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Abstract 

Abstract  
 

CO2 is dissolved in rhyolitic glasses/melts only as CO2 molecule species. A series of experiments 

were carried out in order to determine a new linear molar absorption coefficient for the molecular CO2 

band in IR absorption spectra of rhyolitic glasses to enable an reliable quantification of CO2 contents. 

Samples with varying amounts of CO2 and water (water is facilitating sample synthesis) have been 

synthesised at pressures ranging from 200 to 800 MPa and temperatures of 1100 and 1200°C by 

loading in a Pt-capsule a piece of natural obsidian (EDF, Erevan Dry Fountain, Armenia) together 

with water and silver oxalate as the CO2-source, so that an exceeding mixed fluid phase remained after 

the experiment. Several pieces from different locations in the bubble-free and crystal-free quenched 

products have been cut off and prepared for IR-spectroscopy. CO2-contents of the rest of the glass was 

measured coulometrically by CO2-titration. The linear molar absorption coefficient of 1232 �36 l.cm-

1.mol-1 determined for the band of molecular CO2 at 2346 cm-1 is 15% greater than that of Blank 

(1993). As a consequence, previous data based on Blank’s calibration should be decreased by 15%. In 

addition, the new calibration indicates that the linear molar absorption coefficient does not depend on 

the amount of water dissolved in the glass.  

H2O and CO2 solubilities in a natural rhyolite melt (EDF) in equilibrium with H2O-CO2 fluids 

were determined at 200 and 500 MPa and at 800 and 1100°C. The composition of the fluid phase after 

experiment was determined by gravimetry, except for extreme CO2-rich fluids for which mass balance 

was used. Water and CO2 contents of the glasses were measured using IR spectroscopy. At 200 MPa, 

the water solubility turn over from a square root dependence on mole fraction of H2O in the fluid 

phase (Xf
H2O) at low Xf

H2O to a linear dependence above Xf
H2O=0.25. Up to about 5 wt% dissolved 

water in the melt (corresponding to Xf
H2O � 0.5) a similar trend is observed at 500 MPa. At higher 

Xf
H2O, however, the dependence of water solubility on Xf

H2O is more pronounced. A negative 

temperature dependence of water solubility is observed in the whole range of Xf
H2O at 200 MPa (e.g., 

the water solubility at Xf
H2O=1 decreases from 5.97 to 5.58 wt% when temperature rises from 800 to 

1100°C). In contrast, at 500 MPa the temperature dependence of water solubility changes from 

positive at high Xf
H2O (e.g., increase from 9.84 to 11.04 wt% for a temperature increase from 800 to 

1100°C) to negative at low Xf
H2O. An empirical model to predict water solubility in rhyolitic melts in 

the P-T range 75-500 MPa and 800-1100°C was derived from our new

solubility data and data from Blank et al. (1993). The empirical model reproduces our data within 

±2.5% relative, except at 500 MPa, 1100°C (±5% rel.).  

The CO2 solubility shows a non-linear dependence on Xf
CO2 with deviation from linearity 

increasing with pressure. The maximum CO2 solubilities (equilibrium with pure CO2) predicted from 

the data trends are 0.28 � 0.03 and 0.11 � 0.01 wt% at 1100°C and 200 and 500 MPa, respectively. At 

800°C, the melts are partially crystallised when using CO2 rich fluids (Xf
CO2 > 0.65 at 200 MPa, Xf

CO2 

8 



Abstract 

> 0.5 at 500 MPa) and prediction of the solubility of pure CO2 is not possible. The temperature 

dependence of CO2 solubility is found to be almost negligible at 200 and slightly positive at 500 MPa. 

Our experimental solubility data at 200 MPa are slightly better reproduced by the model of Papale 

(1999) than with that of Holloway and Blank (1994).  

In addition, experiments have been carried out in order to characterise CO2-diffusion in rhyolitic 

melts as a function of temperature, pressure and water content. Three series of experiments were 

conducted combining three different rhyolitic glasses and two different methods: (1) CO2 sorption in 

water-poor natural EDF pieces at temperatures ranging from 580 to 1000°C and pressures of 100, 300 

and 500 MPa, (2) CO2 sorption in hydrous synthesised EDF pieces (with a water content before 

experiment of 2.2 wt%) at temperatures ranging from 580 to 900°C at 100 MPa, (3) CO2 desorption 

from bubble-bearing hydrous CO2-bearing synthesised EDF pieces at temperatures of 580 and 630°C 

and pressures of 100 and 500 MPa. Experiments were performed either in IHPV or in CSPV, 

depending on the run conditions. CO2-diffusivities were derived from the fit of CO2-concentration-

distance profiles assuming the CO2 diffusivity being constant along the profile. The data for water-

poor rhyolitic composition at 100 MPa can be described in the whole temperature range by a simple 

Arrhenius relationship DCO2 = 2.14 � 10-6 m2/s exp(-17945/T). A 2.4 wt% increase in water content at 

100 MPa and 900°C increases the CO2-diffusivity by approx. half an order of magnitude. The effect of 

water on CO2 diffusion seems to be more pronounced at lower temperature. The addition of 2.5 wt% 

water at 100 MPa and 580°C increases DCO2 by about one and a half order of magnitude. Although 

experiments were carried out on different pressures, no clear trend of pressure dependence of DCO2 

could be seen. It is however possible to determine an apparent activation volume Va of  3.4 �1.7 

cm3/mole from data at 1000°C in the pressure range of 70-1000 MPa. Combining my data with that of 

Watson (1991) and Blank (1993),CO2-diffusivity (in 10-12 m2/s) in rhyolitic melts can be expressed as: 

 

DCO2 = exp[(14.992-18.692�Xm
water)+(-19047.5+70193�Xm

water)/T-(0.632+7.543�Xm
water)P/T] 

 

where T is in K, P in MPa, and Xm
water is the mole fraction of water on a single oxygen basis. Except 

for a few outlier points (data at 300 MPa), error of estimates is within 0.59 in terms of lnD for all data, 

covering a wide range of temperature (450-1100°C), pressure (72-1000 MPa) and water contents 

(0.13-11 wt%).  
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Zusammenfassung 

Zusammenfassung  
 
 

In den magmatischen Schmelzen können beträchtliche Mengen an volatilen Komponenten gelöst 

sein. Dominierende Fluidkomponente in terrestrischen Magmen ist H2O. Bis zu 8 Gew% gelöstes H2O 

wurden in Glaseinschlüssen von hochdifferenzierte Magmen gefunden. Die zweithäufigste volatile 

Komponente ist CO2. In der Natur sind in der Regel keine reinen sondern gemischte Volatile 

vorhanden (System C-H-O-S). Entgasungsprozesse von den ursprünglich in den Schmelzen gelösten 

Volatilen während des Magmenaufstiegs haben einen entscheidenden Einfluss auf den Verlauf  

vulkanischer Eruptionen. Die vorliegende Arbeit hat die Zielsetzung, thermodynamische und 

kinetische Eigenschaften von hochpolymerisierten Schmelzen, die für den explosiven Vulkanismus 

von fundamentaler Bedeutung sind, zu bestimmen und zu einem besseren Verständnis von 

vulkanischen Prozessen beizutragen. 

 

In der Arbeit wurden die Wasser und CO2-Lösligkeiten sowie die CO2 Diffusion in rhyolitischen 

Schmelzen experimentell untersucht. Alle Experimente wurden je nach P-T Bedingungen in intern 

oder extern beheizten Gasdruckanlagen durchgeführt. In rhyolitischen Gläsern liegt CO2 nur in Form 

von molekularem CO2 vor. Es wurde zuerst eine Infrarot-Kalibration zur Messung von CO2 in 

rhyolitischen Gläsern durchgeführt. Dafür wurden natürlichen rhyolitischen blasen- und kristallfreie 

Glasblöcke (aus Erevan Dry Fountain, Armenien) mit Silberoxalat (CO2-Quelle) und Wasser (das 

Wasser erleichtert die Homogenisierung der Gläser) äquilibriert. Die Experimente wurden in 

Platinkapseln bei Drucken von 200 bis zu 800 MPa und Temperaturen von 1100°C oder 1200°C für 4-

9 Tage durchgeführt. Die CO2-Gehalte der Proben wurde mit IR-Spektroskopie und coulometrischer 

Titration analysiert. Der Absorptionskoeffizient wurde durch die Beer-Lamberts Beziehung aus den 

coulometrischen Messungen und den Peakhöhen der IR Absorptionsbanden durch eine lineare 

Regression der Daten bestimmt. Ein linearer molarer Absorptionskoeffizient von 1232 � 36 l.cm-1.mol-

1 wurde für den molekularen CO2-Band bei 2346 cm-1 ermittelt (Fig. 3). Dieser Werte ist um 15% 

größer als der von Blank (1993) bestimmte Wert für rhyolitische Gläser und um 23% größer als der 

von Fine and Stolper (1985) bestimmte Wert für albitische Gläser. Als Folge sind der neuen 

Kalibration sind IR-spektroskopisch bestimmten CO2-Gehalte für rhyolitische Gläser um 15% 

niedriger als in vorherigen Arbeiten, die auf Blank’s Daten basieren. Es wurde keine Beeinflussung 

des molaren Absorptionskoeffizient durch gelöstes Wasser gefunden.  

Ein Schwerpunkt der Arbeit lag in der experimentellen Bestimmung der Wasser- und CO2-

Löslichkeiten in rhyolitischen Schmelzen in Abhängigkeit von Druck, Temperatur, und 

Zusammensetzung der Fluidphase (= CO2 + H2O). Ausgangsmaterialen waren trockene und 

kristallfreie Glasstücke, zu denen bidestilliertes Wasser und eine CO2-Quelle (entweder Oxalsäure 

oder Silberoxalat) zugegeben wurden. Die Fluidzusammensetzungen wurden nach dem Abschrecken 
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der Proben entweder durch Gaschromatographie oder Gravimetrie bestimmt. Wasser- und CO2 

Gehalte der Gläser wurden mit IR-Spektroskopie analysiert. Es wurde bei hohen Wassergehalten im 

Rahmen der Fehler eine lineare Abhängigkeit der Wasserlöslichkeit von Xf
H2O (Stoffmengenanteil von 

H2O in der Fluidphase) bei 200 MPa, und eine nicht-lineare Abhängigkeit von Xf
H2O bei 500 MPa 

beobachtet (Fig. 7). Bei 200 MPa ist bei allen Fluidzusammensetzungen eine negative 

Temperaturabhängigkeit der Wasserlöslichkeit vorhanden. Im Gegensatz dazu wechselt die 

Temperaturabhängigkeit bei 500 MPa von positiv bei Xf
H2O>0.75 zu negativ bei Xf

H2O<0.75. Die CO2-

Lösligkeit ist bei 200 MPa direkt ungefähr proportional zu Xf
CO2 (Stoffmengenanteil von CO2 in der 

Fluidphase). Bei 500 MPa dagegen zeigt die CO2-Lösligkeit eine starke nicht-lineare Abhängigkeit 

von Xf
CO2 (Fig. 8). Die maximalen CO2 Löslichkeiten wurden für die höchsten Xf

CO2 erhalten. Die 

Temperaturabhängigkeit der CO2-Löslichkeit in rhyolitischen Schmelzen ist nahezu vernachlässigbar 

bei 200 MPa und leicht positiv bei 500 MPa. Die experimentellen CO2-Daten sind durch 

thermodynamische Modelle ziemlich gut reproduziert. Im Gegensatz dazu sind die experimentellen 

H2O-Daten durch die Modelle entweder überschätzt oder unterschätzt (Fig. 9). Deshalb wurde ein 

neues empirisches Modell entwickelt, um die Wasserlöslichkeit in rhyolitischen Schmelzen im P-T 

Bereich von 75-500 MPa und 800-1100°C vorauszusagen. Das Modell wurde mit Literaturdaten zur 

Wasserlöslichkeit getestet (Silver et al., 1990, Zusammensetzungen PDIKS, KS); Holtz et al., 1992, 

1995, Zusammensetzungen AOQ, HPG8); Yamashita, 1999, Zusammensetzung WOBS); Behrens and 

Jantos, 2001, Zusammensetzungen EDF, LGB, OT, LP). Das empirisches Model reproduziert 48 über 

53 experimentelle Wasserlöslichkeiten innerhalb ±5.5% rel.. Zwei Experimente sind innerhalb �7.5% 

rel. (AOQ) und drei innerhalb �12.5-36% rel. (PDIKS, KS) reproduziert (Fig. 10). 
Ein weiterer zentraler Bestandteil der Arbeit waren experimentelle Untersuchungen zur CO2-

Diffusion in rhyolitischen Gläsern und Schmelzen in Abhängigkeit von  Druck, Temperatur und 

Wassergehalt. Dafür wurden drei Versuchsreihen mit drei verschiedenen Ausgangsmaterialen und 

zwei experimentellen Methoden durchgeführt: (1) Sorption von CO2 in  natürlichen, wasserarmen 

rhyolitischen Glasstücken bei Temperaturen von 580 bis zu 1000°C und Drucken von 100, 300 und 

500 MPa, (2) Sorption von CO2 in synthetisierten blasen- und kristallfreien, wasserhaltigen 

rhyolitischen Glasstücken bei Temperaturen von 580 bis zu 900°C und Drucken von 100 MPa, (3) 

Desorption von CO2 aus synthetisierten blasenhaltigen, aber kristallfreien rhyolitischen Glasstücken, 

in denen zuvor sowohl Wasser als auch CO2 gelöst wurde (Temperaturen: 580 und 630°C, Drücke: 

100 und 500 MPa). Nach dem Abschrecken der Proben wurden CO2-Profile senkrecht zur 

Plattenfläche mit einem IR-Mikroskop aufgenommen. CO2-Profile wurden unter der Annahme 

ausgewertet, dass sich der Diffusionskoeffizient von CO2 entlang des Profils nicht ändert (Fig. 11 bis 

13). Daten für natürliche wasserarme rhyolitische Zusammensetzungen können in dem ganzen 

Temperaturbereich bei 100 MPa durch der folgende Arrhenius Beziehung beschrieben werden:  
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DCO2 = 2.14 � 10-6 m2/s exp(-17945/T).  

 

Wenn 2.4 Gew% Wasser in dem Glas gelöst sind, dann vergrössert sich die CO2-Diffusivität bei 

100 MPa und 900°C um eine halbe Größenordnung. Der Einfluss des Wassers auf die CO2 Diffusion 

scheint bei niedrigeren Temperaturen sehr viel ausgeprägter zu sein. Bei Einbau von 2.5 Gew% wird 

die CO2-Diffusion bei 100 MPa und 580°C im Vergleich mit dem trockenen Glas sogar um 1.5 

Grössenordnungen beschleunigt (Fig. 15). Die Druckabhängigkeit von DCO2 ist relativ gering (Fig. 16). 

Die neuen experimentelle Daten sind konsistent mit früheren Ergebnisse und zeigen eine Ähnlichkeit 

der Diffusionsgeschwindigkeit von CO2 mit Ar. Die Zusammenstellung meiner Daten mit den von 

Watson (1991) und Blank (1993) erlaubt die Herstellung eines Modells, um die Diffusion von CO2 in 

rhyolitischen Schmelzen in Abhängigkeit von Druck, Temperatur und Wassergehalt zu berechnen: 

 

DCO2 = exp[(14.992-18.692�Xm
water)+(-19047.5+70193�Xm

water)/T-(0.632+7.543�Xm
water)P/T] 

 

Der Standardfehler für ln DCO2 liegt bei �0.59. Alle Daten werden durch das Modell innerhalb eines 

Faktors 4 reproduziert und 80% der Daten sogar innerhalb eines Faktors 2, wobei die 

Daten einen grossen Bereich der Temperatur (450-1100°C), des Druckes (72-1000 MPa) und des 

Wassergehaltes (0.13-11Gew%) umfassen. 
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Introduction 

Introduction  
 
 

Volcanoes since long exert a fascination on men, leading them in turn to fear, to revere, to 

domesticate and then to understand it. Volcanic eruptions sometimes correspond to deadly 

catastrophes, as for example eruptions that destroyed Santorin in the Egean sea in the XVIIth century 

B.C. and Pompei (Vesuvio) in 79 A.C. or eruptions of the Tambora in 1815 that killed 92 000 people, 

that of the Montagne Pelée in 1902 or that of the Nevado del Ruiz in 1985 that made 29 000 and 25 

000 victims, respectively. It appears from statistics recorded since the beginning of the XVIIIth 

century that volcanoes are not killing often, but dramatically. On an average, two cataclysmic 

eruptions occur per century. Volcanic eruptions are more especially killing as people keep living at 

their feet, sometimes neglecting all risks, because volcanoes are prosperity: they are source of valuable 

material (as ore deposits linked to ancient volcanism, native sulfur), energy, and indirectly source of 

abundant feeding (ashes are a recurrent rich natural fertilizer allowing intensive agriculture, and 

surroundings fresh or salty waters are enriched in nourishing elements from soil leaching favouring 

fish proliferation), of housing (troglodytic habitat, building stone), not to forget benefits from thermal 

waters. 

