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Abstract

One-way layouts, i.e., a single factor with several levels and multiple observations at
each level, frequently arise in various fields. Usually not only a global hypothesis is of
interest but also multiple comparisons between the different treatment levels. In most
practical situations, the distribution of observed data is unknown and there may exist a
number of atypical measurements and outliers. Hence, use of parametric and semipara-
metric procedures that impose restrictive distributional assumptions on observed samples
becomes questionable. This, in turn, emphasizes the demand on statistical procedures
that enable us to accurately and reliably analyze one-way layouts with minimal condi-
tions on available data. Nonparametric methods offer such a possibility and thus become
of particular practical importance. In this article, we introduce a new R package nparcomp
which provides an easy and user-friendly access to rank-based methods for the analysis of
unbalanced one-way layouts. It provides procedures performing multiple comparisons and
computing simultaneous confidence intervals for the estimated effects which can be easily
visualized. The special case of two samples, the nonparametric Behrens-Fisher problem,
is included. We illustrate the implemented procedures by examples from biology and
medicine.
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1. Introduction

In many experiments more than two treatment groups are involved. Hereby, the global null
hypothesis, i.e., no impact of the treatment on the response, is often not the main question.

http://www.jstatsoft.org/
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Multiple comparisons, e.g., multiple Dunnett-type many-to-one (Dunnett 1955) comparisons,
or Tukey-type all-pairs comparisons (Tukey 1953), with an accompanying computation of si-
multaneous confidence intervals (SCI), are particularly of practical importance. By controlling
the familywise error rate in the strong sense, the SCI and the multiple comparison decision,
e.g., by multiplicity adjusted p-values, must be compatible with each other. This means, it
cannot occur that an individual null hypothesis has been rejected by the multiple comparison
procedure, but the corresponding SCI contains the value null coming from the null hypothesis
(Konietschke, Hothorn, and Brunner 2012a). It is well known that the classical Bonferroni
adjustment can be used to perform multiple comparisons as well as for the computation of
compatible SCI. This approach, however, has a low power, particulary when the test statistics
are not independent. Bretz, Genz, and Hothorn (2001) propose exact multiple contrast tests
(MCTP) and SCI for means of independent and homoscedastic normal samples. The pro-
cedures allow for testing arbitrary contrasts, e.g., Dunnett-type, Tukey-type or changepoint
comparisons (Hirotsu 1997) and take the correlation between the test statistics into account.
Thus, MCTP provide an extensive tool for the computation of compatible SCI. Hereby, the
SCI are computed as in the univariate case as “Mean ± t1−α,ν(R)-quantile · Standard Er-
ror”, just by replacing the common univariate t1−α,ν-quantile by an equicoordinate quantile
t1−α,ν(R) coming from a multivariate t distribution with correlation matrix R and ν degrees
of freedom. Multiplicity adjusted p-values for the individual hypotheses are computed by
using the cumulative multivariate t distribution function (Genz and Bretz 2009) instead of
the univariate t distribution function. Therefore, the results of these procedures can be eas-
ily interpreted and are particularly of practical importance. Konietschke, Bösiger, Brunner,
and Hothorn (2013) compare exact multiple contrast tests with the ANOVA and conclude
that both procedures have comparable power. For a comprehensive overview of parametric
multiple contrast tests and SCI we refer the reader to Bretz, Hothorn, and Westfall (2010)
and references therein. In particular, parametric methods are numerically available using the
R-package multcomp (Hothorn, Bretz, and Westfall 2008). We note that the parametric pro-
cedures use the critical values from the extreme tail portion of the multivariate t distribution,
which is the portion most sensitive to nonnormality. Therefore the problem of robustness will
be more serious for SCI compared to individual intervals.

Nonparametric inferences, i.e., without assuming a specific distribution of the data, however,
arise in a variety of problems in biomedical research, e.g., in case of skewed data or ordered
categorical data. While parametric inferences usually deal with differences between population
means, there is an increasing focus in medicine on effect size measures on an individual basis
(Browne 2010). For two independent samples, say group 1 and group 2, the relative effect
size measure

p = P (X < Y ) + 1/2P (X = Y ) (1)

represents the probability that a randomly chosen subject in treatment group 1 reveals a
smaller response value X than a randomly chosen subject from treatment group 2 with re-
sponse value Y . If p < 1/2, then the values in group 1 tend to be larger than those in group
2. If p = 1/2, none of the observations tend to be smaller or larger.

