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Kurzfassung 

Hochfeste Schraubengarnituren des Systems HV mit Durchmessern M36 und größer kommen be-

vorzugt in Ringflanschverbindungen von Tragstrukturen von Windenergieanlagen zum Einsatz. Ins-

besondere an unteren Turmsektionen wird bedingt durch die auftretenden Belastungen häufig die 

Verwendung sehr großer Durchmesser M64 oder M72 erforderlich. Die HV-Schrauben sind hohen 

zyklischen Lasten mit variablen Amplituden ausgesetzt. Zur Begrenzung von Ermüdungsbeanspru-

chung werden die Schrauben daher auf hohe Vorspannungsniveaus angezogen. Ein zuverlässiger 

Schutz gegen Korrosion wird in der Regel durch Feuerverzinken sichergestellt. Es ist bekannt, dass 

die dabei thermisch hergestellte Zinkoberfläche die zyklische Beanspruchbarkeit stählerner Bauteile 

beeinträchtigt. Zudem hat auch das durch die Vorspannung erzeugte hohe Mittelspannungsniveau 

einen Einfluss auf die Ermüdungseigenschaften der Schrauben. 

Die Durchführung von Ermüdungsversuchen an großen HV-Garnituren, insbesondere unter reprä-

sentativer Mittelspannung, ist mit hohen Anforderungen an die verwendete Prüfeinrichtung verbun-

den. Bemessungswöhlerlinien normativer Regelwerke, mit besonderer praktischer Relevanz 

der EN 1993-1-9, sind aus diesem Grund nur begrenzt für große Schraubendurchmesser validiert. 

Zudem ist der quantitative Einfluss der Feuerverzinkung auf die Ermüdungsfestigkeit hochfester gro-

ßer Schrauben bislang nicht abschließend untersucht.  

Ergänzend zu kostspieligen Ermüdungsversuchen können mit analytischen Methoden spezifische 

ermüdungsrelevante Einflussfaktoren isoliert bewertet werden. Allerdings sind hierzu geeignete Ver-

fahren noch für die Anwendung auf große HV-Garnituren anzupassen und zu validieren. Außerdem 

bedarf es einer geeigneten Möglichkeit zur Berücksichtigung des Einflusses der Feuerverzinkung. 

Diese Dissertation beinhaltet umfangreiche, systematische Untersuchungen zum Ermüdungsverhal-

ten großer HV-Schraubengarnituren mit experimentellen und analytischen Methoden. Die durchge-

führten Ermüdungsversuche erweitern die experimentelle Validierung normativer Regelwerke erst-

malig bis zum Nenndurchmesser M64. Die Anwendbarkeit des relevanten Kerbfalls 50 aus dem 

Eurocode 3 kann dabei bestätigt werden. Der Vergleich der erzielten Versuchsergebnisse an feuer-

verzinkten HV-Garnituren mit Durchmessern M36 und M64 sowie weiterführende analytische Unter-

suchungen zeigen für diese Schraubengrößen einen geringen Einfluss des Durchmessers. Die im 

Eurocode 3 berücksichtigte durchmesserabhängige Reduzierung führt darum tendenziell zu einer 

Unterschätzung der Ermüdungsfestigkeit. Versuche mit variablen Amplituden deuten darüber hinaus 

darauf hin, dass die verwendete Hypothese zur Schädigungsakkumulation zu einer konservativen 

Bemessung führt. Bezüglich des Unterschieds der Ermüdungsfestigkeit bei unbeschichteten und 

feuerverzinkten Garnituren weisen die Versuche an M36 und M64 Schrauben uneinheitliche Ergeb-

nisse auf, was eine mögliche Besserstellung schwarzer Schrauben in Frage stellt.  

Das für die Anwendung auf große HV-Schrauben weiterentwickelte analytische Bewertungsverfah-

ren der Ermüdungsfestigkeit liefert Ergebnisse in guter Näherung mit Versuchen unterschiedlicher 

Durchmesser und Lastverhältnisse. Ein vorgeschlagenes Ingenieurmodell ermöglicht dabei eben-

falls die Ermüdungsberechnung feuerverzinkter Schrauben. 



 

 

Executive Summary 

High-strength ‘System HV’ bolting assemblies with large bolt diameters of M36 and bigger are fre-

quently used in ring-flange connections in steel support structures for on- and offshore wind turbines. 

At the bottom parts of the supporting steel towers the magnitude of the acting loads usually requires 

the application of very large bolt diameters M64 or M72. The bolts are subjected to high cyclic loads 

with considerable numbers of load cycles and variable amplitudes. Thus, for reduction of fatigue 

loads, preloading of bolts with high forces is mandatory. Reliable protection against corrosion is 

commonly achieved by hot-dip galvanizing. It is known that the zinc coating has an impact on the 

fatigue strength of structural steel components. Moreover, the high mean stress level affects the 

bolts’ fatigue behaviour and thus needs to be appropriately considered in experimental as well as 

analytical fatigue analyses. 

Fatigue testing of HV-bolts with large diameters under a representative mean stress level imposes 

challenges to the required testing equipment. Hence, S-N curves in applicable design standards, in 

particular EN 1993-1-9, are mostly validated on tests with smaller bolts and the influence of an in-

creased diameter is yet to be verified. Moreover, the quantitative effect of hot-dip galvanizing on the 

fatigue strength of large-size HV-bolts is still under investigation. 

Analytical fatigue assessment procedures provide valuable potentials to supplement expensive ex-

perimental test series and to discretely investigate specific impact factors with relevance to the fa-

tigue strength. However, to this end suitable assessment methodologies need to be adapted and 

validated for the application to HV-bolts with large diameters as well as for an appropriate consider-

ation of the effect of hot-dip galvanizing. 

This dissertation presents comprehensive research work on the experimental and analytical fatigue 

assessment of large-size HV-bolts. The performed fatigue tests extend the range of the experimental 

validation of normative regulations to a bolt diameter of M64, representative for the upper end of bolt 

sizes applied in today’s modern wind turbine support structures. Thereby, the safe applicability of 

the relevant fatigue class FAT 50 of the Eurocode 3 is confirmed. The comparison of performed tests 

on hot-dip galvanized bolts of diameters M36 and M64, as well as further analytical analyses, indi-

cate a minor impact of the bolt size in the considered large diameter range. The corresponding re-

duction function of the Eurocode 3 thus tends to overestimate the diameter related effect. Moreover, 

the results of tests with variable amplitude loading suggest a rather conservative hypothesis of dam-

age accumulation, considered in the Eurocode. Regarding the discrepancy of fatigue strength be-

tween uncoated and hot-dip galvanized HV-bolts ambiguous results are obtained for bolt sizes M36 

and M64. Thus, the results put into question a superior fatigue classification of uncoated, black large-

size HV-bolts, as for instance suggested in the VDI Guideline 2230.  

The systematically elaborated analytical fatigue assessment methodology, specifically refined for 

the application to large size HV-bolts, yields calculations in good agreement with experimental re-

sults for different bolt sizes and loading conditions. Thereby, an introduced engineering model also 

enables the calculation of the fatigue life for hot-dip galvanized bolts. 
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1 Introduction 

1.1 Motivation and objective 

Bolted ring-flange connections are widely used in steel support structures for wind turbines, for the 

conjunction between tower segments or the connection of towers to offshore substructures (see 

Figure 1-1, left). The connections are commonly equipped with high-strength bolting assemblies, so-

called HV-bolt sets, with large diameters M36 and bigger (see Figure 1-1, right). Especially at lower 

tower levels, the magnitude of the acting loads usually requires the application of very large bolt 

diameters M64 or M72, not only at strong-wind offshore turbines but also at modern towers with 

large hub-heights developed for onshore locations. Frequently, for a single ring-flange 100 or more 

circumferentially arranged HV-bolt sets are required. With multiple connections in every tower, an 

appropriate ring-flange design thus has a pivotal impact on the overall tower reliability and costs.  

 

Figure 1-1: Ring-flange connection in wind turbine support structure (left) and HV-bolt sets with large 
diameters (right) 

Throughout their aspired service life of at least 20 years or more, support structures for wind turbines 

are subjected to high cyclic loads with variable amplitudes, reaching up to 109 load cycles. As a 

consequence of the strong notch effect of the thread, HV-bolts are decidedly susceptible to fatigue 

damage. Hence, for reduction of fatigue loads, preloading of bolts is mandatory to ensure the struc-

tural integrity. Still, an accurate fatigue assessment of the bolts is an essential part of the design 

process.  

Due to the high required loads, experimental fatigue investigations on large-size HV-bolts are a de-

manding and time consuming task, especially when performed at representative mean load level. 

Moreover, in constructional engineering the application of large-size HV-bolts, especially in the upper 

end of the diameter range, mostly focusses on the emerging wind energy sector. Therefore, even 

though applicable design regulations do not exclude their application to bolts with large diameters, 

thus far the experimental validation of relevant fatigue properties is mostly limited to smaller dimen-

sions.  

For a reliable protection against corrosion, HV-bolts are commonly hot-dip galvanized. Research by 

Ungermann et al. (2014) has conclusively verified that the thermally applied zinc coating leads to a 

M36 M48 M64 M72
© DOTI © LUH-IfS
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considerable reduction of the fatigue strength at welded structural components. The causative dam-

age mechanism was traced back to shrinkage cracks within the zinc boundary layer. Further inves-

tigations by Simonsen (2015) have confirmed a similar effect at small-scale specimens with bolt-

alike notch geometry. However, prior to the research presented in this dissertation, the actual quan-

titative impact of hot-dip galvanizing to the fatigue behaviour of HV-bolt sets with large diameters 

has not yet been conclusively investigated. Moreover, contrary to the service loading conditions of 

wind turbines, all thus far performed systematic investigations on the impact of hot-dip galvanizing 

on the fatigue strength of structural steel components have focussed on testing conditions with con-

stant amplitudes. 

In regard to practical applications, by far the most relevant normative regulation for the fatigue veri-

fication of HV-bolts in support structures for wind turbines is the DIN EN 1993-1-9 (2010), or simply 

Eurocode 3 (which entitles the entire EN 1993 series). Additionally, the VDI Guideline 2230 (2015) 

provides a relevant design background, its applicability is however mostly limited to mechanical com-

ponents. Whereas the latter guideline generally acknowledges a quantitative difference of the fatigue 

strength between uncoated and hot-dip galvanized bolts, the Eurocode 3 follows a uniform fatigue 

classification. Both regulations consider different reduction functions of the fatigue strength that are 

dependent to the diameter. However, in the large diameter range these functions are not experimen-

tally substantiated. 

Fundamental for the initial validation of the normative background for the design of common-sized 

HV-bolts in wind turbines, Marten (2009) has established comprehensive fatigue test results for hot-

dip galvanized HV-bolts with a diameter of M48. However, due to limitations of the applied testing 

facility, the tests had to be performed under a reduced mean load level, compared to the nominal 

preload. This presumably has led to an overestimation of endurable load cycles at higher load levels. 

The potential impact of further increased bolt diameters was not verified. Moreover, no comparative 

tests have been performed on uncoated specimens to specifically quantify the effect of the zinc 

boundary layer. 

To supplement costly experimental test series for the evaluation of fatigue-relevant impact factors, 

analytical fatigue assessment procedures may have valuable potential. In his research works, Mar-

ten (2009) has acknowledged the general applicability of the strain-life approach to large-size HV-

bolts for the calculation of crack initiation load cycles. However, also due to the limited experimental 

background, a fully appropriate and validated evaluation procedure could not be established. Schnei-

der (2011) has introduced a further elaborated comprehensive assessment approach, specifically 

intended for the evaluation of threaded fasteners under high mean stress conditions. Thereby, the 

methodical fatigue evaluation encompassed both technical crack initiation and macro-crack propa-

gation phases. Still, validation has only been provided for HV-bolts with relatively small dimensions, 

unrepresentative for the commonly applied bolt-sizes in support structures for wind turbine. Moreo-

ver, the analytical procedure only encompassed boundary layer conditions without hot-dip galvaniz-

ing. 
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Given the outlined initial situation, the necessity for further research to establish an adequate 

knowledge base on the fatigue characteristics and assessment principles of large-size HV-bolts be-

comes obvious. To address this requirement, the joint research project “Experimental and analytical 

assessment of the fatigue strength of bolts with large dimensions under consideration of boundary 

layer effects” (Oechsner et al., 2015) was initiated within the programme for promoting industrial co-

operative research (IGF) via funding of the German Federal Ministry of Economic Affairs and Energy. 

Large parts of the experimental and analytical investigations presented in this dissertation were per-

formed within the framework of this project.   

The preformed research specifically aims for the validation of the normative design background as 

well as the identification of potential for its improvement. Thereby, the adequate consideration of 

representative boundary conditions concerning loading and production of the bolts is a prerequisite 

for the investigations. A meaningful extension of the available experimental background forms a vital 

part to the objectives. Furthermore, the research intends to accurately refine and validate suitable 

analytical fatigue assessment measures, which then can provide further insights to the subject of 

large-size bolt fatigue. 

1.2 Scientific approach 

To accomplish the previously described research objectives, the dissertation in hands is constituted 

by three major scientific steps. 

In Chapter 2, a thorough evaluation of the given initial state of the art concerning the subject under 

investigation is performed. Orientated on the methodical approach of the ensuing self-performed 

investigations, the literature review is subdivided into two superior sections. In the first part, the es-

sential knowledge background on fatigue characteristics of large-size bolting assemblies is collected. 

This includes the general characteristics of the fatigue process and its methodical description as well 

as the collation of the fundamentals regarding fatigue-relevant impact factors, established at both 

small scale and, as far as available, larger-scale bolt assemblies. The second part focusses on the 

methodical background for an analytical fatigue assessment of threaded fasteners in general and 

large-size HV-bolts in particular. At the end, fundamental requirements for the own investigations 

are derived. 

The core of the performed investigations, established  by a comprehensive experimental program, 

is presented in Chapter 3. It comprises detailed evaluations from three fatigue test series on large-

size HV-bolt sets. The performed tests extend the previous experimental background for HV-bolts 

into the very large diameter range. By performing tests with variant bolt sizes, the potential impact 

of an increased diameter on the fatigue strength is evaluated. Thereby, different bolt surface config-

urations with and without hot-dip galvanizing are considered, thus enabling the quantification of the 

boundary layer effect. Moreover, the tests include the comparison of fatigue characteristics at testing 

conditions with constant and variable amplitude loading. Based on the obtained results, normative 
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design regulations are evaluated. Thereby, also the regulations’ respectively considered fatigue re-

duction functions in dependence of the diameter as well as their incorporated damage accumulation 

approaches are contemplated in particular.  

The experimental results also serve as an essential validation background for the analytical fatigue 

investigations, presented in Chapter 4. The applied methodology is based on the strain-life concept 

and supplemented by the fracture mechanics approach. The different fundamental steps of the an-

alytical procedure are systematically evaluated for their specific application to large-size HV-bolts. 

In the first instance, this includes the essential provision of relevant monotonic and cyclic material 

data from the experimentally investigated HV-bolts’ base materials. Based on this, the appropriate 

numerical approximation of the local cyclic stress-strain relation inside the paired thread with elastic-

plastic material behaviour is addressed. The investigation of the actual fatigue damage assessment 

then encompasses aspects of an appropriate mean stress consideration, calculations in variant fa-

tigue life regimes and the introduction of an engineering model for consideration of the effect of hot-

dip galvanizing. Finally, the developed refined assessment procedure is used to evaluate specific 

potential fatigue-relevant impact factors, such as different size-effects, load conditions or the mate-

rial. 

The dissertation concludes with a final summary of  the performed research, derived findings and 

recommendations as well as suggestions for future research. 
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2 State of the Art 

2.1 Fatigue of large-size bolting assemblies 

2.1.1 High-strength bolts in ring-flange connections 

Ring-flange connections in wind turbines are equipped with large numbers of circumferentially ar-

ranged high-strength bolt assemblies. Commonly “System HV” bolt sets are utilized, consisting of 

geometrically aligned bolts, nuts and washers. With specifically adjusted characteristics for the re-

quirements of preloading, HV-bolt sets are regulated in DIN EN 14399-4 (2015) and for diameters 

larger then M36 up to M72 in the German DASt - Guideline 021 (2013). Protection against corrosion 

is usually maintained by zinc based protection systems such as hot-dip galvanizing. 

Preloading is essential for the structural integrity of the bolts. Due to practicality reasons, especially 

for large bolt diameters, preloading is commonly accomplished with the torque method. Thereby the 

nut is tightened with a hydraulic wrench until a defined torque moment is reached. In order to se-

curely avoid large plastic deformations during torque-obtained tensioning, the nominal target preload 

FV, given in DASt – Guideline 021 for large HV-bolt sets, corresponds to a “reduced” nominal preload 

level Fp,C*, calculated according to DIN EN 1993-1-8/NA (2010): 

   V p,0.2 spF 0.7 R A  Eq.     2-1 

 

where: 

FV 

Rp,0.2 

Asp 

 

nominal target preload  

nominal 0.2%-plastic strain limit (yield stress) 

tensile stress area of the bolt thread 

 

 

 

Since preloading with the torque method is particularly sensitive to potentially scattering friction co-

efficients in the paired contact surface between bolt and nut, recent developments focus on meas-

urement assisted tightening tools and procedures, which enable a more precise attainment of the 

nominal preload. Allowing for these developments, in the recent standard for certification of support 

structures for wind turbine DNVGL-ST-0126 (2016) (contrary to e.g. GL Guideline, 2012) a controlled 

nominal preload is permitted, which corresponds to the minimum preload level Fp,C, established in 

DIN EN 1090-2 (2011). Thereby the 0.2%-plastic strain limit Rp,0.2 in Eq. 2-1 is substituted by the 

nominal tensile strength Rm. Nevertheless, the current situation of standardisation regarding appro-

priate preload levels and procedures remains ambiguous, especially for large bolt diameters. Thus, 

project specifically developed preload measurement and maintenance procedures are the norm. A 

thorough discussion of allowable preload levels and procedures for the general application of 

threaded fasteners in civil engineering in the context of German and European standardisation is 

given by Stranghöner et al. (2016). 

For simplification purposes, dimensioning of bolts in flange connections is classically performed un-

der assessment of the isolated, maximal loaded segment of the flange (Figure 2-1, left). Modern 

finite element approaches also consider the interacting load-bearing contributions of the bolts along 
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the circumference. Nevertheless, the approach remains to perform a design for the most critically 

loaded bolt inside the flange and adapt it to the entire connection. Even though the eccentricity be-

tween tower wall and bolt axis leads to a certain amount of bending, the main contribution to the 

loading conditions of bolts inside ring-flanges derives from axial loads (e.g., see Seidel, 2001; Schau-

mann et al., 2018). Preloading and eccentric geometry cause a non-linear load transfer behaviour 

between tensile force Z in the tower shell segment and resulting bolt force Fb (Figure 2-1, right). The 

slope of the corresponding transfer function, which is decisive for the magnitude of the bolt’s fatigue 

loads (i.e., load ranges ΔFb), is crucially affected by the preload. Moreover, flange imperfections 

(here exemplary introduced by a tower sided flange gapping angle imp) have a severe impact on the 

transfer behaviour (e.g., see Schaumann et al., 2018; Feldmann et al., 2011; Jakubowski, 2003). 

 
 

Figure 2-1: Segment approach for the design of ring-flange connections acc. to Seidel (2001) (left) 
and schematic depiction of load transfer behaviour considering preload and flange imperfections acc. 
to Schaumann et al. (2018) (mid and right)  

2.1.2 Fatigue damage characteristics 

Under cyclic loading metallic components are prone to failure at load levels considerably below their 

static strength level; the reason is the complex physical damage mechanism, known as fatigue. A 

pronounced notch effect (i.e., a local stress concentration at a geometrical notch) significantly re-

duces the fatigue strength of a structural component. Consequently, due to the strong notch effect 

of the thread, bolt assemblies are distinctly susceptible to fatigue damage. 

Commonly, the stress flow of a bolt-to-nut connection causes a decisive peak stress concentration 

inside the first fully loaded pitch of the thread (Figure 2-2, left). The notch stress concentration Kt is 

generally defined as the relation of maximum local stress σmax and nominal stress S under linear 

elastic conditions (for a clear distinction, within this entire thesis local stresses are denoted with the 

Greek letter σ, whereas nominal stresses are indicated by a Latin capital S). At various occasions 

within this thesis, the Kt parameter is also used to express the development of the linear elastic 

stress concentration over an eligible geometric coordinate ξ: 

  
  

   max
t t tK    or   K K

S S
 Eq.     2-2 
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Figure 2-2: Schematic stress distribution and usual range of Kt and Kf for a bolt-to-nut connection 
(left) and three-axial stress state in the cross-section of a notched specimen (right) acc. to Wie-
gand et al. (2007)  

Contrary to the unnotched shaft, under axial loading a three-axial stress state of axial, tangential and 

radial stresses develops inside the thread, which is inconstant throughout the cross-section (Figure 

2-2, right). Thus, due to its lower strength utilisation, the surrounding material provides a support 

effect on the critically loaded notch root. Moreover, the ductility of bolt materials allows a certain 

stress redistribution under local plasticity. As a consequence, the fatigue strength of notched com-

ponents is typically higher as expectable from the solely geometry dependent notch stress concen-

tration Kt. This circumstance is considered by the fatigue notch factor Kf, which is defined as the 

quotient of constant amplitude fatigue limit (i.e., endurance limit, see section 2.1.3) of an unnotched 

specimen σa,D(Kt=1)
 (for unnotched specimens: σ = S) and the nominal stress endurance limit of the 

notched component Sa,D(Kt>1), with otherwise identical properties. As quotient of Kt and Kf, the so-

called ‘stress-mechanical’ or geometric support effect is also expressed by the number nσ: 

 




 


  

a,D(K 1) t
f

a,D(K 1)

K
K ,with n 1

S n
 Eq.     2-3 

As it inherently describes the actual fatigue strength of a component, the magnitude of the fatigue 

notch factor is affected for instance by loading conditions, mean stress, geometric properties and 

material. The depicted range of typical fatigue notch factors for bolt-to-nut connections in Figure 2-2 

emphasises the high importance of accurate fatigue assessment of bolts. Unlike in the depicted free 

notch in Figure 2-2 (right), the maximum stress concentration in the first loaded pitch of a paired 
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thread is not situated directly at the notch root but about 30° relocated towards the loaded thread 

flank (Wiegand et al., 2007). Usually, at this location a fatigue crack is initiated.  

The process of fatigue crack formation and ultimately resulting failure is constituted by a sequence 

of metallurgical phases, which is schematically depicted in Figure 2-3. Most generally, as sufficient 

for most engineering purposes, it is subdivided into the phases of initiation and succeeding propa-

gation of a macroscopic ‘technical crack’. Lacking a precise physical definition, it is accepted that 

the initiation of a technical crack is indicated by the occurrence of a crack size, which is detectable 

by ‘common technical means’ (Gudehus & Zenner, 1999; Radaj et al., 2006). Collating estimations 

stated by the latter as well as by Radaj & Vormwald (2007), this corresponds to a crack with an 

approximate surface length of ~1-2 mm and depth of ~0.5 mm.  

On microscopic scale, the fatigue process under cyclic loading is initiated by dislocation movements 

at areas of local stress concentration, which cause slip bands perpendicular to the maximum alter-

nating shear stresses in an order of magnitude smaller than the material’s grain size. The number of 

occurring slip bands, which essentially form as ex- or intrusions at the surface of the material (in 

certain cases an internal surface), increases with the magnitude of the alternating load (Socie & Mar-

quis, 2000). At the slip bands, micro cracks nucleate which eventually, when they reach a crack 

length approximately equivalent to the grain size, start propagating due to local slip mechanisms at 

the crack tip (Radaj & Vormwald, 2007; Radaj et al., 2006). Under coalescence with other micro 

cracks, a stable phase of micro crack propagation is followed by the stable macro crack propagation. 

Finally, instable crack propagation and static overload leads to the rupture of the remaining cross-

section.  

 

Figure 2-3: Phases of the metallurgical fatigue process acc. to Radaj et al. (2006) 

The proportions of crack initiation and crack propagation phase to the overall fatigue life highly de-

pend on case individual attributes such as cyclic load magnitude, mean stress, surface and geomet-

ric notch conditions as well as microscopic or macroscopic point of view (Radaj & Vormwald, 2007). 

Kremer (2005) found in his experimental studies on HV-bolt sets (see also section 2.2.7) that in the 

region of the endurance limit the total number of endurable load cycles is dominated with over 90 % 

by load cycles until technical crack initiation. However, at higher load levels macroscopic crack prop-

agation covers a substantial part of the overall load cycles until rupture.  

Vormwald (1989) emphasizes that on micro-structural scale, crack propagation occurs significantly 

before the formation of a macroscopic technical crack. Moreover, Radaj & Vormwald (2007) refer to 
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experiments from Neumann et al. on unnotched specimens with macroscopically homogeneous ma-

terial and without mean stress. These investigations have proven that only about the initial 10 % of 

the fatigue life until technical crack initiation are formed by the actual physical crack nucleation. Af-

terwards the fatigue process is characterised by micro crack propagation.  

2.1.3 Fatigue curves 

Constant amplitude loading 

Most popularly, the load level dependent fatigue strength of structural details and components is 

described by S-N curves (also known as Wöhler curves). Based on experiments under harmonic 

constant amplitude loading, endurable load cycles until failure (N) are usually plotted against nominal 

stress amplitudes (Sa) or stress ranges (ΔS) in double-logarithmic scale (see Figure 2-4). Commonly, 

the failure criterion is the complete rupture of the specimen or in some cases the initiation of a defined 

technical crack. The underlying experiments are performed with either constant mean stress (Sm) or 

constant load ratio (R) (Figure 2-4, right). Characteristic for preloaded bolted connections are swell-

ing tensional loads with load ratios R > 0. 

In dependence of the endurable load cycles, the path of an S-N curve can be subdivided into different 

sections (Gudehus & Zenner, 1999; Haibach, 2006; Radaj & Vormwald, 2007). The low cycle fa-

tigue range (LCF) up to about N ≈ 104-105, with load levels close to the component’s strength limit, 

is characterised by considerable plastic deformations. In the succeeding high cycle fatigue range 

(HCF) global deformations are linear elastic and the path of the S-N curve reaches a linear progres-

sion. Commonly, in the literature the denotation ‘high cycle fatigue’ is used to describe a fatigue 

range up to 107 load cycles, followed by the ‘very high cycle fatigue’ range (VHCF) (e.g., 

Pyttel et al., 2011; Wang et al., 2012). Thus, for the sake of a clear distinction of the relevant parts 

of the S-N curve, in the course of this thesis the denotation ‘upper’ high cycle fatigue regime is 

applied to the fatigue range where the path of the S-N curve can be approximated linearly with the 

slope exponent k, when expressed in double logarithmic scale.  

The upper HCF blends over into the succeeding transition region to the endurance limit (TEL), which 

is indicated by a pronounced widening of the statistic scatter of ruptures at identical load levels and 

a continuous change of the S-N curve’s slope. Finally, the course of the S-N curve again reaches a 

linear progression, which indicates the endurance or constant amplitude fatigue limit (Sa,D). The com-

mon ‘knee point’, where the straight lines from upper HCF regime and endurance limit coincide, is 

an engineering approximation with no physical substantiation; however, it forms an important char-

acteristic parameter for a practicable definition of experimentally determined S-N curves. For ferrous 

structural components the knee point usually is in an order of magnitude of ND ≈ 106-107 

(Radaj & Vormwald, 2007).  
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Figure 2-4: Characteristic values of a harmonic, constant amplitude loading (left) and schematic pro-
gression of an S-N curve (right; adapted from Gudehus & Zenner, 1999 and Radaj & Vormwald, 2007) 

The progression of the S-N curve after the knee point is controversially discussed in the scientific 

community and certainly depends on material composition as well as environmental boundary con-

ditions, like for example corrosive impacts or high temperatures (e.g., Sonsino, 2005; Ma-

rines et al., 2003). According to Radaj & Vormwald (2007), under laboratory conditions, a transition 

to a virtually horizontal progress of the S-N curve at a low load level is typical for strongly notched 

steel components. As such, it is traditionally acknowledged (e.g., Kloos & Thomala, 1979; Wie-

gand et al., 2007) and also incorporated in normative regulations (e.g., VDI Guideline 2230, 2015) 

that for threaded fasteners constant amplitude loads below the endurance limit do not cause fatigue 

damage. 

Results from fatigue tests on HV-bolt sets with high load cycle numbers do not show late failures 

with N > 107 (Weber, 2010). However, experiments which reach into the VHCF range are very cost 

and time consuming and for bolt assemblies no experimental results exist with load cycles N > 5∙107. 

Nevertheless, experimental investigations from Steppeler (2014) on butt weld specimens indicate a 

horizontal progression of the S-N curve in the range of very high load cycle numbers up to N = 5∙108. 

As bolt assemblies show a stronger notch effect than the welds, a comparable behaviour could be 

presumed; however, in order to draw clear conclusion a more detailed evaluation would be needed. 

Radaj et al. (2006) propose the distinction between a ‘technical endurance limit’ and a ‘true endur-

ance limit’ in order to imply that, albeit small, a certain decline of the S-N curve may be included. In 

that sense, within the course of this thesis the denotation ‘endurance limit’ always refers to a tech-

nical endurance limit.  

Generally, the results of fatigue experiments are subjected to a pronounced scatter. Consequently, 

an appropriate statistical planning and evaluation is indispensable for the experimental determination 

of fatigue curves. 

1 load cycle

N
o
m

in
a
l 
s
tr

e
s
s
 S

Time t

Sm

Smax

Smin

Sa

Sa

ΔS

R=Smin/Smax

102 104 106

1

k

Load cycles N (log)
N

o
m

in
a
l 
s
tr

e
s
s
 a

m
p
lit

u
d
e
 S

a
 (
lo

g
)

Sa,D

ND

Low cycle 

fatigue

Upper high 

cycle fatigue
Endurance 

limit

Realistic

Linear appoximation

R or Sm

const.

Yield point



Fatigue of large-size bolting assemblies   11 

 

Service loading 

Contrary to most experimental fatigue investigations, the actual service loading conditions of bolts 

in wind turbines are characterised by strongly inconstant amplitudes and sequences of stochastic 

nature (wind and wave loading). By use of appropriate counting algorithms (e.g., Clormann & See-

ger, 1986), the inherent load cycles of a loading sequences can be transformed into a collective of 

load amplitudes and corresponding sums of their occurring cycles (Figure 2-5, left). Thereby the 

information about the specific succession of cyclic loads is lost.  

Most widely applied in structural engineering applications is the analytical estimation of an occurring 

fatigue damage under variable service loads by Miner’s-rule (Eq. 2-4) (Miner, 1945). Thereby it is 

assumed that the overall damage D is linearly formed by the sum of partial damage, defined as 

quotient of occurring load cycles ni of a particular stress amplitude Sa,i and the number of endurable 

load cycle Ni from the constant amplitude reference S-N curve (hypothesis of linear damage accu-

mulation). 

 
 

 

  
i n i n

i
i

i 1 i 1 i

n
D D

N
 Eq.     2-4 

In a load sequence with variable amplitudes, the damage caused at higher stress levels in form of 

micro-cracks, which are capable of propagation, may lead to a successive reduction of the initial 

endurance limit. Therefore, also stress amplitudes below the initial endurance limit may contribute 

to the progression of damage (Radaj & Vormwald, 2007; Haibach, 2006). Thus, in its original form, 

with a horizontal path of the S-N curve after the endurance limit, the application of the Miner hypoth-

esis can cause a significant overestimation of fatigue life. On the contrary, the ‘elementary’ form of 

Miner’s rule describes the hypothesis of a virtually non-existent endurance limit and an S-N curve 

with constant progression over the entire range of stress amplitudes. While accurate for specific 

conditions such as for structural steel under corrosive impact, it usually leads to a rather conservative 

fatigue life calculation (Haibach, 2006). In order to provide a more accurate approximation of the 

actual fatigue damage development, modified versions of the Miner hypothesis have been devel-

oped. The most popular modification was established by Haibach (1970), where a fictitious progres-

sion of the reference S-N curve after the endurance limit is introduced with a slope exponent k* = 

2k-1; it is also included in the European standard for fatigue design of steel structures DIN EN 1993-

1-9 (2010). The three described variants of the Miner hypothesis are illustrated in Figure 2-5, right. 

Other modifications have been proposed for example by Hück et al. (1988) and Zenner & Liu (1992).  

All approaches, mentioned above, neglect the possible impact of sequence effects (e.g., see 

Radaj & Vormwald, 2007). A damage calculation considering a damage dependent and load cycle 

wise successive reduction of the endurance limit, denoted as the ‘consequent’ form of Miners-rule, 

is described in Haibach (2006). Additional to its non-linear characteristic, the consequent interpreta-

tion directly allows for the circumstance that also under variable amplitude loading no fatigue damage 

needs to be expected if the maximum stress amplitude of the load collective is smaller than the 

constant amplitude endurance limit.
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Figure 2-5: Schematic depiction of a load collective in discrete and continuous form (left) and fatigue-
life curve and variants of the Miner hypothesis (original, elementary and modified form proposed by 
Haibach, 1970) (right) 

For fatigue tests with variable amplitudes, the spectrum of applied loads is commonly approximated 

by a generic stochastically distributed load collective (e.g., a normal distributed Gauss collective). 

The collective can be scaled relatively to the maximum load level and the actually applied succession 

of loads may be arbitrarily rearranged from the declining order of the collective. When fatigue tests 

are performed with load sequences, derived from collectives with different maximum load levels but 

identical relative distribution of stresses, the variable amplitude ‘fatigue-life curve’ (also Gaßner 

curve) can be derived. Thereby the endurable load cycles are plotted against the maximum stress 

amplitude of the investigated load collective (Figure 2-5, right). Such experiments allow the evalua-

tion of analytical damage accumulation hypotheses. First comprehensive experimental investiga-

tions of damage accumulation for HV-bolts under variable loading were published by Weber (2010). 

A profound evaluation of damage hypotheses on the example of welded connections has been per-

formed by Al Shamaa (2015).  

2.1.4 Influencing factors on bolt fatigue 

Influences on the fatigue strength of bolting assemblies, as for metallic components in general, are 

multifarious. Within the following sections, specific characteristics with particular significance to 

large-size HV-bolt sets in wind turbines and the objectives of this thesis are discussed. 

Material and production 

According to Wiegand et al. (2007) suitable materials for structural bolt fasteners are characterised 

by high strengths while maintaining sufficient toughness and ductility. These enable preloading with 

high forces, which is essential to reduce the acting fatigue loads, and simultaneously allows a plastic 

redistribution of stresses inside the thread. For high-strength bolts of nominal strength class 8.8 or 

10.9 (HV-bolt sets) the achievement of these attributes usually requires the application of low-alloy 

carbon steels, with common additional alloying elements being for instance chromium (Cr), nickel 

(Ni), molybdenum (Mo) or boron (B). The appropriable chemical alloys are regulated in DIN EN 
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10263-4 (2018) and DIN EN 10083-3 (2007). The detailed requirements for the mechanical proper-

ties of the specified strength classes for bolt materials and bolts are defined in DIN EN ISO 898-

1 (2013). 

Generally, a high material strength has a positive impact on the fatigue resistance of metals. How-

ever, the effect diminishes with an increased notch effect (e.g., Schütz, 1974). Accordingly, the fa-

tigue strength of HV-bolts can be considered as mostly unaffected by the material’s strength class. 

Nevertheless, cyclic material characteristics (see section 2.2.2), which may vary with the specific 

material composition, are important to consider in a detailed fatigue assessment with local concepts. 

Moreover, good toughness attributes are crucial to prevent premature cracking (Wie-

gand et al., 2007). Experiments on HV-bolts under static loading by Stranghöner et al. (2018), con-

sidering two representative high-strength material alloys and diameters up to M64, verified that no 

brittle fractures need to be expected also at very low temperatures. 

Typically, in industrial production the thread forming of HV-bolts from the raw material workpiece is 

performed in a non-cutting rolling process. Whether the heat treatment for realisation of the required 

mechanical properties is performed before or after forming of the thread has a significant impact on 

the bolts fatigue strength (e.g., Thomala, 1978; Kremer, 2005). Compressive residual stresses intro-

duced by the inhomogeneous deformations during rolling are acknowledged to cause a favourable 

influence. Since the residual stresses diminish during the thermal tempering process, bolts which 

are rolled before heat treatment do not benefit from this effect. Measurements by Marten (2009) on 

HV-bolts M48 after different production stages have shown that significant longitudinal residual 

stresses, present after rolling in the vicinity of the notch root surface, are plastically relieved during 

a succeeding thermal treatment. A subsequently performed normal temperature hot-dip galvanizing 

did not show further effects in the measurements. Thus, he concludes that bolts which are rolled 

before heat treatment may essentially be considered as free of longitudinal residual stresses. 