Among the seven risks acknowledged by the IAVCEI (International Association of Volcanology 

and Chemistry of the Earth’s Interior), namely lava flows, falls (volcanic ashes or bombs), pyroclastic 

flows, gas, lahars, landslides or avalanches, and tsunamis, pyroclastic flows are the most dangerous 

because of their instantaneity and power in the eruptive event. One of the causes of these eruptions 

explosive character is directly linked to the degassing abilities of the concerned magma. Degassing 

depends on magma composition and therefore on viscosity and density, temperature, volatile content 

and associated diffusivities, crystallisation degree, ascending rate, and the possibility of contact with 

another fluid phase (magma or different). The more difficult is the degassing, the more important is 

the eruptive character. This fact explains why explosive eruptions usually occur with felsic magma 

compositions (from dacitic to rhyolitic compositions). Volcanoes emit a lot of gases before, during and 

after eruptions. The main gases emitted from volcanoes are molecular combinations in the C-H-O-S 

system. Emissions occur from the crater as well as in a diffusive way from fractures in the volcano 

flanks (fumaroles) as well as simple emanations from the soil (mainly CO2). Injected in high 

atmosphere in great quantities, these gases may sensibly modify the world climate (as for example 

during the spring 1816, when snow falls were recorded in June all over North America and West 

Europe after the Tambora eruption of 1815). Explosive volcanoes are mostly concentrated in the 

geodynamic context of subduction as the circle of fire (Pacific) or other insular arcs (Caribbean, 

Indonesian, Egean, Tyrrhenean). 

Recent studies dealing with explosive eruptive dynamisms are oriented towards the understanding 

of degassing mechanisms taking place during the magma ascent, in order to define the conditions 
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under which this explosive character develops, and especially towards the definition of gas bubble 

nucleation, development conditions (Sparks, 1978), and consequences of nucleation on the magma 

physical, chemical and kinetic properties (e.g., viscosity). Workers explored different ways using: 

experimental petrology (e.g. Hurwitz and Navon, 1994; Navon et al., 1998; Liu and Zhang, 2000), 

experiments with analogue materials (e.g. Mourtada-Bonnefoi, 1998), analytical ways (e.g. Toramaru, 

1995; Lyakhovsky et al, 1996; Proussevitch and Sahagian, 1998; Navon et al., 1998). However, for the 

total understanding of the phenomena, it is necessary, in addition to the characterisation of the 

involving parameters and their varying interactions, to quantify their individual effects and variations.  

Volatile solubilities others than water (CO2 in particular) are still poorly documented, as for their 

diffusivities, and especially in felsic compositions. Now it appears that their role in the bubble 

nucleation can not to be neglected (Papale and Polacci, 1999) because of their low solubility in 

magmas (one of the reason why they stayed so long in the shadow) and especially because their 

presence is diminishing the water activity, diminishing in the same time its solubility and enabling its 

exsolution.  

The aim of my study is to contribute to a better understanding of volatile-bearing magmas. In 

particular the solubility and the diffusion of volatiles in magmas are investigated. On one hand the 

database for magmatic systems is increased by providing new information on the solubilities of water 

and CO2 in rhyolitic melts is increased for melts and magmas coexisting with binary H2O-CO2 fluids 

and the diffusivities of CO2 in the melt. On the other hand, new insights are obtained on the 

mechanism of volatile dissolution and migration in the melt. To quantify the CO2 concentration in 

quenched rhyolitic glasses by IR absorption spectroscopy, a new calibration was performed to 

determine the molar absorption coefficients for the molecular CO2 band at 2346 cm-1.  Implications of 

the new results for magmatic systems are discussed. 
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Ch. 1: Quantitative analysis of CO2 contents in rhyolitic glasses 
using IR absorption spectroscopy 

 

1. Introduction 
 

Researchers in the glass sciences have long applied spectroscopic methods to the quantitative 

determination of volatiles in silicate glasses (e.g. Harrison, 1947; Scholze, 1960, 1966; Ernsberger, 

1977; Bartholomew et al., 1980; Wu, 1980, see Ihinger et al., 1994 for a detailed review of analytical 

methods for volatiles in glasses). The measurement of water and CO2 contents by infrared 

spectroscopy relies on characteristic vibrations of hydrous and carbon-bearing species: e.g., 

combination bands of hydroxyl group and molecular H2O at 4520 and 5230 cm-1, respectively 

(Scholze 1960, Stolper 1982, Behrens et al. 1996) and characteristic absorption bands between 1325 

and 1625 cm-1 for carbonate group and 2350 cm-1 for molecular CO2 (cf. Mysen, 1976; Mysen et al., 

1976; Brey, 1976; Taylor, 1990; Fine and Stolper, 1985). The absorption peak heights of these bands 

obey the Beer-Lambert law. However, in the absence of good theoretical model for absolute peak 

intensities, a calibration of this method is required using standard samples with volatile contents 

determined by bulk techniques. Infrared spectroscopic studies only became a routine method for rapid 

and reliable analysis in geosciences since Stolper and co-workers refined and developed the near-

infrared (NIR) absorption technique in a series of studies on water speciation and solubility with melts 

and glasses of geological interest, later followed by many research teams (e.g. Stolper, 1982; Newman 

et al., 1986; Silver and Stolper, 1989; Stolper, 1989; Silver et al., 1990; Ihinger, 1991; Behrens, 1995; 

Nowak and Behrens, 1995; Yamashita, 1999; Zhang, 1999). Infrared spectroscopic studies have been 

also applied successfully to the investigation of dissolved CO2 in natural and synthetic silicate glasses, 

e.g., in the works of Fine and Stolper (1985, 1986). This technique has subsequently been used to 

measure carbon contents in natural samples from a variety of localities (e.g. Dixon et al., 1988; 

Newman et al., 1988; Stolper and Newman, 1994) and in synthetic glasses to produced in a wide range 

of experimental conditions (Fogel and Rutherford, 1990; Pan et al., 1991; Pawley et al., 1992; Blank et 

al., 1993).  

 
In this chapter, I have re-investigated the quantitative determination of CO2 contents in rhyolitic 

glasses by IR spectroscopy. In doing so, the linear molar absorption coefficient of the fundamental 

CO2 vibration band at 2346 cm-1 was re-calibrated using coulometric CO2 titration. 
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2. Synthesis of standards 
 

2 1. Starting material 
 

The starting material was an obsidian from Erevan Dry Fountain (EDF), Armenia. The glass was 

chosen because it contains only minor amounts of crystals (less than 1 vol%), very few bubbles, and 

little iron. Genesis and rheological properties of the EDF obsidian are described by Bagdassarov and 

Dingwell (1993) and Stevenson et al. (1995). The composition of the glass is almost metaluminous 

(Table 1), close to the natural rhyolitic compositions investigated by Blank et al. (1993) and Fogel and 

Rutherford (1990) and close to well characterised synthetic quartzofeldspathic compositions (such as 

HPG8 and AOQ, e.g., Holtz et al., 1995; Hess et al., 1995; Dingwell et al., 1998). A water content of 

the obsidian of 0.22 wt.% was derived from the peak height of the near infrared combination band at 

4520 cm-1 using the calibration of Zhang et al. (1997). A similar value (0.24 wt% H2O) was obtained 

from the peak height of the fundamental OH vibration band at 3550 cm-1 band using a linear molar 

absorption coefficient of 78 L.mol-1.cm-1 determined for haplogranitic glasses (Behrens and Schmidt, 

1998). No CO2 was detected by IR spectroscopy in the EDF starting glass. Sulfur content was 

analysed at SARM, CRPG-CNRS in Nancy (F) using coulometric titration and was found to be below 

the detection limit (50 ppm). 
 

2.2. Experimental procedure  
 

Glass pieces (ca. 1�3�15 mm, approx. 115 to 120 mg) were loaded with a CO2 source and 

double-distilled water into a Pt-capsule (inner diameter: 3-4 mm, wall thickness: 0.2 mm, length: 2.5-

3.5 cm). I chose to prepare mixed volatile bearing glasses because H2O enhances the CO2 diffusivity 

(e.g. Watson, 1991, 1994). The proportion of fluid in the charge ranged from 5 to 27 % (by weight). 

Different techniques were used to generate CO2 during the experiment. In the first set of synthesis, 

silver oxalate (Ag2C2O4) was loaded directly into the Pt-capsule. However, I found that Ag produced 

by decomposition of silver oxalate formed an alloy with the Pt-capsules, which can lead to leakage of 

the capsules. Therefore, in the further sets of experiments, silver oxalate was isolated from the Pt-

capsule walls. Furthermore, direct contact of the silver oxalate with melt must be avoided to limit the 

dissolution of Ag into the melt. To isolate silver oxalate, it was loaded into a small Pt-capsule (wall 

thickness: 0.1 mm, inner diameter 2.5 mm, length: 1-1.5 cm), which was carefully squeezed at both 

ends and placed beside the glass block. Silver oxalate was stored in a desiccator to prevent any water 

adsorption. However, some remaining water (< 1 wt.%) can not be avoided. During welding, the 

capsules were cooled using liquid nitrogen to prevent any loss of water or CO2. For each sample, the 

technique used to generate CO2 is specified in Table 2. 
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2.3. Run conditions 
 

Three sets of synthesis were performed in a vertically oriented internally heated pressure vessel 

(IHPV) pressurised with argon at 1100°C (Becker et al., 1998). Run conditions depended on the CO2 

and water content: 200 MPa/1100°C, 500 MPa/1100°C and 800 MPa/1200°C. The experiments were 

always fluid saturated. Run duration ranged from 4 to 9 days (Table 2). Temperature was measured 

with an accuracy of �10°C (taking temperature gradients and accuracy of thermocouples into account) 

using K type thermocouples and pressure with an accuracy of �5 MPa using a strain gauge 

manometer. 

Samples were quenched by turning off the heating power of the furnace resulting in an initial 

cooling rate of 150°C/min. All runs were quenched isobarically.  
 
 
 

3. Analytical techniques 
 

3.1. Sample preparation 
 

Three chips were cut off from the middle and both ends of the run products except for samples 1P 

and 2P, which were broken into several pieces after the experiment. In the latter case, I decide to pick 

up only one piece, thought to be the most representative one, in order to preserve enough sample for 

the bulk extraction. The chips were prepared for IR spectroscopy: doubly polished down to a thickness 

of 35 to 95 µm. The thickness of the polished sections was measured using a digital micrometer. An 

estimate of �0.0003 cm was assumed for the uncertainty in thickness. In addition, I used the thickness 

determination method described chapter 2 § 3.4.1. to measure the sample thickness. The rest of the 

sample was saved for bulk extraction. 

 

3.2. IR spectroscopy 
 

3.2.1. Analysis conditions 
 

Spectra were collected with a Bruker IFS 88 FTIR spectrometer coupled with an IR microscope 

A590. The spot size used in our measurements was approximately 80-100 µm (Nowak and Behrens, 

1997). Operation conditions were: light source - W lamp and Glowbar for NIR and MIR, respectively; 

beamsplitter - CaF2 and KBr, for NIR and MIR, respectively; detector - narrow band MCT with NIR 

equipment (range 600-10000 cm-1); number of accumulated scans - 100. For CO2 acquisition, 

increasing the number of scans up to 600 scans was tested with no improvement of the quality of the 
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spectra (no attenuation of scattering). In order to lower atmospheric effects, especially during MIR 

analysis, the sample stage of the IR microscope was isolated from the atmosphere in a chamber. Both 

the whole microscope and the chamber were purged with dry air. Furthermore, a new background was 

taken before each sample measurement.  
 

3.2.2. Spectroscopic determination of CO2 contents 
 

The quantification of the molecular CO2 was made using the heights (see Table 2) of the baseline 

corrected MIR absorption band at 2346 cm-1 as described in chapter 2 § 3.4.3.. 5 to 24 measures were 

taken to test the homogeneity of each section. The long-range homogeneity along the axis of the 

synthesis sample was tested by comparing the results with the other sections of the same sample. A 

typical MIR spectrum is displayed Fig. 1. 
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Fig. 1: Typical MIR-spectrum of a hydrous CO2-bearing sample. A spectrum of the natural 
water-poor glass is shown for comparison in dotted line. Sample thicknesses: 50 µm. 
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A major problem in our measurements has been that the IR beam could not be completely 

isolated from the atmosphere. Thus, the CO2 content of the air in the beam path may vary during the 

measurements. To quantify this variation, we have compared 92 spectra collected without sample. 

These spectra were recorded in two ways over a period of several days: (1) series of around 10 spectra 

without sample were recorded without opening the sample chamber of the IR microscope, (2) one or 

several spectra without sample were directly collected after the IR measurements performed on each 

glass sample. The variation in peak intensity was found to be random, suggesting rapid changes of 

atmospheric CO2 concentrations with time. Therefore, the average of 0.014 ±0.0010 absorbance units 

in peak intensity corresponding to the atmospheric CO2 band at 2349 cm-1 was used to determine the 

precision of our CO2 measurements.  

  

3.3. Bulk extraction 
 

The C contents of the glasses were measured by CO2-titration. A schematic illustration of the 

CO2-titration device (Deltromat 500, Deltronik) is given in Fig. 2. For clarity, not all details of the 

apparatus are included. The advantage of this method is that only small quantities of material are 

required to get a reliable analysis. Only 70 mg of material with a concentration of a few hundred ppm 

give reliable results. The method is based on the quantitative reaction of CO2 with barium hydroxide 

forming barium carbonate, which is insoluble in the aqueous liquid:  
 

OHBaCOOHCOBa sg 232

2 )()( 2 ����
��

 (1) 
 

The amount of hydroxyl groups necessary for this reaction is generated electrolytically 

(coulometric titration). The titration is controlled by the pH-value of the solution in the cathode cell 

(basic barium perchlorate). The pH-value is measured by a glass electrode with an Ag|AgCl half-cell 

as reference (Fig. 2). Hydroxyl groups are produced by the following reaction: 
 

OHHeOH ��

��� 222 22  (2) 
 

The CO2 content can be directly determined from the quantity of electrons required for the 

electrolyses. One mole of CO2(g) reacts quantitatively with one mole of Ba2+ and 2 moles of hydroxyl 

groups and, therefore, 1 mg of CO2 is equivalent to 4.39 coulombs. At the anode (chamber I, Fig. 2), 

the reaction (1) proceeds in the opposite direction. OH- is consumed by the following reaction: 
 

eOHOOH ��

��� 44 22  (3) 
 

The current stream is ensured by the flux of ions Ba2+ through the clay membrane (diaphragm) 

towards chamber II and I, respectively.  
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Fig. 2: Schematic illustration of the CO2-titration device (Deltromat 500, 

Deltronik). Item scale is not respected. See text for working 
explanations. 
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In principle, no standards are necessary for the calibration of this method. However, for the 

analyses of solid materials, additional steps are involved in the measurement procedure besides the 

titration itself. C must be released from the sample by heating and must be transported to the titration 

cell. Tests are necessary to guarantee that really the entire C content of the sample is detected. The 

materials used for testing were separately analysed by two others bulk extraction ways, in three 

different places, in Köln and Göttingen using coulometric titration, and in Bristol using a LECO CS-

300 (LECO® corporation, St Joseph, MI), based on IR measurements of carbon dioxide. All 

measurements are consistent within 5%. 

In standard measurements an air stream is used for oxidising carbon of the sample. Organic 

components from the air stream are oxidised in an oven heated up to 800°C. Soda lime pellets absorb 

the so-produced CO2 as well as the initially present CO2. Thus, the air stream is essentially C-free 

when reaching the sample and low background levels can be achieved (typical background: 0.0003 

�0.0001 units, corresponding to 1.5 �0.5 µg C, or 5.5 �1.8 µg CO2).  

For sample loading, the flow of air leading to the cell is interrupted and a counter flux of 

decarbonated air prevents contamination of the system by carbon species from outer atmosphere. The 

coarse grained sample is inserted in a ceramic crucible (12�80�9) which was pre-annealed for 5 min at 

1200°C. The crucible is placed in the hot zone of the tube furnace which is held at a constant 

temperature of ca. 1200°C. Temperature is measured by a thermocouple located close to the ceramic 

tube. After closing the chamber the apparatus is flushed with a flow rate of ca. 50 L/hour. On its path 

to the titration cell the gas stream passes through glass wool to remove any flowing particles as iron 

oxides, and PERHYDRIT® to oxide SO2. All C is released from the sample and carried off to the cell as 

CO2 gas within 90 s. The analyses are terminated automatically by the dead-stop method, if the 

titration current falls below 5 mA.  

