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Abstract

The experimental achievement of Bose-Einstein condensation (BEC) in 1995 has aroused

a large interest among the community of the physics of ultracold atomic gases. Re-

cently new topics have attracted the attention of this very active field of research , in

particular we could mention low dimensional systems, atoms in lattices, and classical

and Fermi gases. As for the case of BEC, the study of the dynamical aspects of these

systems provides a very valuable information. In particular time-of-flight experiments

and measurements of collective excitations have been successfully realized providing

a clear signature of the BEC and the regime of interaction. Following this line, in

this thesis, we want to study some dynamical aspects of these new systems nowadays

avaliable due to the remarkable development of the experimental techniques.

In the first chapter we present the state of the art of the field, providing the

historical path and the motivation for the work developed in the next chapters.

In the second chapter, we discuss some general concepts in order to introduce

the formalism and notation employed throughout the thesis, as well as those topics

analyzed in more detail in the further chapters.

In chapter three, we explain some general techniques which are useful to deal with

one dimensional systems, and analyze in detail the expansion of a one dimensional Bose

gas in a guide, which differs significantly from the expansion of a BEC. In particular

we are able to predict the range of parameters for which the self-similarity of the

expansion is violated.

Chapter four is devoted to the physics of atoms in a periodic potential. We start, as

in the previous chapter, introducing some general concepts and techniques employed

further. First we discuss the physics of the superfluid case in a trap, showing that

under certain conditions a three dimensional gas exhibits one dimensional properties.
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In particular, static properties and the lowest collective excitations differ significantly

from those of a BEC. We extend the analysis to the insulating phase showing that cor-

relation properties depend on the on-site one-dimensional regime. These correlations

can be measured in current time of flight experiments.

In the fifth chapter we analyze the dynamics of classical and Fermi gases. We show

in detail how expansion and collective excitations depend on the interaction regime and

the trap anisotropy. In particular, the expansion can be used to distinguish between

a normal Fermi gas and a superfluid one.

We summarize in the last chapter the new results presented in this thesis.

Keywords

Bose-Einstein condensation, ultracold gases, dynamical behavior
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Sommario

La relizzazione sperimentale della condensazione di Bose-Einsein, avvenuta nel 1995,

ha destato un notevole intersse nella comunità della fisica degli atomi ultra freddi. Di

recente nuovi sistemi hanno attratto l’attenzione di questo campo molto attivo della

ricerca, in particolare possiamo menzionare sistemi a bassa dimensionalità, atomi su

reticolo, e gas classici e di Fermi. Come avvenuto nel caso dei condensati di Bose-

Einstein, lo studio degli aspetti dinamici di questi sistemi fornisce importanti infor-

mazioni. In particolare lo studio dell’espansione e delle eccitazioni collettive sono stati

utilizzati con successo per rivelare la BEC e il reggime di interzione. Seguendo questa

liena guida, in questa tesi, vogliamo studiare alcuni aspetti dinamici di questi nuovi

sistemi oggi disponibili grazie al rapido sviluppo delle tecniche sperimentali.

Nel primo capitolo presentiamo lo stato dell’arte nel settore di ricerca, fornendo un

cammino storico e le motivazioni per il lavoro sviluppato nei succeccivi capitoli.

Nel secondo capitolo, discutiamo concetti generali allo scopo di introdurre il for-

malismo a la notazione utilizzati nella tesi, e gli argomenti analizzatti in dettaglio nei

capitoli successivi.

Nel terzo capitolo, esponiamo alcune tecniche generali utili per trattare sistemi

unidimensionali, e analizziamo in dettaglio l’espansione di un gas unidimensionale

in una guida, il quale differisce significativamente da quella di un condensato. In

particolare siamo in grado di predirre la gamma dei parametri per i quali l’espansione

non segue un legge di scaling.

Il quarto capitolo è dedicato alla fisica degli atomi in potenziali periodici. Come

nel precedente capitolo vengono introdotti alcuni concetti e tecniche generali utiliz-

zate nel seguito. Dapprima trattiamo il caso superfluido mostrando che, in particolari

condizioni, un gas tridimensionale esibisce proprietà proprie dei sistemi unidimension-
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ali. In particolare le proprità statiche e le più basse eccitazioni collettive differscono

significativamente da quelle di un condensato. Nel seguito estendiamo l’analisi alla

fase isolante mostrando che le proprietà di correlazione dipendono del reggime del sito

unidimensionale. Queste correlzioni possono essere rivelate da attuali esperimeti.

Nel quinto capitolo analizziamo la dinamica dei gas classici e di Fermi. Mostriamo

in dettaglio come l’espansione e le eccitazioni collettive dipendono dal regime di inter-

azione e l’anisotropia della trappola. In particolare, l’espansione può essere usata per

distinguere il reggime di interazione, normale o superfluido nel caso quantistico, o il

reggime collisionale nel caso di un gas classico.

L’ultimo capitolo è dedicato ad un riassunto dei nuovi risultati presentati in questa

tesi.

Parole chiave

condensazione di Bose-Einstein, atomi ultrafreddi, comportamento dinamico
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Zusammenfassung

Die experimentelle Realisierung der Bose-Einstein-Kondensation (BEK) im Jahre 1995

führte zu einem regen Interesse unter den Physikern, die auf dem Gebiet der ultra-

kalten Atome arbeiten. In letzter Zeit traten neue Fragen dieses sehr aktiven Gebietes

in den Mittelpunkt des Interesses, insbesondere niedrig dimensionale Systeme, Atome

in optischen Gittern sowie klassische Gase und Fermi-Gase sind hierbei zu nennen. Im

Falle der BEK liefert die Untersuchung der dynamischen Aspekte dieser Systeme sehr

wertvolle Informationen. Im speziellen sind
”
time-of-flight“ Experimente und Mes-

sungen von kollektiven Anregungen erfolgreich realisiert worden. Diese widerspiegeln

in klarer Form die Bose-Einstein Phase und das Regime der Wechselwirkung. Daher

werden wir in dieser Arbeit dieser Linie folgen und einige dynamische Aspekte dieser

neuen Systeme untersuchen, die heutzutage dank bemerkenswerter Fortschritte der

experimentellen Techniken zugänglich geworden sind.

Im ersten Kapitel erläutern wir den momentanen Kenntnisstand auf diesem Gebiet,

indem wir auf die historische Entwicklung eingehen und die Motivation für die weitere

Arbeit darlegen.

Im zweiten Kapitel werden einige allgemeine Fragestellungen diskutiert, um den im

weiteren Verlauf der Arbeit verwendeten Formalismus und die Notation einzufhren.

Das dritte Kapitel befasst sich mit der Erklärung einiger Techniken, die für die

Behandlung eindimensionaler Systeme nützlich sind. Zudem analysieren wir im Detail

die Expansion eines Bose-Gases in einem Wellenleiter, welche sich signifikant von der

Expansion eines BEK unterscheidet. Im besonderen können wir den Parameterbereich

vorhersagen, für den die Selbstähnlichkeit der Ausdehnung des Gases verletzt wird.

Kapitel vier ist der Physik kalter Atome in periodischen Potentialen gewidmet.

Wir beginnen, ähnlich wie in den vorangegangenen Kapiteln, mit der Einführung von
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generellen Konzepten und Techniken, die im Weiteren benutzt werden. Zunchst disku-

tieren wir die Physik des suprafluiden Falles in einer Falle, indem wir zeigen, dass unter

bestimmten Bedingungen ein dreidimensionales Gas das Verhalten eines eindimension-

alen Gases zeigt. Im besonderen unterscheiden sich die statischen Eigenschaften und

die kollektiven Anregungen deutlich von denen eines BEK. Wir erweitern die Un-

tersuchung auf die Isolatorphase, indem wir zeigen, dass Korrelationseigenschaften

vom eindimensionalen
”
on-site“ Regime abhängen. Diese Korrelationen können in

gegenwärtigen
”
time-of-flight“Experimenten gemessen werden.

Im vorletzten Kapitel untersuchen wir die Dynamik von klassischen Gase sowie von

Fermigasen. Wir zeigen konkret, wie die Expansion und die kollektiven Anregungen

vom Wechselwirkungsbereich und der Anisotropie der Falle abhängen. Insbesondere

kann diese Expansion zur Unterscheidung eines gewöhnlichen Fermigases von einem

suprafluiden Fermigas dienen.

Das letzte Kapitel fasst die neuen Ergebnisse zusammen, die in dieser Arbeit

dargelegt werden.

Schlüsselworte

Bose-Einstein Kondensation, ultrakalte Atome, dynamisches Verhalten
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Chapter 1

Introduction

The experimental achievement of Bose-Einstein (BEC) condensation [1–3] has aroused

a large interest among the community working in ultracold atomic gases. Recently,

other topics have attracted a growing attention in this very active community, and in

particular the physics of low dimensional atomic gases, atoms in periodic potentials,

and classical and Fermi gases. In this thesis we will analyze some dynamical properties

of these novel systems. We will focus our attention on the expansion and the collective

excitations, a very useful tool that has been successfully used to reveal the appearance

of the Bose-Einstein Condensation [1,3] and the role of interactions [4–6]. In the next

sections we will present the state of the art of this field, providing the motivation and

the guiding line for the work presented in the next chapters. The last section contains

an overview of the thesis.

1.1 Low dimensional systems

The development of the trapping techniques has allowed for the realization of very

anisotropic geometries, where the confinement is so strong in one or two dimensions,

1



2 CHAPTER 1. INTRODUCTION

that at low temperatures the transversal motion is “frozen”, and does not contribute

to the dynamics of the system. In this way two- [7–10] and one-dimensional [7,11,12]

systems have been accomplished. Low-dimensional gases present significantly different

properties compared to the three-dimensional ones. A remarkable example is provided

by the existence of quasi-condensation [13–16], whose effects have been recently ob-

served experimentally [17–19].

During the last years, the 1D Bose gases have been the subject of growing interest,

in particular the limit of impenetrable bosons [20], which behave to a large extent as

a noninteracting Fermi system, acquiring some remarkable properties. The conditions

for the experimental realization of strongly correlated 1D gases are rather restrictive

[13, 21], since a large radial compression, a sufficiently small density, and eventually

a large scattering length are needed. Fortunately, recent experimental developments

have opened perspectives in this sense. Especially interesting is the possibility to

modify at will the interatomic interactions by means of Feshbach resonances [22, 23],

and the capability of loading an atomic gas in an optical lattice [24]. As we discuss

below, the large confinement available in optical lattices have been recently employed

for the experimental realization of 1D strongly-interacting gases [53–57].

From the theoretical side, the physics of 1D Bose gases was first investigated by

Girardeau [20], who considered the limit of impenetrable bosons, also called Tonks-

Girardeau (TG) gas, pointing out a non trivial relation with the physics of ideal

Fermi gases. This analysis was later extended by Lieb and Liniger [25], who solved

analytically the problem for any regime of interactions, using Bethe Ansatz. Yang

and Yang [26] extended the analysis including finite temperature effects. It has been

developed also a very useful effective theory which take into account only the linear

dispersion relation of the spectrum [27,28], being simpler than Bethe-Ansatz. Recently,
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the experimental accessibility of trapped gases has encouraged the investigation of the

harmonically trapped case. The Bose-Fermi (BF) mapping has been employed to the

case of an inhomogeneous gas in the TG limit [29–32]. However, there is unfortunately,

to the best of our knowledge, no exact solution for arbitrary interaction strength in the

case of trapped gases. The problem of the equilibrium of a trapped gas can be analyzed

using a local density approximation and employing the Lieb-Liniger (LL) equation of

state locally to evaluate the equilibrium density profiles [33]. A similar formalism

has been recently employed to analyze the collective oscillations in the presence of

harmonic trapping [34]. Both Refs. [33] and [34] have shown the occurrence of a

continuous transition from the mean field (MF) regime to the TG one as the intensity

of the interaction is varied. Recently, the stability and phase coherence, and correlation

properties of 1D trapped Bose gases have been discussed [35–38]. The local correlation

properties have been also analyzed. In particular, it was found that inelastic decay

processes, such as three body recombination, are suppressed in the TG regime, and

intermediate regimes between MF and TG. This fact opens promising perspectives

towards the accomplishment of strongly interacting 1D Bose gases with large number

of particles. This analysis have been very recently extended to the case of finite

temperatures [39]. Recently the TG gas and intermediate regime have been realized

in an optical lattice [40, 53, 54, 57].

The expansion of a one-dimensional Bose gas in a guide was analyzed in Ref. [41],

by means of a hydrodynamic approach based on the local LL model. The expansion

dynamics was shown to be different for different interaction strengths, and its analysis

could be employed to discern between the TG and MF regimes. In particular, the

self-similar solution is violated.

In this thesis, we extend the analysis of Ref. [41] by introducing a variational ap-
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proach, which permits us to study the asymptotic regime at large expansion times.

This method is shown to be in excellent agreement with previous direct numerical sim-

ulations, and additionally permits us to recover the results of Refs. [33] and [34]. More

importantly, our variational approach allows us to determine the regime of parameters

for which the self-similarity of the expansion is violated.

1.2 Lattices

Recent developments in loading atoms in optical lattices [24, 42–46] open fascinating

perspectives towards the achievement of strongly-interacting systems in cold atomic

gases. In this sense, a remarkable example is provided by the recent observation

of the superfluid to Mott-Insulator (MI) transition in cold bosonic gases in optical

lattices [24,47,48]. Other strongly-interacting systems in cold atomic gases have been

recently considered theoretically, as the case of large scattering length [49], rapidly

rotating Bose gases [50,51], and one-dimensional systems, both bosonic [33–35,38,41]

and fermionic [52]. As commented above, the accomplishment of strongly-interacting

1D gases requires tight transversal trapping, low atom numbers, and possibly the

increase of a via Feshbach resonances [13, 21, 33].

In this sense, 2D optical lattices are favorable, since the on-site transverse confine-

ment can be made very strong and for sufficiently small tunneling rates each lattice site

behaves as an independent 1D system. As previously discussed, recent experiments

on strongly correlated 1D gases have been performed along these lines [53–57].

The experiments on 1D systems in 2D optical lattices motivate the analysis of

an interesting physics in a (2D) array of coupled 1D Bose gases. In a 2D lattice

the coupling is provided by the inter-site tunneling, and each lattice site is a 1D
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tube filled with bosonic atoms. This regime is easily achievable experimentally by

lowering the lattice potential, and it represents the bosonic analog of 1D coupled

nanostructures [58]. As was first shown by Efetov and Larkin [59], for infinitely long

1D tubes at zero temperature any infinitesimally small tunneling drives the system into

the superfluid phase. The gas then enters an interesting cross-dimensional regime, in

which it presents 1D properties in a 3D environment [60, 61]. For 1D tubes of finite

length L, at sufficiently small tunneling rate the system can undergo a cross-over

from such anisotropic 3D superfluid state to the 2D Mott insulator state [61]. Strictly

speaking, this 2D MI phase requires a commensurable filling of the tubes, i.e. an integer

average number of particles N per tube. Then the system of finite-length tubes at

zero temperature is analogous to that of infinite tubes at a finite temperature T , and

the critical tunneling tc for the T = 0 cross-over to the MI phase can be obtained from

the finite-temperature results of Ref. [59] by making a substitution 1/T → L, we will

came back to this point in chapter 4.

In this thesis we presented the analysis of correlation properties of this 2D Mott

insulator. We show that the momentum distribution is crucially modified by a com-

bined effect of correlations along the 1D tubes and inter-tube hopping. For the case

of a weakly interacting gas in the tubes, the phase coherence is maintained well in-

side the MI phase. This is similar to the situation in 2D and 3D lattices, studied by

means of Quantum Monte Carlo calculations [62, 63] and investigated experimentally

through the observation of an interference pattern after switching off the confining

potential [24]. However, an increase of the interaction between particles in 1D tubes

reduces the inter-tube phase coherence and flattens the momentum distribution in

the transverse directions. In particular, the interference pattern observed in Ref. [24]

should be largely blurred if the 1D tubes are in the TG regime.
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In this thesis we also analyze the situation in which the tunneling is sufficiently

large to guarantee the superfluid character of the system, but sufficiently weak to

assume the 1D character of the local chemical potential. In this regime, which we call

the quasi-Tonks regime, we predict that the combination of tunneling and 1D local

chemical potential results in important modifications of the 3D ground-state density

and excitations.

1.3 Classical and fermionic gases

As commented at the beginning of the introduction, the favored signature of Bose-

Einstein condensation in weakly interacting gases is the time-of-flight expansion [1,3].

In this technique, the asymmetric trapping potential is switched off and the evolution

of the spatial density is monitored. After long time expansion, the observed inversion

of the aspect ratio reflects the anisotropy of the initial confinement. In an ideal Bose-

Einstein condensate, this effect is a direct consequence of the Heisenberg uncertainty

constraint on the condensate wave function. For an interacting BEC, the inversion

is also produced by the anisotropy of the pressure gradients caused by the hydrody-

namic forces. The changes in the shape of the expanding gas can be characterized by

scaling factors, which provide an easy quantitative tool for the analysis of on-going

BEC experiments. The set of equations for those factors have been derived in many

papers [64–67], providing excellent agreement with experiments [68, 69] and pointing

out the difference with respect to the expansion of a non condensed gas. A similar

effect has also been predicted for a Fermi gas in its superfluid phase [70], we will come

to this point further. Strong anisotropy has been recently measured in the expan-

sion of a highly degenerate Fermi gas [87] close to a Feshbach resonance. Resonance
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scattering can also give rise to anisotropic expansion in the normal phase as proven

in the experiments of [72, 73], carried out in a less degenerate regime. Some recent

experiments on bosonic atoms above the critical temperature have also reached the

collisional regime investigating both the oscillations of the low lying quadrupole mode

and the expansion in asymmetric traps [18, 74–76].

So far analytic calculations for the expansion of a classical gas have been limited to

either the ballistic or to the hydrodynamic regime [65]. As a consequence in this thesis

we want to generalize such calculations to all intermediate collisional regimes. Our

approach relies on an approximated solution to this equation by means of a scaling

ansatz. This solution is used to investigate two kinds of related problems: the lowest

collective oscillation modes and the time-of-flight expansion when the confinement is

released.

Concerning the issue of an expanding Fermi cloud, in this thesis we study also

the problem of the expansion of an ultracold sample of fermions initially trapped in

an anisotropic harmonic trap. We will show that also in the case of fermions the

expansion of the gas provides valuable information about the state of the system and

the role of interactions. We will consider a gas of atoms interacting with attractive

forces. This is a natural requirement for the realization of Cooper-pairs and hence

for the achievement of the superfluid phase [77, 78]. Such interactions are naturally

present in some fermionic species like 6Li and can otherwise be obtained by changing

the scattering length profiting of the presence of a Feshbach resonance.

