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ABSTRACT: 

A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost 
sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera 
in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is
calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of 
designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed 
calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction 
terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit 
sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and 
EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition 
equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free 
distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.

1. INTRODUCTION 

According to the representation of the field of view (FOV), 
cameras are classified into two main groups: classical 
cameras with narrow FOV and omnidirectional cameras with 
very large FOV. Omnidirectional cameras cover the whole 
surrounding environment and are classified into two 
categories: Catadioptric (combination of the lenses and 
mirror) and Dioptric (only lenses) (Micušık, 2004). 

Dioptric cameras record the whole front view of the camera 
mostly with FOV close to 180 degree which is due to having 
very short focal length. Accordingly, in fisheye images, 
features distortions increase non-linearly from the center to 
the sides of the images. Due to having higher resolution in 
the center of the image with respect to the sides, fisheye 
lenses and human visual system have similarities (Dhane et 
al., 2012). This kind of lenses are designed based on fish 
vision system and have numerous applications in close range 
photogrammetry and automotive industry (Esparza García, 
2015; Hughes et al., 2009; Roulet et al., 2009). For instance, 
Nissan Motors company developed a system consisting of the 
four fisheye cameras in four sides of a vehicle for monitoring 
the surrounding space (Ma et al., 2015). In robotics (Courbon 
et al., 2007, 2012), space mission (Suda and Demura, 2015) 
or mobile mapping system (e.g. texturizing the point clouds 
of terrestrial laser scanner), a few fisheye images are enough 
to be captured instead of numerous normal lens images (Brun 
et al., 2007). Utilizing fisheye camera in aforementioned 
applications is restricted by presence of large distortions (i.e.
straight lines appear as curve lines). Consequently, camera 
calibration is a pre-requisite step and a fundamental issue for 

further scientific and photogrammetric tasks feature 
extraction from images or 3D reconstruction.

In classical cameras, a pinhole camera model with normal 
lens distortion model is quite good enough to approximate 
projection ray into the image plane. However, this model is 
not appropriate for fisheye lens images due to limitation of 
perspective projection in increasing incidence angle rays 
relative to the optical axes. Hence, unlike the classical 
perspective cameras, these kinds of cameras do not follow 
perspective projection. Equation 1 depicts the perspective 
projection as follows: 

(1)

where    r = radial distance from perspective centre 
              f = focal length 

 = angle between incoming ray and principal axis 

In perspective projection, rays are straight lines and intersect 
in the projection centre, but fisheye images are defined based 
on specific projection equations as follows: (Kannala and 
Brandt, 2006; Schneider et al., 2009).

(2)

(3)

(4)

(5)
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Equations 2 to 5 are known as stereographic projection, 
equidistance projection, equisolid angle projection and 
orthogonal projection respectively. 

Perhaps the common projection to design the fisheye camera 
is equidistance projection (Kannala and Brandt, 2006; 
Schneider et al., 2009).

Several calibration models have been proposed for these 
types of lenses. The solution by Suda and Demura ( 2015) is 
based on rewritten equations 2 to 5 with coefficients of radial 
distortion. Ma et al. (2015) proposed an approach based on 
spherical projection that points are projected to the unit 
sphere and epipolar geometry 3D reconstruction is carried 
out. In Hughes et al. (2010) approach, straight lines become 
part of circles with different radius in fisheye images. 
Vanishing points are intersections of these arcs and the lines 
are defined by these two points going through the distortion 
center. Afterwards, calibration is performed according to the 
distortion center and the proposed mathematical model. 
Schneider et al. (2009) developed four geometric models for 
fisheye lenses based upon stereographic, equidistance,  
equisolid and orthogonal projection geometry to project 
object points to images and they added additional parameters 
to calibrate the images that are captured from a 14 Megapixel 
camera equipped with Nikkon 8 mm fisheye lens. Zhang et 
al. (2015) proposed an approach based on the extraction of 
arcs in fisheye images. Rectification is performed to generate 
perspective images using curvatures to estimate intrinsic 
calibration parameters that consist of focal length, image 
center and aspect ratio. Wang et al. (2014) investigated two 
camera models to calibrate fisheye lens (pinhole camera 
model and spherical projection model) to show that spherical 
camera projection model works more precisely and more 
efficiently for the non-linear image system. Dhane et al. 
(2012) performed direct mapping from fisheye image to 
perspective image and consequently applied inverse mapping 
from corrected image to fisheye image for correcting these 
kind of images. Proposed methodology is online and has the 
ability to run on DSP and FPGA platform. Kannala and 
Brandt (2006) proposed a calibration method on the basis of 
generic camera model and used planar calibration pattern 
with control points to estimate IOPs and EOPs parameters.

