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Spring School on the Introduction on Numerical Modelling of
Differential Equations – Programming Exercise 1

Exercise 1.1 [Working with the C++ compiler]

Take some time to get familiar with the compiler output.
The output for errors and warnings is structured as follows:

[file]:[line]:[position]: [type]: [description of the error or warning]

The output of all warnings can be activated bei adding -Wall (Warnings all) to the compiler call:

>> g++ -Wall wrong.cc -o wrong

Fix all errors and warnings in the file ”wrong.cc”. The file should compile without errors or warnings

#include <iostream >

namespace local

{

int answer () { int answer = 42; return; }

}

main()

{

int dummy = 0;

double a; a = 1.0;

double const b; b = 2.0;

double c = a * b;

std::cout << "The answer is: " << answer () << "\n";

std::cout << "a = " << a << \n;

std::cout << "b = " < b << "\n"

std::cout << "a * b = << c << "\n";

} // main

Exercise 1.2 [Factorial]

Write a program factorial.cc, that computes computes for an input int n the factorial

n! = n · (n− 1) · . . . · 1

The following commands will compile and run the file.

>> g++ factorial.cc -o factorial

>> ./factorial

Test your program for different values of int n. What do you notice? change your program for, such
that it uses only unsigned int and test your program again.
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Exercise 1.3 [Euler’s Constant]

Euler’s constant is defined by the infinite sum

e =
∞∑
k=0

1

k!
= 2.718281828459045 . . . .

This formula allows us to compute the value of e to arbitrary precision. Using en :=
∑n

k=0
1
k! we can

compute the precision with en − en−1.

Write a program/function, that computes the approximation of e for a given integer n and print that
number on the screen. Make sure to efficiently compute the values of k! by using the previous value.

(a) Compute en for n = 5, 10, 20, by summing upwards (k = 0, 1, 2, . . .) resp. downwards (k =
n, n− 1, n− 2, . . .). Compare the results and precision. Make sure to use the right data types

(b) Change your program/function, such that the computations can also be done with float and
compare the results. Furthermore, compute the error to std::exp(1.0) from the standard
library <cmath>.

(c) Optional: Write a program/function, that approximates e to a given precision tol.

Bonus Problem 1.4 [Binomial coefficient]

Write a program binomial.cc, that computes for specific inputs k, n ∈ N the binomial coefficient(
n

k

)
=

n!

k!(n− k)!

Use the data types unsigned int and treat possible exceptional cases (k > n?) with if conditions.
Test your program intensively.

The allowed range for n, k ∈ N can be extended by not using all factorials:(
n

k

)
=

n!

k!(n− k)!
=

n · (n− 1) · . . . · (n− k + 1)

k!

Furthermore, the efficiency can be enhanced by exchanging k with min(k, n− k), due to the symmetry
of the binomial coefficient.
Use the above aspects to improve your program and compare your results with the first version.

Optional: Compute the binomial coefficient for n, k ∈ N using the product(
n

k

)
=

k∏
j=1

n + 1− j

j
.

This product can be implemented using a loop that switches between multiplication and division,
without a division remainder. Why?

Bonus Problem 1.5 [Greatest common divisor]

To compute the greatest common divisor (gcd) of two numbers, the euclidian algorithm can be used:

Start by dividing the bigger by the smaller number. After that divide the smaller number by the
remainder until the remainder is zero. The last divisor is the gcd. If the remainder is 1 both
numbers don’t have a common divisor.
The following example illustrates this algorithm with the numbers 13575 and 345:
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• 13575 = 39 · 345 remainder 120

• 345 = 2 · 120 remainder 105

• 120 = 1 · 105 remainder 15

• 105 = 7 · 15 remainder 0

The greatest common divisor is 15.

Implement this algorithm for two positive integers in C++ and test it on some examples.

(a) Implement the function

• unsigned int gcD(unsigned int, unsigned int). Use the %-Operator for divisions with
remainder.