Anisotropy is not however a unique feature exhibited by superfluids and also in

the normal phase one can expect a similar behavior if collisions are sufficiently impor-

tant [65,79–81]. This effect is expected to be particularly important in the case of Fermi

gases interacting with large scattering lengths near a Feshbach resonance [72,73,87]. At
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first sight one would expect that the effects of collisions are suppressed at low tempera-

ture because of Pauli blocking. This is certainly true if one works close to equilibrium,

as happens in the study of small amplitude oscillations [82]. In the problem of the

expansion, however, large deformations in momentum space can be produced if one

starts from a highly deformed cloud, with the result that collisions become effective

even if the gas is initially at zero temperature. This interesting possibility was first

pointed out in [83]. In this thesis we calculate explicitly the dynamics of the expansion

of a dilute, degenerate normal Fermi gas, taking into account the role of collisions. The

main purpose is to provide quantitative predictions for the aspect ratio and the ther-

mal broadening of the density distribution, as a function of the relevant parameters

like the ratio of the trap frequencies, the scattering length and the number of atoms.

1.4 Overview of the thesis

In the following we briefly discuss the contents of this thesis.

In the second chapter we present a general technical introduction in order to clarify

the notation in the rest of the thesis. We start explaining the difference between

a classical and a quantum ideal gas, and describing a simplified way to deal with

interacting systems using a pseudopotential. Although Bose-Einstein condensation is

not among the topics discussed in this thesis, an explanation about BEC is also given.

We have found important to present these concepts for completeness and historical

reasons, since the time-of-flight measurements have been largely used in experiments

related to BEC. We additionally discuss the role of the dimensionality. We then

describe the dynamics of a classical and a normal Fermi gas and we conclude with a

brief reminder of BCS theory.
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In chapter three we consider in more detail the physics in one dimension, providing

an overview of the main techniques used in one dimension. We then explain in detail

the dynamics of a one dimensional bosonic gas and how this can be used to reveal

information about the regime of interaction of the gas.

In chapter four we introduce some useful techniques to deal with lattices. We

discuss in detail a system composed of an array of one dimensional systems. We

will start with the superfluid regime describing the static properties and the lowest

collective modes of a trapped gas. In this case, the main role is played by the one

dimensional chemical potential that differ to the three dimensional one, giving rise

to new cross-dimensional phenomena that are not possible to observe in the absence

of lattice. We will describe also the correlation properties in the insulating phase

and how these can be detected. These remarkable properties depend on the internal

interaction-regime of the one-dimensional sites.

In chapter four we present a detailed discussion on the expansion of a classical

gas, a normal Fermi gas and a superfluid Fermi gas. We discuss how the collisions,

the geometry of the trap and the regime (normal or superfluid) affect the expansion

and the lowest collective modes. This is still an active subject of research and new

experiment and theoretical results have been presented expecially regarding the BEC-

BCS crossover [84–89].

The last chapter is devoted to a summary of the novel results presented in this

thesis.
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Chapter 2

Dilute gases

This chapter contains a short introduction about the physics of cold dilute atomic

gases: bosons, fermions and classical gases. We start from the ideal gas, which is an

useful tool to understand many phenomena. Later on we introduce the interaction

by means of a pseudopotential [90]. We proceed by describing briefly the concept

of Bose-Einstein-Condensation and the role of dimensionality [91, 92]. An additional

section is devoted to classical gases and normal Fermi liquids [93, 94]. We conclude

with a short description of BCS theory [94]. This chapter should be understood as a

reference for the next chapters of this thesis.

2.1 Ideal gas

The many body Hamiltonian of a non interacting system in an external potential reads

Ĥ =

∫

d3rΨ̂+(r)

(

− ~
2

2m
∆ + Vext(r)

)

Ψ̂(r) (2.1)

where Ψ̂ and Ψ̂+ are quantized fields. They can commute or anti-commute depending

on the bosonic or fermionic nature of the particles considered. m is the mass of the

11
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particle. In typical experiments [1–3] the external potential can be considered, with a

very good approximation, as harmonic

Vext(r) =
m

2

∑

j

ω2
jx

2
j . (2.2)

Let us define the one-body density-matrix as

ρ1(t, r1, r2) = 〈Ψ̂+(t, r1)Ψ̂(t, r2)〉 (2.3)

where 〈·〉 is an average. It can be also a statistical mixture, one of the most important

being the thermal one, for which the average reads

〈Â〉 =
tr
{

Â exp[−(Ĥ − µN̂)/T ]
}

tr
{

exp[−(Ĥ − µN̂)/T ]
} (2.4)

where Â is an operator, tr means trace, Ĥ is the Hamiltonian, N̂ is the number of

particles, and µ is the chemical potential. For what follows it is better to use center

of mass r = (r1 + r2)/2 and relative s = r1 − r2 coordinates. Let us now define the

Wigner function,

f(t, r,p) =
1

(2π)(3/2)

∫

d3sρ1(t, r, s)e
−is·p/~ (2.5)

The dynamics of the Wigner function follows the equation 1:

∂f

∂t
+

p

m
·∇rf + F·∇pf = 0 (2.6)

where F(r) = −∇rVext(r). Eq. (2.6) is called Boltzmann equation2. It seems then

that there is no much difference between classical and quantum ideal gases. This is

1it is possible to generalize it to a rotating frame but one has to be careful with the definition of

momentum
2The Boltzmann equation contains also the collisional term. In this case, since there is no inter-

action between the particles the collisional term vanishes.
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however not correct. In order to clarify this point let us consider a gas in a three

dimensional harmonic potential at equilibrium. In the case of a classical gas at finite

temperature the Wigner function reads

f0(r,p) = exp

[

−
∑

j

(

p2
j

2mT
+
mω2

jx
2
j

2T

)

]

. (2.7)

For a Bose gas at zero temperature, where all the particles are in the same quantum

state, the Wigner function reads

f0(r,p) = exp

[

−
∑

j

(

p2
j

2m~ωj
+
mωjx

2
j

2~

)

]

. (2.8)

By inspection of the previous formula, we notice that in the classical case the mo-

mentum distribution is spherically symmetric, whereas in the quantum case, due to

Heisenberg uncertainty principle, an asymmetry is present. This leads to different

behavior in the expansion after removal of the trap, since for large time the density

reflects the initial momentum distribution (see appendix A.1). As a consequence of

this fact, the shape of the density for large time will be spherically symmetric in the

case of classical gas, whereas for the Bose gas considered above it is not the case.

Another important point to mention is that the Winger function is real. This

follows from the fact that the one-body density matrix can be seen as a kernel of an

Hermitian operator, but not positively defined. For example, let us consider the first

excited state of the harmonic oscillator and compute the Wigner function

f0(x, p) =

(

p2

m~ω
+
mωx2

~
− 1

)

exp

[

−
(

p2

2m~ω
+
mωx2

2~

)]

. (2.9)

For small values of the momentum and position, the function assumes negative values

and, consequently, cannot be interpreted as a density distribution in the phase-space.

Anyway the average of any observable can be computed as in the classical case.
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Another difference that is worth to mention concerns the dynamics of the expan-

sion, where Boltzmann equation reads

∂f

∂t
+

p

m
·∇rf = 0. (2.10)

In the case where interactions are absent, it is easy to solve this equation. We have

to substitute r → r − pt/m. This can be “pictorially” understood as follows: a

particle starting at the position r with momentum p will have, after a time t, the

same momentum but the new position r + pt/m. Using this method it is possible to

calculate easily the dynamics of the expansion. This leads to an anisotropic behavior

in the quantum case previously considered, but also to interference phenomena in the

case of the expansion from a double well potential. If we calculate the time dependence

of the density, we obtain that in the classical case we have just to sum the density of

each well. On the contrary, in the quantum case interference phenomena appear.

We have shown how the Boltzmann equation takes into account also quantum

phenomena. Let us continue with some static properties of an ideal gas. In order to

do this we define the partition function

Z(T, µ, V ) = tr

{

exp

(

−H − µN

T

)}

, (2.11)

where T is the temperature, µ is the chemical potential and V is the volume. For an

ideal gas the result is

Z = ±T
∑

j

ln(1 ∓ e(µ−εj)/T ), (2.12)

where the upper sign refers to bosons and the lower one to fermions. From this formula,

and deriving with respect to the chemical potential µ, we obtain the mean occupation

number for any single quantum state:

nj =

[

exp

(

εj − µ

T

)

∓ 1

]−1

. (2.13)



2.2. INTERACTION BETWEEN PARTICLES 15

These distributions are called Bose Einstein (−) and Fermi Dirac (+) statistics. We

note that for sufficiently high temperature we retrieve the usual Boltzmann statistics

typical of classical gases. The previous formula can be used to calculate the Wigner

function of a large sample using local density approximation

f(r,p) =

[

exp

(

ε(p, r) − µ

T

)

∓ 1

]−1

, (2.14)

where ε(p, r) is the classical energy of a single particle in an external potential.

2.2 Interaction between particles

The interacting systems are usually difficult to treat. However for some system the

analysis can be simplified. We introduce the interaction between atoms and show how

to describe the process at low energy in the case of a short range potential. In what

follows we summarize some concepts of scattering theory [95, 96], which allows us to

write an effective potential in order to treat the interaction in a simpler way. The

interatomic potential can depend on many parameters such the electronic spin and

the nuclear spin. Here we restrict our analysis to central potentials.

The Schrödinger equation related to the single particle scattering problem reads

(

− ~
2

2mr
∆ + v(r)

)

ψ(r) = Eψ(r), (2.15)

where mr is, in this case, the reduced mass. The solution of this equation, for large

distances3 assumes the form

ψ±(r) ∼ eik·r +
e±ikr

r
f(k′,k). (2.16)

The scattering amplitude takes the form

f(k′,k) = −mr(2π)3/2

2π~2

∫

d3r′e−ik′·r′

V (r′)ψ+(r′). (2.17)

3this means that r must be much larger than the range of the interatomic interaction
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The scattering amplitude can be decomposed using spherical harmonics Y m
l :

f(k′,k) = f(θ) =

∞
∑

l=0

(2l + 1)
eiδl(k) − 1

2ik
Pl(cos θ), (2.18)

where Pl are the Legendre polynomials and δl is the scattering phase shift. The

knowledge of all the phase shifts allow to build the scattering amplitude. The cross

section is related to the scattering amplitude through the following relation

σtot =

∫

|f(θ)|2dΩ =
4π

k2

∑

l

(2l + 1) sin2 δl. (2.19)

If we consider scattering between identical particles one has to take into account

the statistic of the particles. If we consider bosons or fermions with the same internal

state the function of the coordinates must be symmetric or antisymmetric respectively.

This means that for identical particles we have to consider even values of l for bosons

and odd values of l for fermions. If there is also an internal degree of freedom, the

function of the coordinates can be symmetric or antisymmetric depending on the inter-

nal state. For example two fermions in a singlet state can have s-wave scattering, but

two fermions in a triplet state cannot. Since we are working at very low temperature

only the s-wave (l=0) is involved. Comparing the energy related to the thermal wave

length and the energy for p-wave l = 1, it is possible to calculate the temperature

below which the p-wave is suppressed, which is the typical case in experiments.

Let us now define the s-wave scattering length

a = lim
k→0

δ0(k)

k
. (2.20)

This can be though as the radius of a hard sphere. We substitute the real potential

by a pseudopotential of the form

Veff(r − r′) = gδ3(r − r′), (2.21)
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where the constant g is chosen in order to give the same low energy properties of the

real potential. Using Born approximation the result is

g =
4π~

2a

m
. (2.22)

In conclusion we have shown that for low energies the short range interaction can be

simplified introducing the concept of scattering length and pseudopotential.

2.3 BEC and role of the dimensionality

In this section, we mention only some important concepts regarding BEC. For a more

extended analysis see [91,92]. In order to define what is the BEC let us start from the

Bose-Einstein statistics (2.14). Let us consider the case of a three dimensional system

of free bosons in a box. The total number of particles is

N =
∑

k

[

exp

(

εk − µ

T

)

− 1

]−1

, (2.23)

where εk = ~
2k2/2m. We keep fixed the number of particles, and hence the chemical

potential is an implicit function of the temperature, T , and N . The number of particles

with k 6= 0 can be calculated as follows

NT =
∑

k6=0

[

exp

(

εk − µ

T

)

− 1

]−1

. (2.24)

The r.h.s. of Eq.(2.24) is limited from above. Hence, the contribution of the particles

with momentum zero are essential to ensure the correct number of particles. As a

consequence, below a certain critical temperature, the state with zero momentum

starts to be macroscopically occupied. The critical temperature is

Tc =
2π~

2

m

(

ρ

g3/2(1)

)3/2

, (2.25)
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with g3/2(1) = 2.612. The fraction of condensed particles is

N0(T )

N
= 1 −

(

T

Tc

)3/2

(2.26)

for T < Tc. One can use the same arguments and calculate the critical temperature

and condensate fraction in the trapped case. A discussion on this issue can be found

in [91, 92]. It is possible to define the BEC through the density matrix. The appear-

ance of an eigenvalue of the same order of the averaged density is a signature of the

onset of BEC. In the case of an ideal gas one can diagonalize the one-body density

matrix by Fourier transform, and observe the appearance of a δ3(k) below the critical

temperature defined above. This definition is much more general because it can be

used for interacting systems.

The next step is to derive a dynamical equation for an interacting system. The

starting point is the dynamical equation for the quantum field

i~
∂Ψ̂(t, r)

∂t
=

(

− ~
2

2m
∆ + Vext(r) + gΨ̂+(t, r)Ψ̂(t, r)

)

Ψ̂(t, r). (2.27)

The idea now is to substitute the quantum field by a classical field plus fluctuations [97].

Ψ̂ = φ+ δΨ̂, (2.28)

where φ is a classical field, an the fluctuation δΨ̂ obeys approximately the bosonic

commutation relation [98]. Keeping terms linear in the fluctuations we obtain

i~
∂φ(t, r)

∂t
=

(

− ~
2

2m
∆ + Vext(r) + g|φ(t, r)|2

)

φ(t, r). (2.29)

This is the so-called Gross-Pitaevskii equation [99–101]. While for the fluctuations we

get

i~
∂δΨ̂(t, r)

∂t
=

(

− ~
2

2m
∆ + Vext(r) + 2g|φ(t, r)|2

)

δΨ̂(t, r) + gφ(t, r)2δΨ̂+(t, r). (2.30)
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Let us consider the particular case of an homogeneous gas at equilibrium [92,94,102].

Assuming an homogeneous solution for the condensate part we obtain

φ =
√
ρ µ = gρ. (2.31)

For the excitation spectrum, after a canonical transformation [102], we obtain

ε(k) =

[

~
2k2

2m

(

~
2k2

2m
+ 2gρ

)]1/2

. (2.32)

This spectrum exhibits a linear behavior for small momenta and single particle behav-

ior for large momenta. This is very important for the superfluid properties and the

dynamical stability of the condensate.

Now we want to point out the role of the dimensionality in this phase transition.

Up to now we have only consider three-dimensional systems. The situation is different

in two and one dimension. In two dimensions the BEC is possible just at T = 04. In

one dimension the BEC is not possible even at zero temperature, due to interactions

between particles. It is possible to derive the previous statements from general prin-

ciples [92, 104]. We return to the issue of one dimensional Bose systems in chapter

3.

2.4 Classical Gases and normal Fermi liquid

The theory of a normal Fermi liquid was proposed by Landau (see for example [93,

94]). The basic idea is a one-to-one continuous mapping between the eigenstates of

a non interacting system and an interacting one. For this reason it is crucial that

the interactions do not drive any phase transition in the system. In this theory the

concept of particle is substituted by that of quasi-particle, that can be seen as a

4in presence of a vortex lattice the situation change drastically and the long range order is lost [103]
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particle dressed by the interaction with all the rest of the system. The quasiparticle

distribution function is a Fermi-Dirac distribution

nk =

[

exp

(

εk − µ

T

)

+ 1

]−1

. (2.33)

The energy of the quasiparticle is defined as a variation of the total energy with respect

to the quasi-particle distribution

εk =
δE

δnk

. (2.34)

The equation describing the dynamics of such a system is a richer version of the

Boltzmann equation used for dilute classical gases

∂f

∂t
+ ∇pεp ·∇rf −∇rεp ·∇pf = C[f ]. (2.35)

Since we work in presence of a harmonic external potential, the trap frequency, and

in general any typical time related to the macroscopic motion of the system, provides

a time scale that must be compared with the average time of collisions between the

quasi-particles, τ . According to this comparison, we can distinguish two regimes.

If ωτ � 1 the system is in the hydrodynamic regime, where the local equilibrium

is ensured by collisions. If the opposite occurs, ωτ � 1, the collisional term can be

neglected and the system is in the collisionless regime. Eq. (2.35) predicts the so-called

zero sound, which is the propagation of a density fluctuation at zero temperature in

collisionless regime. This excitation have a different nature with respect to the normal

sound where collisions are crucial.

Let us now comment the collisional term of Eq. (2.35). In general the collisional

integral can be written in the following form

C[f ](t, r,p1)=

∫

d3p2d
3p′1d

3p′2W (p1,p2→p′
1,p

′
2)F (f(p1), f(p2), f(p′

1), f(p′
2)),

(2.36)
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where the transition probability W includes the momenta and energy conservation,

and it must be calculated from a microscopic point of view. The function F depends

on the statistics, and for a fermionic system reads

F (x1, x2, x
′
1, x

′
2) = (1 − x1)(1 − x2)x

′
1x

′
2 − (1 − x′1)(1 − x′2)x1x2. (2.37)

This expression contains the Pauli exclusion principle, and hence the transition prob-

ability depends on the inital state and the final one. For a classical gas the collisional

integral reads

F (x1, x2, x
′
1, x

′
2) = x′1x

′
2 − x1x2. (2.38)

Here we conclude the brief summary concerning the topic of normal Fermi liquid and

classical gases. For a detailed description, as already commented at the beginning of

this section, we refer to [93, 94].

2.5 Superfluid Fermi gases

In this section we are interested in fermionic gases with attractive interactions. We

have seen that at sufficiently low temperature two fermions of the same species do

not have s-wave scattering. In this section, we consider a two-component fermionic

gas. In these systems atoms of different species interact via ‘s-wave scattering, and

at a certain temperature the surface of the Fermi see in unstable under formation of

Cooper pairs, i.e. particles near the Fermi surface with opposite momentum couple

with each other giving rise to superfluid phenomena.

