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Abstract. For derived flood frequency analysis based on hy-
drological modelling long continuous precipitation time se-
ries with high temporal resolution are needed. Often, the
observation network with recording rainfall gauges is poor,
especially regarding the limited length of the available rain-
fall time series. Stochastic precipitation synthesis is a good
alternative either to extend or to regionalise rainfall series
to provide adequate input for long-term rainfall-runoff mod-
elling with subsequent estimation of design floods. Here, a
new two step procedure for stochastic synthesis of continu-
ous hourly space-time rainfall is proposed and tested for the
extension of short observed precipitation time series.

First, a single-site alternating renewal model is presented
to simulate independent hourly precipitation time series for
several locations. The alternating renewal model describes
wet spell durations, dry spell durations and wet spell inten-
sities using univariate frequency distributions separately for
two seasons. The dependence between wet spell intensity
and duration is accounted for by 2-copulas. For disaggre-
gation of the wet spells into hourly intensities a predefined
profile is used. In the second step a multi-site resampling
procedure is applied on the synthetic point rainfall event se-
ries to reproduce the spatial dependence structure of rainfall.
Resampling is carried out successively on all synthetic event
series using simulated annealing with an objective function
considering three bivariate spatial rainfall characteristics. In
a case study synthetic precipitation is generated for some
locations with short observation records in two mesoscale
catchments of the Bode river basin located in northern Ger-
many. The synthetic rainfall data are then applied for derived
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flood frequency analysis using the hydrological model HEC-
HMS. The results show good performance in reproducing av-
erage and extreme rainfall characteristics as well as in repro-
ducing observed flood frequencies. The presented model has
the potential to be used for ungauged locations through re-
gionalisation of the model parameters.

1 Introduction

Efficient flood protection measures require a good knowl-
edge about flood frequencies at different points in a catch-
ment. The classical approach to obtain design flows is to
carry out local or regional flood frequency analysis using
long records of observed discharge data (e.g. Hosking and
Wallis, 1997; Stedinger et al., 1993). If flow data are not
available or if impacts of climate or land use change are to
be investigated rainfall-runoff modelling is a good alternative
either using event based or continuous simulation. Disadvan-
tage of the event based simulation is the required assumption
about equal return periods for the design storm and the result-
ing design flood. This is usually not given considering e.g.
the initial soil moisture conditions in the catchment which
may lead to different floods for the same storm. With contin-
uous rainfall-runoff simulation this problem can be avoided
and the design flood is derived by flood frequency analy-
sis of long series of simulated flows. However, such kind
of hydrological modelling requires long continuous rainfall
series with high temporal and sufficient spatial resolution.
Given the restricted availability of those observed data, syn-
thetic precipitation is used more and more commonly for this
purpose (Aronica and Candela, 2007; Blazkova and Beven,
2004; Cameron et al., 1999; Moretti and Montanari, 2008).
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Figure 1. Scheme of the precipitation event process 
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Fig. 1. Scheme of the precipitation event process.

Over recent years, several stochastic precipitation models
for short time step rainfall have been proposed. To the early
approaches belong the alternating renewal models which are
based on event series of wet-dry spells (Acreman, 1990;
Grace and Eagleson, 1966; Haberlandt, 1998; Pegram and
Clothier, 2001). Those models have a simple structure, the
estimation of parameters from point observations is straight-
forward and the models can easily be applied to rainfall syn-
thesis at single locations. However, they are usually not able
to simulate space-time rainfall for several stations in a catch-
ment. The classical approach of time series models is less
important here and more suitable for daily rainfall due to
difficulties with modelling the high intermittence of short
time step rainfall and the large number of required param-
eters (Haan et al., 1976; Wilks, 1998). Advanced approaches
for rainfall modelling with sub-daily time steps are the point
process models like Neyman-Scott or Bartlett-Lewis rectan-
gular pulse models (Cowpertwait, 2006; Onof et al., 2000;
Rodŕıguez-Iturbe et al., 1987), which can also be extended
to simulate space-time rainfall. They are based on the phys-
ical structure of the rainfall process and describe probabilis-
tically arrival times of storms and cells within storms as well
as cell intensities and durations. Often they assume inde-
pendence between cell intensities and durations. One recent
exception is described in Evin and Favre (2008) where cu-
bic copulas are used to model this relationship. A difficulty
with point process models arises from parameter estimation
which requires usually observed radar data or relies on opti-
misation which may lead to some kind of parameter equifi-
nality (Beven and Freer, 2001). The latter makes a condition-
ing of the model parameters on climatic conditions difficult.
Other models for synthetic rainfall generation which can be
applied for derived flood frequency analysis include differ-
ent disaggregation approaches (Koutsoyiannis et al., 2003;
Lu and Yamamoto, 2008; Olsson, 1998) and various resam-
pling methods (B́ardossy, 1998; Lall and Sharma, 1996).

Objective of this study is to provide a simple parsimonious
space-time model for the synthesis of hourly rainfall which
can especially be used as data generator for flood frequency
analysis. The idea is to use a hybrid or two-step approach.
First, an alternating renewal model is used to simulate inde-
pendently precipitation time series for several locations. In
the second step, a resampling procedure is applied on the
generated event time series to reproduce the spatial depen-
dence structure of the rainfall process. The approach is val-
idated using observed rainfall characteristics and simulated
flood frequencies. The paper is organised as follows. In
Sect. 2 the methodologies for the alternating renewal model
and the resampling approach are developed. Section 3 dis-
cusses a case study with rainfall modelling and derived flood
frequency analysis for two mesoscale catchments in northern
Germany. Finally, in section 4 a summary, conclusions and
an outlook are given.