The uncertainty on a single measurement given by the constructor is � 0.0004 units corresponding 

to 2 µg C. To test which accuracy of the determination can be obtained in practice, we performed 

repeated series of measurements using a similar sample mass of a given sample. We explore four 

different materials (TW64d, GD62, 22V and 45V) containing between 0.4 to 6 wt.% equivalent CO2. 

Standard samples analysis are given in Table 3. It comes out that the value given by the constructor 

can be taken as an appropriate estimate of the error of the C-content.  

A critical aspect in all decarbonation techniques for the determination of volatile contents is 

whether or not all CO2 is released from the sample. It is difficult to answer that question because IR 

spectroscopy could not be performed on the analysis products. I assumed, that the CO2 remaining in 

the glass structure was negligible after the heating. However, it can not be excluded that some CO2 

was still present in the glasses after extraction as observed for H2O after determining water contents in 

granitic and feldspathic glasses by Karl-Fischer titration (Behrens 1995).  

Another important problem in C analysis may be that C-bearing species are adsorbed on the 

sample surface as polluters before bulk extraction. Step heating was not possible with the Deltromat, 
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so that dissolved and adsorbed CO2 could not be discriminated. I consider this as a minor problem in 

my study because of the high CO2 contents involved (up to 3893 ppm versus 870 ppm in Blank’s 

study, 1993).  
 
 

4. Results and discussion 
 

4.1. Quenched products 
 
The run products were bubble- and crystal-free glass blocks, weakly coloured to colourless except 

for samples 1P and 2P, which came out almost red and broken into pieces. The coloration is due to the 

dissolution of Ag, and the breaking is the result of a too quick decompression.  

Absorbances from MIR spectroscopy and CO2 contents from the bulk extraction are given Table 

2. All chips, based on MIR spectroscopy, show a fairly homogeneous distribution of CO2 (absorbances 

on the same chip agree within 6%), with no detectable difference between rim and core of glasses 

outside the analytical error. An exception is sample std5, in which absorbances vary between 0.717 

(middle piece, showing itself differences up to 40% between core and rim) and ca. 0.950 (extremity 

pieces), for similar sample thicknesses. In this run, the fluid was extremely poor in water. I assume 

that the run duration was not sufficient to homogenise the melt. See chapter 2 § 4.1..  

In addition given Table 2 are water contents of the samples determined either by NIR 

spectroscopy (as described chapter 2 § 3.4.2.) or by KFT (as described chapter 2 § 3.3.). 
 

4.2. Calibration 
 

The relationship between the coulometric and IR measurements was evaluated by the Lambert-

Law using a linear, least squares regression of the data (Fig. 3) taking into account both errors of both 

the abscise and the ordinate. The molar absorption coefficient � for CO2 in rhyolite, ε2350, was 

determined from the slope of the line using the following expression: 

 
cCO2

2346

�
��  (4) 

where  

 
d
A

�

�
��

�

23464401
 (5) 

 
with cCO2 the CO2 contents of the glasses in wt%, A is the absorbance (peak height), ρ the glass density 

in g.l-1, and d the thickness of the doubly polished chips for IR measurements in cm. 
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First an average K value was determined for each chip (see Table 2), and then an average value 

was calculated for each sample. The latter one was used in the regression. The error on each K was 

determined by taking into account the error on the absorbance, as described in § 3.2.2., the error on the 

density as described in chapter 2 § 3.2., and the error on the thickness as explained in chapter 2 § 

3.4.1.. The error on the averages K for the regression is obtained by error propagation.  

All data are well reproduce by a signal regression line except of the sample std1, which has the 

lowest CO2-content. The water content of the other samples vary widely (0.5 – 6.8 wt%) and the 

consistency of the data indicate that water is not influencing noticeably the linear molar absorption 

coefficient. Data from Blank (1993) could not be included in the regression, because of the lack of 

clarity in the samples thicknesses. 

The value of ε2346 obtained in this study for rhyolitic glasses is 1232 �36 l.cm-1.mol-1. This value 

is 15% higher than the value of 1066 �20 l.cm-1.mol-1 determined by Blank (1993) for rhyolite and 

23% higher than the value of 945 l.cm-1.mol-1 determined by Fine and Stolper (1985) for albite 

composition (Fig. 3). CO2 concentrations reported in former works (Fogel and Rutherford, 1990 and 

Blank, 1993) should all be decreased by 23% and 15%, respectively. 
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Fig. 3: Determination of the molar absorption coefficient � for the CO2 band 
at 2346 cm-1 using bulk extraction and IR measurements. � is 
obtained by a linear, least squares regression of the data taking into 
account errors in both coordinates. Regressions of Fine and Stolper 
(1985) determined for albitic compositions and Blank (1993) 
determined for rhyolitic compositions are displayed for comparison. 
Outlier at low CCO2 may be explained by contamination from organic 
material of the sample used for coulometric titration.    
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Ch. 2: The solubility of H2O and CO2 in rhyolitic melts in 
equilibrium with a mixed CO2-H2O fluid phase 

 
 

1. Introduction 
 

Volatiles (especially water) dissolved in silicate melts influence dramatically the chemical and 

physical properties of magmas. Because of its high solubility in silicate melts, water is of particular 

interest for understanding properties of magmas. Water solubility in rhyolitic melts coexisting with 

pure H2O fluid were investigated by several authors in the last decades (see McMillan, 1994; Zhang, 

1999) using different techniques (see reviews in Ihinger et al., 1994; Kohn, 2000). CO2 is the second 

most important volatile which is usually present in natural magmas. The CO2 solubility in rhyolitic 

melts is not as well documented as the H2O solubility (see Blank and Brooker, 1994) because it is 

significantly lower than that of water. Its presence reduces significantly water solubility (Blank et al., 

1993) and can influence degassing processes. To model degassing during volcanic eruptions a detailed 

knowledge of mixing properties of volatile components in the fluid and in the melt is required. So far, 

only a few studies have been performed to investigate the solubility of volatiles in rhyolitic or in 

synthetic analogs  in equilibrium with mixed fluids melts (Wyllie and Tuttle, 1959; Kadik et al., 1972; 

Blank et al., 1993; Schmidt et al., 1998, 1999). Because of the lack of experimental data, the 

solubilities of H2O and CO2 are often calculated using the model of Holloway and Blank (1994). 

However, the application of this model is limited to relatively low pressure (<200 MPa). An 

alternative to this model is that of Papale (1999), which has not been experimentally tested in the 

pressure range 200-500 MPa. 

 

In this chapter, the solubility of H2O and CO2 was investigated at 200 and 500 MPa and 800 and 

1100°C to constrain the solubility behaviour of mixed fluids in melts of rhyolitic compositions. An 

empirical model to calculate the H2O content of the melt between 75 and 500 MPa as a function of the 

fluid phase composition, pressure and temperature is derived from our new data and solubility data 

from Blank et al. (1993). 
 
 

2. Sample preparation 
 

2.1. Starting material and experimental procedure 
 

The starting material was the same assimilated bubble- and crystal-free obsidian (EDF) that was 

used for the determination of the linear molar absorption coefficient described chapter 1 § 2.1..  
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Small glass pieces (1.5�2.5�5.5 and 1�2�5 mm, approx. 45 to 30 mg) were loaded with a CO2 

source and double-distilled water into a noble metal capsule (Au or Pt, inner diameter: 3-4 mm, wall 

thickness: 0.2 mm, length: 2-4.5 cm). The proportion of fluid in the charge ranged from 6 to 23 % (by 

weight). Different techniques were used to generate CO2 during the experiment depending on run 

temperature. For runs at 800°C silver oxalate (Ag2C2O4) was loaded directly into the Au-capsule. In 

the very first runs at 1100°C Pt capsules were used and showed some leakages. Therefore, as 

described chapter 1 § 2.2., silver oxalate when used as the CO2 source was isolated from the Pt-

capsule walls. An alternative source of CO2 used is oxalic acid (H2C2O4), produced by dehydration of 

H2C2O4 
• 2 H2O in a drying-oven at 105°C. Oxalic acid can be directly loaded in Pt-capsules as only 

volatiles (H2 and CO2) are generated by thermal decomposition. CO2 sources were stored in a 

desiccator to prevent any water adsorption. However, some remaining water (< 1 wt.%) can not be 

avoided. During welding, the capsules were cooled using liquid nitrogen to prevent any loss of water 

or CO2. For each sample, the technique used to generate CO2 is specified in Table 4. 
 
 

2.2. Run conditions 
 

Four sets of experiments were performed: 200 MPa/800°C, 200 MPa/1100°C, 500 MPa/800°C 

and 500 MPa/1100°C with run durations ranging from 3 to 12 days (Table 4). Two different kind of 

pressure vessels were used: (1) cold seal pressure vessel (CSPV) pressurised with water at 800°C, (2) 

vertically oriented internally heated pressure vessel (IHPV) pressurised with argon at 1100°C (Becker 

et al., 1998). Temperature was measured with an accuracy of �10°C (taking temperature gradients and 

accuracy of thermocouples into account) using K type thermocouples and pressure with an accuracy of 

�5 MPa using a strain gauge manometer. 

The oxygen fugacity in CSPV was buffered by the NNO (Ni-NiO) assemblage. An intrinsic 

oxygen fugacity (expressed as �logfO2) of NNO +2.3 was determined at 500 MPa and 850°C in the 

IHPV by Wilke and Behrens (1999) using Ni-Pd solid sensors (Taylor et al., 1992). The same 

technique was applied at 500 MPa and 1100°C and the calculated intrinsic oxygen fugacity was NNO 

+3.5.  

In CSPV, samples were quenched from experimental conditions to room conditions using a flux 

of compressed air and the initial cooling rate is approximately 200°C/min. In IHPV, samples were 

quenched by turning off the power resulting in an initial cooling rate of 150°C/min. All runs were 

quenched isobarically.  
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3. Analytical techniques 
 

3.1. Determination of the fluid composition after experiment 
 

The fluid composition after the experiment was determined by weighing the capsule using the 

following procedure: (1) the capsule was weighed, (2) the water from the fluid phase was frozen using 

liquid nitrogen, (3) the capsule was punctured with a needle, (4) after warming to room temperature, 

the capsule was weighed to determine the mass of CO2 (+N2 from air enclosed during loading the 

capsule), (5) the capsule was placed into a drying oven and subsequently weighed to determine the 

mass of water. The capsule weight-loss was periodically checked (approximately 10 min interval) until 

the weight remained constant. At this point, the water from the fluid phase was considered to be 

entirely extracted. The temperature of the drying oven was 110°C, except for glass samples with 

expected water concentrations exceeding 6 wt% H2O. For these glasses, the oven temperature was 

between 50-70°C.  

The mole fractions of H2O and CO2 in the fluid (Table 4) were calculated as follows:  
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In these calculations we take into account that atmospheric N2 was trapped in the experimental 

charge during preparation of the capsule. We estimate the resulting mole fraction of N2 in the fluid 

phase (Xf
N2) to be in the range 0.5 to 4 mol%. This variation is due to varying melt/fluid ratios and 

capsule lengths. The estimated Xf
N2 are consistent with the Xf

N2 determined by gas chromatography on 

the remaining fluid phase of similar solubility experiments performed with haplogranitic melts 

(Behrens, unpublished data). Furthermore, minor amounts of CO (< 0.12 mol%) were detected in CO2 

rich fluids. However, as concentrations of additional components are low we consider the fluid phase 

as a two-component gas mixture of CO2 and H2O. 

Using the gravimetric method (described above), the individual weights of CO2 and N2 could not 

be distinguished. Therefore, the enclosed N2 represents the main source of error in the determination 

of Xf
CO2 and Xf

H2O. To account for N2 we assumed an average Xf
N2 of 0.02 �0.02 for all experiments, 
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except for experiments with pure water where Xf
N2 was negligible (<0.01). As N2 and CO2 are 

measured together but H2O is measured independently the error is larger in Xf
CO2 than in Xf

H2O. The 

maximum error on Xf
CO2 is given by Xf

N2 in the fluid phase. The corresponding error on Xf
H2O, 

resulting from the difference in molar mass between N2 (28.01 g.mol-1) and CO2 (44.01 g.mol-1), is 

0.36�Xf
N2. To calculate the errors on Xf

CO2 and Xf
H2O given in Table 4, we have taken into account the 

weighing uncertainty (0.1 and 0.05 mg for CO2 and H2O, respectively) and the error induced by 

atmospheric N2 (0.02 and 0.007 mol% for CO2 and H2O, respectively). 

The gravimetric method was found to be accurate for fluid compositions 0.1 < Xf
H2O < 0.9. 

However, for extreme CO2 or H2O rich fluids, this method is not suitable because water and CO2 can 

not be properly separated. Therefore, in these cases we have used mass balance to determine the 

composition of the fluid phase. 
 
 

3.2. Density determination 
 

Densities of the rhyolitic glasses were measured by weighing the single glass pieces in air and in 

water. The principal error of the method arises from weighing the sample in water, where problems 

related to surface creep introduce 0.2 mg uncertainty, estimated by repeated measurements on 

standards. For the relatively small samples obtained in the solubility experiments (20-40 mg) the 

resulting error is typically 2% relative. Densities of a total number of 22 hydrous rhyolitic samples 

including two samples synthesised at 150 MPa were measured. The density data of 9 glasses obtained 

from our solubility experiments are given in Table 5. As already observed by several authors (e.g. 

Silver et al., 1990; Richet et al., 1996; Schulze et al., 1996; Behrens et al., 1996; Richet and Polian, 

1998) the dependence of density on water content can be modelled by a linear equation: 

waterCm ��� 0��  (8) 

where � is the density of the hydrated glass, �0, the density of the dry glass, m a constant and 

Cwater the total water content (expressed in wt%). An updated weighted least square regression was 

performed for the EDF rhyolitic composition using our 22 samples and data from Withers and Behrens 

(1999). The density data of Withers and Behrens (1999) are systematically higher than those 

determined in our study (Fig. 4). This deviation can be explained by the difference in synthesis 

pressure (Withers and Behrens, 1999: 500 MPa; this study: 150–500 MPa) and sample size (smaller 

samples and therefore higher uncertainty on density determination in our study), and a possible effect 

of dissolved CO2 in the glasses.  
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Fig. 4: Density-water content relationship for rhyolitic glasses. The linear fit 
of Withers and Behrens (1999) considers data of glasses synthesised 
at 500 MPa only (dashed line). In our new fit (solid line) we 
combined the data from Withers and Behrens with our new data 
obtained at 150, 200 and 500 MPa.  

 

Fitting all the data to equation (8) we have calculated �0 and m to be 2367.7 (�15.6) and -14.72 

(�3.50), respectively, for rhyolitic glasses (see Fig. 4). To be internally consistent, the glass densities 

required for determination of volatile concentrations from IR spectra always were calculated by this 

density-water content relationship. It is emphasised that the density-water content relationship defined 
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by Withers and Behrens (1999) may predict adequately densities at 500 MPa. However, to calculate 

densities of rhyolitic glasses produced over a wide pressure range (150-500 MPa), the new 

relationship is recommended.  
 
 

3.3. Karl-Fischer titration 
 

The water contents of some of the experimental glasses were measured by pyrolysis and 

subsequent Karl-Fischer titration (KFT). The apparatus and analytical technique are described in detail 

by Behrens et al. (1996). One or two chips of glass (15-30 mg) are heated to 1300°C in order to extract 

the dissolved water. The released water is transported by an Ar-flux to a titration cell and analysed by 

a coulometric method (KFT). Uncertainties in measured water contents were calculated on the basis of 

�0.02 µg.s-1 uncertainty in titration rate (Behrens et al., 1996), taking also into account a residual 

(unextracted) water content of 0.10 �0.05 wt% (Behrens, 1995).  

 
 
 

3.4. IR spectroscopy 
 

3.4.1. Sample preparation and analysis conditions 
 

Small pieces were cut from the middle of the sample and doubly polished down to a thickness of 

either 480-1000 µm for NIR or 35-125 µm for MIR spectroscopy. The thickness of each glass chip 

was measured using a digital micrometer. An estimate of ±0.0003 cm was assumed for the uncertainty 

in thickness. The thicknesses of the polished sections were in part difficult to measure with the 

micrometer due to bending of the glass. Therefore, we have used the interference fringes in the IR 

spectra for thickness determination of the samples investigated with MIR spectroscopy (Fig. 5). This 

method has the advantage that peak intensities and thicknesses are measured exactly at the same 

position of the sample.  
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Fig. 5a-c: (a) Typical MIR spectra of hydrous CO2-bearing rhyolitic glasses 

normalised to 100 µm thickness. A linear base line fitted to the feet of 
the CO2 peak was subtracted. A spectrum from natural EDF is shown 
for comparison (dashed line). For clarity, spectra of experimental 
glasses are plotted with x/y offsets. Numbers refer to the experimental 
runs in Table 2 and Table 3. (b) detail showing the interference 
fringes in the domain where sample thicknesses were determined. (c) 
detail showing the 1325-1625 cm-1 area where carbonate doublets 
were observed in glasses of other compositions. No evidence of 
carbonate could be found in any of the rhyolitic glasses. 