Due to plasticization, the beneficial effect of residual stresses to the endurance limit decreases with 

an increasing preload level (Wiegand et al., 2007). Furthermore, Kremer (2005) has found a shal-

lower progression in the upper HCF of S-N curves of residual stress affected bolts. Still, also under 

high preloads and fatigue load levels, bolts which are rolled after heat treatment usually provide a 

superior fatigue strength than bolts rolled before heat treatment. Nevertheless, to enable an eco-

nomic manufacturing process, HV-bolts with large diameters are commonly rolled before heat treat-

ment. 

Loading conditions  

Preload 

Under dynamic loading, the preload causes a systematically established tensile mean stress level. 

Contrary to residual stress affected bolts, rolled after heat treatment, the fatigue strength of bolts 

which are rolled before heat treatment shows a less severe mean stress dependency. According to 

results from Schneider (1992), at mean stress levels within a range of approximately ~25% to ~60% 

of the bolt material’s measured plastic strain limit Rp,0.2 (0.25∙Rp,0.2 ≤ Sm ≤ 0.60∙Rp,0.2) the endurance 
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limit is mostly unaffected by the mean stress. At higher mean stress levels, he found a reduction of 

the endurance limit, reaching up to 30% for a mean stress of 0.9∙Rp,0.2. This tendency was also 

confirmed by Weber (2010).  

Generally, the moderate mean stress dependency of the endurance limit of bolts, rolled before heat 

treatment, results from the early local plastic deformations at the notch root. Due to the high stress 

concentration at the first load-bearing turn of the thread, these deformations occur already at rela-

tively low preloads (Kloos & Thomala, 1979). A further increasing preload level does not lead to sub-

stantial changes of the local mean stress. However, at higher preloads (i.e., nominal mean stress 

levels) the area of plastic deformation can be considered to expand from the notch root in lateral 

direction. Dünkel (1999) suspects this as reason for the aforementioned reduction of the endurance 

limit at high preloads observed by Schneider.  

At very low preload levels Thomala (1978) expects a negative effect on the endurance limit of bolts, 

rolled before heat treatment, which is caused by an insufficient stress redistribution inside the paired 

thread. With respect to the upper HCF, Marten (2009) came to the conclusion that the low nominal 

mean stress (0.15∙Rp,0.2,nom) in his experimental investigations has led to a beneficial effect on the 

endurable load cycles, especially at higher fatigue load levels. He explains this with the increasing 

contribution of macroscopic crack propagation to the overall load cycles and a resulting sensitivity to 

the maximum stress of the cyclic loading. The observation by Marten is also confirmed in experi-

ments from Dünkel (1999) as well as Schneider (2011). Here, compliantly, bolt fatigue tests with a 

constant low stress ratio R = 0.1 resulted in higher endurable load cycles in the upper HCF, com-

pared to tests with constant mean stress Sm = 0.7∙Rp,0.2. Only a minor effect on the endurance limit 

was observed, with slightly lower values for the test series with R = 0.1. Moreover, indicating the 

influence of low mean stress level and inadequate stress distribution, fatigue cracks were found 

outside the first load-bearing turn of the thread.  

In addition to the axial bolt force, preloading by torque causes torsion inside the bolt thread. Directly 

after removing the tightening tool, the torsional stresses are partly relieved. In experiments from 

Schneider (1992) on bolts, rolled before heat treatment, a preload obtained by torque instead of axial 

loading by the testing machine had no significant impact on the bolts endurance limit, except from a 

widening of statistic scatter. Likewise, in experiments by Alt et al. (2007) only a minor improvement 

of the endurance limit was observed when preloading was obtained by torque. Contradictory results 

were reported by Kuperus (1974) for the upper HCF, where the bolts showed a reduction of fatigue 

strength when preloaded by torque. However, from the documentation it is not entirely clear whether 

the bolts were rolled before or after heat treatment.   
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Bending 

The geometric eccentricity of L-shaped ring-flanges leads to a certain overlay of the dominating axial 

stresses by bending. Thus, the actual loading conditions of large-size bolts in wind turbines differ 

from the common experimental set-up with pure axial nominal loads.  

It is acknowledged that under identical nominal stress levels, a bending affected stress state causes 

a higher fatigue strength than pure axial loading, provided the bolts are previously axially preloaded 

(Agatonović, 1973; Kampf, 1997; Seidel, 2001; Alt, 2005). Accordingly, fatigue tests on preloaded 

high-strength bolts M48 (Schaumann & Marten, 2008; Schaumann & Marten, 2009) have confirmed 

a superior fatigue performance under cyclic bending than cyclic axial loading. Reasons for the im-

proved fatigue strength under bending are a stronger stress-mechanical support effect and a favour-

able stress distribution within the paired thread. Moreover, in strain gauge measurements from 

Alt (2005) the measured bending moment varied along the longitudinal bolt axis, which he ascribed 

to an inconstant stiffness distribution. 

As a consequence, bending may lead to a change of location of the maximum stress concentration 

and thus the location of fatigue crack initiation. However, while in the bending dominated investiga-

tions by Alt ruptures occurred regularly in the transition from thread to shaft, Kampf reported ruptures 

only in the first load-bearing turn of the thread. Schaumann & Marten found a strong manufacturer 

dependency for the location of crack initiation, with most failures occurring in the first load-bearing 

turn of the thread and under the bolt head, while only individual cases showed failures at the shaft 

transition. The described inconsistencies elucidate that under bending and locally plastic conditions 

the magnitude of stress concentrations is distributed more evenly along the bolt than under axial 

loading (Kaiser et al., 1995; Schneider, 1992). Generally, a higher sensitivity to boundary conditions 

and a substantial scatter of results is characteristic for fatigue tests under bending. 

Unplanned bending stresses, caused for instance by imperfect head and nut bearing surfaces, may 

deteriorate the fatigue performance as they cause higher stress levels than anticipated by the outer 

loading (e.g., see Kaiser et al., 1995). An internal bending impact introduced by the non-symmetric 

initial pairing between bolt and nut decreases with progressing plasticization and thus may be con-

sidered as negligible under relevant preload levels (Seybold, 2005). 

Frequency 

In the fundamental literature, the impact of the testing frequency on the fatigue strength of steel is 

considered to be small within a range of 1 – 1000 Hz, if corrosion, higher temperatures and load 

levels close to the material’s yield strength are avoided (Radaj & Vormwald, 2007; Haibach, 2006). 

The applicable standard for fatigue testing of threaded fasteners DIN 969 (1997) defines a maximum 

testing frequency of 250 Hz, whereby temperature of the specimens should be limited to a maximum 

of 50°C. Accordingly, results from Alt et al. (2007) have shown an invariable endurance limit of steel 

bolts within a range of testing frequencies between approximately 100 – 500 Hz. Based on numeri-

cally calculated deformations inside the thread, the authors concluded that also at load levels in the 

upper HCF no frequency impact needs to be expected. Nevertheless, based on results which he 
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does not specifically present or discuss, Dünkel (1999) reported of a reduction of bearable load cy-

cles in the upper HCF range when reducing the testing frequency by a decade from 13 Hz to 1.3 Hz. 

A slight reduction of the fatigue strength at low test frequency and higher load levels is also present 

in test results from Berger et al. (2008) for a comparison between 20 Hz and 2 Hz; however the tests 

provide very limited statistical proof.  

It could be assumed that rather low frequencies and resultant low strain rates in combination with 

local plastic strains may lead to a certain aggravation of the fatigue strength of bolts at high load 

levels. Considering common natural frequencies of wind turbine structures, load frequencies around 

and lower than 1 Hz are of particular practical relevance. However, for an economical and time effi-

cient obtainment of statistically relevant results, especially in the transition region to the endurance 

limit, testing with such frequencies is not feasible. Especially for low frequencies, the impact on the 

fatigue strength of bolts is not conclusively investigated.  

Geometry- and size effects 

As discussed in section 2.1.2, the notch geometry is a decisive factor for the fatigue strength of HV-

bolt assemblies. Generally, the geometry as well as tolerances of the ISO metric threads of HV-bolts 

are standardized within the standard series DIN 13, ISO 68-1 and ISO 965, respectively. According 

to Wiegand et al. (2007) within the range of regulated tolerances regarding angle and overlap of the 

V-shaped flanks of the paired thread, no significant impact on the stress concentration and thus on 

the fatigue performance need to be expected. Only for flank overlaps notably below the defined 

tolerances the notch stress concentration increases (Kaiser et al., 1995; Seybold, 2005; Mar-

ten, 2009). However, the specific normatively defined geometric properties of nuts for HV-bolts (DIN 

EN 14399-4, 2015; DASt - Guideline 021, 2013) in terms of thread engagement length and wrench 

width lead to an increased maximum stress concentration compared to regular ISO fasteners and a 

reduction of fatigue strength of about 10 % (Weber, 2010). 

The ratio of nominal diameter and pitch of the thread d/p increases at larger bolt diameters (e.g., 

M24: d/p = 8; M72 d/p = 12). Seybold (2005) found in numerical studies on bolt size M24 with varying 

thread pitches that under identical nominal stresses an increasing d/p-ratio (i.e., decreasing thread 

pitch) leads to an increasing stress concentration and thus reduced analytically calculated endur-

ance limit. Thereby, he qualitatively confirmed experimental fatigue analyses from Thomala (1978) 

on identical thread geometries. Even though a finer thread (i.e., higher d/p-ratio) causes a sharper 

notch geometry, it may also lead to a more homogenous stress distribution and a certain stress relief 

of the first load-bearing turn. Thus, the effect of an increased d/p-ratio on the fatigue strength de-

pends on the bolt material characteristics and is more pronounced for higher-strength materials 

(Wiegand & Strigens, 1970).  

Based on test results for bolt sizes between M6 and M24, Thomala (1978) found an approximately 

hyperbolic correlation between bolt diameter and experimentally determined endurance limit. He 

partly ascribed this to the increasing notch sharpness caused by the changing d/p-ratio. Accordingly, 

a reduction of fatigue strength with increasing diameter is especially pronounced for smaller bolt 

diameters. Based on an empirically derived approximation formula, which also found entrance into 
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normative regulation (VDI Guideline 2230, 2015), he concluded that the diameter effect should 

mostly be resolved until bolt diameter M40. However, he also emphasized that possibilities for further 

extrapolation are limited because of the pronounced changes of the d/p-ratio in the diameter 

range > M40. 

Additionally to the d/p-ratio, the diameter dependency of the fatigue strength of bolts is affected by 

a variety of interacting size effects, which according to Kloos (1976) can be subdivided into stress-

mechanical, statistical, technological and surface-technological size effect.  

The stress-mechanical size effect considers the support effect of the material, surrounding the notch 

root. The stress gradient in lateral direction throughout the bolt decreases with increasing bolt diam-

eter. This leads to a larger area of strongly loaded material in the vicinity of the notch root and hence 

a reduced support effect for larger bolts (see also Chapter 2.2.5).  

The statistical size effect is substantiated on the assumption that damage relevant defects at the 

most critically loaded zone at the notch are statistically more likely to occur with increasing size of a 

structural component. Consequently, the probability of micro crack initiation is higher for large diam-

eters. However, according to studies from Böhm & Heckel (1982) on a representative high-strength 

material, the impact of the statistical size effect decreases with increasing diameter of a specimen. 

Moreover, the effect is just slightly pronounced for strongly notched components.   

Furthermore, production and surface treatment procedures, which can influence the fatigue strength, 

may vary in dependence of the bolt diameter. Fatigue-relevant diameter dependencies caused by 

the manufacturing process, such as mechanical forming or heat treatment, are described by the 

technological size effect. The surface-technological size effect considers dependencies between 

specific boundary layer conditions (e.g., residual stresses), component thickness and fatigue 

strength. Both effects are strongly dependent to the individual production process. The general im-

pact of different surface conditions to the fatigue strength of bolts is further discussed in the subse-

quent section.  

Due to the changes of the d/p-ratio, threads of bolts with different diameters are not geometrically 

similar. Moreover, the geometry dependent variations of fatigue characteristics are affected by a 

variety of interacting parameters. Thus, an isolated experimental investigation of size effects for bolts 

is hardly achievable and fatigue tests on customary bolt assemblies mostly allow a general assess-

ment of the changing fatigue performance with increasing diameter. 

Surface conditions and corrosion protection 

The surface conditions may severely affect the fatigue performance of bolts. For HV-bolts, changes 

of the surface conditions especially result from the applied corrosion protection. 

Popular as a very reliable and long lasting corrosion protection system is hot-dip galvanizing, where 

in an elaborate production process (e.g., see Maaß & Peißker, 2008) a durable alloy surface layer 

is established by immersing the steel or iron component into a hot bath of molten zinc. The process 

can be performed as normal temperature (NT; ~440-470°C) or high temperature (HT; ~530-620°C) 
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hot-dip galvanizing. The application for bolts is standardized according to DSV-GAV (2009), DASt - 

Guideline 022 (2009) and DIN EN ISO 1461 (2009).  

Comprehensive experimental investigations by Ungermann et al. (2014) and Simonsen (2015) have 

conclusively proven the considerable impact of NT hot-dip galvanizing on the fatigue strength of 

structural steel. Based on the investigations, mainly on welded or flat structural details relevant for 

steel bridges but also on specimens with bolt-alike notch geometry, Simonsen (2015) recommends 

a reduction of the endurance limit of 20 % compared to uncoated black components. For coating 

thicknesses > 100 μm a further deterioration of the fatigue strength needs to be considered. Espe-

cially the test results on bolt-alike notched specimens also clearly show a reduction of bearable load 

cycles in the upper HCF. The results confirm findings for hot-dip galvanized HV-bolt assemblies by 

Weber (2010) and Berger et al. (2008) as well as further earlier investigations (see Wie-

gand et al., 2007). Nevertheless, one test series by Weber as well as experiments from 

Lacher (1986) showed a slightly lower reduction of the endurance limit of about 12 %. 

Microscopic analyses of metallographic sections from aborted fatigue tests on flat steel specimens 

with constant stress ratio R = 0.05 (Ungermann et al., 2014; Ungermann et al., 2015) as well as bolt-

alike notched specimens with constant mean stress Sm = 0.7∙Rp,0.2 (Oechsner et al., 2015; Simon-

sen, 2015) could compliantly document the underlying failure mechanism caused by hot-dip galva-

nizing (see Figure 2-6). Thereby, shrinkage cracks, present in the initial state prior to loading in the 

brittle ζ- and δ1-phases of the iron-zinc alloy surface layer, reached up to the ferocious base material. 

Under cyclic loading, the fatigue cracks in the base materials were initiated at the location of the 

shrinkage cracks. It could be precluded that already in the initial state pre-damage was caused to 

the base material (e.g., due to liquid metal assisted cracking, LMAC). Thus, the authors elaborated 

the model assumption that a microscopic notch effect at the tips of the shrinkage cracks leads to 

stress peaks at the base material, which cause the premature fatigue crack initiation (i.e., an “exten-

sion” of the shrinkage cracks into the base material). 

 

Figure 2-6: Schematic depiction of fatigue crack initiation of hot-dip galvanizes structural compo-
nents acc. to Ungermann et al. (2015) 
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The investigations performed by Simonsen suggest that the described effect leads to a comparable 

reduction of fatigue strength also for HT hot-dip galvanized components. Correspondingly, fatigue 

tests from Valtinat (1994) have shown an equal fatigue performance of NT and HT hot-dip galvanized 

HV-bolts of diameter M30. Thereby, bolts where initially preloaded by torque, approaching the plastic 

range at ~0.9∙Rp,0.2 (the following fatigue tests were performed under Sm = ~0.7∙Rp,0.2). The initial 

high preloading did not lead to a severe deterioration of fatigue strength, as it could have been ex-

pected to occur by a potential pre-damage of the base material. This is in accordance with the find-

ings of Simonsen, which show that the zinc coating does not affect the initial state of the base ma-

terial, provided hot-dip galvanizing is applied properly in accordance with the given normative proto-

cols. Nevertheless, according to current German national guideline DSV-GAV (2009), HT hot-dip 

galvanizing is only allowed for high-strength bolts up to diameters ≤ M24 because of risk of LMAC. 

Concerning alternative corrosion protection systems, Kremer (2005) found a notable reduction of 

fatigue strength in the transition region to the endurance limit and upper HCF also for electro-chem-

ically galvanized bolts. Likewise, in test results from Weber (2010) bolts treated with zinc flake coat-

ing showed a lower fatigue strength than black uncoated bolts. For both protection systems a fatigue 

strength reducing tendency was also confirmed by Simonsen (2015) on bolt-alike specimens. He 

showed that after loading cracks are present in the surface coating of electrogalvanized specimens. 

How and whether these cracks cause a reduction of fatigue strength is not yet investigated. For zinc 

flake coated specimens no indications for an underlying damage mechanism could be found and the 

cause of the reduction remains unclear. Nevertheless, it needs to be emphasized that under corro-

sive impact, hot-dip galvanized or otherwise protected components provide a vastly superior fatigue 

resistance than unprotected steel.  

Additional to the corrosion protection system itself, lubrication of the thread may have an effect on 

the fatigue performance of bolts, for example due to altered friction properties. Thomala (1978), 

Dünkel (1999), Kremer (2005) and Weber (2010) compliantly found an improved fatigue strength of 

bolts with liquid lubricated threads compared to degreased bolts. However, Seybold (2005) and Mar-

ten (2009) report only of a moderate influence of an increasing friction coefficient μ to the analytically 

calculated loading conditions in paired threads of bolt assemblies. The specific effect imposed by 

lubrication to the fatigue strength of bolts is not yet conclusively quantified. 

2.1.5 Experimental background for large-size HV-bolts 

The majority of the aforementioned studies in the previous chapter were realized on smaller bolts, 

mostly limited to diameters ≤ M24. Publically available fatigue test results with representative char-

acteristics for HV-bolts with larger diameters are very limited to this date. This can be attributed to 

the high test facility requirements and corresponding costs. Fatigue investigations on tension rod 

systems which reach into high diameter ranges (e.g., Unglaub et al., 2015) provided limited compa-

rability to customary HV-bolt sets and vice versa because of different elementary characteristics 

concerning materials and production. In order to avoid the uncertainties deriving from these param-

eters and to enable clear interpretation, it is focused on the subsequently described studies on large-

size HV-bolts. In all investigations, the HV-bolts were rolled before heat treatment. 
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The previously cited investigations from Valtinat (1994) were performed on relatively large-size HV-

bolts M30. Due to the implemented testing program, the drawn conclusions mainly concern the 

equivalence of fatigue performance in direct comparison between NT and HT hot-dip galvanized 

bolts and the course of the S-N curves in the upper HCF. A statistical determination of the endurance 

limit was not performed. Under a similar mean stress level Sm = 0.7∙Rp,0.2, a complete S-N curve on 

NT hot-dip galvanized M36 HV-bolts sets was statistically determined within the test series by Ber-

ger et al. (2008), which apart from this was mainly focussed on smaller diameters.    

With the aim of establishing a more reliable design basis for HV-bolt sets with larger diameters, an 

extensive test series on HV-bolt sets M48 was performed at the Institute for Steel Construction, 

Leibniz Universität Hannover (Marten, 2009, Schaumann & Marten, 2008). In order to achieve a high 

degree of general validity, NT hot-dip galvanized bolt sets from three different manufacturers (and 

consequently materials and manufacturing batches) were treated as one single set of samples within 

the statistical evaluation of the S-N curve. Due to the capacity of the applied resonance testing ma-

chine (testing frequency approx. 60 Hz), the mean stress level for the axial load fatigue tests had to 

be reduced to Sm ≈ 0.15∙Rp,0.2. As discussed in section 2.1.4, it needs to be presumed that this has 

led to a certain overestimation of endurable load cycles, especially at higher load levels. Moreover, 

the low mean stress level and testing with specimens from differing manufacturing batches and pro-

duction chains has led to relatively large scatter of results. Nevertheless, the test series established 

a decisive validation background of normative regulations required for the practical application of 

large-size bolts (see following section 2.1.6). However, the results emphasized the importance for 

further fatigue tests on large-size HV-bolt sets to be performed under a representative mean stress 

level.   

Additionally to the main objective of axially loaded fatigue tests, the experiments by Schau-

mann & Marten (2008) also included fatigue tests under bending loading on the same set of samples 

from different bolt manufacturers. The results have been discussed in section 2.1.4. Regardless of 

identical nominal production conditions (NT hot-dip galvanized, rolled before heat treatment) for both 

loading conditions the results have revealed a notably manufacturer dependent fatigue performance.  

2.1.6 Normative situation 

Applicable design S-N curves for axially loaded bolts are given in Eurocode 3 (EC 3, DIN EN 1993-

1-9, 2010), as decisive standard for civil engineering applications in Europe, as well as in the inter-

nationally renowned VDI Guideline 2230 (2015), which has been developed for application of heavy 

duty bolted joints in mechanical engineering.  

For fatigue strength calculation VDI 2230 distinctly differentiates between the production sequence 

(i.e., rolled before or after heat treatment) and considers explicit reduction factors considering the 

HV-nut geometry (10%) and a hot-dip galvanized surface layer (20%). In contrast, EC 3 does not 

provide any possibilities for differentiation regarding geometry, production or boundary layer and the 

defined fatigue class can be interpreted as a lower bound for the possible configuration of axially 

loaded bolt assemblies.  
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Even though the regulations lack corresponding experimental background data, they allow applica-

tion also to larger bolt diameters. However, both consider a reduction of fatigue strength with in-

creasing bolt diameter d. The calculation of the reference values for the fatigue strength at N = 2∙106 

load cycles for the decisive Eurocode 3 fatigue class FAT 50 is given in Eq. 2-5, and according to 

VDI 2230 for hot-dip galvanized HV-bolt sets, rolled before heat treatment, in Eq. 2-6. In order to 

provide better comparability, different to the standard, the fatigue strength according to Eurocode 3 

is stated in stress amplitudes instead of stress ranges (Sa = ΔS/2). 

Eurocode 3 (FAT 50, ks for d > 30 mm): 
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VDI 2230 (rolled before heat treatment (RBHT), HV, hot-dip galvanized): 
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Figure 2-7: Normative S-N curves from EC 3 and VDI 2230 (left) and reference value of fatigue curves 
at N = 2∙106 load cycles as a function of bolt diameter (right) 

The juxtaposition of the S-N curves of both regulations and their reference values according to Eqs. 

2-5 and 2-6 in Figure 2-7 highlight that over the entire diameter range the fatigue strength is regulated 

considerably more conservative in EC 3 than in VDI 2230. Where exceeding the range of experi-

mental validation (see section 2.1.4), the course of the diameter dependent function of the endurance 

limit in VDI 2230 is supported by numerical estimations (see Schaumann & Marten, 2009). Euro-

code 3, besides not accounting for an improved fatigue strength of smaller bolts, also estimates a 

more strongly pronounced diameter dependent reduction for bolts > M30. For both diameter depend-

ent reduction functions no experimental verification for large-size HV-bolts exists.  
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It needs to be noted that the reference values of fatigue strength at N = 2∙106 load cycles of both 

regulations are related to different characteristic values of the S-N curves and are based on different 

statistical evaluation procedures (see Chapter 3.6.2). Moreover, in VDI 2330 the value Sa,D denotes 

the knee point to the endurance limit with succeeding horizontal progression of the S-N curve. In 

EC 3 a transition to the endurance limit is not assumed until N = 5∙106 load cycles.  

Analogously to VDI 2230, EC 3 allows the consideration of a following horizontal S-N curve progres-

sion for constant amplitude loading or load collectives which maximum values do not exceed the 

respective endurance limit. However, as dominating case in structural engineering, the S-N curves 

in EC 3 are mainly developed for service load verification with variable amplitudes and application 

of Miner’s linear damage accumulation, see section 2.1.3. For this case, after the knee point at 

N = 5∙106 the progression of the S-N curve is defined in accordance with Haibach’s modification of 

Miner’s-rule (see Section 2.1.3). A threshold value of the fatigue strength with following horizontal 

progression also under variable amplitude loading is designated at N = 108 load cycles. The S-N 

curves from VDI 2230 were originally not intended for a service load verification with load levels both 

above and under the endurance limit. To enable service load verification, a recommendation for a 

Miner’s rule modification, which can be applied to the S-N curves from VDI 2230, is given by We-

ber (2010).  

Specific adaptions for fatigue verification of bolts in support structures for wind turbines are made in 

relevant guidelines such as DIN 18088-3 (2019), DNVGL-ST-0126 (2016) and DIBt (2012). Therein 

it is defined that, due to the lack of experimental knowledge, a consideration of the threshold value 

of the fatigue strength, defined in EC 3, is not permissible. Moreover, DNVGL-ST-0126 (2016) allows 

a fatigue classification of bolts, rolled before heat treatment without hot-dip galvanizing into a higher 

EC 3 fatigue category FAT 71 and a modified fatigue class FAT 71* for bolts rolled after heat treat-

ment. Since bending affected stress states show an improved fatigue life compared to axial loading 

(see section 2.1.4) the present contribution of bending, arising from the eccentric geometry of the 

ring-flange, can be regarded uncritical when using the design fatigue curves, representative for pure 

axial loading. However, this only applies if the bending stresses are actually considered in the struc-

tural load analysis of the bolts. If the bending stresses are neglected, the above mentioned fatigue 

classifications do not apply. Instead, for all bolts a reduced fatigue class FAT 36* is to be used, in 

order to compensate for potentially underestimated bolt stresses. Generally, all mentioned fatigue 

classes need to consider the respective diameter reduction factor ks as included in Eq. 2-5. 
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2.2 Fatigue assessment with local concepts 

2.2.1 Local fatigue assessment approaches  

Alternatively to the nominal stress concept, used as basis for fatigue design according to the previ-

ously described normative regulations, approaches based on the local loading conditions and defor-

mations at the notch root have been developed. These enable fatigue assessment without the re-

quirement of experimentally determined S-N curves for the entire structural detail. Thereby, different 

influencing factors may be considered separately, which otherwise are collectively included in the 

constructional member’s design S-N curve. Thus, to a certain degree local concepts provide the 

possibility for an isolated investigation of different aspects to the overall fatigue performance without 

the necessity of demanding experimental test series with changing attributes. However, since the 

models are based on the distinct characteristics of the base material, their application requires 

knowledge about specific material parameters. Moreover, local concepts are affected by accuracy 

and quality of the necessary model representations of the actual physical behaviour. Different ap-

proaches exist for the estimation of endurable load cycles until initial cracking and of fatigue life 

between crack initiation and rupture. In the sequel, the local concepts, which are most relevant for 

the fatigue assessment of threaded fasteners, are introduced. For detailed descriptions it can be 

referred to fundamental literature such as Radaj & Vormwald (2007), Haibach (2006), Ban-

nantine et al. (1990). 

Strain-life approach 

The local strain-life approach follows the assumption that material behaviour and damage mecha-

nisms at the notch root of a structural component are equivalent to a smooth unnotched specimen 

under uniaxial loading, see Figure 2-8, left. Since the fatigue driving plastic strains caused by the 

notch effect are confined in a local area at the notch root, the plastic zone is usually surrounded by 

solely elastically deformed material. Due to the constraint of its elastic surrounding the plastic region 

is considered to follow a cyclic hysteresis with steady elastic-plastic strains instead of steady 

stresses, even though the nominal loading is stress-controlled. Hence, strain-controlled laboratory 

tests on unnotched specimens are used to determine the required material characteristics.  

An emulated local stress-strain response at the notch root based on the obtained material behaviour 

(Figure 2-8, right) and the material’s strain-life curve, providing the relation between strain amplitude 

and endurable load cycles, enable the fatigue life prediction. Since the strain-life curve is usually 

determined for stress and strain relation R = -1, mean stress dependencies need to be considered 

by appropriate damage parameters, see section 2.2.4. The failure of a smooth specimen without 

elastic constrains is approximately equivalent to the formation of an initial technical crack at a notch 

root of the structural component, see Radaj & Vormwald (2007). Therefore, the strain-life concept 

provides load cycle numbers only until technical crack initiation. The succeeding crack propagation 

life needs to be assessed separately.  
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Figure 2-8: Equivalence of critical material volume at notch root and unnotched specimen acc. to 
Bannantine et al. (1990) (left) and denotations at hysteresis of local stresses and strains acc. to Hai-
bach (2006) (right) 

Fracture mechanics approach 

The application of linear elastic or elastic-plastic fracture mechanics assumes the presence of an 

already existing crack or crack alike defect. Linear elastic fracture mechanics may be applied if plas-

tic deformation at the crack tip are small compared to the size of the crack and cracked component, 

which is common for materials with brittle failure behaviour. However, even for materials which ex-

hibit a certain amount of ductility, the elementary assumption for application of linear elastic fracture 

mechanics remains valid, see Bannantine et al. (1990).  

Most commonly in engineering structures the decisive loading mode is a tensile surface displace-

ment perpendicular to the crack surface. Commonly applied as driving load characteristic is the cyclic 

range of the stress intensity factor at the tip of the crack ΔK (henceforth denoted as cyclic stress 

intensity). It is calculated proportional to the nominal loading and in dependence of crack length and 

geometric properties with respective model formulations.  

Fatigue crack growth curves, describing the resistance against propagation of cracks, can generally 

be subdivided into three phases, see Figure 2-9. Thereby, propagation only occurs if a threshold 

cyclic stress intensity ΔKth is exceeded. The succeeding stable crack propagation is commonly de-

scribed by empirical Paris’ law (established by Paris, 1962 and Paris & Erdogan, 1963), which fol-

lows a linear path in double logarithmic scale (Eq. 2-7). Therein, the crack growth rate da/dN is 

calculated as function of the cyclic stress intensity ΔK with the material, stress ratio and environment 

dependent parameters C and m. 
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The critical cyclic stress intensity ΔKc indicates the transition to the final phase of unstable crack 

growth, shortly followed by rupture. Using Paris’ law, fatigue life can be calculated by integration 

within the limits of the considered initial and final crack depth. Depending on the applicable model 

for determination of ΔK, the correlation of the cyclic stress intensity to changing geometric crack 

properties often makes a numerical integration necessary. 

 

Figure 2-9: Schematic depiction of fatigue crack growth rate curve (adapted from Haibach, 2006) 

The application of Paris’ law and linear elastic stress intensity is only appropriate when assessing 

cracks of macroscopic scale with crack depths a ≥ 0.1 mm, see Radaj & Vormwald (2007). This is 

due to short-crack formation and propagation being affected by microscopic material phenomena, 

which are not accurately covered in the conventional empirical approach, described above. Moreo-

ver, the general assumption of locally restricted plastic zones compared to the crack size is not valid 

for microscale cracks, which more likely are embedded into the plastic zone. Microscopic small-crack 

propagation is more suitable described by use of J-integral formulations (e.g., Vormwald, 1989; see 

section 2.2.4). 

2.2.2 Material characteristics 

Cyclic stress-strain and strain-life behaviour 

For application of the strain-life concept, practical representations of base material properties re-

garding the relations between cyclic stresses and strains as well as strain amplitude and fatigue life 

are required. In Eq. 2-8 the strain - fatigue life (εa-N) relation, known in the literature as the relation 

according to Manson, Coffin and Morrow, is given as function of the four material constants: fatigue 

strength coefficient σ’f, fatigue strength exponent b, fatigue ductility coefficient ε’f and fatigue ductility 

exponent c.  
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Originated over time from a number of different studies, it is formed by the summation of elastic and 

plastic strain contributions to the fatigue damage. A historical derivation can be found for example in 

Christ (1991). In double logarithmic scale the elastic and plastic terms of the equation form linear 

lines, whereby the curve of total strain asymptotically approximates the plastic line at high and the 

elastic line at lower amplitudes, see Figure 2-10, left.  

Under strain-controlled cyclic loading, the majority of metals tend to either cyclic softening or hard-

ening behaviour, where the cyclic stress-strain relation deviates from its initial monotonic path. Usu-

ally saturation occurs during the early loading phase well before half of the load cycles to failure, see 

Haibach (2006). For the remainder of the endurable load cycles until initial cracking the material 

behaviour can then commonly be characterised as approximately stabilized and under constant 

loading the cyclic stress-strain hysteresis forms a closed loop. The conjunction of the peak values of 

stabilized cyclic hysteresis with different strain amplitudes leads to the material’s cyclic stress-strain 

curve (Figure 2-10, right). It is described by the three parameter approach according to Ram-

berg & Osgood (1943), where the relation between strain amplitude εa and stress amplitude σa is 

given in dependence of Young’s modulus (Hooke’s law) and a supplemented plastic power law with 

the strain hardening coefficient K’ and exponent n’ (Eq. 2-9). Commonly thermally treated high-

strength and alloyed materials, as applied for HV-bolts, exhibit a cyclic strain softening behaviour, 

see Christ (1991), Bargel & Schulze (2012). 
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Figure 2-10: Schematic depiction of strain-life curve with elastic and plastic parts in dependence of 
hysteresis shape (left) and cyclic stress-strain curve as conjunction of peak values of stabilized cyclic 
hysteresis loops for material with cyclic softening behaviour (right) (adapted from Ban-
nantine et al., 1990) 
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In order to achieve compatibility between the Ramberg-Osgood equation (Eq. 2-9) and the strain-

life curve according to Manson, Coffin and Morrow (Eq. 2-8), in terms of necessarily identical pro-

portions between elastic and plastic contributions to the total strain amplitude, the following condi-

tions need to be satisfied: 
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 Eq.    2-10 
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 Eq.      2-11 

As illustrated in Figure 2-10, after a given point of load reversal, due to the Bauschinger effect, the 

path of the cyclic hysteresis does not follow the original cyclic stress-strain curve. Known as the 

Masing model (Masing, 1926), it is established that from its origin a de- or increasing hysteresis 

branch can adequately be approximated in the form of the stabilized cyclic-stress strain curve with 

doubled stresses and strains. Accordingly adapting the Ramberg-Osgood equation (e.g., see Ban-

nantine et al., 1990), from a point of load reversal a hysteresis branch with strain range Δε and stress 

range Δσ can be described with Eq. 2-12:   

 D D 
D    

 

1

n'

2
E 2K '

 Eq.     2-12 

Transient effects  

As described, the cyclic stress-strain curve considers the hardening or softening characteristic of a 

material in their stabilized form. Thus, the transition period between initial loading and saturation is 

usually neglected in analytical calculations and stabilized conditions are assumed throughout the 

entire fatigue life. While cyclic softening, as characteristic for high-strength bolt materials, is consid-

ered to occur independently of the mean strain level, preloading and consequently tensile mean 

stresses and strains significantly different from zero cause additional material transitions. Under 

strain-controlled cyclic loading this is exhibited by a successive reduction of the mean stress level of 

the hysteresis (see Christ, 1991). The magnitude of the effect, denoted as cyclic relaxation, is de-

pendent on material as well as mean strain level and magnitude of the strain amplitude. Since it 

typically represents stabilized material conditions with stress and strain ratio R = -1, the cyclic stress-

strain curve does not cover cyclic relaxation. Thus, for its consideration the effect needs to be inves-

tigated separately. The two different transient effects, which are most relevant for the assessment of 

high-strength bolts, are illustrated in Figure 2-11. 
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Figure 2-11: Transient material effects under strain controlled loading acc. to Christ (1991) 

Determination of cyclic material data 

For determination of required material parameters uniaxial, strain-controlled cyclic material tests on 

unnotched specimens are necessary. Commonly, these are performed without mean strain  

(R = -1). Most accurately, cyclic material parameters are determined within a comprehensive series 

of constant amplitude tests until crack initiation in order to experimentally determine the strain-life 

curve of the material. The information about the cyclic stress-strain relation results inherently as a 

by-product of such tests. To limit testing efforts the conduction of strain-controlled tests is usually 

restricted to moderate load cycle numbers in the upper high-cycle fatigue regime. At load levels close 

to the endurance limit the relation between local stresses and strains becomes largely linear. Hence, 

for determination of the endurance limit stress-controlled tests may be performed which enable 

higher testing frequencies and facilitate conduction. Nevertheless, a precise determination of the 

strain-life curve requires high experimental efforts, which in many cases may exceed available or 

reasonable expenditures. 