In the following, we summarize the basic idea of the BCS theory ( for more detail

see for example [92, 94]). Here we present just the main useful results for what we
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need further in the thesis. The starting point is the BCS Hamiltonian

Ĥ =
∑

k,s

εkâ
+
ksâks − g

∑

kk′

â+
k↑â

+
−k↓â−k′↓âk′↑, (2.39)

where εk = ~
2k2/2m− µ. At this point we proceed as in the bosonic case defining a

new set of operators:

âk↑ = upb̂k↑ + vpb̂
+
−k↓,

âk↓ = upb̂k↓ − vpb̂
+
−k↑. (2.40)

In order to preserve the fermionic nature of the new operator, the coefficients uk and

vk must fulfilled the relation u2
k +v2

k = 1. These coefficients assume the following form

|uk|2 =
1

2

(

1 +
εk

√

ε2
k + |∆|2

)

; |vk|2 =
1

2

(

1 − εk
√

ε2
k + |∆|2

)

. (2.41)

The value of the gap ∆ must be found solving the equation

g

2

∑

k

1 − 2nk
√

∆ + ε2
k

= 1, (2.42)

where

nk = 〈b̂+k↑b̂k↑〉 = 〈b̂+k↓b̂k↓〉 (2.43)

is the thermal average of the quasi-particles occupation number. Finally, the Hamil-

tonian reads

Ĥ =
∑

k

Ek(b̂+k↑b̂k↑ + b̂+k↓b̂k↓) + const... (2.44)

The energy spectrum acquires the form

Ek =
√

εk + ∆. (2.45)

The gap is

∆(T = 0) = ε̃ exp

(

− 1

ν(µ)g

)

. (2.46)
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The critical temperature is provided by

Tc = 0.57ε̃ exp

(

− 1

ν(µ)g

)

, (2.47)

where ν(µ) is the density of states at the Fermi surface and [105]

ε̃ =
1

2

(

2

e

)7/3

EF . (2.48)

As a consequence of the opening of the gap, below the critical temperature the system

acquires superfluid properties flowing without viscosity. No excitation can be created

if the system moves slower than the critical velocity vc ' ∆/kF . In other words the

gap shell prevents the formation of particle-hole excitations, but the chemical potential

is practically the same as that of a non interacting system since the gap is very small

compared to the Fermi energy.
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Chapter 3

One dimensional systems

In this chapter we introduce some techniques which are useful to deal with one-

dimensional systems. We start our analysis with the fermionization technique, where

the idea is to map the system to a free Fermi system [20,106,107]. Then we discuss the

exact solution for an homogeneous delta-interacting Bose gas found by Lieb and Lin-

iger [25] using Bethe Ansatz. Although for this model the many-body wave function is

available exactly, it is difficult to extract information about the system. For this reason

we proceed with the discussion of the bosonization technique [27, 28]. We conclude

this chapter with the analysis of the dynamical behavior of an harmonically confined

one dimensional gas [34, 41, 108]. In particular, we discuss our results concerning the

non-self-similar expansion of 1D Bose gases in a guide.

25
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3.1 Fermionization

The basic idea of fermionization is to map the problem into another one that is exactly

solvable. The first example is the XX model, the Hamiltonian reads

Ĥ = −J
∑

〈ij〉

(

Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1

)

= −J
∑

〈ij〉

[Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1], (3.1)

where Ŝx
j and Ŝy

i are spin operators at the site i with usual commutation rules, 〈ij〉

denotes the sum only over nearest neighboring sites. We have defined the ladder

operators Ŝ±
i = Ŝx

i ± iŜy
i , which anti-commute at the same site {Ŝ−

i , Ŝ
+
i } = 1 but

commute at different sites [Ŝ−, Ŝ±
i ] = 0. We can reproduce the fermionic commutation

rules by means of the so-called Jordan-Wigner transformation [107]. We define a set

of spinless fermionic operators f̂i, f̂
+
i for every site i with the usual anti-commutation

rules and define

S+
i = K̂+(i)f+

i , S−
i = fiK̂(i), K̂(i) = exp

[

iπ

i−1
∑

j

f̂+
i f̂i

]

. (3.2)

After some algebra we can rewrite the Hamiltonian in the following form

Ĥ = −J
2

∑

i

(

f̂+
i f̂i+1 + f̂+

i+1f̂i

)

. (3.3)

This is the Hamiltonian corresponding to a free fermionic system. In order to compute

correlation functions we have to express the spin operators Ŝα
i in terms of these new

operators f̂i and work in this new Hilbert space.

Another example is provided by a bosonic one-dimensional system of impenetrable

bosons. The term “Impenetrable” means that the interaction is so strong that the

probability to find two particles at the same position vanishes. Let us start with the

lattice case, the Hamiltonian reads

Ĥ = −J
∑

ij

(b̂+i b̂i+1 + b̂+i+1b̂i) +
U

2

∑

i

b̂+i b̂
+
i b̂ib̂i − µ

∑

i

b̂+i b̂i where U → ∞. (3.4)
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This is equivalent to the constrain b̂+i b̂
+
i = 0, meaning that the Hilbert space is reduced

to zero or one particle per site and the operators at the same site anti-commute instead

of commute. The usual bosonic commutation relations are preserved at different sites.

Applying the same transformation shown above we obtain the Hamiltonian of a free

fermionic system

Ĥ = −J
∑

ij

(f̂+
i f̂i+1 + f̂+

i+1f̂i) − µ
∑

i

f̂+
i f̂i. (3.5)

The same problem in the continuous case has been solved by Girardeau [20]. In this

case the Hamiltonian reads

Ĥ =

N
∑

i

~
2

2m

∂2

∂x2
i

+ g

N
∑

i,j<i

δ(xi − xj) where g → ∞. (3.6)

Also in this case it exist a mapping between hard core bosons and free fermions. In

order to show this, let us write the corresponding Slater determinant. In this case the

probability to find two particles in the same point is automatically zero but the wave

function is antisymmetric. The fermionic wave function reads

ΨF (x1, x2, · · · , xN) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ1(x2) · · · φ1(xN)

φ2(x1) φ2(x2) · · · φ2(xN)

...
...

. . .
...

φN(x1) φN(x2) · · · φN(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.7)

This function is an eigenstate of the Hamiltonian (3.6) with the condition that the

function is zero when two particles are at the same point. In order to obtain the

bosonic wave function we multiply by an antisymmetric function:

ΦB(x1, x2, · · · , xN) = A(x1, x2, · · · , xN )ΦF (x1, x2, · · · , xN), (3.8)

where A is a totally antisymmetric function

A(x1, x2, · · · , xN ) =
∏

i,j<i

xi − xj

|xi − xj|
. (3.9)
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The function A assumes the values ±1, and hence the function (3.8) is still an eigen-

state with the same eigenvalue but now it is totally symmetric. It is important to note

that all the properties related to the density are exactly like those of a free fermionic

system since |ΨB|2 = |ΨF |2, but correlation properties are different, for example the

momentum distribution ρ̃(p) of free fermionic system is a step-function, whereas for a

hard core bosons it exhibits a divergency for the momentum p = 0, ρ̃(p ' 0) ∝ 1/p1/2.

With these examples we have shown how to map a system into a free fermionic

system. In this way we can in principle calculate all the physical quantities. However,

we must say that even if the wavefunction is known, it is not straightforward to

compute these quantities, as for example the one-body density matrix [32].

3.2 Lieb Liniger model

This model has the same Hamiltonian (3.6) but the coupling constant has a finite

value. In this sense, it is much more general because any regime of interactions is

considered. This model is exactly solvable, as shown by Lieb and Liniger (LL) in

1963 [25]. The system is composed by N bosons interacting via a δ potential in a

finite one dimensional box with periodic boundary condition, the Hamiltonian reads

H =

N
∑

i

~
2

2m

∂2

∂x2
i

+ g

N
∑

i,j<i

δ(xi − xj), (3.10)

where g = 2~/ma1D and a1D is called the one-dimensional scattering length [21]. We

come back to this point in Sec. 3.4. The Hamiltonian (3.10) can be diagonalized

exactly by means of Bethe Ansatz [109]. In the thermodynamic limit, a bosonic 1D

gas at zero temperature with a given linear density ρ, is characterized by an energy

per particle:

ε(ρ) =
~

2

2m
ρ2e(γ(ρ)), (3.11)
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where γ = 2/n|a1D|. The function e(γ) fulfills

e(γ) =
γ3

λ3(γ)

∫ 1

−1

η (x|γ) x2dx, (3.12)

where η (x|γ) and λ(γ) are the solutions of the LL system of equations [25]:

η (x|γ) =
1

2π
+

1

2π

∫ 1

−1

2λ(γ)

λ2(γ) + (y − x)2
η (y|γ) dy, (3.13)

λ(γ) = γ

∫ 1

−1

η (x|γ) dx. (3.14)

It is worth to mention two particular cases. The first one is when the coupling constant

is very large g → ∞, or in other words when ρa1D � 1. In that case, the energy per

particle assumes the following form

ε(ρ) =
~

2π2

6m
ρ2, (3.15)

that it is the expression for a non-interacting homogeneous one dimensional Fermi gas.

On the other hand, for small values of the coupling constant g → 0, or equivalently

ρa1D � 1, the energy per particle reads

ε(ρ) =
1

2
gρ. (3.16)

For details about the derivation of the previous equations we refer to the literature

(see for example [25, 109]).

3.3 Bosonization

The bosonization is a technique that allows to write an effective theory that takes into

account just the linear part of the spectrum. It is possible to apply this technique just

in one dimension where bosons and fermion are not “different”, in the sense that in

order to exchange two particle in one dimension they must necessarily interact so it is

not possible to separate the concepts of statistic and interaction [27].
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Here we summarize the way to derive the effective Hamiltonian and we briefly

discuss about conformal symmetry [28, 110]. The quantum field can be written in

density an phase representation

Ψ̂(x) = eiθ̂(x)[ρ̂(x)]1/2. (3.17)

The density can be written in the following form using Poisson formula

ρ̂(x) =

[

ρ0 −
1

π

∂

∂x
φ̂(x)

]

∑

p

ei2pi(πρ0x−φ̂(x)), (3.18)

where φ̂ is a field that can be introduced instead of ρ̂. Essentially it takes into account

the density fluctuations with respect to the equilibrium position of the particles in a

lattice. The two fields φ̂ and θ̂ fulfill the following commutation relation

[

1

π
φ̂(x),

∂

∂x′
θ̂(x′)

]

= iδ(x− x′). (3.19)

We define the conjugate momentum Π̂ of the field φ̂ as

πΠ̂(x) =
∂

∂x
θ̂(x). (3.20)

At this point we can rewrite the Hamiltonian using these new fields

Ĥ =
~

2π

∫

dx

[

vsK

~
(πΠ̂(x))2 +

vs

K

(

∂

∂x
φ̂(x)

)2

,

]

(3.21)

where we have taken into account just quadratic terms. The parameters vs (sound

velocity) and K (Luttinger parameter) totally characterize the low energy properties

of any massless one-dimensional system [28]. It is important to note that it is not easy

to calculate these two coefficient, but once they are fixed it is possible to determine

all the properties of the system.

The action of the system reads

S =
~

2πK

∫

dxdτ





1

vs

(

∂φ̂

∂τ

)2

+ vs

(

∂φ̂

∂x

)2


 . (3.22)
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From this action we can compute the Green function at zero temperature for an infinite

system:

G(x, τ) =
ρ0

[ρ0(x2 + v2
sτ

2)]1/4K
. (3.23)

Coming back to the action, we see that it is invariant by a class of transformation,

for example continuous rotation or scale transformation. The system presents also a

conformal symmetry, i.e. invariance under transformations which preserve locally the

angles. This is particularity useful for the computation of the correlation functions.

For example we can compute the Green function at finite temperature for an infinite

system or for a finite system with periodic boundary conditions at zero temperature.

In the latter case the results reads

G(x, τ) = n

[

π2/N2

sinh(πζ/L) sinh(πζ∗/L)

]1/4K

, (3.24)

where ζ = vsτ + ix. Therefore, we have shown that it is possible to compute the

correlation functions of a finite one-dimensional bosonic gas at zero temperature. For

further details we refer to Refs. [28, 110]. This technique is used in chapter 4 to

calculate the correlation properties of an array of finite-size bosonic one-dimensional

systems.

3.4 Expansion

In this section, we extend the analysis of Ref. [41] on the expansion dynamics of a

one-dimensional Bose gas in a guide. It has been shown that the expansion violates

under certain conditions the self-similarity typical of BEC [64], and that the problem

can be solved by employing the hydrodynamic approach, and the local Lieb-Liniger

model. We have developed a variational approach based on a Lagrangian formalism
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to study the expansion for any regime of parameters. We have identified the possi-

ble physical situations at which self-similarity is violated. The particular properties

of the expansion of a gas in the strongly-interacting regime could therefore be em-

ployed to discern between mean-field and strongly-interacting regimes. In addition,

the asymptotic behavior of the expanded cloud could be employed to discriminate

between different initial interaction regimes of the system. Our discussion has been

restricted to the analysis of the density properties. In fact the present formalism can-

not describe the dynamics of the coherence in the system, i.e. we are limited to the

diagonal terms of the corresponding single-particle density matrix. The description

of the non diagonal terms lies beyond the scope of this section, and requires other

techniques of analysis [35, 38, 111].

3.4.1 Local Lieb-Liniger model

We analyze in the following a dilute gas of N bosons confined in a very elongated

harmonic trap with radial and axial frequencies ωρ and ωz (ωρ � ωz). We assume

that the transversal confinement is strong enough so that the interaction energy per

particle is smaller than the zero-point energy ~ωρ of the transversal trap. In this way,

the transversal dynamics is effectively “frozen” and the system can be considered as

dynamically 1D.

We assume that the interparticle interaction can be approximated by a delta func-

tion pseudopotential as discussed in chapter 2. Therefore the Hamiltonian that de-

scribes the physics of the 1D gas becomes

Ĥ1D = Ĥ0
1D +

N
∑

j=i

mω2
zz

2
i

2
, (3.25)
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where

Ĥ0
1D = − ~

2

2m

N
∑

j=1

∂2

∂z2
j

+ g1D

N−1
∑

i=1

N
∑

j=i+1

δ (zi − zj) (3.26)

is the homogeneous Hamiltonian in absence of the harmonic trap, m is the atomic mass,

and g1D = −2~
2/ma1D. The scattering problem under one-dimensional constraints

was analyzed in detail by Olshanii [21], and it is characterized by the one-dimensional

scattering length a1D = (−a2
ρ/2a)[1−C(a/aρ)], with a the three-dimensional scattering

length, aρ =
√

2~/mωρ the oscillator length in the radial direction, and C = 1.4603 . . ..

We assume that at each point x the gas is in local equilibrium, with local energy per

particle provided by Eq. (3.11). Then, one can obtain the corresponding hydrodynamic

equations for the density and the atomic velocity

∂

∂t
ρ+

∂

∂z
(ρv) = 0, (3.27)

m
∂

∂t
v +

∂

∂z

(

m

2
v2 + µle(ρ) +

1

2
mω2

zz
2

)

= 0., (3.28)

where

µle(ρ) =

(

1 + ρ
∂

∂ρ

)

ε(ρ) (3.29)

is the Gibbs free energy per particle. The system has only one control parameter

[13, 33, 34], namely A = N |a1D|2/a2
z, where az =

√

~/mωz is the harmonic oscillator

length in the z direction. The regime A� 1 corresponds to the MF limit, in which the

stationary-state density profile has a parabolic form. On the other hand, the regime

A� 1 corresponds to the TG regime [112], which is characterized by a stationary-state

density profile with the form of a square root of a parabola.

3.4.2 Numerical results

In Ref. [41], equations (3.11), (3.13), (3.14), and (3.29) were employed to simulate nu-

merically the expansion of a 1D gas in the framework of the hydrodynamic formalism.
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Figure 3.1: Time evolution of the exponent s(t) for A = 0.43, ωρ = 2π × 20kHz and

N = 200 atoms (ωz = 2π × 1.8Hz at t = 0). Our variational result (dashed line)

shows a very good agreement with the results obtained from the direct resolution of

Eqs. (3.27) and (3.28).

The expansion follows the sudden removal of the axial confinement, while the radial

one is kept fixed. In particular, it was observed that during the expansion the density

profile is well described by the expression

ρ(z, t) = ρm(t)

(

1 −
(

z

R(t)

)2
)s(t)

, (3.30)

where ρm(t) provides the appropriate normalization, R(t) is the radius of the cloud,

and the exponent s(t) takes the value s(0) = 1 for an initial MF gas. The function

s(t) decreases monotonically in time, approaching an asymptotic value (see Fig. 3.1).

Therefore, contrary to the expansion dynamics for a BEC [64,65,113], the self-similarity

of the density profile is violated. At this point we discuss the physics behind this vi-

olation of the self-similarity. If the local chemical potential presents a fixed power

law dependence on the density, µle ∝ ρλ, it is easy to show from the hydrody-
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namic equations (3.27) and (3.28), that there exists a self-similar solution of the form

ρ = (ρ0/b)(1− (z/bR)2)1/λ, where b̈ = ω2
z/b

λ+1. For the particular case of the TG gas,

the scaling law can be also obtained from the exact BF mapping [41]. However, since

µle is obtained from the LL equations, the dependence of µle on ρ is quadratic for a

low density and linear for a large one. Therefore, µle does not fulfill a fixed power

law dependence during the expansion, and the self-similarity is violated. In particular,

as the expansion proceeds the whole system approaches the low density regime, and

consequently the exponent s decreases monotonically. In the next section, we analyze

in more detail this effect.

3.4.3 Variational calculation

In this section, we complete our understanding of the expansion of a one-dimensional

Bose gas in a guide by means of a variational Ansatz using a Lagrangian formalism.

The Lagrangian density for the system is of the form

L = −mρ∂φ
∂t

− 1

2
mρ

(

∂φ

∂z

)2

− 1

2
mω2

zz
2ρ− ε(ρ)ρ, (3.31)

where the velocity field is defined as v = ∂φ/∂z. The equations of motion are obtained

from the functional derivation of the action A =
∫

Ldtdz: δA/δφ = 0 (continuity

equation), δA/δρ = 0 (which after partial derivation with respect to z provides the

Euler equation). From the numerical results we have observed that the density is at

any time well described by Eq. (3.30). Therefore, we assume the following Ansatz for

the density

ρ =
C(s)

b

(

1 − z2

R2b2

)s

, (3.32)

where b and s are time dependent variables, R is the initial Thomas-Fermi radius, and

C(s) is related to the normalization to the total number of particles. For the φ field
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we consider the following form:

φ =
1

2
αz2 +

1

4
βz4, (3.33)

where α and β are time dependent parameters. We stress at this point, that in the

analysis of the self-similar expansion of a BEC [64,65,113], a quadratic ansatz (in z) for

the φ field provides the exact solution. However, for the problem under consideration,

it is necessary to include higher order terms to account for the violation of the self-

similarity. We have checked that terms of higher order than z4 introduces only small

corrections, and therefore we reduce to the form of Eq. (3.33).