In this research, a novel geometric calibration of full 
spherical image is presented. Calibration procedure is 
performed on the unit sphere. IOPs are defined for defined 
network points (Figure 5) and subsequently added to the 
measured control points in image space as correction terms to 
be considered in collinearity equations, in the form of 
spherical coordinate systems, to obtain direction vectors 
between image points and object points. The EOPs and IOPs 
are determined through collinearity equations of spherical 
coordinates via statistical bundle adjustment procedure. Then 
ROPs are calculated from both EOPs of central and side 
lenses.

In the following section, the specification of the used camera 
for calibration is represented. In section 3, developed 
mathematical calibration model for the fisheye lens is 
discussed. In section 4, hemispherical calibration room and 
the precision of control points in both object and image 
spaces are investigated. Experimental results are presented in 
section 5 and the summary and conclusions are represented 
and discussed in section 6. 

2. CAMERA SPECIFICATIONS 

In order to take fully spherical photographs, many panoramic 
cameras composed of classical or fisheye lenses can be 
utilized in the camera system (Rau et al., 2016). These 
cameras need to be synchronized to create full spherical view 
by stitching images together which is a time consuming 
procedure. Ricoh Company developed a camera in 2014 that 
is able to capture the whole surrounding environment in one 
shot and is known as RICOH-THETA (Ricoh, 2016). This 
camera consists of two lenses (Figure 1) which cover the 
entire scene by 360*180 degrees. The images are stitched 
together using embedded software inside the camera and 
there is no possibility to access raw images in current version 
of camera. Therefor stitching images errors remain unknown 
and cannot be obtained throughout adjustment procedure. 

(a)                           (b)                       (c) 

Figure 1. Ricoh-Theta Camera. (a) Magnification of the two 
fisheye lenses in side view, (b) cameras front view and (c) 

side view. 

3. METHODOLOGY 

As mentioned earlier, Ricoh-Theta camera consists of two 
lenses: front and back lens and respective captured images 
are called central and side images here. These images are 
stitched together to form a full spherical image (figure2).
Calibration procedure of each lens is performed separately 
and it starts by defining three spaces as follows:

1- Image space 
2- Unit sphere space 
3- Object space  

Calibration procedures perform in both unit sphere space for 
IOPs and object space for ROPs. It means that image 
coordinates are first moved to unit sphere by equirectangular 
projection (equations 6 and 7) to be converted to spherical 
coordinate system. Furthermore, 3D points in the object 
space are moved to unit sphere by applying Helmert 
transformation (three translations and three rotations) 
between world and unit sphere coordinates. Therefore, 2D 
and 3D points from image space and object space are 
projected to unit sphere. Then, IOPs and EOPs are obtained 
by applying a rigorous statistical bundle adjustment 
procedure. The final step is the computation of ROPs from 
calculated EOPs of two lenses.
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                           (b)                                       (c) 

Figure 2. (a) Full spherical image, (b) central image (i.e. front 
lens), (c) side image (i.e. back lens). 

3.1 From image space to unit sphere space 

Image coordinates (x, y) are moved to spherical coordinate 
system by equirectangular projection (Equations 6 and 7). 
Both coordinate systems are represented in Figure 3.

(b) 
Figure 3. Coordinate systems, (a) image space coordinate 

system in pixel unit, (b) spherical coordinate system in radian 
unit. 

(6)

(7)

where     x, y = image space coordinates in pixels 
              , = latitude and longitude in radians 
              m, n = image size in pixels

From the illustrations of coordinate systems in figure 3, the 
image size (height and width) in spherical coordinate system 
is equal to ( From equations 8 and 9, relation n=2m is 
proved.

(8)

(9)

Transformation of spherical coordinate system to unit sphere 
space is performed based on equation 10. 

(10)

3.2 From world space to unit sphere space 

By applying Helmert transformation (three rotations, three 
translations and one scale) world coordinate system is 
transformed to unit sphere based on equation 11. (Vectors 
and matrices are representing in boldface and scalars are 
represented as non-bold typeface).

(11)

where     xi = unit sphere coordinate system [x, y, z] of ith

               point 
                = scale of ith point = norm (Xi-T)-1  
               = 3*3 rotation matrix 
               = translation matrix [
               Xi = world coordinates  of ith point    

In the next section, IOPs are discussed and presented to take 
them into account for deriving the final equation. 