It is the aim of the present paper to introduce an R extension package called nparcomp
(Konietschke 2015), which can be used to compute nonparametric MCTP and SCI for relative
treatment effects given in (1). We hereby propose algorithms for single step MCTP proposed
by Steel (1960), Konietschke et al. (2012a) as well as stepwise procedures derived by Gao,
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Alvo, Chen, and Li (2008). The package is online available and can be downloaded from the
Comprehensive R Archive Network (CRAN), see Konietschke (2015).

The paper is organized as follows. In Section 2 the statistical model, purely nonparametric
effects and hypotheses are introduced. In Section 3 the use of multiple contrast test proce-
dures and simultaneous confidence intervals are explained, while Section 4 demonstrates the
application of stepwise procedures. The different routines of the software package nparcomp
are explained in Section 5. The paper closes with a discussion and an outlook for future
projects.

2. Statistical model, effects, and hypotheses

We consider a completely randomized one-way layout with a treatment groups and ni indepen-
dent replications within the ith treatment group. Without specifying an explicit distribution
(e.g., normal distribution) the statistical model can be described by

Xik ∼ Fi, i = 1, . . . , a; k = 1, . . . , ni, (2)

where Fi(x) = P (Xik < x) + 1/2P (Xik = x) denotes the average of the left and right
continuous version of the distribution function. The statistical model does not include any
parameters, such as means, which can be used to describe treatment effects. Therefore, the
marginal distribution functions are used to describe treatment effects by

pi =

∫
HdFi = P (Z < Xi1) + 1/2P (Z = Xi1), i = 1, . . . , a, (3)

where H = 1
a

∑a
j=1 Fj denotes a mean distribution in its unweighted (Brunner and Puri

2001; Gao et al. 2008) form. Here Z represents a random variable with distribution H being
independently distributed from Xi1. These effects are called unweighted relative effects (Gao
et al. 2008; Konietschke et al. 2012a). They can be interpreted as the probability that an
observation Z - randomly chosen from all observations - has a smaller value than a randomly
chosen observation from sample i. In the case of pi > 1/2 data from sample i tend to larger
values than Z. If pi = 1/2, neither Xi1 nor Z tends to larger or smaller values. In particular,
if pi < pj , then the values in group i tend to be smaller than those in group j; if pi = pj ,
none of the observations tend to be smaller or larger. Figure 1 illustrates these relations for
two normal distributions.

In the special case of independent ordinal data pi is also called ordinal effect size measure
(Ryu and Agresti 2008; Ryu 2009).

2.1. Hypotheses

Gao et al. (2008) propose rank based multiple stepwise procedures for testing the Dunnett-
type (Dunnett 1955) multiple comparisons

HF
0 :


F1 = F2

F1 = F3
...

F1 = Fa

⇐⇒ HF
0 : CF =


−1 1 0 . . . 0 0
−1 0 1 0 . . . 0
...

...
...

...
...

...
−1 0 0 . . . . . . 1



F1

F2
...
Fa

 = 0, (4)
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Figure 1: Interpretation of the nonparametric relative effects: density functions (top), distri-
bution functions (bottom).

as well as the Tukey-type (Tukey 1953) multiple comparisons

HF
0 :



F1 = F2

F1 = F3
...

F1 = Fa
F2 = F3

...
Fa−1 = Fa

⇐⇒ HF
0 : CF =



−1 1 0 . . . . . . 0 0
−1 0 1 0 . . . . . . 0
...

...
...

...
...

...
...

−1 0 0 0 . . . . . . 1
0 −1 1 0 . . . 0 0
0 −1 0 1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . . . . −1 1





F1

F2
...
...
Fa


= 0, (5)

formulated in terms of the distribution functions F1, . . . , Fa of the data. All test procedures
for HF

0 , however, are limited to testing problems and cannot be used to construct confidence
intervals for the underlying treatment effects. Therefore, Konietschke et al. (2012a) propose
multiple contrast test procedures and SCI for the effects p. The procedures allow for an
arbitrary user-defined contrast matrix

C =


c>1
...

c>q

 =

 c11 . . . c1a
... . . .

...
c1q . . . cqa

 , (6)

where each row vector c>` of C is one contrast, i.e., each row sum of the contrast matrix is
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zero by definition. For example, multiple comparisons to a control are expressed by

Hp
0 :


p1 = p2
p1 = p3

...
p1 = pa

⇐⇒ Hp
0 : Cp =


−1 1 0 . . . 0 0
−1 0 1 0 . . . 0
...

...
...

...
...