As an alternative Vormwald & Seeger (1988) have proposed a simplified approach, where all re-

quired material parameters may be derived with only two test specimens. The tests are performed 

as strain-controlled Incremental-Step-Tests (IST), first developed by Landgraf et al. (1969) for the 

accelerated determination of the cyclic stress-strain curve. Thereby, cyclic loading is established as 

a sequence of blocks with continuously increasing and declining amplitudes. It has been shown by 

Vormwald & Seeger that sequence effects have a minor influence for the given load history of IST. 

Thus, based on the analytical descriptions of material characteristics according to Eq. 2-8 to Eq. 2-12 

and under the premise of linear damage accumulation, the evaluation of load cycles until crack initi-

ation enables the additional characterization of the strain-life curve. In the high cycle fatigue range, 
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the method is proven to provide a close approximation of strain-life curves of low alloy steels, derived 

from constant-amplitude test. Accuracy decreases with lower strain amplitudes. An endurance limit 

cannot be determined. Best results are achieved when using two IST with maximum strains differing 

by a factor of 2 or higher, whereby influence of natural scatter to the results is limited. In order to 

ensure compliant stress-strain relations, both strain levels should include a notable plastic propor-

tion. When estimating the cyclic ductility exponent c (which represents the slope of the plastic part 

of the strain-life curve) according to Morrow (1965) or Manson (1965) an approximation of the strain-

life curve can also be derived based on one single IST. 

An analytical estimation of cyclic material parameters in dependence of its monotonic properties is 

proposed with the Uniform Material Law (UML), which was developed by Bäumel & Seeger (1990) 

based on collective cyclic material data. However, Marten (2009) emphasises the limited accuracy 

when using the UML for the fatigue estimation with the strain-life concept under loading conditions 

with high mean stresses.  

For quantification of cyclic relaxation, Schneider (2011) suggests the conduction of additional strain-

controlled material tests under a constant high mean strain εm >> 0 with varying strain amplitudes. 

Alternatively, Oechsner et al. (2014) propose the analytical estimation of mean stress relaxation ac-

cording to Landgraf & Chernenkoff (1988).  

2.2.3 Computing of local stresses and strains 

In traditional applications of local fatigue assessment concepts the local loading conditions at the 

notch root are approximated based on analytical approaches, most popular according to Neu-

ber (1961) or in a modified version Neuber (1985). For application on bolted connections and 

threaded fasteners in general, these approaches are commonly supported by linear elastic finite 

element calculations which are used to compute the required notch stress concentration factor (e.g., 

Marten, 2009). Modern finite element software implementations and enhanced computational hard-

ware capabilities enable and facilitate the direct numerical calculation of local stresses and strains 

by use of non-linear material implementations, making the application of classic analytical ap-

proaches virtually superseded. Nevertheless, for application to preloaded threaded fasteners 

Oechsner et al. (2014) still acknowledge analytical approaches as valid, yet slightly non-conserva-

tive approximations in order to simplify the calculation procedure and improve practicability. 

For computation of local loading conditions inside the paired thread of bolt assemblies by use of 

finite element models, Seybold (2005) (bolt size M24), Marten (2009) (bolt size M48) and Schneider 

(Schneider, 2011; Schneider et al., 2010) (bolt size M10) investigated the necessity of considering 

the actual continuous pitch of the thread, including an accurate representation of the thread run-out, 

within 3D model implementations. Considering linear elastic material conditions, all three concluded 

that no over critical effect of the circumferential thread variation is imposed to the maximum stress 

concentration and that for the sake of reduced modelling efforts the application of rotationally sym-

metric 2D models is acceptable. Schneider confirms this conclusion also for calculations with elastic-

plastic material behaviour. Nevertheless, the results from Marten have shown a slightly higher elastic 
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notch stress concentration of about 10% for the full 3D model implementation. In his studies, this 

has led to a reduced analytically calculated fatigue strength in a comparable order of magnitude.  

Based on his extensive sensitivity studies, Seybold (2005) provides reference regarding impact of 

mesh density inside the thread of bolt and nut to the result accuracy, thereby confirming findings 

from comparable investigations performed by Hobbs et al. (2003). Moreover, Seybold systematically 

discusses influences of sub-modelling techniques and circumferential element density for the 3D 

modelling approach and validates analytical calculations on electronic strain gauge measurements 

along the circumferential path of the thread of a geometrically similar magnified M6 bolt. Under elas-

tic local loading conditions, the studies show good agreement between numerical and measurement 

results, especially concerning the stress maximum in the first load-bearing turn of the thread.  

Marten (2009) further investigated the influence of different boundary conditions, considered in the 

aforementioned studies. Thereby, neglecting the washers and applying bearing conditions directly 

at the bottom surface of the nut led to considerably higher linear elastic stress concentrations, com-

pared to a model with washers included and rough contact inside the parting lines. The additional 

inclusion of the complete flange package and additional contact surfaces between washers and 

flange plates only cause a marginal effect on the stress concentration. Marten explains the enhance-

ment of the stress concentration factor with the restrain of the nut in radial direction caused by the 

direct bearing. The results confirm similar findings from Feldmann (1981) and Alt (2005), whereby 

experiments by Alt have shown that the stress concentration in the first load-bearing turn of the 

thread is directly affected by an increased stiffness of the nut bearing surface. 

This puts the validity of the experimental validation given by Seybold (2005) into question, where 

constraints in the numerical model where directly applied to the nut, as these are bearing conditions 

which may not be supposed for the considered experimental investigation (see also Marten, 2009). 

Moreover, due to given uncertainties caused for example by strain gauge calibration, precision of 

gauge placement as well as imperfections, the expectable accuracy of such measurements, target-

ing for local stress concentrations, is generally limited. Nevertheless, the application of the finite 

element method for approximation of local stresses and strains inside the paired thread can be re-

garded as a strongly qualified tool in the analytical fatigue assessment of bolts.  

As decisive loading characteristic once a macroscopic technical crack is established, the crack tip 

stress intensity K is commonly described by Eq. 2-13 in dependence of nominal stress S, crack depth 

a and a dimensionless geometry function Y(a).  

    K S a Y(a)  Eq.      2-13 

Since until today no explicit geometry models exist for threaded bolt to nut connections, cylinder 

models with surface cracks (e.g., according to FKM-Guideline, 2006) are applied as alternative ap-

proximation. Recent investigations also consider the direct numerical simulation of crack propagation 

at threaded fasteners (see Oechsner et al., 2014; Eder et al., 2018).  
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2.2.4 Mean stresses and damage parameters 

Since the underlying material parameters for application of the strain-life concept are typically de-

rived for a stress ratio R = -1, so-called damage parameters are available to allow for loading condi-

tions with mean stresses different from zero. Due to the regularly given high tensile mean load level, 

this becomes of special importance for HV-bolts. Damage parameters are used to adjust the calcu-

lation of bearable load cycles from the basis of the original strain-life curve. Their function may be 

interpreted as the ability to transfer loading conditions with arbitrary mean stress to fatigue damage 

equivalent loading conditions with mean stress σm = 0. The characterization of local loading condition 

with cyclic stress-strain curve and Masing behaviour, as input criterion for the damage calculation, 

remains unaffected. A discussion of the broad field of developed damage parameters can be found 

for example in Haibach (2006) or Vormwald & Seeger (2015). In the sequel, three damage parame-

ters are introduced, which are assessed in this dissertation in regard to their suitability for the appli-

cation to preloaded large-size HV-bolts. Subsequently, an overview is given for consideration of 

tensile mean stresses in linear elastic fracture mechanics. 

Damage parameter PSWT 

Most commonly applied (see Haibach, 2006, Vormwald & Seeger, 2015) is the damage parameter 

PSWT (Eq. 2-14) proposed by Smith, Watson and Topper (Smith et al., 1970). It is distinguished by its 

relatively straightforward application. Based on the local hysteresis (for definition of denotations see 

Figure 2-8) damage relevance is contributed to the product of upper stress σo and strain amplitude 

εa.   

            SWT a m a o aP ( ) E E  Eq.      2-14 

The damage relevant contribution can be interpreted as density of the strain energy of the upper part 

of the hysteresis, see Radaj & Vormwald (2007). Making allowance to the fact that the damage pa-

rameter must be valid for all possible mean stresses, including σm = 0, the mean stress independent 

damage parameter (P) - life curve (i.e., the relation between damage parameter value and endurable 

load cycles N) can be analytically expressed by inclusion of Eq. 2-8 as: 

        2 2b b c

SWT f f fP (N) ' (2N) ' ' E (2N)  Eq.      2-15 

It is recognized that especially for higher strength materials the PSWT parameter underestimates the 

influence of tensional mean stresses, see Haibach (2006). Consequently, in its original form its suit-

ability for the assessment of preloaded HV-bolts is questionable. However, due to its broad practical 

importance and given documented experiences it is expedient to maintain the parameter in the as-

sessment concept for comparison.  
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Damage parameter PM 

Taking into account experimental results and derived theoretical model representations, showing 

that mean stress dependent damage contributions exist which are underestimated by the PSWT pa-

rameter, Narberhaus (1999) proposed an empirically justified extension. In the resulting damage 

parameter PM (Eq. 2-16) a supplemental addend, aiming to directly consider the mean stress driven 

damage contribution, is added to the original PSWT formulation together with nominal stress ratio R 

and notch concentration factor Kt dependent weighting functions Ya and Ym:  
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The P - life curve can be formed analogously to the PSWT - life curve, whereby the omission of mean 

stresses leads to dropping out of the second addend. 

Damage parameter PJ 

Vormwald (1989) has developed a damage parameter, which is substantiated by a fracture mechan-

ical consideration of microscopic short crack opening and closure. Using a formulation by 

Dowling (1987) for a semicircular surface crack model under uniaxial loading to describe an effective 

(i.e., damage relevant) cyclic J-integral, he derives the following damage parameter description:  
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The relevant definitions of the cyclic hysteresis for calculation of the PJ-parameter are illustrated in 

Figure 2-12. The stress levels at crack opening σop and closing σcl are determined, using an approx-

imation formula from Newman (1984) for σop, under the assumption that the corresponding strains 

for crack opening and closing εop and εcl are identical. The remaining required parameters for de-

scription of the damage relevant part of the hysteresis can then be derived in an iterative process, 

applying the established descriptions of local material behaviour (i.e., the cyclic stress-strain char-

acterizations according to Ramberg-Osgood and Masing, see section 2.2.2). 

In contrast to the previously described two damage parameters, the PJ - life curve cannot distinctly 

be expressed by an analytical equation. However, alternatively to its direct extraction from strain-

controlled material tests, it can be determined stepwise, in dependence of endurable load cycles, 
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from the material’s strain-life curve, see Haibach (2006). An analytical expression is then enabled 

by a regression formulation.   

According to a literature review by Haibach (2006), the PJ parameter commonly leads to a lower 

calculated fatigue life and thus better compliance with experimental results then PSWT. Moreover, 

with respect to the current state of knowledge it is the superior parameter in terms of mechanical 

correct incorporation of load sequence dependent damage behaviour, which was also a primary aim 

for the damage parameter development (see section 2.2.5). 

 

Figure 2-12: Definitions for the damage parameter PJ acc. to Haibach (2006) 

Mean stresses in macroscopic fracture mechanics 

Generally, mean stress dependency in linear elastic fracture mechanics is incorporated to the de-

scription by Paris’ law (Eq. 2-7) within the empirical material constants C and m, which are affected 

by the stress ratio. The majority of material data is available for pure tensional swelling loads with 

stress ratios R ≈ 0 (e.g., FKM-Guideline, 2006). For increasing stress ratios a transition of the crack 

growth curve to the left (see Figure 2-9) has to be expected, see Radaj & Vormwald (2007). Thereby, 

the crack propagation rate da/dN increases and reductions of threshold- and critical cyclic stress 

intensity ΔKth and ΔKc occur.  

The formulation by Forman et al. (1967), extended by Erdogan & Ratwani (1970), includes the 

stress ratio in an adaption of Paris’ law, which enables the application of stress ratio independent 

material constants. Furthermore, it aims for describing the non-linear transitions of the crack growth 

function when approximating threshold and critical stress intensity. 
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However, the material constants C‘ and m‘ are not identical to their corresponding values in Eq. 2-7, 

and significantly less data is available in the literature. Consequently, a practical applicability is lim-

ited. According to Radaj & Vormwald (2007), Eq. 2-20 can be transferred to the original Paris’ law 

formulation, enhanced by the influence of R, under the condition of ΔKth << ΔK << (1 - R)∙Kc (with 

(1 - R)∙Kc considering the stress ratio dependent reduction of the critical cyclic stress intensity):   
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2.2.5 Size- and surface effects 

Popularly in fatigue assessment with the strain-life concept, the stress-mechanical size effect can 

be incorporated by multiplying the P-life curve with the stress gradient dependent notch sensitivity 

factor n*, calculated with the empirical formulation according to Siebel & Stieler (1955) and FKM-

Guideline (2012): 
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The related stress gradient * can be calculated according to Eq. 2-23 by use of linear elastic finite 

element calculations. For approximation of a fictitious shear band depth, as introduced in the original 

theory by Siebel & Stieler, the material dependent constants in Eq. 2-22 are given in the FKM-Guide-

line (2012) as aG = 0.5 and bG = 2700 for structural steel. Since the stress gradient and thus the 

support effect decreases with increasing diameter (see Figure 2-13, left), considering identical ma-

terial parameters, lower fatigue strengths are obtained for larger than for smaller bolt sizes. 
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Figure 2-13: Schematic depiction of elastic stress gradient for calculation of the stress-mechanical 
support effect (left) and macroscopic support effect by plastic stress relief (right) acc. to 
Vormwald & Seeger (2015)  

Additional to the effect of the stress gradient, the empirically substantiated approach by 

Siebel & Stieler simultaneously includes the beneficial effect of the stress behaviour at the notch root 

under local plasticity, which causes a limitation of stresses under increasing strains (denoted by 

Neuber (1985) as macroscopic support effect; see Figure 2-13, right). This behaviour is inherently 

incorporated by the application of the strain-life concept. Hence, Vormwald & Seeger (2015) empha-

size that, to avoid double consideration, the amount of the macroscopic support effect needs to be 

eliminated from the stress-mechanical notch sensitivity factor n*. If at the base material’s endurance 

limit a certain plastic strain amplitude εa,D,p is tolerable, this can be expressed by a macroscopic 

notch sensitivity factor np according to Eq. 2-24, in relation to the corresponding elastic strain ampli-

tude εa,D,e. Consequently, the magnitude of the described effect is solely material related and inde-

pendent from the bolt diameter. 
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As an alternative to the approach by Siebel & Stieler, the FKM-Guideline (2012) also provides a 

fracture-mechanic based approximation of the stress-mechanical size effect, which is declared to 

provide a better approximation for very high and very low stress gradients.  

An additional statistical size effect can be incorporated by use of a notch sensitivity factor nW, which 

considers the increased probability of damage inducing defects, dependent on the size of the highly 

loaded volume or surface area at the notch root, see Vormwald et al. (1994), Vormwald & See-

ger (2015). The statistical distribution of the defect probability may be calculated with the weakest-

link model according to Weibull (1949). By reference to the volume or surface area of the unnotched 
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specimen, contrary to the stress-mechanical size effect, the statistical notch sensitivity factor nw may 

become smaller than 1. The final notch sensitivity factor (also denotes as support number) ns, which 

is used for multiplication of the P-life curve, is then calculated according to Eq. 2-25.  

  
 s w * pn n n n  Eq.     2-25 

In the short crack growth model the statistical size effects can also be incorporated by accordingly 

adapting the considered initial micro crack size, see Hertel & Vormwald (2014).  

Seeger & Heuler (1984) introduced a model for consideration of manufacturing related residual 

stress states or variations of material strength, which occur predominantly in a thin boundary layer 

adjacent to the material surface. The so-called “thin surface layer model”, illustrated in Figure 2-14, 

is based on the assumption that the deformation behaviour of the notched component is dominated 

by the base material. Consequently, the relation between external loading ΔL and deformations at 

the notch root Δε can be determined without consideration of the boundary layer. Due to compatibility 

reasons, the boundary layer is subjected to identical deformations (Figure 2-14, mid). However, it 

may show a different local stress-strain behaviour (Figure 2-14, right). Moreover, possibly existing 

initial residual stresses σr are accounted for by shifting the load-strain and consequently local stress-

strain relation of the surface layer by the amount of the corresponding residual strain εr. 

 

Figure 2-14: “Thin surface layer model” acc. to Seeger & Heuler (1984) 

Surface roughness effects, which influence the fatigue strength of a component, may be incorporated 

based on cyclic material data from specimens with the respective surface characteristics (e.g., by 

use of a correction factor) or within the small crack growth model by adding a measured roughness 

depth to the initial micro crack size, see Vormwald & Seeger (2015).  
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2.2.6 Sequence effects and loading conditions 

The majority of investigations on bolted connections under cyclic loading, both experimental and 

analytical, focus on the rather academic loading condition with constant amplitudes. Nevertheless, 

the strain-life concept generally provides the possibility to incorporate loading conditions with varia-

ble amplitudes in a thorough physical approximation. Based on the cyclic-stress-strain curve with 

Masing-behaviour the local stress-strain relation for a given load sequence can be emulated using 

the micro-structural substantiated “material memory model” (e.g., see Haibach, 2006 or 

Radaj & Vormwald, 2007). Thereby effects of material memory are introduced, which consider the 

effect of the previous load history to the local stress-strain relation. 

For the calculation of fatigue life, every closed hysteresis loop can be assessed based on the chosen 

damage parameter P and fatigue damage accumulation with Miner’s rule. Thereby, additionally to 

the consideration of load sequence dependent mean stresses and strains (and other relevant hys-

teresis parameter) resulting from the memory model, further load sequence effects on the fatigue 

resistance (i.e., transition of endurance limit, see chapter 2.1.3) may be incorporated. The PJ param-

eter formulation developed by Vormwald (1989) enables the direct inclusion of the crack size de-

pendent reduction of the endurance limit as function of the advancing damage sum, achieved by 

load cycle wise integration of the crack propagation function. As described by Haibach (2006), alter-

natively the damage dependent fatigue resistance can also be considered by analytical expression 

of the PJ - life curve (see section 2.2.4) and damage accumulation with the consequent form of 

Miner’s rule (see section 2.1.3). 

Linear damage accumulation, or an equivalent increment wise calculation with the crack propagation 

formula using momentary values for ΔK and R, is generally also applicable for the calculation of 

macroscopic crack propagation. The analytical quantification of interacting delays and acceleration 

effects resulting from stochastic load sequences are still subject of current research. An overview of 

calculation models to calculated crack propagation under consideration of sequence effects is given 

in Haibach (2006). 

All so far described model representations are derived under the assumption of a uniaxial loading 

situation. Under multiaxial local loading conditions with constant principle stress direction (propor-

tional loading), uniaxiality may be emulated by the established effective stress criteria (or their strain-

based equivalents) derived for monotonic loading, as the “distortion energy hypothesis” (von Mises) 

or the “maximum normal stress hypothesis”, see Radaj & Vormwald (2007) and Socie & Mar-

quis (2000). Under non-proportional loading conditions, different effective stress criteria as well as 

damage assessment methods are required. A comprehensive calculation procedure of fatigue life 

until technical crack initiation under consideration of non-proportional multiaxial stress states and 

arbitrary load histories has been developed by Hertel (2016) on the basis of the short crack growth 

formulation by Vormwald (1989). Calculation approaches for macro crack propagation with interact-

ing loading modes due to multiaxia loading are introduced in Socie & Marquis (2000).  
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2.2.7 Application of local concepts to threaded fasteners 

Regarding general applications in structural engineering, the strain-life approach still has a mainly 

scientific character. In contrast, linear elastic fracture mechanics are widely commercialized with a 

variety of industrial software solutions, for example for solving geometrically complex models for 

determination of the cyclic stress intensity. Moreover, the linear elastic fracture mechanics approach 

is also incorporated in structural and mechanical engineering standards and guidelines such as BS 

7608 (2014) and FKM-Guideline (2006) for selected fatigue assessment applications. However, usu-

ally also the fracture mechanics approach cannot entirely substitute the nominal stress concept in 

design standards for secure fatigue life assessment, see Radaj et al. (2006). Both, strain-life and 

fracture mechanics approach are characterised by sensitivities and uncertainties with respect to their 

input parameters and introduced assumptions. Thus, a thorough validation for the respective appli-

cation is required. 

The literature contains a number of studies dealing with numerically supported analytical assessment 

approaches for selected fatigue properties of bolts and threaded fasteners. Early works focused on 

the effects of thread geometry and bolt diameter on the endurance limit, based on linear elastic notch 

stress concentration Kt and fatigue notch factor Kf (e.g., Otaki, 1979; Koenigsmann & Vogt, 1981; 

Dragoni, 1997). The effect of nut positioning was investigated by Feldmann (1981), showing an in-

creasing fatigue notch factor if less than two turns towards the run-out of the bolt thread remain 

unloaded. 

Bi-linear kinematic FEM based approximations of the local cyclic stress-strain response were used 

by Alt (2005) to evaluate influencing factors on the endurance limit such as nut height and position-

ing, as well as bearing and loading conditions. A comparable approach was included in the studies 

from Bercea (2001) on an integrated digital calculation system, assessing parameters like material 

and dimensions of bolt and nut. In both studies, positive validation based on experimental data from 

the literature was given with respect to general tendencies but not quantitative results. 

In distinction to these primary qualitative investigations, within his extensive studies on modelling of 

the local loading situation inside the thread (see section 2.2.3), Seybold (2005) was first to introduce 

a more specific attempt to compute the endurance limit of bolts. Based on the notch-strain approach 

he used elastic-plastic stress-strain relations from FEM simulations to compute limit values of the 

damage parameter PSWT according to Smith et al. (1970). The critical damage parameter value, cor-

responding to the endurance limit, was determined by use of fatigue test results for a high-strength 

bolt material provided by Thomala (1978). The stress-mechanical support effect at the notch was 

considered by multiplication with the notch sensitivity factor n* according to Siebel & Stieler (1955) 

and FKM-Guideline (2012). Through comparison of his calculation results to various test results from 

the literature for bolts up to a diameter M24, Seybold concluded that typical impact factors to the 

fatigue strength, such as preload, thread geometry and diameter are generally adequately displayed 

by the calculation approach. The limited accuracy to the actual endurance limit was ascribed to the 

rather roughly approximated material properties.  
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Marten (2009) investigated the application of the strain-life approach for fatigue assessment of large-

size high-strength bolts, thereby providing the first and thus far unique comprehensive study consid-

ering the relevant range of bolt diameters in today’s modern wind turbine structures. Based on notch 

stress concentration factors Kt, determined within linear elastic finite element calculations, the local 

stress-strain relation was primarily calculated by Marten by use of the analytical approximation ac-

cording to Neuber (1985). Even though full damage parameter-life curves were determined, studies 

focused on the transition region to the endurance limit, which is dominated by fatigue life until crack 

initiation. The calculation of crack propagation load cycles and hence the assessment of the upper 

high-cycle fatigue range was omitted. The analytical calculations were validated on experimental 

results for hot-dip galvanized HV-bolts M48. Since the preload level of the experiments was limited 

to about 15% Rp0,2 and the effect of the zinc coating remained unconsidered in the analytical calcu-

lations, test results from Lacher (1986) on black, uncoated high-strength bolts M20 were additionally 

used for comparison. For high tensile mean stresses the deployment of the damage parameter PM 

according to Narberhaus (1999) instead of Smith et al. (PSWT) led to a reduced fatigue strength in the 

relevant region of load cycle N ≈ 106. However, with both damage parameters the experimental re-

sults were overestimated. The inclusion of the stress-mechanical support effect by use of the notch 

sensitivity factor n* caused a further exceedance of the experimental fatigue strength. Marten as-

sumed that the discrepancy between analytical and experimental results was caused by utilization 

of imprecise cyclic material data. Moreover, as a result of the analyses the application of the Uniform 

Material Law according to Bäumel & Seeger (1990) was deemed unsuitable for determination of the 

endurance limit at loading conditions with high mean stress. He thus emphasized the relevance of 

availability of cyclic material data for the actual investigated bolt material. Nevertheless, he con-

cluded that the strain-life approach is generally appropriate for estimation of the endurance limit of 

highly pre-stressed large-size bolts.  

In his analytical studies, Kremer (2005) focused on assessment of the crack propagation phase, 

starting from an initial crack depth ai = 0.1 mm. He compared calculations using Paris’ law (Eq. 2-7) 

to experimentally determined macro crack propagation load cycle, obtained by use of electrical re-

sistance measurements. The experimental validation basis mainly comprised fatigue tests on high-

strength bolts M8 with varying configurations regarding strength class, boundary layer and manufac-

turing procedure. Furthermore, one test series for bolt diameter M16 was included. Dealing with the 

absence of a distinct model for determination of the cyclic stress intensity ΔK for bolted connections, 

he found a tensional loaded round bar model according to FKM-Guideline (2006) as an adequate 

approximation. The model provided the best general validity for application within the considered 

range of parameter variation and analytical results in good and mostly conservative agreement with 

the experimental data. However, according to Pyttel et al. (2008) by alternative application of a hol-

low cylinder model a better approximation of stress intensity factors at the crack tip can be achieved, 

when compared to calculations with a rotational symmetric finite element model of a high-strength 

M12 bolt. 

A comprehensive approach for fatigue calculation of threaded fasteners, targeting a broad applica-

bility, was established by Schneider (2011). After validation of their transferability to the notch root, 
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the required material parameters were determined on specimens extracted directly out of the core 

of the investigated fasteners. These were applied in non-linear finite element calculations in order to 

compute the local stress strain hysteresis. Contrary to common application of the strain-life concept, 

where initial loading is usually approximated by use of the cyclic stress strain-curve, Schneider sug-

gested the application of the actual monotonic material path. This enabled to a superior description 

of the actual local loading condition under high static mean stresses. In order to consider cyclic 

relaxation effects, he used results of material tests under high mean strain and accordingly adjusted 

the mean stress level of the analytically determined local hysteresis. Considering the stress-mechan-

ical notch sensitivity factor n*, load cycles until crack initiation were calculated in comparison be-

tween the damage parameters PSWT and PJ by Vormwald (1989). Thereby, the latter was identified 

as more accurate for the aspired application. Finally, full load cycles until rupture were calculated by 

addition of crack propagation load cycles, computed with Paris’ law. Following the suggestion of 

Pyttel et al. (2008), a hollow cylinder stress intensity model was applied. The resulting crack propa-

gation load cycles were in good agreement with the experimental results from Kremer (2005). Among 

other threaded fasteners, Schneider validated the calculation procedure on fatigue tests with un-

coated HV-bolt sets M10 and M16. Generally, he found a good compliance of experimental and 

analytical results for high mean-stress states, when calculated with the PJ damage parameter. How-

ever, for low mean stress levels (R = 0.1) the analytical results considerably overestimated the ex-

perimental fatigue strengths.  

The calculation procedure from Schneider (2011) provides basis for newer studies such as 

Panic et al. (2014), who focused on the direct incorporation of transient effects by advanced material 

implementations in non-linear finite element calculations. Moreover, within the framework of the 

same research project, Olveda et al. (2014) investigated the approximation of the crack tip stress 

intensity for the actual geometric properties of bolt-nut connections by application of the Extended 

Finite Element Method (XFEM). For both studies validation was performed on experimental results 

for high-strength bolts M16 and other threaded connection types (see Oechsner et al., 2014). Schau-

mann & Eichstädt (2015) and Schaumann & Eichstädt (2016) presented first investigations on appli-

cation of the calculation procedure according to Schneider for preloaded bolts with large diameters 

with the PSWT damage parameter, and validated results on experiments on uncoated M36 HV-bolt 

sets. 

Fatigue life calculations based on a numerically assisted assessment of fatigue crack growth with 

an extended Paris’s law formulation are presented by Eder et al. (2018). Thereby steel samples with 

bolt alike notch geometry and uncoated as well as hot-dip galvanized boundary layer were analysed. 

The effect of galvanizing was included as a function of the coating thickness, whereby the strain 

energy, stored within the coating, contributes to the analytical linear elastic crack tip stress intensity. 

The calculation results were validated on experiments on notched specimens of diameter M20 in the 

upper high cycle fatigue range. Within the frame work of investigations on brittle fracture, fracture 

mechanical calculations of HV-bots M36 with and without pre-damage by artificially introduced initial 

cracks are presented by Stranghöner et al. (2018). Thereby the crack tip stress intensity was calcu-

lated within a complex numerically assists calculation algorithm. For the calculation of macroscopic 
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crack propagation with Paris’ law, self-determined crack propagation constants of the actual bolt 

materials were used. The calculations showed good agreement with experimental results; however, 

accuracy needs to be regarded as strongly dependent on the assumed initial crack depth. For the 

calculation of bolts without pre-damage, no crack initiation phase was considered.  

2.3 Findings 

The priorly given presentation of the current state of the art revealed a number of uncertainties re-

garding fatigue performance and assessment of large-size, high strength bolting assemblies and 

constitute necessity for further research. 

Generally, the number of experimental studies on HV-bolt sets with large dimensions is very limited, 

and, thus far, normative fatigue curves and corresponding design procedures are not validated for 

the range of bolt diameters, commonly applied in support structures for wind turbines. Available 

fatigue results on HV-bolts of size M48, which is the largest investigated bolt diameter priorly to the 

studies presented in this thesis, were supposedly affected by a low mean stress level. The performed 

review emphasizes the importance of an accurate mean stress level consideration in future experi-

mental investigations on large-size bolts. This, however, vastly complicates the technical test exe-

cution because of the required high mean loads and the limitations of suitable testing facilities.  

Even though fatigue tests under representative mean load level exist up to large bolt diameter M36, 

the effect of zinc-based corrosion protection, and - with particular practical importance - hot-dip gal-

vanizing, has not yet conclusively been quantified for bolts with large dimensions. Furthermore, for 

smaller bolts partially varying results regarding the amount of corresponding fatigue strength reduc-

tion are present in the literature. Moreover, the damage behaviour of HV-bolts under variable ampli-

tude loading has not been investigated for bolt diameters larger than M12. 

Due to the demanding technical requirements for the execution of representative fatigue tests, local 

analytical approaches gain particular importance for the assessment of the fatigue performance of 

large-size HV-bolts. A comprehensive fatigue assessment method for calculation of complete con-

stant amplitude S-N curves, including both technical crack initiation and propagation phases has 

been developed and validated for smaller bolt diameters. For large-size bolts up to diameter M48, 

thus far only the general applicability of the strain-life approach for assessment of load cycles in the 

transition region to the endurance limit, dominated by the technical crack initiation phase, has been 

proven. However, accuracy of results is limitedly satisfactory. Among others, this can be traced back 

to the applied damage parameters and the limited available basis of material data. Moreover, no 

experimental validation could be provided for representative high mean stresses and no crack prop-

agation load cycles were calculated. The effect of the boundary layer, imposed by hot-dip galvaniz-

ing, was not considered in investigations on analytical fatigue calculation, regardless of the bolt di-

ameter.  
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From the analysed situation of current knowledge, the following aims and requirements for the sci-

entific work described in the framework of this dissertation are derived: 

 Experimental investigations on large-size HV-bolt sets are required, which extend the current 

experimental background and provide further validation of normative design fatigue curves with 

regard to large bolt diameters. These experiments need to be performed under a representative 

high mean stress level. 

 The impact on the fatigue performance of hot-dip galvanizing, the most widely used corrosion 

protection system in practical application, needs to be accurately verified for large bolt diame-

ters. 

 To ensure and verify transferability of conclusions derived from, mostly academically, constant 

amplitude loading to actual service loading conditions of large-size HV-bolts, variable amplitude 

tests are a valuable supplement in an appropriate experimental testing program. 

 To improve the potential utilization of analytical fatigue assessment procedures, existing meth-

odologies need to be further investigated and adapted for the application to large-size HV-bolts. 

This includes the appropriate consideration of specific size-effects, provision of material data, 

appropriate damage parameters and measures for determination of local loading conditions.  

 Engineering approaches are required which enable the consideration of the potential boundary 

layer effect of hot-dip galvanizing within an analytical fatigue assessment methodology. 

In the following chapters, a widely augmented knowledge basis will be elaborated from the combi-

nation of both experimental and analytical investigations. Thereby, an initially established extended 

experimental background will provide a valuable validation basis for succeeding analytical calcula-

tions. Based on these, possibilities and limitations of the analytical calculation procedure will be re-

vealed and utilized. The overall results will yield the opportunity for systematic evaluation of fatigue 

characteristics and current design procedures for HV-bolts with large diameters. 
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3 Experimental Fatigue Investigations 

3.1 Scope 

To cope with the pre-existing gap regarding experimentally verified fatigue characteristics of large-

size HV-bolts, a comprehensive testing program was implemented. It predominantly aimed for an 

extension of the available test basis to the upper bolt diameter range applied in today’s modern wind 

turbine structures as well as a thorough evaluation of the boundary layer effect imposed by hot-dip 

galvanizing. Thereby, it was prerequisite to appropriately consider a representative high mean stress 

level. All tests on HV-bolt sets were performed within the framework of the research project “Exper-

imental and analytical assessment of the fatigue strength of bolts with large dimensions under con-

sideration of boundary layer effects” (Oechsner et al., 2015). The experimental implementation, sta-

tistical evaluation and results are described in the course of this chapter. 

The performed testing program largely focussed on ‘classical’ constant amplitude fatigue tests (i.e., 

Wöhler tests) under axial loading. Firstly, a fundamental test series was performed on HV-bolts of 

diameter M36 with an ample number of specimens (Chapter 3.3). It laid the background for the 

further series. Afterwards, given the demanding test execution requirements, tests on HV-bolts with 

very large diameter M64 were performed with a notably reduced number of specimens (Chapter 

3.4). These tests enabled the validation of the previously obtained results in order to investigate the 

effect of the increased diameter.  

Additionally to the tests with constant amplitude loading, the research project also comprised a fur-

ther test series using variable amplitude loading sequences, to verify the bolt’s fatigue performance 

at more operation-alike loading conditions. These tests, performed solely on HV-bolts of diameter 

M36, are presented in Chapter 3.5. 

3.2 Test specimens and general boundary conditions 

The fatigue tests were performed on customary ‘System HV’ bolting assemblies (including aligned 

bolt nut and two washers) of strength class 10.9 with geometrical properties according to DIN EN 

14399-4 (2015) (bolt size M36) and DASt - Guideline 021 (2013) (bolt size M64). All tested bolts 

were rolled before heat treatment. Thus, it can be supposed that residual compressive stresses 

resulting from the non-cutting shaping process were mostly dissipated during the subsequent tem-

pering. Within the test series of the two respectively investigated bolt sizes, all bolts were produced 

with identical material and from a single manufacturing batch. However, batch and bolt manufacturer 

as well as base material varied between the bolts M36 (material 32CrB4) and M64 (material 

30CrNiMo8). 

To analyse and quantify the impact of hot-dip galvanizing to the bolt’s fatigue strength, a comparative 

testing program was implemented, using equivalent numbers of uncoated black (B) as well as nor-

mal-temperature (NT, approx. 450 °C) and high-temperature (HT, approx. 550 °C) hot-dip galva-

nized bolts. However, given the likelihood of premature liquid metal assisted cracking (LMAC) at 

high galvanizing temperatures, which accumulates with increasing bolt diameter, it was refrained 
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from testing HT-galvanized M64 HV-bolts. It is noted that likewise for bolt diameter M36 allowance 

for HT-galvanizing is not consistently granted in national regulations. For instance, German guideline 

DSV-GAV (2009) limits the application to bolt sizes ≤ M24. Nonetheless, HT-galvanized M36 bolts 

were included to the test program for academic purposes. 

The investigated HV-bolt configurations are depicted in Figure 3-1. 

 

Figure 3-1: Investigated HV-bolt sets with different boundary layers (B: uncoated black; NT: normal 
temperature hot-dip galvanized; HT: high temperature hot-dip galvanized) 

The performed fatigue test complied with the general requirements given in DIN 969 (1997) for the 

test set-up and execution of fatigue tests on threaded fasteners under axial loads. All tests were 

performed under sinusoidally applied cyclic swelling loads (in case of variable amplitude tests with 

blocks of changing load level) and with constant tensile mean stress, corresponding to the nominal 

preload level for HV-bolts in wind turbines (Eq. 3-1). Maintaining an unchanged mean stress led to 

variant stress ratios R throughout the test series, dependent on the respective load level. 

   m p,0.2,nomS 0.7 R 630 N/mm²   Eq.     3-1 

As the mean stress was applied directly by the testing machine, the specimens remained free from 

torsion. The methodically introduced loading conditions were purely axial (i.e., without any nominal 

contribution of bending). Generally, the application of axial spherical plain bearings may further ex-

clude possibly existing bending impacts caused by imperfections within the test set-up. However, 

efforts for construction of an axial bearing, suitable for the high test loads for M64 bolts, were deemed 

unpractical. Thus, it was refrained from using axial bearings in all test series to maintain comparable 

testing conditions. Failure of the bolts was defined as complete rupture, which location was charac-

teristically expected in the first load-bearing turn of the thread. Variant load magnitude or load se-

quence characteristics of the three test series imposed fundamentally varying requirements to the 

testing machinery. As a consequence, the series were executed at different test facilities, which also 

resulted in a variation of testing frequencies. The basic characteristics of the test series are summa-

rised in Table 3-1. Specific information is given in the respective chapters. 

