, but the implementation of each of it’s opera-

tions is provided (by the database manufacturer) in an imperative style.

Modern physical database operators follow the iterator pattern [64]. Each operator provides

an API for starting an iteration, and then requesting the next matching tuple. This style allows

to plug together operators freely, because all provide the same access interface.

The most basic physical operation is the table scan which iterates over a table and delivers

selected tuples. Suppose that an index for PERSON.NAME is available. Then a good physical
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idxscanNAME(PERSON, NAME=’Kant’)

AUTHOR

merge-joinPERSON.ID=AUTHOR.PERSONID PUBLICATION

merge-joinPUBLICATION.ID=AUTHOR.PUBID

filter(SURNAME=’Immanuel’)

filter(LANGUAGE=’en’)

project({ID,TITLE})

Figure 2.2: Physical Plan Example

plan would be the one shown in Fig. 2.2. Table scan operators such as scan and idxscan
execute selection and projection. The scan operator directly iterates over table blocks, while

idxscan uses an index to access only requested tuples.

Query Plan Optimization Logical as well as physical query plan are optimized according

to estimated operator costs. For example, selections are pushed down as far as possible to

reduce the number of accessed tuples. In general, for each operation, a processing cost is

estimated, and the plan is constructed so that the complete query cost estimate is minimal. It

is already a difficult task to estimate processing correct costs for a simple operator, because

this may depend on many factors (table size, distribution of values within one column, size

of input set from preceding operation). Cost estimation is based on constants determined

for the underlying database engine and on statistics collected on the current database. These

statistics include current relation sizes, actual cost of operators collected during previous query

executions, etc. Due to the difficulty of correct cost estimation, heuristics are also taken into

account when deciding between different alternatives.

Based on this estimates, algorithms have developed which search for the optimal query plan

for a given query. One of the frequently used approaches is dynamic programming. In this

algorithm, all possible plans are expanded in a breadth-first manner. Partial plans are deleted

(pruned) as soon as it turns out that they can’t become optimal anymore. The other plans

are further expanded until an optimal complete plan is found. Dynamic Programming works

well for joins up to 6 relations, but becomes too expensive for more joins due to the expo-

nential complexity of the algorithm. It has be shown that finding the optimal query plan is
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NP-complete in the number of joined tables.

Therefore, various heuristic strategies have been developed which try to focus on promising

areas in the query plan search space instead of doing exhaustive search. The simplest one

is the greedy algorithm, which builds only one plan (depths first search) based on heuristics.

However, the outcome of this algorithm is often far from optimal. Other algorithms such as

simulated annealing [77] or iterative improvement [175] also start with one or several plans

created heuristically, but then go on to apply (random) modifications to find a better plan. It

has been shown experimentally that for more than a few involved relations, such algorithms

lead to nearly optimal plans with a substantially improved performance [93].

In today’s databases the boundary between logical and physical query optimization has become

more and more blurring, up to the point where only one integrated plan optimization process

is used [65].

Summary The relational model provides a well-defined and proven foundation for model-

ing complex query processing algorithms. Query plans are an established device to separate

the logical query level from physical, by transforming declarative queries to imperative-style

execution instructions.

2.2 Distributed Databases

Often, related data is not stored in one central database, but distributed over several physical

locations. For a client the optimal approach is access to that distributed context as if it would be

a single database. Therefore, prototypes of distributed database systems have been developed

very early, e.g., System R* [103] or Distributed Ingres [171].

With a homogeneous schema, distribution can occur in two different ways:

• Different relations or different attributes (columns) of one relation can be stored on

different nodes. This is called vertical data distribution.

• Tuples of the same logical table can be stored on different nodes. This is referred to as

horizontal distribution.

The case of distributed querying in the context of heterogeneous schemas is much more dif-

ficult, and an active research area in itself. In the late 90s, several research projects started

to build solutions for loosely interconnecting data sources available via the Web. TSIMMIS

(The Stanford-IBM Manager of Multiple Information Sources, [136]) is one of the first such
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systems for integration of semi-structured data from Web sources. It employs a mediator-

wrapper architecture, where a central mediator takes care of query planning, while specialized

wrappers translate (partial) queries to source-specific requests. TSIMMIS focuses on selection

and projection, based on the argument that joins are unlikely in the Web context. Other data

integration systems are Information Manifold [96], AmosII [80], Garlic [81], Disco [180] and

Strudel [55] (the predecessor of Piazza, cf. 3.4.2).

In this thesis, we do not discuss the case of heterogeneous schemas and schema integration

methods and focus only on query plans for the homogeneous case.

Distributed query plan Query plan creation for the distributed case works like in the local

setting, but some new factors have to be considered. First, the query optimizer has to find out

where the tables (or table fragments) referenced in the query are located. It is not necessary

to maintain a complete catalog at this site; if only partial information is available, a partial

plan can be created and forwarded to other nodes, where it is refined until the plan is com-

plete [25]. The next step is to split the query into subqueries, according to the distribution of

the data. The best way to model this is by introducing an additional pair of operators, send and

receive [86]. The receive operator acts as a proxy and offers the same iterator interface as the

other physical operators. The send operator sends result tuples of a local sub-query, triggered

by requests from its receive sibling in a consumer-producer fashion. These operators encap-

sulate all communication issues so that all other operators don’t need to distinguish between

local and distributed evaluation.

The optimization algorithm can basically stay the same as in the central case, but needs to take

additional factors into account. Cost factors as bandwidth and latency have to be involved into

the cost estimation to achieve optimal plans. Also, the number of possible plans increases,

because the send/receive operator pairs can be added at various positions in the plan. If more

processing is done at the distributed nodes (query shipping), the amount of data sent is smaller,

but the processing costs at the affected nodes might be higher. If more ’raw’ data is transferred

to the coordinating node instead (data shipping), and the query execution takes place there,

then this involves typically higher communication costs, but can reduce processing efforts. In-

stead of pure query or data shipping, intermediate approaches can be used; this often combines

the advantages of both approaches [57]. The picture becomes even more complex if caching

is introduced at the coordinating node. As query plan enumeration is exponential, exhaus-

tive visit of the complete query plan search space is out of question for distributed queries.

Therefore, new heuristics (such as the ones sketched above) have to be introduced for select-

ing promising plans. Finally, more trade-offs have to be made, e.g. shortest response time vs.

shortest overall query processing effort.
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Coordinator

Database A

idxscanTITLE(PUBLICATION, 
TITLE LIKE ’Critique%’)

send

union

project({ID,TITLE, DATE})

receive receive

distinct

filter(LANGUAGE=’en’)

Database A

idxscanTITLE(PUBLICATION, 
TITLE LIKE ’Critique%’)

send

project({ID,TITLE, DATE})

filter(LANGUAGE=’en’)

Figure 2.3: Distributed Query Plan Example

As an example, let’s take a look at query plans for horizontal distribution. To reconstruct a

horizontally fragmented relation, it is just required to union the fragments from all nodes which

provide this relation. Figure 2.3 shows such a case for a query for all publications in English

with a title starting with ’Critique’. Due to the distribution, new opportunities and requirements

for optimization occur: One important optimization is to determine nodes which will produce

empty relations as result, and remove them from the plan: if relation constraints for nodes (e.g.,

value ranges) are known, then these can be compared to the selection constraint, and all nodes

where they are contradicting can be omitted from processing. Another common optimization

is pushing down selections and projections to the involved nodes.

If the horizontally fragmented relation is to be joined with another relation, it is often advan-

tageous to push down the join operator. Suppose we want to join relations R and S, and R

is partitioned into two horizontal fragments R1 and R2. Then, the join can be computed as

(R1 ∪ R2) � S = (R1 � S) ∪ (R2 � S). For example, in the library catalog context we can

safely assume that a site provides the required person tuples for all authors of its documents.

In this case, we can execute partial joins at all nodes first and union the results afterwards.

To merge a vertical distribution, a join on the table key needs to be performed. If the query

is a projection, we can optimize the plan by leaving out nodes which do not store projected

attributes.

Federated databases Often, data sources in a distributed setting are highly autonomous and

not willing to integrate so tightly that distributed query plans are possible. Such a scenario

is called database federation [163]. In this case, the coordinating instance maintains a feder-

ated schema and mappings to the participants schemas. Queries are posed in the federated

schema. However, in contrast to tightly coupled systems, the federated database management



2.2 Distributed Databases 19

system needs to convert the partial query plans back to partial queries that are accepted by

the respective database. Then, it sends the resulting queries via the respective offered query

interfaces.

To achieve a flexible system architecture, the translation of query plan fragments into system-

specific requests can be delegated to backend wrappers (e.g., in [136]). This allows for easy

extension of the system, when new types of data sources have to be integrated. This wrapper

architecture has been used as model for our prototype architecture (cf. 5).

Large-scale distributed database systems Most approaches in distributed databases aim at

integration of comparatively few database nodes. Two more recent systems tackle the problem

of interconnecting a larger amount of nodes, Mariposa [172] and ObjectGlobe [25].

Mariposa uses a microeconomic model for cost optimization in the query planning process.

Here, a client allocates a budget together with his query, and the (central) query planner asks

data sources for bids on query operator execution. The cheapest provider is selected. This ap-

proach increases scalability of the overall system, compared to purely central cost estimation.

However, a solution to overall currency management has not been devised. Thus, the approach

is not easily applicable to open networks.

The goal of ObjectGlobe is to fulfill the vision of the “Internet as a global database” [102].

It can also be viewed as distributed query processor, where a query plan is devised and ex-

ecuted based on schema information. ObjectGlobe assumes a global catalog provider where

all schema information is stored 1. Nodes can act as data providers (providing information),

cycle providers (providing processing power), and function providers (providing any kind of

additional functions, such as aggregation or transformation functions). All providers can join

and leave dynamically, but have to register with their self-description at the central catalog

instance. In contrast to traditional mediator-based systems, not only sub-queries are delegated

to data providers, but the whole query execution is distributed. As mentioned, participating

nodes can provide data as well as computing power, and the query plan is devised to optimize

query processing performance across all nodes. The plan is executed using the iterator model

described in 2.1.

While these systems advanced the scalability of distributed query processing substantially,

they are still far away from internet-scale dimensions. For example, Mariposa aims at inte-

gration of “1000 sites or more”( [172]). The evaluations performed in these and other sys-

tems [136, 96, 80, 81, 180, 55] typically included less than a dozen sites. See Section 3.4 for

an overview of peer-to-peer systems for distributed query processing.
1This catalog can be physically distributed over a cluster of catalog provider nodes
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Summary Traditional distributed database techniques aim at tight integration of participat-

ing data sources. This has been achieved by evolving the query plan approach to facilitate

distributed query plans. Distributed query plans are created by a central coordinating instance.

Thus, these approaches can’t be applied directly for the creation of decentralized networks of

independent data sources. Besides, the distributed query planning and execution algorithms

don not scale to large numbers of nodes. However, they build an important starting point for

most SPN approaches, as we will show in Chapter 3.

2.3 Semantic Web

The Semantic Web initiative is a reaction on two factors regarding the evolution of the Web:

on the one hand, it proved to be a very successful medium to disseminate information. On

the other hand, this information, while often in the form of data, is very hard to access in an

automated fashion. For example, nearly every large library provides an online version of its

catalog, but these Web interfaces can’t be easily used as software services, because their in-

put and output formats are optimized for human users, and difficult to interpret by machines.

This is where the vision of the Semantic Web kicks in: According to that vision, whenever

some structured, machine-processable information is available, it is provided along with the

human-readable context on the Web. Reasoning processes use this additional information (op-

tionally together with the content itself) to find resources matching users’ information needs.

Initially, the initiative focused on representation standards for such information, but recently

generic information request facilities also came into the focus of Semantic Web standardiza-

tion (see 2.3.2).

Some Semantic Web pioneers use the term ’meaning’ to characterize their vision. For exam-

ple, in [18] Berners-Lee et al. state: “The Semantic Web is an extension of the current web

in which information is given well-defined meaning, better enabling computers and people to

work in cooperation”. This terminology might be a bit misleading; if at all, computers have

a completely different way of ’understanding’ a ’meaning’ than humans. Besides, it is not so

much the ’well-defined meaning’, which is missing on today’s Web pages. On the contrary,

high-quality Web information sources provide their information in a way very easily under-

standable by humans. What makes it difficult to devise automated processes for information

extraction is not missing ’meaning’, but missing (or non-uniform, or not formally-defined)

regular format or structure.

Semantic Web Tower Accordingly, what the Semantic Web provides so far are standardized

means to formally structure and represent information. These standards are meant to be layers
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Figure 2.4: Semantic Web Tower

in a ’Semantic Web tower’, as shown in Figure 2.4 (adapted from [16]). The tower consists of

the following layers:

• Lexical Layer This layer is shared with the current Web and provides basics for in-

formation and link encoding, namely using Unicode character encoding and URIs as

unique resource ids.

• Syntactical Layer The syntactical layer provides the foundations for RDF syntax: XML

as machine-processable format, namespaces to abbreviate URI fragments and XML

Schema to attach data types to raw strings.

• Data Layer The data layer consists of the Resource Description Format (RDF), a graph-

based format to represent simple statements, and RDF Schema (RDFS), consisting of

some basic constructs to create schemas for RDF-encoded data (see 2.3.1).

• Ontology Layer RDFS provides only limited means to specify relations between classes

and between properties (actually only subsumption). The ontology layer significantly in-

creases expressivity for specification of such relations. It uses Description Logic [10] as

formalism to specify full-fledged ontologies. The ontology layer has recently been stan-

dardized; its ontology description language OWL (Ontology Web Language) comes in

three flavors: OWL Lite, OWL-DL and OWL Full [48]. These flavors differ in language

expressivity, and accordingly, in the degree of computability. OWL Lite is decidable in

polynomial time, but not much more expressive than RDFS. OWL DL offers the com-

plete Description Logic expressivity, at the price of NP-completeness. OWL Full is even

undecidable and thus not of much practical use.

• Rules Layer Not every association between statements can be described as part of a

(DL) ontology. Therefore, a separate layer is envisioned which facilitates the addition

of rules to knowledge bases which allow to derive further information from existing one.

Rule based extensions are currently discussed in a W3C working group [153].

• Reliability Layer When it comes to automated exchange of information on the Web, the



2.3 Semantic Web 22

ability to assess the quality and reliability of information sources is crucial. Currently,

it is unclear how to reach that goal. Proof and Trust seem to be rather placeholders

denoting unresolved problems than actual layers providing solutions.

This tower model has recently spawned a lot of discussion. During design of the Ontology

layer, it turned out that especially RDFS is rather a burden than a helpful foundation for an

ontology description language (see [134] for a detailed discussion). For the upper levels there

is no standard available yet. Interestingly, we already see similar problems regarding the

interplay between ontologies and rules as before between RDFS and ontologies: it seems that

the ontology layer expressivity has to be restricted (in this case, probably significantly) to

ensure proper interplay between ontologies and rules without losing decidability [73].

The work presented in this thesis does not support interconnection of ontology-based informa-

tion sources, but is limited to RDF and RDFS. Therefore, we will only describe these standards

in more detail, and won’t consider OWL and higher Semantic Web layers in the following.

2.3.1 RDF and RDFS

In RDF, all information is encoded as (sets of) statements. Each statement consists of a subject,

a predicate and an object (always in that order). Subjects are uniquely identified by URIs. For

example, to say that the book “Kritik der reinen Vernunft” was written by Immanuel Kant in

1781, we first need to assign it a URI, let’s say http://books.org/kritik. Now, we encode our

knowledge in statements, first in an informal syntax:

http://books.org/kritik has title “Kritik der reinen Vernunft”.
http://books.org/kritik has creator “Immanuel Kant”.
http://books.org/kritik has publication date “1781”.

Items identified by URI are called resources, and data items (like all objects of the sample

statements) literals.

So far, we have gained little, because the predicate part of our statements has been chosen in an

ad-hoc fashion. For example, another source may have chosen has author to denote the infor-

mation in the second statement. What we need is a description schema on which all contribut-

ing information sources agree, at least to some degree. As mentioned in section 1.1, the Dublin

Core Initiative provides exactly such a standardized vocabulary. It is available in several tech-

nical formats (bindings), among them an RDF binding. In RDF, the ‘verbs’ used to connect

subject and object at the predicate position are called properties. To avoid name clashes, prop-

erty names consist of a namespace and a name. The namespace is a URI, but a shorthand can

be introduced using XML namespace syntax and semantics. We will use dc as shorthand for

the Dublin Core vocabulary and books as shorthand for ‘‘http://books.org/’’; then



2.3 Semantic Web 23

1781

dc:date

http://
www.books.org /

kritik
dc:title Kritik der reinen Vernunft

dc:creator
Immanuel Kant

http://
www.books.org/

critique1

1899
dc:date

dc:titleCritique of pure reason

dc:creator
John Miller Dow Meiklejohn

bib:translationOf

http://
www.books.org/

critique2

1948

dc:date

dc:titleCritique of pure reason

dc:creator

Allen W. Wood
bib:translationOf

en

dc:lang

en

dc:lang

de

dc:langdc:creator
Paul Guyer

Figure 2.5: Sample Knowledge Graph of Book Relations

we can write our example statements as follows (in N3 notation [15]):

namespace dc "http://purl.org/dc/elements/1.1/".

namespace books "http://books.org/".

books:kritik dc:title "Kritik der reinen Vernunft".

books:kritik dc:creator "Immanuel Kant".

books:kritik dc:date "1781".

