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Zusammenfassung 

Zusammenfassung 
 

Das Hauptziel der vorliegenden Dissertation ist es, die Zusammensetzung der 

Speicherproteine in Samen der Ackerbohne durch die Einführung von Fremdgenen 

so zu verändern, dass ein möglichst hoher Anteil an proteingebundenem Methionin 

gebildet wird. Als Fremdgene dienen heterologe DNA-Sequenzen, die für 

methioninreiche Proteine kodieren. In dem vorliegenden Projekt wurde ein 2S-

Albumingen aus Helianthus annuus (SFA8, Kortt et al. 1991) unter Kontrolle eines 

samenspezifischen Promoters in die Ackerbohne übergetragen.  

Die Transformation der Ackerbohne ist schwierig, das einzige bislang existierende 

Protokoll wurde von Böttinger et al. (2001) veröffentlicht. Das Verfahren beruht auf 

einer de novo-Bildung von Sproßinitialen aus dedifferenzierten Zellen. Die Effizienz 

dieser Methode ist allerdings sehr gering, und ein weiterer Nachteil liegt darin, daß 

das Protokoll einen relativ großen Zeitraum erfordert (ca. 16-20 Monate bis zur 

Samenreife der Primärtransformanten). Als zweite Methode wurde in der 

vorliegenden Arbeit ein Verfahren verwendet, welches die natürlicherweise 

vorhandene Fähigkeit von Sproßmeristemen nutzt, unter Einfluß von Cytokininen 

durch Ausbildung von Seitensprossen in vitro zu proliferieren. Mit beiden Methoden 

ließen sich eine Reihe von transgenen Pflanzen von drei Elite Sorten erzeugen. In 

dem Zusammenhang wurde erstmals einen Agrobacterium-vermittelter Gen-

Transfersystem in Sproßmeristemen bei Vicia faba entwickelt und als 

Selektionsmarker das bar-gen wurde genutzt. Die Integration der fremden 

Gensequenzen konnte durch genomische Analysen (Southern Blot, PCR), sowie 

durch Expressionsstudien (Aktivität des Selektionsmarkergens) und SFA8 gen (RT-

PCR, Western blot und Aminosäureanalysen reifer Samen ) bis zur T3 Generation 

nachgewiesen werden.  
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Abstract 

Abstract 
 

The main goal of the present research is the enhancement of the sulphur containing 

amino acids in the seed storage proteins of Vicia faba through the introduction of 

foreign genes, i.e. a gene coding for a sulphur rich sunflower albumin (SFA8/Kortt et 

al. 1991) into the faba genome. The coding sequences of the SFA8 gene was driven 

by a Vicia faba legumin B4 promoter which elicits seed-specific expression. Vicia 

faba is one of the most recalcitrant species for in vitro manipulation and 

transformation. The only published Vicia faba transformation protocol was reported 

by Böttinger et al. (2001). This protocol was based on the de novo regeneration from 

dedifferentiated cells (calli). This process is time consuming and of relatively low 

efficiency (16-20 months until transgenic plants bearing seeds). In the present study 

a second Agrobacterium-mediated transformation system based upon direct shoot 

organogenesis after transformation of meristematic cells (derived from mature and 

immature embryo axes) was developed in combination with the bar gene as a 

selectable marker. Independent transgenic plants from three cultivars were 

recovered from both transformation systems. The integration of the foreign genes 

was confirmed by molecular analysis (Southern blot and PCR), also the expression 

of the marker gene (bar) was studied by either PAT-assay or Leaf Paint Test. SFA8 

gene expression was analysed by RT-PCR, western blot and by amino acid analysis 

in the seed meal of the transgenic seeds up to the T3 generation. 
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Introduction 

1. Introduction and review of literature 
 

1.1 General introduction 
 

Legumes belong to one of the largest families of dicotyledons, Leguminosae 

(Fabaceae). They are very important for their value as food, feed and for their role in 

the biological fixation of aerial nitrogen (Duke 1981). The genus Vicia comprises 

approximately 150 species of the family Leguminosae distributed in temperate and 

subtropical areas of the world (Maxted et al. 1991, Maxted 1993). The economically 

most important species of this genus is the faba-bean (Vicia faba L.), also referred to 

as broad bean, horse bean or field bean. This species alone occupies nearly 3.2x106 

ha worldwide in 1991 (FAO statistics, 1992) with a world production of 3.256 million 

tons in 2000. Even though faba bean has been cultivated in many countries, 49% of 

the total production comes from China followed by Egypt (10,8%), Ethiopia (8.5%), 

and Australia by 5.8% in 2000 (FAO, statistics 2001).  

 

Unfortunately, its susceptibility to environmental conditions, biotic stress and 

instability of the yield made this crop less attractive. Also, difficulties in pollination 

control and the limited genetic pool has led to slow down progress in varietal 

improvement (Bond 1987). Today, breeding programs of Vicia faba could be 

supplemented by recombinant DNA-technology, which requires, however, the 

development of reproducible protocols for in vitro manipulation of single cells or 

explant tissue and the subsequent regeneration of plants. Vicia faba exhibits, like 

most other grain legumes, a rather low amenability to tissue culture conditions, 

mainly due to difficulties in the regeneration of shoots or somatic embryos from 

dedifferentiated tissue. 

 

 

1.2 In vitro regeneration of Vicia species 
 
1.2.1 Regeneration from explant tissue 
 
Vicia species have been subjected to cell- and tissue culture experiments since 

approx. 40 years. The first attempts to cultivate Vicia faba in vitro focused on the 
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optimal growth of callus tissue or suspension cultures rather than the induction of 

shoot morphogenesis and plant regeneration (Venketeswaran 1962, Grant and Fuller 

1968, Mitchell and Gildow 1975). The influence of media composition and explant 

source on the initiation and maintenance of cultures were tested and the conditions 

optimized for a maximum increase in callus fresh weight. Poor growth rates and an 

increase of necrotic tissue during cultivation were described. Suspension cultures 

could also be established in Vicia hajastana (Singh et al. 1972) which served as 

source for protoplast isolation in later studies (Kao et al. 1974, see below). Since 

Vicia faba is an excellent karyological object, studies on callus growth were also 

performed by Cionini et al. (1978) and Jalaska et al. (1981) to investigate the pattern 

of chromosomal instability during callus development. The low morphogenic potential 

of Vicia faba cells cultured in vitro was first mentioned by Röper (1979). With the aim 

to develop a system for plant regeneration from single cells, he established callus 

and cell suspension cultures over a long period of time, but all attempts to initiate 

shoot regeneration remained unsuccessful. 

 

During the following decade a number of reports were published describing the 

cultivation of tissues containing shoot apical meristems and the subsequent recovery 

of shoots (Martin et al. 1979, Cheyne and Dale 1980, Galzy and Hamoui 1981, 

Schulze et al. 1985, Busse 1986, Fakhrai et al. 1989, Selva et al. 1989, Taha and 

Francis 1990). Excised apical meristems, nodal buds and cotyledonary nodes were 

exposed to media containing cytokinins (in most cases BA) alone or in combination 

with low amounts of an auxin. Under these conditions shoots preferentially develop 

from preexisting meristems. Since cytokinins are effective in removing apical 

dominance (Skoog and Schmitz 1972) this treatment continuously promotes the 

development of young meristems of the apical dome(s) (Steves and Sussex 1989) to 

lateral buds and shoots, which are again themselves suppressed in their further 

growth. This cycle of simultaneous induction and suppression finally gives rise to 

multiple bud/shoot proliferation. Similar protocols have repeatedly been described for 

many other grain legumes (e.g. Cheng et al. 1980, Kartha et al. 1981, Martins 1983, 

Griga et al. 1986, Jackson and Hobbs 1990, Malik and Saxena 1992a/1992b, Brandt 

and Hess 1994). The origin of shoots (axillary vs. adventitious) in these regeneration 

systems has frequently been discussed and investigated in histological studies. The 

development of shoot initials from superficial layers and the absence of a vascular 
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connection to axillary buds are generally taken as evidence for a de novo formation 

of shoots (e.g. Fakhrai et al. 1989). Since both attributes apply also for the young 

shoot meristems of the apical dome, these observations do not provide evidence for 

an adventitious origin of shoots. However, even if the distinction between de novo 

organogenesis and shoot proliferation from preexisting meristems is not trivial, this 

question may finally be less relevant, considering the development of transformation 

systems as the main purpose of these studies. 

 

Today several transformation protocols in grain legumes are based on the BA-

induced shoot development from embryo axes and cotyledonary nodes, using 

Agrobacterium tumefaciens (e.g. Bean et al. 1997/pea, Sato et al. 1993/soybean) or 

the biolistic approach (McCabe et al. 1988/soybean; Brar et al. 1994/peanut; Russel 

et al. 1993, Aragao et al. 1996/common bean). The recovery of both, clonal as well 

as chimeric primary transformants were repeatedly described in these studies (e.g. 

Christou and McCabe 1992, Sato et al. 1993), indicating the occurrence of single- 

and multiple cell origin of shoots. Chimeric transformants do not necessarily limit the 

value of these systems: A number of chimeric individuals are germline (L2)-

transformants giving rise to clonal transformants in the progeny. 

 

A serious constraint in Vicia faba tissue culture is the deterioration of explant material 

and cultivated tissue as a result of the action of phenolic compounds. Bieri et al. 

(1984) and Selva et al. (1989) examined the effect of various chemical and physical 

parameters in axillary shoot cultures. In their studies low temperatures were found to 

limit the formation of phenolics.  

 

Plantlet regeneration from explants lacking preexisting shoot meristems was claimed 

by Thynn and Werner (1987). Callus was initiated from epicotyl segments on B5-

basal medium (Gamborg et al. 1968) supplemented with 0.2 mg/l NAA, and shoot 

development was achieved on a subsequent transfer to B5-medium containing 0.05 

mg/l NAA and 0.5 mg/l kinetin. With the exception of the study of Tegeder et al. 

(1995) on protoplast regeneration (see below) this is the only report of shoot 

regeneration from an explant without apical or axillary shoot meristems in Vicia faba.  
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Somatic embryogenesis in callus and suspension cultures derived from immature 

cotyledons of Vicia faba was reported by Griga et al. (1987). They followed the 

traditional pathway of somatic embryogenesis induction: 2,4-D initiation of callus and 

subsequent lowering or removal of 2,4-D (Ammirato 1983). The formation of bipolar 

structures were observed. These structures did obviously not contain shoot 

meristems, as only root development occurred on further cultivation. Somatic 

embryogenesis was also described for Vicia narbonensis in two independent reports. 

In a study of Albrecht and Kohlenbach (1989) leaf-derived callus was cultured for of 

5-6 months in a series of different MS-media supplemented with combinations of 

picloram/BA, 2,4-D/BA and 2,4-D/Kinetin. Somatic embryo development resulted 

from a last step on hormonefree MS-medium. Further development to plants was not 

reported. Pickardt et al. (1989) described a protocol in which shoot tips from young 

seedlings cultivated on MS-medium containing 0.1-10 mg/l 2,4-D gave rise to callus 

which formed somatic embryos if 2,4-D was removed and replaced by 1 mg NAA/l in 

a subsequent cultivation step. Plantlets derived from somatic embryos could be 

grown to maturity. In this regeneration system the frequency of explants producing 

embryogenic callus as well as the mean number of embryos per embryogenic callus 

increased with the 2,4-D concentration initially used for callus induction. Later studies 

of Pickardt et al. demonstrated that shoot tips could be replaced by epicotyl- and 

stem segments (unpublished data, 1990). An improved protocol was subsequently 

combined with the Agrobacterium tumefaciens-mediated gene transfer (Pickardt et 

al. 1991, see below). 

 

The results of Albrecht and Kohlenbach and of Pickardt et al. revealed that, at least 

in Vicia narbonensis, cells of a differentiated tissue (lacking apical or axillary 

meristems) like leaf sections or stem segments can be reconverted to an 

embryogenic state. Compared to Vicia faba, where by that time regeneration of 

plants had occurred most probably only from preexisting shoot meristems, the in vitro 

cultured cells of the less domesticated Vicia narbonensis obviously possess a higher 

morphogenic potential.  
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1.2.2 Regeneration from protoplast  
 
Vicia hajastana protoplasts were isolated from suspension cultures in studies on 

protoplast fusion (Kao and Michayluk 1974, Kao et al. 1974) and in order to evaluate 

the nutritional requirements for growth of protoplasts at a low population density (Kao 

and Michayluk 1975). In these studies division of protoplast and callus formation was 

achieved. Donn (1978) described the isolation of protoplasts from leaves in Vicia 

narbonensis. A 7-day preculture of leaves on MS-medium containing 0.5 mg/l of each 

BA and p-chlorophenoxyacetic acid appeared to be crucial to obtain cell division and 

callus formation. The addition of asparagine, glutamine, and serine enhanced the 

rate of division. Attempts to initiate shoot regeneration in protoplast derived calli were 

unsuccessful. Only root formation occurred in a low frequency on a medium 

supplemented with 0.1 mg/l BA and 0.1-0.5 mg/l p-chlorophenoxyacetic.  

 

Binding and Nehls (1978a, 1978b) isolated protoplasts from leaves and shoot apices 

of Vicia faba. Division of protoplasts could be initiated and maintained in KM-medium 

or a combination of V-47 medium (Binding 1974) and KM-medium containing 0.5 

mg/l BA, 1 mg/l NAA and 0.1 mg/l 2,4-D. Highest plating efficiencies were achieved if 

less than 3x103 protoplasts per ml of Vicia faba were cocultured with 0.5-10x104 

protoplasts of Petunia hybrida. The authors suggest that the coculture effect is 

probably congruent to a feeding layer sytem (Binding and Nehls 1978a). In further 

experiments on somatic cell hybridisation between Vicia faba and Petunia hybrida 

the same authors obtained three hybrid clones, one of them could be propagated at 

least for 9 months. The fusion hybrids contained predominantly nuclei or 

chromosomes of one or the other species and a few chromosomes of the second 

parent (Binding and Nehls 1978b).  In both studies initiation of shoot or root 

morphogenesis was not reported. Protoplasts were also isolated from suspension 

cells of Vicia faba (Röper 1981). In KM-medium supplemented with 0.5 mg/l BA, 0.2 

mg/l 2,4-D and 0.5 mg/l IAA protoplasts divided and formed cell colonies that gave 

rise to proliferating calli. Regeneration of shoots was not reported. 

 

During the next 14 years no reports on protoplast regeneration in Vicia species were 

published. Tegeder et al. (1995) demonstrated for the first time the recovery of 

mature plants from protoplasts of Vicia faba. Protoplasts were isolated from shoot 
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tips of etiolated seedlings and embedded in alginate discs. In a screening of 10 

cultivars of Vicia faba plating efficiencies, survival rates, and the regenerative 

competence were evaluated. Depending on cultivar, division rates of up to 40% were 

obtained in a KM-medium containing 0.5 mg/l of each BA, 2,4-D and NAA, and 

protoplast derived callus development occurred at high frequency. The apparent key 

step in this study was the application of the phenyl-urea herbicide thidiazuron (Mok et 

al. 1982) in a subsequent culture phase on solidified medium. In the German cultivar 

‘Mythos’ shoot initials appeared with a frequency of 5-8% after 3 - 8 months (varying 

between individual calli), from which fertile plants could be recovered. A comparison 

of 30 different phytohormone compositions revealed that shoot morphogenesis 

occurred only in calli exposed to thidiazuron.  

 

The extension of these studies to Vicia narbonensis (Tegeder et al. 1996) showed 

that also in this species plant regeneration from protoplast-derived calli via shoot 

morphogenesis can be achieved using the thidiazuron pathway. In addition, the 

protocol for the induction of somatic embryogenesis (originally developed for shoot 

tip-derived calli of Vicia narbonensis, Pickardt et al. 1989) was also successful. It is 

important to mention, that in Vicia narbonensis regeneration via somatic 

embryogenesis occurs with a considerable higher efficiency compared to shoot 

morphogenesis induced by thidiazuron. Unfortunately all attempts to induce somatic 

embryogenesis in Vicia faba were unsuccessful so far (Pickardt 1988 unpublished, 

Tegeder et al. 1995).  

 

One of the problems in breeding of Vicia faba is its sexual incompatibility with other 

Vicia species, limiting broadening of the gene pool and the creation of new variability. 

Desirable agronomic traits like drought tolerance, insect and fungal resistance are 

available e.g. in Vicia narbonensis (Lawes et al. 1983). Hybridisation between Vicia 

faba and Vicia narbonensis by conventional techniques, including embryo rescue, 

always failed so far (Cubero 1982, Ramsay and Pickersgill 1986, Lazaridou and 

Roupakias 1993). The development of effective protocols for plant regeneration from 

protoplasts in both species establishes the prerequesites for attempting somatic 

hybridisation between Vicia faba and Vicia narbonensis. Moreover, the availability of 

transgenic lines containing different selection markers in both species (Pickardt et al. 
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1991, Böttinger et al. 2001, this study, see below) will allow an efficient selection of 

hybrid cells. 
 

 

1.3 Transformation of grain legumes  
 
Despite of the susceptibility of several grain legumes to the Agrobacterium infection, 

there are few grain legumes have been stably transformed by Agrobacterium 

transformation. This is due to the lack of sufficient regeneration protocols in many of 

the pulses. Grain legumes in general are considered as being more recalcitrant crops 

for in vitro manipulation than other species, particularly member of the Solanaceae 

(de Kathen and Jacobsen, 1995). 

 

The most successful transformation protocols in grain legumes followed by 

recovering of transformed plants are those which using pre-excited meristematic cells 

either from embryonic axes like in pea (Schroeder et al. 1993; Bean et el. 1997), in 

Cicer arietinum (Fontana et al. 1993, Kar et al. 1996 , Kieseker 2000 and 

Krishnamurthy et al. 2000), Lupinus angustifolius (Molvig et al. 1997), from the shoot 

apical meristems like in Lupinus angustifolius (Pigeaire et al. 1997), Lupinus luteus 

(Li et al. 2000), using stem nodal segments or cotyledonary nodes in peas (de 

Kathen and Jacobsen, 1990; Nauerby et al. 1991, Davies et al. 1993). This 

transformation system is based on wounding the meristems prior to inoculation by 

Agrobacterium and inducing multiply axillary shoots by high concentrations of 

cytokinines. The advantage of these protocols are their simplicity and relatively short 

time required to produce the transgenic plants without a callus phase. This is also 

ensuring a low incidence of somaclonal variation.  