M36 M64

NT HT BNTB
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Table 3-1: Basic characteristics of performed fatigue test series on HV-bolts 

HV-bolt sets 
Manu-
facturer 

Boundary layer 
configurations 

Material 
Mean 
 load 

Test 
frequency 

Total No.  
of specimens 

Constant amplitude axial loading (sinusoidal): 

M36x270 10.9 Man. A B, NT, HT 32CrB4 515 kN ~ 50 Hz 105 

M64x450 10.9 Man. B B, NT 30CrNiMo8 1680 kN ~ 2-4 Hz 18 

Variable amplitude axial loading (sinusoidal blocks): 

M36x270 10.9 Man. A B, NT, HT 32CrB4 515 kN ~ 5-35 Hz 31 

 

3.3 Test on M36 HV-bolt sets with constant amplitude loading 

3.3.1 Test execution 

The constant amplitude tests on HV-bolt sets of size M36 were performed in an electromotive high 

frequency pulsator with 1 MN maximum tensile loading capacity (1MN MOT) located in the Test 

Centre for Support Structures of the Leibniz Universität Hannover. The test set-up is illustrated in 

Figure 3-2. Stiffness of the test rig and applied load levels led to a resonance frequency of approxi-

mately 50 Hz. These enabled application of 1∙106 load cycles in approximately 5.5 hours. 

 

Figure 3-2: Test set-up for M36 HV-bolt tests under constant amplitude loading in electromotive res-
onance testing machine 

For all three considered boundary layer conditions (B, NT, HT) complete S-N curves were deter-

mined, which encompass both the upper high cycle fatigue range (upper HCF) as well as the transi-

tion region to the endurance limit (TEL). Thereby, each boundary layer configuration was treated as 

a separate sample of specimens.  
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In a first experimental step the bolt’s endurance limit was statistically estimated using the ‘staircase 

method’, developed by Dixon & Mood (1948). Thereby, while maintaining an equidistant load step 

size, the fatigue load level is successively decreased in the following experiment, in case a failure of 

the bolt (i.e., rupture) occurs. Likewise, in cases were bolts remain free from failure the load level is 

increased by an equivalent load step. Consequently, the applied load level is defined by the result 

of the prior experiment. In the present investigation the limit load cycle number was defined to 

N = 5∙106 (denoted as run-outs). After reaching the run-out limit, bolts are assumed to remain free 

from failure, even at (theoretically infinite) further cyclic loading of the same amplitude. The individ-

ually applied load increments and starting load levels were chosen under consideration of corre-

sponding recommendations given by Dünkel (1999) as well as Mauch (1999).  

The above described procedure provides the advantage that commonly applied load levels quickly 

centre around the mean of the endurance limit (survival probability Ps,50%). It hence can be esti-

mated reasonably accurate with a relatively low number of specimens, compared to other testing 

procedures. Assuming a Gaussian normal distribution, the method also enables estimation of upper 

and lower bound of the scatter band around the mean (e.g., Ps,10% and Ps,90%). However, to 

reliably ascertain the required standard deviation of the sample, a larger number of specimens is 

necessary. The applied calculation formulae for statistical evaluation of the endurance limit with the 

staircase method, as given in DIN 969 (1997), are included in Appendix A.1.  

Test execution and evaluation for the upper HCF was implemented separately with the so-called 

“horizon method”, whereby several tests are performed at distinct load levels (i.e., horizons). Since 

the pathway of the S-N curve in the upper HCF can be assumed linear when plotted in double loga-

rithmic scale, usually testing at two horizons is sufficient for determination of location and slope of 

the S-N curve. Thereby, a sufficient margin to the TEL as well as the plasticity affected low cycle 

fatigue range (at which both assuming linearity becomes invalid) needs to be ascertained. Therefore, 

it was followed the recommendation given by DIN 969 (1997) of testing at load horizons at about 

1.6∙Sd,50 and 2.4∙Sd,50, with Sd,50 being the priorly determined endurance limit with 50% survival prob-

ability.  

Statistical evaluation for estimation of mean value as well as scatter band of endurable load cycles 

N may either be performed graphically in a normal probability plot, as so described in DIN 969 (1997), 

or analytically with the below equations Eq. 3-2 to 3-5. Thereby, commonly, a log-normal distribution 

can be supposed (i.e., the logarithms of load cycles until failure can be approximated with a normal 

distribution). In the present investigation, for all samples applicability of a log-normal distribution was 

verified with the Anderson-Darling test (D'Agostino, 1986).  

Logarithm of sample mean value: 
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  Eq.     3-2 
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Sample standard deviation: 

 


 



n
2

i 50%

i 1

1
s (log N log N )

n 1
  Eq.     3-3 

Logarithms of load cycles with survival probability Ps,10% and Ps,50%:  

   90% 50%logN logN 1.28 s   Eq.     3-4 

   90% 50%logN logN 1.28 s  Eq.     3-5 

The evaluation is performed separately for each load horizon. Afterwards, the S-N curve with differ-

ent survival probabilities can be constructed by connecting the results of the two tested load levels 

linearly in the double logarithmic representation, which also allows extrapolation above and below. 

The fictitious knee point results from the intercept of the upper HCF regression line and the horizontal 

of the endurance limit (see also Chapter 2.1.3). 

The primary aim of the here presented test program at M36 HV-bolts with constant amplitudes was 

the accurate assessment of the effect of hot-dip galvanizing at representative mean stress level. 

Therefore, the test execution focussed on a statistically secured estimation of the median S-N curves 

(Ps,50%) of all three boundary layer configurations, rather than their full statistical ascertainment. 

Thus, by correspondingly choosing the required specimen numbers, economical efforts could be 

reasonably limited. In accordance with recommendations given in DIN 969 (1997) as well as 

Mauch (1999) for each boundary layer the sample size included at least 15 statistically relevant 

specimens in the TEL and at least 5 specimens at each load horizon in the upper HCF. This sample 

size can be considered appropriate for the given evaluation aim. However, for a secured estimation 

of the samples’ standard deviation higher specimen numbers of about 25-30 in the TEL and 8-10 at 

each upper HCF load horizon are required. Thus, it needs to be considered that the statistically 

determined scatter bands and corresponding percentiles S-N curves (i.e., Ps,10% and Ps,90%) 

stated in the result presentation in the following chapter are subject to a certain statistical insecurity. 

Given the limited number of specimens per sample, it was also refrained from application of an 

improved version of the original stair case method, for example introduced by Hück (1983). The latter 

is proven to provide a superior statistical approximation but likewise requires a sufficiently larger 

sample size. Nonetheless, the evaluation of the statistical scatter remains important to verify the 

general quality and significance of the obtained results. 

Additional to the regularly tested specimens, for each boundary layer a certain number of unbroken 

specimens from the series in the TEL was tested until rupture as “raised run-outs” (RRO) at load 

horizons in the upper HCF. These tests aimed for a spot-check evaluation of potential impacts of the 

previous loading history with lower amplitude to the fatigue strength in the upper HCF.  
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In total, more than 100 test runs were performed within the framework of the constant amplitude 

tests on M36 HV-bolt, which took about 3 month of testing. A summary of the test program is given 

in Table 3-2. 

Table 3-2: Summary of test program for constant amplitude tests on M36 HV-bolt sets 

 
Boundary  

layer 

Transition region to 
the endurance limit 

(TEL) 

Upper high cycle fatigue range 

HCF 1 HCF 2 

Sa,HCF1 ≈ 1.6∙Sa,d50 Sa,HCF2 ≈ 2.4∙ Sa,d50 

Mean stress 
Sm ≈ 0.7 ∙ Rp,0.2 

 630 N/mm² 630 N/mm² 630 N/mm² 

Amplitude Sa 

B 40-59 N/mm² 67 N/mm² 103 N/mm² 

NT 27-44 N/mm² 54 N/mm² 81 N/mm² 

HT 32-39 N/mm² 54 N/mm² 81 N/mm² 

No. of  
specimens 

B 23 5 (+2 RRO) 5 (+2 RRO) 

NT 19 5 (+2 RRO) 5 (+2 RRO) 

HT 18 5 (+2 RRO) 5 (+2 RRO) 

Loading conditions purely axial, constant amplitude loading, R ≈ 0.7 – 0.9 

Test end criteria 5∙106 load cycles (= run-out) / rupture 

Testing frequency approx. 50 Hz 

 

3.3.2 Test results and statistical evaluation 

In the sequel, result evaluation and transpired particularities of the constant amplitude tests on M36 

HV-bolt sets are described in detail, separately for each boundary layer configuration and fatigue 

regime. The complete tabulated test results are included in Appendix A.2. It is noted that during the 

initial test series in the TEL on uncoated black M36 HV-bolt sets the testing machine was pro-

grammed to abort testing automatically after the limit load cycle number of N = 5∙106
 was reached. 

To optimally utilize machine capacity and avoid standstill, in the following series all tests without 

failure were ended manually. Hence, a certain number of tests with NT- and HT-galvanized bolts 

were run with substantially larger load cycle numbers than 5∙106
.   

Uncoated black bolts 

Transition region to the endurance limit (TEL) 

Figure 3-3 shows the evaluation scheme of the staircase method with results in terms of decisive 

test events (i.e., rupture or run-out) for the complete test series in the TEL for uncoated, black M36 

HV-bolts. The initial experimental approximation of the endurance limit was performed “from above”, 

at tendentially higher load levels, which were more likely to produce ruptures than run-outs. As the 

first three tested load levels were not reached again within the remainder of the test series, they 

were to be disregarded in the statistical evaluation. As the initially chosen load increment was found 

large compared to the actually occurring scatter of results, it was bisected within the course of the 
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series. Thereby, number of considered load levels could be increased, which improved the statistical 

value of the results. Consequently, the chronological sequence of experiments (test number) does 

not coincide with the contiguous sequence, necessary for result evaluation (specimen number). The 

statistical relevant sequence of test results of the full series comprised 21 specimens at 5 load levels. 

 

Figure 3-3: Evaluation scheme of results in the TEL with the staircase method for black M36 HV-bolts 

The majority of the ruptures in the TEL occurred within a range of approximately 1.5∙106 and 3.1∙106 

load cycles (see Figure 3-5). With a sufficient margin to the limit load cycle number, this generally 

confirms an appropriately chosen test end criterion for run-outs. Except for one, all ruptures were 

initiated in the first load-bearing turn of the thread. However, in the later stages of the series ruptures 

occurred after load cycles only slightly less than the limit load cycle number. During inquiry of possi-

ble causes, it was found that a certain number of fasteners at the top of the specimen adaption 

(Figure 3-2) had lost required pre-tension. As no axial spherical plain bearings were used, it is pos-

sible that a slightly unlevelled specimen adaption has led to a distortion of the load application and 

thus an altered stress distribution inside the bolt thread. A found fatigue crack initiation at one of the 

affected bolts in the second instead of the first load-bearing turn of the thread corroborates this 

hypothesis. The final test of the series (test no. 24), which was performed after re-tightening of all 

fasteners at the specimen adaption, with approximately 2.0∙106 load cycles failed within the regularly 

expected range of load cycles until failure. During the following experiments in the upper HCF as 

well as the test series at NT- and HT-galvanized bolts the fasteners were regularly checked but no 

further loosening occurred. In Figure 3-3, as well as in the corresponding result data table in Appen-

dix A.2, the experiments, where an impact of a distorted load application needs to be expected, are 

coloured grey. 

To assess the potential impact of the found irregularities to the validity of results, an alternative 

evaluation with reduced sample size was performed. Thereby the following assumptions were taken 

for granted: 

1. The irregularities were caused by a temporary distortion of the axial load application induced 

by loosened fasteners of the specimen adaption which could been resolved after re-tighten-

ing. 

Fa [kN] Sa [N/mm²] X = Rupture O = Run-out X O

48.0 58.8 x 1 0

45.0 55.1 x 1 0

42.0 51.4 x 1 0

39.0 47.8 X X 2 0

37.5 45.9 X X O X 3 1

36.0 44.1 X X X O O X 4 2

34.5 42.2 X O O X O X 3 3

33.0 40.4 O O O 0 3

Specimen No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
∑ 12 9

Test No. 1 2 3 4 13 5 14 6 15 7 16 9 17 8 18 11 19 20 21 12 22 23 24 10

Test series: BLACK
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2. The distortion led to a beneficial effect on the stress distribution inside the bolt thread causing 

a less severe stress concentration in the first load-bearing turn, which resulted in the found 

increased load cycle numbers until rupture.  

Based on these assumptions it may be supposed that at regular testing conditions, and hence a 

more severe stress development inside the thread, the affected ruptures would have failed as well, 

at an earlier instant. They may thus be maintained in the statistical evaluation. For the run-outs, 

however, it needs to be assumed that, potentially, the limit load cycle number would not have been 

reached at regular conditions. Therefore, they are omitted in the alternative result evaluation. More-

over, to obtain a continuous staircase sequence, two ruptures had to be left out as well. The thereby 

derived test sequence with reduced number of 16 considered specimens at 4 load levels is illustrated 

in Figure 3-4. 

Actually, for the test run with chronological test number 18, which was performed immediately pre-

ceding the test run with firstly observed irregularity in the failure characteristics, a potential impact of 

the distorted load application could not be entirely precluded either. However, different to the two 

disregarded run-outs, this test was performed at the lower load level where a non-failing specimen 

was statistically more likely to occur. Moreover, the consideration of the test run was mandatory to 

maintain a valid staircase sequence. It was thus kept in the evaluation. 

 

Figure 3-4: Alternative result evaluation in the TEL for black M36 HV-bolts with reduced sample size  

Fa [kN] Sa [N/mm²] X = Rupture O = Run-out X O

48.0 58.8 x 1 0

45.0 55.1 x 1 0

42.0 51.4 x 1 0

39.0 47.8 x 1 0

37.5 45.9 X X 2 0

36.0 44.1 X X X O X 4 1

34.5 42.2 X O O X O X 3 3

33.0 40.4 O O O 0 3

Specimen No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
∑ 9 7

Test No. 1 2 3 4 13 5 14 6 15 7 16 9 17 8 18 11 22 23 24 10

Test series: BLACK

Fa [kN] Sa [N/mm²] X = Rupture O = Run-out

48.0 58.8 x

45.0 55.1 x

42.0 51.4 x

39.0 47.8 X

37.5 45.9 X X

36.0 44.1 X X X O X

34.5 42.2 X O O X O X

33.0 40.4 O O O

Specimen No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Test No. 1 2 3 4 13 5 14 6 15 7 16 9 17 8 18 11 19 20 21 12 22 23 24 10

Test series: BLACK
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Figure 3-5 and Table 3-3 include the results of both variants for statistical evaluation with full and 

reduced sample size. The comparison demonstrates that the determined statistical mean value of 

the endurance limit varies only marginally between the two variants. It may thus be considered 

mostly unaffected by the irregularities noticed during the test series. A notable effect is imposed to 

the test series’ standard deviation and resulting percentile values (Ps,10%, Ps,90%). This substan-

tiates that indeed a divergence of testing conditions compared to the early (i.e., regular) stages of 

the test series was present in the omitted experiments. However, as elaborated previously, secured 

determination of the samples’ scatter band was not aim of the presented test program and both 

considered sample sizes are not sufficient to obtain a conclusive prediction. 

Since the specific cause for the found irregularities remains subject to assumptions, in the further 

course of the experimental evaluation the results obtained with the full sample size are utilized. It 

needs to be considered that the thereby included scatter of results was presumably affected by a 

temporally distortion in the testing conditions. The statistical mean value of the endurance limit was 

securely estimated. 

 

Figure 3-5: Statistic scatter band and test results in the TEL for black M36 HV-bolts with full sample 
(left) and reduced sample (right) 

Table 3-3: Results of the statistic evaluation in the TEL for black M36 HV-bolts 

 
Full  

sample 
Reduced  
sample 

Mean (Ps,50%) 
[kN] 35.42 34.82 

[N/mm²] 43.36 42.64 

Standard deviation 
[%] 7.0 3.6 

[N/mm²] 3.0  1.5 

Survival probability Ps,10% [N/mm²] 47.24 44.61 

Survival probability Ps,90% [N/mm²] 39.49 40.66 
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Upper high cycle fatigue range (upper HCF) 

Experimental results and statistical evaluation of the tests on black M36 HV-bolts in the upper HCF 

are presented in Figure 3-6 and Table 3-4, respectively. On both load horizons two additional non-

fractured specimens from the test series in the TEL were examined as raised run-outs (RRO). Addi-

tionally, two further RRO were tested on the upper load horizon used in the tests on galvanized M36 

bolts, which is located in between the two regular load levels. These, however, were not considered 

in the statistical evaluation and were only performed for qualitative comparison. All ruptures in the 

upper HCF occurred in the first load-bearing turn of the thread.  

Three of the four RRO on the statistically considered load horizons are located directly within the 

scatter band of the regularly tested specimens without prior loading. Moreover, the two RRO on the 

intermediate load level are located in very close proximity to the resulting mean regression line 

(Ps,50%) in the upper HCF (see Figure 3-7, right). Consequently, no effect of potential prior damage 

or otherwise negative impact could be detected. The one outlier at the lowest considered load hori-

zon with noticeable higher fatigue life can most likely be ascribed to the relatively low size of the 

regular sample, which exhibited a particular low scatter. It is thus considered legitimate to consider 

the RRO in the statistical evaluation for the sake of an enhancement of the sample size.  

The comparison between results of statistical evaluations with and without consideration of RRO, 

given in Table 3-4, reveals that the standard deviation at load horizon HCF 1 remains in a plausible 

order of magnitude, when RRO are included. Due to the close proximity of the RRO to the sample 

mean, at load horizon HCF 2 the extension of the sample size even results in a slight reduction of 

the standard deviation. 

 

Figure 3-6: Test results in the upper HCF for black M36 HV-bolt  
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Table 3-4: Results of statistical evaluation in the upper HCF for black M36 HV-bolts 

HCF/ 
RRO 

Ampl. 
Fa 

Ampl.  
Sa 

No. of 
tests 

Load cycles until failure 

w/o RRO with RRO 

 [kN] [N/mm²] [-] 
Mean 

(Ps,50%) 
Standard-
deviation 

Mean 
(Ps,50%) 

Standard-
deviation 

Load horizon HCF 1; Fa,HCF1 ≈ 1,6∙Fa,d,50  

HCF 
56.0 68.6 

5 310 178 
21 374 
(6.9 %) 

329 214 
65 264 
(19.8%) 

RRO  2   

Load horizon HCF 2; Fa,HCF1 ≈ 2,4∙Fa,d,50 

HCF 
84.0 102.9 

5 102 762 
17 197 

(16.7 %) 105 264 
14 789 
(14.1%) 

RRO  2   

Load horizon HCF 3 = HCF 2 (galv.)  

(only RRO)  

RRO  66.0 80.8 2  

Percentile S-N curves 

The complete percentile S-N curves for black M36 HV-bolt sets, synthesised from the tests in TEL 

and upper HCF, are illustrated in Figure 3-7 with and without consideration of RRO. The correspond-

ing characteristic values are given in Table 3-5. Including RRO, the statistical S-N curve pattern 

exhibits a more homogenous progression with characteristically approximating percentile S-N curve 

with increasing load level. Furthermore, the scatter band of the enhanced sample superiorly covers 

the statistically unconsidered experiments from the initial approach to the TEL. The converse ap-

pearance of the evaluation without RRO is due to the relatively low sample size. In the further course 

of this thesis result representations refer to the enhanced sample. 

 

Figure 3-7: Percentile S-N curves for black M36 HV-bolts; left: without RRO; right: with RRO  
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Table 3-5: Characteristic values of percentile S-N curves for black M36 HV-bolts 

 
Percentile S-N curves  
without raised run-outs  

in the upper HCF  

Percentile S-N curves  
with raised run-outs  
in the upper HCF 

Survival  
probability Ps 

10% 50% 90% 10% 50% 90% 

Endurance limit 
Sa,d [N/mm²] 

47.24 43.36 39.49 47.24 43.36 39.49 

Knee point ND [-] 837 812 1 080 818 1 510 620 1 344 334 1 194 114 1 044 916 

Upper HCF slope k [-] 2.40 2.72 3.05 3.02 2.81 2.60 

 

Normal temperature hot-dip galvanized bolts 

Transition region to the endurance limit (TEL) 

Figure 3-8 shows the evaluation scheme of the staircase method for the fatigue tests on NT-galva-

nized M36 HV-bolts in the TEL. All ruptures occurred regularly in the first load-bearing turn of the 

thread and the load cycles until rupture showed a sufficient margin to the limit load cycle number 

N = 5∙106 (see Figure 3-9). With three initial test runs on load levels which were not reached again in 

the remainder of the series, the statistical relevant test sequence contained 16 specimens at 4 load 

levels. Since no adaption of the initially chosen load increment was necessary, the contiguous se-

quence was performed in chronological order (though, partly alternating with specimens from the 

series on HT-galvanized bolts). The results of the statistical evaluation are given in Figure 3-9, right. 

 

Figure 3-8: Evaluation scheme of results in the TEL with the staircase method for NT-galvanized M36-
HV bolts  

Fa [kN] Sa [N/mm²] X = Rupture O = Run-out X O

36.0 44.1 x 1 0

34.0 41.6 x 1 0

32.0 39.2 x 1 0

30.0 36.7 X X X X 4 0

28.0 34.3 X X O O O X X 4 3

26.0 31.8 O O X O 1 3

24.0 29.4 O 0 1

Specimen / Test No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
∑ 9 7

Test series: NT-galvanized
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Mean (Ps,50%) [kN] 27.57 

 [N/mm²] 33.76 

Standard deviation [%] 6.1 

 [N/mm²] 2.1  

Survival probability 
Ps,10% 

[N/mm²] 36.40 

Survival probability 
Ps,90% 

[N/mm²] 31.12 

  
 

Figure 3-9: Scatter band and results of the statistic evaluation in the TEL for NT-galvanized M36 HV-
bolts 

Upper high cycle fatigue range (upper HCF) 

The test results of the NT-galvanized M36 HV-bolts in the upper HCF are shown in Figure 3-10. 

Again, all ruptures occurred in the first load-bearing turn of the thread. The 4 RRO from the TEL are 

located closely within the scatter band of the regular sample. As can be seen from the results of the 

statistical evaluation, given in Table 3-6, both mean value and standard deviation are altered only 

slightly, using the extended sample. Overall, the results in the upper HCF yield a very narrow scatter.  

 

Figure 3-10: Test results in the upper HCF for NT-galvanized M36 HV-bolt  
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Table 3-6: Results of statistical evaluation in the upper HCF for NT-galvanized M36 HV-bolts 

HCF/ 
RRO 

Ampl. 
Fa 

Ampl.  
Sa 

No. of 
tests 

Load cycles until failure 

w/o RRO w/o RRO 

 [kN] [N/mm²] [-] 
Mean 

(Ps,50%) 
Mean 

(Ps,50%) 
Mean 

(Ps,50%) 
Mean 

(Ps,50%) 

Load horizon HCF 1; Fa,HCF1 ≈ 1,6∙Fa,d,50 

HCF 
44.0 53.9 

5 258 144 
21 134 
(8.2 %) 

254 731 
18 627 
(7.3%) 

RRO  2   

Load horizon HCF 2; Fa,HCF1 ≈ 2,4∙Fa,d,50  

HCF 
66.0 80.8 

5 108 238 
4 412 

(4.1 %) 
106 010 

6 040 
(5.7%) 

RRO  2   

Percentile S-N curves 

The complete percentile S-N curves for NT hot-dip galvanized M36 HV-bolts with and without 

consideration of raised run-outs in the upper HCF are shown in Figure 3-11 together with the 

coresponding characteristic values. Due to the marginal deviation between results with and without 

consideration of RRO in the upper HCF, only the variant with the enhanced sample size is shown 

and considered in the further course of this thesis. 

 

    

Characteristic values 

Survival  
probability Ps 

10% 50% 90% 

Endurance limit 
Sa,d [N/mm²] 

36.40 33.76 31.12 

Knee point  
ND [-] 

675 446 699 755 728 270 

Upper HCF slope k 
[-] 

2.22 2.16 2.11 

 

Figure 3-11: Percentile S-N curves and characteristic values for NT-galvanized M36 HV-bolts (with con-
sideration of RRO)  
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High temperature hot-dip galvanized bolts 

Transition region to the endurance limit (TEL) 

During the tests on HT-galvanized M36 HV-bolts in the TEL, apart from characteristic failure loca-

tions in the first load-bearing turn of the thread, a number of ruptures also occurred under the bolt 

head as well as at the unnotched bolt shaft (see Figure 3-12). To investigate the potential influence 

of a distorted load application (as supposed to have occurred temporarily at the test series on black 

M36-bolts) or production related impact, alternately, specimens were tested from the test series on 

NT-galvanized bolts at comparable load levels. However, at all NT-galvanized specimens ruptures 

occurred in the first load-bearing turn of the thread (henceforth denoted as regular failure location). 

It can thus be assumed that the irregular failure locations can directly be attributed to the HT-galva-

nized boundary layer configuration. As can be observed in Figure 3-15, the ruptures outside the 

thread, with one exception, occurred only after the originally defined limit load cycle number 

N = 5∙106. Moreover, a further specimen with regular rupture location failed after reaching the run-

out limit. 

 

Figure 3-12: High temperature hot-dip galvanized M36 HV-bolt sets with irregular failure locations at 
the shaft and under the bolt head 

The observed irregularities regarding failure location and high failure load cycles imposed uncertain-

ties to the statistical evaluation. The variations of the failure location, especially to the unnotched 

shaft, suggest that at the affected specimens different damage mechanisms have been present 

compared to the HT-galvanized bolts, as well as black and NT-galvanized bolts, with regular failures 

(the potential causes are further discussed in Chapter 3.3.3). In general, the validity of a collective 

statistical evaluation of specimens with ambiguous failure mechanisms certainly is questionable. For 

a conclusive evaluation it can be regarded preferable to investigate specimens separately, which 

distinctly belong to different statistical populations (e.g., as done in the framework of this investigation 

for the specimens with different boundary layer production process). However, in the present case 

an unequivocal differentiation between different initial conditions of specimens, causative for differ-

ent damage mechanisms, is not possible. Moreover, the occurrence of varying failure locations did 

not show a distinguishable systematic and it cannot be precluded that also failures inside the paired 

thread might have been affected by a varying damage mechanism. Therefore, it was considered 

Test No. 5
300 mm

Rupture at the bolt shaft

Rupture under the bolt head

Regular location of ruptures at the thread

Test No. 12



58   Experimental Fatigue Investigations 

 

legitimate to interpret the general failure of the specimen, independent from failure locations and 

decisive damage mechanism, as pivotal event for the evaluation of the bolts’ survival probability. 

The specimens with varying locations of failure are thereby evaluated within a single sample.  

Nonetheless, the obtained high load cycle number until failure, partly considerable exceeding 5∙106, 

still imposes the questions whether the originally defined limit load cycle number was chosen too low 

for the HT-galvanized bolts. Therefore, it was assessed within an additional evaluation whether an 

increased limit load cycle number affects the statistical results. To this end, given the obtained test 

results, a maximal shift of the limit load cycle number up to 9∙106 was possible.  

The regular staircase evaluation scheme with a limit load cycle number of Nlim = 5∙106 is shown in 

Figure 3-13. It included 15 statistically relevant specimens at 4 load levels. Therein, ruptures which 

occurred after reaching the defined load cycle limit were classified as run-outs. Figure 3-14 shows 

the alternative evaluation scheme with increased limit load cycle number Nlim = 9∙106. In this stair-

case sequence, the specimens where rupture occurred between 5∙106 and 9∙106 load cycles were 

classified as ruptures instead of run-outs. The resulting sequence comprised 15 statistically relevant 

specimens at 3 load levels. Since the staircase method requires the formation of a contiguous se-

quence, at both variants a certain number of performed experiments needed to be excluded from 

the evaluation. These are appended at the end of the evaluation schemes for informative purposes. 

In the illustrations, test runs with irregular failure location are coloured dark grey. The test run with 

regular location of rupture but very high load cycle number is coloured light grey. The allocation of 

test runs and failure characteristics can also be found in a concise representation in Appendix A.2. 

 

Figure 3-13: Regular evaluation scheme of results in the TEL with the staircase method for HT-galva-
nized M36-HV bolts and limit load cycle number Nlim = 5∙106 

 

Figure 3-14: Alternative evaluation scheme of results in the TEL with the staircase method for HT-gal-
vanized M36-HV bolts and limit load cycle number Nlim = 9∙106 

Fa [kN] Sa [N/mm²] X = Rupture O = Run-out X O

32.0 39.2 X X 2 0

30.0 36.7 X X O X X X 5 1

28.0 34.3 X O O O O O O 1 5

26.0 31.8 O O O 0 1

Specimen No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
∑ 8 7

Test No. 1 2 4 5 3 10 7 12 13 14 15 16 17 18 9 6 8 11

Test series: HT-galvanized

Test with irregular 

failure location

Test with regular 

failure location but 

irregular failure 

load cycles

Fa [kN] Sa [N/mm²] X = Rupture O = Run-out X O

32.0 39.2 X X 0 0

30.0 36.7 X X X X X X 5 0

28.0 34.3 X O X O O O X 3 4

26.0 31.8 O O X 1 2

Specimen No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
∑ 9 6

Test No. 2 3 6 9 10 4 8 11 12 15 14 17 16 7 5 1 13 18

Test series: HT-galvanized

Test with irregular 

failure location

Test with regular 

failure location but 

irregular failure 

load cycles
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The comparison of results obtained with the two evaluation variants, shown in Table 3-7, demon-

strates that the adjustment of the limit load cycle number barely affects neither the resultant statistical 

mean value nor the standard deviation of the endurance limit. To obtain a contiguous staircase se-

quence with at least 15 specimens it was presupposed in the evaluation with increased limit load 

cycle number, that a test run which was ended manually without rupture after approximately 7.5∙106 

load cycles would likewise have reached the adjusted run-out limit. Rejecting this test run from the 

evaluation reduced the evaluable staircase series to 12 specimens. Likewise, with this series the 

results of the statistical evaluation only vary marginally. The performed test series is thus considered 

to have produced statistically meaningful results, despite the occurrence of ruptures after the defined 

limit load cycle number. In the sequel, the results from the statistical evaluation with regular limit load 

cycle number Nlim = 5∙106 are considered decisive.  

 

Figure 3-15: Statistic scatter band and test results in the TEL for HT-galvanized M36 HV-bolts (limit 
load cycle number Nlim = 5∙106) 

Table 3-7: Results of statistic evaluation in the TEL for HT-galvanized M36 HV-bolts considering dif-
ferent limit load cycle number Nlim 

 Nlim = 5∙106 
Nlim = 9∙106 

15 spec. 12 spec. 

Mean (Ps,50%) 
[kN] 29.00 28.33 28.20 

[N/mm²] 35.51 34.69 34.53 

Standard deviation 
[%] 4.0 2.9 3.1 

[N/mm²] 1.4 1.0 1.1 

Survival probability Ps,10% [N/mm²] 37.35 35.97 35.90 

Survival probability Ps,90% [N/mm²] 33.67 33.41 33.16 
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Upper high cycle fatigue range (upper HCF) 

The results of HT-galvanized M36 HV-bolts in the upper HCF are shown in Figure 3-16. Thereby, all 

ruptures were located regularly in the first load-bearing turn of the thread. The results from the four 

raised run-outs from the TEL are located within the scatter of results of the regular sample. The 

results of the statistical evaluation with the horizon method with and without consideration of raised 

run-outs are given in Table 3-8. Only marginal variations of the evaluation results arise from the 

enhancement of the sample size.   

 

Figure 3-16: Test results in the upper HCF for HT-galvanized M36 HV-bolt 

Table 3-8: Results of statistical evaluation in the upper HCF for HT-galvanized M36 HV-bolts 

HCF/ 
RRO 

Ampl. 
Fa 

Ampl.  
Sa 

No. of 
tests 

Load cycles until failure 

w/o RRO with RRO 

 [kN] [N/mm²] [-] 
Mean 

(Ps,50%) 
Standard-
deviation 

Mean 
(Ps,50%) 

Standard-
deviation 

Load horizon HCF 1; Fa,HCF1 ≈ 1,6∙Fa,d,50  

HCF 
44.0 53.9 

5 317 409 
15 538 
(4.9 %) 

317 830 
16 697 
(5.3%) 

RRO  2   

Load horizon HCF 2; Fa,HCF1 ≈ 2,4∙Fa,d,50 

HCF 
66.0 80.8 

5 113 420 
11 058 
(9.8 %) 115 272 

12 373 
(10.7%) 

RRO  2   

Percentile S-N curves 

Figure 3-17 depicts the percentile S-N curves and characteristic values for the HT-galvanized M36-

bolts, resultant from statistical evaluations in the TEL with regular limit load cycle number Nlim = 5∙106 

and upper HCF with specimen sample enhanced by RRO. Since the obtained standard deviation of 

results in the upper HCF was smaller at the lower than at the upper tested load horizon, the percentile 

S-N curves show an uncharacteristically divergent pattern at increasing loads. This can be led back 
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to the relatively low number of considered specimens. It needs to be assumed that the actual scatter, 

especially at the lower load horizon, is underestimated by the results. The test series’ main objective 

of determining the progression of the mean S-N curve remains unaffected.   

 

    

Characteristic values 

Survival  
probability Ps 

10% 50% 90% 

Endurance limit 
Sa,d [N/mm²] 

37.35 35.51 33.67 

Knee point  
ND [-] 

807 224 901 603 1 030 135 

Upper HCF slope 
k [-] 

2.31 2.50 2.70 

 

Figure 3-17: Percentile S-N curves and characteristic values for HT-galvanized M36 HV-bolts (with con-
sideration of RRO) 

3.3.3 Assessment of the boundary layer effect 

The comparison of the complete test results of the three performed test series on M36 HV-bolts with 

different boundary layer configurations “black” (B), “normal temperature hot-dip galvanized” (NT) and 

“high temperature hot-dip galvanized” (HT) is shown in Figure 3-18. The results reveal a considera-

ble reduction of the fatigue strength induced by hot-dip galvanizing. Considering the depicted mean 

S-N curves (Ps,50%), as given in Table 3-5 as well as Figure 3-11 and Figure 3-17, a reduction of 

the endurance limit of about 20 % compared to the uncoated specimens is given for both NT- and 

HT- galvanized bolts. Moreover, a clear reduction of endurable load cycles is also present in the 

upper HCF.  

As such, the experiments confirm the findings from Ungermann et al. (2014) regarding the quantita-

tive effect of hot dip-galvanizing, experimentally derived for welded construction details as well as 

notched specimens with bolt-alike notch geometry published by Oechsner et al. (2015) and Simon-

sen (2015) (see Chapter 2.1.4). In the previously mentioned studies the fatigue crack initiation pro-

cess at galvanized specimens could be documented by microscopic analyses of systematically 

aborted test runs. The given characteristics of the here analysed bolt-to-nut connections, where the 

fatigue critical location is sited in the area of the overlaid thread, impede an equivalent documenta-

tion. However, since they were performed within the framework of the same research project, the 

experimental investigations on notched specimens by Oechsner et al. (2015) were intentionally de-

signed in terms of material characteristics and notch geometry, to provide high transferability of fail-

ure characteristics to the here presented test series. Considering the qualitative and quantitative 
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similarity of the results, it can thus safely be presumed that a similar failure mechanism, induced by 

shrinkage cracks in the brittle phases of the zinc coating, is responsible for the found reduction of 

fatigue strength.  

