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Abstract.
We study the bulk and boundary scattering of the sl(N ) twisted Yangian spin chain via the

solution of the Bethe ansatz equations in the thermodynamic limit. Explicit expressions for the
scattering amplitudes are obtained and the factorization of the bulk scattering is shown. The issue
of defects in twisted Yangians is also briefly discussed.

1. Introduction
We shall discuss here the bulk and boundary scattering in the context of twisted Yangians. Most
of this material is described in more detail in [1, 2]. Here we are giving a brief review of the main
results regarding basically the computation of the bulk and boundary scattering amplitudes in the
case of the spin chain with twisted Yangian underlying algebra.

We shall deal henceforth with open spin chains, requiring introduction of boundary terms
consistent with quantum integrability. These are related to generalized reflection algebras
(quadratic algebras) à la Freidel-Maillet [3] extending the original construction of Cherednik [4]
and Sklyanin [5] to a four matrix structure canonically expressed as:

A12 K1 B12 K2 = K2 C12 K1 D12 , (1)

with unitarity requirements

A12 A21 = D12 D21 = I12 ,
C12 = B21. (2)

In the particular case when A12 = D21 = R12 a given Yang-Baxter R matrix, and B12 = C21 = R̄21

(its soliton anti-soliton counter part), R̄12 ∼ Rt1
12, (1) yields the so-called twisted Yangian structure

if R is the simple Yangian solution of the Yang-Baxter equation [6].

1 Based on a talk presented by AD, in “Integrable systems and quantum symmetries”, Prague, June 2015. This work
is mainly based on [1, 2]
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Spin chains based on such a twisted Yangian were first constructed and investigated in [7] for
the first time whereas investigations were generalized in [8]. They were then considered in the
thermodynamic limit in our previous paper [1]. They naturally exhibit soliton non-preserving
boundary conditions due the choice of B12 = C21 as a soliton−anti-soliton S-matrix and the
subsequent conversion of a soliton into an anti-soliton by the building reflection matrix K.

2. Bethe ansatz equations in twisted Yangian
Analytical Bethe ansatz techniques were applied in [7, 8] to obtain the spectrum and BAEs
for the twisted Yangian. Throughout the text we consider the boundary matrices, c-number
representations of the twisted Yangian (2) (A12 = D21 = R12, and B12 = C21 = R̄21), to be
proportional to unit. The spectrum of the sl(N ) twisted Yangian is then given by the following
expression:

Λ(λ) = (a(λ) b̄(λ))L g0(λ) A0(λ) + (b(λ) b̄(λ))L
N−2∏
j=1

gj(λ) Aj(λ) + (ā(λ) b(λ))LgN−1(λ) AN−1(λ)

(3)
where we define:

a(λ) = λ+ i, b(λ) = λ, ā(λ) = λ+ iρ− i, b̄(λ) = λ+ iρ (4)

gl are terms due to boundary contributions

gl(λ) =
λ+ iρ

2 − i
2

λ+ iρ
2

gN−1
2

(λ) = 1, N odd

gN−l+1(λ) = gl(−λ− iρ)

ρ =
N
2
, l ∈ {1, . . . N

2
− 1} (5)

and Al are the so called dressing functions defined as

A0(λ) =
M(1)∏
j=1

λ+ λ
(1)
j − i

2

λ+ λ
(1)
j + i

2

λ+ λ
(1)
j − i

2

λ+ λ
(1)
j + i

2

Ak(λ) =

M(k)∏
j=1

λ+ λ
(k)
j − ik

2 + i

λ+ λ
(k)
j + ik

2

λ+ λ
(k)
j + ik

2 + i

λ+ λ
(k)
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2

×
M(k+1)∏
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λ+ λ
(k+1)
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2 − i
2

λ+ λ
(k+1)
j + i

2

λ− λ
(k+1)
j + ik

2 − i
2

λ− λ
(k+1)
j + i

2

(6)