 

The other transformation procedures are based on de novo regeneration by either 

organogenesis or somatic embryogenesis. Puonti-Kaerlas et al. (1990) achieved 

transgenic peas by organogenesis via callus formation using gene encoding 

hygromycin phosphotransferase as a selectable marker. Protoplast-derived mature 

plants of pea (Böhmer et al. 1995), and phynotypically abnormal transformants after 

polyethylenglycol (PEG)-mediated gene transfer (Böhmer 1995) were produced. 

Pickardt et al. (1991 and 1995) reported a transformation strategy based on somatic 
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embryogenesis via callus induction on etiolated shoot tips and epicotyl segments 

(see below). 

 

There are efforts to improve the transformation of grain legumes through increasing 

the ability of Agrobacterium to penetrate the plant tissues by subjecting the explants 

to short periods of ultrasound in the presence of bacteria. This method called 

Sonication-Assisted Agrobacterium-mediated Transformation (SAAT: Tricker and 

Finer 1997) induces the formation of channels in the target tissues and facilitating 

bacterial access to the internal cells of the explants. This method has been applied to 

transform decapitated mature chickpea embryos and transformed shoots were able 

to regenerate via multiple shoots proliferation on TDZ medium (Kiesecker 2000). 

Transformation events of soybean embryogenic cell suspensions have been reported 

using this technique (Trick and Finer 1998).  

 

There are also reports of direct DNA transfer into regenerable tissues of grain 

legumes. Christou et al. 1987 demonstrated that DNA-coated metal particles could 

deliver biologically-active DNA into organized soybean tissues, with subsequently 

recovery of stable transformants in the form of callus lines and transgenic roots. 

Afterwards McCabe et al. 1988 reported the recovery of the first genetically 

engineered soybean. Embryo axes have been used extensively as target tissues for 

direct transformation by particle bombardment in Glycine max (Sato et al. 1993; 

Christou 1990; Padgette et al. 1995), Phaseolus vulgaris (Russell et al. 1993; Aragao 

et al. 1996). Recently, embryonic cell suspension cultures of soybean were 

transformed with jellyfish gfp gene(Ponappa et al. 1999). The main limitation to this 

approach in some laboratories may be the limitation access to particle bombardment 

instruments (Christou, 1997). 

 

 

1.4 Vicia spec. transformation:  
 

The first transformation study with Vicia faba has been performed by Schiemann and 

Eisenreich (1989) by inoculation of the seedlings with Agrobacterium rhizogenes 

strains harbouring the binary vector pGSGluc1 transferring NPT II and GUS under 

control of the TR1/2 bi-directional promoter. GUS-positive roots were developed at 
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the inoculation sites. GUS activity has been monitored in the callus established from 

these roots. Shoot regeneration from these calli was not reported. In the same way a 

study has been done by Ramsay and Kumar (1990): cotyledons and stem explants 

from 8 different Vicia faba varieties were infected with A. rhizogenes harbouring the 

plasmid pBin 19 (Bevan et al.1984) transferring NPTII. Transgenic hairy root cultures 

have been established. The transgenic nature of established root clones were 

confirmed by hormone autotrophy and NPT dot blot assays. Attempts to initiate shoot 

morphogenesis in root cultures were not described. In 1993 Quandt et al. studied the 

gene expression in the transgenic root nodules of V. hirsute. They reported the 

induction of hairy roots on the wounded epicotyls of V. hirsuta by incubation with A. 

rhizogenes. Regeneration experiments were not attempted. Jelenic et al. (2000) 

inoculated stem segments of three broad bean cultivars with nine different 

Agrobacterium strains. With all strains tested only unorganized tumour tissue was 

obtained. Cultivars differed in their susceptibility to bacterium strains, and plant 

genotype vs. strain interaction was detected. Regeneration of transgenic shoots was 

not reported. 

 

Pickardt et al. (1991) reported the recovery of five transgenic plantlets (T0) of Vicia 

narbonensis, transformed with the Agrobacterium tumefaciens strain C58C1/3850hpt 

carrying the gene for hygromycin phosphotransferase and the nopaline synthase 

gene. In this study the regeneration protocol for somatic embryogenesis (Pickardt et 

al. 1989) was successfully combined with the Agrobacterium tumefaciens-mediated 

gene transfer. The progeny analysis revealed a 3:1 segregation of the foreign genes, 

confirming the stable integration of the T-DNA at a single locus (Meixner et al. 1996). 

This protocol seems to be an efficient transformation system (Saalbach et al. 1994, 

Pickardt et al. 1995, Saalbach et al. 1995a/1995b, Pickardt et al. 1998, Weber et al. 

1998, Czihal et al. 1999). 

 

To date there is only one report on the successful Vicia faba transformation with the 

recovery of fertile transgenic plants by Böttinger et al. (2001). This transformation 

protocol is based on the de novo regeneration of shoot initials from dedifferentiated 

cells that was initially developed for plant regeneration from protoplasts using 

thidiazuron (Tegeder et al. 1995), combined with Agrobacterium-mediated 

transformation. Transgenic plants were recovered by inoculation of stem segments of 
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cultivar ‘Mythos’ with Agrobacterium EHA 101 or EHA 105, harbouring different 

binary vectors, followed by callus induction on MS-medium containing 0.5 mg/l of 

each thidiazuron, 2,4-D and NAA and 100 mg/l Kanamycin as selection agent. 

Afterwards transgenic shoots were regenerated via organogenesis using a high 

concentration of thidiazuron (7.5 mg/l) and 0.75 mg/l NAA. Finally plants were 

recovered by micro-grafting. This process is still time consuming and needs 16-24 

months to get seed producing primary transformants, relatively low efficiency and is 

prone to somaclonal variation. 

 

 

1.5 Enhancing of the sulfur containing amino acids in grain legumes. 
 

Grain legumes are an important protein source for food and feed. Dry seeds of Vicia 

faba contain at maximum 33 to 35% crude protein, Albumins represent 15% of total 

seed protein whereas Globulins contribute to the remaining 85%. The Globulins are 

composed of approximately 30% Vicilin and 70% Legumin. More than 50% of the 

methionine of field bean seeds proteins is contributed by albumins (Müntz et al. 

1986). 

 
Unfortunately such proteins are deficient in some essential amino acids e.g. 

methionine and cysteine for human and monogastric animal nutrition. This imbalance 

in amino acids composition restricts their biological value to 55 to 75% of that of 

animal protein (Müntz et al 1998). In many developing countries, like India and Egypt, 

the physical and mental development of children up to 4 years of age can be 

irreversibly retarded by the deficiency of essential amino acids in their diet (Müntz et 

al 1997). This deficiency in the sulfur containing amino acids made the grain legumes 

a target to improvement.  

 

Traditional plant breeding was unable to solve this nutritional problem and could not 

significantly increase the essential amino acid content (Bliss 1990). So, novel 

breeding tools had to be developed which use molecular biology involving the 

modification of the genes, gene transfer and their expression in transgenic plants. 

This biotechnological approach provides a chance to solve this problem by 

manipulating individual genes without drastically decreasing protein yield (Wobus et 
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al. 1986). The data available support the hypothesis that insertion of one or few 

foreign genes do not adversely affect the agronomic characteristics of the host 

cultivars with the expression of the introduced gene. Thus breeding crop varieties by 

insertion of specific single or a few genes could be good a supplement to 

conventional crop improvement programs (Uchimiya et al. 1989). 

 

There are two main strategies to improve the seed storage protein composition. The 

first approach to enhance the methionine and cysteine content of seeds is 

deregulating the biosynthetic pathway to increase the free amount of respective 

amino acids. Methionine and lysine are generated in a pathway starting from 

aspartate (Fig 1). The first step in this pathway is the phosphorylation of aspartate by 

the enzyme aspartate kinase (AK). Besides AK there is dihydrodipicolinate syntheses 

(DHDPS) playing a major role in the aspartate pathway of amino acid synthesis 

(Galili 1995; Brinch-Pedersen et al. 1996). Both enzymes are regulated by end 

product feed-back inhibition. Transformation of a gene coding for an isozyme 

insensitive to feed back end product inhibition could increase the content of free 

methionine, threonine and lysine significantly.  

 

 
 

Fig (1): Biosynthetic pathway of the aspartate-family  
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Falco et al. 1995 reported that expression of insensitive bacterial DHDPS 

(Corynebacterium dapA gene) plus lysine-insensitive E. coli AK (lysC gene) in 

soybean transformants caused several hundred-fold increases in free lysine and 

increased total seed lysine content up to 5-fold. Also the free lysine and threonine 

were increased in tobacco transformants expressing the feed back insensitive AK 

and (or) DHDPS genes (Karchi et al 1993). The major disadvantage in applying this 

strategy to improve the amino acid composition as reported by Müntz et al 1998 is, 

that parallel to the accumulation of special free amino acids their degradation 

pathways are also activated.  

 

The second strategy to improve the methionine content in the seed storage protein is 

the transferring of genes for methionine/cysteine rich foreign proteins. The ideal 

candidate genes for manipulation of methionine/ cysteine–rich protein genes in grain 

legumes are summarized in table (1). 

 

 

Table (1): Methionine/Cysteine rich genes 

 

Transgene 
source 

Gene  Methionine 
(Met) % 

Cysteine 
(Cys) % 

Number of 
amino 
acids  

References  

Bertholletia 

excelsa 

(Brazil nut) 

BNA 18 8 101 Sun et al. 1987 

Helianthus 
annuus 
(sunflower) 

SFA8 16 8 103 Kortt et al. 1991  

Zea mays  
(corn) 

10 
kDa 
zein 

22.5 3.9 129 Kirihara et al. 
1988 

 

Seed specific expression of a chimeric gene encoding a Brazil nut methionine-rich 

protein under phaseolin promoter in tobacco and canola transformants resulted in 

accumulation of the methionine-rich protein up to 8% in tobacco and up to 4% in 

canola of total seed proteins. The level of methionine in the seed proteins of 

transgenic plants has been significantly increased up to 30-33% (Altenbach et al. 

1989, 1992.). Introduction of Brazil nut gene under the control of seed specific 
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promoter from Arabidopsis 2S albumin (AT2S1), lead to increases of the foreign 

protein to levels ranging between 1-2% of the total seed proteins of Arabidopsis, 

tobacco and Brassica napus (De Clercq et al. 1990). In Arabidopsis thaliana 

transformed with the brazil nut gene using a construct in which the transgene was 

present as a tandem duplication under the At2S2 promotor (from the Arabidopsis 2S 

albumin) in the T-DNA, a 1.28% increase in the foreign protein was detected and this 

associated with 20% increasing in the methionine content (Conceicao et al. 1994). 

 

Tu et al. 1998 tried to increase the methionine content of potato by transferring a 

cDNA encoding the methionine-rich protein of Brazil nut or its mutants encoding 

increased methionine contents via Agrobacterium transformation. The coding 

sequence was placed under regulation of CaMV 35S promoter and nopaline 

terminator. The expression of the brazil nut methionine-rich protein levels in the 

leaves among different constructs varied between 0.01% and 0.2% of total protein. 

The expression in the tubers was 2-4 fold lower than in the leaves. 

 

On the other hand Guerche et al. (1990) found that the expression of Brazil nut 2S 

albumin gene (BNA) in the seed of transgenic Brassica napus was not enough to 

alter the amino acid composition. The methionine-rich protein was detected at the 

level ranging from 0.02 to 0.07% of total protein. The coding sequence of BNA was 

driven by a soybean lectin promoter. 

 

Using this approach with grain legumes, Pickardt et al. 1995 transferred the BNA 

gene into Vicia narbonensis under the seed specific leguminB4 promoter from Vicia 

faba (Bäumlein et al. 1991). The expression of the BNA gene occurred in a seed 

specific manner and the foreign protein was presented at the level ranging from 1% 

to 4.8% of the total SDS-soluble seed protein. In further analysis for these transgenic 

plants, the methionine content of the salt-soluble protein fraction was determined in 

the transgenic seeds of T0 transformants (Saalbach et al. 1995a). It was found a 

threefold increasing in the methionine content in the transgenic seeds over the wild-

type of V. narbonensis. In a previous report, Saalbach et al. 1994 described the 

expression of the synthetic BNA driven by CaMV 35S promoter (which permits gene 

expression in all organs) in transgenic Vicia narbonensis. The protein product was 

accumulated up to 0.1% of total soluble protein in leaves and 0.01% in seeds.  
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Transgenic expression of the BNA gene has been reported in the seed of soybean 

(Glycine max) by Jung et al -Pioneer Hi-bred International, Inc. USA 1997 

(unpublished data). In that research the sulfur-rich 2S Brazil nut protein was 

accumulated to more than 10% of seed protein and resulted in nearly a 50% increase 

in the seed methionine content. Aragao et al. 1999 reported on the expression of the 

Brazil nut gene under control of CaMV 35S promoter in transgenic Phaseolus 

vulgaris that, the methionine content was significantly increased up to 23% of the 

seed salt soluble proteins of transgenic plants.  

 

Due to the allergenicity of the 2S Brazil nut protein in some human aspects (Nordlee 

et al. 1996) however, the present research has shifted to using the sunflower 2S 

albumin gene (SFA8, Kortt et al. 1991) as a source for methionine rich protein. In an 

effort to study the possibility of using sunflower seed albumin (SFA8) in engineering a 

high methionine content in transgenic plants, Tabe et al. 1993 transformed tobacco 

plants either with SFA8 gene or with a modified SFA8 by addition of 3´end of the 

protein coding region of 18 nucleotides encoding the peptide; serine-glutamine-

lysine-aspartate-glutamine-leucine (SEKDEL), this modified called SFA8SEKDEL. Both 

types of the modifications were driven by the 35S promotor. This modification 

resulted in the accumulation of detectable levels of SFA8SEKDEL protein in the leaves 

of the transgenic plants, whereas there was no detectable SFA8 protein in the leaves 

of transgenic plants with SFA8 gene without SEKDEL sequences. They hypothesized 

that addition of the SEKDEL peptide to the C-terminus of the SFA8 protein increases 

the stability of the protein by causing it to be retained in the endoplasmic reticulum of 

the leaf cells, thereby diverting it from its route to the vacuole. 

 

Khan et al. 1996 studied the expression of a modified SFA8 gene under the control of 

CaMV 35S in transgenic subterranean clover (Trifolium subterraneum). The SFA8 

gene was modified to contain a sequence encoding an endoplasmic reticulum-

retention: threonine, serine, glutamine, lysine, aspartate, glutamine, leucine 

(TSEKDEL). It was found that the sunflower seed albumin (SSA) was accumulated in 

the leaves of T0 of transgenic plants at varying levels up to 0.3% of the total 

extractable protein. The accumulation level of SSA was increased with increasing the 

leaf age. In the same way Christiansen et al. 2000 introduced the coding sequence of 

the SFA8 gene including an endoplasmic reticulum retention signal (KDEL) into 
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Trifolium repens. The SFA8KDEL gene was driven by different promoters, either the 

promoter of a gene encoding the small subunit of ribulose bisphosphate carboxylase 

(Rubisco) from Arabidopsis thaliana (ASSU), the promoter of the gene encoding the 

small subunit of Rubisco of Medicago sativa (LSSU) or CaMV 35S promoter. The 

highest level of sunflower seed albumin was 0.1% of total extractable leaf protein. 

Also the results showed that the promoter had substantial effects on the SFA8 gene 

expression in the leaves with ASSU > CaMV 35S > LSSU. Transgenic tall fescue 

(Festuca arundinacea Schreb.) with a chimeric SFA8KDEL gene was obtained by 

Wang et al. 2001 in order to improve the protein quality of the forage grass for 

ruminant nutrition. The coding sequence of SFA8KDEL gene was constructed under 

the control of constitutive CaMV 35S promoter or light regulated wheat Cab 

promoters. The SSA was accumulated in transgenic plants up to 0.2% of the total 

soluble leaf protein. 

 

To date the only successful report to enhance the sulfur containing amino acids in 

grain legumes was reported by Molvig et al. 1997. A seed specific expression of the 

SFA8 in lupins (Lupinus angustifolius) under control of seed specific promoter from a 

pea vicilin gene was studied. The SSA was accumulated up to 5% of the total 

extractable seed protein and this associated with increasing the methionine level by 

94% and unexpectedly reduction of cysteine level by 12%. In feeding trails with rats, 

the transgenic seeds of lupins gave significant increases in the live weight gain, true 

protein digestibility, biological value and net protein utilization, as compared with wild-

type seeds. The same gene construct was transferred to chickpea and pea using 

Agrobacterium-mediated transformation and in all cases, the transgenic lines 

expressed detectable amount of SSA in the seeds of transgenic plants (Tabe et al. 

1997 unpublished data). 

 

During performing the current study two additional papers have been published 

which proved that the sunflower seed methionine-rich 2S albumin (SAA) is an IgE-

binding protein (Kelly and Hefle 2000 and Kelly et al 2000).  
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1.6 Aim of the research 
 

The aim of this research was to enhance the sulphur containing amino acids 

methionine and cysteine in the seed storage protein of Vicia faba by means of 

genetic transformation, thus improving their nutritional quality. Different 

transformation strategies either by direct gene transfer (particle bombardment) or by 

indirect transformation have been applied. In addition to Agrobacterium-mediated 

transformation (indirect gene transfer), two systems i.e. de novo regeneration 

protocol (Böttinger et al. 2001) and transformation of pre-existing meristems on 

embryo axes have been studied. Consequently, an efficient and reproducible Vicia 

faba transformation protocol based on the transformation of zygotic embryos 

transformation has been developed. Evaluation of the respective transformation 

protocols with different Elite Vicia faba cultivars (selected Egyptian and German 

cultivars) was also a part of this study. 

 

The main strategy to engineer the seed storage protein composition is transferring a 

foreign gene encoding for a methionine rich protein. Sunflower 2S albumin (SFA8) 

gene (Kortt et al. 1991) is one of the best candidates to improve the nutritional quality 

of grain legumes. The coding sequence of the SFA8 gene was driven by a seed 

specific promotor (leguminB promoter LeB4) from Vicia faba to promote seed specific 

expression of the transformed gene. 