...
−1 0 0 . . . . . . 1



p1
p2
...
pa

 = 0, (7)

all-pairwise comparisons are formulated by

Hp
0 :



p1 = p2
p1 = p3

...
p1 = pa
p2 = p3

...
pa−1 = pa

⇐⇒ Hp
0 : Cp =



−1 1 0 . . . . . . 0 0
−1 0 1 0 . . . . . . 0
...

...
...

...
...

...
...

−1 0 0 0 . . . . . . 1
0 −1 1 0 . . . 0 0
0 −1 0 1 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . . . . . . . −1 1





p1
p2
...
...
pa


= 0, (8)

and Williams-type (Williams 1972; Bretz 2006; Konietschke and Hothorn 2012) comparisons
are expressed by using the contrast matrix

Hp
0 : Cp =


−1 0 0 . . . 0 1
−1 0 0 . . . na−1

na−1+na

na
na−1+na

...
...

...
...

...
...

−1 n2
n2+...+na

0 . . . . . . na
n2+...+na



p1
p2
...
pa

 = 0. (9)

For a comprehensive overview of different kinds of contrasts we refer the reader to Bretz et al.
(2001). We note that the hypothesis in the classical Behrens-Fisher model is contained in
this general setup as a special case. This is easily seen from the fact that pi = 1/2 if H and
Fi are both symmetric distributions with the same center of symmetry. The nonparametric
hypothesis HF

0 : CF = 0 is very general and implies Hp
0 : Cp = 0: HF

0 : CF = 0 ⇒ Hp
0 :

Cp = C
∫
HdF =

∫
HdCF = 0. The shape of the distribution functions can differ even under

the null hypothesis. In the special case of quite restrictive location models Fi(x) = F (x−µi),
i = 1, . . . , a, the nonparametric and parametric hypotheses in terms of the location parameters
µi are equivalent. For a detailed discussion of the hypotheses formulated above we refer
to Akritas, Arnold, and Brunner (1997) and Brunner and Munzel (2000). Furthermore, a
nonparametric procedure for testing independence in distribution for categorical variables
between two or more populations is suggested in Finos and Salmaso (2004).

3. Multiple contrast test procedures for Hp
0 and SCI

Gao et al. (2008) and Konietschke et al. (2012a) propose rank-based estimators p̂ =
(p̂1, . . . , p̂a)

> for the unweighted treatment effects p = (p1, . . . , pa)
>. In particular, Koni-

etschke et al. (2012a) derive the asymptotic distribution of
√
N(p̂ − p) for arbitrary p. In

order to test the individual null hypothesis H
(`)
0 : c>` p = 0, consider the pivotal test statistic
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T p` =
√
N

c>` (p̂−p)
σ̂`

, where σ̂` denotes a consistent estimator of Var(
√
Nc>` (p̂− p)). The test

statistics T p` are collected in the vector

T = (T p1 , . . . , T
p
q )>. (10)

It can be shown that T follows a multivariate normal distribution with expectation 0 and
correlation matrix R = (r`m)`,m=1,...,q, asymptotically. Since R is unknown, it must be re-

placed by a consistent estimator R̂ (Konietschke et al. 2012a). The individual null hypothesis

H
(`)
0 : c>` p = 0 will be rejected at a two-sided multiple level α, if |T 0.5

` | ≥ t1−α,ν(R̂). Ap-
proximate (1 − α)-simultaneous confidence intervals for the treatment effects δ` = c>` p are
obtained from [

c>` p̂− t1−α,ν(R̂)σ̂`/
√
N ; c>` p̂ + t1−α,ν(R̂)σ̂`/

√
N
]
, (11)

where t1−α,ν(R̂) denotes the two-sided equicoordinate quantile from the multivariate t - dis-

tribution with approximated degree of freedom ν and correlation matrix R̂ (Konietschke et al.

2012a). By construction, the test decision for H
(`)
0 : c>` p = 0 and the SCI are compatible,

i.e., it cannot occur that an individual null hypothesis H
(`)
0 : c>` p = 0 is rejected, but the

corresponding SCI contains zero. The global null hypothesis Hp
0 : Cp = 0 will be rejected, if

T0 = {|T 0.5
1 |, . . . , |T 0.5

q |} ≥ t1−α,ν(R̂). (12)

One-sided confidence intervals can be computed by replacing the two-sided quantile t1−α,ν
with its one-sided version (Konietschke and Hothorn 2012; Konietschke et al. 2012a). Note
that the SCI defined in (11) may be not range preserving, i.e., the lower bounds can be smaller
than −1 and the upper bounds can be larger than 1. Konietschke et al. (2012a) therefore
propose the Fisher-approximation for the construction of range-preserving SCI. We note that
the rank-based MCTP’s control the familywise error rate in the strong sense, which follows
from the fact that the set of hypotheses C and the corresponding test statistics T constitute
a joint-testing family. The proofs are given in Konietschke et al. (2012a).