We are interested in the dynamics of the parameters b and s, related to the size

and the shape of the cloud, respectively. Integrating the Lagrangian density in z,

L =
∫

Ldz, one finds a Lagrangian for the above mentioned parameters:

L(α̇, α, β̇, β, b, s) =

mNR2

2

{

− α̇b2

2s+ 3
− 3

2

β̇b4

(2s+ 5)(2s+ 3)

− α2b2

2s+ 3
− 2

αβb4

(2s+ 5)(2s+ 3)
−

− β2b6

(2s+ 7)(2s+ 5)(2s+ 3)

− b2ω2
z

2s+ 3

}

−
∫

dzρε(ρ). (3.34)

We perform a gauge transformation1

L(t, q, q̇) → L(t, q, q̇) +
d

dt
g(t, q), (3.35)

1The Lagrangian (3.34) does not depend on ḃ and ṡ, and consequently one obtains the dynamics

only for α and β imposing ∂L/∂b = ∂L/∂s = 0, and later on from these two conditions one can

obtain the dynamics of b and s. The gauge transformation (3.35) turns out to simplify significantly

the calculations.
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where

g(t, q) =
mNR2

2

{

− αb2

2s+ 3
− 3

2

βb4

(2s+ 5)(2s+ 3)

}

. (3.36)

The resulting Lagrangian is of the form L = L(α, β, ḃ, b, ṡ, s). Imposing the conser-

vation laws ∂L/∂α = ∂L/∂β = 0, we obtain a Lagrangian depending only on two

relevant parameters s and b, of the form L = K − V , where

V

E1D

=

(

B(b, s)

f0(s)
+

A2b2

[η0f0(s0)]2
1

2s+ 3

)

, (3.37)

K

E1D

=
A2
(

M11ḃ
2 + 2M12ḃṡ +M22ṡ

2
)

[η0f0(s0)]2(2s+ 3)
, (3.38)

where E1D = ~
2/2m|a1D|2 is the typical energy associated with the interatomic inter-

actions. In Eq. (3.37), we use the function B(b, s) =
∫

dy(1 − y2)sε(ρ(y))/E1D, where

we integrate over the rescaled axial coordinate y = z/Rb. In Eqs. (3.37) and (3.38),

we define the dimensionless central density η0 = ρ0|a1D|, where ρ0 is the initial central

density, and the parameter s0 = s(t = 0). We have additionally employed the auxiliary

functions fn(s) =
∫

yn(1 − y2)sdy, and the coefficients

M11 = 1, (3.39)

M12 =
−b

2s+ 3
(3.40)

M22 =
b2(121 + 186s+ 96s2 + 16s3)

4(s+ 1)(2s+ 3)2(2s+ 5)2
(3.41)

From the Lagrangian L, one obtains the corresponding Euler-Lagrange equations for

the parameters b and s. In order to find the initial conditions η0 and s0 for the

expansion, we have numerically minimized the potential V in the presence of the

harmonic trap for different values of A, assuming b = 1 (see Fig. 3.2). When A � 1,

s0 tends to 1, as expected for the MF case. On the contrary, when A � 1, s0 tends

to 1/2 (TG profile). As expected from Ref. [33], for A � 1, η0 ∝ A1/2, whereas for

A� 1, the MF dependence η0 ∝ A2/3 is recovered.
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Figure 3.2: Equilibrium values (at t = 0 before opening the trap) of the exponent s,

as a function of the parameter A. The dashed lines denote the MF limit, s0 = 1, and

the TG one, s0 = 1/2.

Our variational approach allows to calculate the lowest compressional mode, offer-

ing an alternative method as the one discussed in Ref. [34]. Expanding the potential V

around the equilibrium solution up to second order in b (see Fig. 3.3), and neglecting

for small oscillations the time-dependence of s, we obtain

ω2
m

ω2
z

= 1 +
1

2A2

[η2
0f0(s0)]

2

f2(s0)

∂2B

∂b2

∣

∣

∣

∣

b=1

. (3.42)

Our results show a continuous transition from the MF value, ωm =
√

3ωz, to the TG

one, ωm = 2ωz, in excellent agreement with the results obtained by means of a sum

rule formalism [34].

From the corresponding Euler-Lagrange equations, we have obtained the dynamics

of b(t) and s(t). We have checked in all our calculations that the energy and number

of particles remain a constant of motion. We have compared the variational results

with our simulations based on the exact resolution of the hydrodynamic equations [41],
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Figure 3.3: Frequency of the lowest compressional mode as a function of the parameter

A.

obtaining an excellent agreement (see Fig. 3.1).

We have analyzed the asymptotic value, ḃ∞, for different values of A. It is easy to

obtain, that for a power law dependence of the local chemical potential µle ∝ ρλ, the

derivative of the scaling parameter asymptotically approaches a value ḃ∞ =
√

2/λωz.

Therefore a continuous transition from ḃ∞ = ωz (TG) to ḃ∞ =
√

2ωz (MF) is expected.

We recover this dependence from our variational calculations (see Fig. 3.4).

We have analyzed the behavior of s during the expansion dynamics for different

values of A. In particular, we have defined the asymptotic ratio ξ = s∞/s0, with

s∞ = s(t→ ∞) (see Fig. 3.5).

Deeply in the TG regime (A � 1) or in the MF one (A � 1), ξ ' 1, i.e. the

expansion is well-described by a self-similar solution. However, for intermediate values,

ξ < 1, i.e. the expansion is not self-similar. The self-similarity is maximally violated

in the vicinity of A = 1, although ξ departs significantly from 1 for a range 0.01 <

A < 100. The behavior at large A can be understood as follows. If the gas is at
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Figure 3.4: Expansion velocity. Asymptotic value of ḃ as a function of the parameter

A.
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Figure 3.5: Violation of the self-similarity. Value of ξ = s∞/s0 as a function of the

parameter A. The value ξ = 1 denotes self-similarity.
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t = 0 deeply in the MF regime, the change of the functional dependence of µle with

the density occurs at very long expansion times, when the initial interaction energy of

the gas has been fully transferred into kinetic energy. Therefore, for large values of A

the self-similarity is recovered.
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Chapter 4

Interacting atoms in a periodic

potential

In this chapter we recall some general concepts about periodic potentials, as e.g. Bloch

and Wannier functions, the effective mass, and a short explanation of the superfluid-

insulator transition. The rest of the chapter is devoted to the analysis of a three-

dimensional gas in a two-dimensional periodic potential where every site can be con-

sider as a one dimensional system.

4.1 Optical lattices

Optical Lattices [42–46] can be generated optically with the help of a laser standing

wave (see for example [114]). The basic idea is to shine counterpropagating lasers on a

two-level atom. Far away from resonance, absorption is strongly suppressed and dissi-

pative process can be neglected. Due to the spatial dependence of the laser intensity,

the atoms experience a periodic force with period d = λ/2 where λ is the wave-length

of the laser and the amplitude is proportional to the laser intensity. Since the force is

43
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conservative, it can be written as a potential and included in the Hamiltonian as an

external potential acting on the atoms:

Ĥ0 = − ~
2

2m

∂2

∂x2
+ Vopt(x), (4.1)

where Vopt is a periodic function with period d. The solution of this equation can be

written as a Bloch-function [115]

ψ(x) = exp{ikx}un,k(x), (4.2)

where un,k is a periodic function with the same periodicity of the potential, k is the

quasi-momentum, and n is the band index. Working on a lattice it is more useful to

deal with another basis called Wannier functions defined as

wn,j(x) =
1√
N

∑

k

ψn,k(x) exp(ikdj). (4.3)

It is important to notice that we do not mix Bloch functions of different bands. Each

Wannier functions is localized at a given lattice site, and fulfill that

wn,j(x) = wn,0(x− jd). (4.4)

It is possible to omit the symbol of the site and keep just the band index since due the

previous relation Wannier functions belonging to the same band are just the discrete

translation of the same function. Let us consider a concrete case and write the many-

body Hamiltonian for a bosonic system:

Ĥ = −J
∑

〈i,j〉

b̂+i b̂j + +
U

2

∑

i

b̂+i b̂
+
i b̂ib̂i − µ

∑

i

b̂+i b̂i, (4.5)

where b̂i and b̂+i are bosonic operators. We have just considered hopping to neighboring

sites and on-site interactions. This is justified in the tight-binding limit and for short-

range interactions. The hopping coefficient reads

J = −
∫

d3rw∗
1(r)H0w1(r + dx̂), (4.6)
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where x̂ is an element of the basis of the three-dimensional vectorial space, and the

interaction coefficient reads

U = g

∫

d3r|w1(r)|4. (4.7)

Let us describe in more detail the insulating-superfluid properties of the system. We

can write a functional for the order parameter in order to obtain the phase diagram.

A reasonable choice is

ψ = 〈b̂i〉 (4.8)

since in the superfluid phase the number of particles in each site is fluctuating and

the order parameter is different than zero, while in the insulating phase, neglecting

quantum fluctuations, it is zero. It is worthy to point out that this is not strictly true,

since in fact even in the insulating phase one can have fluctuations of the number

of particle and this fact is responsable of some correlation between sites [62]. The

definition of this order parameter allows us to write a mean field approach

∑

〈ij〉

b̂+i b̂j ≈ z
∑

i

ψ(b̂i + b̂+i ) + z
∑

i

|ψ|2, (4.9)

where z is the coordination number (number of nearest neighboring sites) and the

Hamiltonian can be rewritten as a sum of decoupled Hamiltonians

Ĥ =
∑

i

[−Jzψ(b̂+i b̂i) − Jz|ψ|2 + Ub̂+i b̂
+
i b̂ib̂i]. (4.10)

The first term can be treated in perturbation theory giving rise to a Ginzburg-Landau

functional

H = A|ψ|2 +B|ψ|4, (4.11)

where A and B depend on the parameter J , U and µ. To find the phase diagram one

has to solve the equation A = 0 [116]. The insulating phase is incompressible and its

excitations are gapped, while in the superfluid phase the spectrum is not gapped. The
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presence or absence of this gap can be used to reveal the phase transition. By means

of the Green function formalism, it is possible to obtain the border between the two

phases precisely when the spectrum becomes gap-less. In the next section we discuss

in detail how to calculate the phase diagram using this method.

We can retrieve a continuous limit making a course-graining procedure introducing

the field Ψ̂(ri) ≈ b̂i/d
3/2. The Hamiltonian then reads

Ĥ =

∫

d3rΨ̂+(r)

(

− ~
2

2m∗
∆ − µ∗ +

g∗

2
Ψ̂+(r)Ψ̂(r)

)

Ψ̂(r), (4.12)

where we have renormalized the mass, the chemical potential and the coupling con-

stant. In this case the effective mass, the coupling constant and the chemical potential

read

m∗ =
~

2Jd2
; g∗ = Ud3; µ∗ = µ+ 2J. (4.13)

Let us at this point discuss about the validity of the approximation introduced above.

The continuous limit does not describe the insulating phase since only gap-less excita-

tions are present, and does not take into account the occurrence of Bloch oscillations

if the system is perturbed by a constant force (see appendix A.3). On the other side

this method gives the correct sound velocity and the static properties. We show in the

next section an application of this method.

4.2 2D lattice of 1D systems

We have seen in the previous section that it is possible to create periodic structures

using light, this opens many possibilities regarding low-dimensional systems. In fact

every site of a one-dimensional lattice can be seen as a two-dimensional system or

in the case of a two-dimensional lattice, the sites can be considered one-dimensional.

Some properties concerning the latter case are analyzed in this section.
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4.2.1 Superfluid phase in a trap

In the following we consider a gas of N bosons in a cylindrically-symmetric harmonic

trap, with axial (radial) frequency ωz (ω⊥). We assume a superimposed periodic

potential provided by an optical lattice of the form Vl(x)+Vl(y) = V0(sin
2 qx+sin2 qy),

where q = 2π/λ is related to the laser wavelength λ, and V0 is the lattice amplitude.

The lattice has a periodicity d = π/q = λ/2. From a macroscopic point of view it is

convenient to introduce the effective mass, m∗, to describe the effects of the lattice

on the dynamics. The value of m∗ can be obtained from ∂2E0/∂k
2 = ~

2/m∗, where

E0(k) is the dispersion law corresponding to the lowest energy band. In tight-binding

regime, m∗ can be related with the tunneling rate J , as m/m∗ = π2J/ER, where

ER = ~
2q2/2m is the recoil energy, J = −

∫

wi(x)(−~
2∇2

x/2m+ Vl(x))wi+1(x)dx, and

{wi} are the Wannier functions for the lowest band.

We first consider the case of a single isolated lattice site, which can be well ap-

proximated as a dilute gas of Nt bosons confined in a very elongated harmonic trap

with radial and axial frequencies ωl and ωz (ωl � ωz). The transversal confinement

is strong enough to fulfill that the interaction energy per particle is smaller than the

zero-point energy ~ωl of the transversal trap. In this way, the transversal dynamics is

effectively “frozen” and the system can be considered 1D. The Hamiltonian describing

the physics of the delta-interacting 1D gas is

Ĥ1D = Ĥ0
1D +

Nt
∑

j=i

mω2
zz

2
i

2
, (4.14)

where

Ĥ0
1D = − ~

2

2m

Nt
∑

j=1

∂2

∂z2
j

+ g1D

Nt−1
∑

i=1

Nt
∑

j=i+1

δ (zi − zj) (4.15)

is the Hamiltonian in absence of the harmonic trap, and g1D = −2~
2/ma1D. As

discussed in Chapter 3 the scattering problem under one-dimensional constraints was
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analyzed in detail by Olshanii [21], and it is characterized by the 1D scattering length

a1D = (−a2
l /2a)[1 − C(a/al)], with a the 3D scattering length, al =

√

2~/mωl the

oscillator length in the radial direction, and C = 1.4603 . . .. For the thermodynamic

limit, a 1D gas at zero temperature with linear density ρ, is characterized by an

energy per particle, which can be obtained from the previously discussed LL integral

equations [25]. Assuming that the density variates sufficiently slowly, we can apply the

local Lieb-Liniger (LLL) model, which as previously commented in chapter 3 consists

in considering at each point z that the gas is at local equilibrium, and the local energy

per particle is provided by the LL equations.

Although, strictly speaking, the LLL approach is only valid for 1D systems, for

sufficiently low J , the processes involving transitions into nearest sites, should just

result in a small correction to the 1D scattering of the order of J/µ, where µ is the

chemical potential. Therefore, if J/µ � 1, the actual local chemical potential can be

well approximated by that obtained from the LLL approach. If the tunneling becomes

very small (J < Jc), even for large values of Nt the system could enter into the MI

regime. We analyze this possibility in Sec. 4.2.2. Summarizing, in what we called the

quasi-Tonks regime, (Jc/µ) < J/µ� 1, the LLL chemical potential can be employed,

and at the same time the tunneling cannot be neglected.

Assuming a sufficiently slow variation of the gas density, the dynamics can be well

described by means of the corresponding macroscopic hydrodynamic equations [117]:

∂ρ

∂t
+ ∇ · (ρv) = 0, (4.16)

m∗∂vx

∂t
+

∂

∂x
(K + V + U) = 0, (4.17)

m∗∂vy

∂t
+

∂

∂y
(K + V + U) = 0, (4.18)

m
∂vz

∂t
+

∂

∂z
(K + V + U) = 0, (4.19)
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where

K =
m∗

2
v2

x +
m∗

2
v2

y +
m

2
v2

z , (4.20)

V =
m

2
ω2
⊥(x2 + y2) +

m

2
ω2

zz
2, (4.21)

U = µ(ρ) = µ1D(d2ρ), (4.22)

where ρ(x, y, z) is the macroscopic 3D density and v = (vx, vy, vz) is the velocity field.

Note that all the information about the lattice is contained in m∗, and in the local

chemical potential µ(ρ). In Eq. (4.22) the local chemical potential of the 3D system

is related to the 1D chemical potential, µ1D, provided by the LLL approach. In order

to obtain µ1D the value of a1D must be obtained for each site. The latter demands

the knowledge of the effective oscillator length al associated with the on-site radial

confinement. Since the latter can be very large, a Gaussian Ansatz can be assumed

for the on-site radial wave function. In this way, we can calculate al by minimizing

the radial energy

E(al)

ER
=

1

q2a2
l

+
V0

ER

(

1 − e−q2a2

l

)

. (4.23)

In Eq. (4.23) we have neglected the interaction energy, which for V0/ER > 3 does not

provide any significant contribution. Once known the value of a1D, we evaluate µ1D(ρ)

by numerically solving the corresponding LL integral equations.

By imposing the equilibrium conditions ∂ρ/∂t = vi = 0, we obtain the equation of

state

µ[ρ0(x, y, z)] = µT − V (x, y, z), (4.24)

where ρ0 is the equilibrium density, and µT is the chemical potential of the system.