Additionally to the sole difference of the boundary layer, the paired thread of uncoated, black and 

hot-dip galvanized HV-bolt sets is also subject to a certain geometrical variation, which is induced 

by differing tolerance zones between bolt and nut. To provide clearance for the additional zinc coat-

ing the here tested hot-dip galvanized bolts were executed with tolerance zone 6g/AZ, contrasting 

the black bolts with tolerance zone 6g/6H (bolt/nut according to ISO 965). According to Wie-

gand et al. (2007) a larger tolerance zone may be assumed to rather impose a favourable than a 

negative effect on the fatigue strength, because of a higher resilience of the thread and a more 

homogenous load distribution. Within the framework of the here described test series, additional 

exemplary test runs were performed at distinct load levels, were black bolts (6g) were paired with 

nuts originally designated for galvanized bolts (6AZ). The results, which are published in 

Oechsner et al. (2015), did not indicate any impact of the changed tolerance. This is in general ac-

cordance with the state of knowledge from the literature, which testifies a negligibly influence of 

thread geometry tolerances in the normative regulated range (see Chapter 2.1.4). Consequently, the 

variation of the tolerance zones does not need to be presumed to have affected the obtained results.  

 

Figure 3-18: Comparison of test results of M36 HV-bolts with different boundary layers 

Comparing the test results of the boundary layer affected test series with different galvanizing tem-

perature, the statistical evaluation of the HT-galvanized bolts suggests a slightly superior fatigue 

performance to their NT-galvanized counterparts. A similar tendency could be observed in test re-

sults on bolts of size M16 by Berger et al. (2008). However, in both cases the strongly overlapping 

scatter bands of the test series on NT- and HT-galvanized bolts do not allow the conclusion that a 

40

60

80

100

150

20

N
o

m
in

a
l 
s
tr

e
s
s
 a

m
p

lit
u

d
e

S
a

[N
/m

m
²]

Load cycles N [-]

Survival prob. Ps,50%

Rupture

Run-out

Raised run-out

Sm = 0.7 ∙ Rp0,2 = 630 N/mm²

- 22 %- 18 %

Black

NT-galvanized

HT-galvanized

M36 HV-bolt sets

104 105 106 107



Test on M36 HV-bolt sets with constant amplitude loading  63 

 

statistically significant variation is to be supposed. Instead, a rather comparable effect of the galva-

nizing boundary layer to the bolts fatigue strength can be assumed. As such, the results also confirm 

test results from Valtinat (1994) on bolts of size M30 and are in general accordance with the recom-

mendation given in VDI Guideline 2230 (2015) to reduce the endurance limit of both NT- and HT-

galvanized bolts equally by 20 % (a detailed verification of the normative regulations is carried out 

in Chapter 3.6).  

Even though the results of the statistical evaluation do not imply a significant variation of the fatigue 

strength, the found peculiarities in the failure behaviour of the HT-galvanized specimens are to be 

taken into consideration. As described in the previous section, the occurrence of ruptures at irregular 

locations can be directly related to the HT-galvanized production state. The fact that irregular rup-

tures did not only occur under the bolt head but also in the unnotched shaft indicated that a surface 

layer related damage mechanism was present, which enabled a fatigue crack initiation incoherent to 

the maximum stress concentration. Thereby, the variant damage mechanism only was decisive at 

load levels in the TEL, where a regular fatigue crack initiation inside the thread was less likely to 

occur. At higher loads in the upper HCF, the potential fatigue crack initiation was dominated by the 

strong notch effect inside the thread resulting in solely regular ruptures in the first load-bearing turn. 

Fracture surface analyses at the affected specimens with irregular ruptures, described in 

Oechsner et al. (2015), revealed that at the locations of fatigue crack initiation zinc had intruded into 

the bolts’ base material. As stated by the authors of the Chair and Institute for Materials Science, 

Technische Universität Darmstadt, who performed the metallographical analysis, the observed pres-

ence of zinc in the base material hints to an intrusion into production related surface defects or to 

liquid metal assisted cracking (LMAC). However, a final ascertainment could not be made. 

Nonetheless, the results highlight that the application of high temperature hot-dip galvanizing to HV 

bolts of size M36 implies uncertainties in the fatigue damage behaviour, which may potentially un-

dermine a systematic fatigue assessment and design. To securely verify the practical applicability of 

HT-galvanizing up to bolt diameter M36 further specifically designated studies are necessary. 
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3.4 Test on M64 HV-bolt sets with constant amplitude loading 

3.4.1 Test execution 

Aiming for an extension of the achieved experimental test basis on M36 HV-bolts, subsequently the 

test series on very large diameter M64 HV-bolt sets was performed. Based on the results of both 

series, for the first time the influence to the fatigue strength of an increased diameter, reaching into 

the top end of applied bolt sizes in modern wind turbine structures, could be investigated for uncoated 

black (B) as well as normal temperature hot-dip galvanized bolts (NT).  

To realise the requisite testing conditions at representative mean load level (1680 kN), the tests on 

the M64 HV-bolt sets were performed in a high-strength servo-hydraulic testing machine (10 MN), 

belonging to the test facilities of the Institute for Building Materials Science of the Leibniz Universität 

Hannover. An appropriate test specimen adaption was specifically designed and manufactured for 

the test series. The test set-up is depicted in Figure 3-19.  

 

Figure 3-19: Test set-up for M64 HV-bolt tests under constant amplitude loading in servo-hydraulic 
testing machine 

With 2-4 Hz, the achievable testing frequency was considerably lower than in the previously de-

scribed test series on M36 bolts (~50 Hz). Given the much longer testing durations (1∙105 load cycles 

in about 9 hours) and higher testing costs, the objective was to validate the obtained test results on 

M36 bolts with a reduced number of specimens. Thereby, tests were primarily performed in the upper 

HCF.  

Due to the limited number of available test specimens and lack of previous information about the 

endurance limit, testing and evaluation had to be performed differently to the horizon method, used 

in the test series on the M36 bolts. Thereby, the individual test runs were performed at diverse load 

levels instead of designated load horizons. Denoted as “Perlenschnurverfahren” (engl.: string of 

pearls), the procedure, for example described in Mauch (1999), is based on the presupposition that 
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the S-N curve in the upper HCF, when plotted in double logarithmic scale, follows a linear progres-

sion. Thus, test results enable the determination of location and slope k of the resultant mean S-N 

curve with 50 % survival probability by a corresponding linear regression analyses.   

Towards to the horizon method, the procedure provides the advantage that usually a smaller test 

quantity is required for an appropriate estimation of the mean survival probability. However, for a 

further evaluation of the statistical scatter band it is presupposed that the slopes of the percentile S-

N curves (Ps,10%, Ps,50%, Ps,90%) are identical. Thus, with the previously determined slope, all 

results located in the upper HCF can be transferred to a mutual, freely eligible reference load horizon. 

The obtained modified test results enable a statistical evaluation, analogues to the horizon methods 

with equations Eq. 3-2 to 3-5. In this way, locations of parallel shifted percentile S-N curves can be 

determined. The usually apparent load level dependent variation of the scatter band remains uncon-

sidered in the evaluation. However, this simplification was considered acceptable for the given eval-

uation purpose.  

To maximise the validity of the obtained results it was crucial that the performed tests cover an ample 

load cycle range in the upper HCF without, however, reaching to far above or below into low cycle 

fatigue range or TEL. For the performed evaluation, it was presumed that a linear progression of the 

S-N curves could safely be assumed within a range of 1∙104 and 5∙105
 load cycles. Without the 

knowledge of a previously determined endurance limit, the initially applied load levels were chosen 

based on the results of the M36 bolts. In the ongoing of the test series the applied loads were then 

successively adapted for an appropriate coverage of the fatigue range within the defined boundaries. 

Additionally to the tests in the upper HCF, for each considered boundary layer state (B, NT) two 

further test runs were performed, which reached into the TEL. Within the given limitations of available 

specimens and economically reasonably testing durations, these tests aimed for a spot test wise 

evaluation of the tendential location of the endurance limit. To this end, the obtained results in the 

upper HCF as well as the determined endurance limits of the M36 bolts served as reference bench-

mark. A summary of the testing program on M64 HV-bolts is given in Table 3-9. 

Table 3-9: Summary of testing program for constant amplitude tests on M64 HV-bolt sets 

Boundary layer Black NT-galvanized 

Mean stress 
Sm ≈ 0.7 ∙ Rp,0.2 

630 N/mm² 630 N/mm² 

Upper HCF   

Amplitude Sa 47-131 N/mm² 47-112 N/mm² 

Number of specimens 7 7 

TEL*   

Amplitude Sa 34-39 N/mm² 32-37 N/mm² 

Number of specimens 2 2 

Loading conditions purely axial, constant amplitude loading, R ≈ 0.65 – 0.9 

Test end criteria rupture 

Testing frequency 2-4 Hz 

*Test in the TEL without statistical evaluation 



66   Experimental Fatigue Investigations 

 

3.4.2 Test results and statistical evaluation 

Figure 3-20 and Figure 3-21 show the obtained test results of the M64 HV-bolt sets separately for 

the two investigated boundary layer configurations. The tabulated results can be found in Appendix 

A.3. All ruptures occurred regularly in the first load-bearing turn of the thread. 

For both boundary layer configurations, the performed test program resulted in 7 statistically relevant 

test runs, with load cycle numbers reaching throughout the full upper HCF and reasonable margin 

to the defined lower and upper bounds. To quantify the scatter band the results were transferred to 

a mutual reference load level of S̅a = 50 N/mm (green horizontal line). In the result illustrations the 

modified test points (M64-B/NT*) are shown with grey colouring.  

 

Figure 3-20: Test results and percentile S-N curves for black M64 HV-bolts (left: full results; right: ex-
cerpt (A) of the reference load horizon with modified test point M64-B*) 

 

Figure 3-21: Test results and percentile S-N curves for NT-galvanized M64 HV-bolts (left: full results; 
right: excerpt (A) of the reference load horizon with modified test point M64-NT*) 
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The results of the statistical evaluation, given in Table 3-10, are stated on the basis of the selected 

reference load level. Together with the determined slopes, the S-N curves in the upper HCF can be 

fully described. As becomes apparent from the graphical illustrations, at both series the results in 

the upper HCF line up closely to the determined median S-N curve. This is also reflected by the 

moderate standard deviations. The low result scatter demonstrates a high overall quality of obtained 

results, appropriate bolt production and test set-up conditions. 

As can be seen, at four test runs (two for each boundary layer configuration) load cycles until rupture 

intendedly exceeded the defined limit for the upper HCF. These are not considered in the statistical 

evaluation. One test run was aborted manually as “run-out” after exceeding 2∙106 load cycles. The 

remainder failed within a range of 7∙105 and 1.3∙106
 load cycles. With results notably deviating to the 

scatter band from the statistical evaluation, the tests are to be allocated to the TEL. They are further 

assessed qualitatively in comparison to the test results on the M36 bolts in the subsequent section.   

Table 3-10: Results of statistic evaluation of M64 fatigue tests in high cycle fatigue range for reference 
load level S̅a = 50 N/mm2 

 Black NT-galvanized 

Refference load horizon 50 N/mm2 50 N/mm2 

Load cycles until rupture with   

survival prob. Ps,10% 283700 262819 

survival prob. Ps,50% 257160 240801 

survival prob. Ps,90% 233103 220628 

Standard deviation 7.76 % 6.92 % 

Upper HCF slope k 2.48 2.47 

 

3.4.3 Assessment of the boundary layer effect and comparisons to M36 bolts 

Result comparison 

The direct comparison between test results on black and NT-galvanized M64 HV-bolts is shown in 

Figure 3-22. It becomes obvious that, contrary to the results on the M36 bolts (see Figure 3-18), in 

the upper HCF no statistically measurable deviation between the two boundary layer configurations 

can be detected. With strongly overlapping scatter bands, the results of both series are effectively 

on an identical level.  

In the comparison of test results on M64 and M36 HV-bolts in Figure 3-23, left it can be observed 

that the fatigue strength of the black M64 bolts (here for better differentiation coloured green) is 

measurably reduced compared to their counterparts with diameter M36 (coloured black). In point of 

fact, consistently throughout the upper HCF the endured load cycles until rupture are more than 

50 % less than the statistic mean (survival probability Ps,50%), determined for the black M36 bolts.  
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Figure 3-22: Comparison of test results of M64 HV-bolts with different boundary layers 

Considering the comparison of the NT-galvanized HV-bolts in Figure 3-23, right, likewise a reduction 

of fatigue strength in the upper HCF of M64 (coloured violet) compared to M36 bolts (coloured red) 

is visible. However, the difference of bearable load cycles is considerably less than present at the 

bolts without galvanizing and it tendentially reduces with decreasing load level. Consequently, the 

close conformity of obtained results of M64 bolts with different boundary layer is to be ascribed to a 

deterioration of fatigue strength at black bolts, compared to their M36 diameter equivalents, rather 

than to a less severe impact of the zinc coating at the galvanized bolts.  

 

Figure 3-23: Comparison of test results of M64 and M36 HV-bolt sets with uncoated, black (left) and NT 
hot-dip galvanized (right) boundary layer configuration 
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For each boundary layer condition, test runs were performed at load levels, located within the deter-

mined scatter bands of the M36 bolts’ endurance limit. With reference to the latter and the statistical 

evaluation for M64 bolts in the upper HCF, there are cogent indications that for the black M64 bolts 

also a notable reduction of the endurance limit, compared to the M36 bolts, needs to be assumed. 

At a load level, slightly lower than the black M36 bolts’ 10 % survival probability (Ps,10%), the tested 

M64 bolt (lowest result point in Figure 3-23, left before the defined transition line to the TEL at 

N = 5∙105) reached a significantly lower load cycle number than the respective M36 bolts. The test 

run is located within the narrow scatter band of the remaining upper HCF test results. Only at further 

reduction of the cyclic load, the two test results exhibit a notable deviation from the upper HCF scat-

ter. Still, at a load level slightly below the 90 % survival probability mark (Ps,90%) of the black M36 

bolts’ endurance limit, where all tested M36 bolts reached the defined run-out limit of 5∙106 load 

cycles, the M64 bolt’s endured fatigue life is distinguishable lower.  

Considering the NT-galvanized M64 bolts, already at the test run in the upper region of the TEL 

(Ps,10%) determined for the M36 bolts (first result point in Figure 3-23, right after the defined transi-

tion line to the TEL at N = 5∙105), a deviation from the M64 bolts upper HCF scatter band is recog-

nizable. This suggests that TEL of NT-galvanized M36 and M64 as well as black M64 bolts are within 

a comparable order of magnitude. However, endured load cycles in the TEL indicate a slightly inferior 

fatigue strength of NT-galvanized M64 bolts compared to the other two mentioned configurations. 

However, since fatigue tests in the TEL are subject to pronounced scatter, for a secured evaluation 

a considerably higher number of time and cost-consuming tests would be necessary. The interpre-

tations regarding the M64 bolts endurance limit are thus given only as a general estimate. 

Discussion 

Taken together, despite a significant difference in the order of magnitude, the result comparison of 

the performed constant amplitude fatigue tests revealed a reduction of fatigue strength for both black 

and NT hot dip-galvanized HV-bolts at an increased diameter. Thereby, it needs to be considered 

that, additionally to the larger bolt size, other factors varied between the performed test series on 

M36 and M64 bolts, such as the bolt manufacturer, base material and production batch as well as 

test facility and frequency. Considering potential scatter of bolt fatigue tests on specimens from dif-

ferent manufactures, as present for instance in test results from Marten (2009) on M48 HV-bolts 

performed with elsewise identical boundary conditions, the here obtained reduction of fatigue 

strength between NT-galvanized M36 and M64 bolts does not appear overly critical. It is still within 

a reasonable order of magnitude of general scattering test results. Moreover, also a certain impact 

of the significantly lower testing frequency, which had to be reduced by more than a factor of 10 in 

the M64 compared to the M36 experiments, cannot entirely be precluded. Within the review of the 

corresponding state of knowledge in Chapter 2.1.4, it was elaborated that there is, albeit not conclu-

sively confirmed, certain evidence that suggests that a low testing frequency, as applied in the M64 

tests, has a tendentially fatigue life reducing effect, especially at higher load levels. This behaviour 

is generally reflected by the obtained test results, where the scatter bands of NT-galvanized M64 
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and M36 bolts approximate with decreasing load level. Still, the actual presence of a testing fre-

quency related effect on the test results can neither be affirmed nor ruled out by either, the performed 

test program or priorly existing investigations.  

The investigation of the impact of loading frequency to the fatigue damage by numerical means is to 

be ascribed to fundamental research work and not feasible within the framework of this dissertation. 

Still, to obtain further insights into the potential impact factors to the fatigue strength of large-size 

bolts, specific geometry and material related aspects will be further investigated in the analytical 

studies of the thesis at hands.  

Concerning the reason for the detected prominent reduction of fatigue strength of the tested black 

M64 HV-bolt sets, it may mostly be hypothesised. It is plausible to assume that for the uncoated 

black bolts a manufacturing related unfavourable impact was present, which was not of decisive 

nature at bolts with hot-dip galvanized surface layer. Due to the lack of corrosion protection, un-

coated black bolts commonly show a certain amount of surface oxidation, also in a minorly corrosive 

environment. However, in the metallurgical investigation by Oechsner et al. (2015), performed on 

the here analysed specimens, an equivalent surface oxidation of both black M36 and M64 bolts was 

detected up to a depth of about 10 μm. Thus, differences in surface oxidation are disqualified as 

possible explanation. Nonetheless, the surface conditions between the two bolt diameters may have 

been altered because of the specifically applied lubrication by the two different bolt manufacturers. 

Indeed, in the handling during the experimental series (which were performed apart by a timescale 

of approx. 1 year) a somewhat more modestly applied amount of lubrication came to notice at the 

M64 than M36 bolts. This may have affected the friction properties in the paired thread. For instance, 

in test results by Kremer (2005) the complete removal of lubrication from uncoated black bolts of 

small diameter M8 has led to a significant reduction of fatigue strength. This highlights that lubrication 

may in general have a meaningful effect on the fatigue strength. However, the mentioned investiga-

tions are only limitedly comparable to the here presented test series, where the exact difference of 

lubrication properties remains unknown. Moreover, a variety of potential fatigue-relevant impact fac-

tors, such as diameter, manufacturer and testing conditions, are superimposed. For a conclusive 

evaluation of the found reduction of fatigue strength at uncoated, black M64 HV-bolts further exper-

imental investigations are required. A potential impact of the friction properties inside the paired 

thread of the M64 bolts is further discussed in the sensitivity studies within the analytical fatigue 

investigations (see Chapter 4.5.2).   
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3.5 Test on M36 HV-bolt sets with variable amplitude loading 

In addition to the two major test series on M36 and M64 HV-bolt sets with constant amplitude loading, 

the research project Oechsner et al. (2015) included a further verification of the boundary layer effect 

at M36 HV-bolts at variable amplitudes, as closer to operating loading conditions. The tested speci-

mens were taken from the same production batch as for the constant amplitude tests. Contrary to 

the two previously described test series in Chapters 3.3 and 3.4, implementation of the variable 

amplitude tests was not directly supervised by the author of this dissertation. However, planning of 

test program and loading sequences was performed in close collaboration between the author and 

the primarily responsible research partner Chair and Institute for Materials Science, Technische Uni-

versität Darmstadt. Test boundary conditions and general results are presented in the sequel. The 

test results are then further used in Chapter 3.6.3 for the evaluation of damage accumulation hy-

potheses.   

3.5.1 Test execution and loading sequence 

The variable amplitude tests were performed in a servo-hydraulic pulsator with 630 kN maximum 

tensile capacity, located in the test facilities of the Chair and Institute for Materials Science, Tech-

nische Universität Darmstadt. This enabled the required accurate control of the mixed loading se-

quences with in size varying amplitudes between 4 kN and 90 kN, while maintaining a representative 

mean load level of 515 kN. The test frequencies were specifically adapted to the respective ampli-

tudes and ranged between 35 Hz and 5 Hz. Similar to the constant amplitude tests on M36 HV-bolts, 

specimens with three boundary layer configurations uncoated black (B), normal temperature (NT) 

and high temperature (HT) hot-dip galvanized were tested.  

The systematic axial loading was applied as sinusoidal tensile swelling loads in varying blocks of 

steady amplitudes. As appropriate basis for the applied loading sequence a normal distributed Gauss 

collective was chosen. It can be regarded as a customary generic collective for service-loading tests. 

The applied load distribution thus reflects the condition of a purely stochastic, stationary (i.e., invar-

iant in time) process. Even though theoretical, a normal distributed loading sequence ensures good 

comparability and general validity of the results. Moreover, it also implies representative character-

istics for loading conditions of wind turbines, which are likewise affected by dominantly stochastic 

processes (e.g., wind and wave loading). The derivation of the actual experimentally applied load 

collective is illustrated in Figure 3-24. The following described procedure has been implemented 

based on recommendations given in Haibach (2006).  

In accordance with common conventions for the implementation of service-loading tests, the total 

cumulative frequency (i.e., extent) of the underlying Gauss collective was defined to H = 106. For the 

test implementation, the continuous collective needed to be transformed to a discrete, block shaped 

representation. Assuming validity of linear damage accumulation, extent and stress level of the 

blocks were calculated damage equivalent to the respectively approximated parts of the continuous 

collective (Dcontinuous = Ddiscrete). Thereby, a theoretical constant S-N curve slope k = 4 was assumed. 

In total, the chosen discrete collective comprised 20 different loading blocks, which was considered 
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an appropriate compromise between the general aim of using preferably small block sizes and a 

reasonable test implementation. 

 

Figure 3-24: Derivation of an experimental load collective from the continuous Gauss collective in nor-
malized representation (Sa,i / Sa,max) 

For a sufficient alternation between higher and lower stress levels, and thus a superior approximation 

of realistic loading conditions, it was crucial that the defined loading sequence was multiply repeated. 

Sonsino (2008) recommends in this context to define a loading sequence that is run through at least 

5 to 10 times before rupture of the specimen. Therefore, for the test execution the discretely approx-

imated load collective was reduced from its original extent to a partial load collective with a cumula-

tive frequency (i.e., load cycles) of H = 105 (shown in Figure 3-24 in grey colouring). Correspondingly, 

after 10 iterations of the partial load collective the extent of the original load collective is reached. 

For a practicable test execution the minimum extent of the applied loading blocks ni was limited to 

at least 250 load cycles. Thus, due to the damage equivalent conversion, the discrete load distribu-

tions exhibit a lower maximum load level than the underlying continuous collective (in the latter the 

maximum occurring load level Sa,max corresponds to one occurrence every 106 load cycles).   

Finally, to further improve the mixing of considered load amplitudes, the decreasing order of the 20 

blocks of the partial load collective was rearranged. Thereby, starting from a medium sized load 

level, two local maxima were approached in a stepwise in- and decreasing manner, see Figure 3-25. 

The stress amplitudes of the ultimately applied loading sequences were derived by multiplication of 

the normalized stress amplitudes Sa,i with the maximum value of the respectively aspired load level. 

Thereby, according to common conventions, the maximum stress level Sa,max of the underlying, con-

tinuous Gauss collective is determinative. These load levels are used for classification of the variable 

amplitude test results.  

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
liz

e
d
  

s
tr

e
s
s
 a

m
p
lit

u
d
e
 S

a
,i
/S

a
,m

a
x

Cumulative frequency H / Load cycles N [-] (log)

100 101 102 103 104 105 106

Partial load collective 

(H = 105)

Continuous Gauss collective

Discrete collective

(damage equivalent)

Sa,max



Test on M36 HV-bolt sets with variable amplitude loading  73 

 

 

Figure 3-25: Load sequence of variable amplitude tests in normalized representation derived from par-
tial load collective  

Table 3-11 summarises the implemented test program at variable amplitude loads with the previously 

introduced standardized loading sequences. Based on the results of the constant amplitude loading 

tests, the applied test load levels (L1 to L5) were chosen, aiming for at least 5 iterations of the test 

sequence (i.e., 5∙105 load cycles). With the thereof derived alternation of stress amplitudes of varying 

magnitude it may be presupposed that a potential impact of sequence effects can be effectively 

precluded. As the applied test procedure was chosen with reference to the variable amplitude loading 

tests by Weber (2010) on smaller bolts of diameter M12, a good comparability to this fundamental 

test series is ensured. 

Table 3-11: Summary of testing program for variable amplitude tests on M36 HV-bolt sets, performed 
at the Chair and Institute for Material Science, Technische Universität Darmstadt 

Boundary layer Black NT-galvanized HT-galvanized 

Mean stress 
Sm ≈ 0.7 ∙ Rp,0.2 

630 N/mm² 630 N/mm² 630 N/mm² 

Number of specimens:  

Load levels 
Sa,max 

L1: 153.0 N/mm² 3 3 3 

L2: 122.4 N/mm² 3 3 3 

L3: 98.0 N/mm² 2 3 3 

L4: 73.5 N/mm² - 2 2 

L5: 49.0 N/mm² - 1 - 

Loading conditions purely axial, variable amplitude loading, R ≈ 0.70 – 0.98 

Test end criteria rupture 

Testing frequency var. 5-35 Hz 
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3.5.2 Test results 

Figure 3-26 shows the collective test results of the variable amplitude loading tests on M36 HV-bolts 

with all three boundary layer configurations. To visualize the correlation between the underlying load 

distribution and the test data, the repetitively applied partial load collectives in both continuous and 

actually tested discrete form are depicted for the uppermost tested load level (L1) and the two lowest 

load levels (L4 and L5). The inclusion of the collectives at the two intermediate load levels (L2 and 

L3) was omitted for improved lucidity. Additionally, for classification of test results and load distribu-

tions the S-N curves (survival probability Ps,50%), derived from the constant amplitude tests pre-

sented in Chapter 3.3, are shown.  

 

Figure 3-26: Classification and comparison of fatigue test results at variable amplitude loading of 
M36 HV-bolt sets with different boundary layer configurations 

The results of the variable amplitude loading tests reflect well the found tendencies between the 

different boundary layer configurations obtained from the constant amplitude tests. Accordingly, a 

clear reduction of fatigue life at identical load levels is present between uncoated black and both 

variants of hot-dip galvanised bolts. Moreover, in compliance with the determined S-N curves, the 

HT-galvanized bolts show a slightly better fatigue performance than the NT-galvanized bolts. For all 

three boundary layers, all ruptures occurred regularly in the first load-bearing turn of the thread. This 

is consistent with the findings from the constant aptitude tests, where irregular ruptures at HT-galva-

nized bolts were observed only at low load levels in the transition region to the endurance limit. As 

can be seen in the above figure, also at the lowest load level (L4) considered for HT-galvanized 
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bolts, the upper test amplitudes of the load collective are well within the upper high cycle fatigue 

range (HCF) of the galvanized bolts. In fact, the maximum tested amplitude of the discrete load 

distribution for load level L4 is equivalent to the test horizon HCF 1 in the constant amplitude tests. 

These upper amplitudes constitute a significant damage contribution. It is thus plausible, that the 

deviating damage mechanism, presumed causative for the found irregular ruptures of HT-galvanized 

bolts (see Chapter 3.3.3), was not of decisive nature in the variable amplitude tests. 

With exemplary purpose, a single test was performed at the lowest load level L5. Here, due to the 

theoretical damage equivalent conversion, the actual tested maximum amplitude of the partial load 

collective (and load sequence, respectively) is already located close to the determined endurance 

limit. The test was aborted manually without rupture after reaching an experimentally considered 

load cycle number of almost N = 108. The spot test is thus in accordance with the general assumption 

that a variable amplitude load collective, which maximum level approaches or lies below the constant 

amplitude endurance limit, is not fatigue critical. With reference to the experimentally superiorly val-

idated load levels (L1 to L4), the potential damage contribution of amplitudes below the endurance 

limit is further investigated within the framework of the evaluation of damage accumulation hypothe-

ses, applied in service load verification procedures (see Chapter 3.6.3). 

Based on performed damage calculations, using the respective constant amplitude S-N curves (see 

Chapter 3.6.3 as well as Appendix A.4), it can be approved that the magnitude of fatigue strength 

deviations of bolts with different boundary layers is in good agreement between the constant and 

variable amplitude tests. Hence, the obtained results confirm that the damage effect induced by hot-

dip galvanizing, thus far acknowledged for constant amplitude loading, equivalently effects the fa-

tigue life of HV-bolts at service loading conditions with variable amplitudes. 

It is noted that during implementation of the presented variable amplitude loading tests, at certain 

test runs a reduced loading sequence was used. Thereby, the four lowest loading blocks where 

omitted during testing while their corresponding load cycles were still accounted for in the result 

evaluation (i.e. load cycles until failure). This acknowledged procedure for the time reduction of ser-

vice-loading tests (e.g., see Haibach, 2006) is based on the assumption that the lowest load levels 

of the collective do not constitute a meaningful contribution to the overall damage. In the here pre-

sented test series omission was only used at loading blocks with amplitudes of a maximum of about 

half of the respective constant amplitude endurance limit. Moreover, except from the single test at 

load level L5, test runs subjected to omission were confirmed by at least one further test with full 

loading sequence. Appendix A.4 contains a close-up result illustration of the variable amplitude load-

ing tests, where the test runs with reduced loading sequence are marked. As the affected test runs 

classify well with the remaining test series, in the context of the here presented evaluations they are 

treated as equivalent test results. For further details in this regard it is referred to 

Oechsner et al. (2015).  
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3.6 Assessment of normative regulations  

3.6.1 Validation of normative S-N curves 

The validation of normative S-N curves given in the two most relevant regulations for the fatigue 

verification of HV-bolts, Eurocode DIN EN 1993-1-9 (2010) (henceforth denoted as EC 3) and VDI 

Guideline 2230 (2015), is performed graphically for black bolts in Figure 3-27 and hot-dip galvanized 

bolts (NT and HT) in Figure 3-28. For a comprehensive classification, additionally to the test results 

obtained within the framework of this dissertation, also results from the pivotal test series by Mar-

ten (2009) on NT hot-dip galvanized HV-bolt sets of large diameter M48 are considered. It is noted 

that the latter had to be performed at a reduced mean stress level, compared to the nominal preload 

of HV-bolts (approx. 20% Fp,c*, see Chapter 2.1.5). In the juxtaposition to the experimental results, 

the normative S-N curves are depicted with consideration of the respectively designated diameter 

dependent reduction of the fatigue strength (see Chapter 2.1.6). In contrast to the original represen-

tation in the EC 3, all S-N curves are plotted here in terms of stress amplitudes Sa instead of stress 

ranges ΔS (ΔS = 2Sa).  

It becomes apparent that, despite the considerable reduction of fatigue strength at the tested black 

M64 bolts, the permissible EC 3 fatigue class FAT 50 provides a secure design basis for all consid-

ered size- and boundary layer configurations. With one exception, all test runs lie above the norma-

tive S-N curve defined in EC 3 for diameter M36. The single outlier, present in the test series on M48 

bolts, can be explained statistically by the large number of considered specimens (see also Mar-

ten, 2009). Consequently, the collective test results indicate that the considered diameter dependent 

reduction of the fatigue class leads to a certain underestimation of the fatigue strength of large-size 

HV-bolts in the upper HCF. A further assessment of the considered size-reduction function is there-

fore performed in the subsequent Section 3.6.2. Considering the test results of M36 and M48 bolts 

in the transition region to the endurance limit (TEL), the characteristic S-N curve progression of the 

EC 3, with a kink to the endurance limit only at 5∙106 load cycles, provides a rather conservative 

design assumption at lower load levels. In this context it is noted that for harmonic cyclic loading, as 

present in all here considered fatigue tests, the EC 3 in fact allows the consideration of an actual 

endurance limit with horizontal progression of the S-N curve after N = 5∙106 (see also Chapter 2.1.6). 

However, for reasons of comprehensibility the common representation of the standard’s S-N curve 

progression was chosen here. The above stated observation remains unaffected. The normatively 

defined procedure for assessment of fatigue damage accumulation at service loading is evaluated 

in Section 3.6.3 based on the performed tests with variable amplitude loading.  

A superior classification of uncoated black HV-bolts into EC 3 fatigue class FAT 71, as suggested in 

DNVGL-ST-0126 (2016) or the older GL Guideline (2012), is confirmed only by the test results with 

diameter M36. Given the notable shortfall of the M64 test results to the FAT 71 fatigue curve, this 

classification is to be scrutinized for large-size bolts. For a secured application of a higher fatigue 

class for black than for galvanized bolts it is crucial to carefully consider the required boundary and 

production conditions, which are required to ensure the requisite fatigue strength of the bolts. To this 

end, further investigations are advisable.  
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Figure 3-27: Comparison of experimental results on uncoated black M36 and M64 HV-bolt sets with 
normative S-N curves from EC 3 and VDI 2230 

 

Figure 3-28: Comparison of experimental results for hot-dip galvanized M36, M48 and M64 HV-bolt sets 
with normative S-N curves from EC 3 and VDI 2230 

The S-N curves from VDI 2230 with consideration of the additional reductions for System HV nut 

geometries and, if applicable, galvanized boundary layer, provide a safe approximation of the en-

durance limit for all bolt configurations tested in the TEL (i.e., M36 B / NT / HT and M48 NT). How-

ever, in the upper HCF the fatigue strength is overestimated. Throughout the spectrum of considered 

bolt configurations, numerous failures of test specimens occurred at load cycles below the corre-

sponding fatigue curves from the guideline. As visible in Figure 3-28, for hot-dip galvanized bolts this 

tendency is increasingly pronounced at larger bolt diameters and especially at the tested M64 bolts. 
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Solely at the upper tested load horizon of the M48 bolts all test runs lie above the design S-N curve 

from the guideline. However, the comparison to the further test results emphasizes the probably 

present beneficial impact of the reduced mean stress level to obtained fatigue life at this high load 

level. It can be concluded that the experimentally found reduction of fatigue strength at the NT-

galvanized M64 HV-bolts in the upper HCF is not covered by the guideline. It is noted that besides 

the increased diameter also the low testing frequency needs to be kept in mind as potential unfa-

vourable impact factor. Still, among all here considered results, in terms of frequency and mean load 

level, the test series on M64 bolts provides the closest approximation of the loading conditions in 

practical application of HV-bolt sets. A superior coverage of the test results could be achieved by 

shifting the kink of the S-N curve from 2∙106 to 1∙106 load cycles, at an unvaried endurance limit.  

Regarding the superior classification of black compared to hot-dip galvanized bolts, considered in 

the guideline, the same restrictions apply as noted in the context of the evaluation of the EC 3 fatigue 

curves.  

3.6.2 Assessment of diameter reduction functions  

As the juxtaposition of test results for hot-dip galvanized large-size HV-bolt sets and normative S-N 

curves of the EC 3 has revealed, in consequence of the diameter dependent reduction of the appli-

cable fatigue class FAT 50, endurable load cycles are underestimated. Thus, for a closer evaluation 

of the size-reduction function included in the standard, the available test results were evaluated, 

using the statistical assessment methodology which is applied for a consistent and comparable clas-

sification of structural details into the fatigue class catalogue of the Eurocode 3 (consulted in Sed-

lacek et al., 2003, 2007). Thereby, a linear regression analysis of the logarithmized load cycles until 

rupture is performed with a fixed predefined slope k = 3. In the evaluation, test runs with load cycle 

numbers between 1∙104 and 5∙106 are considered. Consequently, the fixed slope regression mutually 

encompasses both upper HCF and TEL. Based on the mean regression line with survival probability 

Ps,50%, a Student’s-t distribution can be used, also at low sample sizes, to statistically predict the 

parallelly progressing S-N curve with survival probability Ps,95%. From the latter, the characteristic 

reference fatigue strength is extracted at N = 2∙106 load cycles. This represents the benchmark for 

the fatigue strength classification. 

Figure 3-29 illustrates the obtained results with the above described evaluation method for the test 

series on NT hot-dip galvanized HV-bolt sets M36, M48 (taken from Marten, 2009) and M64. To 

enable a direct comparison to the fatigue detail classification from EC 3, contrary to the customary 

applied form of result presentation in this dissertation, fatigue levels are expressed in nominal stress 

ranges instead of amplitudes. Besides the underlying test results and fixed slope regression lines 

with 50 % and 95 % survival probability, the experimentally determined reference fatigue strengths 

at 2∙106 load cycles are depicted in the figure as red coloured dots. The corresponding characteristic 

fatigue strength from the Eurocode ΔSc, calculated for fatigue class FAT 50 with the respective di-

ameter dependent reduction (see Eq. 2-5), are indicated by the yellow dots. Furthermore, the nor-

mative fatigue curves without size reduction are shown by the blue lines, as additional reference. 



Assessment of normative regulations  79 

 

 

Figure 3-29: Evaluation of test results by linear regression of logarithmic load cycle numbers with fixed 
slope of S-N curve for NT hot-dip galvanized HV-bolt sets of diameter M36 (a), M48 (b) and M64 (c) 
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Even though only few test runs fall below the normative S-N curve for fatigue class FAT 50 without 

diameter consideration, the experimental reference fatigue strength values for both M48 and M64 

bolts are smaller than the original fatigue class reference of ΔSc = 50 N/mm². Hence, the statistical 

evaluation highlights that a diameter related reduction of the considered fatigue strength is generally 

appropriate for bolt sizes larger than M36. Nevertheless, the results indicate that the actual diameter 

related effect is smaller than estimated by the Eurocode.  