3.1. The two sample problem

In particular, inference methods for testing the null hypothesis H0 : p1 = p2 with two-
independent samples Xik ∼ Fi, i = 1, 2; k = 1, . . . , ni, occur frequently in practical appli-
cations. Testing the null hypothesis HF

0 : F1 = F2 can be realized with the Wilcoxon-Mann
Whitney test. We note that the relative treatment effect

p = p1 − p2 + 1/2 = P (X11 < X21) + 1/2P (X11 = X21). (13)

can be easily rewritten as given in (1). If p > 1/2, the observations in sample 2 tend to be
larger than the observations in sample 1. No data tend to be larger or smaller if p = 1/2.
Therefore the hypothesis of no treatment effect is formulated by Hp

0 : p = 1/2, which is
known as the nonparametric Behrens-Fisher problem (Brunner and Munzel 2000). We note
that the testing problem Hp

0 : p = 1/2 is not equivalent to location-scale testing problem

H0 : F1(t) = F2(t) versus H1 : F2(t) = F1

(
t−µ
σ

)
with µ 6= 0 or σ 6= 1. Location-scale testing

implies that different variances and /or locations may result in significant treatment effects.
In the Behrens-Fisher situation one is interested in testing location effects only. Here, even
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under the null hypothesis, the marginal distribution functions in the different groups may
have different shapes, and are not assumed to be equal. Inference methods for location-scale
problems are considered by Marozzi (2009, 2013).

The package nparcomp provides the function npar.t.test which can be used to test the
null hypothesis Hp

0 : p = 1/2 by using the approximate Brunner-Munzel test (Brunner and
Munzel 2000) or by using the approximate studentized permutation test proposed by Neubert
and Brunner (2007). Further (1− α)-range preserving confidence intervals using the logit or
probit transformation are available (Konietschke 2009). As only asymptotic and approximate
procedures are provided by the package, we recommend the use of these procedures with
medium sample sizes ni ≥ 8.

4. Stepwise procedures for HF
0

Gao et al. (2008) have shown that the vector of estimates
√
NCp̂ is asymptotically multi-

variate normal with mean 0 and a certain covariance matrix Σ under the null hypothesis
HF

0 . To address the problem of multiple comparisons to a control as described in (4), Gao
et al. (2008) have shown that the distribution of the corresponding vector of test statistics
TF` =

√
Nc>` p̂/σ̂`, ` = 1, . . . , a − 1, satisfies the multivariate totally positive of order two

(MTP2) condition. Therefore, Hochberg’s step-up procedure (Hochberg 1986) is applicable
to correct the individual p-values for multiplicity. This procedure rejects the individual null

hypothesis H
(`>)
0 : c>

`>F = 0 (`> ≤ `) at significance level α, if P(`) ≤ α
a−` .

With regard to all pairwise comparisons defined in (5), Gao et al. (2008) generalize various
single step and stagewise procedures for HF

0 . Hereby, the modified Campbell and Skillings
(Campbell and Skillings 1985) procedure is recommended. At the initial step the treatments
are ordered and labelled 1, . . . , a according to their effects p̂i and this same labelling is used
in the subsequent steps. At the (a− p+ 1)th step (p = 2, . . . , a), subsets of the form {j, j +
1, . . . , j + p − 1} are tested if and only if they have not been retained as homogeneous by
implication at a previous step. For further details we refer to Gao et al. (2008).

5. Software

In this section we present the package nparcomp and provide examples that illustrate how the
contained functions can be used to analyze the introduced two-sample problem or perform
multiple comparisons via single step or stepwise procedures.

5.1. Nonparametric Behrens-Fisher problem

In this setting we analyze a two-sample design where we neither assume homogeneous vari-
ances nor any similarities in the shape of the distribution functions. By means of a data
example, the functionality will be described explicitely. Consider the numbers of implanta-
tions data set available in the nparcomp package. In a fertility trial with 29 female Wistar
rats the experimenter wanted to test if an active treatment influences the fertiliy of the rats.
Therefore n1 = 12 rats received a control while n2 = 17 rats were administered a treat-
ment. A first step in the analysis could be to test whether the numbers of implantations in
the treatment group differ from the numbers of implantations in the control group. To do
so we can use the function npar.t.test in the following way, testing Hp

0 : p = 1/2 versus
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| |

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p(
P

la
ce

bo
,V

er
um

)

95 % Confidence Interval for p
Method: Brunner − Munzel − T − Approx with 18.071 DF

Figure 2: Relative effect p̂ and corresponding 95%-confidence interval in the fertility trial.