2 Methodology

2.1 Single-site temporal rainfall synthesis

In the first step of the rainfall generation process single site
precipitation synthesis is carried out using an alternating re-
newal model (ARM). Alternating renewal models describe
the precipitation process by dividing the time series into dry
and wet spells. The entire precipitation process is separated
into an external and an internal structure. The external struc-
ture characterises the occurrence and the amount of the pre-
cipitation events, as explained by the four random variables
dry spell duration (D), wet spell duration (W ) and wet spell
amount (V ) or wet spell intensity (I ) with I=V /W . Fig-
ure 1 shows a scheme of the rainfall event process. The in-
ternal structure describes the precipitation distribution within
the wet spells. The precipitation occurrence process can be
treated as an alternating renewal process if the durations of
the spells are independent and the unique spell states are
identically distributed. This process is completely deter-
mined by establishing probability distribution functions for
the variablesD andW . The precipitation amount or the in-
tensity can also be modelled using probability distributions.
However,V or I cannot be treated as independent ofW .

Here, the ARM developed by Haberlandt (1998) for urban
hydrologic applications is adapted and modified for the pur-
pose of rainfall generation for flood frequency analysis. Us-
ing data from a representative subset of precipitation stations
(see Sect. 3) several model structures were evaluated includ-
ing different probability distribution functions and copulas
for the event variables and their relationships. The finally se-
lected components of the alternating renewal model structure
are described in the following.
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For modelling of the wet spell durationsW a generalized
extreme value distribution (GEV) is used:

FW (w) = exp
[
− exp(−y)

]
, with

y =

{
−κ−1

G ln
(
1 −

κG(w−ξG)
αG

)
, κG 6= 0,

(w − ξG)
/
αG, κG = 0,

(1)

for a practical range ofw>0, whereξG∈< is a location pa-
rameter,αG>0 is a scale parameter andκG is a shape param-
eter.

Dry spell durationsD are modelled by a Weibull distribu-
tion function (WEI):

FD(d) = 1 − exp

[
−

(
d + ζ

β

)δ
]

, (2)

for a practical range ofd>0, whereζ≥−min(d) is a loca-
tion parameter,β>0 is a scale parameter andδ>0 is a shape
parameter.

The variable wet spell intensity is modelled here instead of
the wet spell amount becauseI allows better to fit a unique
probability distribution for the whole range of values from
small to heavy events, which is not feasible forV . The wet
spell intensity is modelled using a Kappa distribution func-
tion (KAP):

FI (i) =

{
1 − h

[
1 −

κK (i − ξK)

αK

]1/κK
}1/h

, (3)

for a practical range ofi>0, whereξK ∈ < is a location
parameter,αK>0 is a scale parameter andκK ∈ < as well as
h ∈ < are shape parameters. The casesκK=0 andh=0 are
included implicitly as continuous limits of Eq. (3) asκK→0
andh→0 (see Hosking, 1994).

The dependence between wet spell intensity and duration
is described by a 2-copula. A 2-copula is a bivariate distribu-
tion function on the unit square with uniform marginals (see
e.g. Nelsen, 2006):

C (u, v) = Prob(U ≤ u, V ≤ v) (4)

with C : [0, 1]2 → [0, 1] , u ∈ [0, 1] , v ∈ [0, 1] .

Thus, the 2-copula can be used for describing the depen-
dence structure between the two random variablesW andI

with the above defined marginal distributions:

C (FW (w), FI (i)) = F(w, i). (5)

Here, after some simple comparisons the Frank copula is
chosen, mainly because of practical reasons like its fully cov-
ered dependence range, easy parameter estimation and simu-
lation features. Besides, the Frank copula has been success-
fully applied for linking rainfall duration and intensity before
(De Michele and Salvadori, 2003):

C (u, v) = −
1

α
ln

[
1 +

(
e−αu

− 1
) (

e−αv
− 1

)(
e−α − 1

) ]
α ∈ <− {0} , (6)
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Figure 2. Scheme of the simple profile model which is used to disaggregate wet spells 

into precipitation intensities  
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Fig. 2. Scheme of the simple profile model which is used to disag-
gregate wet spells into precipitation intensities.

with u=FW (w) andv=FI (i). The Frank copula has only
one parameterα, describing the dependence betweenu and
v. The parameterα can be approximated from Kendall’s Tau
with:

τ (α) ≈
1

9
α −

1

900
α3

+
1

52920
α5

−
1

2721600
α7

+ ... . (7)

To generate the two dependent random variablesW and
I using the copula model the procedure outlined by De
Michele and Salvadori (2003) was followed. The alternat-
ing renewal model part describing the external structure of
the rainfall process has 11 station specific parameters in to-
tal, which are estimated for summer (May to October) and
winter seasons (November to April) separately.

For the simulation of the internal precipitation structure,
a simple profile model is adapted (Haberlandt, 1998), dis-
aggregating the wet spell amount into a special predefined
pattern. To estimate the temporal distribution of the precip-
itation intensityi(t) during a wet spell a mixture of two ex-
ponential functions is chosen:

i(t) =

{
iP × exp[λ(t − tP )] , λ≥0, 0≤t≤tP ,

iP × exp[λ(tP − t)] , λ≥0, t>tP ,
(8)

whereiP is the wet spell peak,tP is the wet spell peak time
andλ is an event specific parameter, which can be calculated
from the external variables and the peak. The first function
describes the increase of precipitation intensity from the be-
ginning of the precipitation event to the wet spell peak time.
The second function is used for the decrease of the precip-
itation intensity (see Fig. 2). So, the internal rainfall model
is completely defined by the four random variablesW , V ,
IP andTP . SinceW andV are already given by the external
model, only the wet spell peakIP and the wet spell peak time
TP have to be specified here. The wet spell peak is estimated
by a simple regression to the mean wet spell intensity of the
event using all stations in the study region:

iP = a×ib, a≥1, b≥1. (9)
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Realisations of the wet spell peak timetP are generated
from a uniform distribution. The main advantage of this sim-
ple profile model is that it needs no station specific parame-
ters. This approach is obviously a strong simplification of the
internal rainfall process. However, from the internal struc-
ture only a sufficient approximation of the peak intensity is
expected. The internal rainfall variability is assumed to be of
minor importance compared to the external one for the gen-
eration of extreme flow events (see also Haberlandt, 1998).