There is also a standard XML format for RDF statements [13].

To visualize RDF statements as knowledge graphs, a common notation has been established

for RDF: Resources are depicted as ellipses, literals as rectangles, and properties as arrows

connecting resources and literals. The (sub-)graph visualizing the “Kritik der reinen Vernunft”

metadata is shown on the right hand of of Fig. 2.5.

With this simple example, one may wonder why a new data format was required at all, be-

cause such information is expressible in XML equally well. But the advantages of RDF come

into play if we start to interconnect basic resource descriptions, thus creating larger graphs of

knowledge. For example, we can include relations between books into our model, as shown in

Figure 2.5.

Now, we can pose questions to our knowledge base such as Give me all translations of Kant’s

‘Kritik’ into English2. Note that the nodes and edges in that graph do not necessarily need

to come from the same source. For example, we could imagine one source specializing on

philosophers in the 18th century, another dedicated to Kant’s work only, and a third specialized

on translations of German works into English.
2Current library metadata sets do not provide the depicted translationOf relation; however, it could be derived

from the Uniform Title attribute (cf. Figure 1.1).
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Figure 2.6: Graph pattern for query Give me all translations of Kant’s ‘Kritik’ into English

2.3.2 Semantic Web Query Languages

A data model without the ability to pose queries against it is quite useless. Therefore, it is

no wonder that a lot of RDF/S query languages have been proposed. [139] lists 20 different

Semantic Web query languages, and is still not complete. We can distinguish graph pattern

matching, rule-based and XML-derived languages.

Graph pattern matching languages In these languages, the condition is always a graph

pattern, where some variables are free. Figure 2.6 shows such a pattern for the sample query

above (where ?X denotes a free variable). As a result, either a list of tuples with valid variable

bindings is returned (as in SQL), or these bindings are used to construct a new graph from

given construction template.

The most prominent representatives of this group are RDQL [72], RQL [83] and the upcoming

standard SPARQL (current draft is [140]). SPARQL (and its predecessor RDQL) are working

on the raw RDF graph and do not by default take RDFS semantics, e.g., subsumption relation-

ships into account. However, RDFS or OWL semantics can be introduced by complementing

the RDF graph with all statements entailed by the chosen semantics. RQL is RDFS-aware,

and even provides semantic sugar to deal with conditions on schema level.

The following example illustrates the differences. To get all paperbacks with title starting with

“Critique”, you need to write the following in SPARQL:

SELECT ?X WHERE {
?X rdf:type book:Paperback.
?X dc:title ?T.
FILTER (REGEX(?T, "Critique.*"))}

while in RQL you can select from a set of class instances:

SELECT X FROM {X;b:Paperback} dc:title {T} WHERE

T LIKE "Critique*".

The latter query will also find books of subtype of book:Paperback, while the former matches

only resource of exact type book:Paperback.

On the other hand, SPARQL offers an extensive set of query modifiers beside the pure graph

pattern matching expressions. FILTER constructs can be used to impose additional constraints,
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ORDER-BY specifies the output order of solutions, and LIMIT can be used to restrict the

number of solutions returned. By default solutions are returned as tuples of variable bindings.

But it is also possible to let a query construct a new (sub-)graph for each solution, using the

CONSTRUCT expression, making it possible to nest queries.

When compared to the relational model, it turns out that RDF subgraph matching basically can

be expressed in relational terms as well, by representing RDF statements as rows in a statement

table, such as STATEMENTS(SUBJECT, PREDICATE, OBJECT). Then, a graph matching

statement can be translated as self-join on this table. For example, the sample SPARQL query

above would be translated to
SELECT T1.SUBJECT AS X FROM STATEMENTS T1, STATEMENTS T2 WHERE

T1.PREDICATE = ’rdf:type’ AND T1.OBJECT = ’book:Paperback’ AND

T2.PREDICATE = ’dc:title’ AND T2.OBJECT LIKE ’Critique%’ AND

T1.SUBJECT = T2.SUBJECT

[45] gives a translation of most SPARQL constructs into relational query plans, based on a

statements table. He also points out the few exceptions where SPARQL semantics is not com-

patible with the relational model, e.g., in the handling of missing rsp. null values. A similar

approach has also been taken by Oracle to add RDF support to their database product [38].

SPARQL is nearing its standardization, and will very likely become the dominant Semantic

Web graph pattern matching language.

Deductive Languages Languages in this group are logic based: they view RDF statements

as facts, and try to prove clauses based on these facts. deductive languages provide graph

pattern matching capabilities as well, but extend query expressivity, because they allow to

specify additional rules. When succeeding, they also return all possible bindings for free

variables. Members of this group are N3QL [17], TRIPLE [166], RuleML [20], and QEL (see

5.3). To illustrate the way deductive languages work we use TRIPLE as example. TRIPLE

offers (Horn-) logic expressions including existential and universal quantifiers. The sample

query shown in SPARQL and RQL is expressed in TRIPLE as:

FORALL B,T result(B) <--
B[rdf:type --> book:Paperback;
dc:title --> T] AND like(T, "Critique.*") @booksModel

Note that the model the query is evaluated against has to be specified explicitly; in this case,

it is @booksModel. While TRIPLE doesn’t adhere to RDFS semantics by default, they can

be specified by adding rules to the original query. For example, to add all type statements

inferable by subclass declarations, we can use the following rule:
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FORALL M @subsumption(M) {
FORALL O,T O[type-->T] <--

EXISTS S (S[rdfs:subClassOf-->T] AND O[rdf:type-->S]).
}

This query creates a new model @subsumption(M) including the additional statements

from a given model M. For the complete RDFS rule set see [119]. Queries can be chained using

the result model of one query as input for the next one. For example, to take all subclass rela-

tionships into account, the sample query would just evaluate against

@subsumption(booksModel) instead of @booksModel.

XML-based Languages As there is an XML representation of RDF, it seems a good idea

to reuse XML query languages as foundation for an RDF query language. This has been tried

in two different ways: [148] have proposed to use XQuery without change. This poses the

following problem: any RDF graph can be represented in RDF/XML in different ways, and

an XQuery query would evaluate differently for each representation. To overcome this issue,

a canonical, unambiguous RDF/XML representation is introduced. This approach is called

Syntactic Web, because no semantics are supported; it’s just the RDF graph that is evaluated.

However, graph extension by entailment could be supported as additional step before query

evaluation. A similar approach is taken by Excerpt [28], but with another canonical mapping

from an RDF graph to XML. The disadvantage of XML-based querying of RDF/S is that the

result set is an XML structure, not an RDF graph. This makes chaining queries difficult.

Summary The lower Semantic Web layers, up to the Data layer, are already stable and

provide two important facilities:

• a unique identification scheme for resources, enabling annotation of the same items from

different, uncoordinated information sources.

• schema specification support, enabling the standardization, but also flexible extension,

of data representation formats.

For the higher layers, it seems that the development has to continue further to arrive at solutions

usable in large scale distributed networks.

The same picture is recognizable in Semantic Web query languages: Graph pattern match-

ing languages are already mature and a standard is approaching (SPARQL). Logic-based lan-

guages are significantly more expressive, but still research projects. While a unification of

RDF and XML is desirable, current proposals for XML-based RDF query languages do not

fulfil the expectations, because they don’t take significant characteristics of RDF and RDFS

into account.
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2.4 Peer-to-Peer Networks

Peer-to-peer (P2P) networks are determined by three characteristics, self-organization, sym-

metric communication and distributed control [146]:

• Self-Organization In contrast to other distributed systems, P2P networks are not admin-

istered. Their underlying algorithms take care of all required maintenance. Specifically,

P2P networks allow free join of new peers and departure of current ones, and adapt

network connections accordingly.

• Symmetric Communication While in traditional client-server systems a node is either

server or client, in P2P networks all nodes play server and client roles.

• Distributed Control P2P systems do not have a single point of control, such as a central

naming directory or access control point. The control is distributed among the nodes, so

that no node becomes a single point of failure. Whenever a node fails, its share of the

network control is taken over by other nodes.

P2P systems exhibiting not all of these characteristics are called hybrid P2P systems. We will

review P2P search techniques for basic queries here (i.e., queries on one attribute only), and

show how these are applied to build SPNs in Chapter 3.

The first P2P networks have been called unstructured: new peers connected in an arbitrary

fashion to existing ones to join the network, resulting in a random topology. The most promi-

nent representative of these systems was Gnutella, protocol version 0.4 [61]. In these systems,

queries are flooded: they are recursively broadcast to all connected peers, until a predefined

horizon, i.e., a specific number of node hops from the query originator, is reached. Objects

stored outside of this horizon are not considered during query evaluation. All query messages

are distributed in the same way, regardless of their content.

The next step was the development of Distributed Hash Table (DHT) based P2P networks.

These networks assign a key to each object provided by a peer. The only operation supported

is lookup by this key. But this restriction is more than compensated by the advantages of

DHTs: Any objects within the network matching the lookup key are guaranteed to be found

(not taking large-scale network failures into account), and query routing is very efficient. To

achieve these characteristics, DHTs rely on organizing the nodes into a highly regular graph.

Consequently, these systems have been classified as structured P2P networks.

While this distinction into structured and unstructured networks already has some tradition, it

nowadays becomes less and less useful, for the following reasons:

• While query distribution via flooding doesn’t require an underlying regular topology,
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it can benefit from it [32, 157]. This shows that query routing method and network

topology should be viewed as conceptually different (although related) aspects.

• It has been turned out that in some contexts a combined DHT/Flooding solution can

outperform pure flooding as well as a pure DHT [104].

• Recent approaches [118, 155] use randomly formed topologies which however provably

converge against a graph with regular characteristics over time (e.g., small-world char-

acteristic). These topologies are neither structured nor unstructured in the usual sense.

Therefore, a better approach is to classify existing P2P approaches according to their indexing

method instead of their topology type, as in [146]. This yields three categories, local, central,

and distributed indexing. We describe these types in the following subsections.

2.4.1 Local Indexing

Local indexing systems do not have any distributed index at all (as first Gnutella versions).

Query routing here comes in two flavors, flooding [61, 189] and random walks [6, 108]. In

flooding, a query is copied during propagation, and the copies are forwarded in parallel, while

in random walks the query message is passed as token from peer to peer until a hit is found.

No system using random walks has been deployed on larger scale yet. While several attempts

have been made to improve routing in such systems, e.g., by using success heuristics [189] or

by directing preferably to higher degree nodes [6], it is agreed nowadays that pure local index

systems don’t scale well [147]. [104] found that search success rates are high for popular and

thus highly replicated items, but rare items often are not found although they are provided

within the network. Increasing the search horizon improves success rates, but also imposes a

higher message load on the network, and consequently reduces scalability.

2.4.2 Central Indexing

A centralized index contradicts the P2P characteristics given above (no central control), and

therefore systems using such an index fall in the class of hybrid P2P systems. At first sight, a

central index seems completely unattractive, due to the load imposed on the central node. But

Napster showed that one node can easily cope with this load if only the index access, and not

the data access is routed via the center [123, 154].

Probably due to the violation of P2P spirit no significant research of such systems has been

pursued. However, the idea of splitting index responsibility from data provision responsibility

has stayed alive, and has lead to the development of super-peer systems (see below).
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2.4.3 Distributed Indexing

Most current P2P approaches fall into the distributed indexing category. Here, no node in

the network has all the indexing information, but every node has some part of it, sufficient to

forward query messages in the right direction(s), according to their content.

Distributed Hash Tables The most prevalent distributed indexing algorithms are distributed

hash tables (DHTs). DHTs basically support search by key only. Each resource stored in the

network gets a key assigned, and can subsequently be looked up via this key. DHTs work by

assigning a part of the key space to each node and creating a structured connection between all

nodes. The topologies used are highly symmetric, and make each node a root in a spanning tree

covering the whole network. Therefore, for each key there is a unique route from the lookup

originator to the peer responsible for that key. This approach makes routing key-based queries

very efficient: On average, for a network of size n, a query reaches the node responsible for

the key in O(log n) steps.

The dominant topology for DHTs is derived from Plaxton trees [138]. Systems such as

Chord [170], Pastry [151] and Oceanstore [88] rely on this structure. Other graph structures

used for P2P topologies are de Bruijn graphs [82, 122] and Butterflies [110].

A different approach is used by the Content-Addressable Network (CAN, [141]). Here, a

d-dimensional torus, forming a Cartesian coordinate space, is used as underlying structure.

Each peer is assigned a d-dimensional rectangle zone within this space. Lookup-wise, CAN

doesn’t perform as well as other DHTs: its average hop-count until the lookup succeeds is not

logarithmic in the network size, but O(d · n1/d).

In Symphony [111] a topology with small-world characteristics is created. As in the other ap-

proaches, each node is assigned a key space interval. The advantage of Symphony is that only

a constant number k of long distance links has to be maintained by each peer, independently

of the network size. Nodes also form a ring, and select their long distance links according to a

harmonic distribution. This yields an average latency of O(log2 n/k) hops.

P-Grid [1] uses a topology derived from the trie structure. As with other DHT approaches,

the key space is partitioned among peers. Here, the partition is organized according to key

prefixes: each node is responsible for a specific prefix. To facilitate load balancing, the prefix

length may vary, so that densely populated key intervals can be distributed among more peers

than sparsely ones. For very skewed distributions this leads to larger routing tables (in the

worst case linear with network size), because each peer maintains a link to all complementary

prefixes. On the other hand, the average latency stays O(log n) even for skewed distributions.

P-Grid does not require a random hash function, because of its ability to cope with skewed
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key distributions. When using an order-preserving hash function, range queries can be easily

evaluated, by first routing the query to the left boundary of the interval, and then forwarding

it along the successor link each node maintains, until the right boundary is reached. P-Grid

has another property which distinguishes it from other DHT approaches: it provides a very

efficient way to construct the underlying trie, where the key space is partitioned incrementally

in parallel among the nodes, based on random encounters between them [4].

Filtered Flooding For key-based search, DHTs are well established and efficient solutions.

However, other search types such as keyword search or even complex queries can’t be easily

supported by DHTs. Therefore, most systems allowing for complex queries use flooding as

basic query distribution approach, but try to restrict destinations based on query and index

information. In other words, the index acts as filter on the underlying topology. This kind

of index can either be built in advance, or based on query statistics. In the first case, peers

post content summaries which are stored in indexes, and queries are matched against these

summaries [68, 85, 22, 126]. A query is only forwarded to a peer if its self-description matches

against the query. In the latter case, queries first are distributed, and indexes are built based on

peers responses [12]. That way, indexes are built as byproduct of query processing, therefore

no index maintenance messages are required.

Short-cut networks Going one step further, the topology itself can be optimized by modi-

fying links according to query and response statistics [105, 159]. Each peer tries to diminish

its distance to the peers which have resources most frequently requested by this peer. Such

networks are called short-cut networks, because they rely on creation of new short-cuts which

replace detours in the networks.

Interestingly, specific reconnection strategies can lead to the emergence of regular topolo-

gies, although not predefined by the network algorithms [159]. This is characteristic for self-

organizing systems in other areas (like biology) too, and seems to be a promising middle way

between unstructured networks and networks with predefined regular topology.

Super-Peer networks In each network, the connected computers do have different capabil-

ities regarding processing power, storage, bandwidth, availability, etc. Thus, to treat all peers

equally would result in overloading small peers while not exploiting the capabilities of the

more powerful ones. As discussed in [190], exploiting the different capabilities in a P2P net-

work can lead to an efficient network architecture, where powerful and highly available peers,

called super-peers, form a network backbone to which all other peers connect. These super-

peers take over specific responsibilities, e.g., for query routing and schema mediation. Simple
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peers don’t form direct connections to other simple peers, but connect to a super-peer instead,

and all messages are distributed via the super-peer backbone.

Two major file-sharing protocols, FastTrack3 and Gnutella 0.6 [62], also use this approach.

Both protocols assign the responsibility for indexing and query processing to their super-peers,

called supernodes and ultrapeers, respectively4.

Super-peer-based P2P infrastructures usually exploit a two-phase routing architecture, which

routes queries first in the super-peer backbone, and then distributes them to the peers connected

to the super-peers. The last step can sometimes be avoided if the super-peers additionally cache

data from their connected peers. The super-peer backbone can be organized according to any

of the topologies mentioned above. Super-peer routing is usually based on different kinds of

indexing and routing tables, as discussed in [43] and [126]. The super-peer approach is also

used in SPQR (see Chapter 4).

Summary The earlier distinction between structured and unstructured networks is blurring,

and P2P systems are much more characterized by their indexing approach than by their topol-

ogy. Two indexing methods are predominant, DHTs and filtered flooding, which have comple-

mentary advantages and disadvantages. The predetermined structure of DHTs allows for more

efficient query distribution in a lookup-based network, because each peer ’knows’ the network

structure and can forward queries just in the right direction. But this does only work if the data

is distributed among the peers according to the anticipated search strategy. Also, it requires

the restriction of query complexity. In filtered flooding systems, peers do not know exactly

in which direction to send a query. Therefore, requests have to be spread further within the

network than in DHTs, thus decreasing routing efficiency. Short-cut network approaches can

reduce this difference, but filtered flooding will probably never reach as efficient query routing

as DHTs. On the other hand, requests can take more or less any form, as long as each peer

is able to match its resources against the request locally. That makes filtered flooding more

suitable to complex query processing. Both methods can benefit from the introduction of a

super-peer level which distributes the control share to the more powerful and reliable peers

only, thus increasing network stability and avoiding overload of less capable peers.