Hp
1 : p 6= 1/2 where p denotes the relative effect between the two treatment groups. By

default the alternative is set to "two.sided". To obtain one-sided tests one can choose
between "less" and "greater". We specify method = "t.app" to get an approximation
by a t distribution as the asymptotic method. Here npar.t.test also provides the options
"logit", "probit" and "normal" performing logit/probit transformations or a normal ap-
proximation. A studentized permutation test (Neubert and Brunner 2007) can be obtained by
setting method = "permu". The confidence level is selected via the parameter conf.level.
To get a structured overview of the outcome one can use the S3 method summary:

R> library("nparcomp")

R> data("impla")

R> fert.trial <- npar.t.test(impla ~ group, data = impla,

+ conf.level = 0.95, method = "t.app", info = FALSE)

R> summary(fert.trial)

#---Nonparametric Test Procedures and Confidence Intervals for relative effects---#

- Alternative Hypothesis: True relative effect p is less or equal than 1/2

- Confidence level: 95 %

- Method = Brunner - Munzel - T - Approx with 18.071 DF

#---------------------------Interpretation-----------------------------------------#

p(a,b) > 1/2 : b tends to be larger than a

#----------------------------------------------------------------------------------#

#----Data Info---------------------------------------------------------------------#

Sample Size

Placebo Placebo 12

Verum Verum 17

#----Analysis----------------------------------------------------------------------#

Effect Estimator Lower Upper T p.Value

1 p(Placebo,Verum) 0.743 0.533 0.952 2.429 0.026

The numbers of implantations tend to be larger in the verum group (p̂ = 0.743). The null
hypothesis H0 : p = 1/2 is significantly rejected at 5% level of significance. The nparcomp
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package provides a S3 method to visualize the estimator and its confidence interval:

R> plot(fert.trial)

The obtained plot is shown in Figure 2.

5.2. Simultaneous inferences: Single step procedures

Here we use two examples how to analyze a one-way layout with a ≥ 3 groups to demonstrate
the single step procedure described in Section 3. First, consider the relative liver weights trial,
which was originally analyzed by Brunner and Munzel (2002), p. 97. The data is contained in
the package. The response variable is the relative liver weight from n1 = 8 rats in the negative
control and n2 = 7, n3 = 8, n4 = 7 and n5 = 8 rats in the dose groups. The interest is in simul-
taneous many-to-one comparisons, i.e., to test the null hypotheses Hp

0 : p1 = pj , j = 2, 3, 4, 5,
simultaneously. The function mctp provides different kinds of contrast matrices: "Tukey" for
all-pairs comparisons, "Dunnett" for many-to-one comparisons, "Sequen" for sequential con-
trasts, "Williams" for Williams-type trend contrasts, AVE for average contrasts. In addition
"Changepoint", "McDermott", "Marcus" and "UmbrellaWilliams" contrast are available
(Konietschke, Libiger, and Hothorn 2012b). The user can also enter a "UserDefined" q × a
contrast matrix containing the contrast coefficients in argument contrast.matrix. We apply
mctp to the data set specifying type = "Dunnett" to perform many-to-one comparisons. Just
like in the case of npar.t.test the alternative is set to "two.sided" by default. To obtain
one-sided tests one has to choose between "less" and "greater". There are three options
setting the asymptotic method: "mult.t" for a multivariate t distribution, "fisher" for the
Fisher-approximation, "normal" for a normal approximation. The confidence level is set via
conf.level:

R> data("liver")

R> tox.trial <- mctp(weight ~ dosage, data = liver, type = "Dunnett",

+ conf.level = 0.95, asy.method = "fisher", info = FALSE)

R> summary(tox.trial)

#--------------Nonparametric Multiple Comparisons for relative effects-------------#

- Alternative Hypothesis: True differences of relative effects are less or equal

than 0

- Estimation Method: Global Pseudo ranks

- Type of Contrast : Dunnett

- Confidence Level: 95 %

- Method = Fisher with 11 DF

#----------------------------------------------------------------------------------#

#----Data Info---------------------------------------------------------------------#

Sample Size Effect Lower Upper

1 1 8 0.2738839 0.1883282 0.3801054

2 2 7 0.3168367 0.2033613 0.4572850

3 3 8 0.3618304 0.2750676 0.4586457

4 4 7 0.6938776 0.6123359 0.7648541

5 5 8 0.8535714 0.8002739 0.8945209

#----Contrast----------------------------------------------------------------------#

1 2 3 4 5
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|

|

|

|

|

|

|

|

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
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−

 1
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−
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4 
−

 1
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−
 1

95 % Simultaneous Confidence Intervals
Type of Contrast: Dunnett
Method: Fisher with 11 DF

Figure 3: Differences of relative effects and 95%-confidence intervals in the toxicity trial.