2.2 Synthesis of the space-time rainfall structure using re-
sampling

In this second step of the rainfall generation process the syn-
thetic precipitation event time series for several locations in
the study region will be resampled in order to reproduce the
spatial dependence structure of the rainfall process. It is
important to note, that for resampling not the hourly data
are used but the event series. This is in accordance with
the basic idea of the alternating renewal process from step
one, which assumes the independence of subsequent events.
Thus, the resampling on the event time series preserves the
temporal rainfall structure for single time series and does
not need to consider any autocorrelation. The resampling
is carried out using simulated annealing (Aarts and Korst,
1989), which has been used for rainfall generation before
(Bárdossy, 1998). Simulated annealing can be considered as
a non-linear discrete optimisation method which minimises
a certain objective function.

In our case the objective function should reflect the spatial
dependence structure of the rainfall process. Three bivari-
ate criteria are defined for this purpose and can be calculated
from the hourly rainfall time seriesz. The first criterion de-
scribes the probability of bivariate rainfall occurrence at two
stationsk andl:

Pkl (zk>0|zl>0) ≈
n11

n
, (10)

where,n11 is the number of hours with simultaneously oc-
curring rainfall andn is the total number of non-missing ob-
servation hours, at both stations respectively. The second cri-
terion describes the relationship between rainfall intensities
at two stationsk andl if it rains at both stations. Here, Pear-
son’s coefficient of correlation is applied:

ρkl =
cov (zk, zl)

√
var(zk)×var(zl)

zk>0, zl>0. (11)

The last criterion is a continuity measure proposed by
Wilks (1998), which compares the expected rainfall amounts
at a stationk for times with and without rain at a neighbour-
ing stationl:

Ckl =
E(zk|zk>0, zk=0)

E(zk|zk>0, zl>0)
, (12)

where E(.) is the expectation operator. The ratioCkl will be-
come smaller with increasing interrelation between the two
stations, and it will become a value of about 1 for indepen-
dent stations.

The three criteria are chosen to complement each other in
describing spatial dependence of the rainfall process. The
first onePkl considers only the rainfall occurrence process
i.e. the coincidence of wet hours at neighbouring stations.
The second oneρkl measures only the linear association be-
tween rainfall intensities for simultaneous rainy hours at two
stations. The third oneCkl estimates the expectation of the
rainfall intensity of one station conditioned on the rainfall
status dry or wet of the neighbouring station combining the
spatial relation of rainfall occurrence and intensity between
the two stations.

The three criteria are coupled into one bivariate objective
functions as follows:

Okl = w1×
(
Pkl − P ∗

kl

)2
+ w2×

(
ρkl − ρ∗

kl

)2
+ (13)

w3×
(
Ckl − C∗

kl

)2
, w1, w2, w3>0,

where the variables marked with * represent the prescribed
values and the other ones are the simulated values. The
weightsw1, w2 andw3 are used to control the importance
and to adjust the scale of the different criteria. The pre-
scribed values need to be estimated from observed hourly
data before they can be used in the objective function. If it
is possible to express those bivariate statistics as functions
of the separation distance between two stationsk and l, the
criteria could be used for resampling of time series between
any two points in the study region no matter if observations
are directly available at these locations.

LetU be the set of all stations, which are unchanged andR

be set of all stations which have already been changed, then
the resampling algorithm using simulated annealing works as
follows:

1. A rainfall stationk with k=1, . . . ,N is selected at ran-
dom from the setU to be used for resampling. A backup
of the event time series from stationk is made and the
events are disaggregated into hourly values. If the setU

is empty the procedure is finished.

2. All rainfall stationsl with l=1, . . . ,M are selected from
the setR which represents the reference stations for re-
sampling of the stationk. If the setR is empty then
stationk is taken from the setU and added unchanged
to the setR, and the algorithm returns to step 1. Other-
wise it proceeds with step 3.

3. Two events are drawn at random from the resampling
stationk and swapped. A backup of the modified data
from the time period between the two events is made
and then the changed period is disaggregated into hourly
values.
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Figure 3. Study region showing the two mesoscale catchments Holtemme and Selke within 
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Fig. 3. Study region showing the two mesoscale catchments Holtemme and Selke within the Bode river basin, the topographic structure, the
hourly rainfall stations with id’s (cf. Table 1), the daily rainfall stations, the climate stations and the two streamflow gauges.

4. The value for the objective functionOkl (Eq. 13) is up-
dated using the data from the hourly series. An average
objective function valueOk for stationk considering all
the neighboursl with l=1,. . . ,M from setR is calcu-
lated:

Ok =
1

k − 1

M∑
l=1

Okl . (14)

5. The new value of the objective functionOnew is com-
pared with the old valueOold, which was calculated be-
fore the last swap. IfOnew<Oold then the change is
accepted.

6. If Onew≥Oold then the change is accepted with the prob-
ability π :

π = exp

(
Oold − Onew

Ta

)
, (15)

whereTa is the annealing temperature.

7. Steps 3 to 6 are repeatedK times.

8. The annealing temperatureTa is reduced:
Ta=Ta−1×dT with 0<dT <1 and the algorithm
proceeds with step 3.

9. Steps 7 and 8 are repeated until the algorithm converges
regarding resampling of the stationk.

10. Then stationk is removed from the setU and added to
the setR. The algorithm returns to setp 1 for resampling
of the next station.

Step 6 is essential for the optimisation not to stop at any lo-
cal minimum but to find a good solution near the global min-
imum. The annealing temperature regulates the probability
of negative changes. The lowerTa the less likely is the ac-
ceptance of a negative change. The algorithm stops if the ob-
jective functionO becomes smaller than a prescribed value
or if O does not decreases anymore for a certain number of
iteration steps. The convergence is ensured in reducing the
annealing temperatureTa each time afterK iteration steps.
A slow temperature decrease rate with values of dT =0.95 or
0.90 shows usually a good performance. In order to speed up
the algorithm for resampling of long time series the hourly
spatial dependence criteria are not recalculated for the whole
time series but updated considering only the changed period
between the two swapped events. In addition the distance
between two randomly selected events for swapping can be
restricted, which further speeds up the disaggregation into
hourly values and the calculation of the target criteria.