3The Fasttrack protocol, developed by Sharman Networks Ltd, and used in the Kazaa network, is unpublished.
However, an incomplete protocol description acquired by network traffic analysis is given in [70].

4The third prominent file-sharing protocol, BitTorrent, is a hybrid system that uses central indexing (via so-
called tracker nodes), and exploits P2P only for the actual file download



Chapter 3

Design Dimensions of Schema-Based
Peer-to-Peer Networks

When looking at the developments in P2P research in the past years, we can identify two

stages: In the first stage, a lot of effort has been put into refining topologies and query routing

functionalities for one-dimensional search or lookup, i.e., search based on one attribute only.

The issue of multi-dimensional lookup and support for more expressive queries has been tack-

led in the second stage, and nowadays we see several systems exploring P2P infrastructures

for more expressive queries. According to the query expressivity they support, current P2P

systems can be distinguished into key-based, keyword-based and schema-based systems [46].

A complementary trend can be observed in the database area: here, approaches have evolved

from centralized systems toward a higher degree of distribution. Traditional distributed data-

bases have until recently assumed a high degree of central control for query processing, but we

currently see first explorations toward true peer-to-peer data management infrastructures which

have all characteristics of P2P systems, i.e.,self-organization, symmetric communication, and

distributed control of query evaluation processes (cf. 2.4). In this view, schema-based P2P

networks (SPNs) are the point where these two directions of research meet [66], as shown in

Figure 3.11.

Recently, P2P systems with database-like querying capabilities have also been called Peer Data

Management Systems (PDMS) ([68, 71]). In our opinion, current systems are not sufficiently

capable to justify this terminology. Today, query capabilities of all P2P based distributed

database systems are pretty limited in comparison to current DBMSs, and their ’management’

functions (transactions with ACID guarantees, access control, fault tolerance, etc.) are not sup-

ported at all in existing implementations. It is also doubtful if fully decentralized data manage-

ment – in contrast to decentralized query processing – has any practical application. Therefore,
1This figure is not meant to be complete, we have just depicted a few systems for illustration purposes.
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Figure 3.1: Schema Capabilities and Distribution

in this thesis we will stick to the term schema-based P2P network introduced in [124].

As we have seen, highly efficient algorithms for one-dimensional lookup, all of them be-

longing to the DHT family, have been devised (cf. 2.4.3). However, the lookup issue be-

comes much more complicated if we want to support item retrieval according to arbitrary

(many) attributes, as it is common in databases. We can’t just employ the approaches for

one-dimensional lookup, because that would at least require the setup of a separate overlay

network for each attribute which is already prohibitively expensive. Other issues arise when

applying distributed database techniques to a P2P context. For example, no node has complete

information about database schemas on all nodes, therefore mediator-based approaches can’t

be applied directly. Another issue is scalability: query planning in current distributed database

systems only scales to at most hundreds of nodes (cf. 2.2).

It seems unrealistic to hope for an approach which works optimal in every respect. Instead,

we have to make design decisions which will always involve trade-offs, e.g. between query

expressivity and query processing efficiency. In this chapter, we explore the design space for

SPNs, point out the trade-offs, and finally describe and classify existing systems.

3.1 Network Properties

The way the P2P network is organized and used to locate and access information is an impor-

tant aspect of every data-sharing P2P system. [46] identify the following aspects with respect

to the organization of nodes and data in such networks.
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3.1.1 Data Placement

The data placement aspect is about where the data is stored in the network. Two different

strategies for data placement in the network can be identified: placement according to owner-

ship and placement according to search strategy. In a peer-to-peer system it seems most natural

to store information at the node which is controlled by the information owner. The advantage

is that access and modification are under complete control of the owner. For example, if the

owner wants to cease publishing of its resources, he can simply disconnect his peer from the

network. Also, the owner doesn’t have to rely on availability of other peers responsible for

fragments of its information. In the owner-based placement approach the network is only used

to increase access to the information.

The complementary model is when peers do not only cooperate in searching information, but

already in storing the information. Then the network as a whole works like a uniform facility

to store and retrieve information. In this case, data is distributed over the peers so that it can

be searched for in the most efficient manner, i.e. according to the search strategy implemented

in the network. Thus, the owner has less control, but the network becomes more efficient.

Both strategies are employed in current systems. DHT-based SPNs such as PIER [75] and

RDFPeers [30] distribute data according to its key, while Piazza [68], Chatty Web [2] and

PeerDB [129] keep all data at the owner peer (see 3.4 for a detailed description of these sys-

tems). Gribble et al. [66] see the question of data distribution vs. query distribution as core

research challenge in SPNs.

Both variants can be further improved in terms of efficiency by the introduction of additional

caching and replication strategies. Note that while this improves the query evaluation perfor-

mance, it also increases maintenance costs and reduces the owner’s control of information.

3.1.2 Topology and Routing

As we have seen in section 2.4, diverse approaches to organize peers into a network overlay

topology exist. It is agreed that for one-dimensional key-based lookup DHTs offer superior

characteristics over other solutions. However, for SPNs the matter is not clear, because support

for multi-dimensional queries is required. Current approaches can be sorted in the following

categories:

• Multidimensional DHTs Here, the idea is to create separate overlays for each attribute.

Representatives for this approach are RDFPeers and PIER. The advantage is that all

accesses still require the guaranteed number of hops, typically O(log n). This allows

for efficient query execution as long as not too many attributes are touched. Topology
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maintenance and data insertion are more costly, but only by a constant factor (number

of attributes). When using a cryptographic hash, such as in PIER, range queries are not

supported. But with order-preserving hash functions (used by RDFPeers), range queries

can be evaluated by starting at the peer responsible for the lower bound, and forwarding

a query to a peer’s successors until the upper bound is reached. Depending on the range

size this can degrade to query flooding.

• Unstructured Networks Unstructured networks don’t face the problem of creating in-

dex structures for all attributes. Instead, they match the schema information of peers

and of the query to find promising routing directions for a query (filtered flooding). This

approach is used by Piazza and Chatty Web.

• Short-Cut Networks Short-cut systems also do not impose a graph structure on the

peer network. However, they try to optimize connections (find short-cuts) based on

the results of past query evaluations. Although not constructed in the strict sense, this

often results in specific graph characteristics, e.g., small-world networks. PeerDB, RE-

MINDIN’ [178] and INGA [105] are short-cut networks.

• Super-peer Networks Super-peer networks work in a very similar fashion as medi-

ators in distributed databases. In these networks the responsibility for indexing (and

subsequent query routing) is separated from the responsibility for data provisioning: A

super-peer backbone collects peer self-descriptions and maintains indices accordingly.

Queries are always forwarded to a super-peer, and distributed within the super-peer

backbone. All super-peers which get the query forward it to their matching peers. Note

that ’super-peer’ and ’data provider’ are just different roles which can be played by the

same physical peer. The approach proposed in this thesis falls in the class of super-peer

networks. Other schema-based super-peer systems are XPeer [156], SQPeer [85] and

TOPICS [106]2. The latter uses ontologies to categorize information: Each super-peer

becomes responsible for one or several ontology classes. Peers are clustered at these

super-peers according to the classes of information they provide. Thus, an efficient

structured network approach can be used to forward a query to the right super-peer,

which distributes it to all relevant peers.
2SQPeer and TOPICS are actually inspired by the approach presented here
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3.2 Data Storage and Access

3.2.1 Data Model

The data model used to store information is tightly connected to the choice of query language.

Many data models have been proposed for storing data and we are not able to discuss them all

in detail. We rather want to mention some basic distinctions with respect to the data model

that influences the ability of the system. The most basic way of storing data is in terms of

a fixed, standardized attribute set that is used across the whole system3. Despite the obvious

limitations, fixed schema approaches are observed in common file-sharing peer-to-peer sys-

tems because this eliminates the problem of schema interoperability. Representatives for this

approach from research are the structured networks MAAN [31] and Mercury [19], which both

have a simple tuple data model. One step more complex is the relational model, the prevail-

ing model for current non-distributed databases. Of course, this is a viable choice for SPNs

as well, and used by PIER and PeerDB. XML as data exchange format for the Web is also

favored by several systems, e.g. Piazza and XPeer. As we have seen in section 2.3, RDF is de-

signed for the interconnection of distributed knowledge. Therefore, it is a good match for P2P

information systems and has been chosen as data model in several systems, e.g. RDFPeers,

SQPeers, and NeuroGrid [79]. Piazza can also support RDF data sources [68].

Another level of expressiveness and complexity is added by the use of ontologies as a schema

language that allows the derivation of implicit information by means of reasoning. Ontologies

are encoded using concept-based formalisms that support some form of inheritance reasoning.

In particular, the use of ontologies as a schema language for describing information is gaining

importance [22, 161, 56]. The expressiveness of the respective formalisms ranges from simple

classification hierarchies to expressive logical formalisms. The SPNs supporting full-fledged

ontologies are DRAGO [22] and coDB [56].

3.2.2 Query Language

The expressiveness of the query language supported by the system is a crucial characteristic

of P2P information sharing systems. A ‘language’ providing only key-based access obviously

doesn’t make sense in a SPN. However, support for keyword queries enables users to pose

queries without requiring schema knowledge, and thus is useful in SPNs, too. And indeed do

digital library online services often provide keyword-based search and try to find matches to

the keywords in all available attributes (e.g. [41, 89, 128]).
3In this view, systems supporting only one-dimensional search, e.g., DHTs, can be seen as a special fixed

schema case, where the schema consists of a single attribute
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Of course, the choice of query language depends on the data model: relational systems often

use a subset of SQL, and RDF based approaches one of the Semantic Web graph pattern match-

ing languages described in 2.3.2. These languages allow to formulate complex multi-attribute

queries similar to the ones usual in traditional database systems. Only few of the current SPNs

provide a proper high-level query language interface; in many cases, the implementation is

just a proof-of-concept, and queries are hard-coded in a proprietary fashion.

A further increase of expressiveness is provided by systems that support full-fledged logical

queries, enriched by user-specific axioms, e.g., deductive Semantic Web languages (cf. 2.3.2).

This allows the user to explicitly state background knowledge and to introduce new terminol-

ogy when querying the system. This ability can be used to automatically enrich user queries

with information from a user profile to support personalization [50].

Another dimension on which query capabilities can be increased is the relevance dimension.

In information retrieval, ranking hits according to relevance metrics is common, and also in

databases work in this area has started, e.g., top-k, skyline and preference queries. See chap-

ter 6 for more information.

3.3 Data Integration

In a distributed system it often cannot be guaranteed that the information provided by differ-

ent sources is represented in the same way. This leads to the need of providing integration

mechanisms able of transforming queries and/or data from one representation to another. This

problem has been extensively researched in the context of federated databases (cf. 2.2). The

basic idea is to define mappings which can be used to translate (re-write) between the dif-

ferent schemas. Although (Semi-) automatic mechanisms, such as lexical analysis have been

proposed for SPNs [129], the usually assumption is that mappings are manually created..

The typical approach in SPNs for this translation is query re-writing. Instead of transforming

the data to be queried, the query expressions received from external sources are transformed

into the format used by the queried source using the mappings between the schemas [68, 3, 56].

This approach still requires a transformation of data in order to make the result of the query

compatible with the format of the querying sources.

Most SPNs supporting data integration use simple equality or subsumption statements between

schema elements. Approaches that use more complex mappings (in particular conjunctive

queries [68]) do not scale to a large number of sources. Serafini et al. have proposed a very

expressive mapping formalism, the Local Relational Model (LRM, [162]), which relies on a

first-order-logic formalization of the relational model.
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3.4 Overview of Schema-Based P2P Algorithms and Systems

In the next subsections, we will describe relevant related systems with specific focus on their

respective design decisions. The list of systems is not complete; several further SPN ap-

proaches [56, 71, 182, 14] are been described here in detail, because only preliminary results

have been published yet.

3.4.1 Systems Focused on Query Processing

PIER The vision for PIER [75, 74] is to provide a distributed relational query processor,

based on P2P techniques. In PIER, DHTs are used to index all tuples stored in the system.

They were first organized as in CAN [141], now the Pastry derivate Bamboo [144] is used.

Tuples are forwarded to the node responsible for its respective key interval. Therefore, data

does not stay at the providing node, but is distributed according to the DHT algorithm. For

each indexed attribute, a separate DHT namespace is used. To compute a join, a temporary

DHT namespace is created, and all relevant tuples are rehashed based on a concatenation of

all join attributes. Depending on selectivity of the join subqueries, that operation may involve

a substantial fraction of all peers in the network. PIER is efficient regarding the evaluation

of selections with equality predicates, but doesn’t support range queries. Aggregate compu-

tation is supported via hierarchical aggregation. For this purpose, a network spanning tree

is maintained together with the DHT structure, as described in [33]. The aggregation query

is broadcast via this tree, and parents aggregate results of their children, until the final result

is aggregated at the root node. Currently PIER holds all tuples in memory, which limits the

storage capacity of the network. On the other hand, introduction of a buffer manager for page

management on disk wouldn’t require a modification of the basic query processing algorithm.

PIER does not have any schema catalog, therefore query plans have to be assembled program-

matically; a parser supporting an SQL subset could be added, but would require the provision

of catalogs at each peer, and thus increase maintenance overhead.

RDFPeers/MAAN RDFPeers [30] exploits a variant of Chord to facilitate multi-attribute

queries called MAAN (Multi-Attribute Addressable Network, [31]). A query is supposed to

consist of several subqueries, one for each attribute involved. The most selective subquery is

used for initial query routing within the DHT, then the matching tuples are forwarded to the

node(s) responsible for the next selection criteria, and so on, until the intersection between all

subquery-selections has been computed. For m attributes with associated subquery selectivi-

ties si this takes O(
∑m

i=1(log n + n · si)) steps. If these selectivities are low, the total effort

may exceed broadcasting costs.
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In contrast to Chord, MAAN uses locality-preserving hash functions. To resolve a range query,

the query is sent to the node responsible for the lower bound, and then forwarded along the

ring to the next neighbor until the upper bound is reached. Each node on the way sends

matching tuples to the query originator. Skewed value and query distributions may lead to

uneven node load distribution. As [19] have shown, this can’t be mitigated by reducing the

key space intervals for frequent keys, because that would increase the hop count exactly for

the frequent queries, and range queries in that area would have to be distributed to more nodes.

To store RDF graphs within such an infrastructure, a simple schema consisting of the three

attributes subject, predicate and object is introduced, and all statements are stored in this table

according to the MAAN algorithm. RDFPeers can evaluate subgraph pattern matching algo-

rithms, as specified in RDQL. However, a query parser is not implemented. In the case of

RDF, the load balancing problem is of high relevance, because some URIs, e.g. rdf:type or

dc:title, occur very frequently. In RDFPeers, a popularity threshold is specified and all items

occurring more often than denoted by the threshold are just not indexed anymore, an unsatis-

factory solution. RDFPeers has only been evaluated in a limited setting (100 peers, 142,772

triples).

Mercury Another topology supporting multi-attribute (range) queries is Mercury [19]. Mer-

cury has a simple data model, where each data item is just a tuple of attribute values (like one

table in a relational model). For each attribute, an overlay network is constructed according to

the Symphony algorithm [111]. The only difference is that the data is not hashed, but nodes

are assigned value intervals. Each data tuple is replicated into each hub and inserted according

to its value in the respective attribute. To resolve a query, it suffices to send it to one of the

hubs responsible for a query attribute, where it is routed to the node(s) responsible for the

query’s requested value (range). To facilitate load balancing, the intervals nodes are assigned

can vary in size. Mercury creates approximate histograms for frequency estimation based on

a sampling approach. These histograms are used to distribute the load evenly between nodes.

SQPeer In SQPeer [85], data always is kept by the owning node. All data is in RDF for-

mat, according to (arbitrary many) RDF schemas. Queries are expressed in RQL (RDF Query

Language), an SQL-like language for RDF. Each peer publishes a so-called RVL (RDF View

Language, [109]), describing the peer’s schema fragment. An incoming query is checked

against these views and a query plan annotated with data locations is created. Then, this plan

is distributed to the relevant peers and the results merged. The authors propose two different

topologies for maintaining the view (schema) information. The first option is to use a super-

peer topology. In this case, SQPeer can be seen as an extension of our approach described in

chapter 4. The only difference is that the queries can be slightly more expressive (taking class
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subsumption into account), and query plans can be a bit more involved. The second option is

to store the schema information in a DHT. This is similar to [106], and requires interleaved ex-

ecution of query routing and plan refinement phases, because the required schema information

is not completely available at one planning node, but has to be collected. The implementation

status of SQPeer is unclear. No evaluation of the approach has been conducted.