Inverting (4.24), one obtains the expression for ρ0. Imposing the normalization to the
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Figure 4.1: Density profile as a function of the dimensionless radius r̃2 =
∑

i(ri/Ri)
2

(see text). The solid, doted and dashed lines correspond to log A = −3, 0, 3, respec-

tively. The resulting fit with a power law dependence (1 − r̃2)s provides s = 0.54,

0.72, 0.91, respectively, being an indicator of the transition from the MF regime to the

strongly-interacting one.

number of particles N we obtain:

A =
|a1D|4d2N

a2
xa

4
⊥

= 4πξ3

∫ 1

0

t2µ̃−1
1D[ξ2(1 − t2)]dt, (4.25)

where ξ = 2µm|a1D|2/~2. From Eq. (4.25) we observe that, similarly to the strict 1D

case [33–35], the ground state of the system is completely characterized by a single

parameter A. For A � 1 the mean-field (MF) regime is retrieved, whereas the TG

is found for A � 1. In Eq. (4.25), µ̃1D(x) = 2m|a1D|2µ1D(x)/~2, is a function of the

dimensionless density η = |a1D|d2ρ. Fig. 4.1 shows the density as a function of the

dimensionless radius r̃, where r̃2 =
∑

i(ri/Ri)
2, with Ri the Thomas-Fermi radii. In

order to compare the different cases, we re-scale the density with respect to the central

one. Nevertheless, we stress that the values of Ri and the central density depend on the

parameters, and in particular on the interaction regime. From the previous discussion,
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it becomes clear that the 1D properties of the local chemical potential are transferred

to the 3D stationary shape of the cloud. In particular, for small values of A, the

transversal density profile is not an inverted parabola, as expected for the case of a

BEC in a harmonic trap. We stress once more, that this remarkable effect is just

possible in the presence of the 2D lattice, which guarantees, under the above discussed

conditions, a LLL chemical potential. In the following we calculate the frequencies for

the lowest excitations of a quasi-Tonks gas. In particular, we evaluate the breathing

and quadrupole modes, by using the Ansatz ρ = ρ0 (ri/bi) /
∏

j bj, vi = (ḃi/bi)ri, which

constitutes an exact solution of the continuity equation (4.16). Multiplying the Euler

equations by ρxi and integrating, one obtains

b̈x + ω̃2
⊥bx +

ω̃2
⊥

bx
F (

∏

j=x,y,z

bj) = 0, (4.26)

b̈y + ω̃2
⊥by +

ω̃2
⊥

by
F (

∏

j=x,y,z

bj) = 0, (4.27)

b̈z + ω2
zbz +

ω2
z

bz
F (

∏

j=x,y,z

bj) = 0, (4.28)

where we have employed the effective frequencies ω̃2
⊥ = ω2

⊥m/m
∗, and defined the

function

F (ζ) =
1

mω2
iN〈x2

i 〉0

∫

ρ0xi
∂

∂xi
µ(ζ−1n0)d

3r. (4.29)

Using the previously calculated equilibrium solution, one obtains that F (ζ) is inde-

pendent of the particular choice of the coordinate i, and that F (1) = −1. Note that

the function F only depends on A, which, as previously discussed, completely charac-

terizes the static properties of the system. Linearizing around the equilibrium solution

bi = 1, one obtains the frequencies of the breathing mode (ωB), the M = 0 quadrupole

mode (ωQ1) and the M = ±2 quadrupole one (ωQ2):

ω2
B =

1

2
{ω̃2

⊥(2 + 2f) + ω2
z(2 + f)
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Figure 4.2: Parameter f as a function of log A (see text).

+
√

[ω̃2
⊥(2 + 2f) + ω2

z(2 + f)]2 − 8ω̃2
⊥ω

2
z(2 + 3f)} (4.30)

ω2
Q1 =

1

2
{(ω̃2

⊥(2 + 2f) + ω2
z(2 + f)

−
√

[ω̃2
⊥(2 + 2f) + ω2

z(2 + f)]2 − 8ω̃2
⊥ω

2
z(2 + 3f)} (4.31)

ω2
Q2 = 2ω̃2

⊥ (4.32)

In the expression for the frequencies we employ the parameter f = ∂F (ζ)
∂ζ

|ζ=1, which

is an universal function of the parameter A. We show this dependence in Fig. 4.2.

The parameter f ranges from 2, at the TG limit, to 1, for the MF regime. In this two

limiting cases the function F can be obtained analytically, being F = ζ−2 (TG) and

F = ζ−1 (MF).

The quasi Tonks regime is not only achievable for realistic conditions, but, actually,

it is expected to be the case for typical parameters in ongoing experiments, as those

of Fig. 4.3, which shows the dependence of the frequencies (4.30-4.32) on the lattice

amplitude V0/ER. We stress that the system enters the MI regime for large values of

V0/ER (around 40 for the case of Fig. 4.3). If this is the case, as discussed above, our
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Figure 4.3: Frequencies of the breathing mode (solid), quadrupole 1 (dotted) and

quadrupole 2 (dashed) as a function of V0/ER, for the particular case of 87Rb atoms,

N = 2 × 105, ωz = 2π × 4Hz, ω⊥ = 2π × 40Hz, and d = 0.5µm.

macroscopic hydrodynamic approach fails, and the system becomes a set of indepen-

dent 1D gases. On the other hand, for decreasing values of V0/ER the system abandons

the quasi-Tonks regime (which for the case of Fig. 4.3 occurs at V0/ER ' 15), and

the condition J/µ ' 1 is reached. This constitutes an additional intermediate cross-

dimensional regime, in which the gas is 3D, but the local chemical potential is not that

expected for a 3D Bose gas. For this regime, contrary to the case of the quasi-Tonks

gas, the local chemical potential cannot be approximated by the LLL chemical po-

tential. As a consequence of that, the challenging problem of describing the J/µ ' 1

regime demands a completely different approach. In this sense, especially interesting

could be to employ the analogies to the problem of coupled Luttinger liquids [118–120].

The existence of the quasi Tonks regime can be easily revealed in experiments, by

either observing the size and the form of the stationary density profile, or monitoring

the collective excitations. For increasing values of V0/ER, the frequency of the breath-
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ing mode approaches that of the lowest compressional mode in 1D gases [34], whereas

the quadrupolar frequencies tend to zero. For intermediate values of the lattice poten-

tial, the lowest excitations are significantly different than in 1D, for the same value of

the dimensionless density η. In particular, more than one excitation mode is expected.

We stress that the modes (4.30-4.32) also differ significantly from the expected results

for a BEC in a lattice [117]. The latter are recovered from our formalism for large val-

ues of A (MF regime). We must point, however, that the local correlation properties

are preserved in the quasi Tonks regime. In this sense, if the parameter A becomes

sufficiently small the lifetime of the gas can be very significantly enlarged, due to the

reduction of the two- and three-body losses [35].

4.2.2 Insulating phase

In the following we consider the situation in which the system is in a Mott-insulator

phase on the lattice plane. In other words, contrary to the previously discussed Quasi-

Tonks case, we consider here the case J < Jc. The value of Jc is also discussed in this

section.

In the following we consider a Bose gas at zero temperature in a 2D optical lattice,

such that every lattice site can be considered as an axially homogeneous 1D tube of

finite size L, with N = ρL being the number of particles per tube, and ρ the 1D density.

As previously discussed, the tunneling between neighboring tubes is characterized by

the hopping t, which depends on a particular lattice potential and atomic species

employed. We label tubes by the index j and denote by x the coordinate along the

tubes.
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The action describing the coupled tubes has the form:

S =
∑

j

Sj − J
∑

<ij>

∫ ∞

−∞

dτ

∫ L/2

−L/2

dx
(

ψ∗
i ψj + ψ∗

jψi

)

, (4.33)

where ψj(x, τ), ψ
∗
j (x, τ) are complex bosonic fields associated with the J-th tube, the

symbol < ij > denotes nearest neighbors, and Sj is the action describing the physics

along the j-th tube:

Sj =

∫ ∞

−∞

dτ

∫ L/2

−L/2

dxψ∗
j

(

− ~
2

2m

∂2

∂x2
+

∂

∂τ
− µ+ g|ψ|2

)

ψj. (4.34)

In the absence of tunneling, there are no correlations between different tubes, and the

one-body Green function is diagonal:

Gij(x1−x2, τ1−τ2) = 〈ψi(x1, τ1)ψ̄j(x2, τ2)〉

= δijG0(x1−x2, τ1−τ2). (4.35)

The presence of tunneling between neighboring tubes, provided by the second term on

the rhs of Eq. (4.33), modifies the momentum distribution. As previously commented,

above a critical tunneling amplitude tc the system undergoes a cross-over from the MI

to an anisotropic 3D SF phase [61]. This cross-over and the MI phase can be analyzed

within the random phase approximation (RPA) [121], successfully used in the studies

of coupled spin chains [122–124]. Decoupling the tunneling term by using the Hubbard-

Stratonovich transformation and keeping only the leading quadratic terms, yields the

RPA Green function in the momentum-frequency representation:

G(~q, k, ω) =
G0(k, ω)

1 − T (~q)G0(k, ω)
, (4.36)

with ~q = (qy, qz) being the quasi-momentum in the lattice plane, T (~q) = 2J(cos qyd+

cos qzd), d the lattice constant, and G0(k, ω) the Fourier transform of the Green func-

tion (4.35) (hereinafter we put ~ = 1):

G0(k, ω) =

∫ ∞

−∞

dτ

∫ L/2

−L/2

dx e−ikx+iωτG0(x, τ). (4.37)
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The long-wavelength behavior of the Green function G0(x, τ) can be found using

Luttinger liquid theory [27]. At zero temperature, employing a conformal transforma-

tion (see chapter 3) in order to take into account the finite size L of the tubes [121],

we obtain:

G0(x, τ) = ρ

(

π2/N2

sinh (πζ/L) sinh
(

πζ̄/L
)

)ν

, (4.38)

where ζ = vsτ + ix, and vs is the sound velocity. The interactions enter Eq.(4.38)

through the factor ν = 1/4K related to the interaction-dependent Luttinger parameter

K. The Fourier transform of Eq. (4.38) yields

G0(k, ω) =
1

ρvs

(

N

2π

)2−2ν

I

(

kL

2π
,
ωL

2πvs

)

, (4.39)

where the quantity I(p,Ω) is expressed through the hypergeometric function 3F2:

I(p,Ω) =
4π

p!

Γ(ν + p)

Γ(ν)
Re

[

3F2

(

ν, ν+p, ν+p−iΩ
2

; 1+p, 1+ ν+p−iΩ
2

; 1
)

ν + p− iΩ

]

, (4.40)

with p = kL/2π and Ω = ωL/2πvs being the dimensionless momentum and frequency.

Integrating Eq. (4.39) over ω one obtains the momentum distribution N0(kL/2π) =

∫

dωG0(k, ω)/2π in the absence of tunneling:

N0(p)

N
=

(

N

2π

)−2ν
Γ(ν + p)

p!Γ(d)
2F1(ν, ν + p; 1 + p; 1), (4.41)

which behaves as p2ν−1 for p & 1. The Luttinger liquid description employed here

is valid for low momenta k � πρ. Accordingly, the dimensionless axial momentum

p = kL/2π, which is an integer number, should satisfy the inequality p � N . The

momentum distribution (4.41) represents the fraction of particles in the state with

momentum p and is normalized as
∑

pN0(p) = N .

The critical tunneling Jc for the MI to SF cross-over is obtained as the value of J

for which the denominator of Eq. (4.36) vanishes for zero momenta k and ~q and zero
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frequency ω. We thus have

Jc

µ
=
ρvs

4µ

(

N

2π

)2ν−2
1

I(0, 0)
. (4.42)

Note that with Jc from Eq. (4.42), the Green function G in Eq. (4.36) becomes a

universal function of the dimensionless quantities J/Jc, p, qd and Ω. For the TG

regime of 1D bosons in the tubes, the Luttinger parameter is K = 1 and ν = 1/4.

Then, as the chemical potential is µ = mv2
s = π2ρ2/2m, from Eq.(4.42) we obtain

Jc/µ ' 0.05N−3/2. For the weakly interacting regime, the Luttinger parameter in

the 1D tubes is K = π(ρ/mg)1/2 � 1 and Eq.(4.40) gives I(0, 0) = 16πK � 1.

In this regime the chemical potential is µ = mv2
s = ρg, and Eq.(4.42) then yields

Jc/µ ' (1/16)N−2 (as expected from the mean-field calculations for a 2D lattice of

zero-dimensional sites [116]). These results are in qualitative agreement with the recent

calculations of Ho et al. [61]. One clearly sees that strong correlations along the tubes

drastically shift the boundaries of the MI phase.

The momentum distribution for the coupled 1D tubes in the MI phase, N(~q, k), is

obtained by integrating the Green function (4.36) over the frequency. Our calculations

show that only the lowest axial mode for which the momentum k = 0, is significantly

affected by the tunneling. The physical reason is that the k = 0 mode is approaching

the instability on approach to the critical tunneling Jc, whereas k 6= 0 modes are still

far from instability. This is reflected in the resonance character of the Green function

(4.36) for k = 0 and J → Jc. Our results in Fig. 4.4 show that the transverse distri-

bution N(~q, 0) corresponding to the k = 0 axial mode is non-flat for any interaction

regime along the tubes. In contrast, for k 6= 0 the quantity T (~q)G0(k, ω) is always

small. Therefore, expanding the rhs of Eq. (4.36) in powers of T (~q) up to linear order

and integrating over ω we obtain an almost flat transverse momentum distribution for

k 6= 0 modes: N(~q, p)/N(0, p) = 1 − (Ad2/4p2−ν)(J/Jc)(2 −
∑

i=y,z cos qia), where the
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Figure 4.4: Transverse momentum distribution for k = 0 at J/Jc = 0.3 for K = 1

(solid), K = 4 (dotted), and K = 25 (dashed). In the figure we have chosen qy = qz =

q.

coefficient A is of order unity and the second (q-dependent) term is always very small.

We now turn to the discussion of the transverse quasi-momentum distribution

N⊥(~q) =
∑

k N(~q, k). The summation over the axial modes changes the picture dras-

tically compared to the distribution for a given k. As only the k = 0 component is

significantly affected by the tunneling, one can rewrite Eq. (4.36) in the form:

G(~q, k, ω) ' G0(k, ω) +
T (~q)G2

0(0, ω)

1 − T (~q)G0(0, ω)
δk,0. (4.43)

In the second term on the rhs of Eq.(4.43) we may use the Green function G0(0, ω)

following from Eqs. (4.39) and (4.40). For k = 0 (p = 0), one can put the hypergeo-

metric function 3F2 = 1 in Eq.(4.40), which gives I(0,Ω) ' 4πν/(ν2 + Ω2). Omitted

terms give a very small relative correction of the order of ρv3
s < 1/43. Hence, us-

ing Eq.(4.42), for the Green function at k = 0 in the absence of tunneling we have

G0(0, ω) = ν2/4tc(dν
2 + Ω2). Then, integrating Eq.(4.43) over Ω, summing over the

axial modes k, and imposing the normalization condition N =
∑

k

∫

dωG0(k, ω)/2π
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Figure 4.5: Transverse momentum distribution for J/Jc = 0.3, atK = 1 (solid), K = 4

(dotted), and K = 25 (dashed), for N = 50 (a) and N = 500 (b). In the figures we

have chosen qy = qz = q.

for the first term on the rhs, we obtain the transverse momentum distribution

N⊥(~q)

N
=1+

(

2π

N

)2d




(

1− t

2tc

∑

i=y,z

cos qid

)−1/2

−1



, (4.44)

normalized by the condition (d/2π)2
∫

d2qN⊥(~q) = N .

In Fig. 4.5 we depict the results of Eq. (4.44) for different values of N and the

Luttinger parameterK. Due to the prefactor in the second term on the rhs of Eq. (4.44)

the transverse momentum distribution strongly depends on the interaction regime

along the tubes.
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For the weakly interacting regime (ν � 1), the distribution N⊥(~q) is not flat even

deeply inside the MI phase. Similar results have been obtained by means of Quantum

Monte Carlo calculations [62] for the case of lattices of zero-dimensional sites. In our

case, only for rather low tunneling (J/Jc . 0.1) the quasi-momentum distribution

becomes flat, and switching off the lattice potential should lead to a blurred picture as

that observed by Greiner et al. [24]. Non-flat distributions in the MI phase as those of

Fig. 4.5 will manifest themselves through the appearance of interference peaks in the

same type of experiment (see appendix A.1 and A.2 ).

On approach to the TG regime, the quasi-momentum distribution becomes pro-

gressively flatter. The main reason for this behavior is that when the system becomes

more interacting, the k = 0 component is more depleted, contributing less to the total

quasi-momentum distribution. Therefore, if the 1D tubes approach the strongly in-

teracting TG regime, in experiments as those of Ref. [24] the interference pattern will

be essentially smeared out. One may expect a partial destruction of the interference

pattern even for moderate values of the Luttinger parameter (see, e.g., the case K = 4

in Fig. 4.5).

The random phase approximation used in our calculations, was shown to be a good

approximation for a wide range of parameters of coupled one-dimensional Heisenberg

spin chains [122]. Here we give yet another estimate for the applicability of RPA,

relying on the Ginzburg criterion adapted to a quantum phase transition at zero tem-

perature. We compare fluctuations of the order parameter in a volume determined

by the correlation radius extracted from the Green function (4.36), with the scale

on which the non-linear effects become important. The latter is obtained from the

four-point correlation function of each tube. We have found that RPA is adequate

for (tc − t)/tc � B(ν), where B(ν) has been obtained numerically from the four-
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point correlation function. In the case of the Tonks-Girardeau regime along the tubes,

we have B ≈ 0.1, and it decreases significantly with decreasing ν and entering the

Gross-Pitaevskii regime.
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Chapter 5

Classical and Fermi gases

We have already discussed both classical and Fermi gases in Chapter 2, where we have

introduced some general concepts. In this chapter, we analyze in more detail some

dynamical aspects of a classical gas, a superfluid Fermi gas and a normal Fermi gas.

We first introduce some useful techniques to deal with these systems.

5.1 Method of the averages and scaling ansatz

In this section we develop a method that allow us to calculate the dynamics of some ob-

servable without solving directly the Boltzmann equation. Multiplying the Boltzmann

equation by an observable χ, and integrating on the phase space we obtain

d

dt
〈χ〉 − 〈v1 · ∇rχ〉 − 〈F · ∇p1

χ〉 = 〈χC[f ]/f〉. (5.1)

In principle Eq. (5.1) gives rise to a set of equations involving in principle many

observables, as we discuss below in an example. The goal is to obtain a closed set of

equations. In this way we reduce the problem to a set of ordinary differential equations

that is much simpler to solve than the Boltzmann equation. This method has been

used to calculate the shift of the collective frequencies due to collisions [125, 126].

63
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The most difficult term to treat is the collisional integral, since it contains nonlinear

terms. One way to treat this term is to make an appropriate Ansatz for the distribution

function, and possibly rewrite it as a combination of other variables [125,126]. Due to

symmetry properties of the transition amplitude T (see Chapter 2), if χ is a conserved

quantity in a collision the collisional integral vanishes explicitely if χ = α(r) + β(r) ·

p + γ(r)p2 [90]. As an example let us consider a gas confined in a spherical harmonic

trap, i.e. under a force F = −mω2
0r. It is easy to obtain the following set of equations

for the averages of the observables:

d

dt
〈r2〉 − 2〈v · r〉 = 0, (5.2)

d

dt
〈v · r〉 − 〈v2〉 + ω2

0〈r2〉 = 0, (5.3)

d

dt
〈v2〉 + 2ω2

0〈v · r〉 = 0. (5.4)

Developing around the equilibrium solution we calculate the monopole frequency,

ωM = 2ω0. To calculate the quadrupole frequencies we have to start with the following

operators 〈x2 − y2〉, 〈x2 + y2 − 2z2〉 and obtain a new closed set of equations [125]. In

this case collisions play an important role and they are responsible of the damping of

the oscillations [127]. The equations (5.2),(5.3),(5.4) can be used to calculate also the

time evolution of the square radius when the external trapping is turned-off (ω0 = 0).