 
 

 

 

If the measurement beam is oriented perpendicular to the glass chip, the wavelength � of the 

interference fringes is given by: 

nd ��

�

2
1

� � (9) 

where d is the thickness and n the refractive index. This equation can not be directly applied for 

thickness determination because (1) the refractive indexes of the rhyolitic glasses are not exactly 

known in the MIR (only a value of 1.48<n<1.51 in the visible is given by Tröger, 1959) and (2) the 

beam of the IR microscope is focused at the sample position. Thus, the factor, which links the 

thickness and the inverse of the wavelength, has to be determined experimentally. Using a set of 53 

samples for which we have measured interference fringes in the range 2070-2270 cm-1 we found a 

linear relationship of d and 1/� (Fig. 6). By linear regression we obtained:  

� �
�

0024.03176.0 �
�d  (10) 

Equation (10) was used throughout our study for determination of thicknesses of MIR sections.  

See § 3.2.1. chapter 1 for a description of the devices used for spectra collection.  
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Fig. 6: Calibration curve of sample thickness as a function of the inverse 

wavelengths of interference fringes. 
 
 

3.4.2. NIR spectroscopic determination of water contents 
 

The concentrations of H2O and OH were determined from the heights (see Table 5) of the 

baseline corrected absorption bands at 5230 cm-1 and at 4520 cm-1 which are attributed to the 

combination stretching + bending mode of molecular H2O and combination stretching + bending mode 

of OH groups (Scholze, 1960; Bartholomew et al., 1980; Stolper, 1982) by using the Lambert-Beer 

law. We used an appropriate automated two linear tangent baseline subtraction method (described in 

detail in Withers and Behrens, 1999), to increase the reliability of the method. Linear molar absorption 

coefficients of 1.41 L.cm-1.mol-1 and 1.66 L.cm-1.mol-1 for the 4520 cm-1 and 5230 cm-1 bands, 

respectively (Withers and Behrens, 1999) are used to calculate the total water contents. 
 
 
 
 
 
 
 

33 



Chapter 2 

3.4.3. MIR spectroscopic determination of CO2 contents 
 

The concentrations of carbon species were determined from the heights (see table 5) of the 

baseline corrected MIR absorption band at 2346 cm-1 assigned to the fundamental ���vibration of CO2 

molecules (Fig. 5a). No carbonate species was detected in any of the rhyolitic glasses (Fig. 5c). This is 

consistent with former studies on CO2 solubility in rhyolite (cf. Fogel and Rutherford, 1990; Blank et 

al., 1993). The height of the 2346 cm-1 peak was determined using an automated linear tangent 

baseline subtraction method. We used the linear molar absorption coefficient of 1232 �36 g.cm-1.mol-1 

determined chapter 1.  

We encountered the same random unavoidable change in CO2 atmospheric concentration during 

measurements. The average peak intensity of the atmospheric CO2 band at 2349 cm-1 corresponding to 

0.014 ±0.0010 absorbance unit determined for our measurement conditions corresponds to an 

equivalent CO2 content of 19 ppm for a 100 µm thick sample. This is considered to be the precision of 

CO2 absorbance measurement.  
 
 
 

4. Results and discussion 
 

4.1. Quenched products 
 

The solid run products consist of clear, weakly coloured to colourless glasses (except sample 11, 

which contains up to 2 wt% Ag), which were mostly bubble and crystal free. Bubbles are only 

observed in two samples (Ech22 and Ech24) synthesised in an experiment, which was started twice 

(due to failure of the furnace), and are small and homogeneously distributed. Few crystals were 

observed at 800°C and 200 MPa for Xf
H2O<0.35 (Table 4). The crystals were too small to be analysed 

by microprobe but no noticeable change in the melt composition was observed. The composition of 

each glass was checked by electron microprobe for possible changes during the experiments. Only a 

loss of iron in experiments performed with Pt-capsules was observed, especially at rimes of the 

glasses. However, as the iron content in the starting glass is low, we assume that the depletion of iron 

has no significant effect on volatile solubilities. 

The H2O and CO2 contents of glasses are given in Table 5. All samples analysed by IR 

spectroscopy show a homogeneous distribution of water and CO2 with no detectable difference 

between rim and core of glasses within analytical error. An exception is sample Ech75 in which CO2 

concentration varied between 0.203 (core) and 0.254 wt% (rim). In this run the fluid was extremely 

water poor and we assume that the run duration was insufficient to homogenise the melt. This 

interpretation is supported by diffusion data (Watson, 1994; Zhang and Behrens, 2000) showing a 

strong decrease of CO2 and H2O diffusivity with decreasing water content in the melt. The CO2 
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solubility of Ech75 given in table 5 corresponds to the average of the five highest solubilities 

measured in rime of the sample. This value is assumed to be close to the equilibrium solubility.  

It can be noted that for water contents >7 wt%, the NIR spectroscopy method tends to under-

estimate water contents as shown by comparison to the KFT data (maximum difference: 0.77 wt%, 

Ech36). A possible explanation is that some water was lost during sample preparation (before 

polishing, samples are heated up to 60-70°C). This interpretation is supported by the results obtained 

for the most water rich sample (Ech49) which was not polished and for which the NIR and KFT values 

are almost within the error-bar. Therefore, we decided to take the KFT data as representative for the 

water solubility in water rich samples (Ech36, Ech49).  
 
 

4.2. H2O solubility 
 

Fluid compositions and the corresponding water and CO2 contents of the quenched glasses are 

presented in Table 4 and Table 5, respectively. At both 200 and 500 MPa, a square root dependence of 

water solubility on Xf
H2O is observed at low Xf

H2O (Fig. 7). At 200 MPa, a linear function between 

water solubility and Xf
H2O allows to model all data within uncertainty for 0.25<Xf

H2O<1. At 500 MPa, 

the water solubility shows a non linear dependence on Xf
H2O in the whole Xf

H2O range. The 500 MPa 

data indicate a point of inflexion at around Xf
H2O~0.5.  

The temperature dependence of water solubility is different at 200 and 500 MPa. At 200 MPa, the 

water solubility decreases with increasing temperature, regardless of the composition of the fluid 

phase. The water solubility variation as a function of temperature is constant in the investigated range 

of Xf
H2O (0.25<Xf

H2O<1) and corresponds to -0.16 wt% H2O per 100°C. This value is similar to that 

observed for a haplogranitic composition at Xf
H2O=1 (Holtz et al., 1992). At 500 MPa, the temperature 

dependence of water solubility changes from positive for Xf
H2O>0.75 to negative for Xf

H2O<0.75. 

Water solubility is found to be independent of temperature at a water content of approximately 7 wt%. 
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Fig. 7: Relationship between the mole fraction of H2O in the fluid phase and 
the concentration of total water dissolved in the melt at various 
temperatures and pressures. Solids lines are the fits of the data used 
for the empirical model developed in this study. Data from Blank et 
al. (1993) are shown for comparison. 

 

 

Behrens et al. (2000b) showed that the pressure at which water solubility at Xf
H2O=1 is 

independent on temperature depends on the melt composition and especially on the aluminum charge 

balancing cation (compare also results from Paillat et al., 1992; Holtz et al., 1995). For a subaluminous 

composition with approximately the same Na/K ratio as EDF, the water solubility at Xf
H2O=1 is 
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independent on temperature at approximately 350 MPa (composition AOQ, Holtz et al., 1995), which 

corresponds to a water content of about 8 wt%. This amount of water is close to the water content at 

which water solubility in rhyolitic melts coexisting with mixed fluids is independent on temperature at 

500 MPa (7 wt%). The small difference may be attributed to compositional differences of the melts 

and experimental uncertainties. Thus, for a given composition, the temperature dependence of water 

solubility does not depend on total pressure but on the prevailing fH2O.  

 
 

4.3. CO2 solubility 
 

CO2 solubility increases with increasing Xf
CO2 in the fluid phase (Fig. 8) and increasing pressure. 

The variation of CO2 solubility with Xf
CO2 is non-linear. The deviation from linearity increases with 

pressure and is espacially pronounced at 500 MPa. Extrapolating our data set to Xf
CO2=1, the 

maximum solubility are 0.09 � 0.01 and 0.24 � 0.03 wt% at 1100°C and 200 and 500 MPa, 

respectively. At 800°C, the melts are partially crystallised when using CO2 rich fluids (Xf
CO2 > 0.65 at 

200 MPa, Xf
CO2 > 0.5 at 500 MPa) and prediction of the solubility of pure CO2 is very uncertain.  

To compare our CO2 solubility data with those from Fogel and Rutherford (1990), we have 

interpolated their data, and for internal consistency corrected them taking into account the difference 

in absorption coefficient (Fogel and Rutherford used absorption coefficients for albitic glasses from 

Fine and Stolper, 1985). The so-obtained CO2 solubility for Xf
CO2 � 1 at 1100°C, 200 and 500 MPa are 

15-20 % lower than our extrapolated data (Fig. 8 and 9). The differences may result from experimental 

uncertainties in the study of Fogel and Rutherford (1990). Gradients of CO2 and/or H2O were observed 

even in long term experiments, and extrapolating the CO2 diffusion profiles to determine CO2 

solubility may underestimate the equilibrium solubility. Furthermore, the composition of the fluid was 

not analysed. As noted by the authors, the fluid contained minor amounts of H2O and possibly up to 30 

mol% CO. Assuming an Xf
CO2 of 0.7, the solubility data of Fogel and Rutherford are in a good 

agreement with our data. 

Within the uncertainty of the data, no obvious effect of temperature on CO2 solubility is observed 

at 200 MPa (Fig. 8). However, the data indicate a slight positive temperature dependence on CO2 

solubility at 500 MPa (for Xf
CO2<0.5). It is interesting to note that this effect of temperature on CO2 

solubility for Xf
CO2<0.5 differs from that observed by Fogel and Rutherford (1990) at Xf

CO2=1. These 

authors found that increasing temperature from 950 to 1150°C the CO2 solubility decreases at both 

200 and 500 MPa.  
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Fig. 8: Relationship between the mole fraction of CO2 in the fluid phase and 

the concentration of CO2 in the melt at various pressures and 
temperatures. Data from Fogel and Rutherford (1990) and Blank et 
al. (1993) are shown for comparison. Solid lines represent trends at 
1100°C and dotted lines at 800°C. The dashed line show the trend of 
the data obtained at 850°C and 75 MPa by Blank et al. (1993). 
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4.4. Comparison with calculations 
 

Figure 9 shows the experimental data for H2O and CO2 solubility in rhyolitic melts coexisting 

with H2O-CO2 fluids in comparison to predictions of thermodynamic models from Holloway and 

Blank (1994) and Papale (1999).  
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Fig. 9: Relationship between total water and CO2 contents dissolved in 

rhyolitic melt at various pressures and temperatures. Data from 
Fogel and Rutherford (1990) and Blank et al. (1993) are shown for 
comparison. The solid lines are isotherms fitted to experimental data 
at 1100°C. X values correspond to the mole fraction of water in the 
fluid phase. The dotted line labelled by HB2 shows the predictions of 
Holloway and Blank (1994) at 900°C-200 MPa and the dashed lines 
labelled by P2 and P5 the predictions of Papale (1999) at 900°C-200 
and 500 MPa, respectively. 
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The model of Holloway and Blank (1994) is based on the water solubility model of Burnham 

(1979) and the CO2 solubility models of Spera and Bergman (1980) and Stolper et al. (1987). The 

calculated data for rhyolitic melts at 200 MPa and 850°C are slightly lower than the water and CO2 

solubilities determined experimentally at 200 MPa and 800°C (approx. 8-10 % relative, for water 

solubility). The temperature dependence of volatile solubility is too small to account for this deviation. 

A possible explanation is the use of the model of Burnham (1979), which underestimates the water 

solubility, especially at high pressure (Holtz et al., 1995). Thus, the model of Holloway and Blank 

(1994) probably allows the prediction of H2O and CO2 solubilities with a precision better than �10% 

rel. below 200 MPa. It is emphasised that more significant deviations are expected if the model is used 

at higher pressures. At 500 MPa, the calculated and experimentally determined water solubilities for 

Xf
H2O=1 differ by 15% relative at 800°C. These differences are more pronounced at higher 

temperatures, because the strong positive temperature dependence of water solubility at 500 MPa is 

not predicted by the model of Burnham (1979).  

The model of Papale (1999) reproduces our experimental data at 200 and 500 MPa much better 

than the model of Holloway and Blank (1994) if the CO2 contents predicted are lowered of 15% (to 

account for the change in linear molar extinction coefficient). At 200 MPa, the predicted and 

experimental determined values agree within experimental error. At higher pressure, however, the 

model of Papale tends to underestimate the water solubility. For example, at 500 MPa our data for 

pure H2O solubility interpolated to 900°C are 1 wt% higher than the prediction of Papale (1999). It is 

interesting to note that despite the relatively small CO2 solubility database of the model, the 

predictions of CO2 solubility are close to our experimental data also at high pressure. 
 
 

4.5. Empirical model for water solubility between 75 and 500 MPa 
 

In order to improve the prediction of water solubility as a function of the fluid phase composition, 

we have developed an empirical model based on our data set and that of Blank et al. (1993). At a given 

temperature and pressure, the data plotted in Fig. 7 can be fitted adequately by an equation of the 

form: 

waterC wt A x B x C x( .%) .
� � � � � �

2 2 5 .0 5  (11) 

where Cwater is the total water content of the glass, A, B, C empirical coefficients, and x the 

composition of the fluid phase in equilibrium with the melt (x=Xf
H2O). The curves in Fig. 7 result from 

the fit of each data set to equation (11). 

At low water fugacity, the third term in equation (11) is dominating and water solubility varies 

with the square root of Xf
H2O. This is consistent with water speciation data that demonstrate that water  
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is preferentially incorporated in silicate melts as OH-groups at low water contents (Nowak and 

Behrens, 1995; Sowerby and Keppler, 1999). At high water fugacity, the first and second term in 

equation (11) becomes increasingly important. This behaviour may be related to increasing amounts of 

molecular H2O with increasing water content. 

To model the temperature dependence, a linear variation of water solubility as a function of 

temperature was assumed. Such a temperature dependence has been observed experimentally over a 

wide temperature range for P<500 MPa. As the data from Blank et al. (1993) are only given at 850°C, 

their data were extrapolated to 1100°C using the temperature dependence of water solubility found at 

200 MPa (Holtz et al., 1995, have shown that the temperature dependence of water solubility is almost 

identical between 50 and 200 MPa, at least for Xf
H2O=1). The pressure dependence has been modelled 

assuming a third order polynomial dependence of water solubility on pressure. The equation (11) can 

be rewritten as: 

water P T P T P TC wt A x B x C x( .%) , ,
.

,
.

� � � � � �
2 2 5 0 5  (12) 

where 

TPPPP
AAAAAA bbbaaaTPA ����������� )()( 22

, ������  (13a) 

TPPPP
BBBBBB bbbaaaTPB ����������� )()( 22

, ������  (13b) 

TPPPP
CCCCCC bbbaaaTPC ����������� )()( 22

,
������  (13c) 

The values of the empirical coefficients��i,j, �i,j, �i,j are given Table 6. P is given in MPa, and T in °C.  

The empirical model reproduces our data within ±2.5% relative, except at 500 MPa, 1100°C 

(±5% rel.). We have tested the validity of the model from experiments performed in synthetic and 

natural rhyolitic compositions obtained for Xf
H2O=1 in the pressure range 75-500 MPa and temperature 

range 800-1100°C. The data sets that have been considered are from: Silver et al. (1990, compositions 

PDIKS, KS), Holtz et al. (1992, 1995, compositions AOQ, HPG8), Yamashita (1999, composition 

WOBS), Behrens and Jantos (2001, compositions EDF, LGB, OT, LP). All the compositions are 

quartzofeldspathic or close to subaluminous rhyolitic compositions. The empirical model reproduces 

48 of 53 experimental water solubility data within ±5.5% rel.. Two experiments are reproduced within 

�7.5% rel. (AOQ) and three are within �12.5-36% rel. (PDIKS, KS). The comparison of calculated 

and experimentally determined water solubilities for Xf
H2O=1 is shown in Fig. 10.  