As seen from step 1, the stations are drawn at random. The
degrees of freedom for resampling decrease from the first to
the last station because the number of reference stations in-
creases. However, the total objective function value over all
stations is independent from the order. Note, that the order
might have an effect on the hydrological simulation, which
will be assessed in future work. It should also be mentioned
here, that the first approach was to resample all stations at
once. However, the algorithm did not converge to a good so-
lution, probably because in this multivariate case too many
degrees of freedom are possible.
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Table 1. Recording precipitation stations and their characteristics (see Fig. 3 for locations). MAP is the mean annual precipitation amount
for the used observation periods. For better comparison the observed amount for the summer stations is multiplied by two.

No. Name Elevation Used observation MAP Operated Used for Used for
[m. a.s.l.] period [mm/yr] all year Selke basin Holtemme basin

1 Wernigerode 234 1993–2006 778 1 0 1
2 Harzgerode 404 1993–2006 595 1 1 0
3 Braunlage 607 1993–2006 1568 1 0 1
4 Strassberg 400 1993–2006 732 0 1 0
5 Schierke 609 1993–2001 1266 0 0 1
6 Altenbrak 300 1993–2001 723 0 0 1
7 Günthersberge 420 1993–2003 721 0 1 0
8 Derenburg 161 1993–2001 659 0 0 1
9 Friedrichsbrunn 523 1993–2002 734 0 1 0

10 Breitenstein 466 1993–2002 792 0 1 0
11 Hasselfelde 461 1993–2003 759 0 1 1
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Figure 4. Selected structure of the hydrological model HEC-HMS 
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Fig. 4. Selected structure of the hydrological model HEC-HMS.

The second step of the rainfall generation process, which
is described above, yields rainfall time series with spatial de-
pendence regarding the criteria in Eqs. (10–12) but preserves
the temporal characteristics from the alternating renewal pro-
cess.

3 Case study

3.1 Data and study region

The hybrid rainfall model is tested and applied for derived
flood frequency analysis in two mesoscale catchments within
the Bode river basin in northern Germany (Fig. 3). The con-
sidered Bode region has elevations between 1140 m a.s.l. at
the top of the Brocken Mountain and about 80 m a.s.l. Mean
annual rainfall varies between 1700 mm/yr and 500 mm/yr.

The two catchments Holtemme and Selke have drainage ar-
eas of 168 km2 and 105 km2, respectively. Floods are gener-
ated either by frontal rainfall, frontal rainfall on snow smelt
or convective storms. Large floods in the Selke catchment oc-
cur mainly in the winter season while floods in the Holtemme
take place mostly in the summer time.

A total number of 23 recording rainfall stations with
hourly data and 19 non-recording rainfall stations with daily
data are employed for the case study. The daily stations are
used only as additional information for hydrological mod-
elling. The 23 stations with hourly records are located in an
extended study area within and around the Bode river basin
and are used in this total set for the robust estimation of the
spatial dependence criteria. Only a subset of 11 hourly sta-
tions can be used directly for rainfall synthesis and hydro-
logical modelling regarding the two mesoscale catchments.
Figure 3 shows the study area, the selected catchments, the
19 daily stations and the relevant subset of 11 hourly sta-
tions. From these hourly stations 3 gauges are operated all
year. The remaining 8 hourly stations are operated during
the summer season only. Table 1 list these recording hourly
rainfall stations with their characteristics and indicates their
use for hydrological modelling in the two catchments. The
length of the observation periods varies between 9 and 14
years from 1993 to 2006.

3.2 Rainfall-runoff model

For runoff simulations the hydrological model HEC-HMS
(Scharffenberg and Fleming, 2005) is used, which has been
applied successfully in the past for various purposes (Cun-
derlik and Simonovic, 2005; Fleming and Neary, 2004;
Maskey et al., 2004; Neary et al., 2004). HEC-HMS is
a conceptual semi-distributed rainfall-runoff model and of-
fers various tools for the description of the hydrological pro-
cesses. Figure 4 illustrates the model structure which has
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Figure 5. Observed and simulated flows in the validation period for the Holtemme basin (left) 

and Selke the basin (right) 
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Fig. 5. Observed and simulated flows in the validation period for the Holtemme basin (left) and Selke the basin (right).

been compiled from the available tools for this study. The
model is operated continuously on an hourly time step. It
uses the soil moisture accounting (SMA) algorithm for runoff
generation, the Clark Unit Hydrograph for the transforma-
tion of direct runoff, two linear reservoirs to consider inter-
flow and base flow transformation and a simple river routing
where the flows are only lagged in time. Snow melt is calcu-
lated externally using the degree-day method. Potential evap-
otranspiration is computed also externally using the method
proposed by Turc-Wendling (Wendling et al., 1991) based
on observed temperature and global radiation data from the
three available climate stations. Potential evapotranspira-
tion is aggregated and averaged to mean monthly values and
fed into HEC-HMS. Actual evapotranspiration is calculated
hourly depending on water availability from canopy, surface
and soil storages. To account for spatial heterogeneity of
meteorological and basin characteristics the two catchments
are spatially divided into several subcatchments and river
reaches.

Because of the sparse network of recording hourly rainfall
gauges also daily stations are included in the model calibra-
tion. For that purpose daily rainfall totals are disaggregated
into hourly data using the intensity profile from the nearest
station with high resolution data. Areal rainfall for subcatch-
ments is then calculated by Thiessen interpolation from all
daily and hourly station locations.