(b) Write a main-method, that tests your function on the given example. Output the solution to the
terminal.

Bonus Problem 1.6 [Bisection algorithm]

The bisection algorithm is used to find the root of a continuous function f : R → R in the interval
[a, b] ⊂ R. It works as follows:

If f(a) and f(b) have different signs there exists a root in [a, b]. If you seperate the interval into two
equal parts [a,m] and [m, b] by using m = a+b

2 , the root has to be in one of the two intervals. If
f(m) = 0 we have found the root. Otherwise we have to check for the signs again. If f(a) ·f(m) < 0
we set b = m and start from the beginning. Otherwise if f(b) · f(m) < 0 we set a = m and start
from the beginning.

Write a program that consist of the following parts

• a function f, for computing the value f(x) = esin(x) − 0.5

• a function bisec, for Finding the root of f(x) on an interval given by a and b using the described
algorithm

• a main-method.

The (iterative) implementation should terminate if

• a maximal number of iterations max iter has been reached

• for the given tolerance tol, f(m) <tol holds

Print the values for a and b in every iteration to the terminal. Test your program with the accuracy
tol= 10−6 for the interval I := [−1, 1] and verify your results.

Afterwards change your functon f and determine the roots of the following functions on the same
interval

• f(x) = 1√
x2+1

− cos(x + 1),

• f(x) = sin(cos(x + 1)),

• f(x) = arctan(x2 + 2x)− 0.2,

• f(x) = x2 + 1.
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Spring School on the Introduction on Numerical Modelling of
Differential Equations – Programming Exercise 2

Exercise 2.1

The exponential function exp(x) can be seen as a power series for x ∈ R. The recursive formula for the
computation reads

y1 := x, f1 := 1 + y1,

yn :=
x

n
yn−1, fn := fn−1 + yn.

Write a program powerseries.cc which computes the approximation of exp(x) for given point x and
iteration count n. The datatype for x should be variable (i.e. double or float). User input shall be
over the command line. Please ask for x, n and the datatype.

(a) Test your program with x = 5 and x = −10 for 100 iterations and different datatypes. Print the
difference between the exact value of std::exp and your approximation fn

en := |exp(x)− fn|

(b) especially for values x� 0 the result is off by many orders of magnitude. Use the properties of
the exponential function and change the algorithm to get a smaller error. Test this with x = −20
and float.

Hints:

• The exact value of exp(x) can be approximated by long double:
long double exact = std::exp(x);

• exp(−x) = exp(x)−1 might be helpful

Exercise 2.2

Consider the tent map

f : [0, 1]→ [0, 1], x 7→

{
2x, for x ∈ [0, 0.5)

2− 2x, for x ∈ [0.5, 1]
.

This is a simple example for a non-linear mapping for a dynamical system. For x0 ∈ [0, 1] define (xi)i
by

xi := f(xi−1), i ∈ N. (1)

The tent map is a chaotic system, i.e. little changes in the initial value lead to large effects to later
values and the values reached seem unpredictable. However, this is invalid if x0 can be represented as
finite binary number. Thus, we can not reproduce this behavior on the computer.
During this exercise we examine the tent map for finite binary numbers and how to implement the
desired chaotic behavior.

(a) Write a program tent map.cc, that computes the sequence (xi)i for x0 = 0.01401 and i =
1, . . . , 100 and print the results in the terminal. It should look like the following:
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$ g++ -o tent_map tent_map.cc

$ ./ tent_map

0.01401

0.02802

...

Write the values in a file data.dat by passing the terminal output to this file:

$ ./ tent_map > data.dat

Visualize the data using gnuplot. Therefore, start gnuplot in the same directory of the data
data.dat in the terminal with the command gnuplot. Afterwards visualize the data using the
command

plot ’data.dat’

(b) The results are chaotic in the beginning, however, we can see that the values form a pattern in
the end. If x0 = (0.m1 . . .mr)2 ∈ [0, 1] is a fixed-point number in binary representation with at
most r non-zero decimals and (xi) defined by (1) then it is possible to show that xr+1 = 0.