PeerDB PeerDB [129] is based on the relational model. Queries can be posed in SQL,

and are evaluated locally at each node. Query processing proceeds in two stages: First, to

find relevant nodes, a query is flooded to all neighbors. At each node, a keyword matching

algorithm is used to match relation and attribute names used in the query against the ones

stored at the peer. The best matches are returned to the query originator. The remote relations

are now presented to the user in the order of match degree, and the user has to select the most

relevant peers. In the second phase the originator sends the query directly to the selected data

sources, and gets the results back. Based on query statistics, neighbor connections are adapted

over time (short-cut approach). PeerDB has only been evaluated on a network with 32 nodes.

Therefore, its scalability is unclear. The schema matching approach seems to be pretty ad-hoc:

Semantically identical relations may have unrelated names, and relations with the same name

may contain different types of entities. Expecting the user to find out correct matches just by

looking at relation and attributes names seems to be unrealistic.

3.4.2 Systems Focused on Schema Mapping

Piazza Piazzas main goal is to map between different schemas in an open distributed envi-

ronment [68]. Data stays at the owner’s database, but schema information, especially map-

pings between schemas, are shared. Currently, all mappings are replicated to all peers, thus

each peer has a global system catalog. The topology of Piazza is not described in their pub-

lications. Piazza’s main contribution is a query reformulation algorithm which rewrites an

incoming query according to the mappings stored in the global catalog. This is done at the

peer receiving the query. The rewritten query is sent directly to peers holding part of the re-

quested data. No performance evaluation of the system has been performed. Piazza uses an

XML data model and query language, but can be applied to RDF as well [68], however, with

limited query expressivity.

GridVine GridVine [3] is the only mapping-oriented system which uses a DHT as under-

lying topology, in this case P-Grid. It assumes the RDF/S data model, i.e., all data is stored

as statement triples. The indexing and retrieval of these statements is conducted in the same

fashion as in RDFPeers: each triple is indexed separately on its subject, predicate and object.
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Name Topology Data Placement Data Model Query Lang. Refs.
PIER DHT (Bamboo) Distributed Relational – [75, 74]
RDFPeers DHT (MAAN/Chord) Distributed RDF – [30, 31]
Mercury DHT (Symphony) Distributed Tuples – [19]
SQPeer Super-peer or DHT Owner RDF RQL [85]
PeerDB Unstructured Owner Relational SQL subset [129]
Piazza Unstructured Owner XML XQery subset [68, 69]
GridVine DHT (P-Grid) Distributed RDF – [3]
DRAGO Unstructured Owner Descr. Logics OWL subset [22, 161]

Table 3.1: Overview of Schema-Based Peer-to-Peer Systems

The new aspect of GridVine is its capability to include schema mappings into the query eval-

uation. Any peer can add property translations, represented in an OWL subset. These subsets

are also indexed within the P-Grid. Using the Semantic Gossiping approach presented in [2],

incoming queries are not only directly evaluated, but also transformed according to available

translations. A proof-of-concept implementation is available, and a first experimental evalua-

tion of a network consisting of 60 peers has been conducted.

DRAGO As explained in section 2.3, the next layer on top of RDF(S) is OWL, a language

to specify ontologies based on Description Logics. DRAGO [22, 161] allows to interconnect

data sources by specifying so-called bridge rules, formulated in C-OWL [24], which translate

between their respective ontologies. Based on these rules (and the ontology specifications),

queries are evaluated using a distributed tableau reasoning algorithm. The algorithm is proven

to yield correct and complete results in a static network. Behavior under network churn is

not studied. The system has been implemented as extension of the Pellet reasoner [167].

Performance evaluations haven’t been conducted.

3.5 Summary

We can identify two trends in SPNs: on the one hand, a homogeneous schema is assumed, and

the query planning and processing challenge is tackled. On the other hand, a heterogeneous

schema context is assumed, and consequently schema integration becomes the main challenge.

In the latter case, highly expressive mapping languages are used to translate between schemas.

However, the scalability of these systems is restricted. Some of the systems focused on homo-

geneous schemas are scaling significantly better. However, it is very difficult to compare the

efficiency of these SPNs, first because no standard benchmark exist, and second, because data

model and query expressivity vary largely. Table 3.1 gives an overview about the described

systems.



Chapter 4

Super-Peer-Based Query Routing

To achieve our goal of interconnecting library systems in a P2P network, we need an efficient

routing algorithm for schema-based queries. The algorithm we propose in this chapter is

based on a super-peer topology, where peers connect to super-peers that build up the routing

backbone for the whole network.

As we have seen in 2.4, such an approach takes into account the different capabilities of peers

with regard to bandwidth, availability, processing power etc. The super-peer backbone is

formed by powerful and highly available peers, which take care of indexing and routing (see

Fig. 4.1). Information sources such as library catalog systems or digital libraries connect to

this backbone; on connection, such a source forwards a self-description to its super-peer which

adds it to the distributed routing index, coordinating with other super-peers if necessary. An

information consumer can pose a query by sending it to any super-peer. The responsibility of

the super-peer backbone is efficient routing of these queries (and their answers), including the

distribution and execution of query plans based on the routing index. Further capabilities like

mediation and transformation of queries and answers could also be implemented in a super-

peer, but are not discussed here. Note that super-peer, information source, and information

consumer are not different types of peers, but roles in the network. Any network node can

play all of these roles at the same time.

The introduction of super-peers in combination with routing indices at these peers reduces the

workload of peers significantly by distributing queries only to the appropriate subset of all

connected peers [43].

In the following, we will use the shorthand SPQR for our super-peer-based query routing ap-

proach. This chapter includes the description of the topology, algorithms and index structures

of SPQR, as well as an evaluation of the approach with respect to super-peer load distribution.

Some implementation aspects and the application to the digital library context are presented

42
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Figure 4.1: Peer roles within a super-peer network

in Chapter 5. The approach presented here restricts queries to metadata elements. An exten-

sion which also takes full-text keyword search and result ranking into account is described in

Chapter 6.

4.1 Assumptions

As we have argued in Chapter 3, the creation of a full-fledged PDMS which provides similar

functionality as a central DBMS is still pretty far away. To devise an efficient approach for

distributed schema-based query processing, we need to restrict ourselves to the needs of a

specific application context, in our case digital libraries. According to the characteristics and

requirements identified in Chapter 1, we base our work on the following assumptions:

• Comparatively small number of peers In contrast to popular file-sharing networks, we

don’t need to build a network which scales to millions of peers; our expectation is that a

network of several ten thousands of peers would cover a significant fraction of libraries

available via Internet.

• Schema Homogeneity We assume that all libraries use the same schema to capture doc-

ument metadata: nearly all libraries are able to provide a subset of their metadata in

Dublin Core format. Obviously this assumption is a simplification: Depending on their

topics, libraries can offer more than the typical title/author/date/... metadata set. From a

technological point of view, mapping between heterogeneous schemata in a P2P setting

is challenging and can be viewed as a still unsolved research problem. although first

steps have been taken in that direction, as described in 3.3. Therefore it seems reason-
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Figure 4.2: Sample HyperCuP Super-Peer Topology

able to start small and simple, and leave aside support for data integration. We allow

queries to refer to additional metadata elements provided by libraries, but only as far as

they agree on a common schema for them. Usage of other schemas, e.g., for multimedia

metadata, is supported as well, but the peer using such a schema exclusively would form

an isolated community, although technically connected to the same network.

• No data movement Often, documents in an archive are protected by intellectual property

rights. Therefore, many libraries are not willing to allow replication of their documents

to other peers on which they have no influence. Our P2P infrastructure needs to take this

constraint into account; consequently, queries need to be executed directly at relevant

libraries, because only they have access to all data required.

• Selection and projection prevalence Archive metadata typically is self-contained and

does not reference other data sources. Therefore, we support only partial joins directly

at the data providers, but no full join across data sources, similar to the constraints used

in the design of TSIMMIS [136]. Extended support for distributed joins has been added

to our infrastructure by Dhraief et al. [27].

• Cooperative peers We rely on the the peers being cooperative. While it is important to

take malicious peers into account, this is out of scope of this work.

4.2 The HyperCuP Super-Peer Topology

In any super-peer network, the question is which topology to chose for the super-peer back-

bone. Here, choosing a DHT topology would not be appropriate, because we want to sup-

port complex queries. Therefore, we need a topology suitable for efficient filtered flooding

(cf. 2.4.3). In our approach, super-peers are arranged in a hypercube topology, according to
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Figure 4.3: HyperCuP and one of its spanning trees

the HyperCuP protocol [158]. HyperCuP is chosen as super-peer topology because it offers

an efficient and guaranteed non-redundant query broadcast, which we will then be restricted

by the use of routing indices, as described in section 4.4 and 4.5. A small example network is

shown in Figure 4.2.

HyperCuP broadcasting works as follows: All edges are tagged according to their dimension

in the hypercube. A node invoking a request sends the message to all its neighbors, tagging it

with the edge label on which the message was sent. Nodes receiving the message forward it

only via edges tagged with higher edge labels. In this way, for query distribution each node

forms the root of a spanning tree which covers the whole super-peer network, as shown in

Figure 4.3 for super-peer SP3.

The topology allows for O(log n) path length and O(log n) number of neighbors, where n

is the total number of nodes in the network (i.e., the number of super-peers in our case).

Moreover, the topology is vertex-symmetric and thus features inherent load balancing among

super-peers. Thus, we can use the topology to carry out efficient communication and message

forwarding among super-peers. Alternatives to this topology are possible, as long as they guar-

antee the spanning tree property for the super-peer backbone, which we exploit for maintaining

our routing indices and for building our distributed query plans.

A new super-peer is able to join the network by asking any other, already integrated super-peer

which then carries out the peer integration protocol. O(log n) messages are sent in order to

integrate the new super-peer and maintain a hypercube-like topology. Any number of super-

peers can be accommodated in the network: If some peers are ‘missing’ in order to construct a

complete hypercube topology which consists of 2d nodes in a d-dimensional binary hypercube,

some super-peers in the network occupy more than one position on the hypercube. This means

that they have to hold the routing indices for that position, and need to forward messages

accordingly. When a new super-peer joins the network, it either fills a gap in the hypercube

topology by taking over a position of a node holding several positions, or the dimensionality of

the hypercube is extended. [157] describes in detail how the HyperCuP topology is maintained.
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4.2.1 Registering Peers at Super-Peers

In order to avoid broadcasting a query to all connected peers of a super-peer we introduce

super-peer/peer routing indices that are used to forward the query to relevant peers only. These

indices store information about metadata usage at each peer. This includes schema information

such as schemas or attributes used, as well as possibly more fine-grained indices on attribute

values.

On registration a peer provides the super-peer with its self description by sending a registration

request. This request encapsulates a metadata-based description of the peers’ properties and

content. As the registration may involve quite a large amount of metadata, we build upon the

schema-based approaches which have successfully been used in the context of mediator-based

information systems (cf. 2.2). The peer’s self-descriptions are used to build the super-peer’s

routing indices.

To cope with network churn, registration messages become invalid after a defined expiration

period, and peers have to renew their registration periodically. Without renewal, the peer is

removed from the routing indices. By invalidating the peers’ registrations periodically we

chose a behavior similar to other protocols for dynamic settings (e.g., DHCP) where nodes

may leave the network without any notice. If a super-peer fails, its formerly connected peers

must re-register at another super-peer (see 4.6.2).

Self-description granularity There is always a trade-off between self-description size and

detail. A more fine-grained self-description reduces the probability that queries are forwarded

to irrelevant peers, but increases the index maintenance overhead in terms of bandwidth and

storage size. An obvious choice for the most coarse-grained description elements are a peer’s

supported attributes of a schema. Being more coarse-grained doesn’t seem to make much

sense, because schema information is already very compact. More fine-grained descriptions

can be useful for certain types of attributes:

• For attributes on which a total value ordering is defined, a set of value ranges can de-

scribe the coverage provided by a peer.

• For enumeration types (e.g., a language attribute), a list of supported values can be

stored.

• A special case are attributes referring to taxonomies, a frequent case for the dc:subject

attribute, but also occurring otherwise, e.g., in educational metadata. To cover this case,

a peer can provide a list of base topics. The subsumption relationship is then used to

infer if a subtopic is supported by this peer. To compute such inferences, the super-peer

needs to store the referenced taxonomy, too.
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Granularity Index Entry Examples
Attribute dc:title

books:translationOf

Attribute Value Range dc:date[1896,2005]

Attribute Value dc:language{“de”, “en”}
Attribute Base Value dc:subject{http://ddc.loc.org/830}1

Figure 4.4: Examples for Different Index Granularities

Table 4.4 shows examples for different index granularities. Note that by introducing more fine-

grained indices, the information at super-peers moves gradually from a database catalog to full

database indices. With few exceptions (e.g., enumeration types with small value domains such

as dc:language) we do not expect that super-peers provide full table indices, because that

would duplicate a significant fraction of each peer’s database fragment and thus cause too

much effort to store and maintain at the super-peer. However, existing techniques such as

histograms [59] or bloom filters [121] could be used to create aggregate/approximate indexes

on value granularity level.

In the following, we restrict the formal description of indexing and routing to the schema

attribute level; formalization of more fine-grained indices would proceed along the same lines

and yield no additional insights.

4.3 Model

The model used here to describe SPQR indexing and query routing is an extension of the rela-

tional model described in 2.1 , although our actual implementation uses RDF as data exchange

format. This has the following reasons:

• The relational model is simple, very well understood and provides all required abstrac-

tions.

• Bibliographic metadata has a rather simple structure, and current standards don’t rely on

ontology-based schemas. Therefore, our system exploits only the ’Web’ aspects of RDF,

such as unique identifiers, distributed information, and shared schemas. The ’Seman-

tic’ aspect (subsumption relationship or even full-fledged ontology support provided by

OWL) isn’t used.

• Our algorithm requires no Semantic Web specific features, and could be used equally

well to connect relational or XML data sources (the latter as long as the XML data

conforms to well-defined XML schemas).
1DDC class for ‘German Literature’
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[69] use the same split between algorithm description and system implementation.

We start with some basic definitions. Let

P = {p1, . . . , pn}
be the set of all peers (data sources). We can view the data available in the network as one

(virtual) database,

DB = {R1, . . . , Rm},

where Ri is a relation, possibly (and typically) distributed over several peers. Let

Ai = {ai,1, . . . , ai,o}
be the set of Ris attributes. Then

S = {A1, . . . , Am}
is the database schema. Peers hold relation fragments which can be vertically and/or hori-

zontally restricted. We denote the set of Ris attributes provided by peer p Ai,p. The schema

fragment supported by a peer is

Sp = {Ai,p|Ai,p 	= ∅}.

We use a peer’s name as shorthand for the selection function yielding its horizontal fragment.

Thus the fragment of Ri stored at peer p is

Ri,p = σp(πAi,p(Ri)).

Our goal is to process queries over this distributed database in an efficient manner.

4.4 Index Structures

4.4.1 Super-Peer / Peer Routing Indices

The first level index of SPQR, called SP/P index, describes the characteristics of all peers

connected to a specific super-peer, and thus guides the forwarding of queries from a super-

peer to a connected peer. For complete query routing this summary has to be complemented

by information regarding the connected super-peers. We describe these in the next subsection.

We use the superscript ’P’ to denote information derived from peer summaries.

Let Pk be the set of all peers connected to a super-peer spk. For each attribute ai,j , the super-

peer maintains a set of provider peers

ProvP
ai,j ,k = {p ∈ Pk|ai,j ∈ Ai,p} .

As soon as a peer registers, the super-peer updates its SP/P index, adding the new peer to all

ProvP sets that relate to its supported schema fragment (see 4.6.1).

We define the supported schema of a super-peer as summary of the supported schemas of its

peers: As with peers, AP
i,spk

denotes the set of attributes of Ri provided by super-peer spk:
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0

1 1

0

sp1

sp3 sp4

sp2 dc:language   sp1dc:language

dc:language   sp1 dc:language   sp2 ,sp3

Figure 4.5: Naı̈vely indexing schema information

AP
i,spk

=
{

ai,j |ProvP
ai,j ,spk

	= ∅
}

The schema fragment supported by a super-peer with respect to its peers is

SP
spj

=
{

AP
i,spj

|AP
i,spj

	= ∅
}

.

4.4.2 Super-Peer / Super-Peer Routing Indices

While SP/P indices optimally determine query distribution from super-peers to peers, we need

additional indexes to restrict query propagation within the super-peer backbone. They basi-

cally contain the same kind of metadata information as the SP/P indices. However, they can’t

be defined just as summary of the supported schema of neighbor super-peers, because this

would lead to unnecessary query forwarding, as we can see from the example in Figure 4.5.

Suppose sp1 is the only super-peer with peers connected providing the dc:language attribute.

The neighbor super-peers sp2 and sp3 have to add sp1 to their respective SP/SP indices as

provider for dc:language. Lets assume that we forward that information to sp4 as shown.

Now, if sp4 needs to distribute a query related to dc:language, it will send it to sp2 and sp3.

But only sp3 will forward it to sp1, according to the HyperCuP routing algorithm. Therefore,

the message to sp2 was wasted, and should be avoided.

As the example shows, we need to take the super-peer backbone routing algorithm into account

to create optimal SP/SP indices. In the HyperCuP protocol, this means to introduce the edge

dimension as additional parameter to the routing index.

Let SPk be the set of all super-peers connected to spk, and d the dimension of the edge where

a query comes from; if the query originated directly at spk, this is indicated by d = −1. A

query which came in over dimension d is only forwarded via the edges with dimension e > d.