It is emphasised that this model is valid only between 75 and 500 MPa and 800 and 1100°C. As 

polynomians are used in the model an extrapolation out of this range has a large error, e.g., the 

calculated water solubility at 800°C and 800 MPa is 20 % lower than the experimental solubility 

determined for haplogranitic melts (Holtz et al., 1995). Although our model is empirical, we believe 

that it is nethertheless useful for application in geoscience to predict water solubilities in rhyolitic 

melts at various Xf
H2O because it has high precision and can be easily run.  
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Fig. 10: Comparison of water solubilities calculated from the empirical 

model given by equation (7) with experimental water solubility data 
in the range 75 < P < 500 MPa and 800 < T < 1100°C. The model 
reproduces most of water solubility data within �5.5%.  
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Ch. 3: Diffusivity of CO2 in rhyolitic melts 
 

1. Introduction 
 

Papale and Polacci (1999) have shown the importance of the relative insoluble CO2 component in 

the location of the volatile-saturation and magma-fragmentation levels as in the distribution of the 

flow variables in the volcanic conduit. In order to understand and furthermore to model the dynamics 

of magma ascent, it is necessary to constrain parameters like viscosity of the melt, volatile contents 

(solubilities) and diffusivities. Viscosities as well as water solubilities are well documented (e.g. for 

viscosities Persikov, 1991; Lejeune and Richet, 1995; Schulze et al., 1996; Holtz et al, 1996; Dingwell 

et al., 1998; Lejeune et al., 1999; and for water solubilities see McMillan, 1994; Zhang, 1999). The 

chapter 2 of the present study provide an extensive CO2 data set in addition to few previous studies (cf. 

chapter 2). However, only two previous works concern CO2 diffusivity in rhyolitic compositions 

(Watson, 1991 and Blank, 1993, an abstract of latter one was published by Blank and Zhang, 1991).  

In order first to improve our knowledge on the CO2 diffusivities and second to constrain the effect 

of temperature, pressure and water content on CO2 diffusion, I performed three different types of 

experiments on nominally anhydrous and water-bearing samples at temperatures ranging from 580°C 

to 1000°C and at pressures of 100, 300 and 500 MPa. This chapter exposes the experimental results 

and suggests a model for the prediction of CO2 diffusivities as a function of temperature, pressure and 

water content, derived from my new data and CO2 diffusivities reported by Watson (1991) and Blank 

(1993). 
 
 

2. Starting materials 
 

2.1. Natural CO2-free and water poor glasses 
 

The starting material was the same bubble- and crystal-free obsidian (EDF) that was used in 

previous chapters. See chapter 1 § 2.1. for a precise description of that glass. 

 

2.2. Synthesis of hydrous glasses 
 
A large hydrous glass (25 mm in length and 5 mm in diameter) was synthesised from anhydrous 

EDF and doubly distilled water, using an internally heated pressure vessel (IHPV). A 1:1 mixture of 

EDF powder with different grain size (200-500 µm and <200 µm) was sealed in a platinum capsule 

and held at 1225°C and 500 MPa for 17 hours to produce a glass containing 2.2 wt% water. The 

obtained glass is crystal- and bubble-free with a lighter brown coloration than the natural obsidian, 
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suggesting that a part but not all of the iron was lost from the melt into the capsule walls during the 

experiment. Presence of CO2 in the glass was checked with middle infrared spectroscopy and was 

found to be ca. 0.010 wt%. I assume that this CO2 is due to air and impurities enclosed in the capsule 

during the synthesis of the hydrous glass.  
 

2.3. Hydrous CO2-bearing glasses 
 
A large hydrous and CO2-bearing glass (25 mm in length and 6 mm in diameter) was synthesised 

in two steps:  

(1) Synthesis of a CO2-bearing glass from anhydrous EDF and oxalic acid as the CO2 source 

using an IHPV. A 1:1 mixture of EDF powder with grain sizes of 200-500 µm and <200 µm 

was sealed in a platinum capsule and held at 1100°C and 500 MPa for 10 hours to produce a 

glass containing 0.18 wt% CO2 (by IR spectroscopy). The produced glass was brittle, showed 

a large amount of vesicles (attributed to the air enclosed in the capsule) and a clear concentric 

colour partition: a colourless ring, ca. 1 mm thick enclosed a dark brown core. I interpret this 

being the result of a total loss of iron in the rim. Ghost grain boundaries are visible by optical 

microscopy. This is attributed to absence of convective flow in the capsule due to the high 

melt viscosity. 

(2) Synthesis of hydrous CO2-bearing glass using the glass obtained in step (1), the carbon-free 

starting rhyolite and doubly distilled water. Carbon-free and carbon-bearing glasses were 

mixed in a ratio of 1:1. Again both constituents are composed of 1:1 mixtures of grain size 

fractions 200-500 µm and <200 µm. The reagents were sealed in a platinum capsule and held 

at 1100°C and 500 MPa for 10 hours in an IHPV. The CO2 and water contents of the run 

product were not analysed, to preserve enough material for the diffusion experiments. The run 

product is a greenish glass enclosing large amounts of spherical vesicles which can be 

distinguished in three main families: (a) small vesicles (ca. 1 µm in diameter) occurring in 

clouds inside the glass, outlining the remaining ghost grain pattern (b) randomly distributed 

large vesicles (ca. 15 µm in diameter),  (c) few very large vesicles (ca. 80 µm in diameter) 

which are also randomly distributed. The proportion of bubbles is difficult to estimate because 

of inhomogeneities caused by the ghost grains. The colour change of the sample is suggesting 

a change in the oxidation state of iron from Fe3+ to Fe2+. Inhomogeneities in bubble size 

suggest that in addition to air bubbles (usually identified by their inhomogeneous size and 

random distribution), there must be bubbles of partly exsolved CO2. I attribute this phenomena 

to the addition of water combined with a relative short experimental duration (equilibrium 

could not obtained). Initial inhomogeneities of the volatiles in the sample could not equalise 

and parts of the sample were still fluid-oversaturated at the end of the synthesis. In addition to 

the spherical vesicles, some dark irregular-shaped inclusions of a size of ca. 30-40 µm are 
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disseminated all over the sample. I attribute them to the result of pyrolysis of some foreign 

organic material that initially polluted the glass powder during grinding.   
 

3. Experimental and analytical procedures 
 

3.1. Desorption experiments 
 
Desorption experiments were conducted in a rapid-quench cold seal pressure vessel (CSPV) 

pressurised with argon. Samples were rapidly quenched by turning the furnace upside down so that the 

sample drops into the water-cooled part of the vessel. The heating-up duration was about 30 min. The 

estimated cooling rate was about 30°C/s (Zhang and Behrens, 2000). In these experiments doubly 

polished plates (ca. 2�2.5�5 mm) from the hydrous CO2-bearing glass were directly exposed to the 

pressure medium Ar. Thus both, water and CO2, diffused out of the sample and Ar diffused into the 

sample. In the experiment, a piece of glass was fixed in an open gold capsule, one polished face in 

contact with argon, the other in part loosely covered by gold. The capsule was clamped into a groove 

at the tip on a Ni rod. The assemblage is then placed into the CSPV, and brought to the specified 

pressure and temperature. Temperature was measured with a K-type thermocouple with a typical 

fluctuation of �3°C over the course of an experiment. Accuracy of temperature is estimated to be 10°C 

(including sample position uncertainty) and accuracy of pressure to be 50 MPa. The pressures and 

temperatures investigated are reported Table 7. 

Desorption experiments can not be conveniently conducted over a large range of temperatures 

and water contents, because of sample crystallisation and sample flow. Hydrous samples rapidly 

crystallise above 630°C and deformation by viscous flow becomes important above 900°C. Water-

poor rhyolitic glasses also show noticeably crystallisation after long term experiments at temperatures 

between 630 and 800°C but their shape remain usually unchanged towards higher temperature (due to 

high viscosities) so that sorption and desorption experiments are possible even above 1000°C (Behrens 

and Zhang 2001). Typical run temperatures suitable for desorption runs are around 600°C �100°C for 

samples containing from 1 to 4 wt% water, depending on pressure and composition investigated. To 

investigate CO2 diffusion over a wide range of temperature, it is therefore needed to combine this 

method with others. 
 

3.2. Sorption experiments 
 
Sorption experiments were conducted in a standard CSPV pressurised with argon. Samples were 

quenched from experimental conditions to room conditions using a flux of compressed air. The initial 

cooling rate was approximately 200°C/min. Temperature was measured with a K-type thermocouple 
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in a bored hole of the autoclave. Accuracy of temperature and pressure are the same as for the 

rapid quench CSPV. Pressures and temperatures investigated are reported Table 7. 
 

3.2.1. Sorption in dry glasses 
 
The natural water-poor and CO2-free EDF glass was cut into plates 1�4�4 mm in size, doubly 

polished and corners slightly rounded. Glass pieces were loaded with silver oxalate as the CO2-source 

(isolated in a separate capsule made of the same noble metal that the outer capsule, similarly to what is 

described chapter 1 § 2.2.) into a noble metal capsule (Au or Pt, depending on the P-T conditions, 4 

mm inner diameter; 0.2 mm wall thickness; 2.5 mm length). During welding, the capsules were cooled 

using liquid nitrogen to prevent any loss of CO2. 

 

3.2.2. Sorption in hydrous glasses 
 
Slices (4�5 mm, 2 mm in thickness) were cut off the synthesised hydrous glass and doubly 

polished. Glasses were loaded with water and silver oxalate as the CO2-source (isolated in a separate 

Au-capsule, similarly to what is described chapter 1 § 2.2.) into a Au-capsule (4 mm inner diameter; 

0.2 mm wall thickness; 2.5 mm length). The water content of each slice was determined by near 

infrared spectroscopy (as described in chapter 2 § 3.4.2.) and is reported in Table 7. The H2O/CO2 

ratio in the vapour phase was adjusted to be close to the equilibrium value corresponding to the water 

content of the glass to prevent water diffusion in or out off the melt during the run. The equilibrium 

mole fraction of water in the fluid (Xf
H2O) was calculated using the empirical equation derived in the 

solubility study (chapter 2). For most of the sorption experiments the conditions are in the P-T range 

as used for solubility experiments so that the equilibrium fluid composition could be reliably 

predicted. In one case (run h15834j at 580°C) a large extrapolation of the water solubility equation 

towards low temperature was required. In this run Xf
H2O was too high and water diffused into the glass. 

During welding, the capsules were cooled using liquid nitrogen to prevent any loss of water or CO2. 

After the run, the final Xf
H2O was checked by gravimetry. Xf

H2O before and after experiment are 

reported in Table 7. 

 
 

3.3. IR spectroscopy 
 
After quenching, the glass piece was sectioned perpendicular to its polished surfaces near the 

center. This provided a glass slice with the complete diffusion profile. The slice was then doubly 

polished down to a thickness of 40-312 µm (see Table 7). CO2 concentration profiles were determined 

from IR spectra measured with an IR microscope A590 connected to a FTIR spectrometer Brucker 
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IFS88. A slit aperture between the objective and the detector was used to limit the analysis sample 

volume. In the focus plane, the area selected by the slit was typically 16-29 µm wide and 100 µm long 

(the width of the slit used for each measurement is specified Table 7). The sample was fixed to a 

translation stage, and the slice aligned so that the rim was parallel to the slit. The slide can be moved 

in x and y direction by micrometer drives. The position of the rim of the sample was read on the 

micrometer display (precision �10 µm) and on the ocular scale of the microscope to define the start 

point of the diffusion profile. The distance away from this start point was determined using the 

microscope reading when the rim is still in view (� 180 µm, with a precision of �5 µm). Longer 

distances were determined from the difference between the micrometer reading at the start point and 

that at the position measured. Positions measured in this way are reproducible to better than 20 µm on 

a 1000-µm distance. The microscope scale was calibrated in each measurement by regressing the 

microscope reading and the micrometer reading at distances of �180 µm. This insured self-consistency 

of the two methods. There are two difficulties near the edge of the slices. One is that the base planes of 

the polished slices are never perfectly flat near the edges due to chipping during cutting and polishing. 

The second is that the edge may not be perfectly vertical (e.g. due to flowing of the melt during the 

experiment), leading to uncertainties in distance determinations. Hence, the uncertainty on the distance 

from the start point can be much larger than the 5 µm cited above, and CO2 concentrations could 

usually only be measured precisely at more than ~ 30 µm from the edge, the exact distance depending 

on the particular glass wafer. 

CO2 concentrations were determined from the peak height of the absorption band at 2346 cm-1 as 

described in chapter 2 § 3.4.3. using the linear molar absorption coefficient determined Chapter 1. The 

relative precision of CO2 concentrations along one profile is about 6 %. The problem of the random 

background in the spectra due to atmospheric CO2 (encountered in Chapter 1 and 2) is not that critical 

because of the large relative changes of CO2 concentration along the diffusion profile. Thus, no special 

care in regard to atmospheric CO2 was required to protect the samples during measurements. 
 
 

4. Results  

4.1. Quenched products 

4.1.1. Desorption experiments 
 
All samples came out with brown coloration, mainly non-deformed, but sometimes slightly 

smoothed (from very long time experiments). The change in color from greenish to brownish is 

suggesting a re-oxidation of iron in the glass. The implications of a change in the valence of Fe on the 

CO2 diffusivity/solubility are not known and can not be elaborated from the results of this study, 

though it may be important. The sections prepared for IR slides showed the same features as the 
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starting glasses, namely large amounts of bubbles inhomogeneous in size and distribution, with 

apparent ghost grains. Raw inspection by microscope suggests that bubbles change neither in size nor 

in number. However, in detail it is impossible to exclude changes in the sample due to the 

inhomogeneous initial distribution of bubbles in the starting glass on a large scale. In first 

approximation I assume the bubbles being unchanged during the run so that diffusion occurs in an 

effective medium composed of bubbles and glass. However, in a more precise evaluation partitioning 

of CO2 between the bubbles and the glass has to be taken into account. This problem is discussed by 

Behrens and Zhang (2001) for Ar diffusion vesicle-bearing rhyolitic glass.  
 

4.1.2. Sorption experiments 
 
Diffusion experiments conducted with dry glasses produced clear (bubble- and crystal-free) light 

brown quenched products. Diffusion experiments conducted with hydrous glasses all produced 

bubble-bearing crystal-free light brown glasses. Two kinds of bubble distribution have been observed: 

(1) a ca. diffusion-length thick ribbon of numerous very small bubbles (upper rim on the right part of 

Photo 1) and (2) non-homogeneously distributed bigger bubbles, leading to ghost-grain patterns (right 

part of Photo 1). A possible explanation of the former kind of bubbles may be directly linked to CO2 

diffusion into the hydrous glass, as assumed by Mourtada-Bonnefoi (1998). The temperature 

dependence of volatile solubility is changed through CO2 penetration, so that a local oversaturation 

occurs during quenching. Therefore, I assume that these bubbles do not much alter diffusivity results. 

The later kind of bubbles may be due to the different temperatures at which glass synthesis and 

diffusion experiments were performed. At the temperature of the synthesis, the air enclosed in the 

capsule between grains was dissolved in the melt, leading to a bubble-free quenched product. The 

temperature dependence of nitrogen (the major constituent of air) solubility in hydrous rhyolitic melts 

is unknown (see Carroll & Webster 1994) so that it only can be speculated about the evolution of a N2 

and H2O bearing melt during cooling and low-temperature annealing. An explanation for the large 

bubbles and the ghost pattern in the interior of the diffusion samples may be a retrograde decrease in 

volatile solubility. An exception is sample h18718h (conditions: 870°C, 100 MPa, 65336 s) for which 

ghost-grain patterns didn’t occur. I assume that in that case the experimental duration was long enough 

to reach homogenisation of the melt.  

All dry glasses processed at temperatures 	900°C and all hydrous glasses processed at 

temperatures 	800°C became rounded at the edges and the sample thickness increased by up to 26%, 

depending on the P/T conditions of the experiments. The assumption made by Behrens and Zhang 

(2001) in Ar diffusion experiments with rhyolitic melts that the deformation occurs mainly at the 

beginning of the diffusion experiment and, therefore, is not dependent on the experimental duration, 

could not be verified in my study. However, I consider that thickening did not dramatically alter 

diffusivity results if the measurements are taken in the central area of the plate. Deformation was 
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especially dramatic for sample h1876h, (Photo 1). I assume that the convections appeared during the 

short over-heating of the sample. However, it is noteworthy that the diffusion rim (as indicated by the 

zone with small bubbles) has a similar width around the sample and along the cracks. Therefore, I 

suggest that measurements of diffusion profiles perpendicular to planar areas of the samples are a good 

approach to quantify CO2 diffusion.  

 

                  

                

 Photo 1: dramatic deformation of sample h1876h. 
 