2 - 1 -1 1 0 0 0

3 - 1 -1 0 1 0 0

4 - 1 -1 0 0 1 0

5 - 1 -1 0 0 0 1

#----Analysis----------------------------------------------------------------------#

Estimator Lower Upper Statistic p.Value

2 - 1 0.043 -0.288 0.364 0.353 0.9818154758

3 - 1 0.088 -0.172 0.337 0.937 0.7114134844

4 - 1 0.420 0.192 0.605 4.922 0.0011974456

5 - 1 0.580 0.379 0.728 7.003 0.0003226421

#----Overall-----------------------------------------------------------------------#

Quantile p.Value

1 2.784112 0.0003226421

#----------------------------------------------------------------------------------#

The relative liver weights tend to larger values for increasing dose
(p̂ = (0.27, 0.32, 0.36, 0.69, 0.85)>). Simultaneous 95%-confidence intervals for the effects
δj = pj − p1 as well as multiplicity adjusted p-values are displayed in the Analysis section of
the output. Here, significant differences at 5% level occur between the negative control and
both groups 4 and 5, respectively. A confidence interval plot is achieved via:

R> plot(tox.trial)

For each individual null hypothesis the estimator and its 95% confidence interval is plotted
(Figure 3). Here we can see the advantage of simultaneous confidence intervals. Whenever
an individual hypothesis has been rejected by the multiple contrast test, the corresponding
simultaneous confidence interval does not include the null.

In the second example we will analyze the colorectal cancer data set (Ryu 2009) contained in
the package. It consists of 174 patients suffering from colorectal cancer which were randomly
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assigned to one out of three treatment regimens: IFL (irinotecan, bolus fluorouracil, and leu-
covorin), FOLFOX (infused fluorouracil, leucovorin, and ocaliplatin), and IROX (irinotecan
and oxaliplatin). The response variable is the patients’ appetite scores at their third visit
for each treatment. There are five ordered categories: (1) normal, (2) not always good, (3)
don’t really enjoy, (4) force to eat, (5) can’t stand. Ryu (2009) already analyzed this data
set when presenting a score method with studentized range distribution and accompanied
simultaneous confidence intervals for the ordinal effect measures. We will compare our results
with the proposed method.

The interest is in finding statistical differences between two treatment regimens. Therefore
simultaneous all-pairs comparisons, i.e., testing the null hypotheses Hp

0 : pi = pj , j = 1, 2, 3,
simultaneously, will be performed. To this end we apply mctp to the data set specifying type
= "Tukey" to stay compatible with Ryu (2009):

R> data("appetite")

R> col.cancer <- mctp(Score ~ Group, data = appetite, type = "Tukey",

+ conf.level = 0.95, asy.method = "fisher", info = FALSE)

R> summary(col.cancer)

#--------------Nonparametric Multiple Comparisons for relative effects-------------#

- Alternative Hypothesis: True differences of relative effects are less or equal

than 0

- Estimation Method: Global Pseudo ranks

- Type of Contrast : Tukey

- Confidence Level: 95 %

- Method = Fisher with 104 DF

#----------------------------------------------------------------------------------#

#----Data Info---------------------------------------------------------------------#

Sample Size Effect Lower Upper

FOLFOX FOLFOX 53 0.5748523 0.5275324 0.6208392

IFL IFL 66 0.4170825 0.3769846 0.4583080

IROX IROX 55 0.5080652 0.4630222 0.5529777

#----Contrast----------------------------------------------------------------------#

FOLFOX IFL IROX

IFL - FOLFOX -1 1 0

IROX - FOLFOX -1 0 1

IROX - IFL 0 -1 1

#----Analysis----------------------------------------------------------------------#

Estimator Lower Upper Statistic p.Value

IFL - FOLFOX -0.158 -0.264 -0.048 -3.390 0.002794005

IROX - FOLFOX -0.067 -0.184 0.053 -1.330 0.381027703

IROX - IFL 0.091 -0.014 0.194 2.064 0.101981552

#----Overall-----------------------------------------------------------------------#

Quantile p.Value

1 2.37573 0.002794005

#----------------------------------------------------------------------------------#
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The appetite scores in the IFL group (p̂IFL = 0.417) tend to be smaller than those in the other
two groups (p̂IROX = 0.508, p̂FOLFOX = 0.574). The Analysis section contains simultaneous
95%-confidence intervals for the effects δij = pi − pj , i > j, as well as multiplicity adjusted
p-values. A significant difference at 5% level occurs only between IFL and FOLFOX. This
means the FOLFOX regimen leads to higher appetite scores than the IFL treatment. Thus
one can infer that FOLFOX causes less severe appetite problems than IFL. We further note
the three groups are not genuine random samples taken from a parent distribution, but that
they are obtained through randomization of a non random sample. Therefore caution should
be paid when drawing inferences (see Pesarin and Salmaso (2010), p. 10ff.).