To highlight this circumstance, the experimentally determined and normative values for the diameter 

dependent characteristic fatigue values at N = 2∙106 are directly compared in Figure 3-30. Therein, 

additionally to the results illustrated in Figure 3-29, an alternative evaluation for the M48 HV-bolts is 

included, where the test runs with presumably overestimated fatigue strength at the uppermost 

tested load level were neglected (red triangular marker). Even with this conservative evaluation ap-

proach, a secure margin to the normative reference fatigue strength is maintained. Compared to the 

test results on the M48 bolts, no decisive further reduction of the reference fatigue strength is indi-

cated for the M64 bolts. Thus, the discrepancy to the normative size-reduction function increases.  

Certainly, between the comparison of the three test series, the tests performed by Marten (2009) on 

M48 HV-bolts are characterised by a notably larger result scatter (see Figure 3-29). This is due to 

the larger number of specimens and the fact that bolts from multiple manufacturers were included. 

As a consequence, the discrepancy between resultant mean S-N curve and outer bound of the scat-

ter band with Ps,95% is significantly larger than at the other two test series. The tests on M36 and 

M64 HV-bolts lack this level of statistical security. Nevertheless, also the evaluation of the M64 bolts 

is affected by a certain level of conservatism because only few experiments reached into the TEL. 

Due to the increasing fatigue life in this load level range, such tests have a beneficial effect in the 

applied evaluation procedure.  

 

Figure 3-30: Evaluation of the diameter dependent fatigue strength reduction considered in EC 3 based 
on experimental results by reference to the characteristic fatigue strength ΔSc (nominal stress range)  
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In short, it can be confirmed that the diameter related fatigue classification of large-size HV-bolts in 

the EC 3 provides a conservative design approximation. Even though not yet experimentally inves-

tigated, the evaluation strongly indicates that this also applies for a further increased diameter M72. 

Moreover, the here obtained results on M64 HV-bolts suggests that an adaption of the normative 

size-reduction function may be justified for bolt sizes larger M48. However, to this end an extended 

validation by use of additional fatigue investigations in this diameter range would be desirable. Po-

tential diameter related impact factors of large-size bolts are also further evaluated within the ana-

lytical fatigue investigations in Chapter 4. 

In VDI Guideline 2230 (2015) a potential size effect on the fatigue strength is considered within the 

diameter dependent calculation of the endurance limit Sa,D (see Eq. 2-6). In terms of its statistical 

interpretation, the latter may directly be related to the endurance limit determined in constant ampli-

tude experiments, such as performed in the framework of this dissertation on M36 bolts with the 

staircase method (see Chapter 3.3). Consequently, the reference value of the fatigue curves from 

VDI 2230 needs to be distinctly differentiated from the statistical evaluation of the characteristic fa-

tigue strength ΔSc, used in EC 3. 

Figure 3-31 shows the comparison of the normatively estimated, diameter dependent endurance 

limit and available experimental results for hot-dip galvanized HV-bolt sets. Additionally to the test 

performed within the frame work of the thesis at hands, relevant previous studies by Ber-

ger et al. (2008) and Marten (2009) are considered (see Chapter 2.1.5). The design values of the 

fatigue strength in VDI 2230 are stated with an estimated (theoretical) survival probability Ps,99%. 

However, for the here aspired assessment it is preferable to consult the median reference values 

with Ps,50%. In this way, statistical uncertainties, which arise from determination of the outer bound 

of the scatter band and varying sample sizes, can be limited. In accordance with the conventions of 

the VDI Guideline, fatigue loading here again is expressed in terms of nominal stress amplitudes Sa 

instead of ranges ΔS.   

The reduction of the endurance limit with increasing diameter, displayed by the available experi-

mental results up to diameter M48, is generally reflected well by the calculation formula used in the 

guideline. By addition of the here established experimental results for diameter M36 to the previously 

existing test basis the verification of the normatively considered behaviour is improved. Moreover, 

the comparable order of magnitude of the results on M36 and M48 bolts confirms the mitigation of 

the diameter impact at larger bolt sizes. The observed tendency of a presumably slightly reduced 

endurance limit of here tested NT hot-dip galvanized M64 compared to M36 bolts qualitatively 

matches the assumed progression of the diameter function in the guideline. However, as mentioned 

before, no verified prediction can be made about the actual magnitude of the endurance limit of the 

M64 bolts because of the low number of available test results. A verification of a secure approxima-

tion of the endurance limit by VDI 2230 for bolt sizes larger than M48 is yet to be performed. More-

over, despite the verifiably adequate estimation of the endurance limit for the experimentally proven 

diameter range, it is anew noted that the fatigue life of galvanized HV-bolts in the upper HCF is, to a 
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certain degree, overestimated by the VDI 2230 fatigue curves, especially for diameter M64 (see 

Section 3.6.1).  

 

Figure 3-31: Evaluation of the diameter dependent fatigue strength reduction considered in VDI 2230 
based on experimental results by reference to the endurance limit Sa,D (nominal stress amplitude) 

3.6.3 Assessment of damage accumulation hypotheses  

For the actual fatigue assessment of bolts – and other structural components – at service loading, 

design procedures require the application of appropriate damage accumulation hypotheses. In prac-

tical application, this usually implies an adaption of Miner’s-rule (Eq. 2-4) for consideration of poten-

tial damage of load cycles below the constant amplitude endurance limit. The damage calculation is 

thereby based on the original constant amplitude S-N curve. The most common adaptions of the 

Miner hypothesis were introduced in Chapter 2.1.3. 

Deriving from different technical origins, the two technical regulations DIN EN 1993-1-9 (2010) 

(EC 3) and VDI Guideline 2230 (2015) pursue variant approaches for the assessment of variable 

amplitude service loading. With the main focus on application in structural engineering, the EC 3 

inherently implies the damage accumulation with the modification of the Miner hypothesis by Hai-

bach (1970), on the basis of the regulation’s standardized S-N curves. On the contrary, the applica-

tion of VDI 2230 for mechanical engineering purposes is not primarily intended for a comparable 

verification of service loads at multiple load levels, as aimed for in the EC 3. The references for the 

fatigue resistance of bolts are given for a fatigue safe design with maximum load levels of either 

constant or variable amplitude collectives below the endurance limit or for dominantly constant am-

plitude loading in the upper HCF. However, Weber (2010) proposed an extended service load as-

sessment procedure with the VDI 2230 fatigue curves, based on a Miner’s rule modification by 

Hück et al. (1988). A reference to this proposal is included in the guideline since the revision of 2014. 
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In the sequel, the variable amplitude loading tests on M36 HV-bolts described in Chapter 3.5 are 

used to evaluate different variants of Miner’s-rule given in the literature and considered in the design 

regulations. Despite the limited number of performed tests and scope of evaluation compared to 

extended studies on fatigue damage progression at service loading as performed by Weber (2010) 

or – for welded connections - by Al Shamaa (2015), the tests enable a valuable fundamental assess-

ment of suitability of the most relevant damage accumulation hypotheses for the application to large-

size HV-bolts. The implementation of the subsequently shown damage calculations was assisted by 

the work of Kielbus & Abe (2016) for their seminar paper.    

In a first step, damage accumulations are evaluated based on the S-N curves (survival probability 

Ps,50%) from the original fatigue test results of M36 HV-bolts with constant amplitude loading. The 

thereby considered variants of the Miner hypothesis are the “original” and “elementary” form as well 

as the modification by Haibach (1970) (see Figure 2-5). Moreover, calculations with the Miner adap-

tion proposed by Hück et al. (1988) are included. Based on the underlying constant amplitude S-N 

curve, defined by endurance limit Sa,D, load cycle number at the knee point ND and slope k in the 

upper HCF, theoretically endurable load cycles Ni for a specific stress amplitude Sa,i can be calcu-

lated with the below formulas Eqs. 3-6 to  3-11. 
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 k*  Miner original Eq.  3-8 

 k* k  Miner elementary Eq.  3-9 

  k* 2k 1 Miner / Haibach (1970)  Eq.  3-10 
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 Miner / Hück et al. (1988)  Eq.  3-11 

Contrary to the other damage accumulation hypothesis, the modification by Hück et al. considers a 

variant slope of the S-N curve below the constant amplitude endurance limit, which is adapted based 

on the magnitude of the maximum stress level Sa,max of the respectively considered load collective. 

Thereby, a higher slope and thus lower damage contribution of fatigue load levels below the endur-

ance limit is considered with decreasing Sa,max. Moreover, the slope can be specifically adapted by 

the parameter C to account for characteristics of the analysed structural component (e.g., geometry 
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or material) and loading conditions (e.g., mean stress level, shape of the present load collective). 

For preloaded bolts Weber (2010) recommends values C ≈ 0.3 – 1.0.  

Figure 3-32 shows the comparison of the test results at variable amplitude loading of NT-galvanized 

M36 HV-bolts to fatigue damage calculations of the corresponding loading sequence, performed with 

the different damage accumulation hypotheses. Moreover, the experimental S-N curve at constant 

amplitude loading, used as basis for the damage calculation, is shown as reference. In all depicted 

analytical calculations failure is assumed at a damage sum of D = 1.0. At the uppermost load level 

(L1), where the loading sequence is strongly dominated by amplitudes above the constant amplitude 

endurance limit, all Miner variations approximate closely the experimental results. This validates the 

general suitability of the underlying hypothesis of linear damage summation (Eq. 2-4). At decreasing 

load levels, the best approximation of the experimental results is provided by the original form of the 

Miner hypothesis (i.e., neglecting any potential damage contribution below the constant amplitude 

endurance limit). Still, the visible shortfall of the experimental results at load levels L3 and L4 to the 

Miner-original fatigue-life curve indicate that an adaption of the hypothesis is required. 

While notably deviating from the theoretical lower bound with the elementary Miner adaption, the 

popular Miner modification by Haibach still shows a rather conservative tendency. The two depicted 

calculations with the Miner modification by Hück et al. highlight the potential of improving the calcu-

lation results by adapting the introduced C-parameter. Confirming the suggestion by Weber (2010), 

a calculation with C = 1 can be regarded suitable for the investigated HV-bolts. Thereby, also the 

single test-run classified as run-out, which reached into the very high load cycle range close to 

N = 108, is conservatively covered. A further improved approximation of the test results could be 

achieved when using notably higher C-values. However, this would require a meaningful validation 

by experimental results in the very high cycle range, which is neither given here nor by Weber (2010). 

 

Figure 3-32: Comparison of test results of NT-galvanized M36 HV-bolts at variable amplitudes to dam-
age calculations with different adaptations of Miner’s rule based on the experimental S-N curve 
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Analogous evaluations, as shown in Figure 3-32 for NT-galvanized M36 HV-bolts, were also per-

formed for the other two bolt configurations with HT-galvanized and uncoated, black boundary layer. 

Since the results exhibit equivalent tendencies as described above, they are not shown here but 

included in Appendix A.4. It is noted, however, that the experimental results of these two test series 

exhibit an even stronger affinity to the calculation with the original Miner hypothesis.  

Finally, the variable amplitude test results are compared to corresponding calculations with the ser-

vice load assessment approaches and underlying S-N curves from EC 3 and VDI 2230 in Figure 

3-33. To fully utilize the available test background, experimental results for both NT- and HT-galva-

nized M36 HV-bolts are shown. For the proposed application of the Miner modification by 

Hück et al. (1988) to the VDI 2230 design S-N curves, Weber (2010) recommends a conservative 

consideration of parameter C = 0.3 as well as a reduced failure indicating damage sum D = 0.9. He 

also implied that in the service load verification the knee point ND of the original VDI 2230 S-N curves 

would need to be adapted from 2∙106 to 1∙106 load cycles. It is noted that Weber had intended the 

analytical procedure for an approximative design, which would afterwards be supplemented by a 

detailed experimental based dimensioning. He therefore proposed the application of the adapted 

VDI guideline’s S-N curve based on the endurance limit given in the guideline for 50% survival prob-

ability. An experimental based design is, however, unpractical for very high load cycle collectives, 

characteristic for large-size HV-bolts in wind turbine structures. Thus, the here presented calcula-

tions consider the guideline’s actual design fatigue strength (i.e., factor 0.85 included in Eq. 2-6). In 

the underlying S-N curves of both regulations, VDI 2230 and EC 3, the respectively considered di-

ameter reductions are included. No “cut-off” limit was used. 

 

Figure 3-33: Comparison of test results of hot-dip galvanized M36 HV-bolts (NT and HT) at variable 
amplitudes to damage calculations with normative design S-N curves
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The comparison to the test results verifies a conservative tendency to both considered design ap-

proaches. When using the adapted design S-N curve of VDI 2230 with ND = 1∙106, at the experimen-

tally proven load horizons the consideration of a failure indicating damage sum D = 0.9 leads to an 

even lower fatigue life estimation than obtained with the EC 3 approach. It can therefore be regarded 

acceptable to increase the decisive damage sum to D = 1.0. In the moderate load cycle range, both 

design approaches then lead to equivalent results. It is, however, emphasized that the proposed 

adaption of the knee point (ND) is strongly advisable, when using the VDI 2230 S-N curve for design 

purposes. As highlighted by an additionally performed damage calculation with ND = 2∙106, shown in 

Figure 3-33 by the thinner dashed blue line, similar to the validation of the constant amplitude S-N 

curves (Chapter 3.6.1), endurable load cycles are overestimated when using the guideline’s original 

recommendation.  

Even though no decisive validation by experimental results is given, the evaluations in both Figure 

3-32 and Figure 3-33 strongly indicate that at low load levels the design approach of the EC 3, im-

plying the Miner modification by Haibach, includes a high degree of conservatism. It seems plausible 

to assume that, especially at load collectives dominated by amplitude below the endurance limit, the 

standard’s design procedure leads to a significant underestimation of endurable load cycles. A less 

conservative fatigue life estimation in the very high load cycle range is obtained with the adapted 

design approach according to VDI2230 and Weber. 

3.7 Findings 

In the previous chapter, comprehensive experimental fatigue investigations on large-size HV-bolt 

sets were presented. Tests were performed on bolts of diameter M36 as well as very large diameter 

M64. Additional to conventional fatigue tests with constant amplitude loading, the fatigue character-

istics on bolt diameter M36 were also validated in tests with variable loading sequences, which su-

periorly reflect the actual service loading conditions experienced by large-size HV-bolts. For all tests 

it was prerequisite to ensure a representative high mean stress level, which corresponded to the 

nominal preload of the HV-bolts. To investigate the impact of the boundary layer, specimens with 

uncoated black surface as well as hot-dip galvanizing, established with different process tempera-

tures, were included in the series. 

From the performed experimental investigations, the subsequently summarised findings could be 

derived: 

Impact of hot-dip galvanizing 

It was verified that hot-dip galvanizing of large-size HV-bolts achieved with both normal (~450 °C) 

and high (~550 °C) process temperature causes a substantial decrease of the endurance limit (ap-

prox. 20 % to uncoated surface conditions) as well as the fatigue strength in the upper high cycle 

fatigue range. The found impact was of equivalent magnitude and characteristic at both constant 

amplitude as well as service condition emulating variable amplitude loading. Given the compliance 

with studies from the literature on hot-dip galvanized structural steel components, most probably, 

the effect is caused by pre-existing shrinkage cracks in the zinc boundary layer, which reach up to 
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the base material surface. It can be assumed that at the tip of the shrinkage cracks premature fatigue 

cracks are initiated, hypothetically due to microscopic stress concentrations. 

Fatigue strength of HV-bolts with uncoated, black boundary layer  

For HV-bolts with diameter M64 and uncoated, black surface layer a severe reduction of the fatigue 

strength was found compared to the equivalents with diameter M36. Surface oxidation was excluded 

as possible reason. However, contrary to the hot-dip galvanized bolts, different lubrication charac-

teristics inside the paired thread might have had a potential negative impact. For a conclusive eval-

uation, further investigations are necessary. 

Impact of the bolt diameter 

A certain reduction of the experimentally determined fatigue strength of M64 compared to M36 HV-

bolts was also found for specimens with normal temperature hot-dip galvanizing. However, the im-

pact was significantly less severe than found at the uncoated specimens and the divergence reduced 

with decreasing load level. This hints to a potential overlaid impact of the testing frequency, which 

had to be reduced by a factor of about 10 compared between constant amplitude test on M36 and 

M64 bolts. Moreover, between the two test series other varying boundary conditions existed, such 

as the base material as well as the production batch and manufacturer. Taking this into account, the 

found deviations are within a reasonable order of magnitude of general statistical scatter and no 

critical impact of the increased bolt diameter is indicated. Still, the obtained experimental results 

mostly validate the fatigue characteristics in the upper high cycle fatigue range and further verifica-

tion concerning the endurance limit would be desirable. 

Applicability of high temperature hot-dip galvanizing 

The performed tests with both constant and variable amplitudes consistently indicate a slight im-

provement of the fatigue performance of M36 HV-bolts at an increased galvanizing temperature. 

However, with overlapping scatter bands statistical significance is limited. Moreover, irregular rup-

tures outside the paired thread at high temperature galvanized HV-bolts, which correlate to found 

zinc intrusions into the base material, suggest an impact of an unplanned failure mechanism. The 

irregularities were decisive only at low fatigue load levels, close to the endurance limit. Since in 

practical application of HV-bolts fatigue loading commonly reaches the very high cycle fatigue range, 

this is of specific relevance. The observed particularities indicate that at this loading conditions un-

expected failures might occur. Thus, without further investigation of the found effect, practical appli-

cation of high-temperature hot-dip galvanizing to bolts with diameter M36 needs to be regarded crit-

ical. For larger diameters high temperature galvanizing is to be omitted because of potential liquid 

metal assisted cracking. 

Design assumptions of DIN EN 1993-1-9 (Eurocode 3)  

It was experimentally verified that the applicable detail category FAT 50 from Eurocode 3 provides 

a secure design basis for black and normal temperature hot-dip galvanized HV-bolts with diameters 

up to M64. However, a superior fatigue classification within the boundaries of the standardized S-N 

curves of the Eurocode 3 is not justified by the results. Moreover, given the observed reduction of 
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fatigue strength at M64 HV-bolts, the application of a higher fatigue class FAT 71 for uncoated, black 

bolts is questionable. Further investigations are required to ascertain the specific boundary condi-

tions, which can ensure an improved fatigue performance, as found for black M36 HV-bolts. 

The appropriate statistical evaluation of test results from bolts with diameter M48 and M64 confirms 

that the considered reduction of the applicable fatigue class FAT 50 for diameters larger than M30 

is generally appropriate. However, the thus far available test results on large-size HV-bolts indicate 

that the diameter related reduction function used in Eurocode 3 overestimates the actually given 

effect of the bolt diameter. Moreover, the combination of the standardized progression of the norma-

tive S-N curves and the applied damage accumulation hypothesis can be considered to provide a 

high degree of conservatism in the service-life verification of HV-bolts, especially with load collectives 

dominated by smaller amplitudes. 

Design assumptions of VDI 2230 

For the application of the design S-N curves defined in VDI 2230 for hot-dip galvanized large-size 

HV-bolts, it is advisable to shift the knee point from 2∙106 to 1∙106 load cycles, while maintaining the 

specified endurance limit. Otherwise, endurable load cycles in the upper high cycle fatigue range 

are overestimated. At this condition, the proposed amendment by Weber (2010) for a service load 

verification based on the VDI 2230 S-N curves could be confirmed also for large-size HV-bolts. 

Thereby, when using the guideline’s specified design instead of mean values for the fatigue strength, 

the considered failure decisive damage sum may be increased from D = 0.9 to 1.0.  

For a superior classification of the fatigue strength of black compared to galvanized large-size HV-

bolts, the same restrictions apply as mentioned above for Eurocode 3.  
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4 Analytical Fatigue Investigations 

4.1 Evaluation methodology 

Analytical fatigue evaluations have the potential to meaningfully complement expensive and time-

consuming testing programs on large-size HV-bolts. Thus, an appropriate assessment method and 

its potentials are further investigated in this next major scientific segment of this dissertation. Figure 

4-1 shows the schematic depiction of the applied evaluation methodology. The approach is funda-

mentally based on the strain-life concept, introduced in Chapter 2.2, and the specific adaptions rec-

ommended by Schneider (2011) for the application to threaded fasteners. Indicated in the figure by 

the grey coloured boxes, the procedure can be effectively subdivided into three consecutive stages. 

In the course of the subsequently performed investigations, these stages are each systematically 

covered in a separate chapter. The aim of each chapter, which successively synthesize with each 

other, is to establish a fundamental understanding of impact factors and characteristics as well as to 

refine the assessment steps for applying of the analytical evaluation method to large-size HV-bolts. 

Chapter 4.2 covers performed experimental material analyses on the base materials of experimen-

tally investigated HV-bolts. On the one hand, this includes the determination of the materials’ stress-

strain behaviours at cyclic and monotonic loading. On the other hand, crucially, knowledge about the 

strain-fatigue life behaviour needs to be established. To this end, two different evaluation procedures 

with varying experimental effort are used and compared.  

The established material data serve as input for the evaluation of the local stress and strain devel-

opment inside the paired thread. Chapter 4.3 presents detailed numerical studies on the assessment 

of the local loading conditions at linear elastic and elastic-plastic material behaviour. Thereby, mod-

elling approaches with and without inclusion of the continuous pitch of the thread are considered and 

the effects of model upscaling to larger diameters is assessed. Lastly, the constitution of the stress-

strain response at cyclic loading under high mean stress is discussed and boundary conditions for 

the further evaluation are defined. 

Based on the determined local stress-strain response, derived from a given outer load-time se-

quence (here focussed on constant amplitude loading) and the materials’ strain-life behaviours, the 

actual fatigue damage assessment is enabled. The corresponding investigations are described in 

Chapter 4.4. In a first step, thorough evaluations focus on the qualified mean stress consideration 

with the aid of the damage parameters introduced in Chapter 2.2.4. Furthermore, the impact of meth-

odological variations derived from the previous two assessment stages are quantified in terms of the 

actually calculated fatigue life. Secondly, to amend the thus far enabled calculation of crack initiation 

load cycles with the strain-life approach, the fracture mechanics approach is used to analytically 

estimate the full load cycles until rupture. Moreover, an engineering approach is introduced which 

enables the incorporation of the boundary layer effect, induced by hot-dip galvanizing. 

In the previously described analytical fatigue calculations, validation is principally gained by compar-

ison to the results from the M36 HV-bolts’ fatigue tests, which provide the broadest experimental 



90   Analytical Fatigue Investigations 

 

background. Ultimately, in Chapter 4.5 extended sensitivity studies are presented, where the devel-

oped and refined analytical assessment method is applied for specific investigations of potential 

fatigue impact factors, such as the size effect or base material characteristics. Thereby, validation of 

the analytical approach is also extended to the available experimental results on large-size M64 as 

well as M48 HV-bolts.  

 

Figure 4-1: Schematic illustration of the applied analytical fatigue assessment methodology 
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4.2 Base materials description 

The previously described analytical fatigue assessment methodology, based on the strain-life con-

cept, requires knowledge about the characteristics of the bolts base material under monotonic and 

cyclic loading. While monotonic material characteristics are relatively easy to obtain from tensile 

tests, the determination of strain-dependent cyclic material parameters requires much higher testing 

efforts. Cyclic material data collections such as Boller & Seeger (1987) or the valuable online mate-

rial database Boller et al. (2008) provide comprehensive material data also for a number of relevant 

high-strength bolt materials. However, it is questionable whether or under which conditions the doc-

umented cyclic material parameters provide a suitable analysis basis or whether distinct material 

tests for the actual bolt material are necessary. This question is further investigated within the sen-

sitivity studies in Chapter 4.5. The subsequently described results of base material surveys for the 

experimentally investigated HV-bolts serve as analysis background.   

Within the research project “Experimental and analytical assessment of the fatigue strength of bolts 

with large dimensions under consideration of boundary layer effects” (Oechsner et al., 2015), a char-

acterisation of base material and boundary layer was performed for the M36 bolts, analysed in the 

experimental investigations presented in Chapters 3.3 and 3.5. Within the base material characteri-

sation, executed by the Chair and Institute for Materials Science, Technische Universität Darmstadt, 

cyclic material characteristics were determined in strain-controlled constant amplitude tests without 

mean strain. Moreover, strain-controlled tests under high mean strain were implemented to quantify 

the material’s cyclic relaxation behaviour. Additionally, monotonic material properties were deter-

mined in force controlled tensile tests for the M36 bolts’ base material as well as the base material 

of the bolts M64, examined in Chapter 3.4. 

Supplementing the available material data basis from the research project, additional material tests 

were performed to provide cyclic material data also for the investigated M64 bolts. Moreover, to 

enable further verification of the analytical fatigue assessment approach, material parameters were 

also determined for bolts of size M48, which were used for the fatigue tests by Marten (2009) (see 

Chapter 2.1.5). The required HV-bolts were made available from the remainders of the test series at 

the Institute for Steel Construction, Leibniz Universität Hannover. Due to the limited number of avail-

able specimens and in order to confine testing efforts, the required cyclic material parameters were 

determined by use of strain-controlled Incremental-Step-Tests (IST) and not constant amplitude 

tests (see Chapter 2.2.2). The inclusion of the M36 bolt material to the test program enables classi-

fication and direct comparison between results of the two testing procedures. The test series further 

comprised additional monotonic tensile tests for all materials. Practical implementation of the tests 

was commissioned to the Institute of Materials Science, Leibniz Universität Hannover. Scientific 

planning and evaluation was performed by the author. 

For all material tests the required test specimens were extracted directly out of the core of bolts, 

belonging to the corresponding manufacturing batch of the respective test series. To avoid influences 

of the surface conditions the specimens were mechanically polished. It has been verified by 

Oechsner et al. (2015) that, independently of the boundary layer state, the Vickers hardness of the 
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investigated M36 and M64 bolts is homogenous throughout the bolt diameter, confirming a high 

material manufacturing grade. Equivalent results are reported by Schneider (2011) for analogously 

investigated threaded fasteners. The investigations by Schneider also confirmed a good compliance 

between measured micro hardness along the bolt diameter and along the root of the thread. More-

over, Charpy V-notch tests by Stranghöner et al. (2018) on high-strength bolt materials did not show 

significant differences of results between specimens extracted from the bolts core and notch root 

surface area. It can thus be regarded as legitimate to utilize material characteristics determined on 

specimens from the bolts core for approximation of the material behaviour in the notched thread. 

Since all investigated bolts were rolled before heat treatment, they may be considered as free from 

residual stresses from the manufacturing process. 

The performed base material tests for the experimentally investigated HV-bolts are summarized in 

Table 4-1. In order to determine the required set of cyclic material parameters by IST, technically 

only two specimens per bolt material are required. However, to provide a broader evaluation back-

ground a slightly higher number of tests were performed. The quantity of actually performed IST was 

mainly defined by the number of available bolts and extractable specimens.  

Table 4-1: Examined high-strength bolt materials and number of considered specimens for mono-
tonic and cyclic material tests 

HV-bolts Material 
Tensile 
tests1/2 

Strain-controlled cyclic tests 

Constant amplitudes1 
Incremental- 
Step-Tests2 

(εm = 0) (εm > 0) (εm = 0) 

M36x270 10.9 

(B) 

32CrB4 

4 / 0 8 4 3 

(NT) 0 / 4 

- - 

4 

(HT) 0 / 8 5 

M64x450 10.9 
(B) 

30CrNiMo8 
2 / 8 7 

(NT) 2 / 0 0 

M48x275 10.9 (NT) 34CrNiMo6 0 / 4 4 

1 performed by the Chair and Institute for Materials Science, Technische Universität Darmstadt (Oechsner et al., 2015) 
2 performed by the Institute for Steel Construction and the Institute of Materials Science, Leibniz Universität Hannover 

 

4.2.1 Monotonic loading 

Monotonic material properties were determined in tensile tests referring to DIN EN ISO 6892-1 (2017 

and 2009). Figure 4-2, left shows the comparison of the obtained material strength values for all 

investigated material configurations under distinction of the boundary layer state of the bolts from 

which specimens were extracted. Additional to the depicted mean values represented by the main 

bars, the error bars show the maximum and minimum values from the underlying data. The number 

in brackets indicates the number of considered specimens. 



Base materials description   93 

 

 

Figure 4-2: Means and scatter of materials strength values (left) and selected representative mono-
tonic stress-strain relations (right) of investigated bolt materials 

All materials fulfil the requirements of strength class 10.9 regarding tensile strength 

(Rm ≥ 1040 N/mm²) and 0.2%-plastic strain limit (Rp,0.2 ≥ 940 N/mm²) from DIN EN ISO 898-1 (2013). 

For the M36 bolt material 32CrB4, the material specimens extracted from HT-galvanized bolts show 

a reduced material strength compared to specimens from bolts with the other two boundary layer 

configurations. This tendency was also observed by Oechsner et al. (2015) in tensile tests on whole 

M36 bolts from the same manufacturing batch as investigated here, as well as in tensile tests on 

notched and un-notched small specimens (d0 = 6 mm) of the same material composition. A possible 

cause is the modification of the materials microstructure at the high galvanizing temperature of ap-

proximately 550°C, which is above the applied tempering temperature of approximately 500 °C.  

An improvement of material strength for specimens extracted from NT-galvanized compared to black 

bolts, as observed here for the M36 bolt material 32CrB4, was not present in the aforementioned 

results from Oechsner et al.. Moreover, for the M64 bolt material 30CrNiMo6 the measured material 

strength at specimens extracted from the NT-galvanized bolts was slightly lower than at their equiv-

alents from uncoated, black bolts. Presumably, the detected differences between black and NT-

galvanized base conditions can mostly be ascribed to generally existing scatter and the low number 

of considered specimens. Throughout the test series, a notable scatter of material strength values 

was also observed for specimens extracted from different bolts with the same boundary layer con-

figuration. 

Figure 4-2, right shows full monotonic stress-strain relations from tensile tests, which are representa-

tive for the means of the respective material conditions. All materials show a notable amount of 

ductility and plastic strains at the tensile strengths level Ag of around 5 %. For the specimens from 

NT- galvanized M64 bolts, which are not represented in the figure, no full stress-strain results were 

available to the author. The mean values of the obtained monotonic material parameters are sum-

marized in Table 4-2. The individual test results can be found in Appendix B.1. 

32CrB4

30CrNiMo8 (M64 - B) 

34CrNiMo6 (M48 - NT) 

(M36 - B) 

“

“
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(M36)
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(M48)

(4)

(4)

(8)
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Table 4-2: Summary of monotonic material parameters from tensile tests (mean values) 

 

Parameter / 
Material 

Rp,0.2 Rm E Ag A 

[N/mm²] [N/mm²] [N/mm²] [%] [%] 

32CrB4  
(M36) 

B 1044 1116 214290 4.4 n. d. 

NT 1074 1156 207456 4.8 14.7 

HT 1011 1094 216173 5.1 15.3 

30CrNiMo8  
(M64) 

B 1015 1134 203675 5.4 15.9 

NT 990 1116 203600 5.3 n. d. 

34CrNiMo6  
(M48) 

NT 1030 1123 207261 5.1 15.6 

 

4.2.2 Cyclic loading without mean strain (εm = 0) 

Material curves from strain-controlled constant amplitude tests 

Figure 4-3 shows the test results from the constant amplitude tests on the M36 bolt material 32CrB4, 

given in Oechsner et al. (2015), together with the resulting strain-life curve according to the descrip-

tion by Manson, Coffin and Morrow (Eq. 2-8) and the cyclic stress-strain curve by use of the Ram-

berg-Osgood equation (Eq. 2-9). The comparison of the cyclic stress-strain curve to the additionally 

depicted monotonic material behaviour highlights the cyclic softening characteristic of the material.  

Since stress amplitudes decreased especially throughout the initial phase of the strain-controlled 

tests, following common conventions (e.g., see Radaj & Vormwald, 2007, el Dsoki et al., 2008), the 

stabilized stress amplitudes were adopted from the test runs at half of the load cycles until initial 

cracking (1/2 ∙ Nc). An exemplary test result depiction, which illustrates the transient stress behaviour 

during the constant strain amplitude tests, is given in Appendix B.2. 

In the literature, different regression approaches with varying degrees of complexity are proposed 

for determination of the relevant cyclic material parameters. Wächter (2016) has shown that methods 

with higher complexity, for example a 3-dimensional regression according to el Dsoki et al. (2008), 

do not lead to superior results regarding the assessment of the median strain-life and cyclic stress-

strain curves. Since the relatively low number of available test specimens does not provide a valid 

basis for determination of full statistical scatter of the cyclic material curves, the estimation of the 

outer domains of the probability distribution was not aim of this analysis. Hence, a linear regression 

of the logarithms of elastic and plastic parts of the strain-life curve based on the least squares method 

was used, whereby the squares of the distances were minimized in direction of the load cycle num-

ber. With this standard procedure for evaluation of linearized stress- or strain-life, described for ex-

ample in ASTM E739 (2010) or Wächter (2016), the parameters for the analytical strain-life curve 

representation were determined. The parameters for the Ramberg-Osgood equation were then de-

rived by use of the compatibility conditions (Eq. 2-10 and Eq. 2-11). The resulting cyclic material 

parameters are given in Table 4-3. 

[N/mm²]

[%]

0.2

Rp,0.2

Rm

AAg

E
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Figure 4-3: Cyclic material curves of M36 bolt material 32CrB4 derived from strain-controlled tests 
with constant amplitudes by Oechsner et al. (2015); left: strain-life curve; right: cyclic stress-strain 
curve 

Material curves from strain controlled Incremental-Step-Tests 

For each examined material Incremental-Step-Tests (IST) were performed at two different strain 

levels with maximum strain amplitudes differing by a factor of ~2. The load series, depicted in Figure 

4-4, were defined as repetitive blocks with stepwise de- and increasing peak strains with a constant 

strain increment after every half-cycle. As such, each block consisted of two point-symmetrical half 

blocks with a number of p = 20 load cycles with linearly changing strain amplitudes. 

 

Figure 4-4: Load sequences of Incremental-Step-Tests 

Test results:

Regression acc. to 

Manson, Coffin & Morrow

Regression acc. to 

Ramberg & Osgood

Strain-life curve Cyclic stress-strain curve

1 block (2p)

half block

“down”

half block

“up”
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Figure 4-5 exemplary shows the stress-strain paths of two loading blocks of an IST with strain level 

εmax = 1.2 % for the M36 bolt material 32CrB4. The visible cyclic softening process, indicated by the 

decline of peak stresses during the first loading block (Figure 4-5, left), stabilized after run-trough of 

the initial blocks. The loading sequence was continued until the initiation of a technical fatigue crack 

was indicated by renewed destabilization of the cyclic stress-strain behaviour (see Appendix B.2). 

The parameters of the cyclic stress-strain relation according to Eq. 2-9 were determined by a ‘best-

fit’ regression analysis of the peak values of a stabilized loading block; in analogy to the constant 

amplitude strain-controlled tests, this was performed at a block at half of the load cycles until crack 

initiation (1/2 Nc) (Figure 4-5, right). 

 

Figure 4-5: Stress-strain path of the first loading block (left) and a stabilized loading block at 1/2 Nc 
(right) from IST for M36 bolt material 32CrB4 (specimen extracted from black bolt) with εmax = 1.2 % 

Applying a rain-flow cycle count (e.g., Clormann & Seeger, 1986), one full block generates a number 

of 2p = 40 closed hysteresis loops. Following the procedure proposed by Vormwald & See-

ger (1988), the strain-life curve approximations were determined based on the calculated damage 

of the plastic parts of the strain amplitudes. Subsequently the calculation procedure is described. 