 
 

4.2. Effective duration at the experimental temperature 
 

All experimental durations have been corrected to take into account the effect of diffusion during 

heating up and cooling down. Time corrections were made as described by Zhang and Behrens (2001) 

assuming a constant activation energy of diffusion in the whole temperature range. Integrating the 

diffusivity over time and dividing the results by the diffusivity at run temperature DTexp gives the 

effective duration teff of the experiment: teff = 
Ddt/DTexp. The uncertainty in this treatment results from 

that in the activation energy of diffusion.  
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4.3. Determination of diffusion coefficients 
 
Diffusion profiles were analysed for 5 desorption experiments and 16 sorption experiments 

(including 6 experiments with hydrous glasses). In most of the samples I realised a transverse 

measurement, so that I obtained two diffusion profiles at two opposite locations. Total water profiles 

as by-products in desorption experiments were also measured by MIR spectroscopy, using the peak 

height of the fundamental –OH stretching vibration at 3550 cm-1, converted to concentrations using a 

molar absorption coefficient of 78 l.mol-1.cm-1 determined by Behrens and Schmidt (1998) for a 

haplogranitic glass. Unfortunately, water diffuses much faster than CO2 (Zhang and Behrens 2000, 

Behrens and Zhang 2001), and the samples were not thick enough to produce semi-infinite diffusion 

profiles of both H2O and CO2. As the experiments were optimised to measure CO2-diffusion, none of 

the water diffusion profiles enables a reliable determination of water diffusion coefficients (because all 

water diffusion profiles were much longer than half of the sample thickness). Nevertheless, the water 

profiles are very useful for a precise determination of the true density of the glass, needed in the 

quantification of peculiar CO2-contents. In the same way, water contents were taken into account in 

the density determination of hydrous samples. All densities were determined using equation (8), 

defined in chapter 2. Water contents of the samples are listed in Table 7.  

 

4.3.1. Sorption in dry glasses 
 

I considered as dry material samples from sorption experiments containing less than 0.6 wt% and 

samples from desorption experiments, because water contents were low close to the surface, in the 

crucial part of the profile. CO2 profiles were evaluated assuming a constant surface concentration in 

the glass C0,CO2 and a concentration-independent diffusion coefficient DCO2. If the initial concentration 

of CO2 in the glass is zero (in sorption experiment), the solution of Fick’s second law for one-

dimensional diffusion into a plate of thickness 2� is (Crank, 1975, eqn. 2.15): 

        
tD

xerfcCC
CO

COCO

2

22 4,0�  (14) 

where CCO2 is the concentration of CO2 at the distance x from the center and t the run duration, and 

erfc(x)=1-erf(x). To fit the profiles, C0,CO2 and DCO2 were adjustable parameters. C0,CO2 can be 

interpreted as the equilibrium solubility of CO2 at the experimental conditions. Fitted values of C0,CO2 

are mostly in the magnitude order of CO2 concentrations expected from the solubility study (chapter 

2), though not accurately reproducible (up to 38% variations in the C0,CO2 recorded, see Table 7). Thus, 

this method does not enable accurate C0,CO2 determination due to the uncertainty in extrapolation of the 

profile to the surface and in the determination of the surface position (see Fig. 11).   
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Fig. 11: Concentration-distance profile of CO2 in a natural rhyolitic glass 
after CO2 sorption. Profiles on both sides were fitted independently 
with eqn. (14). Black symbols indicate data used to fit the profile on 
the left and grey symbols indicate data used to fit the profile on the 
right. 

 

 

Assuming that the surface concentration is zero in the desorption experiments the solution of 

Fick’s second law for one-dimensional diffusion is (Crank, 1975): 

        
tD

xerfCC
CO

COCO

2

22 4
)(

,0
��

�  (15) 

where CCO2 is the concentration of CO2 at the distance x from the surface, C0,CO2 is the CO2 content in 

the middle of the sample, and � is the deviation between the starting point of the profile (where 

CCO2=0) and the surface of the sample. To fit the profiles, C0,CO2, �, and DCO2 were adjustable 

parameters. � was always within 12 µm, which is roughly the uncertainty in the measurement location. 

The CO2 profiles of all but two (samples s39028h, s59014h) sorption experiments are well fitted 

by equation (14). Even experiments at high temperature in which flow of the sample occurred do not 
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show any systematic deviation between data points and the fitted curve. This supports the conclusion 

that CO2 sorption is then still controlled by diffusion and that flow of the sample during experiment 

has no significant influence on CO2 transport into the glass. An example of such a profile and fit is 

displayed Fig. 11. All Profiles and fits are displayed in annex 2, Fig. 1(a-i). The small variations in 

water contents do not produce significant deviation from the CO2 profile from simple error function 

shape. Samples s39028h and samples s59014h show overlapping profiles. The solution of Fick’s 

second law for one-dimensional diffusion is in that case (Crank, 1975) written as: 

        
�
�

�

�

�
�

�

� �
��

�
�	 )

4
1()

4
1(

22

22 ,0 tD
xerf

tD
xerfCC

COCO
COCO

��
 (16) 

where CCO2 is the concentration of CO2 at the distance x from the center and t the run duration. To fit 

the profiles, C0,CO2 and DCO2 were adjustable parameters. C0,CO2 can be again interpreted as the 

equilibrium solubility of CO2 at the experimental conditions. � is a fixed parameter (2 � being the 

sample thickness), corresponding to the distance from one surface of the sample to the crossing point 

of the 2 overlapping diffusion profiles. Still sample s59014h is not perfectly fitted (annex 2, Fig 1-h). 

This may be attributed to a slight overlapping in the third direction.  

The CO2 profiles of all desorption experiments are well fitted by equation (15). Initial sample 

heterogeneities are sometimes occulting parts of diffusion profiles. I chose either to select the best 

representative points for the fit (Fig. 11) or to neglect the whole profile (e.g. sample d16317j, annex 2 

Fig. 2-b: only one profile could be fitted). All Profiles and fits are displayed in annex 2, Fig. 2(a-d). 
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Fig. 12: Concentration-distance profile of CO2 in hydrous CO2-bearing 
rhyolitic glasses after CO2 desorption. Profiles on both sides were 
fitted independently with eqn. (14).  Points chosen for the fit are 
shown in black. Surfaces of the sample are shown by two vertical 
dotted lines. 

 
 

4.3.2. Diffusion in hydrous material 
 
CO2 contents of the profiles were evaluated assuming a water-dependent density of the sample. 

CO2 profiles were evaluated assuming a constant surface concentration in the glass C0,CO2 and a 

concentration-independent diffusion coefficient DCO2. All my samples contained some CO2 before 

diffusion experiments were conducted (cf. this chapter § 2.2.). The solution of Fick’s second law for 

one-dimensional diffusion in that case is (Crank, 1975): 

        
tD

xerfcCCC
CO

COiiCO

2

22 4,��  (17) 

where CCO2 , x and t are the same parameters as in equation (14). To fit the profiles, Ci,CO2 and DCO2 

were adjustable parameters. Ci is the initial CO2 content of the sample which can be measured in the 
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center. C0,CO2 = Ci,CO2 + Ci can be interpreted as the equilibrium solubility of CO2 at the experimental 

conditions. Fitted values of C0,CO2 are again mostly in the magnitude order of CO2 concentrations 

expected from the solubility study (chapter 2), though still not accurately reproducible (up to 38% 

variations in the C0,CO2 recorded, see Table 7). All samples but sample h15834j are well fitted by 

equation (17). An example of such a profile and fit is displayed Fig. 13.  
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Fig. 13: Concentration-distance profile of CO2 in hydrous rhyolitic glass after 
CO2 sorption. On this sample, only one profile could be used and 
was fitted with eqn. (17). Points chosen for the fit are shown in 
black. Note that the core of the sample is not CO2-free. See text for 
more details. 

 

 

Sample h15834j shows overlapping profiles. The solution of Fick’s second law for one-

dimensional diffusion is in that case (Crank, 1975) is a variation of equation (16), to take into account 

the initial CO2 content: 
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This equation is the same than equation (16) if Ci = 0. To fit the profiles, Ci,CO2 and DCO2 were 

again adjustable parameters. Ci corresponds again to the initial CO2 content of the sample and is in this 

case fixed to the average of initial CO2 contents from all other hydrous samples. Equation (18) fits 

adequately diffusion profiles of sample h15834j. All Profiles and fits are displayed in annex 2, Fig. 

3(a-e). 
 
 

4.3.3. Uncertainty in diffusion coefficient 
 

A major uncertainty in CO2 diffusion experiments is linked to the determination of the diffusion 

profile length. It takes into account: (1) the position of the sample surface. Rims are slightly rounded 

or rough due to polishing so that the original diffusion surface (which is the zero point of the distance 

axis after sectioning) cannot be exactly determined. I estimate the uncertainty to be at the most �6 µm. 

I assume that slight deviation of the measured profile from diffusion direction has only a minor 

influence on diffusion data, as shown by Behrens and Zhang (2001) for Ar-diffusion data. (2) The 

precision of the micrometer drives, estimated to �10 µm; (3) the effective slit width on the sample 

(estimated to �30 µm). For short diffusion profiles, the resulting relative error of diffusivity can be 

large, between 17% and 49% for desorption experiments, up to 19% in sorption experiments (e.g. 

sample d55894h_bis, Fig.12; sample s310030m, annex2 Fig. 1-f). 

Another uncertainty is related to the presence of bubbles in desorption experiments and sorption 

experiments in hydrous material. Bubbles are generated in two different ways: during starting material 

synthesis for hydrous-CO2 bearing samples and during diffusion experiments itself for hydrous 

samples. Size, concentration and distribution of the bubbles in desorption run products appear to be 

unchanged compared to initial bubbles in the starting glasses. As assumed by Behrens and Zhang 

(2001) for Ar diffusion, I don’t expect rapid CO2 diffusion in the bubbles affect much CO2 

diffusivities measured in this study since bubbles are not interconnected and the volume relatively 

small (cf § 2.3.). In the case of hydrous sorption samples, the formation of bubbles during the 

diffusion experiment might slow the fluxes and lead to an underestimation of the true fluxes and 

diffusivities. 

Uncertainty in pressure has no significant influence on the diffusion data because of the relatively 

small pressure dependence of CO2 diffusivity. Temperature uncertainty, on the opposite has a larger 

effect. Based on an activation energy of 149 kJ/mol for CO2 diffusion, the uncertainty of �10°C in 

temperature corresponds to errors in DCO2 of 50% at around 600°C and 18% at 1000°C.  

Uncertainty on run duration is hidden in the time correction for the determination of effective run 

duration considering heating and cooling times. The calculation for time correction is shortly depicted 

this chapter § 4.2. after Zhang and Behrens (2000), assuming an activation energy for CO2 diffusion of 

149 kJ/mol. The uncertainty on run duration is estimated to be about 10-15 min. Another error source 
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is related to the assignment of water content to an average CO2 diffusivity. This water content is 

estimated to the average of water contents strictly along the profile. The error is estimated to be less 

than one half of this water content.  

Errors of the diffusion coefficients calculated by error propagation based on these estimates are 

included in Table 7. 
 
 
 

5. Discussion 
 

5.1. Validity of CO2 solubilities derived from diffusion data fits 
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Fig. 14: Comparison of surface solubilities derived from the fit of the 

diffusion profiles with equilibrium solubilities (lines) determined in 
chapter 2. The solid lines are isotherms at 1100°C. Dotted lines are 
extrapolations of experimental data at 800°C. The dashed line is the 
isotherm fitted to experimental data at 850°C from Blank, 1993.  
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CO2 solubility data from chapter 2 does not allow us a precise prediction of CO2 solubilities at 

pressures and temperatures at which diffusion experiments were conducted. It is however possible to 

determine whether estimations derived from the fit of the diffusion profiles (Table 7) are reliable. It 

appears that CO2 solubilities derived from CO2 diffusion profiles are both over- and underestimated, 

by about �15-20% (Fig. 14) except at 500 MPa, pressure at which all but one CO2 solubilities derived 

from CO2 diffusion profiles are overestimated by about 20-35%. As assumed chapter 2, differences 

between my data set and data from Fogel and Rutherford (1990) probably come from the use of 

diffusion profiles to determine CO2 solubilities. A precise determination of CO2 solubility from 

diffusion profiles is not possible, because: (1) sorption profiles can not be measured to the surface and 

are therefore extrapolated, (2) the position of the surface can not be precisely defined, and (3) the 

surface of the samples may be chemically altered during high temperature experiments. However, it is 

to mention that solubility determination derived from diffusion profiles can lead to satisfying results as 

for example with H2O in haplogranitic melts (Schmidt et al., 1999) and with Ar in sorption 

experiments bellow 1000°C (temperature above which sample surfaces altered, Behrens and Zhang 

2001). 

 

5.2. CO2 diffusion in nominally anhydrous and water-bearing rhyolite 
 
 

Diffusion data for water-poor rhyolitic glasses are in good agreement with data from Blank 

(1993) and Watson (1991) if differences in run pressure are not taken in account (Fig. 15). The data 

obtained for rhyolitic composition at 100 MPa can be described (considering only sorption 

experiments) in the whole temperature range of 580 to 1000°C by a simple Arrhenius relationship 

        )exp(02
RTEDD aCO ��  (19) 

where D0 is the pre-exponential factor and Ea is the activation energy for diffusion. The fitted values 

are log D0 = -5.67 � 0.16 (D0 in m2/s) and Ea = 149 � 3 kJ/mol. These values are consistent with 

previous data of Blank (1993) at 72 MPa (log D0 = -5.42 where D0 is in m2/s; Ea = 152 kJ/mol). 

Desorption data were not taken into account to determine the Arrhenius relationship because the 

data scatter widely. This scattering may come from various non-well constrained parameters as: (1) the 

changing amounts of water along the CO2-profiles (in first approximation samples are assumed to be 

completely dehydrated in the diffusion zone) is not considered, (2) the presence of bubbles in the 

starting material (its effect on CO2 diffusion may not be negligible, as assumed), (3) the 

inhomogeneity in CO2-content of the starting materials, (4) the CO2 content in the Ar gas, assumed to 

be negligible (organic material may have contaminated the gas, e.g. the oil of the screws sealing the 

autoclave), (5) the change in oxygen fugacity over the different stages. 
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 this study, sorption experiments: 
 100 MPa, 2.0-2.8 wt.% water 
 100 MPa, dry
 300 MPa, dry
 500 MPa, dry

 
 this study, desorption experiments:    

 100 MPa
 500 MPa

 
 data from Watson (1991), P=1000 MPa: 
  11 wt.% water

   8 wt.% water
   6 wt.% water
   4 wt.% water
   2 wt.% water
   dry

 
 data from Blank (1993), dry: 

   50 MPa
   72 MPa
 105 MPa

 
 

Fig. 15: Arrhenius plot for CO2-diffusion in rhyolitic glasses and melts. Data 
obtained by Watson (1991) and Blank (1993) are shown for 
comparison. Lines 1-3 represent the different trends derived from 
CO2 diffusion data with (1) hydrous samples (8 wt%) at 1000 MPa, 
Watson (1991), (2) water-poor samples at 72 MPa, Blank (1993), (3) 
water-poor samples at 100 MPa, this study. For comparison (lines 4-
6), I displayed trends derived from: (4) molecular H2O diffusion at 
100 MPa, Zhang and Behrens (2000), (5) Ar diffusion in water-poor 
samples at 100 MPa, Behrens et al. (2000), (6) Ar diffusion in water-
poor samples at 500 MPa, Behrens and Zhang (2001). It is 
noteworthy that CO2- and Ar-diffusion are very similar. 

 

The effect of dissolved water on CO2 diffusivity observed in this study is consistent with results 

from previous studies (Watson, 1991; Blank, 1993): adding water to the dry melt always increases 

DCO2 (Fig. 14). However, it seems that the effect of dissolved water is more pronounced at lower 

temperature (e.g. the addition of 2.4 wt% water to the dry melt at 100 MPa and 900°C increases DCO2 

by about half an order of magnitude, compared to the addition of 2.5 wt% water at 100 MPa and 

580°C that increases DCO2 by about one and a half order of magnitude), although the uncertainty on 

DCO2 is larger at low temperature and that there is only one experiment to constrain the effect of water 

content. However, this is to be proven by additional low temperature experiments. Three experiments 

(h1846h, h1876h and h18718h) do not show any particular increasing of DCO2 with the addition of 
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more than 2 wt% water. This may be explained by a technical problem: a part of the sample was stick 

to the capsule so that diffusion conditions vary around the sample. Another explanation may be that 

the quantity of CO2 in the fluid phase was not sufficient to provide constant CO2 fugacity during the 

experiments. 