3.3 Interior orientation parameters (IOPs) 

In an ideal case of the calibration procedure, there is an 
assumption that unit sphere center, points on unit sphere and 
their object coordinates lie on the same line as a direction 
vector (i.e. collinearity equations). Figure 4 depicts an
uncorrected point on unit sphere that needs to be calibrated to 
lie on the same line. In other words, by transferring the image 
and object points to unit sphere, these points can coincide. 
However in reality, the points on unit sphere need corrections 
with respect to the direction vector. Thus,  and  are 
defined as IOPs parameters in equation 12 as follows:

(12)

Figure 4. Ideal line (blue) where three points lie on the same 
line versus uncalibrated situation (red). 

(a)

(a)
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The scale parameter leads to instability of estimated 
parameters and should be removed from equation 12. For this 
purpose, first and second rows are divided by third row 
which comes to collinearity equation in the form of spherical 
coordinate system. 

(13)

(14)

(15)

(16)

(17)

(18)

With consideration of equations 13 to 18, equations 19 and 
20 are obtained. 

(19)

(20)

Number of unknown parameters and equations in central 
image for M control points are computed as follows: 

                Unknowns: 
                 Equations: 

In this case, for each image point two correction terms are 
defined as IOPs with respect to corresponding control point 
and six EOPs parameters. This linear system is under-
determined due to the fact that the numbers of equations are 
less than the number of unknowns. To deal with this 
problem, nine networks are considered on the image and 
vertices of this network are obtained by bilinear interpolation. 
Figure 5 shows nine networks on the central image. In the 
calibration procedure, the vertices of each network are 
assumed as IOPs and coordinates of some other image points 
in central image are calculated by means of bilinear 
interpolation of vertices of corresponding network. This 
procedure is also repeated for side image as well. As an 
exemplary case here, we have nine networks in the central 
image which include 100 control points; hence the number of 
unknowns and equations are: 

                  Unknown: 
                  Equations: 

Consequently, ten  and ten  are obtained as network 
vertices for each image. It is important to notice that in 

equirectangular plane, four vertices of distortion-free grids in 
the north or south poles (first or last rows) have the same 
values and considered as one unique point. By considering 
Figure 5 for network 1, equations 19 and 20 are changed to 
equations 21 and 22.

         (21)

         (22)

where  , = latitude and longitude 
            = longitude of the first network (IOP) 
            = latitude of the first network (IOP) 
            a1 to a4 = bilinear coefficients of the four corners  

a1 to a4 are defined for each point inside the network as 
bilinear coefficients and they are the same for  and . 

Figure 5. Representation of nine networks on the central 
image. 

3.4 Relative Orientation Parameters (ROPs) 

In addition to IOPs of each lens, the second group of camera 
calibration parameters are relative position and rotation of 
both lenses named ROPs. The ROPs can be computed from 
EOPs of both lenses by relation 23 and 24. 

(23)

(24)

In which EOPi=[Ri Ti] for i=1:2 for each lens. 

Throughout the adjustment procedure, global and local tests 
are performed for each type of observation to reject outliers 
based on chi-square statistical test with confidence level of 
99.7 percent. This procedure continues until no 
measurements remain to be rejected (Omidalizarandi and 
Neumann, 2015; Omidalizarandi et al., 2016).

3.5 Initialization of EOPs and IOPs 

Second important point is to estimate initial EOPs and IOPs 
values. Initial IOPs are considered zero. By considering 
equation 11, initial EOPs are calculated as follows: 
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          (25)

where     s =1/
             M =R-1 

Homogenous representations of coordinates are represented 
in equations 26 and 27 as follows: 

          (26)

          (27)

In equation 27, Y consists of three rotations, three 
translations and one scale, while A is the coefficient matrix. 
In this step, translations are just calculated by singular value 
decomposition (SVD). 

SVD for matrix A is defined as follows (Khoshelham, 2016): 

           (28)

where     S = m*m left singular vector 
                  V =m*n diagonal matrix with singular values 
                  D = n*n right singular vector 

Matrix Y is null space of A, and last column of D is null 
space of A. After calculating the Translation, the scale for 
each control points is calculated based on equation 29. 

(29)

Afterwards rotations are calculated from equations 30 and 31 
by considering equation 25. 

        (30)

         (31)

For further information regarding decomposition of rotation 
matrix, please refer to work of Förstner and Wrobel (2016). 