We denote this set of neighbor super-peers as

SP d
k = {spl|spl ∈ SPk ∧ edgedim(spl, spk) > d}.

edgedim(spi, spk) is the dimension of the edge between spi and spk according to the Hy-
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perCuP protocol. SP d
k is the set of super-peers to which a query arriving via the edge d is

possibly forwarded. Now, the attributes supported by super-peer spk with respect to its super-

peer neighbors and query source, i.e. edge dimension, are:

Ad
i,spk

= AP
i,spk

∪
{

Ad+1
i,sp |sp ∈ SP d+1

spk

}
.

The definition is recursive, but well-defined: There is a finite number of super-peers in the

network, thus the number of hypercube dimensions has to be finite as well, and the recursion

can’t continue infinitely.

We define SP/SP routing indices as follows:

Provd
ai,j ,spk

=
{

sp ∈ SP d
k |∃e > d : ai,j ∈ Ae

i,sp

}
. Provd

ai,j ,spk
contains all super-peers

relevant for a query related to ai,j which arrives at spk via edge d. The schema summary

required as self-description for the super-peer neighbor with respect to dimension d is

Sd
spk

= SP
spk

∪
{

Ad
i,spj

|Ad
i,spj

	= ∅
}

.

Sd
spk

is the schema fragment supported by spk for queries arriving via edge d.

Queries are forwarded to super-peer neighbors based on the SP/SP indices and sent to con-

nected peers based on the SP/P indices.

4.5 Query Routing

In this section, we show how SP/P and SP/SP indices are used to distribute a query. The goal is

then to forward a query only to appropriate peers which can answer it. This can be achieved by

matching the query elements against the indices and forward the queries only to those super-

peers and peers which support the elements contained in the query. A match means that a

peer understands and can answer a specific query, but does not guarantee a non-empty answer

set. The algorithm described here handles queries which can be evaluated without joining data

from several peers. An extension for distributed join support is presented in [27].

The first step in query distribution is the analysis of the query. A set Attr(q), containing all

attributes referred to in the query, is created. At each super-peer spk receiving this query, it is

forwarded to all peers supporting the attributes used. This is the intersection of provider sets

for each attribute referenced:

(4.1) ProvP
q,k =

⋂
a∈Attr(q)

ProvP
a,k

For the query distribution within the super-peer backbone, the routing is slightly more com-

plex, because we take the edge dimension into account. A query originating at super-peer spk

has to be distributed to all super-peers in
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(4.2) Prov0
q,k =

⋂
a∈Attr(q)

Prov0
a,k

When the query comes in at spk via edge dimension d, it has to be forwarded to all super-peers

in

(4.3) Provd+1
q,k =

⋂
a∈Attr(q)

Provd+1
a,k

Now we show that all peers possibly being able to answer the query receive it.

Lemma 4.1. An atomic query q, referencing only to one attribute a is distributed to all peers

supporting this attribute.

Proof. We need to show that all peers in Dest = {p|a ∈ Sp} receive the query.

Every peer is connected to a super-peer. Therefore, due to definition of ProvP
a,k, ∀p ∈

Dest ∃spk : p ∈ ProvP
a,k. Consequently, if all relevant super-peers get the query, it will

be forwarded to the right peers due to forwarding rule 4.1. It remains to be shown that the

query reaches all relevant super-peers, i.e., all super-peers spk for which ProvP
a,k 	= ∅.

We know that unmodified HyperCuP broadcasts messages to all connected peers. The route

from the message originator – the root of a spanning tree – to any super-peer in the network is

unambiguously determined by the HyperCuP forwarding algorithm. Without loss of general-

ity, we number all super-peers on the route as sp0, . . . , spn, where sp0 is the query originator,

and spn is a super-peer to which a p ∈ Dest is connected. Due to the HyperCuP routing

algorithm, the edge dimensions between these nodes are 0, . . . , n − 1.

We need to show that ∀l = 1, . . . , n−1 : spl+1 ∈ Provdl
a,l, and do this inductively backwards:

Provn−2
a,n−1 =

{
sp ∈ SPn−2

n−1 |∃e > n − 2 : a ∈ Se
sp

}
. By definition, for any e, Se

spn
⊇ SP

spn
,

and we know already that a ∈ SP
spn

. Also, spn ∈ SPn−2
n−1 , because n − 1 > n − 2. Therefore,

spn ∈ Provn−2
a,n−1, and a ∈ Sn−2

spn−1
.

Now it remains to show that for any l, if spl+1 ∈ Provl
a,l, then spl ∈ Provl−1

a,l−1. Provl−1
a,l−1 ={

sp ∈ SP l−1
l−1 |∃e > l − 1 : a ∈ Se

sp

}
. That means, we have to find an e such that the condi-

tion is satisfied. We choose e = l > l − 1, Then we have to show that a ∈ Sl
spl

. This is true,

because spl+1 ∈ Provl
a,l, therefore a ∈ Sl

spl
.

.
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Theorem 4.2. Any query q which refers to attributes Attr(q) is distributed exactly to the peers

supporting all attributes a ∈ Attr(q).

Proof. The proof proceeds in the same fashion as with Lemma 4.1: We show that all peers

in Dest = {p|Attr(q) ⊇ Sp} receive the query. p ∈ Dest ⇒ ∃spk : ∀a ∈ Attr(q) : p ∈
ProvP

a,spk
Therefore, p ∈ ProvP

q,k =
⋂

a∈Attr(q) ProvP
a,k.

As before, we need to show now that the query reaches all relevant super-peers, i.e., all super-

peers spk for which ProvP
q,k 	= ∅. Again, we number all super-peers on the HyperCuP route

from the query originator to spk as sp0, . . . , spn, and we show that ∀l = 1, . . . , n−1 : spl+1 ∈
Provl

q,l.

We can infer from Lemma 4.1 that ∀a ∈ Attr(q), l = 1, . . . , n − 1 : spl+1 ∈ Provl
ai,j,l. It

follows directly that ∀l = 1, . . . , n − 1 : spl+1 ∈ ⋂
a∈Attr(q) ProvP

a,k = Provl
q,l. Therefore,

due to rule 4.3, q will be forwarded to spn.

It remains to show that for any peer p not supporting all a ∈ Attr(q), pl won’t get the query.

But this is trivially true: Let p not support an a and be connected to spk, then p /∈ ProvP
a,spk

⇒
p /∈ ProvP

q,k =
⋂

a∈Attr(q) ProvP
a,k.

Theorem 4.2 shows that our routing algorithm is correct (i.e., distributes every query to all

relevant peers) and optimal (i.e., a peer never receives a query it can’t answer).

4.6 Index Updates

The previous sections described the routing indices from a ’snapshot’ point of view, not taking

network dynamics into account. In this section we show how the indices are maintained when

changes in the network occur.

4.6.1 Updating SP/P Routing Indices

An update of the SP/P index of a given super-peer occurs when a peer leaves the super-peer,

a new peer registers, or the metadata information of a registered peer changes (e.g., new at-

tributes are added).

In the case of a peer joining the network or re-registering, its respective metadata/schema in-

formation are matched against the SP/P entries of the respective super-peer. If the SP/P routing

index already contains the peers’ metadata only the entry timestamp is updated otherwise the

respective metadata with references to the peer are added to the index as described.
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The case of a peer leaving the super-peer is a bit more difficult, because any peer might leave

unnoticed, e.g., due to a network failure. Therefore, all entries are tagged with an expiration

timestamp, and all peers need to refresh their registration regularly. If a peer fails to re-register

before its index entry expires, it is assumed to have left the network, and all references to this

peer are removed from the SP/P index of the respective super-peer.

The following algorithm formalizes this procedure. Suppose, peer p joins at super-peer spk.

Then, spks routing indices are updated as follows2:

foreach Ai,p ∈ Sp begin
foreach ai,j ∈ Ai,p begin

ProvP
ai,j ,k := ProvP

ai,j ,k ∪ p

end
end

When a connected peer’s self-description changes, it only needs to send the delta to the last

state, not the whole information.

4.6.2 Updating SP/SP Routing Indices

To update the SP/SP indices in the backbone, each super-peer sends periodic updates to its

neighbors, considering the edge dimension of the respective connection. Suppose spl is con-

nected to spk via dimension d, then it sends Sd
spl

to spk, and spk updates its indices as follows:

foreach Ad
i,spl

∈ Sd
spl

begin
foreach ai,j ∈ Ad

i,spl
begin

foreach e = 0, . . . , d − 1 begin
Prove

ai,j ,k := Prove
ai,j ,k ∪ spl

end
end

end

Adding new Super-Peers Adding a new super-peer is a bit more complicated. For a new

super-peer, the HyperCuP protocol takes care of identifying new neighbors as discussed in

[157]. In this process one of the super-peers becomes responsible for integrating the new

super-peer. In most cases the new super-peer will fill a vacant position in the hypercube, which

has temporarily been administered by the responsible super-peer. This super-peer, which has

been holding additional SP/SP and SP/P indices for the vacant position, transfers them to the

new super-peer. If the new super-peer opens a new dimension, it takes over some peers from

the old super-peer, and the indices are split accordingly. The neighboring super-peers have to
2we do not describe timestamp maintenance here
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update their indices as well, by replacing the previously responsible super-peer with the new

super-peer on the appropriate dimension. Beyond immediate neighbors, no further update is

required.

Removing Super-Peers. The HyperCuP protocol also takes care of a super-peer leaving the

backbone. We usually assume that the leaving super-peer coordinates this operation, and

specifically asks appropriate super-peer(s) ( more than one if the leaving super-peer temporar-

ily fills several positions) to administer its position afterwards. In this process the adminis-

tering super-peers take over the SP/SP and SP/P indices of the leaving super-peer, and the

neighbors of the leaving super-peer as well as of the administering ones have to update their

SP/SP indices. Again, no update is required beyond the immediate neighbors. Peers of the

leaving super-peer reconnect to the super-peer which administers the vacant position.

In the case of unexpected link failure its neighbors determine the “closest” (regarding smallest

hop distance) super-peer. This super-peer then coordinates the administration of the open

position with the same procedure as described above. Peers of the failing super-peer have to

reconnect at some other super-peer, possibly triggering further index update messages.

4.7 A Simulation Framework for Schema-based Peer-to-Peer
Networks

While we have shown that our algorithm is optimal with respect to query distribution to

provider peers, we wanted to further investigate characteristics of SPQR, especially the load

distribution between super-peers. This has been done via simulation experiments. The experi-

ments and their outcome are described in the next section, here the simulator we designed and

implemented for that purpose is described.

An analysis of existing simulators [164] showed that none of them is suitable to simulate a

schema-based peer-to-peer-network, since they all concentrate on the traffic or information

’flow’ on a much lower network level: the observations are made directly on the transport

level or by making abstraction or assumptions on the physical network aspects which is too

fine-grained. For our purpose we need a way to describe a specific topology in combination

with schema-information, so that we can get results for search and routing in SPNs. Therefore,

we built our own simulation framework which is specifically designed to cover the following

requirements (partly derived from [52]):

Schema-based resource description We assume that there won’t be one fixed schema to

describe resources in a P2P network, because our simulator is specifically targeted to SPNs.
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For our simulation we only assume that a schema is identifiable and consists of arbitrary many

named properties. We don’t take into account any relation between properties.

Super-peer based topology While the simulator framework is not tied to a specific topology,

we provide specific support for super-peer topologies.

Flexible configuration of distributions Any P2P network simulation run makes assump-

tions about distribution of bandwidth, latency and other node characteristics. In our case, ad-

ditionally the distribution of schema-related node properties, e.g., attribute frequencies, needs

to be configured. Our simulation framework is designed to allow easy configuration of any of

these parameters with a variety of distributions, e.g., uniform, Gaussian and Zipfian distribu-

tion.

4.7.1 Design

Our framework is based on discrete event simulation. It includes specific support for schema-

based messages and indexing, super-peer networks, and configurable connections suitable for

P2P network setups.

Schema-based resource description The main goal of our simulation is to experiment with

query routing based on schema information. To represent this information, we use schema

elements which can be either complete schemas or single attributes.

Query messages don’t contain concrete requests, but only the set of attributes used to formulate

the request (denoted as Attr(q) in the previous sections). Information sources ’answer’ to these

requests on a probabilistic basis, depending on the schema information used by the provider

and the information stored in the query message. For example, our model of a query which

asks for (dc:title= ”The Power of Metadata”’ and dc:date > ”1.1.2000”), is just a set of the

used properties (dc:title, dc:date).

For the generation of such queries a configurable distribution is taken into account. We can set

as parameters the number of available relations and their frequency distribution, the average

number of attributes per relation and the average number of attributes used in a query.

The same applies to peer content. When a peer is created, we do not assign content to them but

only the schema this peer is presumed to support for its content. For this assignment, the same

relation and attribute distributions are taken into account as for the query generation. Addi-

tionally, the average number of relations and properties (and their standard deviation) used by
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a peer can be configured. When a query is received by a peer and matches its assigned schema

elements, an abstract response is generated with a configurable probability. This approach

allows to simulate the routing behavior without needing to generate huge amounts of test data.

The generated queries are distributed over ‘originating’ peers so that the distribution to the

respective super-peers becomes uniform.

Super-Peer-based Topology The simulation framework assumes a super-peer topology. All

provider peers have exactly one connection to a super-peer. The super-peers form their own

P2P network. If a conventional network is to be simulated, this can be done by instantiating

the super-peer backbone only. The super-peer network topology and protocol is pluggable.

Because super-peers are assumed to be highly available, we don’t model their up- and down-

time, but simulate using a static backbone. This makes it very simple to create different super-

peer topologies because it isn’t necessary to implement a full connection/disconnection pro-

tocol. Instead, a topology class creates all super-peers and the connections between them on

simulation startup. Of course, the implementation for the real network has to consider joining

and leaving super-peers. But, as super-peer joins or failures will be rare, their influence on the

network performance won’t be significant.

In contrast, peers will join and leave the network frequently. We model this by a giving each

peer a designated lifetime, which is assigned according to a configurable distribution.

Connection Characteristics In contrast to other simulations our approach doesn’t rely on

a TCP/IP network simulation, but models connections between peers on a higher abstraction

level. Any connection has a bandwidth (specified by messages per second) and a delay (in

msec). Both properties are assigned to peers and super-peers according to separate config-

urable distributions.

All connections are bi-directional. Each peer (including super-peers) has an incoming message

queue per connection, a processing queue and an outgoing message queue per connection. We

can configure the time necessary to process a message and the number of processors available

at a peer. Messages between the peers are modeled as discrete events.

4.7.2 Implementation

Our implementation is based on the discrete event simulation framework SSF (Scalable Simu-

lation Framework [42]). The Scalable Simulation Framework is an open source system which

implements basic discrete event simulation concepts.
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The SSF defines an object oriented interface to utilize and extend the framework. The Entity is

the central class in SSF. Entities can have processes for event-processing. In our simulator the

peers are implemented using entities. An Event changes the status of the system or is used for

communication between entities. Regarding our simulator when use the events as messages

between the peers. Processes are used to handle events during the simulation. An entity can

have one or more processes. In- and out-channels are the communication channel between

the entities. An entity can have several in- and out-channels, which are always connected 1:1.

This model is easily extended to provide P2P-specific concepts: Entities form the base for

peers, Channels are be used to model peer connections, and message occurrences are modeled

as events. Thus our framework provides a higher abstraction level, where users can work with

P2P concepts directly without the need to consider simulation-specific matters.

4.8 Evaluation

Query routing in the super-peer backbone depends highly on the distribution of provider peers

among the super-peers, according to their supported schema. Intuitively, if peers are dis-

tributed randomly, queries have to be sent to more super-peers than if peers are clustered

based on their schema. In our experiments, we wanted to measure super-peer routing load

and especially the influence of such clustering on their load distribution. We did not consider

query processing load, because in SPQR the actual query processing is done by relevant peers,

while the super-peers only forward queries and results.

We had the following hypotheses:

1. Clustering peers at super-peers according to their schema will reduce query distribution

effort significantly.

2. Clustering super-peers according to their schema (the schema of their peers) will fur-

thermore reduce query distribution effort.

We didn’t include a hypothesis about the influence of increasing the number of peers, because

in our approach this can already be predicted if peers are clustered at super-peers. In this case,

adding new peers does not change the query distribution within the super-peer backbone. As

we currently distribute any query to any peer which supports the corresponding attributes, the

number of messages between super-peers and peers grows linearly with the number of peers.

Therefore, total query distribution effort scales linearly with respect to network size in SPQR.
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Figure 4.6: Network examples with arbitrary peer distribution (U), peers clustered by schema
(P), and peers and super-peers clustered (SP/P)

4.8.1 Experiments

We conducted experiments with three different clustering settings, as shown in Fig. 4.6:

• Peers and super-peers randomly distributed. In this case peers connect to super-peers

in a random fashion, independently of the schema they use. This scenario is abbreviated

with U (unclustered).

• Peers clustered, super-peers randomly distributed. Here the super-peers collect peers

using the same schema. The super-peers are still placed in the hypercube at a random

position, regardless of their peers schema information. We try to distribute the load

evenly by assigning approximately the same number of peers to each super-peer. There-

fore, for rare schemas super-peers will take the responsibility for several schemas. We

use the short-hand P (peers clustered) for this scenario.