The proof illustrates that for irrational initial values x0 ∈ [0, 1] the sequence (xi)i will be non-
periodic. However, this will not help us with our programming task. To achieve non-periodically
sequences with finite binary representations, we change the tent map by

f̃ : [0, 1]→ [0, 1], x 7→

{
1.999999x, for x ∈ [0, 0.5)

1.999999 · (1− x), for x ∈ [0.5, 1]
.

Use the new function f̃ in your code from (a) and visualize your results using gnuplot.
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Exercise 3.1 [Gaussian Elimination with hdnum]

Write a new headerfile gauss.hh, that implements the template function

template <typename NUMBER >

void gauss( hdnum :: DenseMatrix <NUMBER >& A, // Input A

hdnum ::Vector <NUMBER >& x // Output x

hdnum ::Vector <NUMBER >& b // Input b

)

{

...

}

for solving the linear equation system Ax = b using gaussian elimination. This headerfile will be needed
to compile and execute the program gaussmain.cc. Compile the program for both data types double
and float and check the maximal dimension n for which the equation system gives a correct solution.
Hint: To get access to the hdnum library type in the following command

git clone https://parcomp -git.iwr.uni -heidelberg.de/Teaching/hdnum

Exercise 3.2 [Polynomial Interpolation]

All programmed functions in this exercise should accept a template parameter to allow different
representations of the real numbers (float, double, etc.).

(a) Write a function that evaluates the interpolating polynomial for a given function f : R→ R at a
given point x. The function should be given as points (xi)

n
i=1 ∈ R and matching values (yi)

n
i=1,

i.e.

template <typename T>

T interpolation(T x, std::vector <T> x_i , std::vector <T> y_i ){...}

(b) Write a program that interpolates the following functions on the interval I = [−1, 1] with
equidistant points xi = −1 + ih, i = 0, . . . , n with h = 2/n. The degree of the interpolating
polynomial n should be chosen as n = 5, 10, 20.

f1(x) =
1

1 + x2

f2(x) =
√
|x|

Evaluate the polynomials on a fine grid (1000 grid points) and plot the results using gnuplot.
Compare the plots to the actual functions. What do you see?

Exercise 3.3 [Numerical Differentiation]

(a) Write a program numdiff.cc, that computes the second derivative of sinh(x) at x = 0.6 with
the second differential quotient for a given h

a(h) :=
sinh(x + h)− 2 sinh(x) + sinh(x− h)

h2
≈ d2

dx2
sinh(x).
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Calculate the values a(hi) for hi = 2−i, i = 1, . . . , 20 and compare with the exact value of the
second derivative.
Hint: d2

dx2 sinh(x) = sinh(x). The function f(x) = sinh(x) is available in C++: Using the library
<cmath> you can call the function std::sinh(double x).

(b) The error decreases until i = 12. Calculate with your output the number j such that the error is
of order O(hj). Explain why the approximations for smaller h become worse.

(c) Examine how the extrapolation to the limit can be used to improve the numerical values.
Write a function, that has the input arguments h̃j , j ∈ {0, . . . , k} and computes a(0) using the
extrapolation of the limit. Calculate for hi = 2−i, i = 1, . . . , 10 the approximation of a(0) with
two values (hi, hi/2), resp. three values (hi, hi/2, hi/4). Examine the error.

(d) Bonus: Use the fact that a(h) can be represented as series in h2 for the extrapolation and use
the pairs (h2i , a(hi)) instead of (hi, a(hi)). Explain how this change affects the rate of convergence
of the error.
N.B.: This modification is also called Richardson extrapolation.
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Exercise 4.1 [The pendulum model – Theory]

Recapitulate the model for the pendulum

d2φ(t)

dt2
= −g

`
sin(φ(t)) ∀t > t0.

with the two initial conditions

φ(0) = φ0,
dφ

dt
(0) = φ′0.