 

In a second approach, a multiple gene model was applied by transferring a gene 

coding for a methionine feedback insensitive form LysC gene from E.coli into faba 

genome and to co-transform the SFA8 gene. Both genes are under control of seed 

specific promotors (phaseolin and legumin promoters, respectively). The study of the 

inheritance and expression of the introduced genes in the transformants progenies in 

the green house using different molecular and biochemical analysis completed this 

approach. 
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2.Materials and Methods  
 

2.1 Source of chemicals and enzymes  
 

1-Naphthaleneacetic acid (NAA)    (Sigma chemical/USA) 

2,4-dichlorophenxy acetic acid (2,4-D)   (Sigma chemical/USA) 

6-Benzylaminopurin (BAP)     (Sigma chemical/USA) 

Agar–agar        (Roth/Germany) 

Ammonium persulphate (APS)    (Serva/Germany) 

B5-Medium        (Duchefa/Netherlands) 

Bacto-Peptone      (Difco - Laboratories/USA) 

Bacto-Tryptone      (Difco - Laboratories/USA) 

Bacto-yeast       (Difco - Laboratories/USA) 

Beef extract       (Difco - Laboratories/USA) 

Bovine Serum Albumin BSA (fatty acid free)  (Sigma chemical/USA) 

Combactam       (Pfizer/Germany) 

CTAB  (Hexadecyl Tri-Methylammonium)  (Merck/Germany) 

DAB (diaminobenzidine tetrahydrochloride)  (Vector Laboratories/USA) 

DIG-DNA labelling kit      (Boehringer/Germany) 

DMSO (Dimethylsulfoxid)     (Sigma chemical/USA) 

DNA markers       (Boehringer/Germany) 

dNTPs       (Appligene) 

Dye reagent concentrate (Bradford)    (Bio Rad/Germany) 

EDTA         (Serva/Germany) 

Ethidiumbromid      (Fluka/Switzerland) 

Gelrite        (Roth/Germany) 

H2O2        (Serva/Germany) 

Kanamycin-Sulfate       (Sigma chemical/USA) 

Kinetin       (Duchefa/Netherlands) 

MS-Medium       (Duchefa/Netherlands) 

Neeo-Agarose      (Roth/Germany) 

Nylon membrane (positively charged membrane) (Boehringer/Germany) 

Phenol       (Roth/Germany) 

Polyvinylpyroldon (PVP)     (Fluka/Buchs, Switzerland) 
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PPT        (Hoechst/Germany) 

Primers        (MWG/Ebersberg) 

PVDF membrane      (BioRad/USA) 

Restriction endonucleases, restriction buffers   (Boehringer/Germany) 

SDS        (Bio-Rad/USA) 

Sucrose       (Merck/Germany) 

Taq-polymerease       (Appligene) 

Tetracycline        (Sigma/USA) 

Thidiazuron (TDZ)      Riedel-de Haen 

Ticarcillin        (Duchefa/Netherlands) 

TMED        (Bio Rad/Germany) 

Tris        (Serva/Germany) 

Triton X-100       (Fluka/Switzerland) 

VECTASTAIN® ABC Kit     (Vector Laboratories/USA) 

X-Gluc.       (Duchefa/Netherlands) 
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2.2. Plant material  
 

In the present study, 6 selected cultivars of Vicia faba i.e. Mythos, Albatross 

(obtained from Norddeutsche Pflanzenzucht/W.Lemke, Hohenlieth), Giza 2, Giza 

429, Giza blanka and Giza 716 (obtained from Agricultural Research Center (ARE), 

Egypt) were used  

Details of each cultivar are given in Table 1. 

 

Table (1): Place of origin and special characteristics of Vicia faba cultivars 
 

Cultivars Place of origin Type Tolerance 
against 

parasitic weed 

Tolerance 
against rust 

disease 
Mythos Germany Minor nd nd 
Albatross Germany Minor  nd nd 
Giza 2 Egypt Minor Susceptible  Susceptible 
Giza 429 Egypt Minor Tolerant  Tolerant  
Giza 716 Egypt Minor Tolerant  Tolerant 
Giza blanke Egypt  Major Susceptible  Tolerant 
 
Plant culture medium and culture condition 
 

Standard MS medium (Murashige and Skoog 1962) and B5 (Gamborg et al. 1968) 

medium were used as plant culture medium, fortified with different combinations of 

growth regulators and antibiotics, depending on the transformation system that has 

been used and the respective culture stage. Media were solidified by 0.3% Gelrite 

and adjusted to pH 5.7 prior to autoclaving for 15 min at 121°C. Growth regulators 

were added to the media before autoclaving. To eliminate Agrobacterium growth 

after co-cultivation, 150mg/l Ticarcillin and 100 mg/l Combactam were used in the 

first stage of the transformation and for the next stages 100 mg/l Ticarcillin and 50 

mg/l Combactam were added to the culture medium. The antibiotics were filter 

sterilized and added to the medium after autoclaving and cooling down to 50-60 °C. 

Petri dishes (Ø 9cm) and 250 ml-jars (8cm, covered with glass lids) were used as 

culture vessels. Petri dishes were generally sealed with parafilm. Cultures were kept 

at 21 °C under cool white fluorescent lights (80 µmol.m-2.s-1) with a 16h photoperiod.  
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Bacterial culture medium  
 

Two types of bacterial culture medium have been used, YEB medium for 

Agrobacterium, and LB medium for either E.coli or Agrobacterium.  

 
YEB-Medium 
 

Beef extract  5 g/l 
Yeast extract 1 g/l 
Bacto – trypton 05 g/l 
sucrose 5 g/l 
Mg4So4 X 7 H2O 0.495 g/l 
pH 7.2 
 
 
LB Medium 
 

Bacto–trypton 10 g/l 
Yeast extract 5 g/l 
NaCl 10 g/l 
 
 
2.3. Plasmids 
 
Four plasmids, pGlsfa, pAN109, pTLsfa-GUS and pRT103gus were used for the 

transformation experiments. 

 

- pGlsfa  
 
This binary plasmid was constructed by taking the sunflower 2S-albumin (SFA8) 

gene as a kpnI/salI fragment from the pJsfa- plasmid (provided kindly by T.J.V. 

Higgins, CSIRO-Canberra-Australia) and subcloning it into the Lz7 plasmid for 

brining this gene under the seed specific LeguminB promotor (LeB4) from Vicia faba. 

A HindIII/XhoI fragment containing the cassette was then subcloned into the binary 

backbone Leg vic plasmid to create pGlsfa. This vector carried also the bar gene for 

a phosphinothricin acetyltransferase as a selectable marker controlled by the 

nopaline synthase nos promoter and g7 terminator (Fig 2) in its T-DNA. This plasmid 
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also carries a marker gene for the Kanamycin resistance serving for bacterial 

selection. The size of this vector is 15.102 kb. To do the transformation experiments 

the binary vector was transferred to Agrobacterium strain EHA 105. 

 
 

Bam HI Hind III EcoRI Bam HI EcoRI
 

PLeB4 Pnos bar Tg7 SFA8 Tnos 

      
 
 

LB                                                                                                                                                                                    RB 

 
Fig (2): Map of the T-DNA regions of plasmid pGlsfa. 
 
 
- pAN109  
 

This binary plasmid has a size of 16 kb and was kindly provided by Gad Galili, 

(Weizman Institute/Rehovot, Israel), conferring Pnos-nptII (as a selectable marker) 

and a mutated lysC gene from E.coli (coding for a feed-back desensitised 

aspartatekinase III, driven by the seed specific bean phaseolin promoter (Fig 3). 

Also, it is harbouring the coding region for tetracycline resistance which serves as a 

bacterial selection marker. It was transferred to Agrobacterium EHA 101 for the 

transformation experiments.  

 

 

 
 
 
 
 

 
nos-npt II  RB LBTocsAspartate-kinase 

rbcS-3A 
transit 
peptide 

Phaseolin promoter

 
 
Fig (3): Map of the T-DNA regions of plasmid pAN109  (Karchi et al 1993) 
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-pRT103gus 
 
The size of this plasmid is 5.1 kb. It contains ß-glucuronidase gene (GUS) under the 

control of the 35S promoter of the cauliflower mosaic virus and an ampicillin 

resistance gene. This plasmid was used for the direct transformation and transient 

expression experiments Fig (4) 

 
 
 

                                   
 
Fig (4). Structure of pRT103gus 
 
 
- pTlsfa-gus 
 
The size of this plasmid is 9.94 kb, it contains the sunflower 2S albumin gene SFA8 

under the LeB4 promoter, a ß-glucuronidase gene (GUS), as well as kanamycin and 

ampicillin resistance genes. This plasmid was used in direct transformation and 

transient expression assay (Fig 5). 

 

T 35S SFA8 GUS 35 S promoter Poly-A P(LeB4)
 
 
 
 
Fig (5). Diagram of the expression cassette of plasmid pTLsfagus 
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Plasmid transformation into Agrobacterium  
 

1- Stored cells of competent Agrobacterium (500µl) were thawed on ice prior to 

transformation. 

2- Competent Agrobacteria were mixed with 0.5 –1.0 µg plasmid DNA 

3- The cells were incubated successively 5 min in ice, 5 min in liquid nitrogen 

and finally 5 min at 37°C 

4- Add 1 ml YEB medium and incubate the bacterial culture 2-4 hr at 28°C under 

shaking (180 rpm)  

5- Aliquots of 200 µl are plated on YEB–plates containing appropriate antibiotics. 

6- After 2 days incubation, single colonies were picked and inoculated in liquid 

YEB medium for further analysis of the plasmid. 

 

 

2.4.Transformation methods  
 
In order to optimize and develop a reproducible transformation protocol, two 

transformation systems have been used namely direct (particle bombardment) and 

indirect (Agrobacterium tumefaciens) transformation. In comparison to 

Agrobacterium-mediated transformation, alternative two protocols have been studied: 

one protocol based on de novo regeneration using thidiazuron TDZ, (Böttinger et al. 

2001), and as the second protocol one based on direct shoot organogensis from 

meristematic cells of mature and immature embryo axes (Schroeder et al. 1993). 

 

In the direct transformation system, particle Gun/PDS 1000/He (Bio Rad) has been 

used to transfer the plasmid DNA to the mature embryo axes, cotyledonary nodes 

and cotyledons of cultivar ‘Albatross’. 
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2.4.1. Indirect transformation  
 
2.4.1.1. de novo regeneration protocol 
 
Source of the explants. 
 
Seeds of faba cultivars (Mythos, Giza 2, Giza 429, Giza 719 and Giza blanka) were 

surface sterilized by immersion for 1 min. in 70 % ethanol and for 8 min in sodium 

hypochlorite solution (4% active chlorine) followed by washing 4-5 times with 

sterilized tap water, and soaked overnight in sterile tap water with shaking (90-95 

rpm). Seeds were germinated in darkness on ½ MS-basal medium. Etiolated 

internode segments (lacking meristems) or leaf explants of the plantlets 10 days after 

germination were used for co-cultivation with Agrobacterium. After cutting the primary 

shoot, secondary shoots arising from the cotyledonary node during the following 

weeks were used as explant sources as well. 

 

Inoculation procedure and co-cultivation 
 

Single colony of Agrobacterium strains were picked and grown overnight (16 hr) in 

liquid LB medium on shaker at 28°C and 180 rpm containing the appropriate 

antibiotics. Internodes of etiolated faba plantlets were immersed and cut into 2-3 mm-

segments in a 1:5 dilution of bacterial suspension in liquid BNZ-medium (MS-

medium, 3% sucrose, 0.5 mg/l of each BAP, NAA and 2,4-D, pH 5.7). The segments 

were briefly blotted on sterile filter paper and transferred to solid BNZ-medium for 2-3 

days for co-cultivation in darkness at 20°C. 

 

Selection and regeneration  
 

Culture phase I:  
 

Following co-cultivation, the explants were thoroughly washed in sterilised distilled 

water and placed on BNZ-Medium containing 150 mg/l Ticarcillin and 100 mg/l 

Combactam to eliminate Agrobacterium growth. After three to four days for 

recovering without selection pressure, the explants were subsequently transferred to 
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plastic Petri dishes containing BNZ-medium supplemented with 100 mg/l Ticarcillin 

and 50 mg/l Combactam and 2 mg/l phosphinothricin and (or) 100 mg/l Kanamycin 

(co-transformation experiments). The explants were sub-cultured every 2 weeks on 

fresh medium for a period of 3-4 months. 

 

Culture phase II:  
 

The resistant calli which were formed under selection pressure were transferred to 

MTN-medium (MS+3% sucrose, 7.5 mg/l thidiazuron, 0.75 mg/l NAA, 100 mg/l 

Ticarcillin and 50 mg/l Combactam) in 250ml jars. The calli were continuously 

subcultured on the same fresh medium every 3-4 weeks during a period of 6-12 

months. 

 

Culture phase III: 
 

Shoot regeneration was seldom observed after about 8-12 months. Emerging shoots 

were transferred to elongation medium (MS-medium, 3% sucrose, 1mg/l BAP, 1mg/l 

GA3, 100 ml/l coconut milk, 100 mg/l Ticarcillin and 50 mg/l Combactam) in 250 ml 

jars. 

 

Recovery of plants:  
 

Healthy regenerated shoots were grafted onto 7-10 day old etiolated seedlings of 

untransformed (wild type) Vicia faba (grown under sterile condition as described in 

section “Source of the explants”). 

 

Grafting was done according to Pickardt et al. 1995 by removing the epicotyl of the 

etiolated seedlings 1.5-2 cm above the cotyledonary node. The remaining part of the 

stem was split by a longitudinal cut ca.1 cm deep. Then, the transformed shoots were 

prepared as a graft using a very sharp razor blade in the shape of a wedge and 

inserted between the split epicotyl of the seedling (rootstock). The grafts were kept 

on ½ MS-medium in 250 ml glass container in light. Finally, any secondary shoots 

arose from the coyledonary node of the seedling during the following days were 

removed. After development of new leaves on the graft and the integration of the 
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graft and the rootstock, the grafted plants were transferred to the soil, acclimatized 

and placed in the greenhouse. 

 
 
2.4.1.2. Faba embryo axes transformation system (direct shoot organogensis). 
 
Plant material and transformation: 
 

Source of the explants  
 

Two types of explants (i.e. mature and immature embryo axes) were infected with the 

Agrobacterium strains. Immature pods of the Vicia faba cultivars were surface-

sterilized with 70 % Ethanol for 3 min and subsequently washed with sterilized 

distilled water 4-5 times. Surface-sterilized mature seeds of the cultivar ‘Mythos’ were 

soaked overnight in sterilized tap water under gentle agitation. The embryo axes of 

both mature and immature seeds were wounded by removal of the root tips and 

slicing of the embryo axes to two or three segments longitudinally with a very sharp 

razor blade wetted by the Agrobacterium strain. Then the explants were incubated in 

the Agrbacterium suspension for 15-20 min (immature embryos) and 30 min (mature 

embryos). 

 
Inoculation procedure  
 
For preparation of the bacterial suspension culture, single colonies of the bacteria 

were grown overnight (16 hr) on a shaker at 28 °C and 180 rpm in LB liquid medium 

containing appropriate antibiotics. The Agrobacterium culture was diluted 1:5 with B5 

liquid medium amended with 0.5 and 1 mg/l kinetin and 2,4-D, respectively. About 

30-40 wetted explants were co-cultivated on solidified B5 medium with 0.5mg/l 

kinetin and 1mg/l 2,4-D at 25°C in dark for 3-4 days. 

 
Recovery phase  
 

After co-cultivation, the explants were subsequently washed thoroughly with sterile 

distilled water and placed on solidified MS (Murashige and Skoog 1962) basal salt 
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medium supplemented with B5 Vitamins (Gamborg et al. 1968), 2 mg/l each of NAA 

and BAP and 150 mg/l Ticarcillin and 100 mg/l Combactam for 2 weeks without 

selection pressure. 

 
Selection and regeneration phase 
 

The explants were subsequently transferred to regeneration and selective medium 

containing MS basal salts, B5 vitamins, 4.5 mg/l BAP, 0.1 mg/l NAA, 100 mg/l 

Ticarcillin, 50 mg/l Combactam and 2 mg/l Phosphinothricin (PPT) for selection. 

Every 2-3 weeks the cultures were passed to fresh medium for 3-6 months. After at 

least 3-4 months of selection, the healthy resistant shoots were grafted onto etiolated 

seedlings wild type of Vicia faba to recover mature plants Fig 6. 

 

 

Regeneration of transgenic shoots 
on MS + B5 Vitamins + 4.5 mg/l 
BAP + 0.1mg/l NAA under 
selection pressure of 2 mg/PPT  

3-4 days co-cultivation 

Embryonic axes preparation

 

 

 

 

 
In vitro
 grafting 

 

Fig. 6: Agrobacterium – mediated transformation of Vicia faba embryo axes  

 

 

2.4.1.3 Co-transformation 
 

An additional approach to increase the sulphur containing amino acid is to. 

(a) transfer genes for methionine-rich foreign protein like SFA8 gene from 

sunflower, and  

(b) deregulate methionine synthesis. 

In order to combine both strategies to improve the seed storage protein of faba bean 

by both strategies, co-transformation experiments have been done to introduce SFA8 

and LysC (encodes for feed back insensitive bacterial AK) genes together into faba 

genome.  
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The etiolated hypocotyls segments or the immature embryo axes explants of 3 

cultivars of Vicia faba (Mythos, Giza 2 and Albatross) were co-transformed by a 

double Agrobacterium infection. EHA105/pGlsfa (Sunflower 2S Albumin and BASTA® 

resistance as a selectable marker) and EHA101/pAN109 (lysC / aspartate kinase 

under phaseolin promotor, Karchi et al. 1993 and nptII as selectable marker 

“kanamycin resistance”). Selection was done for only one of the markers (BASTA®) 

i.e 2 mg/l PPT with embryo axes transformation (see 2.3.1.2). After regeneration the 

selected plants were screened for the presence of the second marker. Also, selection 

was done with BASTA® or Kanamycin (100 mg/l) or by double selection (2mg/l PPT + 

100mg/l Kanamycin) with the de novo regeneration protocol (Böttinger et al. 2001) 

see 2.4.1.1. 

 

 

2.4.2. Direct gene transfer by particle bombardment  
 

2.4.2.1 Plasmid DNA isolation from E.coli 
 

For the direct transformation experiments, DNA of plasmids pTLsfa-gus and 

pRT103gus was isolated from E.coli as described below 

 

1. Pre-culture of the E.coli strains (DH5α) which contains one of the mentioned 

plasmids was carried out in 5 ml of LB medium and 50 mg/l ampicillin for 

bacterial selection. 

2. Cultures were grown overnight at 37°C and 200 rpm on rotary shaker. 

3. Pre-cultures were inoculated in 300 ml LB medium+50 mg/l ampicillin and 

cultivated overnight at 37°C and 200 rpm on rotary shaker. 