The model HEC-HMS is calibrated for the period from
November 1997 to 2001 and validated for the subsequent pe-
riod from November 2001 to October 2004 for the stream-
flow gauge Mahndorf at the Holtemme catchment and
the streamflow gauge Silberhütte at the Selke catchment
(cf. Fig. 3). The hydrological model was parameterised us-
ing iteratively manual and automatic calibration. Five pa-
rameters were included in the calibration process comprising
mainly capacity values and recession constants of the subsur-
face storages (cf. Fig. 4). The calibration was focussing on
peak flows using e.g. the peak-weighted root mean square er-
ror in the objective function (USACE, 1998). Figure 5 shows
a comparison of observed and simulated streamflow during
the validation period for these two gauges. On average, the
obtained model performance is sufficient with Nash-Sutcliffe
efficiencies of 0.81 and 0.86 for the Holtemme and Selke

catchments, respectively. However, the hydrographs indicate
an underestimation of the peak flows and an overestimation
of the low flows, especially for the Selke basin. This is a
typical result for simple continuously operating hydrologi-
cal models, which can provide an unbiased global estimation
but often at the cost of smoothing the flow time series (e.g.
Götzinger and B́ardossy, 2008, Figs. 14 and 15; Fenicia et
al., 2008, Fig. 4).

3.3 Synthesis and application of stochastic rainfall

The hybrid precipitation model is applied and validated for
the study region in the following three step procedure:

1. Parameters are estimated for the alternating renewal
model (ARM) and single site rainfall is generated in-
dependently for all hourly stations in the study region.

2. Spatial dependence criteria are estimated for the study
region and the hourly rainfall series are resampled us-
ing simulated annealing to generate the spatial rainfall
structure.

3. Derived flood frequency analysis is carried out for both
catchments using the rainfall-runoff model HEC-HMS
and the synthetic rainfall data.

The identification and parameter estimation of the alter-
nating renewal model depends on the definition of a rain-
fall event. Rainfall events are defined here by a minimum
rainfall amountVmin and a minimum separation time be-
tween eventsDmin. The minimum rainfall amount is set
to Vmin=0.5 mm/event and excludes negligible events which
would complicate the fitting of probability distributions.
Note, that this leads to a small systematic underestimation of
the total rainfall sum, which needs to be corrected before the
data can be used for continuous hydrologic modelling. The
second criterionDmin should theoretically guarantee the sta-
tistical independence of subsequent events. In the literature
values ofDmin range from 1 h (Acreman, 1990) to 12 h (De
Michele and Salvadori, 2003). IfDmin is greater than the
target time step of 1 h here the generated hourly values un-
derestimate the true precipitation intensity if the model is not
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Table 2. Parameter estimates of the alternating renewal model for the three total year hourly rainfall stations Wernigerode, Harzgerode and
Braunlage. Kendallsτ is not a model parameter; it is included here for information only.

Model variable Description Parameter Wernigerode Harzgerode Braunlage
Summer Winter Summer Winter Summer Winter

Wet spell duration (W ) GEV ξG [min] 127.1 236.0 126.5 239.1 146.7 323.1
αG [min] 77.18 169.6 81.72 168.4 103.7 253.6
κG [-] −0.335 −0.268 −0.333 −0.232 −0.385 −0.282

Dry spell duration (D) WEI ς [-min] −26.91 −102.9 −35.00 −77.22 −41.77 −117.9
β [min] 1945.9 1756.7 2031.4 2260.4 1004.5 967.28
δ [-] 0.6650 0.6370 0.6490 0.6670 0.5470 0.5380

Wet spell intensity (I ) KAP ξK [mm/h] 0.3969 0.1940 0.3486 0.3148 0.4120 0.2778
αK [mm/h] 0.5452 0.3795 0.5464 0.2269 0.6131 0.4238
κK [-] −0.3458 −0.0485 −0.3281 −0.2609 −0.3286 −0.0988
h [-] 0.6347 0.8170 0.7530 0.1826 0.6658 0.6495

I=f (W) Frank copula α [-] −0.7006 −0.6227 −1.0163 −0.9700 −0.3429 1.1841
τ [-] −0.078 −0.069 −0.113 −0.108 −0.038 0.132

able to consider clustering within the wet spells (i.e. zero
rainfall amounts for certain time steps within a wet spell).
To avoid complicated model formulations and underestima-
tion of intensities it was tried to keepDmin as small as possi-
ble. Analysing event time series based on different values of
Dmin regarding small serial correlation and good fitting per-
formance for the marginal distributions optimal results were
found here with minimum dry spell durations of one and two
hours for summer and winter seasons, respectively.

Probability distribution functions are fitted to the event
variables dry spell duration (D), wet spell duration (W ) and
wet spell intensity (I ). The parameters for the distribu-
tion functions are estimated using the method of L-moments
(Hosking and Wallis, 1997) for winter and summer seasons
separately. Figure 6 shows exemplarily the fitting perfor-
mance of the event variables for the station Wernigerode
based on QQ-Plots. A satisfying agreement between empir-
ical and theoretical quantiles can be observed. The Cramer-
von Mises test (e.g. Ahmad et al., 1988) was accepted at the
5% significance level in all the cases forD, W andI , respec-
tively.

Table 2 shows the estimates of all ARM parameters for
the three all year rainfall stations for both summer and win-
ter seasons. The differences of the values between summer
and winter stress the importance of the seasonal parame-
ter estimation. While the parameters for Harzgerode and
Wernigerode are often quite similar, the differences to the
station Braunlage are more pronounced. This is due to the
exposed location of the station Braunlage in the mountains
with differing precipitation regime and high annual precipi-
tation amounts.

Several realisations of hourly rainfall time series, each
100 years in length are generated for all stations. Table 3
shows a comparison between observed and simulated event
characteristics exemplarily for the three all year rainfall sta-
tions. The comparison shows sufficient agreement between
observed and simulated statistics with a slight underestima-
tion of mean rainfall and a somewhat larger deviation for the
higher order moments, which is typical for this kind of mod-
els. Note, that only those features are used here for valida-
tions, which do not represent model variables in the precipi-
tation model. In addition a frequency analysis is carried out
on the annual maximum precipitation series for different du-
rations. The results are presented in Fig. 7 for the station
Harzgerode for both seasons and rainfall durations of 1 and
3 h. It can be seen, that the observed values are plotted mostly
within the range of the simulated realisations. For larger re-
turn periods and durations a slight overestimation of the ob-
served extreme values occurs. Considering the short observa-
tion periods it is difficult to validate the model regarding the
synthesis of more extreme rainfall intensities. It is expected,
that the hydrological validation, which comprises longer ob-
served flow records, will allow an additional assessment of
model performance regarding this issue.