For small deflection angle φ derive the approximation

d2φ(t)

dt2
= −g

`
φ(t)

Show that it has the general solution φ(t) = A cos(ωt) and determine the constants A, ω from the
initial conditions

Exercise 4.2 [The pendulum model – Solver]

(a) Recap, Method 1
In the first method, begin by rewriting the second order ODE as a first order system

dφ(t)

dt
= u(t),

d2φ(t)

dt2
=
du(t)

dt
= −g

`
sin(φ(t)).

Replacing the derivatives by difference quotients

φ(t+ ∆t)− φ(t)

∆t
≈ dφ(t)

dt
= u(t),

u(t+ ∆t)− u(t)

∆t
≈ du(t)

dt
= −g

`
sin(φ(t)),

yields the one step scheme

φn+1 = φn + ∆t un φ0 = φ0

un+1 = un −∆t (g/`) sin(φn) u0 = u0

Where φn approximates φ(n∆t) for a chosen ∆t using recursion (Euler).

(b) Recap, Method 2
Now, we derive a method that directly approximates the second-order ODE. It uses a central
difference quotient for the second derivative

φ(t+ ∆t)− 2φ(t) + φ(t−∆t)

∆t2
≈ d2φ(t)

dt2
= −g

`
sin(φ(t)).

Solving for φ(t+ ∆t) yields the two step scheme (n ≥ 2):

φn+1 = 2φn − φn−1 −∆t2 (g/`) sin(φn), (1)

with the initial condition
φ0 = φ0, φ1 = φ0 + ∆t u0. (2)

The starting value φ1 is derived with one step of method 1.
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(c) Actual Task

(i) Write a C++ program implementing methods 1 and 2 using a time step ∆t that can be
entered by the user. For the constants choose ` = 9.81 and g = 9.81.

(ii) Write the results to a file, where every line contains

ti φi ui.

(iii) you can visualize the results using gnuplot as follows
plot "filename" u 1:2

where the x-axis uses the first column and the y-axis uses the second column.

Exercise 4.3 [The pendulum model – implementations]

(a) For method 1: choose an initial deflection angle φ0 = 0.1 and a time step ∆t = 0.1 and compute
the solution up to time 4.0. What do you observe?

(b) Repeat the experiment with successively smaller time steps, say 0.01, 0.001, 0.0001. What do
you observe?

(c) Try to compute the solution for longer times with the small timesteps. What happens?

(d) Repeat the same experiments with method 2. Is there a difference?

(e) Compare the solution of the full model and the reduced model for different initial angles
φ0 = 0.1, 0.5, 3.0. Use your favourite method and a timestep ∆t that is small enough to avoid
any visibly numerical error.

(f) Recapitulate the concepts stability, discretization error and modeling error in the light of the
results of exercise 1.
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Exercise 5.1 [Condition for explicit Euler]

Consider the linear, scalar model problem

u′(t) = λu(t), u(0) = 1, R 3 λ < 0.

Derive the explicit Euler scheme. What is the condition on ∆t such that the explicit Euler scheme
produces bounded approximations for all t > 0? Confirm your result with the implementation in file
eemodelproblem.cc provided in the exercise yesterday.

Exercise 5.2 [Object oriented ODE solver]

Download the file linearoscillator.cc available on the cloud. It solves the problem

u′(t) =

(
0 −1
1 0

)
u(t) in (0, 20π], u(0) =

(
1
0

)
using the methods

# Scheme # Scheme

0 Explicit Euler 4 Implicit Euler
1 Heun 2nd order 5 Implicit midpoint
2 Heun 3rd order 6 Alexander
3 Runge-Kutta 4th order 7 Crouzieux

8 Gauß 6th order

and provides errors e(T ) and convergence rates for all schemes. What conclusions can you draw from
the tables?