Using the virial theorem (〈v2〉 = ω2
0〈r2〉 at equilibrium) we obtain the following result:

〈r2〉(t)
〈r2〉(0)

= 1 + ω2
0t

2. (5.5)

This is a simple but very important result. In fact any deviation from this law implies

that the interactions play a role during the expansion. We show in the next section how

the geometry of the trap, collisions and mean field interaction can affect the expansion

and the lowest collective excitations.
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The interaction between particles enter in the Boltzmann equation through the

collisional term. A mean-field term must be included in the force in the Boltzmann

equation if the temperature is sufficiently low or the gas is not too dilute [129]. This

new equation receives the name of Vlasov equation [128].

∂f

∂t
+ v1 · ∇rf + (Fext + Fmf) · ∇p1

f = C[f ]. (5.6)

The expression for the mean field Fmf(r) force can be assumed of the form Fmf(r) =

∇r

∫

d3r′U(r, r′)ρ(r′) where U(r, r) is the potential energy between two particles at

position r and r′. In the case of contact interactions U = 2gδ3(r − r′) so Fmf(r) =

2g∇ρ(r). The basic idea of the scaling ansatz method is to use as an ansatz the

equilibrium solution. The time dependence is introduced by means of some time

dependent parameter. Let us make one example in order to clarify these points.

We consider a trapped classical gas in collisionless regime and a mean field potential

proportional to the density [129]. The equilibrium distribution fulfills the following

equation

∑

i

(

vi
∂f0

∂ri
− ω2

i ri
∂f0

∂vi
− 2g

m

∂ρ0

∂ri

∂f0

∂vi

)

= 0. (5.7)

From equation (5.7) it is easy obtain the relation

ω2
i 〈ri〉 − 〈vi〉 −

2g

mN

∫

ρ2
0d

3r = 0, (5.8)

that establish a relation among the kinetic energy, the potential energy and the mean

field energy. The time dependence is introduced by means of scaling parameters

f(t, vi, ri) = f0(Vi(t, ri, vi), Ri(t, ri)), (5.9)

where the new variables are defined as Vi = bi(t)vi − ḃi(t)ri, and Ri = ri/bi(t), and the

parameters bi(t) are the scaling parameters. Substituting Eq. (5.9) into the Boltzmann
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Eq. (5.6) we obtain

∑

i

[

Vi

bi

∂f0

∂Ri

− biRi(b̈i + ω2
i bi)

∂f0

∂Vi

− 2g

m
∏

j bj

∂ρ0

∂Ri

∂f0

∂Vi

]

' 0. (5.10)

Combining Eq. (5.7) with Eq. (5.11) we obtain the following expression

∑

i

[(

Vi

b2i
− Vi
∏

j bj

)

∂f0

∂Ri
− biRi

(

b̈i + ω2
i bi −

ω2
i

bi
∏

j bj

)

∂f0

∂Vi

]

' 0. (5.11)

Taking an average of RiVi we obtain the following set of equations

b̈i − ω2
i bi −

ω2
i

bi
+ ω2

i ξ

(

1

b3i
− 1

bi
∏

j bj

)

= 0, (5.12)

where ξ = g〈ρ0〉/(g〈ρ0〉 + T ).

Summarizing, we have used the ground state properties without a detailed knowl-

edge of the ground state. In fact the only parameter regarding the ground state

properties is ξ. This method is used extensively in the rest of this chapter.

5.2 Dynamics of a classical gas with dissipative and

mean-field effects

So far analytic calculations for the expansion of a classical gas have been limited

to either the ballistic or to the hydrodynamic regime [65]. As a consequence, it is

important to generalize such calculations to all intermediate collisional regimes. This

is precisely the main purpose of this section. Our approach relies on an approximated

solution to the Vlasov equation including collisions by means of a scaling ansatz,

following the ideas introduced previously. This solution is used throughout this section

to investigate two kinds of related problems: the lowest collective oscillation modes

and the time-of-flight expansion when the confinement is released.



5.2. DYNAMICS OF A CLASSICAL GAS 67

As previously discussed, the Boltzmann-Vlasov (BV) kinetic equation for the phase

space distribution f(t, r,v) takes the form:

∂f

∂t
+ v · ∂f

∂r
− 1

m

∂(Uh + Umf)

∂r
· ∂f
∂v

= Icoll[f ], (5.13)

where Uh is the trapping potential chosen of harmonic form: Uh(r) = m
2

∑

i ω
2
i r

2
i .

Interparticle interactions enter Eq. (5.33) in two different ways [130]. On the one hand,

they modify the effective potential through the mean field term Umf which affects the

streaming part of the Boltzmann kinetic equation. The mean field potential Umf is

equal to 2gρ for bosons and gρ for two fermion species1, where the coupling constant

g = 4π~
2a/m is fixed by the s-wave scattering length a. The mean field term is

linear in a and is non dissipative. On the other hand, two body interaction determines

the collision integral Icoll[f ] which is quadratic in the scattering length, and describes

dissipative processes. Eq. (5.33) is valid in the semi-classical limit, namely when the

thermal energy is large compared to the separation between the energy eigenvalues of

the potential [90, 131].

We treat the collisional integral within the relaxation time approximation [90]. This

model should suffice to capture the essential physics of the problem. We consequently

write:

Icoll[f ] ≈ −f − fle

τ
, (5.14)

where τ is the relaxation time related to the average time between collisions, and fle

is the local equilibrium density in phase space. As a consequence, fle has a spherical

symmetry in velocity space, i.e. it depends on the velocity through [v − u(r)]2 where

u(r) is the local velocity field.

1For fermions, the density ρ as well as the distribution function f refers to a single species.



68 CHAPTER 5. CLASSICAL AND FERMI GASES

The dynamics of the gas will be described by the following scaling ansatz for the

non equilibrium distribution function:

f(t, ri, vi) =
1

∏

j(bjθ
1/2
j )

f0

(

ri

bi
,

1

θ
1/2
i

(

vi −
ḃi
bi
ri

))

, (5.15)

where f0 is the equilibrium distribution function which satisfies the equation (Icoll[f0] =

0):

mv · ∂f0

∂r
=
∂Uh

∂r
· ∂f0

∂v
+
∂Umf

∂r
· ∂f0

∂v
. (5.16)

The dependence on time of f is contained in the dimensionless scaling parameters bi

and θi. The parameter bi gives the dilatation along the ith direction, while θi gives the

effective temperature in the same direction. Such an ansatz generalizes the one used

in [129]. We recall that in this method the shape of the cloud does not explicitly enter

the equations.

Following Ref. [129], one can derive the set of equations for the scaling parameters

bi and θi (see Appendix A.4):

b̈i + ω2
i bi − ω2

i

θi

bi
+ ω2

i ξ

(

θi

bi
− 1

bi
∏

j bj

)

= 0 (5.17)

θ̇i + 2
ḃi
bi
θi = −1

τ

[

θi − θ̄
]

, (5.18)

where the dimensionless parameter ξ = 〈Umf〉0/(〈Umf〉0 + 2m〈v2〉0/3) accounts for the

mean field interaction2 and θ̄ =
∑

i θi/3 is the average temperature. For a classical

gas 〈v2〉0 = 3kBT/m. The parameter ξ is expected to be small for dilute gases (ρa3 �

1) since the ratio Umf/kBT scales as (ρa3)1/3(ρλ3
db)

2/3, where λdb is the de Broglie

wavelength and ρ is the mean density [129]. Eq. (5.18) shows that the dissipation

2We define 〈χ〉0 as the average in position and velocity space of the function χ(r,v) weighted by

the equilibrium distribution function: 〈χ〉0 =
∫

dDr dDv f0(r,v) χ(r,v)/
∫

dDr dDv f0(r,v).
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occurs when the temperature is not isotropic and the relaxation time τ has a finite

value.

The collisionless regime is obtained by taking τ0 = ∞. In this limit, we have the

simple relation θi = b−2
i between the scaling parameters, and we recover the equations

derived in [129]. In the opposite limit (hydrodynamic regime), local equilibrium is

always ensured because of the high collision rate. As a consequence, we have θi = θ̄ =

∏

j b
−2/3
j and the Eqs (5.17) and (5.18) can be recast in the form:

b̈i + ω2
i bi −

ω2
i

bi
∏

j b
2/3
j

+

ω2
i ξ

(

1

bi
∏

j b
2/3
j

− 1

bi
∏

j bj

)

= 0. (5.19)

For ξ = 0 (no mean field), we recover the equations first derived in [65]. Note that

in both the collisionless and the hydrodynamic regimes, the collisional term does not

contribute since there is no dissipation in these limits. We next focus our attention

on the intermediate regimes where the collision term enters explicitly the equations of

motion.

Let us first study the breathing mode in the case of spherical harmonic trapping

with angular frequency ω0. In this case, we find a solution with bi = b and θi = b−2.

For such a solution the collision term identically vanishes in all intermediate collisional

regimes. Our approach can be readily generalized to lower dimensions leading to the

frequency ω0(4+ ξ(d−2))1/2 for the monopole mode [129], where d is the dimension of

space. In two dimensions the mean field does not affect the frequency of the monopole.

This comes out from the fact that in this case the ansatz is an exact solution of the

BV equations, as already stressed in Ref. [132].

We now consider a sample of atoms confined in a three-dimensional cylindrically

symmetric harmonic potential. We denote by λ = ωz/ω⊥ the ratio between the axial
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and radial angular frequencies. Expanding Eqs. (5.17) and (5.18) around equilibrium

(bi = θi = 1) we get a linear and closed set of equations which can be solved by looking

for solutions of the type eiωt. The associated determinant yields the dispersion law:

(

A[ω] +
1

τ0
B[ω]

)(

C[ω] +
1

τ0
D[ω]

)

= 0, (5.20)

where A[ω] = ω2(ω2 − ω2
cl+)(ω2 − ω2

cl−), B[ω] = ω(ω2 − ω2
hd+)(ω2 − ω2

hd−), C[ω] =

ω(ω2 − ω2
cl) and D[ω] = (ω2 − ω2

hd) and τ0 is the value of the relaxation time τ

calculated at equilibrium and

ω2
cl± =

ω2
⊥

2

(

4(1 + λ2) − λ2ξ

±
√

16 + λ4(4 − ξ)2 + 8λ2(ξ2 − 4 + ξ)
)

ω2
cl = ω2

⊥(4 − 2ξ)

ω2
hd± =

ω2
⊥

3

(

5 + 4λ2 + ξ(1 + λ2/2)

±1

2

√

(10 + 8λ2 + 2ξ + λ2ξ)2 − 72λ2(4 + ξ)
)

ω2
hd = 2ω2

⊥.,

where ξ is the previously defined parameter accounting for the mean field effects,

and (cl) and (hd) refer to the collisionless and hydrodynamics regimes respectively.

The solution of Eq. (5.20) interpolates the frequencies of the low lying modes for

all collisional regimes ranging from the collisionless to the hydrodynamic. As the

confinement is cylindrically symmetric around the z axis, we can label the modes by

their angular azimuthal number M . The first factor of the l.h.s. of Eq. (5.20) gives

the frequencies of the two M = 0 modes, while the second factor gives that of the

quadrupole (M = ±2) mode. The roots of A and C have already been obtained

in [129], and correspond to the frequencies of the low lying modes of a collisionless

gas in presence of mean field. Eq. (5.20) for ξ = 0 has been derived in Ref. [125] and
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the corresponding frequencies have been investigated experimentally [74]. For ξ = 1,

corresponding to 〈gρ0〉0 � 〈v2〉0, we find ω2
cl± = ω2

hd±, ω2
cl = ω2

hd, and the frequencies

coincide with the ones predicted for a Bose-Einstein condensate in the Thomas-Fermi

regime [4].

So far, we have not given the explicit link between the relaxation time entering

Eq. (5.20) and the collision rate. Following Ref. [125], we can establish this link for a

classical gas by means of a Gaussian ansatz for the equilibrium distribution function

f(r,v, t). One obtains τ0 = 5/(4γ) where γ = 2(2π)−1/2ρmaxσvth is the classical

collision rate where vth = (kBT/m)1/2 is the thermal velocity, ρmax is the peak density

and σ is the cross section which is assumed to be velocity independent. For bosons

the link between the scattering length and the cross section is σ = 8πa2 whereas for

two fermions species one has σ = 4πa2.

We now establish the set of equations that describe the time-of-flight expansion.

In the collisionless regime where the mean free path is very large with respect to the

size of the trapped cloud and in the absence of mean field contribution, we readily

obtain the exact equations b̈i = ω2
i /b

3
i which admit the solutions bi(t) = (1 + ω2

i t
2)1/2,

leading to isotropic density and velocity distributions after long time expansion.

When the effect of collisions is important the physics of the expansion changes

dramatically. As an example, the radial directions of a cigar-shaped cloud expand

faster than the longitudinal one finally resulting in an anisotropic velocity distribution.

So far, an analytic approach has been proposed only in the full hydrodynamic regime

[65]. However, this approach assumes that the hydrodynamic equations are always

valid during the expansion. In general, this cannot be the case since the density

decreases during the expansion reducing the effect of collisions. Alternatively, the

expansion of an interacting Bose above Tc gas has been investigated by means of a
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Monte Carlo simulation [79].

In our approach, we provide an interpolation between the two opposite collisionless

and hydrodynamic regimes using the scaling formalism. The decrease of the collision

rate during the expansion yields a non constant relaxation time τ(bi, θi) that depends

explicitly on the scaling parameters and reflects the changes of the density and the

temperature during the expansion. As a result, the expansion is described by the

following set of 6 non-linear equations

b̈i − ω2
i

θi

bi
+ ω2

i ξ

(

θi

bi
− 1

bi
∏

j bj

)

= 0

θ̇i + 2
ḃi
bi
θi = − 1

τ(bi, θi)

(

θi −
1

3

∑

j

θj

)

. (5.21)

The dependence of the relaxation time τ on the scaling parameters is obtained by

noticing that the collision rate γ scales as ρT 1/2. Using the scaling transformation

ρ→ ρ0(
∏

j bj)
−1 and T → T0θ̄, where ρ0 and T0 are the initial density and temperature

respectively, we deduce

τ(bi, θi) = τ0

(

∏

j

bj

)(1

3

∑

k

θk

)−1/2

(5.22)

where τ0 is the average time of collision at equilibrium. Since both the results (5.20) for

the dispersion of the linear oscillations and Eqs. (5.21) and (5.22) for the expansion

have been derived starting from the same scaling equations (5.17) and (5.18) the

relaxation time τ0 entering the two processes is the same. As a consequence, the

combined investigation of the expansion and of the quadrupole oscillations can provide

a useful check of the consistency of the approach and, possibly, useful constraints on

the value of the cross section.

The time evolution of the aspect ratio R⊥(t)/Rz(t) = λb⊥(t)/bz(t) in the absence

of mean field is depicted on Fig. 5.1 for different values of the product ω⊥τ0 and for
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Figure 5.1: Aspect ratio as a function of the normalized time ω⊥t for different col-

lisional regimes (initial aspect ratio λ = 0.1): collisionless (dashed line, τ0 −→ ∞),

intermediate collisional regime (solid line, ω⊥τ0 = 0.1), hydrodynamic regime (dotted

line, τ0 −→ 0).

an initial aspect ratio λ = 0.1. In the collisionless regime (τ0 = ∞), the aspect ratio

tends asymptotically to unity reflecting the isotropy of the initial velocity distribution.

For other collisional regimes, the asymptotic aspect ratio is larger than one as a con-

sequence of collisions during the expansion. We find a continuous transition from the

collisionless to the hydrodynamic prediction as we decrease τ0 from infinity to zero.

We then conclude that in general the expansion cannot be described with either the

hydrodynamic or the collisionless prediction [133], but requires a full solution of our

equations (5.21). Similar conditions have been already encountered experimentally

for classical or almost classical gases [76]. We also notice that it is very important to

take into account the time dependence of the relaxation time, accounted for by the

scaling law (5.22). For example by simply using τ = τ0 during the whole expansion,

the curve ω⊥τ = 0.1 of Fig. 5.1 (solid line) would be shifted upward and the resulting

prediction would result much closer to the hydrodynamic curve (dotted line). The
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effect of quantum statistics on the calculation of the relaxation time will be treated is

section 5.3. For a Bose gas at temperature above Tc the problem has been investigated

in [134] where it has been shown that statistical effects do not play a significant role.

In contrast, the relaxation time in a harmonically trapped dilute Fermi gases has been

shown to be strongly affected by Pauli blocking at low temperature [82]. The effects of

collisions in a strongly interacting Fermi gas, including the unitarity limit, have been

recently addressed in [135].

5.3 Fermi gases

In the previous section we have shown how the interactions affect the collective excita-

tions and the expansion of a classical gas. In this section we develop a similar analysis

for a Fermi gas. We start comparing the expansion and the lowest collective modes of

a superfluid Fermi gas with those of a normal Fermi gas at very low temperature, in

order to show the effect of superfluidity. Then we discuss a geometrical effect on the

expansion of normal Fermi gas, showing that, due to collisional effects, an increasing

of entropy occurs.

5.3.1 Superfluid and normal gas

In this part of the thesis we study the problem of the expansion of an ultracold sample

of fermions initially trapped in an anisotropic harmonic trap. We show that also in the

case of fermions the expansion of the gas provides valuable information about the state

of the system and the role of interactions. We consider a gas of atoms interacting with

attractive forces. This is a natural requirement for the realization of Cooper-pairs and

hence for the achievement of the superfluid phase [77]. Such interactions are naturally
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present in some fermionic species like 6Li and can otherwise be obtained by changing

the scattering length profiting of the presence of a Feshbach resonance.

The description of the expansion of a cold fermionic gas in the normal and super-

fluid phase requires different theoretical approaches. For the normal phase we use the

formalism of the Landau-Vlasov equations, while in the superfluid phase we study the

expansion using the hydrodynamic theory of superfluids.

We consider the case of two different fermionic states, hereafter called 1 and 2,

initially confined in a harmonic trap. We assume that the two species are present in

the same amount and feel the same trapping potential, so that the densities of the two

species are equal at equilibrium as well as during the expansion: ρ1(r, t) = ρ2(r, t) =

ρ(r, t)/2. The trapping potential will be chosen of harmonic type

Vho =
1

2
m(ω2

⊥x
2 + ω2

⊥y
2 + ω2

zz
2), (5.23)

describing a cilyndrically simmetric trap with deformation λ = ωz/ω⊥. The interaction

between the two fermionic species is fixed by the coupling constant g = 4π~
2a/m,

where a is the s-wave scattering length.