In addition, it comes out this study that the pressure effect is rather small (Fig. 16). It is however 

possible to determine an apparent activation volume Va from data at 1000°C in the pressure range of 

70-1000 MPa with the Arrhenius relation D = D0’ exp(PVa/TR) where D0’ is the diffusion coefficient at 

T and 1 bar. The Va value is 3.4 �1.7 cm3/mole. 
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Fig. 16: Pressure dependence of CO2-diffusion in water-poor rhyolitic 

glasses/melts at 1000°C. Data from Blank is calculated according the 
Arrhenius equation given in Blank (1993). Data in the range 70 – 
1000 MPa are fitted by the dotted line resulting in an apparent 
activation volume of 3.4 � 1.7 cm3/mole. 
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5.3. Modelling CO2 diffusion as a function of T, P and Xm
water 

 
 

To describe the pressure, temperature and water content (expressed as the molar fraction of water 

dissolved into the melt, calculated on a single oxygen basis) dependence of diffusivity, I followed 

Behrens and Zhang (2001) by taking an equation of the type: 

         DCO2 = exp(a0+a1/T+a2P/T) (20) 

The parameters a0, a1 and a2 are related to the pre-exponential factor, the activation energy and the 

activation volume, respectively. I assume that as for Ar (Behrens and Zhang, 2001), CO2 diffusivity 

varies exponentially with water concentration. This assumption is supported by the results of Watson 

(1991). However, the compositional variation may be dependent on pressure and temperature. The 

simplest expression accounting for this is: 

       DCO2 = exp[(a+bXm
water)+(c+dXm

water)/T+(e+gXm
water)P/T] (21) 

where Xm
water is the molar fraction of water on a single oxygen basis. The parameters a, b, c, d, e, and g 

are to be obtained by fitting experimental data to equation (21). Water contents taken into account for 

the fit were (1) the measured water contents for sorption experiments and (2) for desorption 

experiments a constant water content equal to the average of water contents along the CO2 profiles. 

Combining my data with the data of Watson (1991) and Blank (1993), the following equation was 

obtained for CO2 diffusivity (in 10-12 m2/s) in rhyolitic melts as a function of pressure (in MPa), 

temperature (in K) and mole fraction of water: 

DCO2 = exp[(14.992-18.692�Xm
water)+(-19047.5+70193�Xm

water)/T 
-(0.632+7.543�Xm

water)P/T] (22) 

The equation is based on 32 data for water-poor melts and 30 data for hydrous melts. The 

standard error of estimate is 0.59 for lnDCO2. The fit equation reproduces 80% of the diffusion data 

within a factor of 2 and all data within a factor of 4 (Fig. 17). The comparison of the model to 

experimental data as a function of water contents is also shown Fig. 18. The activation energy Ea for 

CO2 diffusion is calculated as -(c+dXm
water)R with R being the gas constant (8,3144 J/mole.K). At 

ambient pressure, Ea decreases from 158 kJ/mole for the anhydrous melt to 100 kJ/mole for a melt 

with Xm
water= 0.1. At 500 MPa, Ea decreases from 161 kJ/mole for the anhydrous melt to 106 kJ/mole 

for a melt with Xm
water = 0.1. The apparent activation volume Va for CO2 diffusion is calculated as -

(e+gXm
water)R. The apparent activation volume for CO2 diffusion increases from 5.3 cm3/mole for the 

anhydrous melt to 11.5 cm3/mole for a melt with Xm
water = 0.1. The Va value for the hydrous melt is 

close to the value of 11 cm3/mole found by Watson et al. (1982) for basaltic composition and 

significantly lower than the value of 25 cm3/mole suggested by Blank (1993) for rhyolitic 
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composition. However, it has to be emphasized, as acknowledged by the author herself, that the range 

of pressure was to small in the experiments of Blank to reliably constrain the pressure dependence of 

CO2 diffusivity.  

               

16

15

14

13

12

11

10

-lo
gD

 (D
 in

 m
2 /s

)

13121110987

1/T (K) ����

80090010001100120013001400
T (K)

dry

0.035

0.072

0.103

0.134

this study

model

0.041

 

Blank, 1993

model

Fig. 17: Arrhenius plot for CO2-diffusion. Solid lines are CO2-diffusivity 
predictions for water-poor rhyolitic glasses at 72 (in red), 100 (in 
black) and 1000 MPa (in blue) from eqn. (22). Red and black dashed 
lines are the Arrhenius relationships derived for water-poor glasses 
at 72 MPa by Blank (1993) and at 100 MPa in this study, 
respectively. Dotted lines illustrate the effect of dissolved water on 
CO2-diffusion. Lines in blue are calculated for 1000 MPa and the 
line in black for 100 MPa. Line numbers refer to the molar fraction 
of water dissolved. Numbers in blue correspond to dry, 2, 4, 6, 8 
wt% water at 1000 MPa. The number in black corresponds to the 
average water content for all hydrous experiment of this study. 
Symbols are the same as in Fig. 15. 

 

62 



Chapter 3 

    

16

14

12

10

-lo
gD

 (D
 in

 m
2 /s

)

0.200.150.100.050.00

Xm
water

 P=  100 MPa, T=  850 K
 P=  100 MPa, T=1100 K
 P=1000 MPa, T=1100 K
 P=1000 MPa, T=1300 K 

100 MPa, 1100 K

100 MPa, 850 K

1000 MPa, 1100 K

1000 MPa, 1300 K

 
 

Fig. 18: Dependence of CO2-diffusion in rhyolitic melts on dissolved water. 
Lines are calculated with the new diffusion model, eqn. (22). 

 

 

The diffusivities of CO2 and Ar are almost identical in water-poor rhyolitic melts over a wide 

range of temperature and pressure (Fig. 15). Although CO2 diffusivities are similar to Ar diffusivities, 

and to other uncharged particles (such as molecular H2O), the increase of activation volume with water 

content contrasts the dependence derived for molecular H2O diffusion (Zhang and Behrens, 2000) and 

Ar diffusion (Behrens and Zhang, 2001). The pressure dependence becomes smaller for both Ar and 

molecular H2O diffusion with increasing water content. Note that the pressure dependence is not well 

constrained for CO2 at high H2O contents.  

The similarity between Ar and CO2 diffusivity implies that the linear CO2 molecule (base radius: 

1.4 Å; half-length: 2.5 Å) moves as an oriented molecule to minimize expansion of the doorways of 

the silicate network (Behrens and Zhang, 2001). 
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Conclusions 
 
 
(1) As found in previous studies, CO2 dissolve in rhyolite only as molecular CO2 species. I determined 

a new value of 1232 � 36 l.cm-1.mol-1 for the linear molar absorption coefficient of the MIR baseline 

corrected band at 2346 cm-1 assigned to the fundamental ���vibration CO2 molecules. This value is 

15% higher than the value of 1066 � 20 l.cm-1.mol-1 determined by Blank (1993) on rhyolite. In 

addition, water does not influence the linear molar absorption coefficient. 

 

(2) At both 200 and 500 MPa, a square root dependence of water solubility on Xf
H2O is observed at low 

Xf
H2O. At 200 MPa, a linear function between water solubility and Xf

H2O allows to model all data 

within uncertainty for 0.25<Xf
H2O<1. At 500 MPa, the water solubility shows a non linear dependence 

on Xf
H2O in the whole Xf

H2O range. The 500 MPa data indicate a point of inflexion at around Xf
H2O~0.5. 

The temperature dependence of water solubility is different at 200 and 500 MPa. At 200 MPa, the 

water solubility decreases linearly with increasing temperature by -0.16 wt% H2O per 100°C, 

regardless of the composition of the fluid phase (investigated range 0.25<Xf
H2O<1). At 500 MPa, the 

temperature dependence of water solubility changes from positive for Xf
H2O>0.75 to negative for 

Xf
H2O<0.75. Water solubility is found to be independent of temperature at a water content of 

approximately 7 wt%. By comparing these results to that of Holtz et al., 1995 for a haplogranitic 

composition (AOQ), it was deduced that the temperature dependence of water solubility is not 

determined by total pressure but by the prevailing fH2O.  

 

(3) CO2 solubility increases with increasing Xf
CO2 in the fluid phase (Fig. 7) and increasing pressure. 

The variation of CO2 solubility with Xf
CO2 is non-linear. The deviation from linearity increases with 

pressure and is espacially pronounced at 500 MPa. Extrapolating our data set to Xf
CO2=1, the 

maximum solubility are 0.09 �0.01 and 0.24 �0.03 wt% at 1100°C and 200 and 500 MPa, 

respectively. Within the uncertainty of the data, no obvious effect of temperature on CO2 solubility is 

observed at 200 MPa (Fig. 7). However, the data indicate a slight positive temperature dependence on 

CO2 solubility at 500 MPa (for Xf
CO2<0.5). This effect of temperature on CO2 solubility for Xf

CO2<0.5 

differs from that observed by Fogel and Rutherford (1990) at Xf
CO2=1. 

 

(3) Water and CO2 solubilities found in this study are generally well reproduced by the model of 

Papale (1999) if CO2 solubilities are lowered of 15% to take into account the change in linear molar 

absorption coefficient, except for high water contents (above about 6 wt%), for which water contents 

are systematically underestimated. Therefore, an empirical model was developed to predict water 
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contents from the composition of the fluid phase coexisting with the melt, based on the present data set 

and that of Blank (1993). 

  

(4) Using CO2 diffusion profiles to derive CO2 solubilities has a large uncertainty due to the 

extrapolation of the profile to the surface. Deviation between equilibrium solubilities and extrapolated 

surface concentrations is in the range 15-35 % rel..   

 

(5) CO2 diffusion in water-poor samples can be described at 100 MPa by a simple Arrhenius 

relationship. My new results indicate that the effect of dissolved water on CO2 diffusion may be more 

pronounced at low than at high temperatures. However, this is to be proven by additional low 

temperature experiments. Combining my data with those from the studies of Watson (1991) and Blank 

(1993) indicate that the effect of pressure on CO2 diffusion only is weak. Similarity of diffusion of 

CO2 and Ar (Behrens and Zhang, 2001) implies that the smaller size of the elongated CO2 molecule 

(compared to the spherical Ar atom) compensates for the length and that CO2 moves oriented through 

the silicate network to minimize strain.  

 

(6) From my data set and those of Watson (1991) and Blank (1993), I developed a model to calculate 

CO2 diffusion as a function of temperature, water content (as molar fraction) and pressure. At ambient 

pressure, Ea decreases from 158 kJ/mole for the anhydrous melt to 100 kJ/mole for a melt with 

Xm
water= 0.1. At 500 MPa, Ea decreases from 161 kJ/mole for the anhydrous melt to 106 kJ/mole for a 

melt with Xm
water = 0.1. The apparent activation volume Va for CO2 diffusion increases from 5.3 

cm3/mole for the anhydrous melt to 11.5 cm3/mole for a melt with Xm
water = 0.1. The Va value for the 

hydrous melt is close to that of 11 cm3/mole found by Watson et al. (1982) for basaltic composition 

and significantly lower than that of 25 cm3/mole suggested by Blank (1993) for rhyolitic composition.  

 

The new experimental data on volatile solubility and diffusivity can be used as an input to develop or 

improve models to predict thermodynamic and kinetic properties of magmas and melts at various 

conditions. Especially degassing models for magmas (e.g. Navon et al., 1998; Papale and Polacci, 

1999) may be tested and improved. This is an important step towards the prediction of volcanic 

hazards. 
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Appendix 1: Tables 
 
 
 
 
 
Table 1 
Composition of the starting material determined by electron microprobe 
 
 

EDF standard 
deviation 

 SiO2 77.04 0.77 
 TiO2 0.11 0.01 
 Al2O3 12.76 0.13 
 FeO 0.68 0.07 
 MnO 0.07 0.01 
 MgO 0.08 0.01 
 CaO 0.58 0.06 
 Na2O 4.07 0.20 
 K2O 4.79 0.24 
 H2O* 0.22  

 total 100.40  

 
* The initial total H2O content of the 

natural glass was determined by IR 
spectroscopy. See text for more details. 
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Table 2 
CO2 calibration data 
 

 CO2 titration MIR spectroscopy 
samplea CO2 

Sourceb 
P 

(MPa) 
T 

(°C) 
run 

duration 
(h) 

Cwater 
    (wt%)c glass 

weight 
(mg) 

Cc  
(wt%) 

CCO2  
(wt%) 

A2346 
measured 

density 
(g.l-1)e 

thickness 
(cm)f 

K = 
(4401�A) 

(��thickness) 

std1 v 1+  200 1100  208 d    82.82 0.0199 (28) 0.0730 (101) 0.160 (17) 2264 (51) 0.0059 (3)  54 (8) 
 m     4.45 (0.23)    

  
  0.276 (6)  0.0090 (1)  60 (3)

 s          4.30 (0.08) 0.260 (6) 0.0094 (1)  54 (3) 
             56 (9) 

std3 v 1+  500 1100  168 d      
 

89.00 0.0399 (27) 0.1462 (99) 0.715 (16) 2250 (51) 0.0064 (1)  219 (6) 
 m    6.87 (0.57)     

  
  0.542 (29)  0.0051 (3)  207 (17)

 s            6.75 (0.46) 0.595 (35) 0.0056 (4)  207 (20)
             211 (27) 

std5 v 1+  500 1100  168 0.55 (0.06)       
 

90.44 0.0580 (27) 0.2127  (98) 0.942 (15) 2343 (53) 0.0060 (1)  294 (6) 
 m    0.51 (0.05)     

  
  0.717 (88)  0.0063 (2)  215 (28)

 s            0.53 (0.05) 0.955 (29) 0.0062 (2)  288 (13)
             266 (32) 

std7 v 1+  500 1100  168 d     
 

66.56 0.0571 (36) 0.2092  (132) 0.791 (10) 2277 (51) 0.0058 (1)  266 (7) 
 m    4.79 (0.20)     

  
  0.809 (14)  0.0062 (1)  252 (8)

 s            4.75 (0.33) 0.735 (28) 0.0054 (1)  264 (13)
             261 (17) 

1P  1 800 1200  96 6.95 (0.07)     

  

69.72 0.0932 (35) 0.3415  (128) 0.842 (16) 2269  0.0038 (1)  430 (14) 

2P 1 800 1200  96 4.32 (0.07)     70.60 0.1062 (35) 0.3893  (127) 0.860 (7) 2306  0.0035 (1)  469 (16) 

 
a Letters v, m, and s indicate the chip distance from the CO2-source during the experiment: 
  v is the piece opposite to the source 
  m is the middle piece of the run product 
  s is the piece closest to the source            

b CO2 was generated in two different ways by decomposition of inorganic materials: 
  1 Silver oxalate was added directly to the sample.  
  1+ Silver oxalate was placed in a separate  unwelded capsule beside the sample. 
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c Water content was determined using NIR spectroscopy, except for samples 1P and 2P, for which KFT was used. See chapter 2, § 3.4.2. and § 3.3., 

respectively, for more details. 
d Not determined. 
e Except for the samples 1P and 2P for which densities are calculated using equation (8). 
f Thicknesses are calculated using equation (10). See chapter 2 § 3.4.1. for more details. 
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Table 3 
Analysis of the samples used for the CO2-titration calibration 
 

 LECO analysis (Bristol) coulometric titration 

 

C content (wt%) 
number 

of 
analysis 

  C content (wt%) 

Köln (K)/ Hannover 
 Göttingen (G) 

number 
of 

analysis 

typical 
weight (mg) 

TW64d 1.69 �0.01 4 1.61 (G) 1.61 �0.02 36 23-36 

GD62 0.51 �0.01 5 0.491 (G) 0.489 �0.009 37 25-32 

22V 0.122 �0.008 3 0.145 (K) 0.110 �0.006 30 72-86 

45V 0.042 �0.006 5 0.034 (K) 0.026 �0.001 10 70-110 

 
 

70 



 

Table 4 
Conditions and sample characterisation for volatile solubility experiments. 
 

sample CO2 
source 

(a) 

run 
duration 

(h) 

P  
(MPa) 

T  
(°C)  X

f
H2O  X

f
CO2 

Cwater, KFT 
(wt%) 

Ech1 (b) (c)  1  240 200  800   0.288 (19)   0.692 (29) - 
Ech7 (b) (c)  1  283 200  800   0.355 (18)   0.625 (29) - 
Ech6 (c)  1  260 200  800   0.482 (15)   0.498 (26) - 
Ech2 (c)  1  240 200  800   0.496 (16)   0.484 (27) 3.84 (07) 
Ech8 (c)  1  283 200  800   0.571 (17)   0.409 (28) 3.78 (07) 
Ech9  1  227 200  800   0.658 (15)   0.322 (26) 4.32 (07) 
Ech10 (c)  1  227 200  800   0.768 (15)   0.212 (26) 5.01 (07) 
Ech3  -  240 200  800   1.000 (10)   0.000 (22) 6.12 (07) 
Ech4  -  240 200  800   1.000 (20)   0.000 (-) 6.10 (07) 

        
Ech66  1+  208 200  1100   0.021 (35)   0.959 (43) - 

Ech65  1+  208 200  1100   0.102 (32)   0.878 (40) - 

Ech64  1+  208 200  1100   0.206 (30)   0.774 (39) - 

Ech63  1+  208 200  1100   0.310 (27)   0.670 (36) - 

Ech62  1+  208 200  1100   0.410 (24)   0.570 (34) - 

Ech17  2  72 200  1100   0.520 (14)   0.460 (26) - 
Ech18  2  72 200  1100   0.613 (13)   0.367 (24) 3.74 (07) 
Ech19  2  72 200  1100   0.706 (11)   0.274 (23) 4.14 (07) 
Ech20  2  72 200  1100   0.779 (11)   0.201 (23) - 
Ech21  -  72 200  1100   1.000 (21)   0.000 (-) - 

         
Ech37  1  98 500  800   0.408 (14)   0.572 (26) 5.02 (07) 
Ech38  1  98 500  800   0.433 (14)   0.547 (26) 5.21 (07) 
Ech39  1  96 500  800   0.626 (14)   0.354 (25) 6.47 (07) 
EDF(1) (d)  -  144 500  800   1.000 (-)   0.000 (-) 9.84 (15) 

        
Ech75  1+  120 500  1100   0.017 (26)   0.963 (35) - 
Ech74  1+  120 500  1100   0.084 (24)   0.896 (34) - 
      [0.049]  [0.931]  
Ech73  1+  120 500  1100   0.107 (24)   0.873 (34) - 
      [0.077]  [0.903]  
Ech72  1+  120 500  1100   0.866 (34) - 
      [0.085]  [0.896]  
Ech59  1+  156 500  1100   0.120 (30)   0.860 (39) - 
Ech71  1+  120 500  1100   0.122 (24)   0.858 (34) - 
Ech58  1+  156 500  1100   0.245 (28)   0.735 (37) - 
Ech57  1+  156 500  1100   0.374 (25)   0.606 (35) - 
Ech11(e)  1  96 500  1100   0.471 (17)   0.509 (28) 4.83 (11) 
Ech22(f)  2  72 500  1100   0.480 (14)   0.500 (26) - 
Ech56  1+  156 500  1100   0.558 (21)   0.422 (31) - 
Ech61  1+  156 500  1100   0.672 (16)   0.308 (27) - 
Ech24(f)  2  72 500  1100   0.682 (12)   0.298 (24) - 
Ech41  2  96 500  1100   0.734 (11)   0.246 (23) 7.25 (07) 
Ech36  2  96 500  1100   0.837 (09)   0.143 (22) 8.96 (07) 
Ech49  -  96 500  1100   1.000 (-)   0.000 (-) 11.04 (06) 

  0.114 (24) 
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Cwater,KFT is the concentration of total water in the glass determined by Karl Fischer 
titration. Uncertainty of pressure is ±5 MPa and uncertainty of temperature is ±10°C. 
The Xf

H2O and Xf
CO2 given in square brackets correspond to the values obtained by mass 

balance calculation. See text for more details. 
 