• Peers and super-peers clustered. In this variant we try to find optimal positions for

super-peers in the hypercube as well, depending on the schema information. We have to

optimize the hypercube for the most frequent schemas; a promising approach is sorting

the schemas in hypercube dimensions according to their frequency. Dimension 0 is

assigned to the most frequent schema, and therefore a query regarding this schema will

be in the right partition of the hypercube after one hop. Queries regarding the second

most frequent schema are in the right partition after two hops, etc. We refer to this

scenario as SP/P (super-peers and peers clustered).

We simulated a network with 64 super-peers and 10000 peers. The number of schemas in use

was set to 32 and a response probability of 5% was assumed. While our algorithm allows

the usage of more fine grained indexes, we chose to use a simplified scenario where the peer

schemas are disjunctive to get more clear results.
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Figure 4.7: Sum of super-peer hops needed to distribute queries

For each scenario 1000 queries were distributed in the network. As the distribution algorithm

doesn’t depend on previously evaluated queries, the comparatively low number of queries is

sufficient to avoid arbitrary results.

The usage probability of the schemas follows a Zipf distribution (skew factor 0.1). Current

research [54, 35] has shown that Zipf is the typical distribution in the internet context; this

should apply to schema usage as well. The schema distribution is used to calculate the number

of peers which use a specific schema to describe their content as well as the number of queries

formulated using this schema.

4.8.2 Results

Figure 4.7 shows the sum of hops which were necessary to distribute the queries sorted by

schema. For example, to distribute all queries regarding schema 0, we needed nearly 20.000

hops in scenario U , but only about 8500 in P . These results show that clustering peers at the

super-peers has a substantial effect on query routing performance. The number of queries a

super-peer has to handle on the average is reduced significantly. We can say that hypothesis 1

has been confirmed.

Arranging the super-peers in the hypercube according to their schemas has only a very small

effect; hypothesis 2 has therefore not been confirmed. Assigning optimal positions to super-

peers in a decentralized and efficient manner seems to be a very complex self-organizing task

(especially if the hypercube has to perform a dimension increment or decrement). The first

results at least indicate that clustering peers alone is a sufficient optimization.
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Figure 4.8: Super-peer load for clustered peers (P) in various network sizes

As we saw, clustering reduces the load of the network. However, this comes at a price regard-

ing the load distribution, i.e. the number of queries a super peer has to handle. For scenarios P

and SP this load is becomes distributed much more unevenly. The reason is that super-peers

responsible for the more frequent schemas bear a higher load, because they get more queries.

As scenario P turned out to be the most interesting, we varied the number of super-peers

between 1 and 1024 to evaluate the influence of the backbone size. Fig. 4.8 shows the average

load per super-peer for these different sizes. For example, in the case of the 4-node network, on

average each super-peer has to process about 200 queries related to schema 0. In the (extreme)

case of a 1-node ’network’, the super-peer has to process all (273) queries related to schema

0. The average super-peer load is reduced when increasing the backbone size but the gain

becomes insignificant for larger networks.

4.8.3 Consequences

In SPQR, queries are sent to all peers possibly able to answer. This results in a linear increase

of messages proportional to the increase of the number of peers. As the last experiment shows,

we are not able to compensate for this by enlarging the super-peer network.

Therefore, to reduce the amount of processing, we need to restrict the number of responding

peers and/or super-peers. We see following options to achieve that goal:

• Introduction of a best match query evaluation approach. The most promising tech-

nique to reduce the network load seems to restrict the number of responses, and only
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return a selection of ‘best’ answers. When sufficiently many good answers are collected,

the query doesn’t need to be distributed further.

• Peer preselection Super-peers could store statistics about the response rate for their

peers and forward queries to the most promising peers first. The other peers would get

the query only if the first step didn’t produce sufficient results.

• Result Caching Caching frequent matches and answering from the cache first could also

result in a significant improvement. For example, [181] shows that load balancing can

be achieved by replicating content within a cluster of peers based on a fairness metric

based on content popularity. Other approaches are described in [120] and [169].

In Chapter 6, we present an SPQR extension which combines the first two options to reduce

query distribution further.



Chapter 5

A Digital Library Network Prototype
for Open Archives

SPQR is a generic algorithm for routing database-like queries in a super-peer-based network.

As such, it is just one (albeit a key) building block for a working digital library network

infrastructure. A prototype of such an infrastructure, named OAI-P2P, has been designed and

implemented, and is described in this chapter.

One of its foundations is the Open Archive Initiative (OAI) standard for digital library access.

OAI-P2P employs this standard to allow non-intrusive integration of existing digital libraries

into the network. In 5.1 we review the OAI achievements, especially their Protocol for Meta-

data Harvesting (OAI-PMH), which allows access to a digital library’s catalog data. SPQR has

first been implemented within the project Edutella, which aims at interconnection of learning

object providers within an e-learning network. OAI-P2P is an extension of this infrastruc-

ture. We give an overview of Edutella and its query exchange language in 5.2 and 5.3. The

OAI-P2P architecture and implementation is presented in 5.4. The chapter concludes with the

description of Edutella and OAI-P2P usage experiences in 5.5.

5.1 The Open Archives Initiative Protocol for Metadata
Harvesting

Until recently, providing interoperability for digital and print libraries has been limited to the

big players; university library systems, scientific publishers and library network cooperatives

have the size and the resources to push proprietary protocols or implement large footprint

standards like Z39.50 [191]. Smaller institutions do not command these resources.

This is where the Open Archives Initiative (OAI, [91]) stepped in. In order to achieve technical
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Figure 5.1: OAI-PMH Layered Topology

interoperability among distributed archives OAI has created OAI-PMH which is based on the

standard technologies HTTP and XML as well as the Dublin Core metadata scheme [92].

Making use of a number of request types coded in ”verbs” (e.g. ’ListRecords’) the OAI-PMH

provides an open interface for metadata exchange and harvesting. In addition to bibliographic

schemes like MARC [112] which excel in describing documents in the ”traditional” print

paradigm, OAI presently supports the multipurpose resource description standard Dublin Core.

As a matter of principle, OAI-PMH is just providing an XML-wrapper for any metadata and

can be adapted to both simple and complex and varying metadata sets. One of the main aims

of OAI was to keep the protocol simple and easy to implement. The positive feedback and

rapid adoption of the OAI-PMH by scientific communities and information professionals have

proved this approach right: the number of OAI-enabled digital libraries and library catalog

systems is increasing, incorporating smaller libraries as well as areas of science which have

not been represented in the earlier attempts.

OAI-PMH is a protocol limited to incremental metadata transfer, providing a technical and

organizational framework for metadata harvesting. To keep the instruction set simple, OAI-

PMH calls for a separation between data and service providers. Data providers establish an

OAI-PMH-based interface to local digital resources, while service providers (like ARC [101]

and SCIRUS [160]) provide facilities for searching across multiple archives plus value-added

features such as ranking and unified access to other sources. This separation exposes the

simplicity of the protocol as the source of its strength (low barrier to adoption) and its weak-

ness: OAI-PMH is designed as simple as possible for data providers at the expense of service

providers; creating and maintaining an OAI-PMH service provider requires much more re-

sources than setting up a data provider. On the other hand, OAI-PMH offers no front-end

services: data providers offer an interface for metadata harvesting to outsiders but do not have

any immediate advantages (like a query service for outside repositories) from their efforts,
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Figure 5.2: Edutella Query Processing Overview

unless a service provider provides an interface to their data.

Figure 5.1 shows a typical OAI topology. Different data providers are harvested by different

service providers. All queries are handled by providers at the service provider layer.

When a user wants to query all data providers, he has to send a query to multiple service

providers. The results may overlap, and the client will have to handle duplicates. Note also

that this architecture makes it difficult for a new data provider to get accessible. As long as no

service provider is willing to harvest its metadata, end users won’t ’see’ them. Another issue

occurs when service providers are terminated or reorganized. The most prominent example is

Networked Computer Science Technical Reference Library (NCSTRL): the service suffered

from limited availability for the best part of 2000 and 2001 (according to [87] due to funding

problems). In such a case, the data providers attached to this service provider may find that

their archives are no longer harvested, and they lose access to other repositories formerly

made accessible by the discontinued service provider. The whole infrastructure has to be re-

established with a new service provider.

5.2 Edutella Architecture and Implementation

The SPQR algorithm has been implemented within the open source project Edutella [51].

While Edutella started as P2P network to connect eLearning repositories, it became a generic

infrastructure for interconnection of schema-based information providers. The original infras-

tructure, based on central message hubs [125], has been replaced by an SPQR implementation.

In this network, query and result messages adhere to a specified format, the Query Exchange

Language (QEL, see 5.3). However, neither information provider nor information consumer

need to support this language directly. Instead, a mediator architecture is employed which

transforms queries (and results) between peer-specific format and QEL format. To ease de-

velopment of such mediators, an object-oriented model of queries, the Edutella Query Model

(EQM) has been developed. Consumers and providers only need to convert to rsp. from EQM,

all message creation and parsing is done within generic consumer and provider services. Query
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Figure 5.3: Super Peer Service Configuration

distribution is done within the SPQR network. Figure 5.2 gives an overview of this process.

To validate our approach with a prototypical implementation, the Edutella system described

in [125] has been redesigned significantly. The monolithic software design has been replaced

by a service-oriented architecture. Peer services are plugged together dynamically from partly

generic, partly specific components. Figure 5.3 shows a configuration for a super-peer.

Super-peers provide the following services:

• Bind Service. The bind service handles peer registration. Provider peers call this service

with their self-description to establish the connection to a super-peer. The bind service

then updates the SP/P indices according to the SPQR algorithm. It also takes care of

initial hand-shaking between peer and super-peer and manages index entry expiration.

• Routing Service. This service is responsible for message distribution. It routes queries

to the appropriate peers and super-peers, based on the indices created by the binding and

topology service.

• Topology Service. The topology service takes care of maintaining the super-peer net-

work topology, and also keeps the SP/SP indices up-to-date. If a new super-peer starts,

its topology service connects to the topology service of another super-peer, and the loca-

tion of the new super-peer in the network is negotiated (cf. section 4.2). Afterwards the

new neighbors exchange initial SP/SP routing information, and the SP/SP indices are

• Query Service. The query service provides a defined interface to issue new query re-

quests within the network. These requests are then distributed via the routing service.

Communication between service components within a peer is done by sending events to mon-

itoring listeners, according to the Observer design pattern. On startup, the components for the

configured services are instantiated and the necessary observer relations are created. For ex-

ample, in the super-peer configuration the query service doesn’t have to know how the query
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is finally distributed. Instead, the routing service is tagged as matching actor for query events

in the configuration, and thus the routing service is registered as listener at the query service.

This way queries received by the query service are passed to the routing services as query

events.

The same query interface is provided by peers, too, but in that case it is configured so that

queries are forwarded to data store wrappers which translate and evaluate the query and pro-

duce result sets according to the QEL specification.

5.3 A Query Exchange Language

QEL is used within Edutella to express queries against data sources using the Resource De-

scription Framework (RDF). All queries transmitted within the network are represented in this

language.

QEL differs from many other query languages for RDF data in that it is derived from dat-

alog [37, 58], a language for expressing database queries based on predicate logic. In this

section we provide a short overview of QEL; a comprehensive specification is given in [130].

5.3.1 Queries

Basic RDF Terms There are three kinds of atomic terms in QEL: anonymous RDF re-

sources, non-anonymous RDF resources and RDF Literals. QEL uses N3 syntax for these

basic RDF constructs ([15], cf. 2.3.1).

Predicates The most basic construct in datalog are predicate expression. In datalog, predi-

cate expressions consist of a predicate symbol, followed by an argument list, for example

name(matthias, "Matthias")

age(matthias, "26")

male(matthias)

Arguments can be values (e.g. ”Matthias”), instance names (e.g matthias) or variable names

(e.g. X). We use an adapted syntax to cater for the RDF context: Predicate symbols are always

identified using a URI reference, Constant names have to written as resource URLs, and the

literal syntax described is used for constants. Variables are always starting with an upper-case

letter. Thus, the sample predicates above could be written in QEL as
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@prefix fs: <http://my.domain.org/path/family-schema#>
@prefix myfamily: <http://www.myfamily.org/#>

family:name(myfamily:matthias, "Matthias")

family:age(myfamily:matthias, "26"ˆˆ<xsd:int>)

family:male(myfamily:matthias)

Query Expressions If a predicate expression contains one or more variables as arguments,

it is called query literal. Query literals evaluate to true if we can arrive at a fact by replacing

the variables with values or constant names, which is a tuple with some of the terms replaced

by variables. For example, to ask for all children of Matthias, one would write
?- family:father(myfamily:matthias, X)

Note that in contrast to Prolog, a datalog query returns all possible variable bindings, not only

the first one.

A list of query literals, separated by comma, forms a conjunction (the query evaluates to true

if all query literals evaluate to true) called the query body:
?- family:name(Person, "Peter"), family:father(Person, Child)

This query finds all persons which are named ”Peter” and are fathers. As a side effect, the

query returns not only these persons (in the Person variable), but also their children (in the

Child variable).

Rules and non-data predicates In datalog, it is possible to introduce predicates that are

not part of the data, but derived (sometimes called intensional predicates). This is done by

describing rules for their validity. The example shows the rules for being siblings: two persons

are siblings if they share either the father or the mother.

family:sibling(X, Y) :- family:father(X, Z), family:father(Y, Z)

family:sibling(X, Y) :- family:mother(X, Z), family:mother(Y, Z)

Several rules with the same predicate essentially represent disjunctions. Rule definitions are

allowed to be recursive; however, lower QEL compliance levels do not support recursive query

evaluation (see 5.3.2).

Built-in Predicates QEL contains a number of built-in datalog predicates that can be used

to query the RDF data. There are two kinds of built-in predicates, matching and constraint

predicates.

Matching predicates are predicates that create new bindings of variables from the RDF data

source. The most important matching predicate is qel:s(X, Y, Z), which evaluates to true if the

triple (X Y Z) exists in the RDF data.



5.3 A Query Exchange Language 68

Constraint predicates only constrain values that have already been found. They cannot find new

matches, but act as filter on bindings found via matching predicates. QEL provides predicates

such as qel:equals, qel:like (for string pattern matching), qel:lessThan, etc.

Negation Negation in general is not well defined on the Semantic web. The reason is that

any data source may add triples breaking the negative assertion. To be well defined, nega-

tion requires a closed world, where we know we have access to all data, to be well-defined.

Therefore, a general negation operator (while part of datalog) is not part of QEL.

However, we allow negation of atomic constraint predicates. As these do not create more

matches but only restrict existing matches, their negation is a well-defined operation even

under the open-world assumption. Negation is denoted by ”-” in front of the predicate.

Optional Match In some cases users want to get information if it exists, but don’t mandate

their existence. Consider a search for resources having a title matching ”physics”:
qel:s(X, dc:title, Z), qel:like(Z, "%physics%")

The result will only contain the URIs and the corresponding titles. If one would also like to

know the subject, he can ask:

qel:s(X, dc:title, Z), qel:like(Z, "%physics%"),

qel:s(X, dc:subject, S)

However, not all resources might have a specified subject, and these will not be included in the

result set. The problem increases with the number of different extra pieces of information that

one might be interested in. Optional match is a solution for this issue: an optional predicate

always evaluates to true even if it doesn’t match any data, and variables which can’t be bound

are also set to null. In QEL, an optional match literal is marked with a star ”*”. So the above

example query can be written as:

qel:s(X, dc:title, Z), qel:like(Z, "%physics%"),

qel:s*(X, dc:subject, S)

This query returns all matches to the title constraint, and dc:subject values as far as they

exist.

5.3.2 QEL Compliance

Not all implementations will be able to support all constructs of this specification. There-

fore, QEL compliance levels have been defined which allow to classify information sources

according to their query capabilities:
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Language Compliance Level
SQL Linear Recursive Query

(if RDBMS supports SQL3 recursion)
RDQL Disjunctive Query
SeRQL Disjunctive Query
RQL Disjunctive Query
XPath Conjunctive Query
ConceptBase General Recursive Query

Table 5.1: Compliance levels of QEL translators

• Rule-less Query A rule-less query is a query that does not contain rules.

• Conjunctive Query A conjunctive query is a query that contains a maximum of one

rule per predicate. It thus does not contain any disjunctions.

• Disjunctive Query A disjunctive query is a query that may contains several rules for

each predicate, but does not allow for queries to be recursive.

• Linear Recursive Query A linear recursive query is a query that contains recursive

predicates, but the recursion is linear. This kind of queries is covered by SQL99 [168]

expressivity.

• General Recursive Query A general recursive query is a recursive query that is not

linear recursive. It will require the equivalent of a datalog or prolog processor to be

executed.

How implementations have to treat constructs they aren’t able to evaluate is specified in [130].

As part of the Edutella project, translators from QEL to SQL, RDQL, SeRQL, RQL, XPath and

ConceptBase have been developed. Table 5.1 gives an overview of their respective compliance

level.