Precondition for resampling of the event time series is the
estimation of the spatial dependence criteria needed for the
objective function (Eq. 13). Based on an extended data sam-
ple (cf. Sect. 3.1) different functions for the summer and win-
ter seasons are fitted to the three statistics in relation to the
separation distance between stations. Figure 8 shows the re-
sults exemplarily for the summer seasons. The relation be-
tween the spatial dependence criteria defined in Eqs. (10) to
(12) and the separation distance appear strong enough for
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Figure 6. QQ-Plots illustrating the fitting of distribution functions to the event variables dry 

spell duration (D), wet spell duration (W) and wet spell intensity (I) for summer and winter 

rainfall data at the station Wernigerode  
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Fig. 6. QQ-Plots illustrating the fitting of distribution functions to the event variables dry spell duration (D), wet spell duration (W ) and wet
spell intensity (I ) for summer and winter rainfall data at the station Wernigerode.

the application of those relationships to derive the required
statistics. The functions show the expected behaviour of the
spatial rainfall expressing decreasing probability of simul-
taneous rainfall occurrence, decreasing correlation and in-
creasing continuity with rising separation distance between
two stations. From Fig. 8 a range between 150 km and
200 km can be estimated where the dependence between two
stations disappears.

The resampling of the synthetic event series is carried out
separately for the two catchments and the two seasons using
simulated annealing for all available hourly rainfall gauges
(see Table 1). Two stations for the winter season and six sta-
tions for the summer season are included for this procedure
in the Holtemme catchment. Concerning the Selke catch-
ment six stations are used for resampling of the summer data.
However, in that basin no resampling for the winter time was
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Figure 7. Empirical probability distribution functions of observed (OBS) and synthetic (SYN) 

seasonal maximum rainfall for the station Harzgerode and two durations (top: Summer, 

bottom winter; the x-axis is linear with respect to the Gumbel reduced variate) 
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Fig. 7. Empirical probability distribution functions of observed (OBS) and synthetic (SYN) seasonal maximum rainfall for the station
Harzgerode and two durations (top: Summer, bottom winter; the x-axis is linear with respect to the Gumbel reduced variate).

Table 3. Event characteristics for the rainfall stations Wernigerode, Harzgerode and Braunlage (for location see Fig. 3) from 14 years
observed and 200 years simulated rainfall data each.

Name of rainfall station Average Average Std. Dev. Skewness Rainfall
number of V [mm] of V [mm] of V [-] sum [mm]
events [-]

obs sim obs sim obs sim obs sim obs sim

Summer season (May to October):
Wernigerode 102 92 3.88 3.72 6.02 6.09 4.93 7.51 396 343
Harzgerode 89 86 3.68 3.56 5.36 5.68 4.81 7.73 328 308
Braunlage 134 128 5.33 5.24 8.42 8.96 5.08 6.19 714 672
Winter season (November to April):
Wernigerode 102 88 3.77 3.53 5.21 4.47 3.85 5.28 382 312
Harzgerode 78 76 3.39 3.25 4.93 4.15 7.49 6.63 266 246
Braunlage 115 110 7.44 7.02 11.5 10.1 3.91 4.21 854 768

necessary, because only one station is available. The perfor-
mance of the simulated annealing algorithm depends on the
number of rainfall stations included and on the specific cri-
terion considered. The results improve with fewer stations.
So, it is favourable to process the two neighbouring catch-
ments separately. Comparing the performance regarding the
different criteria it is most difficult for the algorithm to simu-
late the prescribed probability of simultaneous rainfall occur-
renceP ∗

kl , while it is easier to mimic the continuity measure
C∗

kl and it is no problem to reproduce the correlationρ∗

kl . On
the whole the reproduction of the spatial dependence criteria
was satisfactory for the two mesoscale catchments. Figure 9
shows a comparison of hourly rainfall time series before and
after the resampling process for two neighbouring rainfall

stations, which are located about 20 km apart. The effect
of the resampling procedure becomes quite clear. Wet and
dry spells as well as intensity peaks correspond much better
between the two stations after the resampling than before.

In the third step the stochastic rainfall data are used as in-
put for the hydrological model HEC-HMS. The hydrological
model was calibrated using hourly and daily rainfall data,
but synthetic precipitation is only generated for the hourly
stations. It is known, that applying a hydrological model on
rainfall data from a different station network as used in the
calibration might produce biased runoff and the model pa-
rameters might need a recalibration, which is difficult con-
sidering synthetic rainfall as input. Especially a model cali-
brated on denser precipitation information, as it would be the
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case here, might fail on sparser information (Bárdossy and
Das, 2008). For that reason the generated hourly data are also
transferred to the daily station locations, which were used in
calibration, applying nearest neighbour interpolation and a
correction factor taking into account the different mean sea-
sonal precipitation amounts at the specific locations. Then,
synthetic areal rainfall for subcatchments is calculated by
Thiessen interpolation from all daily and hourly station loca-
tions. No stochastic model for the other climate variables like
temperature and global radiation is applied here. To provide
long term hourly data of evapotranspiration for continuous
modelling a pragmatic approach was chosen. Potential evap-
otranspiration is estimated from observed temperature and
global radiation data using the same methods as for calibra-
tion (cf. Sect. 3.2) and applied as upper limits for the calcu-
lation of actual evapotranspiration. For snowmelt modelling
repetitions of 25 years blocks of observed hourly temperature
data are used.