Ak(λ) = AN−k+1(−λ− iρ), k ∈ {1, . . . , N
2

− 1} (7)

for N = 2n+ 1

An(λ) =

M(n)∏
j=1

λ+ λ
(n)
j + in

2 + i

λ+ λ
(n)
j + in

2

λ− λ
(n)
j + in

2 + i

λ− λ
(n)
j + in

2

×
λ+ λ

(n)
j + in

2 − i
2

λ+ λ
(n)
j + in

2 + i
2

λ− λ
(n)
j + in

2 − i
2

λ− λ
(n)
j + in

2 + i
2

(8)
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Analyticity conditions imposed on the spectrum give rise to the associated Bethe ansatz
equations presented below: defining

en(λ) =
λ+ in

2

λ− in
2

, (9)

the BAE read as follows:

• sl(2n+ 1)

eL1 (λ
(1)
i ) = −

M(1)∏
j=1

e2(λ
(1)
i − λ

(1)
j ) e2(λ

(1)
i + λ

(1)
j )
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(1)
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j ) ,
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M(ℓ)∏
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e2(λ
(ℓ)
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(ℓ)
j ) e2(λ

(ℓ)
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(ℓ)
j )
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(ℓ+τ)
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for ℓ = 2, . . . , n− 1,

e− 1
2
(λ

(n)
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M(n)∏
j=1

e−1(λ
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(n)
j ) e−1(λ
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j )
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(10)

Note that in this case the Bethe ansatz equations are similar to the ones of the open osp(1|2n)
spin chain (see also [7], [8], [9]).

• sl(2n)
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(1)
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e−1(λ
(n)
i ) = −

M(n)∏
j=1

e2(λ
(n)
i − λ

(n)
j ) e2(λ

(n)
i + λ

(n)
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As opposed to the sl(2n + 1) case the Bethe ansatz equations above do not reduce to any of
the known forms of BAE, which makes the whole study even more intriguing.
Note that the numbers M (l) are associated to the eigenvalues of the diagonal generators Sl of
the underlying algebra so(n) (see [7, 8] for a detailed discussion on the underlying symmetry
of the models), i.e.

S1 =
1

2
M (0) −M (1), Sl = M (l−1) −M (l), Sl =

1

2
(Ell − El̄l̄), l ≤ l ≤ N − 1

2
(12)
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Ell are the diagonal generators of slN , and l̄ = N − l + 1 the conjugate index.
It is also worth recalling that the corresponding numbers in the usual sl(N ) case are given by:

Ell = M (l−1) −M (l), M (0) = 2L, M (N ) = 0, l ∈ {1, 2, . . . ,N} (13)

By imposing M (l) = M (N−1) and considering the differences Ell − El̄l̄ we end up with (12) in
accordance to the folding of sl(N ) leading to the so(n) algebra [7, 8].

3. Thermodynamics
The aim now is to consider the study of the BAEs at the thermodynamic limit. The ground state of
the model consists of n filled Dirac seas, unlike the Yangian case, where the ground state consists of
2n+1 or 2n filled seas respectively. As usual, an excitation corresponds to a hole in the Dirac sea.
We perform our computations in the thermodynamic limit of the BAE, which is obtained according
to the thermodynamic rule (for more details the interested reader is referred to e.g. [10, 11, 12] or
[1] in a more relevant context)

1

L

M(ℓ)∑
j=1

f(λ
(ℓ)
j ) →

∫ ∞

0
dµσℓ(µ) f(µ)−

1

L

ν(ℓ)∑
j=1

f(λ̃
(ℓ)
j )− 1

2L
f(0) , (14)

with ν(ℓ) holes of rapidities λ̃
(ℓ)
j in the ℓth Dirac sea σℓ is the density in the ℓth sea. The last term

is the halved contribution at 0+ due to the boundaries. We shall focus here on the two-holes state,
so that we can investigate both bulk and boundary scattering. In the thermodynamic limit the
densities describing the state in the presence of holes (particle-like excitations) are given as:

σ̂(ω) = ε̂(ω) +
1

L
r̂(1)(ω) (15)

where σ̂, ε̂(0), r̂(i) are n column-vectors. In fact the r(1) contribution is the one that will provide
the bulk and boundary scattering amplitudes as will be transparent in the subsequent section.