4. Plasmid isolation was performed after centrifugation of the bacterial culture for 

15 min at 5000 xg, using NUCLEOBOND® protocol (Macherey-Nagel/ 

Germany) as described below: 

 

a) Carefully resuspend the pellet of bacterial cells in 12 ml of buffer S1 (50 

mM Tris/HCl, 10 mM EDTA, 100 µg RNase A/ml, pH 8.0)  

b) Add 12 ml of buffer S2 (200 mM NaOH, 1% SDS) and mix the 

suspension gently by inverting the tube 6-8 times. 
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c) Add 12 ml of buffer S3 (2.80 M KAc, pH 5.1) and immediately mix the 

suspension gently by inverting the tube 6-8 times until a homogeneous 

suspension is formed. Incubate the suspension for 5 min on ice. 

d) Centrifuge the suspension at high speed (>12.000 xg) at 4°C for 48 

min. Directly after the centrifugation step carefully remove the 

supernatant from the white precipitate. 

e)  Equilibrate the NUCLEOBOND® cartridge AX 500 with 5 ml buffer N2 

(100 mM Tris /H3PO4, 15% ethanol, 900 mM KCl, pH 6.3). 

f) Load the clear lysate onto NUCLEOBOND® AX 500 cartridge 

equilibrated with buffer N2. 

g) Wash the cartridge 2X with 12 ml of buffer N3 (100 mM Tris/H3PO4, 

15% ethanol, 1150 mM KCl, pH 6.3). 

h) Elute the plasmid DNA with 12 ml of buffer N5 (100 mM Tris/H3PO4, 

15% ethanol, 1000 mM KCl, pH 8.5). 

i) Precipitate the purified plasmid DNA with 0.7-0.8 volume of 

isopropanol, preequilibrated to room temperature. Centrifuge 

immediately for 30 min at high speed (>15.000 x g) at 4 °C. Briefly dry 

the DNA pellet (about 5 min at room temperature). 

j) Redissolve the Plasmid DNA in TE-buffer (1mM Na2EDTA, 10mM 

tris/HCl,pH 8) at a final concentration of 1 µg/µl. 

 
 
2.4.2.2 Explants transformation of the cultivar ‘Albatross’ 
 

Embryo axes, cotyledonary nodes and cotyledons were obtained from mature seeds 

of the cultivar ‘Albatross’. Explants were prepared as described in 2.2.1.2 and pre-

cultured on MS medium supplemented with 5 mg/l BA and 0.1 mg/l NAA in the centre 

of plastic Petri dishes overnight in darkness. To coat the gold particles (1.1µm) with 

DNA, the calcium–spermidine method has been used (Klein et al. 1987). 
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Preparation of the gold particle and coating. 
 

1. Vortex 60 mg gold particles (1.1 µm) for 5 min in 96% Ethanol. 

2. 1 min centrifugation, remove the supernatant and repeat two times. 

3. Resuspend the particles in 1 ml sterile bidistilled water and vortex for 5 min. 

4. 1 min centrifugation, remove the supernatant. 

5. Resuspend the particles in 1 ml bidistilled water, repeat twice. 

6. Aliquot 100 µl into 1.5 ml tubes while vortexing the suspension. 

7. Add10 µl Plasmid-DNA into 100µl Gold particle suspension (60 mg /ml), 100 µl 

2.5M CaCl2, 40 µl 0.1M spermidin-free base and mix by slow vortexing in an 

Eppendorf tube for  5 min.  

8. Let the particles settle down for 10 min and remove the supernatant. 

9. Wash the pellet with 100% ethanol by slow vortexing for 10 min. 

10. Let the particle settle down (10 min), and remove the supernatant, resuspend 

the pellet in 100 µl 100% ethanol (slow vortexing). 

11. Pipet 6-7 µl of the particle suspension in the middle of the macrocarrier while 

vortexing the suspension continuously. 

12. Air drying of the macrocarrier under low humidity. 

 
Particle bombardement device and bombardement conditions 
 
The standard bombardment procedure followed the PDS-1000/He manufacturer’s 

instruction (BioRad) with minor modifications. This system is based on the 

acceleration of DNA/particles directly in helium pressure flow. The helium pressure 

utilized was 1800 and 2000 psi. The distance between the macrocarrier/DNA and the 

target explants (Target distance) varied from 3 to 9 cm. The number of 

bombardments per Petri dish were 1, 2 or 3 times. 

 

After bombardment the Petri dishes were incubated for 3-4 days in darkness, 

afterwards the dishes were incubated under 16 h photoperiod. Every 3-4 weeks the 

explants were passed to fresh medium in glass jars (250 ml). 
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The regenerated shoots were subjected to GUS analyses by taking 4-6 mm sections 

from the basal end of the shoots (after about 2-3 months from bombardment) and 

analysed for gus-expression with X-Gluc as described by Jefferson (1987). 

 
 
2.5 Regeneration and transformation frequencies  
 

-Regeneration frequency is defined as the ratio between the number of regenerated 

shoots and the initial number of calli. 

 

-Transformation frequency is defined as the ratio between the number of stable 

independent transformants and the initial number of explants.  

 
 
2.6. Analysis of the transformants 
 

2.6.1 β-glucuronidase assay (GUS assay) 
 

Transient GUS gene expression was determined a few days after transformation of 

the explants. 5-bromo-4-chloro-3-indolyl glucuronide (X-Gluc) is the best substrate 

for histochemicheal localization of the β-glucuronidase activity in the tissues and cells 

(Jefferson 1987). This substrate produces a blue precipitate at the site of enzyme 

activity. The histochemical staining was performed according to Jefferson (1987). 

Transformation efficiency was expressed as the number of blue spots per 

bombarded explant. The transformed explants were incubated overnight at 37°C in 

the substrate buffer which contains 0.5 mg X-Gluc/ml. After staining, the plant 

explants were soaked in 70% ethanol to allow the detection of the blue stain. 

 

0.1 M Phosphate buffer (pH 7.4) 
 

   3.1 g NaH2PO4(x1H2O) 

   13.7g Na2HPO4(x2H2O) 

   in 1 liter H2O 
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Substrate buffer 
 

   40 mM Phosphate buffer  (pH 7.4)  

   10 mM Na-EDTA 

   0.1% Triton X-100 

   0.5 mM K3 [Fe (CN)6] 

   0.5 mM K4 [Fe (CN)6] 

 

 

2.6.2 PAT Enzyme Assay 
 

A modified enzyme assay was carried out for the detection of phosphinotricin 

acetyltransferase (PAT) activity, encoded by the bar gene (isolated from 

Streptomyces hygroscopicus (Thompson et al. 1987). Expression of the bar gene 

confers resistance to phophinothricin (PPT), the active molecule in the herbicide 

BASTA®  by acetylation of PPT and producing an inactive product, N-acetyl-PPT. 

 

Procedure: 
 

1- Homogenize of 20-50 mg leaf explants or callus tissues in an 1.5 ml 

Eppendorf tube with 40-100 µl ice cold extraction buffer.  

2- After 15 min centrifugation at 4°C and 14000 rpm, add 15 µl from the 

supernatant to 2 µg of phosphinotricin and 2 µl of 14C-Acetyl-CoA 

(60mCi/mmol).  

3- Incubate the reaction for 60 min at 37 °C 

4- Spin down the tubes for 2 min at 14 000 rpm  

5- Apply 4µl of the supernatant onto a marked position of a TLC plate.  

6- Run the Chromatography for 2-3 hr. in a chromatography tank containing 

chromatography buffer (1-propanol and NH4OH (25 % NH3) in a 3:2(v/v) ratio). 

7- Air dry the plate for 60 min 

8- Expose the TLC-plate to an X-ray film (Kodak X-OMAT LS) in a light-safe 

cassette for 24-48 hr at room temperature. 

9- Autoradiograph the film to record the signal 
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PAT extraction buffer 
 

    50 mM Tris-HCl, pH 7.5 

    2 mM Na-EDTA 

    300 mg/l Dithiotreitol (DTT) 

    300 mg/l BSA 

    150 mg/l Phenylmethylsulfonylfluorid (PMSF) 

 

 

2.6.3 Assay of BASTA® resistance 
 

Transformants were tested in the greenhouse for the expression of the bar gene by 

painting the leaflets of the transgenic plants with BASTA® (a commercial formulation 

of PPT containing 200g/l ammonium glufosinate, Hoechst Ltd.) dilution at a 

concentration of 300-400 mg/l ammonium glufosinate. The opposite leaflet of each 

pair was marked and left untreated as a control. T1, T2 and T3 were tested by the 

same method or young plants were sprayed (around 3-4 weeks after germination) by 

the same BASTA® solution. Resistance of leaflets or plants were scored after 7-10 

days. 

 

 

2.6.4 Southern blot analysis 
 

DNA was isolated from young leaves tissue of faba bean plants using ‘Plant DNeasy 

mini kit’ (Qiagene). 25 µg genomic DNA from transgenic plants were digested by the 

following restriction endonuclease (Boehringer Mannheim/Germany):  

 

 

Hind III: This enzyme has only one restriction site in the T-DNA of the pGlsfa 

plasmid, and was used to determine the copy number of the integrated genes in the 

plant genome. 
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Bam HI: which has two restriction sites in the T-DNA of the plasmid pGlsfa. By this 

enzyme it is possible to obtain the full length of the legumin promotor (LeB4) and the 

bar gene under the nos promoter with a length of 3.5 kb. 

 

Restriction reactions were done according the manufacturer’s instructions, with 

overnight incubation at 37°C. The digested genomic DNA was electrophoresed 

through 0.8% (w/v) agarose gel in a running buffer of TAE to separate the DNA 

fragments according to the size. 

 

 

2.6.4.1 Southern blotting (transfer) 
 

Separated DNA fragments cannot be conserved in the agarose gel. Therefore the 

DNA has to be transferred to a nylon membrane (positively charged membrane-

Boehringer/Germany). The transfer was performed by means of neutral capillary 

transfer according to Sambrook et al (1989) or by vacuum blotting (alkaline transfer) 

using a Vacuum Gene XL- Apparatus (Pharmacia) according to the manufacturer’s 

instruction. 

 

Capillary transfer under neutral conditions 
 

1. Prior to blotting, the DNA in the gel was depurinated in order to guaranty a 

complete transfer of large fragments of DNA and this has been performed by 

soaking the gel for 5-7 min on 0.25 M HCl with gentle agitation. 

2. DNA denaturation was done by soaking the gel in alkaline buffer (1.5 M NaCl, 

0.5 N NaOH) for 30 min, in order to have single strands of the DNA to allow 

hybridisation. 

3.  Neutralization of the gel through neutralization buffer (1.5 M NaCl and 1 M 

Tris/HCl pH 7.5) for 2 times, each 15 min. 

4.  Finally The DNA was blotted by capillary transfer method using 20X SSC (3 

M NaCl, 0.3 M sodium citrate, pH 7.0) as a transfer buffer overnight.  

5. DNA was fixed to the membrane by backing for 30 min at 120 °C.  
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2.6.4.2 DNA DIG labelling 
 

A 1100 bp bar coding region was isolated by HindIII / BamHI double digest of pGPTV 

Gloc. plasmid or a 750 bp SFA8 coding region was isolated by SalI /BamHI double 

digest of pTLsfa-gus plasmid. The digested plasmids were separated according to 

the size through 0.8% TBE agarose gel. Subsequently, the bar or the SFA8 

fragments were isolated from the gel using the QIAquick Gel Extraction Kit Protocol 

according to the manufacturer’s instructions (Qiagene). 

The isolated fragments were DIG labelled using DIG high prime labelling kit 

(Boehringer Mannheim/Germany) as described in the following protocol. 

 

1- Dilute of 1 µg DNA template in H2O for a total volume of 16 µl 

2- Denature the DNA template for 10 min in boiling water, and quickly chill it on 

ice. 

3- Add 4 µl DIG-High prime, mix and briefly centrifuge. 

4- Incubate the reaction tube at 37°C over night. 

5- Incubate the reaction for 10 min at 65°C to terminate the reaction. 

 

Subsequently, the yield of DIG-labelled template was estimated through spot tests 

with a DIG–labelled control by comparing serial dilutions of the DIG-labelled sample 

and the different known concentrations of the DIG-labelled control (Boehringer 

Mannheim/Germany) which were spotted side by side on a nylon membrane. 

Subsequently, the membrane was colorimetrically detected following the 

manufacturer’s instructions  

 

Procedure: 
1. Make a predilution of the DIG-labelled control DNA by mixing 5 µl DIG-labelled 

control DNA with 20 µl DNA dilution buffer (10 mM Tris-HCl, pH 8.0, 50 µg/ml 

DNA from herring sperm), the final concentration is 1ng/µl. 

2. Make serial dilutions (100 pg/µl, 10 pg/µl, 1 pg/µl, 0.1pg/µl and 0.01pg/µl) of 

the (prediluted) control. 

3. Make serial dilutions of the experimental probe 

4. Spot 1 µl of the diluted controls on a nylon membrane. 
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5. In the second row, spot 1 µl of the corresponding dilutions of the experimental 

probe. 

6. Fix the nucleic acids to the membrane by baking for 30 min at +120°C  

7. wash the membrane briefly in washing buffer (100 mM maleic acid, 150 mM 

NaCl; pH 7.5; 0.3% (v/v) Tween® 20) 

8. Incubate the membrane in blocking solution (1% (w/v) blocking reagent, 

dissolved in washing buffer) for 30 min at room temperature.  

9. Dilute the Anti-DIG-alkaline phosphatase 1:5000 in blocking solution. 

10. Incubate the membrane in the diluted antibody solution for 30 min at room 

temperature. 

11. wash the membrane 2x, 15 min per wash in washing buffer at room 

temperature. 

12. Incubate the membrane in detection buffer (100 mM Tris-HCl, 100 mM NaCl; 

pH 9.5).for 2 min. 

13. Mix the 45 µl NBT solution and 35 µl BCIP solution in 10 ml of detection buffer 

(colour substrate solution). 

14. Pour off the detection buffer and add the colour substrate solution. Allow the 

colour development to occur in the dark (few minutes). 

15. When the spots appear in sufficient intensity, stop the reaction by washing the 

membrane with sterile H2O for 5 min. 

16. Compare spot intensities of the control and the experimental dilutions to 

estimate the concentration of the experimental probe. 

 

 

2.6.4.3 Prehybridisation and hybridisation  
 

The membrane was prepared for probe hybridisation by prehybridisation with pre-

hybridisation solution (5X SSC, 0.1% sodium-lauroylsarcosine, 0.02% SDS, 5% 

blocking reagent and 50% formamide) for 3-4 hr at 42°C under gentle agitation. 

which blocks non specific nucleic acid-binding sites. Afterwards, the pre-hybridisation 

solution was discarded and the membrane was hybridised with hybridisation solution 

having the same composition as the prehybridisation solution but the DIG labelled 

probe at a concentration of (50 ng/ml) added, which was previously denatured by 

heating at 100°C for 10 min and quickly cooled down in an ice bath. 
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The membrane was hybridised overnight at 42°C in a hybridisation oven. Finally, the 

membrane was washed two times by washing buffer 1 (2X SSC and 0.1 % SDS) for 

15 min at room temperature with gentle shaking, followed by the second wash step 

(2 times 15 min at 65°C) under gentle shaking in washing buffer 2 (0.5X SSC and 

0.1% SDS). 

 

 

2.6.4.4 Detection 
 

The chemiluminescent detection of the hybridised probe encompassed three steps. 

The first step is blocking the membrane with blocking solution for at least 1 hr at 

room temperature with gently agitation to prevent non specific attraction of antibody 

to the membrane  

 

The second step is incubation of the membrane with a dilution of anti-Digoxigenin 

(1:10000) in blocking solution for 30 min at room temperature with gentle rotary 

shaking. 

 

As the third step, the membrane carrying the hybridised probe + bound antibody was 

incubated with a chemiluminescent substrate (CSPD® Boehringer 

Mannheim/Germany) for 5 min. This substrate produces a light signal on the site of 

the hybridised probe 

 

 

2.6.4.5 Autoradiography  
 
The membrane was exposed between 3 hr – 24 hr at room temperature to Kodak X-

OMAT LS autoradiograph film to record the chemiluminescent signal. 
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2.6.5 PCR analysis 
 

DNA was isolated for PCR analyses according the method of Sul and Korban (1996) 

from young leaves using cetyldimthylethyl-ammonium bromide (CTAB) with minor 

modifications. 

 

 

CTAB-extraction buffer 
    2% CTAB 

    10mM EDTA 

    50mM tris/HCl (pH 8.0) 

    1% PVP 

    4M LiCl 

 

DNA isolation protocol 
 

1- Frozen plant material (100-300mg) was ground under liquid nitrogen and 

homogenized with one volume (300-400 µl) of extraction buffer. 

2- The homogenate was incubated for 10-15 min at 65°C, during the incubation 

time the homogenate was mixed 2-3 times by inverting the tube. 

3- Afterwards one volume (700 µl) of chloroform-isoamylalcohol solution (24:1) 

was added and carefully mixed.  

4- Short centrifugation (4 min) at maximum speed (14000 rpm) in a bench-top 

centrifuge. 

5- The supernatant was again extracted with chloroform/isoamylalcohol mixture 

and centrifuged.  

6- The supernatant was transferred to fresh 1.5 ml-tubes. 

7- The chlorform/isoamylalcohol extraction was repeated until clarification of the 

supernatant, usually after the second time.  

8- Subsequently, the DNA was precipitated by about 3 volumes of ice cold 

absolute ethanol, and carefully mixed 2-3 times.  

9- 10 min centrifugation and the pellets were washed with 70% ethanol to 

remove any salts. Finally the DNA was resuspended in H2O.  
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The presence of sunflower 2S albumin (SFA8) or lysC genes was assayed using 

Polymerase Chain Reaction (PCR).  

 

PCR reaction mix 
 

0.5 µg  Genomic DNA 

1.5 mM   MgCl2 

2.0 units  Taq polymerase (Appligene) 

30 pM  each primer 

80 µM  dNTP (each) 

The reaction was done in total volume of 100 µl 

 

PCR programme  
 

94 °C 1 min 

57°C 1 min 

74°C 2 min 

the reactions were run for 30 cycles  

 

Primers 
 

The SFA8 sequence (750 bp) was amplified using the following primers 

 

SAF: 5’-ACT AGT ATG GCA AGG TTT TCG ATC-3’ 

SAR:  5’-GAG CTC TTA CAT TTG GCA TGG TTG-3’  

 

 

The following primers were used to amplify the coding sequence (1056 bp) of lysC. 