Figure 10 compares observed and simulated flood frequen-
cies from annual series for the two catchments Selke and
Holtemme at the streamflow gauges Silberhütte and Mah-
ndorf, respectively. Simulated flows are shown based on
hourly rainfall data using the short observed rainfall time
series and 10 synthetic rainfall realisations each 100 years
in length. In addition observed annual peak flows are plot-
ted, which have notable longer records than the simulated
ones using observed precipitation. The observed maximum
flows and the simulated ones using observed rainfall data are
lying mostly within the range of the simulated flows based
on stochastic precipitation data, although located somewhat
more in the lower part of the synthetic range. Despite this
slight overestimation of flows the overall picture shows the
ability of the precipitation model to provide suitable input
for derived flood frequency analysis. Note, that in Fig. 10
the difference between the empirical distribution functions of
observed and simulated flows using observed precipitation is
indicating the model performance of HEC-HMS regarding
the reproduction of the flood frequency. So, in the first in-
stance the derived distribution functions using synthetic rain-
fall should cover the simulation results using observed rain-
fall.

The results for the Selke catchment (left panel in Fig. 11)
also show typical problems with small sample sizes. The
largest value from observed flows and simulated flows using
observed rainfall each belongs to the same flood and is asso-
ciated with the maximum possible return period according to
the sample size of 56 and 12 years, respectively. Both points
are located above the simulated range of flows based on syn-
thetic rainfall. The reason for that is that these values belong
to an exceptional flood event occurring in 1994 which can be
associated with a much higher return period compared to the
length of the observed time series (LAU, 1995).

Comparing Fig. 10 with Fig. 5 it becomes clear, that the
underestimation of high flows during calibration of the hy-
drological model is not apparent in the application any more.
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Figure 8. Relation between the spatial dependence criteria which are used in the objective 

functions as prescribed values for simulated annealing and the station separation distance as 

estimated for the summer season 
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Fig. 8. Relation between the spatial dependence criteria which are
used in the objective functions as prescribed values for simulated
annealing and the station separation distance as estimated for the
summer season.

The type of precipitation input has a significant impact on the
calibration of the parameters of the hydrological model. So,
using observed rainfall for calibration and synthetic rainfall
for application might be one reason for those results. One
possibility to overcome this problem is to utilize stochas-
tic rainfall already in the calibration phase of the hydrolog-
ical model. This could be achieved if not the hydrograph is
used for calibration but the empirical probability distribution
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Figure 9. Comparison of hourly precipitation time series for the stations Wernigerode and 

Braunlage before and after resampling the events of the latter station using simulated annealing 
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Fig. 9. Comparison of hourly precipitation time series for the stations Wernigerode and Braunlage before and after resampling the events of
the latter station using simulated annealing.
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Figure 10. Empirical probability distribution functions of observed discharge (OBS), 

simulated discharge using observed rainfall (SIM) and 10 realisations simulated discharge 

each 100 years in length using synthetic rainfall (SYN) for the Selke (left) and Holtemme 

(right) catchments (The x-axis is linear with respect to the Gumbel reduced variate.) 
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Fig. 10.Empirical probability distribution functions of observed discharge (OBS), simulated discharge using observed rainfall (SIM) and 10
realisations simulated discharge each 100 years in length using synthetic rainfall (SYN) for the Selke (left) and Holtemme (right) catchments
(The x-axis is linear with respect to the Gumbel reduced variate).

function of the annual maximum flows. Additional advan-
tage would be to have longer periods with observed peak
flows available for model calibration compared to periods
with continuous hourly flows and to focus directly on the
specific objective of the application. Work is in progress
to investigate these ideas for better calibration of the whole
framework.

In order to evaluate the importance of the spatial rainfall
structure or more precisely the effect of the resampling pro-
cedure on the simulated flood frequencies an additional anal-
ysis is carried out. For that hydrological simulations with
HEC-HMS are made using spatially randomly rainfall, spa-
tially resampled rainfall and spatially uniformly distributed
rainfall as input. For the random rainfall case the resampling
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procedure was omitted and for the uniform rainfall case only
one rainfall station was used as homogeneous areal rainfall.
The results are illustrated for the Selke catchment in Fig. 11
considering the summer season only, where the spatial dy-
namics are higher and more stations for resampling were
available. It can be seen, that homogeneous rainfall produces
the highest flows, spatial independent rainfall causes the low-
est flows and spatially resampled rainfall leads to flows in
between these two cases. The differences between the three
empirical probability distributions increase with increasing
return period. For a return period of 100 years the flood re-
sulting from uniform rainfall is about 3.5 times as high as a
flood generated from random rainfall, while the flood from
spatially structured rainfall is 2 times as high as in the ran-
dom case. Comparing the empirical probability distributions
with the observed values the random case seems to corre-
spond best to the majority of points. However, for the more
important larger return periods, the flows generated by re-
sampled rainfall correspond better to the observed ones. Tak-
ing into account the general problem of the model to slightly
overestimate the observed flows when using synthetic rain-
fall (cf. Fig. 10), it can be concluded that the structured rain-
fall produces the most plausible flood frequency curve. This
result encourages the application of the proposed resampling
procedure to reproduce important characteristics of the spa-
tial rainfall structure. More research is necessary to inves-
tigate the general ability of this procedure to generate suffi-
cient spatially structured rainfall for flood frequency analysis
depending on data and local conditions like the number of
required stations, the catchment size and the climate.

4 Summary and conclusions

In this study a hybrid hourly rainfall model has been pre-
sented, which can be applied for derived flood frequency
analysis. The model consists of two parts, an alternating
renewal approach for the generation of point rainfall and a
resampling procedure based on simulated annealing to repro-
duce the spatial statistics. Special attention was given to the
derivation of a practical applicable parsimonious approach
for precipitation synthesis. The performance of the rainfall
model has been tested in three stages, for the simulation of
temporal rainfall characteristics at single sites, for the repro-
duction of the spatial rainfall structure and for flood simula-
tions in two mesoscale catchments in northern Germany. The
results can be summarised as follows:

1. The single site rainfall model based on the alternating
renewal approach allows a good reproduction of aver-
age event statistics and extreme value frequencies for
short rainfall durations. This result could be achieved
despite the parsimonious approach which uses only one
probability distribution function for the whole range of
wet spell intensities. The dependence between wet spell
intensity and duration can easily be considered using
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Figure 11. Empirical probability distribution functions of observed discharge (OBS), 

simulated discharge using observed rainfall (SIM) and the median of 10 realisations simulated 

discharge each 100 years in length for three synthetic rainfall scenarios for the Selke 

catchment in the summer season (The x-axis is linear with respect to the Gumbel reduced 

variate.) 
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Fig. 11. Empirical probability distribution functions of observed
discharge (OBS), simulated discharge using observed rainfall (SIM)
and the median of 10 realisations simulated discharge each 100
years in length for three synthetic rainfall scenarios for the Selke
catchment in the summer season (The x-axis is linear with respect
to the Gumbel reduced variate).

a copula model. Still, improvements of this temporal
model are desirable with regard to the overestimation of
the extreme values for longer rainfall durations in the
summer season.