In this section we employ the equation of state

µ`e(ρ) =
~

2

2m
(3π2ρ)2/3 +

1

2
gn (5.24)

to describe the uniform phase of the gas, where the first term is the kinetic energy

evaluated at zero temperature, and the second one is the interaction energy evaluated

in the mean field approximation. Equation (5.24) neglects the effects of correlations

which become important for large values of the scattering length and affect in a dif-

ferent way the equation of state of the normal and superfluid phase. The formalism

developed in this section can be easily generalized to include a more accurate descrip-

tion of the equation of state. It is however worth pointing out that, even using the
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same equation of state for the normal and superfluid phases, the expansion of the gas

behaves quite differently in the two cases being described by different kinetic equa-

tions. In the presence of the external potential (5.23), the equilibrium condition in the

local density approximation is determined by the equation

µle(ρ) + Vho(r) = µ (5.25)

where µ is the chemical potential of the sample fixed by the normalization condition.

The relevant parameter characterizing the interaction in the fermionic system is

the ratio

χ =
Eint

Eho
(5.26)

between the interaction energy

Eint =
g

4

∫

ρ2(r)d3r (5.27)

and the oscillator energy

Eho =

∫

Vho(r)ρ(r)d
3r. (5.28)

In the perturbative regime the integrals (5.27,5.28) can be evaluated using the non

interacting density profile which, in Thomas-Fermi approximation (5.25), takes the

simple form

ρ(r) =
1

3π2

(

2m

~2

)3/2

[µ− Vho(r)]
3/2 . (5.29)

After integration of (5.27) and (5.28) one finds [82]

Eint

Eho
= 0.5

N1/6a

aho
= 0.3akF , (5.30)

where kF = (3π2ρ(0))1/3 is the Fermi momentum evaluated at the central value of the

density. In order to go beyond the perturbative regime, one determines numerically
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Figure 5.2: Ratio χ = Eint/Eho as a function of the universal parameter aN 1/6/aho

calculated with the mean field functional (5.31) up to the collapse point aN 1/6/aho =

−0.61 (full line); the dashed line is the linear prediction (5.30).

the ground state density by minimizing the energy of the system

E =
3(3π2)2/3

5

~
2

2m

∫

ρ5/3(r)d3r +

+

∫

Vho(r)ρ(r)d
3r +

g

4

∫

ρ2(r)d3r. (5.31)

One easily finds that the equilibrium value of the ratio Eint/Eho depends on the dimen-

sionless combination aN 1/6/aho also in the non perturbative regime [77], as reported

in Fig.5.2. Using (5.31) one predicts that the compressibility of the gas becomes

negative in the center of the trap if |a|N 1/6/aho > 0.61. For large values of |a| the

resulting predictions should be however taken with care since the functional (5.31)

ignores correlation effects beyond mean field.

Let us now discuss the expansion of a fermionic sample trapped in an elongated

harmonic trap (λ < 1). We describe first the expansion of the normal fluid and after-

wards the one of the superfluid. In the ideal case, using the semiclassical description,

one finds that the ratio of the square radii evolves according to the classical law
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〈r2
⊥〉

〈z2〉 =
1 + ω2

⊥t
2

1 + ω2
zt

2

ω2
z

ω2
⊥

, (5.32)

The ratio (5.32) approaches unity for large times, reflecting the isotropy of the mo-

mentum distribution. This result ignores the effects of collisions which are however

expected to play a minor role at low temperature, due to Pauli blocking, unless the

scattering length is very large or for large deformation of the trap (see next section).

In order to take into account the effects of the interactions, we consider the mean

field description based on the Landau-Vlasov equation

∂f

∂t
+ v · ∂f

∂r
− ∂Vho

∂r
· ∂f
∂v

− 1

2

g

m

∂n

∂r
· ∂f
∂v

= 0, (5.33)

where as in the previous sections f(r,v, t) is the distribution function, and n =
∫

fd3v

is the atomic density. Eq.(5.33) describes the dynamics of a normal weakly interacting

gas in the collisionless regime.

Following the ideas of the previous sections, an approximate solution of Eq.(5.33),

is obtained by making a scaling ansatz for the distribution function

f(r,v, t) = f0(r̃(t), ṽ(t)), (5.34)

where f0 is the equilibrium distribution, r̃i(t) = ri/bi and ṽi(t) = bivi− ḃiri. Under the

scaling assumption the velocity field u(r, t) =
∫

vfd3v/n takes the simple form ui =

ḃiri/bi. This ansatz has been recently used by Guéry-Odelin [129] to investigate the

effect of the interaction on the collective oscillation of a classical gas in the collisionless

regime.

The equations for the scaling parameters bi can be obtained by multiplying (5.33)

by r̃i and ṽi and integrating in phase space. Making use of the equilibrium properties
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of the distribution function, after some straightforward algebra one finds

b̈i + ω2
i bi −

ω2
i

b3i
+

3

2
χω2

i

(

1

b3i
− 1

bi
∏

j bj

)

= 0, (5.35)

where χ is the ratio (5.26) evaluated at equilibrium. The second term in Eq. (5.35)

describes the restoring force of the external oscillator potential, the third one originates

from the kinetic energy, whereas the last term, linear in χ, accounts for the effects of

the mean field interaction.

An immediate application of Eq.(5.35) concerns the study of the oscillations of the

gas. By linearizing the equations around equilibrium (bi = 1) one finds, in the presence

of isotropic harmonic trapping (ω⊥ = ωz = ω0), the result:

ωM = 2ω0

√

1 + 3χ/8, ωQ = 2ω0

√

1 − 3χ/4, (5.36)

for the frequencies of the monopole and quadrupole oscillations which coincide with

the results already derived in [136] using a sum-rule approach.

The equations describing the expansion are obtained by suddenly removing the

second term of Eq.(5.35), originating from the trapping potential. In the study of

the expansion we are interested in the case of anisotropic trapping. In particular we

consider the case of cigar shaped traps. For high deformations (λ = ωz/ω⊥ � 1)

Eq.(5.35) yields the asymptotic result

b2z → ω2
z(1 − 3

2
χ)t2, (5.37)

b2⊥ → ω2
⊥t

2, (5.38)

showing that the aspect ratio

R⊥(t)

Rz(t)
→ 1
√

1 − 3χ/2
(5.39)

approaches a value smaller than 1 if the interaction is attractive (χ < 0). In Eq.(5.39),

R⊥ and Rz are the radii where the atomic density vanishes (Thomas-Fermi radii).
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Figure 5.3: Aspect ratio as a function of time for the expansion of the normal (lower

curves) and superfluid phase (upper curves) for λ = 0.1 and two different values of the

parameter χ: χ = 0 (full line) and χ = −0.4 (dashed line).

The results of the numeric integration of the equations of motion (5.35) are reported

in Fig.5.3 and 5.4 as a function of time for the choices χ = 0 and χ = −0.4.

We address now the problem of the expansion of a superfluid Fermi gas. As al-

ready anticipated we make use of the hydrodynamic equations of superfluids. Those

equations have been already used to describe the collective oscillations of a superfluid

trapped Fermi gas [137] including its rotational behavior [138,139]. The hydrodynamic

equations are applicable if the healing length is much smaller than the size of the sam-

ple, which implies that the energy gap should be larger than the oscillator energies ~ωz,

~ω⊥. This non trivial condition implies that the whole system behaves like superfluid.

Furthermore the hydrodynamic equations are applicable up to excitation energies of

the order of the energy gap. In the problem of the expansion it is crucial that the

system remains superfluid in the first instants when the hydrodynamic forces provide

the relevant acceleration to the expanding atoms. One expects that this condition is
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Figure 5.4: Aspect ratio as a function of time for the expansion of the normal (lower

curves) and superfluid phase (upper curves) for λ = 0.3 and different values of the

parameters χ: χ = 0 (full line) and χ = −0.4 (dashed line).

satisfied if the initial temperature is small enough. The hydrodynamic description is

based on the equation of continuity

∂

∂t
ρ+ ∇(ρu) = 0, (5.40)

and on the Euler equation

m
∂

∂t
u + ∇

(

µle(ρ) + Vho(r) +
1

2
mu2

)

= 0, (5.41)

where µle(ρ) is the chemical potential of a uniform gas calculated at the density ρ and

u is the velocity field. If the equation of state is a power law (µle ∝ ργ) these equations

admit the simple scaling solution

ρ(ri, t) =
1

∏

j bj
ρ0

(

ri

bi

)

, (5.42)

ui(ri, t) =
ḃi
bi
ri, (5.43)

and the Thomas-Fermi radii evolve according to the law Ri(t) = Ri(0)bi(t). In this

case, it is immediate to show that, during the expansion, the scaling parameters obey
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the coupled differential equations

b̈i =
ω2

i

(bxbybz)γbi
. (5.44)

which reduce to

b̈z =
ω2

z

b2γ
⊥

, and b̈⊥ =
ω2
⊥

b
(2γ+1)
⊥

. (5.45)

for highly elongated configurations (λ � 1). For γ = 1 (corresponding to a Bose-

Einstein condensed gas) the equation for the radial motion is integrable analytically

and one finds the result b⊥(t) = (1 + ω2
⊥t

2)1/2 [64].

To describe the expansion of a superfluid Fermi gas we use the same equation of

state (5.24) as for the normal phase. The case of a very dilute gas is also described by a

power law with γ = 2/3 (first term in (5.24)). For λ = 0.1 and 0.3 the solution is given

by the full upper line in Fig.5.3 and 5.4 respectively which show that the deformation

of the trap is inverted in time and the aspect ratio R⊥/Rz reaches asymptotically a

value significantly larger than 1 3. Superfluidity has hence the effect of distributing

the release energy in a strongly asymmetric way along the axial and radial directions.

It is worth noticing that the same scaling equations (5.44), with γ = 2/3, are obtained

for a classic gas in the collisional regime [65].

In the more general case (5.24), a useful approximation to the solution of the hydro-

dynamic equations, based on the scaling ansatz (5.42,5.43), is obtained by multiplying

the Euler’s equation (5.41) by riρ(r) and integrating over the spatial coordinates. Us-

ing the equation of state (5.24), one finally obtains the following set of differential

equations

b̈i + ω2
i bi −

ω2
i

bi

1

(
∏

i bi)
2/3

+

3For highly elongated traps (λ � 1), the asymptotic value of the aspect ratio is given by 0.38/λ,

G.V. Shlyapnikov private communication
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+
3

2
χ
ω2

i

bi

(

1

(
∏

i bi)
2/3

− 1
∏

i bi

)

= 0, (5.46)

with χ defined by Eq.(5.26). Equations (5.46) differ from the analogous equations

(5.35) holding in the normal phase. By linearizing Eqs.(5.46) around bi = 1 one gets,

in the case of a spherical trap, the result ωQ =
√

2ω0 for the quadrupole frequency [137],

which, contrary to (5.36), is independent of the interaction term in χ.

5.3.2 Effects of strong trap anisotropy

In this section, we complete our analysis by calculating explicitly the dynamics of the

expansion of a dilute, degenerate normal Fermi gas, taking into account the role of

collisions. The main purpose is to provide quantitative predictions for the aspect ratio

and the thermal broadening of the density distribution, as a function of the relevant

parameters like the ratio of the trap frequencies, the scattering length and the number

of atoms.

The system we consider in this section is a dilute two component Fermi gas. At low

temperatures the collisions between two atoms of the same species are suppressed due

to Pauli blocking, and only atoms of different species can collide. We assume that the

two species have the same mass and density, and hence the same distribution function

in phase-space. The starting point is once more the Boltzmann equation

∂f

∂t
+ v1 · ∇rf − 1

m
∇Uext · ∇v1

f = C[f ], (5.47)

where for each component f(r,v1, t) is the distribution function in phase-space and

Uext(r) = (m/2)(ω2
⊥(x2 + y2) + ω2

zz
2) is the external trapping potential. We note that

the potential is cylindrically symmetric, which is the form favored by experiments.

Moreover, in (5.47) we have neglected the mean field interaction term [129] which,

however, has a minor effect on the expansion of a dilute Fermi gas as shown in Sec. 5.3.1
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[70]. The collisional integral in the case of a dilute Fermi system reads

C[f ] =
σm3

4πh3

∫

d3v2 d
2Ω |v1 − v2|[(1 − f(v1))(1 − f(v2))f(v′

1)f(v′
2)

−f(v1)f(v2)(1 − f(v′
1))(1 − f(v′

2))], (5.48)

where in the low-energy limit, σ = 4πa2, with a the s-wave scattering length. The

scattering length is assumed to be smaller than the average distance between atoms.

The dynamics can be studied analytically using the previously discussed method

of the averages [129, 140], which in this case involve calculating moments of the form

〈r2
i 〉 , 〈rivi〉 and 〈(vi−ui)

2〉, where ui(r) represents the velocity fields within the gas. If

χ is a conserved quantity during a collision then the collisional term disappears. This

is true for the moments 〈r2
i 〉 and 〈rivi〉 as well as for the quantity

∑

i〈(vi −ui)
2〉. This

method has been used to study collective excitations in [82].

To explicitly include the collisional term in the calculations, it is convenient to

introduce the following parameterization for the distribution function

f(r,v, t) =

[

exp

(

E(r,v, t) − µ

T

)

+ 1

]−1

, (5.49)

with

E(r,v, t) =
m

2

∑

i

[

ω2
i r

2
i

b2i
+

(vi − ui)
2

Ki

]

, (5.50)

where ui = βiri, and βi, bi, Ki, µ and T are time dependent parameters, with

i ∈ {x, y, z}. The ansatz (5.49,5.50) contains more free parameters than necessary, so

that we can, without any loss of generality, set
∏

i bi = (
∏

iKi)
−1/2. This fixes a unique

definition of the effective temperature T 4. The chemical potential, µ, is then obtained

from the normalization condition, (T/~ω̄)3f3(e
µ/T ) = N/2, where N is the total num-

ber of atoms in both components, ω̄3 =
∏

i ωi, and fs(z) =
∑

n(−1)n+1zn/ns. From

4In practice, the T = 0 approximation is compatible with the assumption that the gas is non

superfluid, the critical temperature for the BCS transition being exponentially small in a dilute gas.
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Eqs.(5.49,5.50) one can evaluate the entropy per particle of the gas, S = (4ρ− µ)/T ,

where ρ = Tf4(e
µ/T )/f3(e

µ/T ). This result, taken together with the normalization

condition, shows that there is a one-to-one correspondence between the entropy and

the temperature T , and consequently changes in T taking place during the expansion

are associated with a change of entropy.

The ansatz (5.49,5.50) includes the initial equilibrium configuration predicted by

Fermi statistics, and accounts for rescaling effects in coordinate as well as in momentum

space. It allows, in particular, for anisotropic effects in momentum space which are

crucial for describing correctly the mechanism of the expansion. The parameterization

can describe both the collisionless and the hydrodynamic expansion as well as other

intermediate regimes. Furthermore it accounts for possible changes in the effective

temperature of the system during the expansion.

The next step is to evaluate the moments 〈χ〉 in terms of the scaling parameters,

which gives 〈r2
i 〉 = b2i ρ/mω

2
i . Other moments can be expressed in terms of this quan-

tity, so that 〈rivi〉 = βi〈r2
i 〉, 〈(vi − ui)

2〉 = ω2
iKi〈r2

i 〉/b2i , and 〈u2
i 〉 = β2

i 〈r2
i 〉. The

moment equations then become

βi =
ḃi
bi

+
ρ̇

2ρ
, (5.51)

β̇i + β2
i −

ω2
i

b2i
Ki + ω2

i = 0, (5.52)

K̇i

Ki
− 2

ḃi
bi

+ 4βi =
〈(vi − ui)

2C/f〉
〈(vi − ui)2〉 , (5.53)

where the final term in (5.52) arises from the confining potential. We set this term

to zero in studying the expansion of the gas, while rescaling time in units of ω⊥,

the original radial trap frequency. In addition, it is convenient to rewrite (5.53) as

equations for the anisotropy in momentum space, s = (Kz/K⊥)1/2, and the entropy, S

ṡ

s
=
ḃ⊥
b⊥

− ḃz
bz

− (2 + s2)

4s2
K2ξJ(s, τ), (5.54)
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T

ρ
Ṡ +

(1 − s2)

2s2
K2ξJ(s, τ) = 0. (5.55)

where we have defined

1

ω⊥

〈(v⊥ − u⊥)2C/f〉
〈(v⊥ − u⊥)2〉 = K2ξJ (s, τ) , (5.56)

with J(s, τ) given by

J(s, τ) =
31/3

4π6
τ 2 s5/3

f4(eµ/T )

∫

d3Rd3V1 d
3V2 d

2ΩV ′∆V 2
z

×f(V1)f(V2)(1 − f(V′
1))(1 − f(V′

2)). (5.57)

Here V ′ =
√

(V1x − V2x)2 + (V1y − V2y)2 + s2(V1z − V2z)2, and we have rescaled vari-

ables so that f(V) = [exp(R2 + V 2 − µ/T ) + 1]−1. The function J depends on both s

and the reduced temperature τ = T/TF , where TF = (3N)1/3
~ω̄ is the Fermi temper-

ature. In Eqs. (5.54-5.56) we have introduced the relevant dimensionless interaction

parameter

ξ = (λN)1/3(kFa)
2, (5.58)

where kF is the initial Fermi wave-vector at the center of the trap, and λ = ωz/ω⊥ is the

trap anisotropy. Further, we have introduced the geometric average K = (K2
⊥Kz)

1/3 =

(b2⊥bz)
−2/3.

Eq. (5.55) explicitly shows that the entropy (and hence the temperature) of the gas

will remain constant during the expansion (Ṡ = 0) either in the absence of collisions

(J = 0) or when the distribution in momentum space is isotropic (s = 1)5 . The latter

situation arises when starting from a spherical trap, λ = 1, or when collisions are suffi-

ciently frequent so that the gas is in the hydrodynamic regime. In regimes intermediate

5Alternatively, one can fix the value of T to the initial value and obtain an equivalent set of

equations, as in the work of Pedri et al. [140]. The choice made in the present work is particularly

convenient if the expansion starts from a T = 0 configuration.
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between the collisionless and hydrodynamic limits, deformations in momentum space

produce an increase of entropy and temperature. The equations (5.51-5.57) can also

be used to study small oscillations around equilibrium, where the momentum distri-

bution is isotropic (s = 1). This procedure reproduces exactly the results of [82], in

particular the collisional term takes the form 〈(vi − ui)
2C/f〉/〈(vi − ui)

2〉 = (s− 1)/τ̃ ,

with 1/(ω⊥τ̃ ) = CK2ξFQ(T/TF ) and C = 8/(5 · 35/3). Here τ̃ is the typical relaxation

time for the shape oscillations and FQ is given in [82]. Note that 1/τ̃ ∝ T 2 at small

temperatures, so that the collisional contribution disappears when T = 0. This is the

result of Pauli blocking of collisions for a spherical momentum distribution. However,

during expansion large deformations in momentum space can lead to collisions that

scatter atoms outside of the Fermi surface, and the function J differs from zero, even

at zero temperature, as pointed out in [83].