 

Primer 1: 5’-GAT TTT GAC GCC ATG AAC CGC A-3’ 

Primer 2: 5’-TGT CAG CAA CGT ATC GCC AGT GG-3’ 

 

 

 

 39



Materials and Methods 
 
2.6.6 RNA isolation and reverse transcriptase (RT)-PCR analysis: 
 

The transformed clones were analysed by RT-PCR to characterize the expression of 

SFA8 and legumin genes at the RNA level. Total RNA was isolated from frozen (–70 

°C) immature seeds (30 days after pollination) either by RNeasy mini kit (QIAGEN) or 

by the following protocol. 

 

Total RNA isolation from immature seeds of Vicia faba 
 

1- The frozen embryos (-70°C) were ground under liquid nitrogen using RNase 

free mortar and pestle in an ice bath. 

2- The plant materials were extracted and well homogenised with one volume 

(700µl) of extraction buffer and one volume (700µl) Phenol/Chloroform/ 

Isoamylalcohol PCI (25:24.1). 

3- The homogenate was transferred to RNase free 2ml tubes and mixed by 

vortexing, followed by 2 min centrifugation at 0°C and 14000 rpm.  

4- The aqueous phase was transferred to new tubes and extracted again with 

700 µl PCI and centrifuged for 5 min. 

5- Again, the aqueous phase was transferred to a new tube and the RNA was 

precipitated by 1/20 volume of 3M Na-acetate and 0.8 volume ice cold 

isopropanol at 0°C for 30 min. 

6- Centrifugation for 10 min at 0°C and 14000 rpm in a bench-top centrifuge. 

7- The supernatant was discarded and the pellet was washed with ice cold 70% 

ethanol. 

8- RNA was resuspended in one volume of RNase free H2O in ice bath. 

Afterwards, one volume of 4 M LiCl was added and the mixture was incubated 

at 4°C overnight for total cellular RNA precipitation. 

9-  RNA was precipitated by 30 min centrifugation at 4°C and 14000 rpm.  

10- The pellet was washed with 1 ml 2 M LiCl, followed by centrifugation and 

washing the pellet by 70% ethanol.  

11- Finally, RNA was resuspended in RNase free H2O (treated with DEPC and 

autoclaving). 
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RNA extraction buffer: 
 

   1M Tris  (pH 7.5) 

   1% SDS 

   1 mM Na-EDTA 

   10mM ß-Mercaptoethanol 

 

All the buffers and solutions were treated with 0.1% DEPC except Tris-solutions. 

Afterwards, the buffers were autoclaved for 20 min at 121°C. Mortars and pestles 

were treated by baking in oven for 5 hr at 160 °C. This is to inactivate the RNases. 

 

c-DNA construction: 
 

The first strand cDNA was constructed by Expand Reverse Transcriptase kit 

according to the manufacturer’s instruction (Roche/ Germany) using either specific 

reverse primers for sunflower 2S albumin (SAR) or for leguminB4 (Leq2) as an 

internal control or using oligo(dT)18 primers. The cDNA was amplified using the same 

PCR protocol and primers for SFA8 amplifications to detect the transcript as 

described before. The following oligonucleotides were used for RT-PCR amplification 

of the legumin transcript (1200 bp): 

 

LeguminB4 primers 

 

Leq1: 5´-TCC AGA GCT CCA CAG TCA CAA TGT CCA AAC-´3  

Leq2: 5´- TGC ACA GCT GTT GCA CTC CTT AGC ATG ATC-´3. 

 

 

2.6.7 Western blot analysis 
 

For western blot analysis, proteins were extracted from either mature or immature 

seeds (30 days after pollination) of clones transformed with the pGlsfa plasmid or co-

transformed with pAN109 plasmid. 
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Total protein extraction protocol: 
 
1. Homogenisation of 20 mg seed flour or 200 mg immature cotyledons in 200 µl 

extraction buffer.  

2. 10 min incubation in boiling water bath (SFA8 transformants) or at 65°C for lysC 

transformed plants. 

3. Centrifugation for 10 min at 4°C and 14000 rpm. 

4. The supernatants were transferred to fresh 1.5 µl tubes. Protein concentrations 

were determined according to Bradford (1976). 

 
Protein extraction buffer (SFA8 transformed plants) 
 
     25mM TRIS-HCl (pH 9.0) 

     0.5% SDS 

     10% Glycerol 

 

In order to separate the protein according to the molecular weight, 40-80 µg protein 

were mixed with loading buffer (1:1) and loaded on a 15% SDS polyacrylamide gel 

(Laemmli 1970) for SFA8 transformed plants or into 10% SDS polyacrylamide gel for 

AK transformed plants  

 
Protein extraction buffer (AK transformed plants) 
 

    56 mM Na2CO3  

    2% SDS 

    12% Sucrose  

    2 mM Na2EDTA 

    50 mM DDT 

 

Loading buffer 
 
   0.25M  Tris (pH 6.8) 

   6%        SDS  

   20%      Glycerin 

   0.2M     DTT 

   0.05%    BPB 
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Western blotting 
 
After running the gel at 20mA for about 60 min, it was soaked for 15 min in transfer 

buffer with agitation. The polypeptides separated in the SDS gel were blotted onto 

PVDF membrane (BioRad) using the mini trans blot Apparatus (BioRad) for 60 min at 

100V according to the manufacturer’s instructions. Prior to blotting the membrane 

was treated for 15 sec in methanol followed by 2 min in water, finally the membrane 

was rinsed for 5 min in transfer buffer. 

 
Transfer buffer 
 

   20 mM Tris 

   150 mM Glycine 

   20% Methanol 

 
Immunodetection of the transgenically expressed proteins 
 

Detecting the antigen in the immunoblot is achieved by binding a specific antibody to 

the proteins which were immobilized on the membrane as described in the following 

protocol 

 

1- After blotting, the membrane was rinsed in TTBS buffer for 30 min with gentle 

shaking. 

2- The membrane was probed with either an anti-sunflower 2S albumin-specific 

polyclonal antibody or with an anti-aspartate kinase-specific polyclonal 

antibody overnight with gentle agitation. 

3- The membrane was washed 3x 10 min with TTBS to remove all unbound 

antibody. 

4- The blot was incubated with the labelled (biotinylated) secondary antibody 

(Anti rabbit IgG), diluted up to 1:2000 in TTBS for 60 min with agitation at 

room temperature. 

5- The membrane was washed 3x each 10 min with TTBS to remove unbound 

antibody. 
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6- Transfer the blot to a dilute solution of VECTASTAIN® ABC Vector 

Laboratories/ USA (one drop of reagent A and B to 20 ml TTBS). Incubate the 

blot in this dilution for 2 hr with gentle agitation. 

7- Transfer the membrane to the chromogenic substrate for peroxidase to 

develop the blot and visualize the specific bands. 

8- Finally wash the blot with 2 changes of distilled water for 10 min and allow the 

membrane to air dry. 

 

TTBS buffer 
 

   0.1 M Tris (pH 7.4) 

   0.1% Tween 20 

   0.155 M NaCl 

 
Chromogenic substrate  
 

    0.1 M          Tris–HCl (pH 7.4) 

    0.4 mg/ml    NiCl2  

    0.009%        H2O2 

    0.01%          DAB 

 
 
2.6.8 Amino acid analysis of seed proteins from transgenic faba bean 
 

The amino acid composition of transgenic faba seed meal was determined by an 

oxidation based method. The seed coat was removed and the seeds were ground 

using mortar and pestle. For the analysis at least 1000mg from seed meal of each 

transgenic clone (2-3 seeds) were sent to Degussa-Hüls AG/Germany. Three clones 

were analysed by this way i.e T2 and T3 of clone Mfka/1, clone ME1/2/1 (T3) and 

clone MRE2/3/14 (T2). 
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Materials and Methods 

Transgenic clones were designed as described below:  
 

ME1/2/1 
M: is the Mythos cultivar, E1 experiment code, 2: Clone number 1: Graft number. 
 
Mfka/1 
M: Mythos cultivar, fk: Co-transformation experiment, a: Experiment code, 1: Graft 
number 

MfkE1/2/2 
M: Mythos cultivar, fk: Co-transformation experiment, E1: Experiment code, 2: 
Clone number and graft number 
MRE2/3/12 
M: Mythos cultivar, R: Regenerated plant from mature embryo axes, E2: 
Experiment code 3: clone number, 12: Graft number 
M/7/85 
M: Mythos cultivar, 7: Experiment number, 85: clone Number 
 
M/7/39 
M: Mythos cultivar, 7: experiment number, 39: clone number 
 
M/1/339 
M: Mythos cultivar, 1: experiment number, 339: clone number 
 
Mfk2/3 
M: Mythos cultivar, fk: Co-transformation experiment, 2: Experiment number,  
3: clone number 
Mfk2/13 
M: Mythos cultivar, fk: Co-transformation experiment, 2: Experiment number,  
13: clone number 
Mfk1/35 
M: Mythos cultivar, fk: Co- transformation experiment, 1: Experiment number,  
35: clone number 
G2/1/2 
G2: Giza 2 cultivar, 1: experiment number, 2: Clone number 
 
G2/1/23 
G2: Giza 2 cultivar, 1: experiment number, 23: clone number 
 
AB1/2/3 
A: Albatross cutivar, B1: Experiment code, 2: clone number, 3: Graft number 
 
Abk1/5/1 
A: Albatross cultivar, bk: Co-transformation experiment, 1: Experiment number,  
5: clone number, 1: Graft number 
Abk3/4/3 
A: Albatross cultivar, bk: Co-transformation experiment, 3: Experiment number, 4: Clone 
number, 3: Graft number 
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Results 
 

3.Results 
 

3.1 Transformation experiments 
 
3.1.1 Indirect transformation 
 
3.1.1.1 de novo regeneration protocol  
 

The Agrobacterium transformation experiments under a de novo regeneration based 

protocol, were done with five faba bean cultivars (Mythos, Giza 2, Giza 429, Giza 716 

and Giza blanka). Agrobacterium tumefaciens strain EHA 105 harbouring the pGlsfa 

plasmid with the SFA8 gene driven by the seed specific legumin promoter and a bar 

gene as a selectable marker was used. The control experiments showed that PPT at 

2 mg/l totally suppressed callus development from wild type faba explants (epicotyl 

segments and leaf explants) cultured on MS-medium supplemented with 0.5 mg/l of 

BAP, NAA and 2,4-D. All the explants died. In a series of 10 transformation 

experiments, two types of the explants were inoculated with Agrobacterium, i.e. 

leaves and epicotyl segments. A total of 7580 epicotyl and 552 leaf explants from 5 

cultivars were co-cultivated with the Agrobacteria. Whitish resistant callus started to 

proliferate after about 1-2 months on the surface of a number of explants (Fig 7A). 

Within 3 to 4 months after culturing the explants on selective medium, 4.3-31.59% of 

the explants produced resistant calli. PPT resistant calli with a diameter about 5-10 

mm were transferred to the regeneration medium (phase 2) without selection 

pressure to increase the callus viability to regenerate (Fig 7B). Shoot regeneration 

occurred after 6-12 months on MS medium supplemented with 7.5 mg/l TDZ, 0.75 

mg/l NAA (Fig 7C). Agrobacteria were controlled by media supplementation with 100 

mg/l Ticarcillin and 50 mg/l Combactam. 15 shoot primordia of 3 cultivars were 

recovered from different calli clones within this period. Table (2) summarizes the 

callus induction and shoot regeneration frequencies from all the cultivars and 

explants tested. During the callus induction period (phase I), All the cultivars tested 

produced PPT resistant callus from both types of explants (stem segments and leaf 

explants).  
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Results 

Table (2): Callus induction and shoots regeneration from Agrobacterium–
infected explants 
 
cultivar 

 
type of 

explants 
total 

number of 
the explants 

number 
of resist. 

calli 

meana 
(%) 

 

maximuma

(%) 
minimuma 

(%) 
regeneration

frequency 
(%) 

Mythos 
 

stem 
 
 

leaf 
 
 

2486 
 
 

166 

270  
 
 

54  
 

9.35±8.13 
 
 

31.59±13.25

24.3 
 
 

45.0 

2.3 
 
 

14.3 

10 (3.7) 
 
 

0 

Giza 2 
 

stem 
 
 

leaf 
 
 

1684 
 
 

153 

100  
 
 

29  

5.94±5.80 
 
 

20.17±11.44

16.7 
 
 

37.5 

1.7 
 
 

9.1 

2 (2.0) 
 
 

0 

Giza 429 stem 
 
 

leaf 
 
 

2022 
 
 

134 

109  
 
 

28 

4.81±3.52 
 
 

20.67±17.82

9.4 
 
 

53,6 

0.5 
 
 

0.0 

1 (0.9) 
 
 

0 

Giza 
blanka 

 
 

stem 
 
 

leaf 
 
 

679 
 
 

59 

63  
 
 

16  

10.57±5.62 
 
 

22.43±21.27

15.6 
 
 

42.3 

4.5 
 
 

0.0 

0 
 
 

0 

Giza 716 stem 
 
 

leaf 
 

709 
 
 

40 

31 
 
 

15  

4.3 
 
 

37.1 

5.3 
 
 

40.9 

3.3 
 
 

33.3 

1(3.2) 
 
 

1(6.6) 

 
a The mean (± standard deviation), maximum and minimum of the callus induction under selection 
pressure (number of callus clones obtained per total number of explants treated) were calculated.  
 

 
Out of the 15 shoot primordia regenerating clones, only 8 shoot clones of cultivars 

‘Mythos, Giza 2 and Giza 716’ produced shoots with suitable size for grafting. On the 

other hand, cultivar ‘Giza blanka’ didn’t express any ability to regenerate neither from 

stem segments derived callus nor callus derived from leaf explants.  

 

Shoot primordia were transferred to 1 mg/l BAP medium (phase 3) where they began 

to elongate and further shoot development took place (Fig 7-D). Because of the very 

low rooting percentage of the regenerates, the shoots which reached a suitable size 

(within 2-4 months on phase 3) were carefully grafted onto non-transgenic root 

stocks of Vicia faba as described in 2.4.1.1 to recover a whole plant (Fig 7-E). 
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Afterwards, the plants were transferred to soil for acclimatization and later transferred 

to the greenhouse. Eight clones of 3 cultivars were transferred to the greenhouse for 

further plant development and production of T1 seeds. Only 4 clones produced 

normal flowers and pods with seeds. The time needed to obtain T1 seeds by this 

process is about 16–24 months.  

 

Some regenerated clones showed morphological abnormalities, such as dwarfing 

and the formation of abnormal flowers and subsequently abnormal (or no) pods (Fig 

8A-D). Some plants showed narrow leaves and very weak stems with weak apical 

dominance (Fig 8B). In another case callus regenerated into etiolated shoots lacking 

chlorophyll and no further development (Fig 8C). Early (in vitro) flowering was also 

observed, in this case the flowers failed to set seed in vitro, and if these plants were 

transferred to the greenhouse, they did not produce normal pods. 
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ig (7A-E): Transformation of faba bean epicotyls and leaves explants. A) F

A B C

D E

A B C

D E

Initiation of resistant callus under selection pressure (Phase I). B) Callus proliferation 

on TDZ medium (Phase II). C) Shoot regeneration (Phase II). D) Shoot elongation on 

BAP medium (Phase III). E) Recovering of a whole plant by in vitro micro-grafting 

(arrow) 
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A B

C D

A B

C D

Fig (8 A-D): Morphological abnormalities of some primary transformed clones. 
A) dwarfness and abnormal flowers (arrow). B) regenerated plant (left) with abnormal 

leaves in comparison with normal plant (right). C) regeneration of etiolated shoot.  

D) abnormal pod lacking seeds. 
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3.1.1.2 Faba bean embryo axis transformation (direct shoot organogensis ). 
 

The feasibility of the transformation strategy developed in this experiment was initially 

evaluated by monitoring the number of regenerated shoots from the embryo axis 

explants cultured on high BAP concentration medium (4.5 mg/l). It was worked out, 

that around 4-5 shoots regenerated from each explant. 

 

In a series of transformation experiments with 6 cultivars of faba bean i.e. Mythos, 

Albatross, Giza 2, Giza 429 Giza 716 and Giza blanka, the explants (immature or 

mature embryonic axes) were inoculated with Agrobacterium strain EHA105/pGlsfa 

(harbouring SFA8 and bar genes) alone or co-transformed with EHA101/pAN109 

which contains a mutated lysC gene from E.coli (coding for a feed-back desensitised 

aspartatekinase III under the phaseolin promoter and npt II-kanamycin resistance as 

a selectable marker). A total of 1967 embryo axis explants from total 6 cultivars were 

co-cultivated with the Agrobacterium strains (Fig 9A). In the co-transformation 

experiments, selection was done by one of the selectable markers (2 mg/l PPT) and 

the transformed plants were screened for the presence of the genes derived from the 

other plasmid. 

 

After 3-4 weeks of culturing the embryonic axes on selective medium, all control 

explants were dead. On the other hand, the transformed explants started to form 

callus and to regenerate (via organogenesis) and about 3-4 shoots appeared from 

each explant (Fig 9B) on MS salts medium supplemented with B5 vitamins, 4.5 mg/l 

BAP, 0.1 mg/NAA, 100 mg/l ticarcillin, 50 mg/l combactam and 2 mg/l PPT. The 

shoots selected were grafted under in vitro condition and finally transferred to the 

greenhouse to set seeds (T1), Fig 9C-E.  