The plastic strain- as well as the corresponding stress amplitudes of the applied load series can be 

computed from the determined Ramberg-Osgood relation (Eq. 2-9). According to the strain-life curve 

description by Manson, Coffin and Morrow (Eq. 2-8), the number of endurable load cycles until dam-

age (i.e., initial cracking) Nc,k for a single plastic strain amplitude of the load sequence εa,p,k can then 

be calculated with Eq. 4-1:  

 
 

  
 

1

c
a,p,k

c,k

f

1
N

2 '
  Eq.    4-1 

For an IST with the running number j the known number of load cycles until crack initiation Nc,j can 

equivalently be expressed by the number of loading blocks passed through mj. Assuming validity of 

Miner’s-rule and linear damage accumulation, each block causes equal damage Dblock,j and the fail-

ure condition for an IST can be stated as: 

Regression

Ramberg & Osgood



Base materials description   97 

 

 


 

        
j j2p 2p1 1

c c
j block,j j j f a,p,k,j

k 1 k 1c,k,j

1
m D   m   1  m 2 ( ' )  ( )

N
 Eq.    4-2 

With two unknown material constants, the division of the equations Eq. 4-2 for the two IST with 

different maximum strain amplitude (j = 1 and j = 2) but equivalent cyclic stress-strain relations pro-

vides a system of equations, where the cyclic ductility exponent c can be determined iteratively: 
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( )

 Eq.    4-3 

With parameter c known, solving Equation 4-2 followed by the conditions of compatibility Eq. 2-10 

and 2-11 enables the determination of the remaining material constants.  

Figure 4-6 shows the fatigue results of the performed IST at the two different strain levels as input 

for the calculation procedure, described above. It becomes clear that with the present limited number 

of tests and considerably overlapping scatter of results no distinct differentiation between the 32CrB4 

material specimens from bolts with different boundary layer conditions (B, NT, HT) is enabled by the 

results. In the comparison between the different analysed materials certain observations are possi-

ble. For all IST on both investigated load levels higher endurable load cycle numbers were obtained 

for the M48 bolt material 34CrNiMo6 than the M64 bolt material 30CrNiMo8. Thereby, consistently 

the fatigue results of the former material lie in the upper and of the latter material in the mid to lower 

range of the scatter of results for M36 bolt material 32CrB4. In the following section, the resultant 

cyclic material curves are compared and discussed.  

 

Figure 4-6: Fatigue results of IST at different strain levels in terms of endurable blocks until crack 
initiation and corresponding load cycles as input for determination of strain-life curve   
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Comparison of cyclic material curves 

The comparison of the cyclic material curves for all investigated bolt materials determined with dif-

ferent experimental procedures is presented in Figure 4-7. The corresponding material parameters 

are given in Table 4-3.  

 

Figure 4-7: Comparison of cyclic material curves 

Table 4-3: Cyclic material parameters from strain controlled tests without mean strain (εm = 0) 

Parameter / 
Material 

E (cycl.) σ’f ε’f b c K’ n’ 

[N/mm²] [N/mm²] [-] [-] [-] [N/mm²] [-] 

Constant Amplitude Tests: 

32CrB4 
(M36 – B) 

207638 1195 4.194 -0.056 -0.873 1090 0.064 

Incremental-Step-Tests (IST): 

32CrB4  
(M36) 

B 216470 1578 0.359 -0.093 -0.571 1864 0.163 

NT 222823 1587 0.349 -0.092 -0.565 1882 0.162 

HT 216840 1475 0.334 -0.089 -0.557 1758 0.160 

30CrNiMo8  
(M64 - B) 

218526 1516 0.308 -0.083 -0.562 1804 0.148 

34CrNiMo6  
(M48 - NT) 

218942 1668 0.418 -0.010 -0.577 1940 0.173 

32CrB4 IST

30CrNiMo8 IST 

34CrNiMo6 IST

(M36 - B) 

“
“

(M36 - NT) 

(M36 - HT) 

32CrB4 Const A (M36 - B)

(M64 - B) 

(M48 - NT) 

Strain-life curves Cyclic stress-strain curves
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The given cyclic stress-strain curves from IST are determined as means from the tests with higher 

strain level εmax = 1.2 %. For all investigated material configurations the individual stress-strain rela-

tions from different specimens showed a high compliance. Thus, the here depicted means can be 

considered as representative. Caused by the deviating test procedure a diverging material response 

is present, especially at higher strain amplitudes εa > ~ 0.3 %. This known phenomenon can be ex-

plained with a deviating microstructural slipping behaviour under constant und variable amplitudes 

(see Wagener, 2007).  

For material 32CrB4, similar to monotonic conditions, the stress-strain relation of specimens from 

HT-galvanized bolts lies below its equivalents from black and NT-galvanized bolts. However, con-

sidering the lower initial monotonic stress level, the amount of peak stress decline, caused by cyclic 

softening, is in a comparable order of magnitude as for the other two configurations. No additional 

impact from the introduced temperature during galvanizing can be detected. The proximity of the 

cyclic stress-strain curves for black and NT-galvanized base conditions of the 32CrB4 material con-

firms the earlier stated assumption that the higher monotonic strength values detected for NT-galva-

nized conditions can mainly be ascribed to scatter and a low number of considered specimens. Still, 

a slightly higher stress level is also visible from the cyclic test results. For the further two investigated 

bolt materials, specimens for IST were only extracted from bolts with one boundary layer configura-

tion. 

Since no clear production state related tendency (B, NT, HT) could be derived from the fatigue re-

sults, the IST based strain - life curves for material 32CrB4 were calculated with the means of the 

loading blocks until crack initiation throughout all tested specimens. Thereby the boundary layer 

state of the bolts from which specimens were extracted is disregarded. Still, the depicted strain-life 

curves are calculated with the distinct cyclic stress-strain relations, determined for the three produc-

tion conditions. However, these had no significant effect on the resultant strain - fatigue life relations.  

In the region of moderate load cycle numbers, the IST based strain-life curve from the M36 bolt 

material 32CrB4 provides a good approximation of the corresponding fatigue curve from constant 

amplitude tests. In the region of lower strain amplitudes and load cycle numbers Nc > ~5∙104 an 

advancing lower deviation occurs. This tendency is generally acknowledged by the developer of the 

applied evaluation procedure (see Chapter 2.2.2). However, also the strain-life curve from the con-

stant amplitude tests lacks experimental representation at high load cycle numbers (see Figure 4-3).  

Between the three investigated bolt materials certain deviations of progress of their strain-life curves 

arise from the fatigue results (see Figure 4-6). Nevertheless, since the original purpose of the IST 

based evaluation procedure was to provide a general approximation of strain-life curves, using a low 

number of specimens, the results most of all emphasize that the investigated bolt materials exhibit 

fairly comparable cyclic characteristics.   
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4.2.3 Cyclic loading with high mean strain (εm > 0) 

Figure 4-8 shows the stress-strain histories from two strain-controlled material tests on M36 bolt 

material 32CrB4 under high mean strain performed by Oechsner et al. (2015). The depicted results 

were provided to the author by the Chair and Institute for Materials Science, Technische Universität 

Darmstadt. Additionally, the cyclic-stress strain curve derived from constant amplitude tests without 

mean strain is plotted for comparison in the red dashed lines. The results show a successive cyclic 

relaxation of the upper and respectively the mean stress level of the cyclic hysteresis, which in-

creases with the strain amplitude. The test results of all performed material tests under high mean 

strain, given in Oechsner et al. (2015), are presented in Figure 4-9. 

 

Figure 4-8: Stress-strain histories from tests on M36 bolt material 32CrB4 with high mean strain 
εm = 1.1 % performed by Oechsner et al. (2015) 

 

Figure 4-9: Results of strain-controlled tests under high mean strain εm = 1.1 % for M36 bolt material 
32CrB4 according to Oechsner et al. (2015)
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Since not in all tests the stress level reached a plateau during cyclic loading, the ‘stabilized’ upper 

stress was determined by the stress level before detection of initial cracking. The amount of cyclic 

relaxation Δσo,relax is calculated as difference to the maximum stress level after initial loading. Con-

sidering the expectable scatter of results and the limited number of the effortful tests, only a general 

approximation of the relation between strain amplitude and cyclic relaxation can be determined from 

the results. For consideration within the analytical fatigue calculation, a linear regression function is 

used. Thereby, it is assumed that for strain amplitudes below ~0.1 % no decline of the cyclic stress 

level occurs. 

4.2.4 Conclusions for application of material data in analytical fatigue calculations 

For the further application of the determined base material properties in analytical fatigue calcula-

tions the following conclusions apply: 

 Differences in the cyclic material curves mainly arise from the two methods investigated for their 

determination (i.e., constant amplitude tests and IST). The three bolt materials investigated by 

IST show a rather comparable cyclic behaviour. 

 The original purpose of the IST based investigation method is to provide a general approximation 

of the strain-life curve, based on a low number of test specimens. Hence, the procedure is not 

suitable to profoundly detect influences of the previous production state (B, NT, HT) of the bolts 

from which specimens where extracted. For a detailed study, comprehensive series with con-

stant amplitude tests would be required. Based on the available data, no significant effect of the 

production condition is detectable, although a possible influence cannot entirely be precluded, 

either. The highest validity of the IST based strain-life curves can be presumed when neglecting 

a possible impact of the production condition to the endurable load cycles and using the resulting 

means throughout all performed IST of the respective material. 

 No endurance limit was determined, and strain-life curves from both procedures lack experi-

mental background for higher load cycle numbers. Therefore, results from analytical calculations 

at lower stress and strain levels must be considered with care. 

 Strain controlled tests under high mean strain were only performed for one material, and with a 

limited number of specimens. Therefore, the results need to be regarded as a rather general 

approximation of the occurring order of magnitude of cyclic relaxation. 
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4.3 Assessment of local loading conditions 

4.3.1 Description of numerical models 

The local stresses and strains inside the bolt thread are determined with finite element (FE) models 

of HV-bolt sets, using the software package ANSYS 17.2 (APDL). The geometric properties are set 

according to the relevant normative standards, particularly DIN EN 14399-4 (2015), DASt - Guideline 

021 (2013) and the DIN 13 series. In order to avoid restraint of radial nut widening (see Chapter 

2.2.3), models consist of all relevant parts of the clamping package, including washers and flanges. 

Model constrains (boundary conditions – BC) were defined at the horizontal parting surfaces be-

tween the circular clamping bodies. As such, the models provided a strong geometric approximation 

of the experimental test set-up for bolt tests under axial loads (see Chapter 3). Accordingly, loading 

is applied as stress directly to the bolt shaft. 

An elaborate basis of the used models was developed by Marten in his studies on large-size HV-

bolts performed at the Institute for Steel Construction (see Marten, 2009). For the here presented 

investigations the models were specifically refined for the calculation with non-linear material prop-

erties and especially adjusted in terms of modern element technologies, required contact definitions 

and mesh densities. Large parts of the subsequently described numerical studies only became pos-

sible because of the powerful computational hardware capacities provided by the Leibniz Universität 

Hannover (Leibniz Universität IT Services - LUIS). 

Modelling approach 

As discussed in Chapter 2.2.3, 2D axisymmetric plane element models can be considered to provide 

an acceptable degree of accuracy for the determination of local loading conditions inside the thread 

under nominal axial loads, while effectively confining the required numerical and modelling effort. 

However, linear elastic comparative calculations from Marten (2009) indicate that the consideration 

of the actual continuous pitch of the thread within a 3D volume element model may lead to a certain 

aggravation of the stress concentration and thus reduction of analytically calculated fatigue re-

sistance. He assumes that increased notch stresses are caused by the asymmetry of the initial in-

terlock between bolt and nut thread whereby the area of maximum stresses concentrates at one side 

of the thread rather than uniformly over the entire first pitch. Therefore, in the present study it shall 

be investigated whether a ‘full’ 3D modelling approach significantly affects the accuracy of the inves-

tigated analytical fatigue calculation methodology.  

Additionally, for the assessment of bending affected nominal stress states, as they are common for 

bolts in ring-flanges, 3D model implementations are required to establish the non-axisymmetric load-

ing pattern. This can either be achieved also with a full 3D model implementation with continuous 

pitch of the thread or simplified with a 3D axisymmetric rotational volume element extension of an 

initial 2D model. A modelling approach with “General Axisymmetric Elements” (see ANSYS 

Inc., 2016) could not be found appropriate for the given task of highly non-linear and contact de-

pendent analyses because no clear result convergence for the contact definition could be achieved. 



Assessment of local loading conditions  103 

 

Moreover, with the required circumferential node density no advantage of numerical effort was ob-

tained compared to an axisymmetric volume element model. 

As a consequence, the following three modelling approaches have been used within the framework 

of this investigation: 

 2D axisymmetric model  

 3D axisymmetric model (extension from 2D model) 

 Full 3D model with continuous pitch of the thread (global and sub model) 

Figure 4-10 shows the fundamental 2D axisymmetric plane element model and its rotational 3D 

volume element extension of a M36 HV-bolt set. To optimally take advantage of the simplified mod-

elling approach and to maintain direct comparability, the mesh pattern of both axisymmetric models 

was kept identical. However, to confine numerical effort, in the 3D model the bottom part of the 

clamping package is omitted, as it is not of relevance for the determination of local loading conditions 

inside the thread. Furthermore, symmetry is still used by confining the modelled parts of the clamping 

package to 180° in circumferential direction.  

The two models used for the assessment of local loading conditions under consideration of the con-

tinuous pitch of the thread are depicted in Figure 4-11. In a first calculation step, deformations are 

determined in a global model with a coarser mesh density. Thereby, as for the axisymmetric 3D 

model, only the top part of the clamping package is represented. However, due to the non-symmet-

rical thread, full 360° need to be considered (the opened clamping package in the graphic is for 

visualisation purposes only). For determination of the local stresses and strains at the notch root 

deformations from the global model are applied to a sub model of the first two pitches of the loaded 

bolt thread (i.e., with contact to the nut), which provides a highly refined mesh density compared to 

the global model. All subsequently depicted results from the full 3D model refer to the sub model. 

Numerical characteristics 

With the primary aim of performing non-linear calculations, structural solid elements with linear shape 

functions were used (2D: 4 nodes, 3D: 8 nodes). The element types were maintained also for per-

formed complementary calculations with linear elastic material behaviour. All models were analysed 

and adjusted in convergence studies in terms of element density inside the thread and around the 

circumference. Thereby, corresponding recommendations given in the literature (e.g., Sey-

bold, 2005) were considered. Still, for the full 3D sub model certain limitations had to be accepted, 

which are discussed within the evaluation of numerical results.  
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Figure 4-10: Axisymmetric finite element models of a M36 HV-bolt set (left: 2D plane element model, 
right: 3D rotational volume element extension) 

 

Figure 4-11: Full 3D volume element model of a M36 HV-bolt set with continuous pitch of the thread  
(left: global model, right: sub model of maximum loaded bolt thread area) 
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The base material characteristics in terms of cyclic stabilized and monotonic material curves, deter-

mined in the previously described material investigations, are implemented by a multilinear plastic 

material law with kinematic hardening using a sublayer formulation based on Besseling (1958). Plas-

ticity is defined by the van Mises yield surface. To account for large deformations at high stress 

levels, the monotonic stress-strain relations depicted in Figure 4-2, right are transformed from “en-

gineering” to “true” stresses and strains according to equations Eq. 4-4 and Eq. 4-5. After reaching 

the tensile strength Rm ideal plastic material behaviour is assumed.  

     true engln 1  Eq.     4-4 

      true eng eng1  Eq.     4-5 

Using a penalty based Augmented Lagrangian contact algorithm, surface-to-surface contact is es-

tablished by definition of overlaying contact and target elements in the paired thread and the further 

contact surfaces. All models use an isotropic friction contact definition based on Coulomb’s law. If 

not specified differently, the friction coefficient is set to μ = 0.1. Especially in the non-linear analyses, 

the contact stiffness has a noteworthy effect on the result accuracy. Therefore, in all three modelling 

approaches the contact stiffness was adjusted in convergence studies to minimize the amount of 

penetration between contact surfaces while maintaining a numerically stable solution. The ultimately 

applied contact stiffness factors (FKN, see ANSYS Inc., 2016) alongside with the most relevant mesh 

characteristics of the applied models are given in Appendix C.1.  

4.3.2 Evaluation of numerical results 

At the notch root surface a plane stress state develops (see Chapter 2.1.2). The damage decisive 

location, where fatigue crack initiation is assumed to occur, is identified under linear elastic condi-

tions by the maximum principal notch stress concentration Kt or under elastic-plastic material condi-

tions by the maximum principle strain ε1. At this location the local cyclic material response is deter-

mined with the corresponding first principle stress σ1 (see Section 4.3.3).  

To provide a comprehensive perspective of the numerically determined development of local loading 

conditions at the loaded bolt thread surface, the two axisymmetric models are evaluated along a 

result path in axial direction of the thread (Figure 4-12, left). For the full 3D model a circumferential 

path around the bolt thread is used, which is located at about 30° from the notch root towards the 

loaded thread flank, where the maximum linear elastic stress and elastic-plastic strain concentrations 

occur (Figure 4-12, right). The subsequently presented results refer to pure axial nominal loading at 

the bolt shaft. The impact of bending stresses is evaluated in the sensitivity studies in Section 4.5.3. 
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Figure 4-12: Result evaluation paths at numerical models 

Linear elastic material conditions 

The result comparison from calculations for a M36 HV-bolt geometry with linear elastic material be-

haviour is shown in Figure 4-13. The origin of the x-axis is defined at the location of the maximum 

stress concentration in the first load-bearing turn of the thread. Between the different modelling ap-

proaches the maximal occurring notch stress concentrations Kt closely coincide, with the full 3D 

model leading to a slightly lower value than the axisymmetric models. Considering the continuous 

thread pitch, in the vicinity of the peak value a flatter decline of the stress concentration towards the 

lower nut run out is visible than upwards towards the second turn. After the first full turn throughout 

the thread circumference the full 3D model’s results fall below the second peak value of the axisym-

metric models, indicating certain differences in the overall load distribution. The further development 

throughout the thread cannot be evaluated with the limited extent of the full 3D sub model, which 

had the primary purpose of assessing the fatigue decisive maximum stress and strain concentra-

tions.  

 

Figure 4-13: Comparison of numerical results for an M36 HV-bolt set with different modelling ap-
proaches under linear elastic material behaviour  
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The results depicted in Figure 4-13 further demonstrate that with the chosen circumferential mesh 

configuration and applied contact stiffness the axisymmetric 3D volume element extension provides 

an accurate approximation of the 2D model’s results. As this circumstance was also approved in 

calculations with non-linear material implementations, the numerical set-up of the 3D axisymmetric 

model can be regarded as appropriate for further application in the evaluation of bending affected 

stress states. In the succeeding evaluations, concerning pure axial nominal loading, only the results 

from the 2D axisymmetric model are depicted. 

Elastic-plastic material conditions 

Figure 4-14 shows the results of path evaluations from calculations with elastic-plastic material be-

haviour, determined for monotonic loading conditions (Chapter 4.2.1). From the axial path evaluation 

of the 2D axisymmetric model only the contour of the peak values is plotted. The local strain and 

corresponding stress development is depicted at four different nominal stress levels at 0.2∙Rp,0.2 (a), 

0.4∙Rp,0.2 (b), 0.7∙Rp,0.2 (c) and 0.9∙Rp,0.2 (d). Thereby the 0.2%-plastic strain limit corresponds to the 

10.9 material class nominal value Rp,0.2,nom = 900 N/mm².  

Both numerical models show a matching load dependent stress- and strain development. While at 

the lowest considered load level the local strains (Figure 4-14, right) are relatively homogenous 

throughout the initial turns of the thread and of mostly elastic nature, a pronounced, growingly plastic 

strain peak develops with increasing load level. Correspondingly, at higher load levels local stresses 

(Figure 4-14, left) increasingly equalise throughout the thread while approaching the base material’s 

tensile strength. In the region of the bolts nominal preload level, between 0.7 and 0.9∙Rp0,2, local 

stresses change only marginally (for the upper load level lighter blue markers are used to enable a 

better distinction). Simultaneously, the peak strain value increases by about 50 %. 

 

Figure 4-14: Local stresses (left) and local strains (right) inside the paired thread of an M36 HV-bolt set 
resulting from calculations with 2D axisymmetric and full 3D FE-model under elastic-plastic material 
behaviour (monotonic loading) at nominal load levels a: 0.2∙Rp,0.2, b: 0.4∙Rp,0.2, c: 0.7∙Rp,0.2, d: 0.9∙Rp,0.2  
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Analogous to the linear elastic stress development in the continuous thread (Figure 4-13), elastic-

plastic strains build up steadily from the lower nut run-out to a small peaking plateau and rapidly 

decline afterwards. Thereby, despite a close proximity of the linear elastic Kt-values, the local elastic-

plastic strains from the full 3D model fall visibly below the peak values from the 2D axisymmetric 

model (in an order of magnitude of ~6 % at all represented nominal load levels).  

Result discussion 

The results from the performed path evaluations are in good qualitative agreement with elastic stress 

measurements inside a continuous bolt thread by Seybold (2005) as well as the comparison of nu-

merical determined progressions of linear elastic and elastic-plastic stresses inside an M10 bolt 

thread with and without continuous pitch by Schneider et al. (2010).  

Similar to the latter mentioned study, the results presented here do not indicate that a consideration 

of the continuous thread pitch imposes a negative effect on the local loading conditions and thus do 

not confirm the corresponding observation made by Marten (2009). With the improved capabilities 

of numerical models in terms of new element technologies, refined and optimised mesh and contact 

definitions and the increased possibilities of performing calculations with non-linear material behav-

iour, the full 3D model’s results exhibit an opposing tendency of slightly less fatigue critical maximum 

strains. The numerical results provide indication that the unilateral local confinement of the maximal 

loaded area inside the continuous thread rather causes a beneficial than a negative effect. This can 

be explained with enhanced capabilities of local stress and strain redistributions in the direct vicinity 

of the maximal loaded material area, which are not present in an axisymmetric model. 

It needs to be pointed out that computational and modelling requirements set boundaries to the 

achievable mesh size in the continuous pitch of the full 3D sub-model. As the fine mesh of the notch 

root needs to be maintained over the entire thread turn and because of a resulting coupling of ele-

ment numbers at the notch root and around the circumference, the mesh density inside the paired 

thread notably differentiates to the 2D model. With a rather fine mesh chosen in the latter to enable 

upscaling of the model to larger bolt diameters without extensive mesh adjustments, the mesh den-

sity along the notch root radius is approximately four times finer than in the full 3D sub model (see 

also Appendix C.1). 

However, for the here analysed M36 bolt geometry a 2D model with half of the elements along the 

notch root radius leads to almost identical results. Even with a mesh size reduced to the order of 

magnitude of the mesh of the full 3D sub model, resulting stresses and strains are only marginally 

lower than with the original applied high mesh density and no changes of the above made interpre-

tations could be justified. Moreover, also when considering results from full 3D models with lower 

mesh densities than ultimately applied, no tendency is observed that would indicate that a further 

refined mesh would lead to a largely increased stress and strain development. Thus, even though a 

slight deviation of the resulting local stresses and strains caused by a finer mesh cannot entirely 

precluded, the above presented observations and interpretations can be expected to remain unaf-

fected. 
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All calculated local stresses and strains within the framework of this thesis are result of a load appli-

cation directly to the bolt itself. As such, they aim to replicate the load situation during the experi-

mental investigations. The strain development inside the thread of an M24 HV-bolt during tightening 

by rotation of the nut (necessarily using an FE model with continuous thread pitch) is investigated 

by Lorenz & Stranghöner (2016a) and (2016b). The reported local plastic strains are in an equal 

order of magnitude as found in the present investigation. This supports the assumption that, in its 

general characteristic, the obtained numerical results are also transferable to bolts subjected to ro-

tational tightening. Still, to precisely quantify possible differences introduced by the added torque a 

specific comparative numerical study would be required, which is not in the focus of the thesis at 

hands. 

Upscaling to larger bolt diameters 

Even though, due to changes in the d/p-ratio, thread geometries are not strictly geometrically similar, 

an equivalent development of local loading conditions as described above for bolt size M36 can also 

be expected for larger HV-bolt geometries. This is verified in numerical calculations with linear elastic 

material behaviour. The comparison of the resulting maximum notch stress concentrations in the first 

load-bearing turn of the thread for large-size HV-bolts with different diameters is given in Figure 4-15. 

Corresponding results of path evaluations at the thread surface analogous to Figure 4-13 can be 

found in Appendix C.2. For all bolt diameters the results show a compliant behaviour, whereby the 

resulting Kt-values from the models with continuous thread pitch fall slightly below the values from 

the axisymmetric models. Thereby, a modest increase of stress concentration at larger bolts sizes 

is visible from both modelling approaches. 

 

Figure 4-15: Maximum linear elastic notch stress concentrations Kt in dependence of FE model type 
and bolt diameter 

In the process of upscaling the bolt dimensions in the FE models the initially used mesh configuration 

was maintained. Thus, while the number of elements inside the thread and around the circumference 

are identical, the absolute element sizes increase by a factor of about ~1.5 to ~2 between geometries 

M36 and M72. However, due to the initially chosen fine mesh configuration of the 2D axisymmetric 
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mode, its result accuracy remains unaffected. Furthermore, despite the previously discussed limita-

tions of mesh density, there is no indication that the mesh scaling had a substantial effect on the 

quality of the obtained results from the full 3D model, either. It is therefore plausible to assume that 

the previously made observations for the M36 bolt geometry regarding the two different modelling 

approaches may also be transferred to larger bolt sizes. Correspondingly, under elastic-plastic con-

ditions a slightly more critical local stress-strain development can be expected with an axisymmetric 

FE modelling approach for the entire considered diameter range. 

4.3.3 Approximation of the local stress-strain response under cyclic loading 

With the elastic-plastic nominal (S-ε) and local (σ-ε) stress to local strain relations from the numerical 

models, the cyclic local stress-strain responses at the most fatigue critical location inside the thread 

can be determined for a given nominal loading. As exemplified by the load histories of test results 

under high mean strains depicted in Figure 4-8, the mean stress as well as strain level deviates from 

cyclic loading without mean strain. The high preload and resulting mean stress and strain level of 

HV-bolts thus need to be appropriately considered when approximating the local cyclic stress-strain 

response. 

Therefore, as illustrated in Figure 4-16 the local hysteresis under cyclic loading is synthesised from 

FE calculations with different material definitions. Following the procedure proposed by Schnei-

der (2011) the pathway for initial loading is calculated considering monotonic material behaviour. 

The succeeding cyclic hysteresis after the first load reversal is determined using the cyclic stabilized 

stress-strain relation under consideration of the Bauschinger effect by use of the Masing model (Eq. 

2-12), and it is then appended to the initial loading path. For additional consideration of possible 

cyclic relaxation under high mean strains the stress level of the hysteresis can be modified by the 

value ΔσRelax in dependence of the calculated local strain amplitude according to results of the cor-

responding material tests (see Chapter 4.2.3). 

In the technical execution of experimental fatigue investigations (see Chapter 3), the monotonic at-

tainment of the mean load level is commonly followed by a cyclic ramp-up with increasing amplitudes 

until the target amplitude is reached. As in material tests transient cyclic effects especially occur 

during the initial load cycles, depending on the magnitude of the final target amplitude, the ramp-up 

already may cause cyclic softening at the notch root. At commonly high nominal mean load levels 

and comparatively low amplitudes this is of little significance to the resulting local loading conditions. 

Therefore, from technical perspective, it is a valid presupposition to suppose monotonic material 

conditions until reaching the upper nominal load level Smax for the first time, as made in the approach 

by Schneider. However, the effect can be of larger impact when assessing cyclic loading conditions 

at lower mean load levels, where the cyclically established amplitude forms a larger contribution to 

the maximum load level (as for instant present in the fatigue tests on HV-bolts M48 by Marten, 2009).  
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Figure 4-16: Synthesis of local cyclic stress-strain response 

Thus, in the present investigation, to enable consideration of cyclic softening during the ramp-up 

phase, cyclic stabilized material behaviour according to the Ramberg & Osgood relation is utilized 

between nominal mean (Sm) und upper load level (Smax). In this way it is supposed that during the 

stepwise increase of amplitudes, in accordance with the established ‘material memory’ model de-

scribed for example by Haibach (2006), after closing a hysteresis loop on the initial loading curve 

the stress-strain path follows the original cyclic stress-strain curve. Thereby, the cyclic increase of 

stresses and strains is evaluated at the basis of the strain level that is reached at the monotonic 

mean load ε1(Sm). 

In Figure 4-17 local hysteresis obtained with the combined approach as described above are com-

pared at different nominal mean load levels to calculations with sole monotonic as well as sole cyclic 

stabilized material behaviour during initial loading. The depicted results are calculated with the ax-

isymmetric 2D FE model for an M36 HV-bolt set of material 32CrB4 and cyclic relaxation is not 

considered. The unvarying nominal amplitude Sa is in a representative magnitude for the upper high 

cycle fatigue range. 

At a regular mean load level Sm = 0.7∙Rp,0.2 (Plot A) the results from the combined approach show 

little deviation to a purely monotonic initial loading path, with only a slight increase of the maximum 

strain. This behaviour remains consistent up to a nominal mean load reduction to about half of the 

initial value (Plot B). When further reducing Sm the local stress at the upper nominal load Smax falls 

visibly below the calculation with sole monotonic initial loading path (Plot C). At distinctly low mean 

load levels, the initial loading curve from the combined approach increasingly approximates the curve 

with purely cyclic material behaviour (Plot D), as it is classically applied in the notch strain approach 

for loading conditions with low mean stress. 

ΔσRelax

ε1,crit (S)

σ1(ε1,crit)

Bolt Nut Mean load level Sm

Input: 

Nominal loading: Sm, Sa

Material.: mono. / cycl. stabilised

Upper load level Smax

ε1(Sm)



112   Analytical Fatigue Investigations 

 

 

Figure 4-17: Comparison of cyclic hysteresis with different material behaviour during initial loading at 
nominal stress amplitude Sa = 104 N/mm² and varying mean load levels (A: Sm = 630 N/mm²; 
B: Sm = 0.5∙Sm(A) = 315 N/mm²; C: Sm = 0.35∙Sm(A) = 220 N/mm²; D: Sm = 0.25∙Sm(A) = 157 N/mm²)  

With the described behaviour, the combined approach is eligible for analytical calculations with a 

monotonically achieved mean load levels of variable magnitude, as it automatically approaches the 

two variants with individual material behaviour and covers presumable effects of cyclic stabilization 

during successive build-up of cyclic amplitudes. Still, it is a strong simplification of the actual complex 

steadily occurring transient material effects. It may be argued that, due to the usually relatively small 

amplitudes during the ramp-up, little transient effects occur and hence may be overestimated by the 

combined approach. However, as demonstrated, the consideration of combined material behaviour 

during initial loading only causes a meaningful effect on the hysteresis at a combination of relatively 

low nominal mean load level and rather large target amplitude. Here, the purely monotonic and the 

combined initial loading path can be regarded as upper and lower bound of the realistically occurring 

load level. Thus, the combined approach is considered appropriate to investigate the potential impact 

of cyclic stabilization during the ramp-up at experiments at respective loading conditions. 

The possibilities of direct consideration of transient material behaviour within advanced FEM material 

implementations is investigated by Panic et al. (2014). However, in order to avoid associated exten-

sive numerical effort, they recommend the method presented by Schneider, and used here in slightly 

altered form, for a more practical application in analytical fatigue life assessment. Accordingly, with 

the presented methodology only two numerical calculation (i.e., with monotonic and with cyclic sta-

bilized material behaviour) are required for one specific bolt geometry-material configuration to ena-

ble synthesising the cyclic stress-strain response for arbitrary nominal loading.  
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4.3.4 Conclusions for application of numerical results in analytical fatigue calculations 

From the performed investigations on the numerical assessment of local loading conditions the fol-

lowing conclusions can be drawn for application in the succeeding fatigue damage assessment: 

 From comparative numerical calculations for an M36 HV-bolt set it is reliably ascertained that the 

application of a numerical model with continuous pitch of the thread does not lead to higher 

fatigue driving critical local stress or strain concentrations than calculated with an axisymmetric 

model. In fact, under elastic-plastic material conditions the results indicate a slightly benign plas-

tic strain development, due to higher redistribution capabilities in the continuous thread. Per-

formed numerical calculations with linear elastic material behaviour justify the conclusion that a 

similar tendency can be expected also for larger HV-bolt sizes up to diameter M72. 

 From the found variations of local elastic-plastic strains between the two modelling approaches 

an effect on the analytically calculated fatigue strength can be expected. The actual impact of 

the modelling approach to the results of analytical fatigue calculations will be investigated for the 

example of a M36 HV-bolt geometry. The impact of the bolt diameter to the analytically calculated 

fatigue strength, indicated by a slight increase of linear elastic notch stress concentrations, will 

be further investigated using elastic-plastic axisymmetric models only.  

 For the assessment of bending affected nominal stress states, a 3D axisymmetric volume ele-

ment extension of a 2D plane element model provides an expedient, straightforward modelling 

solution which shows good agreement to its 2D counterpart under axial loading.  

 The cyclic local elastic-plastic stress-strain response inside the thread is synthesized from nu-

merical calculations with monotonic and cyclic stabilized material behaviour, as determined in 

the performed base material investigations. To enable consideration of possible cyclic softening 

effects during a cyclic ramp-up phase of fatigue experiments the initial loading path is calculated 

with a combination of both monotonic and cyclic material behaviour. This can be of particular 

significance when assessing nominal stress states with low mean load levels, as present in ear-

lier experiments on large-size bolts published in the literature.  
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4.4 Fatigue damage assessment 

4.4.1 Technical crack initiation 

Based on the accomplishments of the previous two chapters 4.2 and 4.3, bearable load cycles of 

HV-bolts until technical crack initiation can be calculated with the strain-life approach. To this end, 

the corresponding base material’s strain-life curve is evaluated with the aid of the approximated 

cyclic local stress-strain response. For transition of the strongly mean stress affected local loading 

conditions to a load level with R = -1, inherent to the strain-life curve, the following three damage 

parameters, described in Chapter 2.2.4, are utilized and compared: 

 PSWT by Smith, Watson & Topper (Smith et al., 1970) 

 PM by Narberhaus (1999) 

 PJ by Vormwald (1989) 

Damage parameter – fatigue life relations (P-life curves) 

For fatigue life calculation, the strain-life curve is transformed to the respective damage parameter’s 

P-life curve, which then can be evaluated with the P-value derived for the local cyclic stress-strain 

response at the thread. The stress-mechanical support effect at the notch root, caused by a decreas-

ing stress gradient across the bolt diameter, is optionally considered by multiplication of the P-life 

curve with the notch sensitivity factor according to Siebel & Stieler (1955) and FKM-Guide-

line (2012). Thereby, as they are directly incorporated in the elastic-plastic FE calculations, beneficial 

effects from the stress relief under local plasticity are eliminated by division with the macroscopic 

notch sensitivity factor (np) according to Neuber (1985), see Chapter 2.2.5. A statistical size effect is 

not considered at this stage. 

A summary of the calculation of notch sensitivity factors according to Equations 2-22 to 2-25, for 

different bolt diameters and materials, can be found in Appendix E.1. For calculation of the macro-

scopic notch sensitivity factor an estimation of the base materials endurance limit is required. How-

ever, considering the data for the M36 bolt material 32CrB4, derived from constant amplitude tests, 

no meaningful deviations of the sensitivity factor arise at the relevant region of the strain-life curve 

at load cycles > 5∙105. Therefore, the value can safely be approximated. Possibilities for a more 

explicit estimation of the material’s endurance limit are further investigated in Chapter 4.4.2. 

Figure 4-18 shows the P-life curves of the three investigated damage parameters with and without 

consideration of the applicable notch sensitivity factor ns = 1.15 (derived from cyclic material data for 

the M36 bolt material 32CrB4 from constant amplitude tests). Additionally, the corresponding mate-

rial test results (see section 4.2.2 and 4.2.3), transferred to their respective damage parameter val-

ues, as well as the original strain-life curve are plotted for verification. 
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Figure 4-18: Damage parameter fatigue life relations with and without notch sensitivity factor 
(ns = 1.15) for M36 bolt material 32CrB4 (constant amplitude tests) and comparison to damage param-
eter values of the corresponding material test results (ns = 1.0) with and without mean strain 

Damage parameter evaluation 

The general development of the damage parameters’ fatigue life prediction in dependence of the 

tensile mean stress level (i.e., their mean stress sensitivity) is illustrated in the Haigh diagram in 

Figure 4-19. The therein given mean stress dependent stress amplitudes are shown for the example 

of N = 1∙105
 endurable load cycles and are calculated in equivalence to the basic strain- and P-life 

curves (ns = 1.0), considering an unnotched geometry (Kt = 1) and uniaxial loading conditions. 