We assume that the gas is initially in equilibrium at low temperature, and that

the effective temperature contained in the ansatz (5.49) remains small during the

expansion. One can then expand the Fermi functions fs(z) using low-T Sommerfeld

expansions, so that the normalization condition gives µ ' TF (1−π2τ 2/3), ρ ' TF (1+

2π2τ 2/3)/4 and S = π2τ . Substituting these expressions into (5.51,5.52,5.54,5.55)

yields a new set of equations that can be solved numerically to study the time evolution

of the gas. To simplify matters we also approximate the function J(s, τ) with its zero

temperature value

J(s, 0) =
2 · 34/3s5/3

π6

∫

d3Rd3V1 d
3V2 d

2ΩV ′∆V 2
z

×θ0(V1)θ0(V2)(1 − θ0(V
′
1))(1 − θ0(V

′
2)), (5.59)

where we have rescaled the coordinates again such that θ0(V) = Θ(1−V 2−R2), where

Θ is the Heaviside step function. The integral for J(s) can be evaluated numerically



88 CHAPTER 5. CLASSICAL AND FERMI GASES

1 4 7 10
0

10

20

30

40

50

s

J 
(s

,0
)

1 1.5 2
0

0.3

0.6

Figure 5.5: J(s, 0) as a function of s for a range between 1 and 10, and (inset) between

1 and 2. The solid line shows the analytical form J(s) = 2s8/3/(35/3π) for the limit

s→ ∞.

using a standard Monte Carlo technique, and is plotted in Fig. 5.5. Also plotted is

the result J(s) = 2s8/3/(35/3π) holding for large s, where the integral can be evaluated

analytically by noting that virtually all collisions in this limit will scatter atoms outside

of the Fermi surface (i.e. (1− θ0(V
′
1))(1− θ0(V

′
2)) ' 1). We discuss the validity of this

zero-temperature approximation later.

We now use these equations to study the expansion for different choices of the trap

anisotropies, λ < 1, starting from a T = 0 configuration6. We plot the aspect ratio of

the cloud
√

〈r2
⊥〉/〈z2〉 = λb⊥/bz as a function of time for ξ = 1 and ξ = 20 and compare

to the expected collisionless and hydrodynamic behavior in Fig. 5.6. We notice that

the effects of collisions are far less pronounced for λ = 0.3, where the results are barely

distinguishable from the collisionless behavior. However, for λ = 0.03 the expansion

lies intermediate between the two limits if one chooses ξ = 20. This is to be expected

since the deformation in momentum space reached in this case is much larger. In

6Note that Eq. (5.55) can also be obtained by starting strictly from the Boltzmann H-theorem.
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Figure 5.6: Aspect ratio against time for the free expansion of a zero-temperature

Fermi gas from a trap with (a) λ = 0.3 and (b) λ = 0.03. The upper and lower

solid lines on each plot represents the behavior in the hydrodynamic and collisionless

regimes respectively, with the other lines displaying results of solving the equations

(5.51-5.57) for ξ = 1 (dashed) and ξ = 20 (dotted).

particular, in the collisionless case one would expect s → 1/λ at long times, and this

fixes the maximum s possible. Since J takes large values only for large s, then the

collisional term is potentially more effective for smaller λ. An interesting consequence

of the momentum space deformation is that atoms scattering outside the Fermi surface

will tend to smooth out the distribution function. This aspect appears in Eq. (5.55)

as an increase in the temperature, even if we start from an initial T = 0 configuration.

Fig. 5.7(a) shows the temperature calculated at ω⊥t = 100 for different values of

λ. Again, one sees a much larger effect for λ � 1. The function tends to zero for

both ξ → 0 and ξ → ∞, representing the crossover from collisionless to hydrodynamic

behavior in a similar manner to damping times in collective oscillations [82,125]. Since

(5.55) is an equation for τ 2 one finds that starting from a non-zero temperature, τ0,

gives a final temperature of approximately τ =
√

τ 2
0 + (δτ)2, where δτ is the change

for an initially zero temperature gas obtained from Fig. 5.7(a). Hence the temperature
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Figure 5.7: (a) Temperature at ω⊥t = 100, τ = T/TF , as a function of ξ, for different

values of λ. The gas prior to expansion is at zero temperature.(b) Column density (see

text) as a function of radial distance at ω⊥t = 100, for λ = 0.03 and ξ = 1 (solid line),

compared to the result of expansion in the collisionless (dashed) and hydrodynamic

(dotted) limits. Both axes are in arbitrary units.

increase produced by collisions will become smaller as one raises the initial temperature

of the gas.

The change in temperature during the expansion, as well as the fact that experi-

ments will be initially at a non-zero temperature, will lead to corrections to the zero-

temperature collisional term (5.59). We can estimate the effects at finite temperatures

by approximating J(s, τ) (5.57) with the sum of the zero-T result to that derived for

finite-T but small deformations, so that J(s, τ) = J(s, 0) + C(s − 1)FQ(τ), with the

function FQ(τ) given in [82]. We find that the inclusion of the temperature depen-

dence in J has little impact on the results, even allowing for an initial temperature of

τ = 0.2.

Since for a dilute gases (kF |a| � 1) the value of ξ for realistic parameters will be,

at most, of the order of 1, we conclude that collisional effects on the aspect ratio of the
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expanding gas are negligible (see Fig. 5.6). This is consistent with experimental results

in dilute degenerate gases (see for example [73,142]). In contrast, we find that the effect

of collisions on the thermal broadening can be significant at low temperatures even if

ξ ' 1, especially for highly deformed traps. As an example in Fig. 5.7(b) we show the

column density ρ(r⊥) = (m/h)3
∫

dzdvf(r,v, t), calculated at ω⊥t = 100, λ = 0.03

and ξ = 1, starting from an initial zero temperature configuration. Around 80% of the

increase in T (and the consequent broadening of the density profile) takes place over

the first ω⊥t = 20 of the expansion. The comparison with the prediction of ballistic

expansion (dashed line) explicitly reveals the importance of collisions. Experimentally

one could observe this difference by cooling down a two component Fermi gas to very

low temperatures. Ballistic expansion could be achieved either by first removing one

of the two components, or by suddenly tuning the scattering length to zero at the start

of the expansion.

In order to also observe large effects in the aspect ratio one should increase the

value of ξ, and hence of kF |a|, by, for example working close to a Feshbach resonance.

In this case, however, the formalism of the Boltzmann equation is not strictly appli-

cable. A rough estimate of the collisional effects can be obtained by replacing a2 with

the unitarity limited expression a2/(1 + K(kFa)
2), where kF is the initial Fermi mo-

mentum and K accounts for the decrease of the density during the expansion. In the

unitarity limit kF |a| → ∞ equation (5.56) is then modified by replacing K2 with K

and setting ξ = (λN)1/3. These changes result in a sizable increase of the anisotropy

effects. Apart from the fact that the parameter ξ can easily take large values, the re-

placement of K2 with K makes the collisional term effective for longer times during the

expansion. One should however note that in the unitarity limit the gas is expected to

be superfluid at low temperatures and its dynamics should be consequently described
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by the hydrodynamic equations of superfluids.



Chapter 6

Conclusion

In this thesis we have studied some dynamical aspects of different systems recently

realized with ultracold atomic gases. In this last chapter we summarize our results.

In Chapter 3 we have extended the analysis of Ref. [41] on the expansion dynamics

of a one-dimensional Bose gas in a guide. We have shown that the expansion violates

under certain conditions the self-similarity, and in this sense differs significantly from

the expansion dynamics of a BEC. We have shown that the problem can be solved by

employing the hydrodynamic approach, and the local Lieb-Liniger model. We have

developed a variational approach based on a Lagrangian formalism to study the expan-

sion for any regime of parameters. We have identified the possible physical situations

at which self-similarity is violated. The particular properties of the expansion of a

gas in the strongly-interacting regime could therefore be employed to discern between

mean-field and strongly-interacting regimes. In addition, the asymptotic behavior of

the expanded cloud could be employed to discriminate between different initial inter-

action regimes of the system.

In Chapter 4 we have considered what we call the quasi-Tonks regime, in which a

gas confined in a 2D optical lattice, can present significant tunneling, and at the same
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time maintain the local chemical potential obtained for each site using the LLL model.

In this cross-dimensional regime, a 3D cloud acquires 1D properties. In particular, we

have shown that both the ground-state properties and the excitation spectrum are sig-

nificantly different than the expected results for a harmonically confined BEC. We have

also focused our attention on the momentum distribution in the Mott-Insulator phase.

We have shown that the strong correlations along the 1D tubes significantly modify

the quasi-momentum distribution in the lattice plane. We have found that in the MI

regime only the lowest momentum along the tubes is affected by the inter-site hopping,

and hence only this component contributes to the formation of interference fringes.

Consequently, the larger the interactions are (larger depletion) the less pronounced is

the visibility of the interference fringes. In particular, for the Tonks-Girardeau regime

in the tubes, the quasi-momentum distribution becomes progressively flatter, leading

to an observable blurring of the interference pattern after expansion. This effect can

be observed in current time of flight experiments, and can be used to reveal a clear

signature of the strong correlations along the sites.

In Chapter 5 we have studied classical and Fermi gases. By means of a scaling

ansatz, we investigated an approximated solution of the Boltzmann-Vlasov equation

for a classical gas. Within this framework, we derived the frequencies and the damping

of the collective oscillations of a harmonically trapped gas and we investigate its ex-

pansion after release of the trap. The method is well suited to studying the collisional

effects taking place in the system and in particular to discuss the crossover between the

hydrodynamic and the collisionless regimes. An explicit link between the relaxation

times relevant for the damping of the collective oscillations and for the expansion is

established. We have shown that the expansion of a superfluid Fermi gas, governed by

the equations of hydrodynamics, differs in a crucial way from the one of a normal gas
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in the collisionless regime. From a theoretical point of view several questions remain

to be investigated: among them, the effect of large scattering lengths [141] on the

equation of state and the role of collisions which, under certain conditions, might give

rise to a hydrodynamic regime, and hence to anisotropic expansion, also in the normal

phase. Finally one should develop the formalism at finite temperature where both the

normal and superfluid components are present. The resulting bimodal structure in the

expanding cloud is expected to be affected by the transfer of atoms from the superfluid

to the normal component during the first stage of the expansion. We have also shown

that collisions can be effective in a dilute normal Fermi gas even at zero temperature,

as a consequence of large deformations of the distribution function in momentum space

after expansion from a very elongated trap. They can give rise to a sizeable entropy

increase and hence thermal broadening of the density distribution, which should be

visible by imaging the atomic cloud. In contrast a T = 0 superfluid should expand

anisotropically, without any entropy increase due to the absence of collisions.



96 CHAPTER 6. CONCLUSION



Appendix A

Brief summary of calculations

In this appendix we provide more details about some expression employed in this

thesis.

A.1 Measurement of the momentum distribution

of a quantum system

In this section we show how it is possible to measure the momentum distribution by free

expansion. The momentum distribution is directly related to the one-body density-

matrix, so it is possible to obtain important information about the correlations of

the system. For this reason it is very important to have access to the momentum

distribution.

Let us first define the quantities we employ. The momentum distribution of a

system is defined as

ρ̃(p) =
1

(2π~)3

∫

d3rd3r′〈Ψ+(r)Ψ(r′)〉 exp[−ip · (r − r′)/~]. (A.1)

In the case of an infinite and homogeneous system it is better to define the momentum
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distribution for unit of volume. The density is the diagonal part of the one-body

density-matrix

ρ(r) = 〈Ψ+(r)Ψ(r)〉. (A.2)

For the case of a non-interacting it is possible to relate the one-body density-matrix at

different time using the single-particle propagator for the particular case considered:

〈Ψ+(t, r1)Ψ(t, r2)〉=
∫

d3r′1d
3r′2K

∗(t, r1, t
′, r′1)K(t, r2, t

′, r′2)〈Ψ+(t′, r′1)Ψ(t′, r′2)〉. (A.3)

In particular we want to calculate the dynamics of the density:

ρ(t, r) =

∫

d3r′1d
3r′2K

∗(t, r, t′, r′1)K(t, r, t′, r′2)〈Ψ+(t′, r′1)Ψ(t′, r′2)〉. (A.4)

Let us consider the case of the free propagator (without any external potential). In

this case the product of the propagators in Eq. (A.4) becomes

K∗(t, r, t′, r′1)K(t, r, t′, r′2) '
(

m

2π~(t− t′)

)3

exp

[

− im

~(t− t′)
r · (r′1 − r′2).

]

(A.5)

The previous equation is valid for large times t − t′ � mL2/2~, where L is the size

of the system. This resembles a Fourier transform, and hence we obtain a relation

between the density at time t and the momentum distribution at the time t′

ρ(t, r) ' m

t− t′
ρ̃(t′, mr/|t− t′|). (A.6)

This is not extremely surprising, but we have always to keep in mind that it is possible

to use this method only when the expansion can be considered free, which is not

the case in many experiments. For example in the first experiment of time of flight

measurement [1] the interactions played a major role. In this experiments it actually

happens the opposite of what we are discussing here, i.e. the initial kinetic energy can

be neglected.
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The free expansion technique has been used in experiments of atoms in a lattice

[56, 143], since in this case it is possible to treat the expansion as free, due to the

presence of the lattice. In such experiments the highest scale of energy is the kinetic

energy of a single site, which is larger than the interaction energy, and hence we are

allowed to use the free propagator. A similar analysis can be done using the propagator

of the harmonic oscillator, in this case the time required is t− t′ ' π/2ω, where ω is

the frequency of the harmonic oscillator.
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A.2 Relation between quasi-momentum and mo-

mentum distribution

In this section, we derive the relation between the momentum and the quasi-momentum

distribution.

ρ̃(p) =
1

(2π)~)3

∫

d3rd3r′〈Ψ+(r)Ψ(r′)〉 exp[−ip·(r − r′)/~] (A.7)

=
1

(2π)~)3

∫

d3rd3r′
∑

jj′

φ∗
j(r)φj(r

′)〈a+
j aj′〉 exp[−ip·(r − r′)/~] (A.8)

=
∣

∣

∣
φ̃0(p)

∣

∣

∣

2∑

jj′

〈a+
j aj′〉 exp[−ip·(rj − rj′)/~] (A.9)

=
∣

∣

∣
φ̃0(p)

∣

∣

∣

2

〈a+
pap〉 (A.10)

=
∣

∣

∣
φ̃0(p)

∣

∣

∣

2

ρ̃qm(p), (A.11)

where a+
j and aj are creation and annihilation operators of Wannier functions, a+

p and

ap are creation and annihilation operators of Bloch functions. In the previous equation,

we have written the field in the Wannier basis, employed the translational property of

the Wannier function φj(r) = φ0(r − rj) , performed the Fourier transformation, and

finally used the relation between Bloch and Wannier basis ap =
∑

j aj exp[−ip ·rj],

where p is the quasi-momentum
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A.3 Bloch Oscillations

Let us consider a non interacting system on a lattice in the first band. The Hamiltonian

in this case reads

H0 = −
∑

n,l

Jl[â
+
n+lân + â+

n−lân], (A.12)

where we have considered the hopping to any site and not just to nearest neighboring

sites. The Hamiltonian can be easily diagonalized by means of

b̂θ =
∑

n

einθân, (A.13)

and the energy reads

ε(θ) = −2
∑

l

Jl cos(lθ). (A.14)

Let us introduce a constant force as a perturbation

H1 = F
∑

n

nâ+
n ân, (A.15)

and let us calculate the time evolution of b̂θ

i~
d

dt
b̂θ = ε(θ)b̂θ + iF ∂

∂θ
b̂θ. (A.16)

The first term of the r.h.s. can be absorbed in a phase factor doing the transformation

b̂θ → exp[−iε(θ)t/~]b̂θ. Assuming the index θ time dependent, we obtain the following

result

~
dθ

dt
= F . (A.17)

The solution reads

θ(t) = θ0 +
F
~
t, (A.18)

meaning that if we perturb the system with a constant force, the system, in a time

average, does not move.
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A.4 Scaling equations (5.17),(5.18)

We make the following ansatz for the non equilibrium distribution function: f(r,v, t) =

Γf0(R(t),V(t)) with Ri = ri/bi, Vi = (vi − ḃiri/bi)θ
−1/2
i and Γ = Πjb

−1
j θ

−1/2
j . The

dependence on time is contained through the parameters bi and θi. Following [129],

we substitute this ansatz into Eq. (5.16) and use the equation for the equilibrium

distribution f0. We find

Γ̇f0 + Γ
∑

i

{

Vi
∂f0

∂Ri

(θ
1/2
i

bi
− 1

biθ
1/2
i

1

Πjbj

)

−∂f0

∂Vi

[ Ri

θ
1/2
i

(

b̈i + ω2
i bi −

ω2
i

bi

1

Πjbj

)

+Vi

(1

2

θ̇i

θi
+
ḃi
bi

)]}

= Icoll. (A.19)

Integrating in phase space, we calculate the average moment of RiVi. This leads to

Eq. (5.17). Note that this equation is not affected by the collision integral since the

quantity RiVi is conserved by the collisions.

To derive Eq. (5.18), we consider instead the average moment of V 2
i . This yields:

θ̇i

θi

+ 2
ḃi
bi

=
m

NΓkBT0

∫

V 2
i Icolld

3Rd3V, (A.20)

where T0 is the equilibrium temperature. Differently from (5.17), Eq. (A.20) depends

explicitly on the collision integral . In order to calculate the r.h.s of Eq. (A.20),

we use the relaxation time approximation: I = −(f − fle)/τ0. The first term gives:

∫

V 2
i fd

3Rd3V = NΓkBT0/m. To obtain a relation among the θ scaling parameters one

uses the identity 〈v2〉 = 〈v2〉le, from which we deduce θ̄ =
∑

i θi/3. The contibution to

the integral due to the second term is obtained by noticing that, at local equilibrium,

θle
i = θ̄:

∫

V 2
i fled

3Rd3V = Γ̄
∫

V 2
i f0(R̄, V̄)d3Rd3V = NΓθ̄kBT0/(mθi). Hence Eq.

(A.20) can be recast in the form (5.18).
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