 

Data presented in table (3) summarize the results derived from 15 independent 

transformation experiments. A total of 7 stable independent transformants (SFA8) of 

2 cultivars (Mythos and Albatross) have been recovered. Regarding the co-

transformation experiments, transformed plants (T1) were screened for the presence 

of both the T-DNAs by PCR analysis. It was found that only the T-DNA encoding the 

selectable marker PPT has been integrated in the transgenic plants (see below). The 

time needed to obtain T1 seeds by this protocol is about 9–10 months. 
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Table (3) percentage of transformation in different Vicia faba cultivars 

 
 

Cultivar Explants 
type 

Plasmids Number of 
co-cultivated 

explants  

Number of 
putative 

transformed 
lines (SFA8) 

Number of 
transformed 
lines (SFA8) 

Transformation 
frequency 

(SFA8) 
(%) 

pGlsfa 

 

141 8 1 0.71 Immature 

embryo axes 

pAN 109 and 

pGlsfa  

100 7 2 2.00 

Mythos 

Mature 

embryo axes  

pGlsfa 220 11 1 0.45 

pGlsfa 

 

667 11 1 0.15 Albatross  Immature 

embryo axes 

pAN 109 and 

pGlsfa 

380 03 2 0.53 

Giza 2 Immature 

embryo axes 

pGlsfa 81 2 0 0 

Giza 429 Immature 

embryo axes 

pGlsfa 132 0 0 0 

Giza 716 Immature 

embryo axes 

pGlsfa 123 3 0 0 

Giza blanka Immature 

embryo axes 

pGlsfa 123 0 0 0 
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C D E

A B

C D E

A B

Fig (9 A-E): Regeneration of transgenic faba bean plants. A) Explant segments 

derived from embryonic axes. B) Multiple shoot regeneration under selection 

pressure (left), all the control explants (WT) were dead (right). C) Further selection 

between PPT resistant and susceptible regenerated shoots on medium containing 2 

mg/l PPT. D) Grafted shoot transferred to the soil. E) Transgenic plants with flowers 

and pods. 
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3.1.2. Direct transformation using particle bombardment 
 

The objective of this experiment is to analyse the possibility of using direct gene 

transfer based with faba bean explants and to monitor transgene expression in the 

transformed explants. Initial experiments were conducted using 3 different faba 

tissues (i.e. cotyledons, cotyledonary nodes and embryonic axes) from one genotype 

(Albatross). The efficiency of plasmid DNA uptake has been estimated by analyzing 

transient expression of the GUS gene in the cells of treated explants. Because a high 

transient GUS expression was observed in all tissues tested (Fig 10 A-C) and to 

simplify the results, the date presented below from one type of the explants i.e. 

embryo axes. 

 

The effect of the bombardment numbers per Petri dish (0.7 µg/plsmid DNA per 

bombardment) and the distance between the macro-carrier (DNA) and the explants 

(target distance) on the GUS expression was determined with the plasmid 

pRT103gus (table 4). It was found that the number of cells per embryo with visual 

GUS activity in all the tested parameters were high. 

 

Data presented in table 5 show the results of 5 independent transformation 

experiments. The results exhibit that higher acceleration pressure (2000 psi) reduced 

the number of regenerated shoots. This is due to the increasing of bombardment 

shock, tissue injury and subsequently cell death.  
 

The GUS activity was determined after 2 months in the regenerated shoots from 

explants transformed with pTlsfa-gus. The number of shoots showing GUS 

expression was extremely low and the transformed cells per shoot which expressed 

the GUS activity were very low as well (Fig 10 D).  
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Table (4): Transient expression of the GUS gene in embryonic axes after 
bombardment. 
 

 

Target 
distance 

(cm) 

no. of bombardments 
per Petri dish (each 

containing 20 explants) 

no. of 
explants 

mean number of GUS 
expression unit per 

explant 
9 2 60 43 
6 2 130 58 
6 3 40 67 
3 2 40 53 
3 1 50 30 

 

 

 

 

Table (5): Efficiency of  faba transformation via particle bombardment   
 

 

acceleration 
pressure 
(PSI) 

no. of 
bombardments 
per Petri dish 
(each 
containing 30 
explants) 

no. of 
explants

survival 
rate 
(%) 

shoots 
per 
explant 
after 4 
weeks 

no. of 
shoots 
subjected 
to X-Gluc 
staining 
(after 2 
months) 

stable 
GUS 
positive 
plants 

1800 2 549 90.0 3.4 285 none 
1800 3 339 94.1 4 179 none 
2000 3 250 90.8 2.5 132 none 
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A B C

D

A B C

D

Fig (10 A-D): GUS expression in different faba bean tissues after bombardment. 
A-C) Transient expression (A) in cotyledons explants, (B) in embryonic axes, (C) in 

codyledonary nodes. D) GUS expression in putative transgenic shoots (arrows) 2 

months after bombardment. 
 

 

 

 

 

3.1.3 Co-transformation 
 

The co-transformation experiments using EHA105/pGlsfa (SFA8 and bar genes) and 

EHA101/pAN109 (lysC and nptII genes) were done as descried in 2.4.1.3. This was 

performed to determine the possibility of co-introducing SFA8 and lysC genes 

coming from two independent binary vectors in one transgenic plant. This is in order 

to study the possibility of combining the strategies of enhancing the sulfur containing 

amino acids. Transferring of a gene coding for methionine-rich foreign protein (SFA8) 

and simultaneous engineering of the seeds amino acid metabolism (lysC) in a double 

transformant. 
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Resistant calli were proliferated under different selection regimes, either PPT or 

kanamycin or both in combination (see 2.4.1.3). Data presented in table (6) 

summarize the results of 3 independent co-transformation experiments carried out 

with the cultivars ‘Mythos and Giza 2’. From the 2255 co-transformed explants (stem 

segments and leaf explants), 215 selected calli clones were obtained from both 

cultivars. 7 shoots were regenerated from one genotype (Mythos). Out of 46 selected 

calli clones on 2 mg/l PPT (the selectable marker in pGlsfa plasmid), 2 resistant 

clones were regenerated. On 100 mg/l kanamycin selection (the selectable marker in 

pAN109) 4 resistant shoots out of 89 selected callus clones were detected. From 31 

selected calli clones on double selection only one regenerated clone was obtained. 

The regenerated shoots were micro-grafted to recover the whole plants. 

Subsequently these plants have been subjected to biochemical, molecular and 

genomic analysis.  

 

 

Table (6): Co-Transformation with pGlsfa and pAN109 by a double 
Agrobacterium infection  
 

Cultivars Type of 
selection 

Treated 
explants 

Selected calli 
(%) 

Regeneration 
frequency 

 
PPT 

 
435 46 (10.6) 2(4.3) 

Kanamycin 
 

470 89 (18.9) 4(4.5) 

Mythos 

PPT + 
Kanamycin 

420 31   (7.3) 1(3.2) 

PPT 
 

400 21   (5.3) 0 

Kanamycin 
 

470 26   (6.1) 0 

Giza 2 

PPT + 
Kanamycin  

60 02   (3.3) 0 
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3.2 Analysis of the transformants  
 
3.2.1 Selected calli clones  
 

3.2.1.1 Phosphinotricin Acetyl Transferase Assay (PAT Assay) 
 
The bar gene encodes for the enzyme phosphinotricin acetyl transferase, which 

inactivates the herbicide phosphinotricin (BASTA®) by acetylation (De Block et al. 

1987; Murakami et al. 1986; Thomposon et al. 1987). The expression of the bar gene 

in the calli clones selected on media containing PPT was initially tested by the PAT-

assay (2.6.2). Four PPT resistant callus clones were randomly chosen and tested for 

the activity of the enzyme phosphinotricin acetyl transferase. Three clones expressed 

PAT activity. The level of the expression is varying in independent clones (Fig 11). In 

clone M/5/16 no PAT activity could be detected. 

 

 

 

 

14C-Acetyl-PPT

W
T

M
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Fig (11): PAT activity in PPT selected calli clones and wild type (WT) 
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3.2.2 Primary (putative) transformants (T0) 
 
3.2.2.1 Analysis of the marker gene expression  
 
PAT Assay 
 

Expression of the selectable marker (bar gene) was confirmed by the presence of 

PAT enzyme activity in the leaf materials of primary transformants (T0). The PAT 

activity was detected in many clones of cv ‘Mythos, Albatross, Giza 2 and Giza 716’. 

The intensity of the expression was varied from high to very low expression (Fig 12). 

Only 10 clones of 3 cultivars (i.e. Mythos, Albatross and Giza 2) showed a high PAT 

expression. Some cultivars such as Giza 429 and Giza blanka didn’t express any 

activity for PAT enzyme and these are probable negative. 

 

 

14C-Acetyl-CoA

1 2 3 4 5 6 7 8 9 10 11  
 

Fig (12): PAT activity in leaf extracts of faba primary transformants (T0). Lines 2 and 

12 are from the negative control (extracts from untransformed faba bean WT). Lines 

1,3 to 11 are leaf extracts from different primary transgenic faba of 2 cultivars (Giza 2 

and Mythos).  
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Leaf paint  
 

The primary transformants were analysed by testing the expression of the bar gene 

in the greenhouse by applying the leaf painting assay. Leaflets of non-transformed 

and transformed plants were tested for tolerance to the herbicide (BASTA®) at a 

concentration of 300-400 mg/l ammonium glufosinate. In addition, the whole plants 

were tested for BASTA® tolerance by spraying the whole plants with the same 

dilution of the herbicide. Within 2 days necrotic spots appeared on the untransformed 

leaves. Ten days after BASTA® application, the treated transgenic plants and leaflets 

showed complete tolerance (Fig 13A-B), in contrast to the treated non-transformed 

plants showed leaflets which were completely necrotic. 

 

 

 

A B

 

 

 

 

 

 

 

 

 

 

 

 

Fig (13 A-B): Herbicide (BASTA®) resistant transgenic faba bean. A) Leaf 

painting test showing the resistance of transgenic leaf to BASTA® application. The 

right-hand leaflet of each pair was marked and untreated. The left-hand leaflet of 

each pair was painted with 1:500 dilution of BASTA®. The left-hand leaflet pair was 

from a transgenic plant, and the right-hand leaflet pair was from a non-transgenic 

plant. B) Resistance of transgenic plants to spraying with a dilution 1:500 of BASTA®, 

non-transgenic plant (right) died after spraying, while the transgenic plant (left) 

continued the normal growth.  
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3.2.2.2 Integration of the introduced genes into the Vicia faba genome 
 
Genomic analysis of 3 selected independent primary transformants (T0) from 

different transformation experiments, which showed a weak PAT activity, i.e. 

G2/E1/1/1, G2/E1/2/1 and G716/E1/1/1 (designed as genotype/experiment 

number/clone number/graft number) which regenerated from embryo axes and did 

not show resistance in the leaves painting test with BASTA®. This was done in order 

to confirm the integration of the T-DNA and to examine the copy number of the 

integrated T-DNA. Genomic DNA was digested with HindIII which cuts the pGlsfa 

vector only once or without digestion (with clone M/7/85, which expressed high PAT 

enzyme activity), transferred to nylon membranes, and hybridised with the DIG 

labelled bar gene (Fig 14 and 15). The hybridisation profile confirmed the integration 

of the T-DNA into the genome of the putative transgenic plants. Each clone exhibits a 

different integration pattern with different copy number varying from 2 to 1 copies. 

(clones G2/E1/1/1 and G2/E1/2/1, respectively). Because of the enormous genome 

size of Vicia faba (13.3 pg/1C), hybridisation signals of single genes are very faint 

and hard to detect ( e.g. G2/E1/2/1 and G716/E1/1/1).  

 

 

In respect to the undigested DNA blot, the hybridisation signal which was observed 

confirm that more than one copy of the T-DNA had been integrated (band intensity in 

comparison with the positive control) into the genome of clone M/7/85/1 (Fig 15) and 

with BamHI-digested genomic DNA from the same clone (Fig 21). 
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Fig (14): Southern blot hybridisation of genomic DNA digested with HindIII (T0). A 

DIG labelled bar gene fragment was used as a probe. As a positive control 9 and 36 

pg bar fragment were applied. 
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Fig (15) Southern blot analysis of a representative putative transformant (T0). 25 µg 

undigested DNA from clone M/7/85 were blotted to a nylon membrane and probed 

with the 1.1 kb bar gene (DIG labelled). As a positive control 9 pg bar fragment were 

used. 
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3.2.3 Analysis of the transformant progenies 
 
3.2.3.1 PCR analysis of the transgenic progeny  
 

Seeds of T0 plants were germinated in the greenhouse and DNA was isolated from 

young leaves of all plants that were germinated. In PCR analysis using specific 

primers for the SFA8 gene, a DNA fragment of the expected size of 750 bp in length 

was amplified from the total DNA of the transgenic plants and from plasmid pGlsfa as 

a positive control (Fig 16). These DNA fragments were not detected in the DNA of 

untransformed plant (WT). Afterwards, the next generations (T2 and T3) were 

analysed by PCR to confirm the inheritance of the integrated genes in the progenies 

(Fig 17).  

 

 

 

 
 

Fig (16): PCR analysis of transformed faba bean cv ‘Albatross’ (T1) of clones 

Abk1/5/1 (lanes 6-9) and Abk3/4/3 (lanes 10-11). Lane 5 is a positive control (pGlsfa 

plasmid). The size of the amplified fragment is 750 bp. 
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Fig (17): PCR amplification of the coding region of SFA8 from genomic DNA isolated 

from transformed T3 progeny of clone G2/1/2 (lanes 1, 2 and 3), T2 plants of clone 

M/7/85 (lanes 4, 5, 6 and 10), clone ME1/2/1 (lane 7) clone MRE2/3/14 (lane 9) and 

T0 clone from Mfk2/1 (lane 8). The size of the amplified fragment is 750 bp  
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With respect to the co-transformation experiments the putative transformants (T0) or 

the progeny (T1) of the transgenic plants were PCR analysed for the integration of 

the T-DNAs. Putative transformants which were selected on PPT containing medium 

(the selectable marker of pGlsfa plasmid) were screened by PCR for the integration 

of both T-DNAs using primers for SFA8 and lysC genes. The results obtained 

confirmed that only the SFA8 gene was integrated into the plant genome. On the 

other side, the T1 from clones selected on kanamycin containing medium (the 

selectable marker in plasmid pAN109) were PCR analysed and it only the integration 

of the lysC gene was found (Fig 18). There is no evidence for co-integration of the 

SFA8 gene in the same clone. The regenerated plants from callus clone Mfk2/1, 

which were selected on kanamycin and PPT showed no amplification signal neither 

for the SFA8 nor the lysC gene (Fig 17). This confirms that this clone escaped the 

selection. The results obtained showed that the integrated foreign genes were 

transferred from only one plasmid and the transgenic plants contain either the SFA8 

gene or the lysC gene. 
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Fig (18) PCR analysis of the co-transformed progeny (T1) of the Vicia faba 

transgenic clone Mfk2/13 for the lysC gene (AK). The size of the amplified fragment 

is 1056 bp.  
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3.2.3.2 Expression of the marker gene  
 
Expression of the phosphinothricin-resistance gene (bar) in the progeny of the 

transgenic plants (T1) was determined by the PAT enzyme (Fig 19) and leaf paint 

assay in the greenhouse (Fig 20). Transgenic clone G2/1/2 which did not express the 

phosphinothricin-resistance gene by either PAT assay or by leaf paint but which was 

shown by PCR to harbour the gene of interest (SFA8 gene) until T4 and by southern 

blot (T1) analysis was also recovered (Fig 17, and 22).  

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12

14C-Acetyl-PPT

WT

 
 
 
Fig (19) PAT enzyme assay for the progeny (T1) of two transgenic clones MfkE1/2/2 

(lanes from 3 to 6) and clone ME1/2/1 (lanes from 7 to 12). Lane 2 is untransformed 

plant (WT) and lane one is a positive control. 
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Fig (20) Herbicide (BASTA®) resistance in transgenic faba bean progenies. Leaflets 

(arrows) were painted with BASTA dilution in nontransformed plant (left) and 

transgenic plant (T2) expressing the introduced bar gene. 
 
 
3.2.3.3 Southern blot analysis of the transgenic progeny  
 
Southern blot analysis was used to prove the integration of the T-DNA in the plant 

genome. Plant genomic DNA was isolated form young leaves of transgenic progeny 

plants of the different transgenic clones. DNA digestion was performed with BamHI 

or HindIII and the fragments were subjected to Southern-blot analysis using 1.1 kb 

bar or SFA8 (750bp) fragments (DIG labelled) as probes.  

 

Digestion of the genomic DNA with BamHI that cleaves the vector pGlsfa twice, 

should prove the integration of the bar gene and the full-length of legumin promoter 

in the transformants. In all samples which were analysed, it could be found that at 

least one single copy of bar gene was integrated into the plant genome. Fig (21) 

shows the expected hybridizing band at 3.5 kb.  
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Fig (21) Southern blot analysis for the bar gene of the progeny of 3 clones (Mfka/1, 

ME1/2/1 and MfkE1/2/2), primary transformant clone M/7/85 and non-transformed 

faba (WT). Genomic DNA was digested with BamHI. As a positive control 2 pg bar 

fragment was used. 
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Plant genomic DNA was digested with HindIII and blotted to a nylon membrane in 

order to investigate the copy number of the transferred genes. A DIG-labelled 750 bp 

SFA8-fragment was used as a probe which hybridises with the T-DNA/plant-DNA 

junction fragments. Fig 22 shows the genomic blot of two lines, analysed as T1 

generation (lines G2/1/2 and ME1/2/1). Line M/E1/2/1 contains a single copy of 

integrated T-DNA, whereas line G2/1/2 is harbouring two copies of T-DNA; no 

hybridisation signal was observed in the WT. 
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Fig (22) Southern blot analysis of HindIII-digested DNA, isolated from T1 plants of 

the lines G2/1/2 and ME1/2/1. DNA was hybridised with a 750 bp DIG labelled SFA8 

coding region. 
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3.2.3.4 Transgenic expression of SFA8 gene 
 
The expression of the SFA8 transgene in transformed Vicia faba clones was studied 

by RT-PCR analysis and western blot. RT-PCR analysis with total RNA samples from 

individual immature embryos (30 days after pollination) of independent transgenic 

clones in T2 or T3 generation showed the accumulation of the expected SFA8 

transcript, which is driven by the seed specific legumin promoter. No transcript signal 

was observed in untransformed control plants (WT) or negative plants. In addition, 

RT-PCR of the legumin B4 gene was used as an internal control (Fig 23). The 

leguminB4 gene transcript accumulates to high amounts in developing seed of Vicia 

faba. RT-PCR of SFA8 results in the amplification of a fragment of 550 bp, lacking 

the intron sequence of 200 bps. The legumin transcript was used as a control for 

cDNA synthesis and PCR reaction and showing a strong signal in all samples tested. 