5.4 OAI-P2P Architecture and Implementation

The main idea behind OAI-P2P is to reuse the advances OAI-PMH has already brought with

respect to library systems openness and interface standardization, while mending its weakness

with regard to query capabilities and centralized organization of service providers. OAI-P2P

uses a mediator approach to achieve these goals. Existing OAI-PMH providers are comple-

mented by a peer application providing the query interface as well as all facilities required to

become part of the peer network. In the OAI-PMH view, the peer becomes a small service

provider, offering query services for its wrapped OAI data provider. The mediator peer repli-

cates the OAI provider data to an RDF repository and answers queries based on this replica (see
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Figure 5.4). In contrast to pure OAI-PMH, each data provider sets up its individual OAI-P2P

service provider, thus becoming independent from external harvesting services.

The OAI mediator has been implemented as an additional Edutella service which synchro-

nizes an RDF repository with an OAI repository. To increase reuse of this service, it’s core

is an XSLT-based translator which can be used to convert any XML metadata to RDF. The

other part is an OAI-specific protocol adapter; it uses the OAI-PMH request protocol to re-

trieve Dublin Core metadata sets from an OAI provider. The synchronization service runs as

a separate process and checks the assigned OAI provider periodically for updates. If changes

have occurred, it updates the RDF repository accordingly. To store and query the metadata,

the Jena framework [114] is used which includes a RDBMS-based persistent RDF reposi-

tory. The translator between RDQL and QEL, which had already been implemented as part

of the Edutella project is reused here. Thus, the service- and component-based architecture of

Edutella made a high degree of reuse possible in the OAI-P2P mediator implementation.

In the final OAI-P2P system, no hierarchical structure is imposed on OAI data providers. Every

provider becomes an equal node in the network, as shown in Figure 5.5.
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Figure 5.5: OAI-P2P Network
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5.5 Experiences

The Edutella and OAI-P2P implementations have been used in the project PADLR [131], an

international project with the vision to create a seamless distributed learning environment,

where students as well as teachers can manage and publish their personal learning material

collections. For this purpose, several tools have been equipped with interfaces to the peer-to-

peer network, such as Conzilla [132], a concept-based browser, and SCAM Portfolio [133], a

system to create and maintain personal learning portfolios. As testbed, a network consisting of

about 20 information providers has been setup, with peers in several locations in Germany as

well as in Sweden. The content provided ranges from detailed descriptions of lectures (created

within the ULI project) over replicated OAI catalogs, up to direct connections to the Uppsala

University Library catalog and to the digital media library (Mediebiblioteket) of the Swedish

Educational Broadcasting Company.

From a technical point of view, the system works as expected. Queries are distributed to

relevant peers and all matching results are delivered. Early user experience revealed some

insights with respects the underlying data and query model. These insights are related to the

type of search process: when users pose queries to locate resources they already are aware of,

then the network is able to match this information need efficiently. But results for explorative

queries were not equally satisfactory. With too loose query constraints, the result set often

becomes too large to be of much use for a human user. To arrive at a suitable result set size,

the user has to tighten constraints. In this process, it easily happens that the result set gets

empty, forcing the user to relax the query again.

This phenomenon is well known for large databases, and has lead to the adoption of the notion

of relevance from information retrieval in the database area, and to the development of query

models capturing such a notion, such as top-k queries, skyline queries, or – as a more general

approach – preference queries.

The next chapter shows how the approach presented so far can be extended to accommodate

such query models as well, to lead to an improved user experience for explorative queries, and

at the same time to more efficient query distribution.



Chapter 6

Preference-based Query Evaluation for
Super-Peer Networks

As we have seen in the last chapter, the traditional database model of exact queries, where

result sets are limited only based on hard constraints, is not perfectly suitable for exploratory

queries, where users are looking for relevant items without exactly knowing what they need.

Therefore, query languages like SQL over relational databases have been extended to fa-

cilitate rank- and/or score-based retrieval algorithms. These approaches assign a degree of

match with respect to user specified soft constraints to each database object and then aggre-

gate the rank/score values to compute the set of best matching answers. Under the exact match

paradigm too specific query predicates often lead to empty result sets, while too unspecific

hard constraints may yield huge numbers of results. The notion of best matches fits much

better to typical user’s search requests, because query specificity is in a way automatically

adapted to the available content. In this chapter, we will present an extension of SPQR which

allows to also evaluate queries with soft-constraints in a distributed setting.

Several ways of extending the usual database query expressivity have been proposed. Top-k

queries [53] deliver a well defined set of k best answers according to a user-provided scoring

function. They have shown their broad applicability in various areas like Web search engines,

mobile database applications, or content-based retrieval in multimedia collections or digital

libraries. A formal extension of relational algebra by a specific top-k operator has been pro-

posed in [98].

In some cases of multi-predicate queries, it is difficult or impossible for a user to specify pred-

icate weights for a scoring function. Suppose someone looks for the newest articles about a

specific topic. How should the newness be scored in relation to the topic relevance? These

cases are an application for skyline queries, where predicates are viewed as independent query

dimensions, and best matches are determined according to the principle of Pareto optimal-
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ity [29, 177, 135].

The top-k and skyline approaches have been generalized to the notion of preferences-based

querying, formalized independently by Kießling [84] and Chomicki [36]. The term preference

was coined in the context of personalized systems (e.g. [145]), where preferences capture a

users likings and dislikes. However, preference-based queries are not only suitable in this

context. They also provide a very flexible and expressive way to describe a wide variety of

queries for best matches. Therefore, we will use this notion to describe our extension of SPQR

to a best match, ranking algorithm1

In the following, after introducing a model for preference queries in 6.1, we present the ex-

tended SPQR query evaluation algorithm (6.3.1), and its evaluation in a digital library scenario

(6.4).

6.1 Preference-based Querying for Relational Databases

To describe the preferences and logical query plans used in extended SPQR, we rely on the

preference query formalization proposed by Chomicki in [36]. In this extension to relational

algebra, preferences are expressed as binary relations between tuples from the same database

relation.

Definition 6.1. Let Let A = {a1, . . . , ao} be the set of Rs attributes, and Ui, 1 ≤ i ≤ o

the respective domains of ai. Then any binary relation � which is a subset of

(U1 × . . . × Uo) × (U1 × . . . × Uo) is a preference relation over R.

We restrict this very general notion to relations that are defined by so-called intrinsic pref-

erence formulas, first order logic expressions in which a limited set of constraint operators

occur.

Definition 6.2. A preference formula C(t1, t2) is a first order formula defining a preference

relation �C such that t1 �C t2 ≡ C(t1, t2). An intrinsic preference formula is a preference

formula which uses only the following (built-in) constraint predicates:

• equality constraints: x = y, x 	= y, x = c, y 	= c, where c is a constant.

• rational-order constraints: xθy, xθc, where c is a rational constant, and x, y ∈ Ui ⊆ Q

.
1The work presented has been described in a top-k framework in [127, 12]. This framework already had to

be stretched to cover composition of keyword and topic soft constraints as proposed in [11]. Therefore, it seemed
more appropriate to use the preference model as framework to describe this work here. This does not mean that
the proposed approach can be used to evaluate any kind of preference-based query in a distributed context. For
example, higher dimensional skyline queries are definitely not in scope of the presented algorithm.
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Doc
Id Title Date Topic Body
LA072689-0030 New China Student 1989-07-26 Politics/ In the first known revival of

Protest Foreign student protests in China...
LA072689-0033 Grant to George Russell 1989-07-26 Calendar/ George Russell has been the

well deserved Entertainment jazz composers’...
LA072689-0041 Wright Case Lawyer 1989-07-26 Politics/ The House Ethics Committee

may probe Gingrich National said it plans to hire...
LA072689-0070 Bray wins Gold on 1989-07-26 Sports John Bray knew what he

split Decision wanted to do...

Figure 6.1: News Archive Schema and Examples

Now we can define the preference query operator, called winnow operator by Chomicki:

Definition 6.3. For a relation R with schema A and a preference formula C defining a prefer-

ence relation �C over A, the winnow operator ωC is defined as

ωC(R) = {t ∈ R|¬∃t′ ∈ R t′ �C t}.

If more than the strictly best result(s) should be returned, result ranking in a top-k style can be

achieved by iterative application of the preference operator:

Definition 6.4. Given a preference relation �C , the nth iteration of the winnow operator ωC

in R is defined as:

ω1
C(R) = ωC(R)

ωn+1
C (R) = ωC

(
R − ⋃

1≤i≤n ωi
C(R)

)
The union of the k best match sets is:

Topk
C =

⋃
1≤i≤k ωi

C(R)

Note that Topk
C can contain more than k hits, depending on the preference relation C.

6.2 Basic Scoring Functions for Document Search

We use the context of news archives as illustrating example. Each news article has a title, a

publication date, a topic such as ’politics’ or ’sports’, and a body containing the news text.

We assume a flat schema here, where each news occupies just one table row of the table Doc

(Figure 6.1). On this archive, we can pose queries such as

“Search articles based on the keywords ‘London’ and ‘Olympics’, preferring news from the

‘Politics’ category”.

In the following, we will use this example to show how preferences such as in our sample

query are expressed formally using the described scoring functions.

Often, preferences with respect to documents can be easily expressed using standard compar-

ison operators. For example, to express the preference for more recent documents, a compari-
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son of publication dates can be used:

d1 �recency d2 ≡ Date(d1) > Date(d2)

However, simple comparison functions alone are not sufficient for document search. We need

other atomic scoring functions to express common document preferences. Therefore, we de-

fine two built-in scoring functions which allow to express popular search criteria, a relevance

function computing a document score with respect to given keywords, and a topic similarity

function computing a score with respect to a given topic.

6.2.1 Topic-distance in Taxonomies

In digital libraries and library catalogs, it is usual to classify documents according to their top-

ics, based on a topic taxonomy (a tree structure putting topics into sub-/super-topic relations).

This information is highly valuable to identify relevant documents as well. Of course, we can

use a topic as query constraint for limiting results to exactly the desired topic. However, we

often are willing to relax this constraint if no results show up on the exact topic (taking other

constraints into account). This is also a perfect application for the expression of a preference:

Documents with a specific topic are preferred over documents related to a similar topic, but

we are content with the latter should the former not be found.

Several methods to compute topic similarity have been proposed [78, 99, 100, 143]. We use

the formula presented in [99], because it has been evaluated favorably in comparison with

human expert judgments.

(6.1) topic sim(c1, c2) =

{
e−α·l(c1, c2) · eβ·h(c1, c2)−e−β·h(c1, c2)

eβ·h(c1, c2)+e−β·h(c1, c2) : if c1 	= c2

1 : otherwise

where l(c1, c2) is the shortest path between the topics c1 and c2 in the taxonomy tree and

h(c1, c2) is the depth level of the direct common subsumer. α and β are parameters to optimize

the similarity measurement ( according to[99], the best setting is usually α = 0.2 and β = 0.6).

Now we can express our preference from the sample query regarding document topics:

d1 �topic d2 ≡ topic sim (Politics, Topic(d1)) < topic sim (Politics, Topic(d2))

6.2.2 TFxIDF as keyword scoring function

The most prevalent search criterion nowadays is keyword search over document full text. This

has been supported for decades in information retrieval. One of the basic relevance notions



6.2 Basic Scoring Functions for Document Search 76

in IR is TFxIDF (see e.g. [188]). TFxIDF stands for Term Frequency and Inverse Document

Frequency and is a content-based ranking method. It calculates the relevance of a document,

based on how often a search term appears in a document (term frequency TF), and how often

the term exists in the whole document collection (inverse document frequency IDF). The more

search terms are found in a document, the more important the document is, taking into account

how often the search term is found in the collection, i.e. weighting rare terms in documents

higher. A detailed introduction can be found in [188]. For a term ti from a set of keywords

and a document dj from a document collection Tr TFxIDF is defined as

(6.2) TFxIDF (t, d) = n(t, d)︸ ︷︷ ︸
TF

· log
|Tr|
n(t)︸ ︷︷ ︸

IDF

where n(t, d) denotes the number of occurrences of the term t in the document d and n(t) is

the number of documents that contain the term t.

TFxIDF computation requires collection-wide information; as we don’t work directly on a

document collection, but on a database relation, we need to specify to which collection the

scoring should refer. This is done with an additional query expression col. For a given collec-

tion specification col we then can define

(6.3) tfidf(t, d, col) = n(t, d) · log
|col|

n(t, col)

Using this scoring function, we can express which full-text we prefer based on the keyword

condition of our sample query:

d1 �keywords d2 ≡
tfidf(′London′, Body(d1)), πBody(Doc)) + tfidf(′Olympics′′, Body(d1)), πBody(Doc))
> tfidf(′London′, Body(d2)), πBody(Doc))+tfidf(′Olympics′′, Body(d2)), πBody(Doc))

This expression specifies all document bodies in relation ’Doc’ as basic collection.

Due to TFxIDF being always related to a document collection, it doesn’t suffice in a distributed

setting to compute the score locally at each peer, because that would lead to distorted scores

when merging results. Therefore all peers have to be provided with the required collection-

wide information. [179] describes in detail how this is done efficiently in our super-peer-based

setting.
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Formal notion of example query With the defined scoring functions, our sample preference

formula looks as follows:

d1 �sample query d2 ≡ d1 �topic d2 ∨ (Topic(d1) = Topic(d2) ∧ d1 �keywords d2)

The query Topk
sample query(Doc) will return (about) k preferred documents for the sample

search. We will use this preference as query pattern in our evaluation, too (cf. 6.4).

6.3 Progressive, Preference-based SPQR

In this section we will present our algorithm for basic preference-based querying capabili-

ties in the HyperCuP network. According to the distributed nature of the retrieval and the

P2P network the distributed retrieval algorithm is divided into three parts that are respectively

executed by

• the super-peer initially receiving the query,

• the super-peers in the HyperCuP backbone,

• and the local peers at each super-peer.

Since a dissemination of global knowledge should be avoided due to the overhead of data

transmission, a basic concept of our algorithm is to locally evaluate as many parts of the query

as possible. This means only the super-peer receiving the query (i.e. the root node of our

implicit HyperCuP spanning tree) needs full information to control the execution of the queries

in order to guarantee a correct result set with a minimum transmission of data. This super-peer

hands on the query to the relevant super-peers along the backbone of adjacent super-peers,

which in turn forward the query to their relevant adjacent super-peers and connected local

peers, without having to have full information about how the query answering is progressing.

The local peers just execute the query over their local database fragment and retrieve some

best matching objects. We will present all relevant steps in detail in the following.

Assumptions In addition to 4.1, the algorithm relies on the following assumptions:

• Uniform Ranking We assume that every peer throughout the network uses the same

scoring functions to compute document scores with respect to a query; input data to

compute these scores may be different.

• Zipfian Query Distribution Distribution of item popularity, and accordingly, of query

frequency on the internet is not uniform, but usually follow a Zipf distribution, where

few queries make up the majority of all requests. Zipf distributions are ubiquitous in
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content networks, the Internet and other collections and have become one of the most

empirically validated laws in the domain of linguistic quantities and networks (in the

form of power law distributions) [54, 35, 116, 5].

In P2P networks typical consumers are interested in only subsets of all available content

and content categories [44]. Documents are also distributed following Zipf’s law, i.e.

many consumers are interested in a few most popular resources, while the interest in

the large rest of resources is comparatively low. This makes it safe to assume that the

occurrence frequency of queries (rsp. the subexpressions they contain) will also follow

a Zipf distribution.

6.3.1 Basic Algorithm

Overview A basic question is if distributed computing of a preference query yields the cor-

rect result set. To show that this is indeed the case, we start with a simplified version of the

algorithm which consists of three steps:

• The super-peer backbone distributes the query to all connected peers.

• Each peer identifies preferred items according to given preference query and sends them

to super-peer.

• Super-peers merge and forward the results.

For presentation purposes, we assume that a query consists just of a preference �C on a re-

lation R. Of course, any such query can also include arbitrary hard constraints which act as

filter before the preference is taken into account.

Query Distribution Each super-peer uses a simple broadcast to distribute the query. The

indices introduced for SPQR can also be used here to restrict query distribution. For example,

a preference query only needs to be sent to peers supporting all referred schema elements.

However, the preference semantics are not taken into account for initial query distribution.

Local Query Evaluation Any peer p computes the result set for its local database fragment,

i.e., ωC(σp(R)), and returns this set to its super-peer.

Result Merging Each super-peer collects the responses from all peers and super-peers to

which it had distributed the query. As soon as the preferred items have been delivered by the

respective peers and super-peers, the super-peer again applies ωC to the union of all results.
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Formally, the following operation is executed on super-peer spi, assuming the query came in

via dimension d: ωC(
⋃

p∈Pi
ωC(σp(R)) ∪ ⋃

sp∈SP d
i

ωC(σsp(R))) 2.

Similar to the non-preference query case (cf. 4.5), we have to show that computing ωC inde-

pendently at each peer, and merging results at the super-peers leads to the same result set as if

we had computed ωC on the whole relation.

First, we show a Lemma about constructing a preference result from preference results on

relation fragments:

Lemma 6.5. For any horizontal fragmentation of relation R, denoted as σF1(R), . . . , σFn(R),
the following holds:

ωC(
⋃

1≤i≤n ωC(σF i(R))) = ωC(R).

In other words, the computation a preference relation ωC by

(1) independent computation of ωC on the fragments,

(2) union of the resulting answers, and

(3) computation of ωC on this union,

yields the same result as computation on the whole relation.