It is also worth noting that from the BAEs in the thermodynamic limit we can compute the
energy of the holes in each sea:

• sl(2n+ 1)

ε̂(j)(ω) =
cosh(n+ 1

2 − j)ω2
cosh(n+ 1

2)
ω
2

, j ∈ {1, 2 . . . , n}

• sl(2n)

ε̂(j)(ω) =
cosh(n− j)ω2

cosh nω
2

, j ∈ {1, 2 . . . , n− 1}

ε̂(n)(ω) =
1

2 cosh nω
2

(16)

The details here are omitted but we refer the interested reader for more details in [1, 2].
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4. Scattering
The key element in this context is now the generalized quantization condition for the twisted
Yangian introduced in [1]. We shall consider here the scattering of particle-like excitations in the
first sea. This is in fact inspired by earliest studies on the formulation of the quantization for
quantum integrable systems with different boundary conditions (see also [10], [11], [12])

In the twisted Yangian a modified isomonodromy condition is imposed on the two-holes state
[1, 2]: (

eiP
(ℓ)L S(λ̃1, λ̃2)− 1

)
|λ̃1, λ̃2⟩ = 0 , (17)

P(ℓ) the momentum of the hole in the ℓth sea. The global scattering matrix S is given by:

S(λ1, λ2) = K+(λ1) S(λ1 − λ2) K−(λ2) S(λ1 + λ2) , (18)

The “bulk” scattering S is factorized as

S(λ) = S(λ) S̄(λ) (19)

where S is the soliton-soliton scattering matrix, and S̄ is the soliton–antisoliton scattering matrix
in the sl(N ) spin chain.

The quantization condition is schematically depicted below:

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

K+

S̄ S

S S̄

K−

As already pointed out in the previous section we focus on the state with 2-holes in the first
Dirac sea. If we now compare quantization condition with the density of the state (15), recall also:

ε(ℓ)(λ) =
i

2π

dP(ℓ)(λ)

dλ

then we conclude:

S0(λ) = exp
{
−

∫ ∞

−∞

dω

ω
e−iωλ B1(ω)

}
K+

0 (λ)K−
0 (λ) = exp

{
−

∫ ∞

−∞

dω

ω

(
e−iωλ B2(ω) + e−2iωλ B1(ω)

)}
,

where S, K±
0 are eigenvalues of S, K± respectively, and we define

B1(ω) = â2(ω) R̂11(ω)− â1(ω) R̂12(ω)

B2(ω) =
n∑

j=1

(
â2(ω)− 2â1(ω) + â1(ω)δi1 − â 1

2
(ω)δin

)
R̂1i(ω) .

(20)

ân(ω) = e−
n|ω|
2 , R̂ij(ω) = e

ω
2

sinh
(
min(i, j)ω2

)
cosh

(
n+ 1

2 −max(i, j)
)
ω
2

cosh
(
n+ 1

2

)
ω
2 sinh ω

2

. (21)

Explicit expressions for bulk and boundary scattering amplitudes are manifestly extracted above
and the bulk scattering factorization: S(λ) = S(λ) S̄(λ) may be then shown (we refer the interested
reader to [1, 2] for more details).
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5. Implementing defects
We shall briefly discuss here the case where a local defect is implemented.

Define : X+
k (λ) =

λ+ iαk − ik
2

λ+ iαk+1 − ik
2

, X−
k (λ) =

λ+ iαN−k+1 +
i(N−k)

2

λ+ iαN−k +
i(N−k)

2

then the BAEs via the analytical Bethe ansatz formulation read as

• sl(2n+ 1)

X+
1 (λ

(1)
i −Θ) X+

1 (λ
(1)
i +Θ) eL1 (λ

(1)
i ) =

−
M(1)∏
j=1

e2(λ
(1)
i − λ

(1)
j ) e2(λ

(1)
i + λ

(1)
j )

M(2)∏
j=1

e−1(λ
(1)
i − λ

(2)
j ) e−1(λ

(1)
i + λ

(2)
j ) ,

X+
ℓ (λ

(l)
i −Θ) X+

ℓ (λ
(l)
i +Θ) =

−
M(ℓ)∏
j=1

e2(λ
(ℓ)
i − λ

(ℓ)
j ) e2(λ

(ℓ)
i + λ

(ℓ)
j )