The RT-PCR amplified legumin fragment has a length of 1200 bp.  
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Fig (23): Representative RT-PCR analysis, for SFA8 (S lanes) and Legumin (L 

lanes, as internal control) transcription in the immature embryos (30 days after 

pollination) of T2 and T3 transgenic faba plants of clones MRE2/3/12 (lanes 8 and 

10), MfkE1/2/2 (lanes 9) and clone Mfka/1 (lanes 11). SFA8 transcript resulted in the 

amplification of 550 bp fragment, lacking the intron sequence of 200 bp. Legumin 

transcript resulted in the amplifications of 1200 bp in all samples tested. 
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The accumulation of the sunflower 2S albumin protein in the mature and immature 

seeds of the transgenic Vicia faba plants was determined by western blot. The 

western blot analyses revealed that the SFA8 protein was expressed and 

accumulated in most of the transgenic faba bean clones, as judged from the 

presence of the 12-kD protein (Fig 24). No signals were observed in the faba bean 

wild type or in the negative plants (negative control). Some clones did not express 

the SFA8 protein (clones G2/1/2 and M/7/85, the first had no expression of the SFA8 

gene neither at the RNA level nor the protein level, although 2 copies from SFA8 

gene were integrated in this clone Fig 22). On the other hand, in clone M/7/85 the 

SFA8 transcript was detected by RT-PCR analysis (Fig 25) but there could no protein 

accumulation detected by western blot. This can be the result of a post transcriptional 

inhibition. In all cases where both RNA and protein were detectable, the presence of 

the SFA8 protein was associated with the corresponding mRNA. Figure 25 shows the 

comparison of the transcripts of the two progenies of faba bean transgenic clones 

Mfka/1, that accumulated the SFA8 protein and M/7/85 clone which did not 

accumulate the foreign SFA8 protein. The SFA8 transcript in the immature embryos 

of clone M/7/85 accumulated to different amounts. Representative results in Fig (26) 

showed the accumulation of the SFA8 protein in different independent transformants 

of faba bean. It is clear that there is no considerable difference in the SFA8-protein 

accumulation between different clones. 

 
The stability of the foreign protein in different generations was also a part of this 

study. Thus, SFA8 protein stability during different generations was analysed by 

western blot. Fig (27), shows that the accumulation of the SFA8 protein was 

accumulated in plant Mfka/1.3.1 (T2) and its progeny (T3) at a uniform level. 
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Fig (24): Western blot analysis of individual dry seeds (T2 generation) of clone 

Mfka/1. 50 µg of total seed SDS-soluble protein was separated in 15% SDS/PAGE, 

blotted to PVDF membrane and probed with antibody against sunflower albumin. 

Lanes 1, 8 and 9: untransformed Faba bean, lane 2: 26 µg of total soluble seed 

protein of sunflower (positive control). 
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Fig (25): RT-PCR analysis of SFA8 expression in immature embryos (30 days after 

pollination) of clones Mfka/1 (lanes 1, 2 and 3) and M/7/85 (lanes 4, 5, 6 and 7) 

progenies. RT-PCR of SFA8 resulted in the amplification of 550 bp fragment (lacking 

of the intron sequence of 200 bp). M is DNA X marker. 
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Fig (26): Western blot analysis of four independent transformant clones of Vicia faba. 

Each lane was loaded with 40µg total proteins of individual dry seeds of transgenic 

faba bean. Lane 1 is T3 of clone MfkE1/2/2, lanes 2 and 3 are individual seeds (T2) 

of clone MRE2/3/14, lanes 4 and 5 are individual seeds (T3) of clone ME1/2/1 and 

Lanes 6 and 7 are individual seeds (T3) of clone Mfka/1. As a positive control 26 µg 

of total extractable seed protein of sunflower were loaded (lane 8). Lane 9 is a 

negative control (Faba bean wild type). 
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Fig (27): Western blot showing the accumulation of the SFA8 protein in the T2 

transformant of plant Mfka/1.3.2 (lane 7) and plant Mfka/1.3.1 (lane 6) and its 

progeny (T3) lanes 1, 2, 3, 4 and 5. Each lane was loaded with 80 µg of total 

extractable protein from mature seeds of transgenic Vicia faba and 40 µg of total 

extractable seed protein of sunflower (lane 9). Lane 8 is a negative control. 

 74 



Results 

3.2.3.5 SFA8 gene expression in transgenic embryos of the cultivar  ‘Albatross’  
 
As soon as the transgenic clones derived from cv. ‘Albatross’ were recovered, the 

SFA8 gene expression and its respective protein accumulation were monitored by 

RT-PCR and Western blot analysis. Figures 28 A and B represent the results of 

SFA8 transcript detection by RT-PCR and the corresponding Western blot analysis in 

the cotyledons of immature embryos of T2 seeds of clone AB1/2/3. The levels of 

foreign protein which were detected by Western blot analysis (Fig 28) seem to be 

low; this is suggesting that the protein continues to accumulate until full maturity of 

the seeds. The results obtained demonstrate that the accumulation of SFA8 protein 

was associated with the corresponding mRNA. 
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Fig (28 A-B): Molecular analysis of the transgenic faba bean T2 plants (cultivar 
Albatross) transformed with the pGlsfa plasmid. A) RT-PCR analysis for SFA8 (S 

lanes) and leguminB4 (L lanes) transcription using total RNA samples isolated from 

immature embryos (30 days after pollination). SFA8 transcript resulted in the 

amplification of a 550 bp fragment and legumin transcript resulted in the 

amplifications of 1200 bp in all samples tested. B) Corresponding western blot 

analysis; 40 µg total SDS-seed protein were loaded onto each lane. As a positive 

control 26 µg of total extractable seed protein of sunflower was loaded (SFA lane). 

Faba bean wild type (WT) was used as a negative control. 
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3.2.3.6 Transgenic expression of lysC gene 
 
The expression of the lysC gene was analysed by western blot using a polyclonal 

antibody specific for the lysC gene product, a bacterial aspartate kinase insensitive to 

feedback control (AK). This gene was driven by a seed specific promoter (phaseolin 

promoter) and the product of this gene was targeted to the cotyledons of the 

developing embryo (Böttinger et 2001). Fig (29) shows that the 47 kDa aspartate 

kinase was detected in the seeds of (T1) of clones Mfk2/13 and Mfk2/3. No signal 

was detected in the negative control (wild type). 

 

Table 7 summarises the results obtained from molecular and biochemical analyses 

from all transgenic clones.  
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Fig (29) Western blot analysis from protein extracted from mature seeds of 

transgenic faba bean clones Mfk2/13 (lanes 4,5,6 and 7) and Mfk2/3 (lanes 8, 9 and 

10). About 85 µg SDS total extractable protein from individual mature seeds were 

loaded on each lane. Lane 3 is transformed pea with lysC gene (which transformed 

with another vector) as a positive control. Lane 2 is a wild type of Faba bean as a 

negative control and lane 1 is pre-stained protein marker. The 47 kDa protein was 

detected only in the transgenic Faba bean and used as the positive control. 
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Table (7): Vicia faba transgenic clones and analysis of the progenies by (i) PAT assay, 
(ii) leaf paint (BASTA), (iii) PCR, using either SFA8 or lysC primers, (iiii) Southern blot 
analysis using either SFA8 or bar as probes, (V) Western blot analysis for SFA8 and 
lysC genes. Segregation has been estimated by PCR analysis and (or) leaf paint test.  
 
 

Transgenic analysis 
 
 

Segregation
(No. of the 
seeds 
tested) 

Cultivar Clone Transformation 
method 

Plasmids/ 
transferred

genes 

PAT BASTA PCR Southern 
blot 

(bar/SFA8)

Western 
blot 

Character Clone 
stage

T1 T2 

ME1/2/1 
 

Immature 
embryo axes 

pGlsfa/ 
SFA8-bar 

+ + SFA8 + SFA8 Normal  T4 5 :1 9 :0 

Mfka/1 
 

Immature 
embryo axes 

pGlsfa and 
pAN109/ 

SFA8 - bar, 
lysC - nptII 

+ + SFA8 +* SFA8 Normal  T4 4 :3 7 :0 

MfkE1/2/2 
 

Immature 
embryo axes 

pGlsfa and 
pAN109/ 

SFA8 - bar, 
lysC - nptII 

+ + SFA8 +* SFA8 Normal  T4 4 :3 8 :2 

MRE2/3/12 
 

Mature embryo 
axes 

pGlsfa/ 
SFA8-bar 

+ + SFA8 nd SFA8 Normal  T3 9:4 nd 

M/7/85 de novo pGlsfa/ 
SFA8-bar 

+ + SFA8 +* - Normal  T3 3:2 4:2 

M/7/39 de novo pGlsfa/ 
SFA8-bar  

nd + SFA8 nd SFA8 Weak  T1 3:1 nd 

M/1/339 de novo pGlsfa/ 
SFA8-bar 

+ + nd nd nd Abnormal 
(No 

seeds) 

T0 nd nd 

Mfk2/3 de novo pGlsfa and 
pAN109/ 

SFA8- bar , 
lysC - nptII 

- - lysC nd lysC Abnormal 
pods  

T1 nd nd 

Mfk2/13 de novo pGlsfa and 
pAN109/ 

SFA8 - bar,  
ysC - nptII 

- - lysC nd lysC Normal T1 nd 4:1 

Mythos 
(M) 

Mfk1/35 de novo pGlsfa and 
pAN109/ 

SFA8- bar , 
lysC - nptII 

nd nd SFA8 nd nd Normal T0 nd nd 

G2/1/2 de novo pGlsfa/ 
SFA8 - bar 

- - SFA8 ++ - Normal   T4 2:0 4:2 Giza 2 
(G2) 

G2/1/23 de novo pGlsfa/ 
SFA8 - bar 

+ + SFA8 nd nd Abnormal 
(No 

seeds) 

T0 nd nd 

AB1/2/3 Immature 
embryo axes 

pGlsfa/ 
SFA8 - bar 

+ + SFA8 nd SFA8 Normal  T2 1:1 3:0 

Abk1/5/1 Immature 
embryo axes 

pGlsfa and 
pAN109/ 

SFA8- bar , 
lysC - nptII 

nd + SFA8 ++** nd Normal  T2 5:0 nd 

Albatross 
(A) 

Abk3/4/3 Immature  
embryo axes 

pGlsfa and 
pAN109/ 

SFA8- bar , 
lysC - nptII 

nd - SFA8 ++++** nd Normal T1 nd nd 

 
* contains at least one copy 

** date not shown 
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3.2.4 Amino acid analysis of seed proteins from transgenic faba bean 
 
The amino acid compositions of Faba bean seed meals from wild type and 

transgenic plants were analysed in order to estimate the level of methionine and 

cysteine content. Fig (30) presents the amino acid profile of seed proteins extracted 

from control plants (wild type) and one of the transgenic clones (Mfka/1) which 

accumulated the foreign protein at detectable levels (see Fig 26-27). The transgenic 

seeds contain methionine at levels of 0.76 % of total crude protein. This level 

represents an increase of 15.1% for the total methionine found in the seeds as 

compared to the wild type (0.66% methionine of the crude protein). The cysteine 

level increased by 23% in comparison to the wild type. The methionine level of other 

transgenic lines of T2 and T3 generations was analysed as well. It was found that 

there were minor changes in the levels of the methionine content in the seed meal of 

the transgenic clones as compared by the wild type of faba bean and the 

correspondent negative plants as well with 8% at maximum increasing in the 

methionine level (data not shown). 
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Fig (30): Amino acids (%) composition of Faba bean seed meal from wild type 
and transgenic plants which grown in greenhouse. 
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4. Discussion  
 
The main goal of this study was the improvement of the nutritional value of Faba 

bean through gene transformation based methods. This implied the development of a 

reproducible and stable transformation protocol with a broad applicability on Elite 

cultivars of Faba bean. 

 

As soon as transformed plants with the respected genes of interest were obtained, 

the focus was on analysing both the expression and the stability of the transferred 

genes in subsequent generations as well as on the modification of the overall protein 

composition. 

 

 

4.1 Transformations methods  
 
There is only a single report on Vicia faba cv ‘Mythos’ transformation where fertile 

transgenic plants were recovered ( Böttinger et al. 2001). This approach was based 

on plant regeneration from internodal stem segments derived callus (meristem 

lacking tissues). This protocol has been tested in this study with different 

agronomically important cultivars, e.g. the german cultivars ‘Mythos’ and four 

egyptian cultivars namely Giza 2, Giza 429, Giza 716 and Giza blanka. Calli clones 

were selected from two different types of explants (leaf and stem explants) of all 

cultivars on PPT containing medium. The callus proliferation differed from cultivar to 

another and from one type of explants to the other type. The frequencies of callus 

induction under selective conditions were between 4.3-31.59%. Shoot bud 

regeneration from the selected calli ranging between 6.6% with Giza 716 and 0.9% 

with Giza 429 cultivars (Table 2). Regeneration capacity from the selected callus is 

very low as expected, in contrast to model plants like Solanaceae. This result is in 

the same range as previous work done by Böttinger et al. (2001) (regeneration 

frequency was between 2.7% and 6%), or from Tegeder et al. (1995) with Vicia faba. 

The problem is the fact that explants and callus cells of Vicia faba tend to produce 

high amounts of phenolic compounds resulting in subsequent toxification of the 

tissue (Bieri et al. 1984; Selva et al. 1989). The recovery of seed producing putative 

transformed plants under these circumstances took about 16-24 months, a 
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considerably long period. The main constraints in this protocol were the poor 

regeneration ability via callus phase, the reduced fertility and the high percentage of 

phenotypic abnormalities in the regenerated plants (see 3.1.1.1). Possibly this is due 

to the long cultivation time in vitro (around 7-16 months) McClintock (1984).  

 

Transformation protocols based on de novo regeneration of shoots from 

dedifferentiated cells have rarely been applied to produce transgenic grain legumes. 

Puonti-Kaerlas et al. (1990) obtained transgenic pea (Pissum sativum) by 

regeneration of transformed shoots from hygromycin resistant callus derived from 

epicotyls and shoot cultures. This process took 15 months until the primary 

transformed plants produced seeds. In 1992 Puonti-Kaerlas et al. reported 

chromosome doubling (tetraploidy) in their transgenic pea. There are also successful 

transformation systems which based on the de novo regeneration protocol: Vicia 

narbonensis (Pickardt et al. 1995), Arachis hypogaea (Cheng et al. 1996) and with 

Phaseolus acutifolius (Dillen et al.1997). Except the mentioned plant species there is 

no other transformation protocol based on shoot regeneration either by somatic 

embryogenesis or organogenesis from dedifferentiated cells (callus) which 

proliferated from explants lacking meristems published. This confirms the fact that 

the major limitation of grain legumes transformation in general is the requirement for 

effective in vitro regeneration system as compared to model plants. This has strongly 

limited the application of genetic engineering techniques to improve this important 

group of plants. 

 

Transformation strategies which minimize the in vitro culture period and avoiding the 

callus phase would therefore be advantageous in this case. The major success in 

legume transformation was achieved by methods based on transformation of the pre-

existing meristems on the embryo axes, shoot tips, nodal explants or cotyledonary 

nods. This approach has been successfully applied in combination with 

Agrobacterium in different grain legumes such as pea (Schroeder et al. 1993; Bean 

et al. 1997), in chickpea (Krishnamurthy et al. 2000; Kiesecker 2000), Lupinus 

angusitifolius (Pigeaire et al. 1997) and soybean (Yan et al 2000). In combination 

with direct gene transfer systems transformation success was reported from soybean 

(McCabe et al 1988; Russell et. al. 1993; Sato et al. 1993) peanut (Brar et al. 1994), 

Phaseolus vulgaris (Russell et al 1993; Aragao et al 1996). 
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In the present study the potential of Agrobacterium transformation for Vicia faba via 

meristematic cells was proven and optimized. The mature and immature embryonic 

axes of six elite faba bean cultivars (i.e. Mythos, Albatross, Giza 2, Giza 716, Giza 

429 and Giza blanka) were used as explant sources. Regeneration was successfully 

applied for the production of transgenic Vicia faba in combination with Agrobacterium 

tumefaciens. Seven transgenic clones were produced from two cultivars (i.e. Mythos 

and Albatross). The transferred genes were shown to be stably inherited and 

expressed in the next progenies of transformed plants till T4. Transformation 

frequencies were ranging from 0.15% to 2.0%. 

 

The actual transformation system overcomes many of the difficulties which previously 

were reported by Böttinger et al. (2001). The use of embryonic axes which were 

cultivated on media containing high concentrations of cytokinins in combination with 

low auxin concentrations enhanced the direct shooting without an intermediate callus 

phase. By this manner the possibility of somaclonal variation has been reduced to 

the minimal level. This transformation system was an adaptation of the protocol 

which previously was reported by Schroeder et al. 1993 in Pisum sativum. This 

transformation system allowed to obtain the primary seeds bearing transformants 

(T1) to be recovered within approximately 9-10 months. Table 8 presents a summary 

of the results which were obtained with both transformation methods (de novo 

regeneration and direct shoot organogenesis). These results confirm that both 

transformation strategies have the potential to produce transgenic plants. It is clear 

however, that embryo axes transformation methods are more efficient and faster for 

the production of fertile transgenic plants when compared to the de novo 

regeneration protocol.  
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Table (8): Comparison of the Vicia faba transformation protocols  
 

de novo regeneration protocol Direct shoot organogenesis Cultivars 
no. of 

expants 

 
(meristem 

lacking 
tissues) 

Reg. T0  
Plants 

(Selected 
on PPT) 

T1 
Plants

 

No of explants 
 
 

(embryo axes)  

Reg. T0  
Plants 

(Selected 
on PPT) 

T1 
Plants

Mythos 3087 12 7 3 461 26 26 4 
Albatross 0 0 0 0 1047 14 14 3 

Giza 2 2237 2 2 1 81 2 2 0 
Giza 429 2156 1 0 0 132 0 0 0 
Giza 716 749 2 0 123 3 3 0 

Giza 
blanka 

738 0 0 0 123 0 0 0 
1 

 

 

The comparably high frequency of plants which did not show the transfer of the 

introduced genes to the next generations was possibly due to chimeric events 

leading to T0 plants. Thus, it can be recommended that the regenerated shoots 

should be selected for at least 3-4 months before recovering the plants by micro-

grafting. Short-term selection in principal increases the possibility for chimeric plants, 

which are mainly useless. The recovery of both clonal and chimeric primary 

transformants were repeatedly reported in many studies which applied meristematic 

cell transformation either by biolistic approach (Christou and McCabe 1992; Sato et 

al. 1993) or with Agrobacterium-mediated transformation (Bean et al. 1997; Grant et. 

al. 1995). 

 

Christou and McCabe 1992 obtained more chimeras than clonal transformants after 

transformation of multicellular tissues of soybean by electric discharge particle 

acceleration. They reported that not all the chimeric transformants transmitted the 

introduced genes to the next generations. Their results indicate, whilst monitoring the 

GUS activity in the transgenic tissues of the primary transformants, that the majority 

(not all) of germ-line transformation events which were derived from plants with stem 

segments showing an extending of GUS activity from epidermis through cortex to the 

pith resulted in the recovery of transgenic progeny. If this is the case, chimeric 

transformants are not necessarily limiting the value of this transformation method. 