Exercise 5.3 [Van der Pol oscillator]

In this exercise we explore the nonlinear Van der Pol oscillator

u′0(t) = −u1(t) u0(0) = 1

u′1(t) = 1000 · (u0(t)− u31(t)) u1(0) = 2

which is an example for a stiff ODE system.
Download an updated version of the file vanderpol.cc from the cloud. Compile and run the following
four combinations of methods and timesteps:

• RKF45 method is an adaptive embedded Runge Kutta method of 5th order. Run it with tolerances
TOL1 = 0.2 and TOL2 = 0.001 using an initial time step ∆t = 1/16.

• The implicit Euler method. Run it with ∆t1 = 1/16 and ∆t2 = 1/512.

The output file contains in each line

ti u0(ti) u1(ti) ∆ti

Compare the solutions, especially u1(t) as well as the time step sizes ∆ti for all four runs. What do
you observe?
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Exercise 6.1 [Poisson’s equation]

Let α ∈ R. We are given the Poisson problem in 1D on the interval Ω = (0, 1):

−αu′′(x) = f in Ω

u(0) = u(1) = 0

with α = 1 and the right hand side f = −a with a > 0. The code of this example can be found on the
cloud in fem1d linear.cc.
Note: Please note that the above form is only correct when α is constant. The general formulation is

− d

dx
(αu′)

which reduces to the above one, when α is constant.

(a) Run the code and observe the results using gnuplot, with a = 1 and h = 0.1.
Hint: Please work in the optimized compiling mode

(b) We play now with two parameters:

(i) Vary the discretization parameter h and use other parameters. What do you observe?

(ii) Vary now the model parameter α. What do you observe?

(iii) Choose now a different right hand side f . What do you observe?

(c) Check your solution by observing whether the maximum principle is fulfilled or not.

(d) We study in this final task the structure of the code. Go into the code and try to understand the
different functions and methods that are implemented therein. Please have a specific look into
the assemble system method.
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Exercise 7.1 [Poisson’s equation – P2 elements]

(a) Implement P2 finite elements to solve the problem from Exercise 6. Recapitulate quadratic shape
functions for yourself by hand first.

(b) Go into the code fem1d quadratic.cc and implement the necessary modifications.

(c) Implement a numerical quadrature rule in order to evaluate the integrals locally.

(d) Check your code using your ‘physical intuition’. This means, does the code deliver results that
are ‘similar’ to those from yesterday?
Hint: On purpose we do not perform a rigorous computational convergence analysis in this
exercise because in 1D the finite element method is actually ‘too simple’ and would yield for
point-wise errors exactly zero.

Remarks on quadratic elements:
First we define the discrete space

Vh = {v ∈ C[0, 1]| v|Kj ∈ P2}.

The space Vh is composed by the basis functions:

Vh = {φ0, . . . , φn+1, φ 1
2
, . . . , φn+ 1

2
}.

The dimension of this space is dim(Vh) = 2n + 1. The mid-points represent degrees of freedom as
the two edge points. For instance on each Kj = [xj , xj+1] we have as well xj+ 1

2
= xj + h

2 , where

h = xj+1 − xj .
On the element K(1) (unit element), we have

φ0(ξ) = 1− 3ξ + 2ξ2,

φ 1
2
(ξ) = 4ξ − 4ξ2,

φ1(ξ) = −ξ + 2ξ2.

These basis functions fulfill the property φi(ξj) = δij , for i, j = 0, 12 , 1. On the master element, a
function has therefore the representation

u(ξ) =

1∑
j=0

ujφj(ξ) + u 1
2
φ 1

2
(ξ).

Using these three shape functions we can now evaluate

Ai,j =

∫ 1

0
φ′iφ

′
j dx

and

bj =

∫ 1

0
(−a)φj dx
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with the Simpson rule to obtain the local stiffness matrix

A =
1

h

 7 −8 1
−8 16 −8
1 −8 7


and the local right hand side

b =
h

6
(−a,−4a− a)T

Figure 1: Example for quadratic elements.
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