4. Calibration room 

The calibration room is located in the Photogrammetric 
Institute of University of Tehran and it is covered with 
known 3D control points. These points are well distributed 
around the calibration room which fully cover the whole 
spherical image (figure 6). Image coordinates of these points 
are extracted using PhotoModeler software (PhotoModeler, 
2016) Targets centroid are principally extracted based on 
least squares ellipse fitting. Object points are measured by 
Leica Flex Line TS06 plus (Leica, 2016) in local coordinate 
system with accuracy of 2 mm+2 ppm in distance
measurement and 1 second in angle measurement. Table 1
shows the standard deviations of object coordinates.  As a 
disadvantage of this type of camera is capturing wide FOV 
images with low resolution which directly influencing on the 
image quality. Accordingly, target centroid detection 
becomes a challenging issue in image space. To overcome 
this problem, targets are designed in large size (i.e. diameters 
of 8 centimetres) to be visible in the captured images. 

Furthermore, in this research, all extracted target centroids 
have the same accuracy throughout the adjustment procedure. 

(mm) (mm) (mm)

Mean
Max

0.98
1.99

1.55
2

0.94
8.42

Table 1. Statistics of the object point standard deviations.

Figure 6. Illustration of targets in calibration room.

5. Experimental results 

As mentioned previously, each lens is calibrated separately. 
Dataset 1 consists of 107 and 78 and dataset 2 consist of 125 
and 60 control points in central and side images respectively.  

Table 2 shows the calibration parameters of central and side 
image. In this research, calibration is performed for nine 
networks on image; therefore we have ten ∆φ and ten ∆λ in 
unit sphere as IOPs.  

To obtain IOPs, firstly, Initial IOPs are considered zero and 
EOPs are calculated based on SVD according to section 3.5. 
Then the algorithm detects corresponding network for each 
control point. Finally, IOPs and EOPs are computed on the 
basis of rigorous statistical bundle adjustment procedure with 
applied Gauss-Helmert model to update observations and 
estimating unknowns throughout the adjustment procedure.,
In addition, since the minimum accuracy of the target 
measurements in the object space is 2mm, consequently the 
calibration quality is decreased. 

Points with large residuals are discarded in both image and 
object spaces by means of chi-square test with 99.7% level of 
confidence. Table 3 shows the EOPs of each lens and PORs 
between them. Differences between values show that the 
lenses have their own coordinate system with different 
orientation even though they stick together to create full 
spherical images. Merely considering unique IOPs and EOPs 
for both central and side images leads to increasing residuals, 
separates the calibration of lenses and significantly decreases 
residuals in the calibration procedure. 

After calculating the parameters, efficiency of proposed 
calibration approach is investigated based upon plots of 
residuals of coordinates in central and side image. As can be 
seen from figure 7 and 8, maximum residual of coordinates in 
central image for dataset 1 reduced from 1.4 degrees to 0.15 
degrees and for dataset 2 reduced from 1.5 degrees to 0.15 
degrees. Moreover, in side image, for dataset 1 the maximum 
residual of coordinates is reduced from 1 degree to 0.27 
degrees. Moreover in dataset 2, the maximum residual of 
coordinates is reduced from 1.1 degrees to 0.25 degrees. 
Figure 8 shows residuals vector on image space before and 
after calibration which magnified for better representation. 
The systematic pattern of vectors before calibration changes 
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to random vectors after calibration. It means that the 
calibration process has been successful performed to model 
image distortions.  

Dataset1 Dataset2
Central image IOPs

-1.18503 0.12296 -1.45378 0.11901
-1.46116 0.06972 -1.67114 0.00357

-1.07494 0.12452 -1.47210 0.12651
-0.67197 -0.08979 -1.03064 -0.02593
-0.84415 -0.19812 -1.17575 -0.13754
-1.55720 -0.18099 -1.70940 -0.22682

-1.15013 -0.43468 -1.47118 -0.43483

-0.74798 -0.26941 -1.03435 -0.25386

-0.96754 -0.05133 -1.14622 0.09077

-1.3880 0.055168 -1.70744 -0.00772

Side image IOPs
-0.51068 0.36832 -0.11075 0.08239
-0.06341 -0.98527 0.50886 -0.71481
-0.40143 -0.23769 -0.36806 -0.14972
0.37308 0.38276 0.53805 0.32361

-0.17277 0.57052 0.25259 0.53938
-0.04106 -0.63212 0.53608 -0.38344
0.09680 -0.65990 -0.13101 -0.69211
0.50846 -0.10731 0.81087 -0.21124

-0.43738 0.38495 0.22173 0.43706

0.40035 0.17699 0.66018 0.01718

Table 2. Calibration parameters of side and central image, 
and  in degree unit for two datasetes. 