Ryu (2009) applies a score method based on pairwise relative effects to this dataset and
obtains the same decisions. Only the 95%-confidence interval for the comparison between
IFL and FOLFOX ([0.546,0.751]) does not include 1/2. However, note that an analysis based
on pairwise effects can lead to paradox decisions and therefore global rank based procedures
are preferred. We further note that Munzel and Hothorn (2001) propose non-parametric
multiple contrast tests and SCI for pairwisely defined relative effects. In particular, Munzel
and Hothorn (2001) implements the results in the R package npmc, which was, however,
removed from CRAN due to abundance.

5.3. Simultaneous inferences: Stepwise procedures

In the previous section we have already seen how to perform many-to-one comparisons apply-
ing the single-step procedure mctp to the relative liver weights data set. Now we want to show
an example of how to analyze a one-way layout with a ≥ 3 groups using the stepwise proce-
dure introduced by Gao et al. (2008) presented in Section 4. The function gao implements a
stepwise procedure which can only be used to perform nonparametric multiple tests for many-
to-one comparisons. It is contained in the nparcomp package and can be called as follows. By
default the first group by lexicographical ordering is handeled as control group. However, the
user can specify it via the parameter control entering a character string defining the control
group:

R> data("liver")

R> gao(weight ~ dosage, data = liver, alpha = 0.05)

#----Xin Gao et al's (2008) Non-Parametric Multiple Test Procedure

#----Type of Adjustment: Hochberg

#----Level of significance = 0.05

#----The procedure compares if the distribution functions F() are equal. The FWER

is strongly controlled

#---- This function uses pseudo ranks of the data!

#----Reference: Gao, X. et al. (2008). Nonparametric Multiple Comparison Procedures

for Unbalanced One-Way Factorial Designs. JSPI 138, 2574 - 2591.

$Info

Sample Size Effect Variance

1 1 8 0.2739 0.0406

2 2 7 0.3168 0.0653

3 3 8 0.3618 0.0279

4 4 7 0.6939 0.0273

5 5 8 0.8536 0.0121

$Analysis
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Comparison Estimator df Statistic P.Raw P.Hochberg Rejected P.Bonf P.Holm

1 F(2)-F(1) 0.0430 11.4072 0.3580 0.7269 0.7269 FALSE 1.0000 0.7269

2 F(3)-F(1) 0.0879 13.5348 0.9508 0.3584 0.7167 FALSE 1.0000 0.7167

3 F(4)-F(1) 0.4200 12.9622 4.4348 0.0007 0.0020 TRUE 0.0027 0.0020

4 F(5)-F(1) 0.5797 10.8470 7.1413 0.0000 0.0001 TRUE 0.0001 0.0001

Note that in contrast to mctp - which tested via relative effects - gao tests the hypothesis of
no treatment effect in terms of distribution functions. Thus, the overall hypthesis is HF

0 :
F1 = Fj ∀j = 2, 3, 4, 5. It has to be rejected because the smallest p-value is less than
0.05. For each of the many-to-one comparison the analysis table contains a raw p-value and
adjusted p-values obtained by the Hochberg-adjustment, Bonferroni-adjustment and Holm’s
procedure. Consider the adjusted p-values of the Hochberg-adjustment. According to these
values the first two dose levels have no significant effect on the relative liver weight. However,
the hypotheses of no treatment effect of dose levels 3 and 4 are rejected. The multiple level
is strongly controlled by the adjustment. Comparing these results with those obtained by
applying mctp to the data, we can state that in this example both analysis are consonant in
their decisions.

nparcomp also provides the function gao_cs – the implementation of the Gao et al. (2008)
modification of the Campbell and Skillings (1985, CS) stepwise multiple comparison procedure
for all-pairs comparisons. Its usage shall be explained with the help of the reaction data set
available in the nparcomp package and taken from Shirley (1977). The data set contains
the results of a toxicity trial including four dose groups abbreviated with 0 through 3. The
response variable is the reaction time in seconds of N = 40 mice. It is a balanced design with
n ≡ 10. The interest is in all-pairs comparisons, i.e., HF

0 : Fi = Fj , i, j = 0, 1, 2, 3, to check
whether the increasing dose levels of the active treatment influence the reaction time of the
mice.