Proof. First, we show that ωC(ωC(R)) = ωC(R). Trivially, for any set R, ωC(R) ⊆ R.

Therefore, also ωC(ωC(R)) ⊆ ωC(R). So what is left to show is that also ωC(ωC(R)) ⊇
ωC(R). We prove this by contradiction. Suppose ∃t ∈ ωC(R) : t /∈ ωC(ωC(R)).
t /∈ ωC(ωC(R)) ⇒ ∃t′ ∈ ωC(R) : t′ �C t. But, t′ ∈ ωC(R) ⇒ t′ ∈ R, and due to t′ �C t it

follows that t /∈ ωC(R) �
With this result, we can prove that ωC

(⋃
1≤i≤n ωC(σFi(R))

)
⊇ ωC(R):

t ∈ ωC(R) ⇒ ¬∃t′ ∈ R t′ �C t ⇒ ∀i ¬∃t′ ∈ σFi(R) t′ �C t (because σFi(R) ⊆ R).

Therefore,
⋃

1≤i≤n ωC(σFi(R)) ⊇ ωC(R).

Now,
⋃

1≤i≤n ωC(σFi(R)) ⊇ ωC(R)

⇒ ωC

(⋃
1≤i≤n ωC(σFi(R))

)
⊇ ωC (ωC(R))

⇒ ωC

(⋃
1≤i≤n ωC(σFi(R))

)
⊇ ωC(R)

It is left to show that ωC

(⋃
1≤i≤n ωC(σFi(R))

)
⊆ ωC(R).

Suppose ∃t ∈ ωC(R) : t /∈ ωC

(⋃
1≤i≤n ωC(σFi(R))

)
.

⇒ ∃j :
(
t ∈ σFj (R) ∧ ¬∃t′ ∈ R : t′ �C t

)
⇒ ∃j :

(
t ∈ σFj (R) ∧ ¬∃t′ ∈ σFj (R) : t′ �C t

)
⇒ ∃j : t ∈ ωC(σFj (R))

2notation based on definitions introduced in 4.3.
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⇒ t ∈ ⋃
1≤i≤n ωC(σFi(R)).

Now, due our assumption of t being in ωC(R), ¬∃t′ ∈ R : t′ �C t

⇒ ∀i, 1 ≤ i ≤ n : ¬∃t′ ∈ σFi(R) : t′ �C t ⇒ t ∈ ωC

(⋃
1≤i≤n ωC(σFi(R))

) �
Thus, ωC(

⋃
1≤i≤n ωC(σFi(R))) = ωC(R).

Note that
⋃

1≤i≤n ωC(σFi(R)) ⊆ ωC(R) does not hold in general, because tuples which are

not locally dominated, but would be dominated by tuples stored at other peers, are not removed

from the union.

Theorem 6.6. For a given preference query based on �Con relation R, originating at spi,

and a super peer network as defined in 4.4, the following holds:

ωC(R) = ωC(
⋃

p∈Pi
ωC(σp(R)) ∪ ⋃

sp∈SP 0
i

ωC(σsp(R)))

Proof. Follows directly from Lemma 6.5.

This result shows that the algorithm described above, based on SPQR, does indeed deliver the

result a preference-based query.

6.3.2 Optimized Routing and Merging

In this section, we describe how to efficiently distribute preference-based queries in the SPQR

network. Two factors allow to optimize the query processing algorithm further:

• With preference queries, result set sizes are typically reduced significantly, and only

a small subset of peers actually contributes to the final result. Therefore, we can re-

duce distribution effort if we manage to forward queries only to peers holding the best

matches, which are going to become part of the result set, instead of forwarding it to all

peers supporting the corresponding schema elements (as before).

• when collecting results, often peers can be excluded from further consideration (pruned)

already after having provided their single best match, because even this one may be

already dominated by a result from another peer.

The first optimization opportunity is used by maintaining an additional preferred peer index,

based on the results of previous query occurrences . To avoid unnecessary result transmis-

sion, we introduce progressive result fetching, where additional results are only transmitted on

demand.
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Preferred Peer Index The idea behind the preferred peer index is that we could avoid a

large fraction of distribution efforts if we knew which peers hold the best matches. This is

impossible for every query, but it is easy to estimate for repeated queries. In case the net-

work hasn’t changed too much a good approximation is to distribute the query to the same

peers which had the best answers when this query was evaluated last time. To accomplish this

optimization, each super-peer maintains statistics about recent query evaluations. For each

query, an index entry is created (or updated) that holds the information which of its local peers

and adjacent super-peers contributed results. These index entries can be maintained efficiently

even in rather volatile P2P networks to hold sufficiently current information about object dis-

tributions, as will be shown in section 6.4. To adapt to changes in the P2P network, the index

lets all entries expire after a specified time span. The more volatile the network is the shorter

the expiration period has to be in order to adapt to changing data allocations. As in the basic

SPQR algorithm, a super-peer needs to take into account on which edge dimension the query

came in when forwarding it to adjacent super-peers. Therefore, the super-peer maintains sep-

arate sub-indices for its peers (usable for queries from any direction), and for each hypercube

dimension. Fortunately, preferred peer index maintenance comes at a negligible price. No

additional messaging is required, because the collected information passes through the super-

peers anyway. The only cost involved is the memory consumption of index entries, which is

rather small because it doesn’t consist of the actual results (which may be arbitrarily large) but

just peer ids. Therefore, while this index ’only’ improves performance for repeated queries, it

is in no case harmful.

With the preferred peer index, the algorithm basically looks as follows:

• Super-peers forward query according to their preferred peer indices.

• Each peer identifies preferred items according to given preference query and sends them

to super-peer.

• Super-peers merge and forward results, and update their indices.

Additionally to using the whole query as key to the preferred peer index, it is possible to store

preferred peer information about subqueries in separate indexes. This information can be used

to compute an optimized destination set for queries which had not yet occurred, too. While

this destination set might not be optimal, it can still reduce distribution costs considerably. See

section 6.4 for an example.

Progressive Result Fetching Progressive result fetching comes into play if more than the

top results are requested. In this case, ωC has to be executed iteratively on the remaining

objects, as described in 6.1. It is obviously not optimal if each peer p delivers the whole set
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ωi
C(Rp) for each iteration i, because already after the first response it may become clear for

a lot of peers that they can’t deliver better matches than the one’s already seen at their super-

peer. As soon as this has become clear, these peers (rsp. their database fragments) should be

pruned.

A simple ω2
C examples illustrates this: In order to get the dominating object(s) ω1

C(R) in the

super-peer we only need the dominating objects of all its local peers and super-peers along the

spanning tree starting at the query originator. Having chosen the maximum object from any

of the peers, we can compute ω2
C(R) of this set and exclude all peers which didn’t get their

ω1
C(R) objects placed there. All the other peers still may be able to offer more ’second-best’

objects their top-scored. So for determining the objects in ω2
C(R), we only additionally need

to ask the peers that already contributed to ω1
C(R) for their ω2

C(R) sets. For higher numbers

of query results this process can be repeated inductively until all ωk
C(R) sets are delivered, as

we show below.

Since the best objects are determined iteratively, the merging super-peer can immediately de-

liver each batch of result objects to the super-peer directly up the super-peer backbone, en-

abling it in turn to also return its merged results at the earliest point in time. This successive

query result delivery behavior not only optimizes bandwidth use, but also helps to improve the

psychologically felt response time for the user by offering correct result objects for consider-

ation already at an early stage.

6.4 Evaluation

While preference queries are more expressive than the ordinary relational calculus, they can

also be difficult to compute efficiently, even in a non-distributed setting. Of course, a better

result than in a centralized context cannot be expected, therefore it makes sense to chose a

scenario for our evaluation for which local computation is efficient.

In our case, we chose a typical digital library context, where users search for documents in a

newspaper article collection. Queries are composed from a topic and a keyword preference,

as described in the example from 6.2. We used the TREC document collection volume 5

consisting of LA Times articles for our experiments. The articles are already categorized

according to the section they appeared in, and we use this information as base for our document

classification. To simulate a network of document providers, the articles are distributed among

the peers in the network. The simulated network consists of 2000 peers, each providing articles

from three categories on average (with a standard deviation of 2.0).

The simulation is based on the framework described in 4.7. TFxIDF calculation was imple-
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Fig. 1. Index size Fig. 2. Coverage of query index

mented using the (slightly modified) search engine Jakarta Lucene [107].

We assume a Zipf-distribution for query frequencies with skew of 0.0. News articles are pop-

ular only for a short time period, and the request frequency changes correspondingly. With

respect to the Zipf-distribution this means that the query rank decreases over time. Query

terms were selected randomly from the underlying documents. In our simulation, we generate

200 new most popular queries every 2000 queries which supersede the current ones and ad-

just query frequencies accordingly. This shift may be unrealistically high, but serves well to

analyze how our algorithm reacts to such popularity changes.

6.4.1 Results

Index size Figure 1 shows how the IDF index at each super-peer grows over time. After

10000 queries it has grown to a size of 2015, only a small fraction of all terms occurring in

the document collection. A global inverted index we would have had contained 148867 terms.

This underlines that much effort can be saved when only indexing terms which are actually

appearing in queries.

Index effectivity Both category and query index become quite effective. After nearly 2000

queries, the query index achieves a coverage of 80%. Figure 2 shows how each popularity shift

causes a coverage reduction from which the query index recovers after about 1000 queries.

This shows that a change in query popularity over time is coped with after a very short while.

As there are only about 120 different categories, after less then 1000 queries the index contains

nearly all of them (Figure 3). We assume that news provider specialized on some topics change

these topics only very infrequently. Therefore, peers do not shift their topics during the simu-

lation. Thus, the category index serves to reduce the number of contacted peers continuously,

also after popularity shifts.

Figure 4 shows how many peers had to be contacted to compute the result. The influence of
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Fig. 3. Coverage of category index Fig. 4. Contacted peers per query

popularity shifts on the whole outcome can also be seen clearly. The category index takes care

that the peaks caused by popularity shifts don’t become too high. Summarized, the combina-

tion of both indexes yields a high decrease of contacted peers compared to broadcasting.

In the experiments described here we didn’t introduce dynamics regarding the peers contents.

Therefore, our algorithm yields exactly the same results as a complete index. In [12] (where

only keyword preferences are taken into account), we show that if 20% of the peers contents

change during a simulation run, the error ratio is about 3.5%.
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Summary and Future Work

7.1 Summary

With the success of the Web, integration of distributed information has become one of the

most important research areas in computer science. It is clear that there is no ’one-size-fits-all’

solution to this field. Therefore, we have focused our work to the context of digital library net-

works, and have identified requirements for search in such networks. As result of an extensive

review of related work, design dimensions of schema-based peer-to-peer networks have been

distilled, and the existing approaches have been classified according to these dimensions1.

The main contribution of this thesis is a comprehensive proposal for a peer-to-peer infras-

tructure which allows to efficiently search for documents in such a network, based on their

metadata and content. Specifically, the following achievements can be identified:

SPQR Algorithm As foundation, we devised the SPQR algorithm for efficient query distri-

bution in a digital library network. SPQR builds on ideas from distributed databases, where

central mediators collect catalog data from network nodes. Based on this information, they

create distributed plans for incoming queries and coordinate their execution. In SPQR, this

idea is developed further from a central mediator to a super-peer mediator network, where no

central coordination and information is required anymore. We have shown the correctness of

SPQR; for any query, it retrieves the same result set as if the query would have been executed

on a central database containing the content of all nodes in the network.

OAI-P2P Infrastructure A complete infrastructure has been designed and implemented

which realizes the SPQR algorithm. This infrastructure is based on the Semantic Web data
1The proposed design dimensions already have been adopted in a survey of search in P2P networks [146]
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representation format RDF and a query exchange language derived from datalog. Wrappers to

different backends (such as RDBMSs and Semantic Web data stores) are available to connect

a wide variety of information providers to the network. To cater specifically for digital library

systems, an OAI wrapper has been developed which allows to add any digital library with an

OAI-PMH conformant interface to the network, without imposing any additional requirements

on the digital library system.

Preference Query Support Experience with the implemented infrastructure showed that

support for hard-constraints only (as in traditional database queries) is not sufficient, and the

notion of soft-constraints to express best matches needs to be added. Therefore we have ex-

tended the basic SPQR algorithm to support the expression of soft-constraints. We chose pref-

erence queries as underlying formalism, because they are currently the most versatile means to

express best match notions, covering other approaches such as scoring and top-k queries. We

have shown that correctness of distributed query evaluation also holds for this extended case.

Also we have proposed several strategies to optimize query distribution further, by introducing

the concept of query-driven index creation and maintenance. This concept avoids any index

maintenance messages, and is suitable for contexts where query frequencies follow a skewed,

Zipfian distribution.

Simulation-based Evaluation To evaluate our algorithms, we have implemented a flexible

and scalable Simulation framework for schema-bases P2P networks. We have conducted ex-

tensive experiments with respect to the influence of peer clustering on query distribution and

load-balancing within the super-peer backbone. The preference query support has been evalu-

ated based on a large TREC document collection, and the proposed algorithm has turned out

to be efficient as well as effective under network churn.

7.2 Future Work

Extended Query Planning Currently, SPQR is only able to handle horizontally fragmented

data. While this is the predominant kind of fragmentation in the digital library context, it is

still worthwhile to consider vertical fragmentation as well. First steps in this direction have

already been made [27]. The main challenge here is to identify for a given complex query

the super-peer nodes where splitting off sub-queries makes most sense, without provision of

global knowledge.
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Self-Organized Index/Cache Optimization SPQR as well as its extension to preference

queries offer several degrees of freedom with respect to index creation maintenance. Currently,

the actual choices for index creation and maintenance are configured at start-up time of super-

peers. This is an area where self-organization would improve index efficiency:

• Index Granularity A better approach than hard-wired index granularity for each attribute

would be to decide based on usage in queries and actual size of the value domain in

the network. For example, the each super-peer could autonomously find out that the

dc:language attribute has a domain of very limited size, and that queries often contain

constraints to exactly one value of this attribute. That would lead to the creation of an

index for dc:language with value granularity without having to encode this behavior in

advance.

• Indexing vs. Caching Instead of forwarding all queries to its peers, super-peers may also

start to cache result sets for most frequent (sub-)queries. Work on this optimization has

already begun [26], and it has turned out that caching can be worthwhile for Zipfian

query frequency distributions.

• Index Maintenance Strategy Currently we use different index maintenance strategies for

basic SQPR and SPQR with preference query support. For the former, index content

is collected and maintained in advance, whenever the network content changes. For

the latter, we use query-driven maintenance, maintaining index entries only on demand.

It is already known that maintaining a complete inverse document frequency index in

advance is too costly. But it probably is advantageous to introduce query-driven up-

dates also for the basic SPQR indexes, especially for finer granularities where up-front

maintenance of a full index would be too expensive.

• Index Update Rate The index update rate is determined by two opposing factors: On

the one hand we want to update indices as soon as possible, to increase correctness of

query results. On the other hand we want to update them as late as possible, to decrease

index maintenance effort. The optimal update rate depends on content change rate in

the network, and is varying for different attributes. For example, new documents may

be added frequently to peers, therefore the term index might need a short index entry

expiration period. But peers providing content in just one language typically continue

to do so over larger time spans, therefore, the language attribute index can be updated

very lazily without loss of query result precision.

All these decisions would be based on statistics gathered with respect to query frequency,

content distribution, and network churn. Instead of hard-coding index maintenance decisions,

super-peers would be equipped with analytical error and effort models, which would allow

them to estimate cost and benefit of a specific index maintenance decision, and choose the



7.2 Future Work 88

CA

CA

CA CA

CA

CA
CA CA

CA

RA
RA

CA
CC

CC

CC CC

CC

CC CC
CC

CC

RC
RC

CC

CB

CB

CB CB CB

CB
CB CB

CB

RB
RB

CB

CD

CD

CD CD CD

CD
CD CD

CD

RD
RD

CD

Figure 7.1: Recommender and content peers

optimal trade-off. First results of such a model for error estimation can be found in [165].

Other topologies The introduction of super-peers which take over responsibility for query

routing has been shown to be advantageous. However, the current choice of a strict two-

level classification of nodes in peers and super-peers may be a bit too rigid. With respect to

peer capabilities, we do not really have a two-class-society, but rather a continuous spectrum

of more or less powerful peers. Therefore, for an optimal utilization of all peers abilities,

we should strive for a model where peers grow gradually into the super-peer role. Such a

model is only possible when giving up a structured, highly symmetric super-peer topology.

We are considering instead a short-cut topology (such as [105]), but with a distribution of

outgoing links according to each peer’s characteristics (bandwidth, storage, processing power).

Figure 7.1 shows a possible topology. Here, more powerful peers gradually take over the

recommender role (denoted by ’R’). Queries are routed first to the most suitable recommender,

then along recommender connections until they reach the appropriate content providers.

This approach requires a clustering strategy even more than the current SPQR topology, be-

cause otherwise it would degenerate into a Gnutella-like network. On the other hand, good

optimization policies may make it possible to let the network topology approximate a small-

world graph over time. We are currently investigating the use of Bloom filters as peer self-

descriptions to facilitate such a self-organized clustering [137].
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