EOPs Central 
image

Side 
image ROPs

Dataset 
1

Tx  [m] 9.579 9.573 -0.007
Ty  [m] 11.144 11.152 0.008
Tz [m] 11.266 11.265 -0.0003
Omega [Deg.] 0.12979 0.3416 -0.4422
Phi       [Deg.] 0.51873 0.56801 -0.76941
Kappa  [Deg.] 4.3511 -174.239 178.8754

Dataset 
2

Tx  [m] 9.172 9.171 -0.0005
Ty  [m] 10.113 10.120 0.0070
Tz  [m] 11.261 11.259 -0.002
Omega [Deg.] 0.60651 0.60369 -1.198
Phi       [Deg.] 0.43821 0.20686 -0.66147
Kappa  [Deg.] -4.6308 176.9374 178.4385

Table 3. EOPs of each lens and ROPs between them. 

6. Summary and conclusions

In this research, a novel full spherical RICOH-THETA 
camera calibration is developed and discussed. The 
aforementioned camera consists of two lenses which are 
calibrated separately. Calibration is carried out in 
intermediate space between image and object space that is 
called unit sphere space in this research. First, the coordinates 
are transferred from image space to unit sphere by 
equirectangular projection. Measured control points are 
transformed to unit sphere by considering two correction 
terms of IOPs. Subsequently, two collinearity equations in 
Since unknown parameters (IOPs + EOPs) become more than 
the equations (under determined), a distortion-free grid with 
nine cells is designed on the images to reduce unknown 
parameters. 

the form of spherical coordinate system are defined by 
considering the EOPs (six parameters). 

EOPs are determined based upon Helmert transformation and 
it projects coordinates from object space to unit sphere. Then 
ROPs are computed from both EOPs. 

SVD is performed to compute initial EOPs. A rigorous 
statistical bundle adjustment is implemented to optimally 
calculate the parameters. Outliers and large residuals are 
discarded by applying chi-square test with 99.7% level of 
confidence. Results show that maximum residuals of 
coordinates in central and side image for dataset 1 are 0.15 
and 0.26 degrees and for dataset 2 are 0.14 and 0.24 degrees 
respectively.

The proposed model is a mathematical model which consists 
of all errors like stitching error, affine error, redial symmetric 
and tangential errors and etc. There is no way to access some 
of these errors such as stitching error in images that cause 
difficulty in calculating some other errors like radial 
symmetric by proposed approach. 

7. Future Works 

By increasing the number of grids, depending on the 
distribution of the control points on the captured images, 
some girds remain without control points that lead to zero 
columns in design matrix. By increasing the number of grids, 
the number of zero columns increased, and therefore it 
decreases its rank and causes singularity. For this reason, 
some equations should be considered as constraints, and in 
this step, optimum number of grids is a challenging issue.  

Another approach is an analytical model which can be used 
instead of grids. But in this case, the challenge is related to 
the optimum model.  

By overcoming aforementioned challenges, systematic errors 
on the central image are determined (IOPs in Table 2 for 
central image for both datasets). 

Our future research will focus on integration of IOPs and 
ROPs parameters in a unique distortion grid and takes into 
account the distortion continuity in the boundary of both 
central and side images. 

1. References 

Brun, X., Deschaud, J.-E., and Goulette, F. (2007). On-the-
way city mobile mapping using laser range scanner and 
fisheye camera. Mobile Mapping Technologies, Padoue, 
Italie, pp. 29–31. 

Courbon, J., Mezouar, Y., Eckt, L., and Martinet, P. (2007). 
A generic fisheye camera model for robotic applications. In 
2007 IEEE/RSJ International Conference on Intelligent 
Robots and Systems, pp. 1683–1688. 

Courbon, J., Mezouar, Y., and Martinet, P. (2012). 
Evaluation of the Unified Model of the Sphere for Fisheye 
Cameras in Robotic Applications. Advanced Robotics 26,
947–967. 

Esparza García, J.D. (2015). 3D Reconstruction for Optimal 
Representation of Surroundings in Automotive HMIs, Based 
on Fisheye Multi-Camera Systems. Diss. 2015. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-1/W1, 2017 
ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17,  6–9 June 2017, Hannover, Germany

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
doi:10.5194/isprs-annals-IV-1-W1-237-2017

 
242



(a) (b) 

(c) (d) 

(e) (f)

(g) (h) 

Figure 7. Norm of λ and φ residuals of each control points before (a, c, e and g) and after (b, d, f and h) camera calibration, (a) central 
image residuals of dataset 1 befor calibration and (b) after calibration, (c) side image residuals of dataset 1 befor calibration and (d) 
after calibration, (e) central image residuals of dataset 2 befor calibration and (f) after calibration, (g) side image residuals of dataset 

2 befor calibration and (h) after calibration.
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Figure 8. Residuals vector of all control points in image space before (a and c) and after (b and d) calibration for dataset1 (a and b)
and dataset 2 (c and d).
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