R> data("reaction")

R> gao_cs(Time ~ Group, data = reaction, alpha = 0.05)

#----Gao et al's (2008) modification of Campbell and Skillings (1985) (CS)

stepwise multiple comparison procedure

#---- This function uses joint ranks of the data. Attention: In the CS algorithm,

the samples are jointly reranked!

#----Reference: Gao, X. et al. (2008). Nonparametric Multiple Comparison Procedures

for Unbalanced One-Way Factorial Designs. JSPI 138, 2574 - 2591.

$Info

Order Sample Size Effect Variance

1 1 0 10 0.19375 0.01643229

2 2 1 10 0.50500 0.05757639

3 3 2 10 0.57875 0.07524479

4 4 3 10 0.72250 0.05256250

$Single.Analysis

Comp Effect Statistic DF P.RAW p.BONF p.HOLM

1 3-0 0.5288 6.3656 14.1262 0.0000 0.0001 0.0001

2 2-0 0.3850 4.0210 12.7520 0.0015 0.0090 0.0075

3 3-1 0.2175 2.0725 17.9628 0.0529 0.3173 0.1587

4 1-0 0.3113 3.6180 13.7503 0.0029 0.0172 0.0115

5 2-1 0.0737 0.6399 17.6870 0.5304 1.0000 0.5304

6 3-2 0.1438 1.2715 17.4504 0.2202 1.0000 0.4404
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$CS.Analysis

Comp Effect Statistic DF Quantiles Adj.P Alpha Rejected Layer

1 3-0 0.5288 9.0024 14.1262 4.1059 1e-04 0.0500 TRUE 1

2 2-0 0.4200 5.9397 14.1745 3.6962 0.0023 0.0500 TRUE 2

3 3-1 0.2650 3.1379 17.9953 3.6094 0.0949 0.0500 FALSE 2

4 1-0 0.3800 5.3725 16.8977 3.4699 0.0014 0.0253 TRUE 3

5 2-1 0.1000 1.0594 17.8029 3.453 0.4636 0.0253 FALSE 3

6 3-2 0.1750 1.9174 17.7942 3.453 0.1921 0.0253 FALSE 3

The output mainly consists of two sections – the single analysis which contains raw p-values
accompanied by Bonferroni- and Holm-adjusted p-values and the CS analysis which realizes
the adjustment obtained by modifying Campbell and Skillings stepwise procedure. In simu-
lations the CS-adjustment shows the best performence and is therefore recommended for real
data evaluations. Here, the overall null hypothesis, i.e., HF

0 : Fi = Fj , ∀i, j = 0, 1, 2, 3, is
rejected, because three individual hypotheses are rejected at α = 5% level of significance. All
comparisons among the distributions from the control group and any active treatment group
show an significant effect. In particular, all pairwise comparisons among the distributions
from the active treatments do not demonstrate any significance at 5% level. Summing up we
can find a significant effect of the active treatment, but we have also seen that this significance
is only due to differences among the distributions from the reaction times between the control
and active treatment groups, respectively.

6. Conclusions and future work

The R package nparcomp implements a broad range of rank-based nonparametric methods
for multiple comparisons. The single step procedures provide local test decisions in terms of
multiplicity adjusted p-values and simultaneous confidence intervals. They further allow for
user-defined contrasts. In particular, paradox results in terms of Efron’s paradox dice cannot
occur (Thangavelu and Brunner 2006). The derivation of stepwise confidence intervals, how-
ever, is part of future research. A notable novel feature of nparcomp is that it can easily be
extended to the anaylsis of factorial designs. We plan to update the package nparcomp on
a regular basis with new nonparametric statistical procedures available for multiple compar-
isons. In addition, we plan to undertake a major update of the code and release nparcomp in
the S4 style.

All implemented methods in the package are based on asymptotic results on the distribution
of rank statistics. We plan to derive adequate resampling- and permutation based methods
to approximate the distribution of the statistics for very small sample sizes. For example,
optimal subset procedures and weighted methods controlling the familywise error rate are
proposed by Finos and Salmaso (2005), Finos and Salmaso (2006) and Finos and Salmaso
(2007). Permutation tests for umbrella alternatives and multivariate problems are considered
in Basso and Salmaso (2011) and Pesarin and Salmaso (2012).
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