Those chimeric individuals, which are germ-line (L2)-transformants gave rise to 

clonally transformed progeny. 
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The differences between the presented transformation system and the protocol which 

was reported by Böttinger et al. (2001) are the starting materials (mature and 

immature embryo axes vs. epicotyl segments) and the shorter time for in vitro culture 

(from 9-10 months until recovering of T1 generation vs.> 12 months for in vitro 

culture). The morphological and cytological abnormalities which were reported by 

Böttinger et al. 2001, were not observed in the present system. 

 

The direct gene transfer to the mature embryo axes of the cultivar Albatross was 

tested in this study as well. In order to optimise the direct gene transfer system using 

particle bombardment (PDS 1000 He), different conditions and explants (embryo 

axes, cotyledonary nodes and cotyledons) were tested. The recovery of transgenic 

offspring through this type of transformation and regeneration needs L2-layer 

transformation in order to achieve germ line transformation (Satina et al. 1940). The 

regenerated shoots were screened for GUS activity (reporter gene) rather than 

selection for transgenic shoots. The reason is that selection of the transformed 

sectors in the transformed explants is risky as reported by McClean and Grafton 

1989. 

 

The biolistic approach was established particularly for recalcitrant plants like grain 

legumes and cereals (i.e. Christou 1990/soybean; Russel et al. 1993, Aragao et al. 

1993 and 1996 /common bean; Brar et al. 1992 and 1994/ peanut). Up to date 

however, there is no published report on Faba bean transformation via direct gene 

transfer based methods reflecting the difficulties to recover a clonal transformed 

Faba bean with these approaches.  

 

With all the conditions and explants tested, only chimeric shoots were regenerated, 

as judged by the amount and distribution of the GUS expression in the stems of the 

regenerated shoots after bombardment. Therefore, the probability that no-germ-line 

transformation has been occurred is rather high. Therefore no detailed molecular 

investigations with this material was performed. 
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4.2 Using of bar gene as a selectable marker  
 
The assessment of the transformation by these methods was based largely on the 

nopaline synthase-phosphinothricin acetyl transferase (bar) gene expression, which 

confers resistance to phosphinotricin (PPT, the active ingredient of the commercial 

nonselective herbicide BASTA®). PPT is an inhibitor of glutamine synthase in plants 

(Krieg et al. 1990). The bar gene encodes the enzyme phosphinothricin acetyl 

transferase (PAT), which catalyses the PPT and yielding an inactive product, N-

aceyl-PPT (De Block et al. 1987). The preliminary experiments showed that using 

PPT at concentrations of 2 mg/l totally inhibit the callus growth from untreated 

(control/wild type) epicotyl and leaf explants (de novo regeneration protocol). The 

same concentration of PPT has suppressed any growth or regeneration from the 

untreated embryo axes and the explants subsequently died. It could be pointed out 

that removing any callus growth from the regenerated shoots on selective medium 

was important for further distinguishing between clonal and chimeric transformants 

and facilitating direct uptake of the PPT as described by Bean et al. 1997. This basal 

callus could be bar resistant and detoxifying the PPT and thus protecting the 

regenerated shoots from the action of PPT. Also, the regenerated shoots must be 

selected for 4-6 months in order to avoid a high percentage of chimeric plants. 

 

Successful expression of the bar gene was confirmed and monitored in the putative 

transgenic plants and the next sexual generations, by assaying PAT activity and 

performing the leaf-painting test. These results proved the suitability of using the bar 

gene as an effective selectable marker in Vicia faba transformation. On the other side 

the use of neomycin phosphotransferase (nptII) which confers kanamycin resistance 

for selection and identification of transgenic shoots was found to be ineffective (data 

not shown). This is because the untreated embryo axes (control) and the 

regenerated shoots are able to grow on comparably high concentrations of 

kanamycin (100mg/l).  

 

PPT has been used as a selective agent successfully to obtain fertile transgenic 

plants such as in pea (Schroeder et al. 1993; Bean et al 1997), common bean 

(Russel et al. 1993), Lupinus angustifolius (Pigeaire et al. 1997), subterranean clover 
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(Khan et al. 1996) and in wheat (Sorokin et al. 2000) with different concentrations 

depending on the species. 

 

 

4.3 Co-transformation 
 

In co-transformation experiments we used two physically independent binary vectors, 

EHA105/pGlsfa which are carrying the coding sequence for the methionine rich 

sunflower 2S-albumin (SFA8) gene under a seed specific promoter (LeB4) in 

combination with the selectable marker bar gene. The second vector is 

EHA101/pAN109 harbouring a mutant lysC gene, coding for a bacterial aspartate 

kinase which is insensitive to feed-back control by threonine in combination with nptII 

as a selectable marker. Co-transformation by a double Agrobacterium infection was 

performed by both presented transformation systems (i.e. embryo axes 

transformation and by de novo regeneration transformation protocol/Böttinger et al. 

2001). The transformation events were selected by two different approaches, i) 
selection for only one marker (PPT or kanamycin), afterwards the transgenic plants 

were screened for the presence of the second T-DNA; ii) double selection using 

kanamycin and PPT at the same time.  

 

In respect to the co-transformation of the embryonic axes via Agrobacterium 

mediated gene transfer, the selection was done only for the bar gene. This decision 

was made because of the high level of tolerance of the embryo axes and the 

regenerated shoots to kanamycin selection. Co-transformants were screened by 

PCR analysis for both T-DNAs and occasionally by western blot analysis. 

 

There was no transgenic clone which showed the integration of both T-DNAs. Only 

transgenic plants with one of the T-DNAs were generated, possibly as consequence 

of the low percentage of the regeneration and subsequently low transformation 

frequencies. Calli clones expressing resistance to both selectable markers were 

recovered. 

 

Characterisation of the co-transformed events were reported in many studies 

specially with model species such as Arabidopsis and Solanaceae to introduce linked 
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and unlinked genes into plants, mainly by direct gene transformation (Damm et al. 

1989/Arabidopsis; Tagu et al. 1988/Petunia hybrida; Christou and Swain 

1990/Soybean cell culture; Aragao et al. 1996/common bean). Agrobacterium-

mediated transformation has been applied with rapeseed (de Block and Debrouwer 

1991; Daley et al 1998), Arabidopsis (De Buck et al. 1998) and tobacco ( de Neve et 

al. 1997; Komari et al. 1996). 

 

 

4.4 Integration of the foreign genes and progeny analysis 
 

The present study showed the possibility of recovering transgenic faba bean plants 

using different methods. Many transgenic clones were recovered from 3 cultivars 

(Mythos, Albatross and Giza 2). For confirming the integration of the foreign genes 

into the plant genomes, Southern blot analysis is the method of choice. By Southern 

blot it is possible to identify independent transformation events. Also, PCR analysis is 

required specially for screening the transgenic progenies for studying the segregation 

of the introduced genes using specific primers, which could amplify specific 

fragments (foreign genes) in the transformants’ genomes. During the research, 

expression of the introduced genes i.e., bar gene (by PAT assay and herbicide 

BASTA® leaf painting test, see 4.2), SFA8 and lysC genes by RT-PCR and western 

blots were studied (see below).  

 

Southern blots of undigested and digested DNA with restriction enzymes HindIII or 

BamHI subsequently probed with the bar or SFA8 inserts, demonstrated integration 

of the introduced genes in the plant genome (see Fig.14, 15, 21, and 22 ). Primary 

transformants (T0 plants from 2 cultivars ‘Giza 2 and Giza 716’, regenerated from 

embryo axes) which were analysed by Southern blot, showed that at least one copy 

of the bar gene was integrated into the plant genome (Fig 14), taking into account 

that these plants did not express tolerance to the herbicide (BASTA®) leaf paint test. 

It is noteworthy to state that in further analysis of the mentioned clones in the next 

generations (T1) it was confirmed that these clones were chimeras. This can be due 

to the instability of the integrated genes in their progenies. Finally these clones were 

ignored. Southern blot hybridisation in T1 plants has confirmed the integration of the 

genes of interest into the plant genomes which were resistant to herbicide BASTA® 
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and also in the line G2/1/2 which did not express tolerance to BASTA (Fig 21, 22). 

The BamHI digest shows the expected 3.5 kb band, bands with higher molecular 

weight than 3.5 kb were also detected. This can be explained by partial digestion of 

the genomic DNA (Fig 21), since DNA digestion with HindIII shows the clear copy 

number of integrated T-DNA (Fig 14 and 22).  

 

The Vicia faba genome is considered as being one of the largest genomes in the 

plant kingdom (13.33pg/C). The chromosome size and DNA content of Vicia faba is 

about double that of the other Vicia species (Raina and Ogihara 1995), this 

phenomenon caused difficulties in the detection of hybridisation signals, especially 

for the determination of the integrated copy number, as at least 25 µg/digested DNA 

is required to detect a single integration of the bar gene (1 pg). 

 

The regenerated plants from PPT or Kanamycin selection, which were obtained from 

different transformation systems and showed no phenotypic aberrations were fertile. 

The next progenies revealed that the foreign genes were transmitted to the offspring. 

The inheritance data of the transgenic clones were studied, and it was observed that 

a stable inheritance with segregation patterns through multiple generations had 

occurred. Several lines were advanced for three generations of self fertilization with 

no loss of the transferred genes.  

 

Due to the low number of seeds which were produced by the transgenic plants a 

statistical analysis has not been done. In some clones the segregation did not show 

exactly the Mendelian rate of 3:1 (presence: absence) for the inheritance of a single 

transgenic locus after self pollination. The segregation ratio was estimated by PCR 

amplification for SFA8 or lysC genes and (or) determination of the bar gene 

expression by leaf paint test (Table 7). 

 

These experiments have demonstrated that the foreign genes have been delivered 

into faba bean via either transformation of pre-existing meristems (embryo axes) or 

transformation of the epicotyl explants (which are lacking of meristems), callus 

selection and finally regeneration of the transgenic plants (de novo regeneration 

protocol).  

 

 88 



Discussion 

4.5. Gene of interest expression (SFA8) and protein analysis 
 

The main aim of this study was the modification of the seed storage protein 

composition of Vicia faba in order to enhance the sulphur containing amino acids 

(methionine and cysteine) by means of genetic transformation. The coding sequence 

of the methionine-rich 2S albumin gene from sunflower (Kortt et al. 1991), and the a 

mutated lysC gene coding for the a bacterial aspartate kinase, which was 

desensitised to feed back inhibition by lysine and threonine were transferred to Faba 

bean. The direct combination of both genes by co-transformation, SFA8 as a sink for 

sulphur containing amino acids and lysC as source for free methionine in one double 

transformant should be investigated. This approach was impossible due to the low 

percentage of the regeneration of the transgenic plants. Therefore, only transgenic 

plants with either the SFA8 gene or with the lysC gene were regenerated and 

analysed.  

 

The expression of the SFA8 gene was studied by detection of the transcript in the 

immature cotyledons of transgenic faba bean by RT-PCR and by studying the 

accumulation of the foreign protein (Western blot). In order to promote a seed 

specific expression, the coding sequences of the SFA8 gene was driven by the 

LeguminB4 promotor (Bäumlein et al 1987, 1988). The usage of such promoter for 

seed specific expression of the foreign genes like the Brazil nut 2S albumin gene 

(BNA) was reported previously by Pickardt et al. 1995 and Saalbach et al. 

1995a/1995b. RT-PCR was used to amplify the transcripts of the SFA8 gene and the 

legumin gene as an internal control. The amplification of SFA8 gene shows weaker 

signals than that observed from the endogenous legumin gene amplification.  

 

The mature protein of sunflower seed albumin (SFA8) consists of a signal 

polypeptide chain of 103 amino acids with a molecular weight of 12.133 Da (Kortt et 

al. 1991). The accumulation of the sunflower 2S albumin was detected by western 

blots in six transgenic faba clones with relatively strong signals. This implies that the 

legumin promoter (LeB4) controls the gene expression as expected in a seed specific 

manner. These results are in accordance with those of the other reports (Pickardt et 

al 1995, Saalbach et al.1995a/1995b). Due to the lack of purified sunflower 2S 

albumin, it was difficult to estimate the accurate amount of the foreign protein in the 
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transgenic faba bean. Taking into account that SFA8 includes about 7-8% of the total 

sunflower seed protein, the amount of the foreign protein was estimated to be in 

between 0.4-0.8% of the total soluble seed protein in transgenic V. faba. The 

accumulation of the sunflower 2S albumin was not high enough to change the amino 

acids pattern significantly. It was found that these transformants did not exhibit a 

significant increase in the methionine content of the salt soluble seed protein. This 

indicates that the transcript message is inefficiently translated or the introduced 

protein incorrectly processed. A possible reason for this phenomenon was described 

by Molvig et al. 1997 in transgenic lupins, where it was found that in transgenic plants 

expressing the SFA8 protein, probably simultaneously other changes in the 

composition of the seed protein fractions had occurred. For example, a reduction in 

the level of a native protein which contains considerable amounts of methionine and 

cysteine such as conglutin δ could cause the insignificant change in the total sulphur 

containing amino acids in the seed meal of the transgenic plants.  

 

Production of transgenic plants expressing genes coding for sulphur rich proteins e.g. 

the Brazil nut 2S albumin BNA (Sun et al. 1987) or the sunflower 2S albumin (SFA8), 

has been repeatedly reported (see introduction). From surveying the published 

reports, there were 20 research papers published, in which genetic transformation 

based methods  were applied to improve the protein quality using BNA or SFA8 

genes. In the BNA case, the modified protein was stably expressed with significant 

amounts in different plants (e.g. tobacco/Altenbach et al. 1989; 

Arabidopsis/Conceicao et al. 1994; Canola/Altenbach 1992; Vicia 

narbonensis/Pickardt et al 1995; Saalbach et al. 1995a/1995b; Soybean/Jung et al. 

Pioneer Hi-bred. Inc. USA 1997; Phaseolus vulgaris/Aragao et al. 1999). On the 

other hand, Guerche et al. (1990), De Clercq et al. (1990) and Tu et al. (1998) failed 

to obtain the accumulation of the Brazil nut methionine rich protein altering the amino 

acid composition in different plants. After publishing the allergenic effects of the 

Brazil nut methionine rich protein (Nordlee et al. 1996), the research moved to use 

the sunflower 2S albumin gene (SFA8) instead. 

Accumulation of the SFA8 protein up to 0.3% of soluble leaf protein was achieved in 

transgenic tobacco with the CaMV35S/SFA8 construct (Tabe et al. 1993). The same 

research group in 1995 reported the accumulation of this foreign protein in leaves of 

transgenic alfalfa to up to 0.1%, when the SFA8 gene was driven by atsA1 promotor 
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from Arabidopsis. In transgenic subterranean clover, Khan et al. 1996 reported the 

accumulation of the SFA8 protein to up to 0.3% in the edible leaf protein. 

Christiansen et al. 2000 in transgenic Trifolium repens and Wang et al. 2001 in 

transgenic Tall fescue obtained accumulation of the foreign protein between 0.1 and 

0.2%. These contents, however, were not sufficient to alter the methionine level 

significantly. Wang et al. 2001 mentioned that the useful level of SFA8 protein for a 

significant impact on ruminant diet would be in the order of approximately 4%. To 

date the only successful report which applied this approach was in transgenic lupins, 

as reported by Molvig et al. 1997. Approximately 5% of the soluble seed protein of 

the transgenic lupins was SFA8 when the gene driven by the seed specific promoter 

from a pea vicilin gene. This level of foreign protein was associated with increasing 

the methionine in the seed proteins by 94% more than the wild type but with an 

unexpected 12% reduction in cysteine. The same research group had reported the 

recovery of transgenic pea and chickpea with the same construct and the 

accumulation of the foreign protein at a detectable amount in the seed proteins 

(unpublished data).  

 

With respect to the lysC transformants, two clones (Mfk2/13 and Mfk2/3) which 

showed the integration of the lysC gene under the control of the seed specific 

phaseolin promotor were subjected to Western blot analysis. The 47KDa aspartate 

kinase was detected in the seed proteins. This result is in accordance to the previous 

work of Böttinger et al. 2001 and Karchi et al. 1993. 
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5. Conclusion and outlook  
 

In the present study, different transformation systems were tested with different 

selected Vicia faba cultivars. The major outcome of these experiments is an efficient 

Agrobacterium transformation protocol by means of direct shoot regeneration after 

transformation of meristematic cells (mature and immature embryo axes). The use of 

this new developed transformation protocol enabled to overcome many problems that 

stemming from callus phases which implying a higher risk of somaclonal variation. 

 

The transformation experiments were performed using either EHA 105/pGlsfa 

carrying the SFA8 gene under a seed specific legumin B promoter and the selectable 

marker gene bar, or in combination with EHA101/pAN109 which harbouring lysC 

gene under the seed specific phaseolin promoter and the selectable marker gene 

nptII. Fifteen transgenic clones were recovered from 3 different Faba bean cultivars 

(Mythos, Albatross and Giza 2) carrying either the SFA8/bar or the lysC/nptII genes. 

Southern blot hybridisations demonstrated that at least one copy of the T-DNA was 

stably integrated into the plant genome. The inheritance of the transgenes was 

studied by means of PCR analysis until the T3 generation.  

 

In most of the recovered transgenic clones the foreign genes were active as 

predicted from the expression of the selectable marker bar gene (PAT assay and 

herbicide BASTA® leaf paint test). The expression of the genes of interest SFA8 and 

lysC genes was confirmed by RT-PCR and Western blot analysis. This study 

demonstrates that the transgenic expression of SFA8 gene in Vicia faba leads to 

accumulation of the sunflower methionine rich protein at detectable levels with 

respect to total salt soluble seed proteins. In the transgenic Faba bean containing the 

lysC gene, the corresponding 47 kDa aspartate kinase was detected in the 

transgenic seed proteins. 

 

For the future approaches, combinations of the SFA8 and LysC genes could be 

possible via crossing of the SFA8-transgenic plants and lysC-transgenic plants in 

order to be in a position to embark on meaningful improvement of the protein quality 

of the Vicia faba. Major target for the transgenic Faba bean plants is the 

environmental risk assessment of the products which derived from the transformants 
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this is by screening the plants for the presence of bacterial nptIII to investigate the 

safety of the vectors which were used. Finally, carry out field trial experiments and 

studying the stability of the transgene expression in long term. 
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