 (a) CO2 was generated in three different ways by decomposition of inorganic materials: 
  1 Silver oxalate was added directly to the sample.  
  1+ Silver oxalate was placed in a separate unwelded capsule beside the sample. 
  2 Dehydrated oxalic acid was directly added to the sample. 
(b) Glass partially crystallised (<10 vol%) 
(c) Quenched glass contains aggregates of metallic silver.  
(d) Data from Behrens and Jantos (2001) 
(e) Dark coloured glass due to dissolution of silver (up to 2 wt%) 
(f) Sample contains bubbles (<10 vol%) 

72 



 
Table 5 
Spectroscopic data of volatile solubility experiments 
 

 measured calculated 
 MIR    NIR   

sample density 
(g.l-1) 

density (b) 
(g.l-1) thickness 

(cm) (c) A2346 
CCO2 

(wt%) 

thickness 
(cm) A4520 A5230 

COH 

(wt%) 
CH2O 

(wt%) 

Ech1(a) - 2325 0.0112 (1) 0.598 0.082 (3) 0.0500 0.128 0.163 1.41 (0.08) 1.52 (0.06) 
Ech7(a) - 2321 0.0111 (3) 0.525 0.073 (3) 0.0493 0.129 0.186 1.44 (0.08) 1.76 (0.06) 
Ech6(a) - 2312 0.0112 (4) 0.414 0.057 (3) 0.0486 0.134 0.237 1.52 (0.09) 2.29 (0.08) 
Ech2(a) - 2310 0.0109 (2) 0.432 0.061 (3) 0.0495 0.138 0.253 1.54 (0.09) 2.40 (0.08) 
Ech8(a) - 2307 0.0111 (3) 0.393 0.055 (3) 0.0492 0.137 0.271 1.54 (0.09) 2.59 (0.09) 
Ech9 - 2300 0.0116 (5) 0.304 0.041 (3) 0.0484 0.140 0.308 1.61 (0.09) 3.00 (0.10) 
Ech10(a) 2300 (52) 2294 0.0117 (1) 0.190 0.025 (2) 0.0495 0.144 0.356 1.62 (0.09) 3.40 (0.11) 
Ech3  - 2281 - - - 0.0496 0.142 0.449 1.60 (0.09) 4.31 (0.14) 
Ech4 2274 (51) 2280 - - - 0.0496 0.147 0.449 1.66 (0.09) 4.31 (0.14) 

           
Ech66 - 2360 0.0077 (7) 0.461 0.091 (12) 0.0810 0.073 0.009 0.49 (0.03) 0.05 (0.02) 
Ech65 - 2347 0.0077 (4) 0.465 0.092 (8) 0.0814 0.148 0.074 0.99 (0.05) 0.42 (0.02) 
Ech64 - 2337 0.0095 (4) 0.537 0.086 (6) 0.0810 0.179 0.147 1.21 (0.07) 0.84 (0.03) 
Ech63 - 2331 0.0096 (1) 0.481 0.077 (3) 0.0805 0.194 0.198 1.32 (0.07) 1.14 (0.04) 
Ech62 - 2326 0.0088 (2) 0.404 0.070 (3) 0.0810 0.205 0.253 1.39 (0.08) 1.46 (0.06) 
Ech17 - 2316 0.0117 (2) 0.441 0.058 (2) 0.0500 0.139 0.213 1.53 (0.09) 2.00 (0.07) 
Ech18 2278 (51) 2311 0.0121 (3) 0.427 0.055 (3) 0.0504 0.142 0.248 1.56 (0.09) 2.31 (0.08) 
Ech19 2275 (51) 2303 0.0123 (2) 0.321 0.040 (2) 0.0492 0.145 0.285 1.64 (0.09) 2.73 (0.09) 
Ech20 2273 (51) 2299 0.0119 (3) 0.262 0.034 (2) 0.0489 0.147 0.311 1.67 (0.09) 3.00 (0.10) 
Ech21 - 2286 - - - 0.0489 0.151 0.396 1.73 (0.09) 3.85 (0.13) 

           
Ech37 2291 (52) 2291 0.0053 (1) 0.598 0.176 (6) 0.0496 0.146 0.371 1.64 (0.09) 3.54 (0.12) 
Ech38 2274 (51) 2289 0.0051 (1) 0.592 0.181 (7) 0.0495 0.145 0.384 1.64 (0.09) 3.68 (0.12) 
Ech39 2229 (50) 2272 0.0047 (2) 0.430 0.144 (8) 0.0494 0.145 0.500 1.65 (0.09) 4.84 (0.16) 
EDF(1) - 2223 - - - - - - - - 

           
Ech75 - 2360 0.0036 (2) 0.566 0.238 (25) 0.0975 0.082 0.010 0.45 (0.03) 0.05 (0.01) 
Ech74 - 2351 0.0044 (1) 0.682 0.235 (13) 0.0962 0.153 0.059 0.86 (0.05) 0.28 (0.02) 
Ech73 - 2348 0.0056 (3) 0.898 0.244 (19) 0.0956 0.168 0.083 0.95 (0.05) 0.40 (0.02) 
Ech72 - 2341 0.0063 (2) 0.903 0.219 (9) 0.0957 0.198 0.143 1.13 (0.06) 0.69 (0.03) 
Ech59 - 2332 0.0064 (2) 0.965 0.231 (8) 0.0579 0.139 0.141 1.32 (0.07) 1.13 (0.04) 
Ech71 - 2336 0.0060 (2) 0.901 0.230 (11) 0.0953 0.215 0.193 1.24 (0.07) 0.94 (0.03) 
Ech58 - 2319 0.0058 (2) 0.837 0.222 (11) 0.0586 0.155 0.229 1.46 (0.08) 1.83 (0.06) 
Ech57 - 2310 0.0051 (5) 0.715 0.217 (21) 0.0589 0.162 0.299 1.52 (0.08) 2.39 (0.08) 
Ech11 - 2297 0.0052 (3) 0.675 0.202 (13) - - - - - 
Ech22(d) - 2293 0.0058 (4) 0.747 0.201 (15) 0.0511 0.147 0.377 1.60 (0.09) 3.49 (0.12) 
Ech56 - 2291 0.0050 (1) 0.609 0.190 (7) 0.0591 0.172 0.448 1.62 (0.09) 3.59 (0.12) 
Ech61 - 2272 0.0062 (3) 0.604 0.153 (8) 0.0601 0.176 0.614 1.65 (0.09) 4.88 (0.16) 
Ech24(d) - 2269 0.0054 (3) 0.569 0.166 (11) 0.0502 0.149 0.528 1.67 (0.09) 5.03 (0.17) 
Ech41 2216 (50) 2264 0.0051 (5) 0.466 0.144 (16) 0.0501 0.147 0.562 1.66 (0.09) 5.38 (0.18) 
Ech36 - 2247 0.0050 (2) 0.257 0.082 (6) 0.0500 0.141 0.682 1.60 (0.09) 6.59 (0.22) 
Ech49 - 2212 - - - 0.0249 0.080 0.443 1.86 (0.12) 8.73 (0.31) 

 
Concentrations on COH and CH2O are given in terms of wt% of H2O component. Total water determined from NIR is the sum of COH 
and CH2O. See text for details about error calculations.  
(a) Quenched glass contains aggregates of metallic silver.  
(b) Densities are calculated using equation (8). See text for more details. 
(c) Thicknesses are calculated using equation (10). Sample thickness and peak heights are average values derived from 3 to 9 

spectra measured in different areas of the samples, including rim and core. See text for more details. 
(d) Sample with bubbles (<10 vol%) 
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Table 6  
Fit parameters of equation (12) to describe the water solubility in rhyolitic melts  
 

 A(P,T) B(P,T) C(P,T) 

 aA bA aB bB aC bC 

�i,j -14.749 2.7296 10-2 12.615 -2.3041 10-2 5.4181 -6.11323 10-3 

�i,j 7.67 10-2 -1.3688 10-4 -6.3322 10-2 1.1396 10-4 1.2838 10-2 2.0095 10-5 

�i,j -2.0868 10-4 2.5324 10-7 1.5411 10-4 -1.747 10-7 1.4632 10-5 -4.8208 10-8 
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Table 7 
Experimental data for CO2 diffusion experiments 

 

sample P/T effective Cwateri 
XfH2O b 

slide profile slit   Cwater along 
CCO2 

surface - log D 
  duration (wt.%)a initial final thickness  width the profilec (fit)** (m2/s)d 

 (MPa)/(°C) (s)    (µm)  (µm) (µm) (wt.%)  

CO2 –desorption from hydrous CO2-bearing samples  
 

 
  

 
d15834j 100/580 2578532    60 (1) A 19 0.27-1.2  15.48 (� 0.34)  
      B 19 0.24-1.1  15.42 (� 0.33) 
d16317j 100/630 1460825    63 (2) A 19 0.16-0.7  14.80 (� 0.25) 
d5589j 500/580 764849    57 (5) A 16 0.30-1.7  14.90 (� 0.33)  
      B 16 0.30-1.7  15.05 (� 0.36) 
d55894h_bis 500/580 338615    79 (1) BA 16-26 0.25-2.1  15.09 (� 0.49)  
      BB 16-26 0.25-2.3  15.00 (� 0.45)  
d56378h 500/630 279397    60 (1) A 16 0.25-1.8  14.59 (� 0.33)  
     60 (1) B 16 0.25-1.8  14.48 (� 0.31) 

CO2 –sorption from pre-hydrated natural samples   
   

h15834j 100/580 2578532 2.24 0.27 0.24 140 (1) A 19 2.71 0.0582 13.49 (� 0.23) 
   0.27 0.24  B 19 2.51 0.0805 13.60 (� 0.23) 
h1846h 100/843 20552 2.23 0.39 0.38 154 (4) A 26 2.32 0.0550 12.42 (� 0.14)  
h1872h 100/870 7433 2.23 0.38 0.38 226 (1) A 19 2.05 0.0656 11.97 (� 0.14)  
   0.38 0.38  B 19 2.30 0.0475 12.07 (� 0.15)  
h1876h* 100/870 22106 2.18 0.40 0.39 150 (2) A 29 2.18 0.0548 12.24 (� 0.12) 
h18718h 100/870 65336 2.23 0.38 0.38 250 (5) B 19 2.09 0.0559 12.49 (� 0.12) 
h1904h 100/900 14565 2.21 0.40 0.39 151 (2) A 29 2.36 0.0357 11.78 (� 0.11) 

CO2 –sorption from natural samples     
  

s15834j 100/580 2578532    243 (3) A 19 0.32-0.42 0.0976 14.93 (� 0.26) 
      B 19 0.32-0.42 0.0708 14.72 (� 0.25) 
s16317j 100/630 1460825    246 (4) A 17 0.47-0.56 0.0816 14.30 (� 0.21) 
      B 17 0.47-0.56 0.0743 14.26 (� 0.21) 
s18418h 100/843 63942    312 (2) A 25 0.33-0.53 0.0469 12.72 (� 0.13) 
      B 25 0.33-0.58 0.0508 12.52 (� 0.12) 
s19012h 100/900 41565    308 (1) A 26 0.27-0.43 0.0455 12.29 (� 0.11) 
      B 26 0.27-0.42 0.0539 12.34 (� 0.11) 
s11004h 100/1000 14528    308 (2) A 20 0.21-0.49 0.0494 11.78 (� 0.09) 
      B 20 0.21-0.48 0.0436 11.85 (� 0.09) 
s39028h 300/900 110910    77 (1) A 20 0.21-0.42 0.1797 12.06 (� 0.10) 
      B 20 0.21-0.41 0.1765 12.14 (� 0.10) 
s310030m 300/1000 1992    115 (3) A 22 0.21-0.53 0.1263 12.12 (� 0.19) 
      B 22 0.21-0.56 0.1321 11.92 (� 0.18) 
s31004h 300/1000 14528    98 (2) A 20 0.31-0.58 0.1484 11.86 (� 0.09) 
      B 20 0.31-0.48 0.1089 12.04 (� 0.09) 
s59014h 500/900 50510    40 (1) A 19 0.50-0.56 0.3167 12.33 (� 0.11) 
      B 19 0.49-0.52 0.3154 12.43 (� 0.11) 
s51004h 500/1000 14528    65 (1) A 20 0.25-0.52 0.2928 12.13 (� 0.10) 
      B 20 0.25-0.52 0.2370 12.16 (� 0.11) 
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Notes. 

Thicknesses of samples used in diffusion experiments are 2 and 1 mm for desorption and sorption experiments, respectively.  
a Water content measured with KFT for samples used in desorption experiments, and equals 2.34 � 0.06. For pre-

hydrated samples used in sorption experiments, water contents were determined by IR spectroscopy. 
b In the desorption experiments the samples are in contact with the pressure medium Ar which has an unknown 

water content. Fluid composition in sorption experiments using mixed H2O-CO2 fluids are calculated as explained in 
Chapter 2 § 3.1.. In the sorption experiments using natural samples a pure CO2 fluid was generated containing a 
small but unknown amount of H2O. 

c Determined by IR spectroscopy 
d Determined from the fit. See text for more details. 
* A problem occurred when starting the experiment: the oven heated too quick and went for 15-20 min to 900°C 

before being set back to input run temperature. 
** These CO2 concentrations were derived from the fit of the diffusion profiles. In the desorption experiments the CO2 

content at the sample surface is assumed to be zero. 
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Appendix 2: Diffusion profiles and fits  
 

Fig. 1-(a-i): Concentration-distance profiles of CO2 in natural rhyolitic glasses after CO2 
sorption. Two profiles were fitted independently for each sample using eqn. (14) 
or eqn (16) depending whether the profiles from both sides do overlap or not. 
Points chosen for the fits are shown in black for the first fit and in grey for the 
second. 
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Fig. 2-(a-d): Concentration-distance profiles for CO2 in hydrous CO2-bearing rhyolitic glasses 
after CO2 desorption experiments. One or two profiles were fitted with eqn. (15) 
depending on the quality of the profiles. Points chosen for the fit are blacken. 
Surfaces of the sample are shown by two vertical dotted lines. 
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Fig. 3-(a-e): Concentration-distance profiles of CO2 in natural rhyolitic glasses after CO2 
sorption. One or two profiles (depending on the quality of the profiles) were fitted 
with eqn. (17) or eqn. (18), depending whether the profiles from both sides do 
overlap or not. Points chosen for the fits are shown in black for the first fit and in 
grey for the second. 
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