∏
τ=±1

M(ℓ+τ)∏
j=1

e−1(λ
(ℓ)
i − λ

(ℓ+τ)
j ) e−1(λ

(ℓ)
i + λ

(ℓ+τ)
j )

for ℓ = 2, . . . , n− 1,

X+
n (λ

(n)
i −Θ) X+

n (λ
(n)
i +Θ) e− 1

2
(λ

(n)
i ) = −

M(n−1)∏
j=1

e−1(λ
(n)
i − λ

(n−1)
j ) e−1(λ

(n)
i + λ

(n−1)
j )

×−
M(n)∏
j=1

e−1(λ
(n)
i − λ

(n)
j ) e−1(λ

(n)
i + λ

(n)
j ) e2(λ

(n)
i − λ

(n)
j ) e2(λ

(n)
i + λ

(n)
j ) (22)

Notice that the Bethe ansatz equations in the presence of defects are very similar to the ones
presented in the previous section. The main difference is the existence of the extra contributions
X± due to the presence of defects. In the thermodynamic limit these contributions will provide
the transmission amplitudes.

We may now formulate a suitable quantization condition for the model in the presence of defects.
In order to determine the relevant transmission matrix it suffices to consider a state with one hole
in the first sea. Let us first introduce some notation and define the transmission amplitudes in
sl(N ) [13] as

T (λ−Θ) : soliton−defect scattering
T̄ (λ−Θ) : soliton−anti-defect scattering
T ∗(λ+Θ) : anti-soliton−defect scattering
T̄ ∗(λ+Θ) : anti-soliton−anti-defect scattering (23)

The quantization condition for such a state reads as(
eiP

(l)
S(λ̃(l),Θ)− 1

)
|λ̃(l),Θ⟩ = 0 , (24)

where the global scattering amplitude is given by

S(λ,Θ) = K+(λ) T (λ−Θ) T̄ (λ−Θ) K−(λ) T̄ ∗(λ+Θ) T ∗(λ+Θ) (25)

We shall not give further details on the derivation of transmission amplitudes in twisted Yangians.
Explicit expressions of transmission amplitudes and their factorizations are provided in [2]. With
this we conclude our presentation on the bulk and boundary scattering in the context of twisted
Yangians.

XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23) IOP Publishing
Journal of Physics: Conference Series 670 (2016) 012007 doi:10.1088/1742-6596/670/1/012007

6



References
[1] J. Avan, A. Doikou and N. Karaiskos, J. Stat. Mech. (2015) P02007, arXiv:1410.5991 [hep-th].
[2] J. Avan, A. Doikou and N. Karaiskos, J. Stat. Mech. (2015) P05024, arXiv:1412.6480 [hep-th]
[3] L. Freidel, J. M. Maillet, Phys. Lett B262 (1991) 268.
[4] I.V. Cherednik, Theor. Math. Phys. 61 (1984) 977.
[5] E.K. Sklyanin, J. Phys. A21 (1988) 2375.
[6] G.I. Olshanski “Quantum Groups (1992)”, Springer Lecture notes in Math. 1510
[7] A. Doikou, J. Phys. A 33 (2000) 8797, [hep-th/0006197].
[8] D. Arnaudon, J. Avan, N. Crampe, A. Doikou, L. Frappat and E. Ragoucy, J. Stat. Mech. 0408 (2004) P08005,

[math-ph/0406021].
[9] D. Arnaudon, J. Avan, N. Crampe, A. Doikou, L. Frappat and E. Ragoucy, Nucl. Phys. B 687 (2004) 257,

[math-ph/0310042].
[10] V. E. Korepin, Commun. Math. Phys. 76 (1980) 165.
[11] N. Andrei and C. Destri, Nucl. Phys. B 231 (1984) 445.
[12] M. T. Grisaru, L. Mezincescu and R. I. Nepomechie, J. Phys. A 28 (1995) 1027, [hep-th/9407089].
[13] A. Doikou, JHEP 08 (2013) 103, aXiv:1304.5901 [hep-th].

XXIII International Conference on Integrable Systems and Quantum Symmetries (ISQS-23) IOP Publishing
Journal of Physics: Conference Series 670 (2016) 012007 doi:10.1088/1742-6596/670/1/012007

7