2. With multisite resampling of the synthetic event series
using simulated annealing the spatial rainfall structure
could sufficiently be reproduced. The resampling of the
events instead of the single hours preserves the tempo-
ral rainfall properties, which has been prescribed in the
first part of the model and, besides, it is computation-
ally very favourable. It has been shown, that the consid-
eration of the spatial rainfall structure in hydrological
modelling has a significant effect on the derived flood
frequencies.

3. The simulation results from rainfall runoff modelling
have demonstrated the suitability of the synthetic pre-
cipitation data for derived flood frequency analysis in
mesoscale catchments. However, the results have also
shown that using a different type of precipitation data
in calibration and application of the hydrological model
might lead to a reversed bias regarding observed flows.
In future work the synthetic rainfall data might be in-
cluded directly for the calibration of the hydrological
model e.g. with the objective to minimize deviations to
the observed flood frequencies.

Derived flood frequency analysis using synthetic precipita-
tion data and rainfall-runoff modelling is becoming increas-
ingly important in practical applications. This is especially
the case for investigating the effect of complex flood pro-
tection measures and for analysing impacts of climate and
land use changes. The presented model has the potential to
be used for statistical downscaling in climate impact studies;
because its parameters are observable quantities which are
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related to larger scale climate characteristics like circulation
patterns which can be obtained from climate models. Also,
an application for ungauged locations is possible through re-
gionalisation of the model parameters. With such a method
the hourly network density might be increased in the future
e.g. by including the daily station locations in a more sophis-
ticated way as by simple data transfer.
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Götzinger, J. and B́ardossy, A.: Generic error model for calibration
and uncertainty estimation of hydrological models, Wat. Resour.
Res., 44, W00B07, doi:10.1029/2007WR006691, 2008.

Grace, R. A. and Eagleson, P. S.: The Synthesis of Short-
Time-Increment Rainfall Sequences, Hydrodynamics Labora-
tory, Massachusetts Institute of Technology, Cambridge, USA,
Report No. 91, 1966.

Haan, C. T., Allen, D. M., and Street, J. O.: A Markov Chain Model
of Daily Rainfall, Water Resour. Res., 12, 443–449, 1976.

Haberlandt, U.: Stochastic rainfall synthesis using regionalized
model parameters, J. Hydrol. Eng., 3, 160–168, 1998.

Hosking, J. R. M.: The four parameter kappa distribution, IBM J.
Res. Develop., 38, 251–258, 1994.

Hosking, J. R. M. and Wallis, J. R.: Regional frequency analysis:
an approach based on L-moments, Cambridge University Press,
New York, USA, 1997.

Koutsoyiannis, D., Onof, C., and Wheater, H. S.: Multivariate rain-
fall disaggregation at a fine timescale, Water Resour. Res., 39,
1173, doi:1110.1029/2002WR001600, 2003.

Lall, U. and Sharma, A.: A nearest neighbor bootstrap for resam-
pling hydrological time series, Water Resour. Res., 32, 679–693,
1996.

LAU: Das Fr̈uhjahrshochwasser vom April 1994 in den Flus-
seinzugsgebieten der Saale und Bode in Sachsen-Anhalt,
Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt,
Germany, 1995.

Lu, M. and Yamamoto, T.: Application of a Random Cascade
Model to Estimation of Design Flood from Rainfall Data, J. Hy-
drol. Eng., 13, 385–391, 2008.

Maskey, S., Guinot, V., and Price, R. K.: Treatment of precipitation
uncertainty in rainfall-runoff modelling: a fuzzy set approach,
Adv. Water Res., 27, 889–898, 2004.

Moretti, G. and Montanari, A.: Inferring the flood frequency dis-
tribution for an ungauged basin using a spatially distributed
rainfall-runoff model, Hydrol. Earth Syst. Sci., 12, 1141–1152,
2008,
http://www.hydrol-earth-syst-sci.net/12/1141/2008/.

Neary, V. S., Habib, E., and Fleming, M.: Hydrologic Modeling
with NEXRAD Precipitation in Middle Tennessee, J. Hydrol.
Eng., 9, 339–349, 2004.

Nelsen, R. B.: An Introduction to Copulas, 2nd ed., Springer, New
York, USA, 2006.

Olsson, J.: Evaluation of a scaling cascade model for temporal rain-
fall disaggregation, Hydrol. Earth Syst. Sci., 2, 19–30, 1998,
http://www.hydrol-earth-syst-sci.net/2/19/1998/.

Hydrol. Earth Syst. Sci., 12, 1353–1367, 2008 www.hydrol-earth-syst-sci.net/12/1353/2008/

http://www.hydrol-earth-syst-sci.net/12/77/2008/
http://www.hydrol-earth-syst-sci.net/12/1141/2008/
http://www.hydrol-earth-syst-sci.net/2/19/1998/


U. Haberlandt et al.: A space-time hybrid hourly rainfall model 1367

Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H.
S., and Isham, V.: Rainfall modelling using Poisson-cluster pro-
cesses: A review of developments, Stochastic Environ. Res. Risk
Assess., 14, 384–411, 2000.

Pegram, G. G. S. and Clothier, A. N.: High resolution space–time
modelling of rainfall: the “String of Beads” model, J. Hydrol.,
241, 26–41, 2001.
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