At the contemplated uniaxial and unnotched conditions, the PSWT-parameter offers the most optimis-

tic fatigue life prediction at the entire considered mean stress range. Still, it shows a distinguishably 

different behaviour to the PJ-parameter at higher mean stresses (Rσ > ~0.2), where it exhibits a con-

tinuous reduction of the fatigue strength without threshold. In the description of the PJ-parameter, 

mean stress sensitivity is achieved by definition of a damage relevant segment of the hysteresis, 

based on theoretically opened micro crack conditions. This segment principally increases with the 

tensile mean stress. However, once the entire hysteresis is considered damage effective (i.e., wholly 

opened crack conditions are assumed) no further reduction of the fatigue strength occurs. Thus, the 

PJ-parameter reaches a horizontal progression at higher mean stresses and eventually the PSWT-

parameter falls below the PJ prediction. 
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At low and intermediate mean stress levels the empirical PM-parameter shows a comparable behav-

iour to the PJ-parameter. At higher stress ratios, however, it predicts a strongly increasing mean 

stress dependent reduction of the fatigue strength. It is noted that, as the PM-parameter formulation 

considers the specific notch sharpness of the structural component, with increasing Kt value (Kt > 1) 

the fatigue life prediction does decrease less drastically at stress ratios Rσ > ~0.5, and it approaches 

a rather constantly declining progression. Still, it exhibits a notably stronger mean stress sensitivity 

than the other two parameters. 

 

Figure 4-19: Haigh-diagram for damage parameter development under tensile mean stress calculated 
for material 32CrB4 (constant amplitude tests) 

A first evaluation of the damage parameters’ accuracy can be performed based on the comparison 

to endurable load cycles from the tests under high mean strain εm = 1.1 %, performed by 

Oechsner et al. (2015) (see Chapter 4.2.3). As can be seen in Figure 4-18, at the lower two strain 

amplitudes (εa = 0.2 % → Rσ = 0.2, εa = 0.25 % → Rσ = 0.01) all P-parameters underestimate the ac-

tual bearable load cycles of the experiments (since the experimental values are derived from un-

notched specimens the P-life curves without notch sensitivity multiplication need to be considered 

for the comparison). The strongest deviations result from calculations with the PM-parameter. Com-

paring PJ- and PSWT-parameter, the latter provided a better approximation of the experimental results, 

even though it is noted that the visual interpretation from the figure tends to exaggerate the actual 

difference due to differing slope and scaling of the two P-life curves. The found tendency complies 

with the P-parameter development shown in Figure 4-19. At the higher two strain amplitudes the 

resultant stress ratio R of the high mean strain experiments increasingly approximates a mean stress 

free stress state (εa = 0.4 % → Rσ = -0.66, εa = 0.65 % → Rσ = -0.97). Correspondingly, the calcu-

lated deviations fall into the general scatter of the material test results without mean strain and the 

test results are fairly well approximated also by the original strain-life curve. The precisely calculated 

deviations as well as a classification of the material test results in a Haigh-diagram representation is 

included in Appendix D.1. 
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Within the framework of his analytical fatigue investigation on smaller sized HV-bolts Schnei-

der (2011) has made similar observations as described above, concerning the comparison of PSWT- 

and PJ-life curves to high-strength bolt material test results under high mean strain. In this context 

he points out that, albeit generally possible, an adjustment of the PJ parameter’s mean stress sensi-

tivity is not expedient due to the limited number of available test results. This applies also for the 

present study. Moreover, local loading conditions as present at the lower two test amplitudes at 

εm = 1.1 % are approximately representative for the prevailing local loading conditions of the ana-

lysed preloaded bolts (Sm = 630 N/mm²) only in the upper high cycle fatigue range, at nominal load 

levels Sa ≈ 100-120 N/mm². Here FE calculations lead to corresponding local stress ratios Rσ of 

about 0.35 to 0.20 and strain amplitudes between 0.2 and 0.25 %. At lower nominal stress levels, 

the calculated strain amplitudes decrease up to about εa ≈ 0.1 % in the region of the experimentally 

determined endurance limit (Sa,D,50 ≈ 45 N/mm²) at distinctly larger local stress ratios Rσ ≈ 0.7. Thus, 

the transferability of observations made from the damage parameter evaluation based on material 

test results at high mean strain to the succeeding analytical fatigue calculation of HV-bolts is limited 

to the respective load range. A collocation of the numerically calculated local loading conditions for 

relevant fatigue load levels of the M36 HV-bolts’ S-N curve is included in Appendix D.2. 

Using the presented P-life curves (material 32CrB4, cyclic material data from constant amplitude 

tests), analytical fatigue calculation results with the three investigated damage parameters are com-

pared to experimental results for black (B) M36 HV-bolt sets (see Chapter 3.3) in Figure 4-20. If not 

indicated otherwise, in all following analytical fatigue calculations the local loading conditions at the 

bolt thread are determined under pure axial loads with a 2D axisymmetric FE model (see Chapter 

4.3.1).  

When disregarding the stress sensitivity factor and thus stress-mechanical support effect at the notch 

root (ns = 1.0, Figure 4-20, left), both PSWT- and PJ-parameter provide a very comparable approxima-

tion of the experimental results. Thereby, appearing contradictory to the previous damage parameter 

evaluation based on the material tests with high mean strain and the P-parameter development in 

the Haigh-diagram, PJ leads to slightly higher endurable load cycles than PSWT. This is due to the 

fact that the consideration of the multiaxial stress state at the notch root and the evaluation of first 

principle stresses leads to a higher considered mean stress level than under uniaxial conditions. 

Given its distinct mean stress sensitivity at higher stress ratios (see Figure 4-19), this circumstance 

has a stronger effect on the PSWT- than on the PJ-parameter calculation.   

Only when considering the stress-mechanical support effect by use of the notch sensitivity factor 

(ns = 1.15, Figure 4-20, right) the PSWT-parameter leads to the expected overestimation of fatigue 

strength under high tensile mean stresses, as indicated in the literature (see also Chapter 2.2.4 and 

2.2.7). Here, due to its different scaling (PJ-values are roughly two decimal steps lower than PSWT) 

and resultant lower impact by the notch sensitivity factor, the PJ-parameter provides a superior ap-

proximation of the experimental results. It needs to be taken into consideration that at this stage load 

cycles until technical crack initiation are compared to experimental load cycles until rupture. The 
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additional consideration of macroscopic crack propagation, which primarily affects the endurable 

load cycles in the upper high cycle fatigue range, is evaluated later on in Chapter 4.4.3. 

 

Figure 4-20: Validation of analytical fatigue calculation results with different damage parameters for 
black (B) M36 HV-bolt sets (2D axisymmetric FE model) and material 32CrB4 with cyclic material data 
from constant amplitude tests with and without consideration of the notch sensitivity factor ns 

Analytical fatigue calculation results on large-size HV-bolts by Marten (2009) had indicated that at 

lower load levels the PM -parameter can lead to a better approximation of the fatigue strength than 

PSWT. This cannot be confirmed in the here applied calculation approach. Regardless of the notch 

sensitivity factor, the results obtained with the PM-parameter fall notably below the experimental fa-

tigue curve. As its development aimed for compensating underestimated mean stress effects by the 

PSWT-parameter, it is characterized by a further increased mean stress sensitivity at high stress-

ratios. As a consequence, the calculated endurable load cycles are more strongly affected by the 

augmented mean stress state resulting from considering principle stresses inside the thread. More-

over, the parameter is mainly substantiated on observations with less severe notch sharpness than 

present at the bolt thread (Kt ≈ 4.5) (see Narberhaus, 1999).  

A less conservative estimation can be achieved when comparing the PM-values, derived for the local 

loading condition of the bolt, to the original PSWT-life curve, on which the empirical PM-development 

is founded. This however would not be methodically consistent with the other damage parameters, 

as it violates the condition that the P-life can be deduced from its P-values for loading conditions 

with R=-1, and it implies that under mean stress free conditions the damage parameter predicts a 

higher fatigue strength than the original strain-life curve (see Haigh-diagram in Appendix E.2).  

For the further investigations only the PJ - and PSWT-parameter are considered.  
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Impact of cyclic relaxation 

As described in Chapter 4.3.3, the effect of cyclic relaxation under high mean strains can be included 

into the analytical fatigue calculation by shifting the cyclic hysteresis downwards based on corre-

sponding material test results. The results of analytical fatigue calculations with and without cyclic 

relaxation are compared in Figure 4-21. Using the linear relation, derived from the regression of the 

material test data for the considered bolt material 32CrB4 (Figure 4-9), relaxation is assumed to 

occur at strain amplitudes εa ≥ 0.1 %. Therefore, considering the PSWT-parameter, the decreased 

mean load level causes an increase of calculated endurable load cycles, beginning at nominal stress 

amplitudes closely above the experimental endurance limit.  

 

Figure 4-21: Comparison of analytical fatigue calculations with and without consideration of cyclic re-
laxation (M36 HV-bolt sets, material 32CrB4, cyclic material data from constant amplitude tests, notch 
sensitivity factor ns = 1.15) 

Considering the PJ-parameter, under the present high nominal mean stress at the majority of nominal 

load levels the calculated stress for theoretical crack closing is notably smaller than the minimum 

stress of the cyclic hysteresis. Consequently, the entire hysteresis is considered damage relevant, 

also when it is shifted downwards by the respective amount of cyclic relaxation. Hence, contrary to 

the PSWT parameter, for the largest part of relevant load levels the calculation results with the PJ-

parameter remain unaffected by the consideration of cyclic relaxation. Only at very high nominal 

stress amplitudes an effect can be noted. Given the relatively modest deviation present also at the 

PSWT-parameter results, the impact of cyclic relaxation to the analytical fatigue calculation can be 

considered a minorly decisive factor for the considered material. 

Results of analogous tests under high mean strain on a high-strength material 41Cr4 by Schnei-

der (2011) have yielded slightly lower cyclic relaxation values than determined and applied above 

for the investigated M36 bolt material. As such, the two test series indicate that it is acceptable to 

neglect the effect of cyclic relaxation in analytical fatigue calculations of high-strength bolts.  

Sm = 630 N/mm²

M36 (B)

(Ps,50%)

Test:
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Impact of test procedure for cyclic material data 

Thus far, all presented analytical fatigue calculations have been performed using the cyclic material 

data determined with the more comprehensive method, based on constant amplitude tests. Figure 

4-22 shows a comparison to calculation results with material data for the same material derived from 

Incremental-Step-Tests (IST). Generally, with both methods an acceptable approximation of the ex-

perimental fatigue results is achieved. Nevertheless, while at the upper high cycle fatigue range the 

calculation results are rather comparable, a growing deviation occurs with decreasing load level. The 

present deviations mainly result from the diverging progression of the strain-life curve at lower strain 

amplitudes (see Figure 4-7, left). Arguably, the calculation with the steeper strain-life curve progres-

sion resulting from the simplified IST based procedure leads to an even improved approximation of 

the experimental results. Still, the actual quality of the result approximation is yet to be evaluated in 

detail in the framework of load cycle calculation until rupture (Chapter 4.4.3) and evaluation of the 

analytical endurance limit estimation (Chapter 4.4.2). Moreover, it is noted again that the strain-life 

curves from both testing procedures are not conclusively justified by material tests with low strain 

amplitudes. 

 

Figure 4-22: Comparison of analytical fatigue calculation results with cyclic material data from con-
stant amplitude test and Incremental-Step-Test (IST) (M36 HV-bolt sets, material 32CrB4) 

Concerning the cyclic stress-strain curves, at the majority of relevant nominal load levels the numer-

ically calculated local stress-strain response inside the thread is in an order of magnitude without 

significant deviation between the two testing procedures (see Figure 4-7, right). However, an earlier 

impact of plastic strains in the cyclic stress-strain curve from IST, and hence a larger plastic strain 

contribution in the region of an assumed endurance limit of the material under mean stress free 

condition, causes an indirect effect on the calculation, as it leads to a slight reduction of the notch 

sensitivity factor (see Appendix E.1). This is considered in the depicted calculation results. As refer-

ence, also calculations with ns = 1.0 are plotted. While the variation of the notch sensitivity factor has 

a marginal impact on the calculation with the PJ-parameter, it has a noteworthy, albeit not overly 

PSWT

ns = 1.0 

M36 (B)

(Ps,50%)

Test:Sm = 630 N/mm² Sm = 630 N/mm²

PJ 
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critical, effect on the result with the PSWT-parameter. This highlights the already indicated sensitivity 

of the PSWT-parameter to the notch sensitivity factor. 

Impact of the FE modelling approach 

It has been shown in Chapter 4.3 that the application of an FE model that considers the realistic 

continuous pitch of the thread leads to a slightly beneficial local plastic strain development, compared 

to an axisymmetric model. To evaluate the resultant impact in the analytical fatigue assessment 

method, firstly Figure 4-23 shows cyclic hysteresis for two relevant load levels of the S-N curve, one 

in the upper high cycle fatigue range (Sa = 100 N/mm²) and the other close to the experimental en-

durance limit (Sa = 50 N/mm²).  

 

Figure 4-23: Divergence of local cyclic hysteresis calculated with 2D axisymmetric and full 3D FE 
model with continuous thread pitch (M36 HV-bolt set, material 32CrB4) 

In consistency with the stress- and strain path evaluations in Figure 4-14, at the relevant high nominal 

mean stress (Sm = 630 N/mm²) the maximum upper local stress σo is mostly unaffected by the mod-

elling approach. However, calculations with the full 3D model lead to slightly lower strain- and result-

ant stress amplitudes. As illustrated by the corresponding analytical fatigue calculation results in 

Figure 4-24 (the close-up on the right hand side of the figure illustrates the deviations between the 

modelling approaches in a higher resolution), these cause a small increase of endurable load cycles, 

compared to the calculation with the 2D axisymmetric model. The slightly lower strain level, present 

in the hysteresis comparison, does not cause an effect in both damage parameter definitions. 

Additionally shown in Figure 4-24 are calculation results with the 3D model with axisymmetric thread 

geometry, which was primarily constituted for the later investigation of bending affected stress states. 

Still, under the here considered purely axial nominal loading the result depiction highlights the fact 

that also after thorough mesh adjustment it does not exactly match the results from its 2D counter-

part, using rotational symmetric boundary conditions. It can thus be presumed that the detected 
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result deviation, observed when using the FE model with continuous thread pitch, is caused by a 

combination of numerical (e.g., mesh, element and contact definitions) and geometrical reasons (i.e., 

enhanced capabilities of local stress and strain redistributions).  

 

Figure 4-24: Comparison of analytical fatigue calculations with different FE modelling approaches 
(M36 HV-bolt sets, material 32CrB4, cyclic material data from constant amplitude tests, ns = 1.15) 

Considering both PJ- and PSWT-parameter, the divergence obtained with the full 3D compared to the 

2D axisymmetric model’s results are of marginal nature and slightly less conservative. Moreover, 

additionally to the vastly higher modelling effort, the constitution of a numerically stable and reliable 

FE model with continuous thread pitch displayed a considerably higher sensitivity to numerical un-

certainties. Hence, as the application of a full 3D model does not provide a significant benefit to the 

analytical fatigue assessment procedure, an axisymmetric modelling approach is to be preferred. 

4.4.2 Approximation of endurance limit 

From a technical, macroscopic point of view, the occurrence of an endurance limit can be attributed 

to the circumstance whether or not a technical crack is initiated. Contrary to the fatigue strength in 

the upper high cycle fatigue range, its analytical evaluation is thus enabled with the sole application 

of the strain-life concept. To this end, information about the base materials’ strain-related endurance 

limit under mean stress free conditions (henceforth denoted as strain endurance limit) is required. 

Within the base materials investigation in Chapter 4.2, with neither of the applied assessment pro-

cedures for determination of cyclic material properties such information was established. Still, by 

reasonably estimating the base materials endurance limit, the potential of predicting the bolt’s en-

durance limit with the applied analytical approach can be assessed. This is done in the given section 

for the M36 HV-bolts and its base material 32CrB4.  
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Estimation of the base material’s endurance limit 

In the first place, background for the estimation can be sought in the literature from published mate-

rial investigations of relevant materials, where an endurance limit was experimentally determined. 

This is usually done by stress- instead of strain-controlled material tests with R = -1, assuming dom-

inantly elastic material conditions. With the determined stress endurance limit σa,D the associated 

strain amplitude εa,D can then be calculated from the corresponding cyclic stress-strain relation. The 

knee point ND (i.e., the load cycle number where the strain endurance limit is reached) is obtained 

from the material’s strain-life curve. Additionally, an orientation can be obtained by referring to the 

FKM-Guideline (2012), which for un-notched structural steel components at axial stress with R = -1 

allows the calculation of the stress endurance limit in dependence of the material’s tensile strength 

as 0.45 ∙ Rm. With available cyclic material data, this can then be transferred to the strain endurance 

limit and associated knee point, as described above. 

Within the available references in the literature for high-strength materials suitable for HV-bolts, only 

a limited number of studies include an adequate experimentally substantiated approximation of the 

endurance limit. Table 4-4 provides the obtained estimation background for strength class 10.9 and 

8.8 materials with strain endurance limits and associated load cycle numbers. Additionally, the cor-

responding strain endurance limits calculated at the basis of the stress estimation according to the 

FKM-Guideline are given. The underlying cyclic material parameters are included in Appendix E.5.  

Table 4-4: Estimation of 32CrB4 material’s endurance limit based on references given in the literature  

Material: 36CrB4 41Cr4 42CrMo4 41Cr4 30CrNiMo8 30CrNiMo8 
32CrB4 

(Source) (1) (1) (2) (2) (2) (2) 

Strength class 10.9 8.8 10.9 

Rm  [N/mm²] 1124 1121 1111 904 910 910 1116 

Endurance limit from material tests: Estimate: 

εa,D [%] 0.242 0.259 0.272 0.197 0.231 0.218 ~0.22 – 0.27 

ND [-] 1.4∙106 2.9∙106 1.4∙105 3.8∙105 2.0∙105 2.9∙106 ~2∙107-5∙105  

Endurance limit calculated based on FKM-Guideline (2012)  

σa,D [N/mm²] 506 504 500 407 410 410 502 

εa,D [%] 0.248 0.246 0.242 0.233 0.203 0.201 0.242 

ND [-] 9.4∙105 9.7∙106 3.3∙105 1.2∙105 6.4∙105 3.4∙107 2.8∙106 

1 Schneider (2011) 
2 taken from materials database Boller et al. (2008), original source given in E.5 
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In the juxtaposition of experimental results, the materials of strength class 10.9 tendentially exhibit a 

higher endurance limit than the 8.8 strength class materials. This is in general accordance with the 

tensile strength dependency suggested in the FKM-guideline. The calculation according to the FKM-

Guideline provides an adequate approximation of the experimentally attested strain endurance lim-

its. Still, the calculated values, even though assumed in the guideline for a survival probability of 

Ps ,97.5%, in some cases overestimate the experimental strain amplitude (Ps,50%) of the here con-

sidered high-strength materials. Considering this, a range between εa ≈ 0.22 – 0.27 % is contem-

plated a plausible estimation for the strain endurance limit of the M36 HV-bolts’ 10.9 base material 

32CrB4. 

The evaluation of the 32CrB4 material’s strain-life curve, derived from constant amplitude tests, 

yields associated load cycles ND at the knee point between ND ≈ 2∙107-5∙105. Arguably, the higher 

end of this load cycle range exceeds the plausible location of the knee point, when compared to the 

test results of M36 HV-bolts. However, it is pointed out that in the associated load cycle range the 

strain-life curve follows a rather shallow progression. This causes strong changes of load cycle num-

bers at only slight deviations of the strain amplitude. Moreover, the exact progression of the strain-

life curve at this load cycle range is uncertain because it lacks experimental justification and is ex-

trapolated from the results at higher strain levels (see Chapter 4.2.2). The location of the knee point 

thus needs to be valued as a rather rough indicator for the endurance limit. 

Application of the estimated endurance limit in the damage parameter concept 

In analogy to the constitution of the damage parameter-life curves, from the strain endurance limit 

εa,d at R = -1 corresponding endurance limit damage parameter values PJ,D and PSWT,D can be deter-

mined. Similar to the P-life curves, for consideration of the stress-mechanical support effect, these 

are multiplied by the notch sensitivity factor ns. Based on the numerically determined local cyclic 

stress-strain response, the nominal loading conditions (Sm and Sa), at which the damage parameter 

endurance limit is reached, are determined iteratively; the obtained nominal stress amplitude desig-

nates the analytically calculated endurance limit of the bolts Sa,D.  

The results of endurance limit calculations for the M36 HV-bolt sets, considering strain endurance 

limits εa,D in the previously estimated range (A: 0.27 %; B: 0.24 %; C: 0.22 %), are presented in Fig-

ure 4-25 for a nominal mean stress level Sm = 630 N/mm². For the underlying strain-life curve for 

base material 32CrB4 cyclic material data from constant amplitude tests are used. The correspond-

ing notch sensitivity factor ns = 1.15 is considered. Additionally, calculation results without notch 

sensitivity factor (ns = 1.0) are plotted as dashed lines.  

Congruent to the earlier discussed damage parameter behaviour, under consideration of the notch 

sensitivity factor the PSWT-parameter yields a visibly more optimistic prediction of the endurance limit 

than PJ. Still, also with the latter, at the highest considered material endurance limit (curve branch 

A) the experimentally determined endurance limit of the bolts is considerably overestimated. A better 

approximation is achieved from closely below mid to the lower range of the estimated strain endur-

ance limits (branches B and C), where the analytical results coincide with the scatter band of the 
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experiments. Using the PSWT-parameter, this is only the case starting from beneath branch C, asso-

ciated to the nethermost strain amplitude of the estimation range. For both damage parameters the 

approximation quality improves in calculations with ns = 1.0.  

 

Figure 4-25: Analytical endurance limit calculations for M36 HV-bolt sets based on estimated strain 
endurance limits for material 32CrB4 (A: εa,D = 0.27 %, B: εa,D = 0.24 %, C: εa,D = 0.22 %) and cyclic ma-
terial data from constant amplitude tests (notch sensitivity factor ns = 1.15) 

The corresponding results for the calculations considering the notch sensitivity factor are given in 

Table 4-5 as well as the comparison to results calculated analogously with cyclic material data from 

IST. A graphical representation of the latter as well as the tabulated results from the calculations 

without notch sensitivity factor are included in Appendix E.3. 

Table 4-5: Results of analytical endurance limit calculations for M36 HV-bolts with cyclic material data 
for material 32CrB4 from constant amplitude tests (ns = 1.15) and Incremental-Step-Tests (ns = 1.12) 

 
Material data from  

constant amplitude tests 
Material data from 

Incremental-Step-Tests (IST) Test result 
M36 (B) 
(Ps,50%) Estimated base material 

endurance limit  
εa,D [%] 

(A) (B) (C) (A) (B) (C) 

0.27 0.24 0.22 0.27 0.24 0.22 

Sa,D [N/mm²] 

PSWT 74.82 59.35 49.44 67.9 55.68 47.66 

43.36 

PJ 63.07 50.97 43.68 71.96 58.39 50 

ND [-] 4.6∙105 3.3∙106 2∙107 9.7∙104 2.2∙105 4.3∙105 1.2∙106 

When considering the cyclic material data from IST instead of constant amplitude tests, the PJ-pa-

rameter yields noticeably higher calculation results. This is caused by the already remarked higher 

plastic strain contribution in the cyclic stress-strain curve at the relevant range of strain amplitudes 

ns = 1.0 ns = 1.0 

M36 (B)

(Ps,50%)

Test:

C

B

A

C

B

A

M36 (B)

(Ps,50%)

Test:



126   Analytical Fatigue Investigations 

 

(see Figure 4-7). As a consequence, for a given strain endurance limit εa,D, a higher damage param-

eter endurance limit PJ,D is determined (i.e., the hysteresis resulting at the given strain amplitude is 

associated by the parameter with a high damage effect, bearable at the endurance limit). Corre-

spondingly, a higher endurance limit is calculated for the bolt. The impact of the lower notch sensi-

tivity factor, equally caused by the difference in the cyclic stress-strain relation, does not compensate 

for this effect. On the contrary, the PSWT-parameter itself is not substantially affected by the changes 

of the cyclic stress-strain curve. Here differences of results between the two material evaluation 

procedures (in terms of a reduction of the calculated endurance limits) mainly arise indirectly from 

the reduced notch sensitivity factor. Correspondingly, when neglecting the notch sensitivity factor, 

the calculation results scarcely deviate (see Appendix E.3).  

Besides the discrepancies in the calculated endurance limits, due to its distinguishably steeper pro-

gression at lower strain amplitudes, the application of the strain-life curve from IST leads to sizeably 

reduced load cycles at the knee point ND. 

Result discussion 

As the actual strain endurance limit of the base material is unknown, no conclusive verification of the 

damage parameter adequacy and prediction quality is feasible. Still, from the observations made 

based on the estimated endurance limit range, a number of conclusions can be drawn. These are 

discussed in the following. 

Assuming that the predicted range of the strain endurance limit is sufficiently accurate, a better ap-

proximation of the experimental results is achieved with the PJ- than with the PSWT-parameter. This 

is dominantly caused by the already recognized high susceptibility of the latter to the notch sensitivity 

factor. The circumstance that the PSWT-parameter yields a higher endurance limit estimation as PJ 

(when considering the notch sensitivity factor and cyclic material data from constant amplitude tests) 

is congruent with investigations from Schneider (2011) for smaller HV-bolts M10 and M16; even 

though the therein assessed discrepancy between the two parameters is not as pronounced as in 

the present calculations. Still, as can be observed in Figure 4-25, in calculations with ns = 1.0 the 

PSWT-parameter provides a noticeably improved prediction of the experimental endurance limit. Like-

wise, also with the PJ-parameter a better approximation is visible when neglecting the notch sensi-

tivity factor. This provides reason to presume that the common approach by Siebel & Stieler (1955) 

may overestimate the actual stress-mechanical supporting effect for the investigated large diameters 

and bolt dimensions. This needs to be taken into consideration in the further analytical evaluations 

in the course of this thesis. 

Concerning the application of cyclic material data from IST, it is noted again that, in principle, the 

IST based determination procedure is not eligible for the determination of the base materials’ endur-

ance limits. The here performed calculations show that also in combination with an estimated or, 

potentially, an additionally determined endurance limit (e.g., by supplemental stress controlled ma-

terial tests), its application is disputable. For both investigated damage parameters a higher plastic 

strain contribution in the cyclic stress-strain relation causes an effect on the calculated endurance 

limits of the bolts, either indirectly by the notch sensitivity factor or directly in the damage parameter 
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calculation. Since an earlier development of cyclic plastic strains is a recognized (albeit not compul-

sory) phenomenon for metals analysed in IST (see Wagener, 2007), the effect of the IST based 

cyclic stress-strain curve needs to be seen problematic for two reasons. Firstly, the presence of 

noteworthy plastic strains at the endurance limit contradicts the basic assumption justifying the com-

monly applied determination of the strain endurance limit based on stress-controlled tests. Secondly, 

the general concept of an endurance limit is based on the presupposition of constant amplitude 

loading. The consideration of material behaviour, which is distinctly characteristic for loading with 

variable amplitudes, is therefore limitedly qualified for the present aim of approximating the bolts 

endurance limit.  

Contrary to the deviations between the cyclic stress-strain relations, the different progression of the 

strain-life curves, derived from IST and constant amplitude tests, does not affect the endurance limit 

prediction but only the associated load cycle number at the knee point. As the progression does, 

however, affect the prediction accuracy of the fatigue curve in the above transition region to the 

endurance limit, the location of the predicted knee points shall be briefly discussed. As mentioned 

earlier in this chapter, due to its shallow progression, relatively large load cycles at the knee point 

are derived from the material curve from constant amplitude tests in the estimated range of plausible 

strain endurance limits. Given its lack of experimental justification in the respective load cycle range, 

it may be argued that the fatigue life in the relevant region between approximately 105 and 107 load 

cycles is presumably overestimated to a certain degree. Contrary, considering the progression of 

the strain-life curve derived from IST, the calculated knee points (which are unaffected by the afore-

mentioned limitations related to the cyclic stress-strain curve) appear rather low in comparison to the 

experimental results for the tested bolts (see Table 4-5). This indicates a rather conservative esti-

mation. It needs to be concluded that presumably both of the here applied strain-life curves and thus 

the resultant analytical bolt-fatigue curves do not display entirely accurate the actual fatigue behav-

iour of the base material in the transition region to the endurance limit. 

4.4.3 Macroscopic crack propagation 

Crack propagation models 

Up to this stage, only load cycles until technical crack initiation have been evaluated. The additional 

calculation of load cycles during the macroscopic crack propagation phase enables the determina-

tion of the complete analytical S-N curves until rupture. To this end, linear elastic fracture mechanics 

shall be applied. Thereby, the cyclic stress intensity ΔK at the tip of the assumed propagating crack 

is evaluated with Paris’ law (Eq. 2-7).  

Due to the absence of a distinct calculation model for bolted connections, an approximative model 

representation is required for determination of the stress intensity at the crack tip. Within the cata-

logue of available models, given in FKM-Guideline (2006), a round bar model provides the closest 

similarity to the bolt geometry (i.e., disregarding the formed thread). As suggested - and verified - by 

Pyttel et al. (2008), an equivalent geometric representation may also be achieved using a hollow 

cylinder model with an inner tube radius set to ri ≈ 0 (e.g., ri = 0.1). The latter model provides the 
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additional possibility of considering a variant stress development in radial direction. Correspondingly, 

two eligible modelling solutions for bolted connections, as introduced by Pyttel et al. (2008), are il-

lustrated in Figure 4-26, left. Their application for the here presented investigation is subsequently 

described (it is noted that the here applied model numbering is vice versa to the original nomencla-

ture in the underlying publication). 

Model 1 uses the hollow cylinder model under variable stresses with circumferential (external) sur-

face crack according to FKM-Guideline (2006) with the nominal bolt diameter d = 2∙r0. The incorpo-

rated crack depth a* is defined as sum of the thread depth h3 and the depth of the evolving physical 

crack a. Loading is applied by means of the linear elastic 1st principle stress development in radial 

direction σ(x) at the decisive maximal loaded first load-bearing turn of the thread. Thereby, only the 

considered physical crack is subjected to stresses, and the crack section representing the thread 

depth remains unloaded. The required stress gradient distribution at the fatigue decisive location 

(expressed by the stress concentration Kt = σ / S(Asp)) is derived from a linear elastic FE calculation 

of the investigated HV-bolt set (Figure 4-26, right).  

Model 2 uses the round bar model under constant tension with circumferential surface crack accord-

ing to FKM-Guideline (2006). Similar to Model 1, the bar dimensions correspond to the nominal bolt 

diameter d = 2∙r0, and the incorporated crack depth a* = h3+a includes the thread depth h3 as theo-

retical extension of the actual physical crack. However, a uniform stress development is defined 

conservatively over the entire incorporated crack a* with a magnitude σ = F / π r0
2 (i.e., the nominal 

stress at the bolt shaft). The corresponding stress level (M2) is illustrated in Figure 4-26, right. 

 

 

Figure 4-26: Schematic depiction of applicable crack tip stress intensity models for threaded fasteners 
acc. to Pyttel et al. (2008) (left) and stress development at the maximal loaded turn of an M36 HV-bolt 
thread derived from linear elastic FE calculation (right) 
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In the investigation by Pyttel et al. (2008) under static conditions, the consideration of the actual 

stress gradient at the notch in Model 1 has led to a slightly improved approximation of a numerically 

determined stress intensity factor K compared to Model 2. Thereby, with increasing crack depth, 

Model 1 has led to higher stress intensities than Model 2. The impact of the modelling approach in 

the calculation of the cyclic crack propagation is evaluated in the sequel. 

Calculation of load cycles until rupture 

To calculate the load cycles until rupture, a numerical integration of Paris’ law needs to be performed, 

see Chapter 2.2.1. For definition of the required integration boundaries, in accordance with common 

conventions as well as other fracture mechanical calculations on bolts by Kremer (2005) and Schnei-

der (2011), the incipient crack depth of the initial technical crack is assumed as ai = 0.1 mm. The 

final crack depth before rupture ae is determined based on digital microscopic measurements at the 

fractured surfaces of the tested bolts. The measurement results are listed in Appendix F.1. For the 

here analysed M36 HV-bolt sets, mean values are applied for load levels in the upper high cycle 

fatigue range of ae = 8 mm and in the transition region to the endurance limit (nominal bolt stress 

levels Sa ≤ 50 N/mm²) of ae = 12 mm.  

Using the two introduced models for determination of the cyclic range of the crack tip stress intensity 

ΔK (i.e., calculated for a nominal stress range ΔS = 2Sa), numerical integration was executed with 

the fracture mechanics software package FracSafe 2.1. The material constant C = 2.0∙108
 and ex-

ponent m = 2.63, applied in the crack propagation function, correspond to a comparable high-

strength material 42CrMo4 (Rm = 1100 N/mm²) for a high mean stress level with stress intensity ratio 

Rk = 0.8. The parameters, applied in accordance with aforementioned studies on crack propagation 

of high strength bolts, are taken from the materials data collection in FKM-Guideline (2006) (defined 

for ΔK in N/mm² √m and da/dN in mm/load cycle). 

Figure 4-27 shows the comparison of resultant analytical fatigue curves with the experimental results 

for the investigated black M36 HV-bolt sets. Therein, load cycles until technical crack initiation are 

calculated with the PJ damage parameter and cyclic base material data (32CrB4) from constant 

amplitude tests. For the determination of the complete S-N curves until rupture, the calculated crack 

propagation load cycles are added to the load cycles until initial cracking. In the figure, an estimated 

base material endurance limit at εa,D = 0.24 % (R = -1) is considered. Distinct calculation results at 

selected load levels are given in Table 4-6. 

With both introduced crack propagation models a good approximation of the experiment results in 

the upper high cycle fatigue range is achieved. Thereby, the tendentially lower estimation of the 

stress intensity factor with Model 2, caused by the simplified consideration of the loading conditions 

inside the thread, only has a minor impact on the calculated crack propagation load cycles. This was 

also confirmed in calculations for larger bolt diameters up to M72 (see also Chapter 4.5.1). The 

similarity of both models in the crack propagation calculation is noteworthy because, unlike Model 1, 

the numerical integration of the geometry function for the round bar model is also fairly easily achiev-

able ‘by hands’ of a serious engineer in common computational scripting tools, as it has been done 
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for instance by Gottlieb (2015) in his Master’s thesis. The approach may therefore be applied as 

approximately equivalent solution when no fracture mechanics software is available.  

Still, Model 1 is to be considered more accurate because it does inherently consider the stress gra-

dient at the thread in radial direction and, as result from a corresponding FE calculation of the com-

plete bolt-to-nut connection, also the longitudinal stress development in the paired thread (see Figure 

4-13). It is therefore applied hereinafter in the succeeding calculations. 

 

Figure 4-27: Comparison of analytical fatigue calculation results of load cycles until rupture with ex-
perimental results for black M36-HV bolt sets  

Additionally, in Figure 4-27 calculation results from an adaption of Model 2 (denoted as Model 2*) 

are illustrated, where the model dimensions are limited to the bolt’s core diameter d3 = 2 r3 instead 

of the nominal shaft diameter (which is to be compensated by a corresponding modification of the 

applied stress level σ(M2*) = F / π r3
2). While this modelling approach has been successfully applied 

by Kremer (2005) for recalculation of experimentally determined crack propagation load cycles at 

bolt size M8, the omission of the conservatively acting fictitious extension of the incorporated crack 

through the thread depth leads to a strong overestimation of fatigue life in the here presented inves-

tigation. As already the sole crack propagation load cycles determined with Model 2* in the upper 

HCF notably exceed the experimentally determined load cycles until rupture (see Table 4-6), its 

application cannot be recommended for large-size bolts.  

An analogous adaption of Model 1 (→ Model 1*) is additionally considered in the aforementioned 

investigations by Pyttel et al. (2008). Contrary to Model 2*, thereby the negligence of the stiffness 

contribution of the thread leads to increased stress intensities compared to Models 1 and 2. Due to 

its conservative nature it is not considered in the here presented result depiction. 
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Table 4-6: Juxtaposition of analytically and experimentally determined fatigue load cycles for  
M36 HV-bolt sets 

Load level 

(Sm = 630 N/mm²) 

Technical 
crack initiation 

Crack propagation Rupture 

PJ (ns = 1.15) Model 1 Model 2 (Model 2*) 
Analytical 

(PJ / Model 1) 

Experimental 

M36 (B)  

HCF1 

Sa = 103 N/mm² 
2.36∙104 5.39∙104 5.67∙104 (2.32∙105) 7.8∙104 ≈ 1∙105 

HCF2 

Sa = 69 N/mm² 
2.42∙105 1.54∙105 1.62∙105 (6.63∙105) 4.0∙105 ≈ 3∙105

 

TDL 

Sa = 50 N/mm² 
3.35∙106 3.58∙105 3.78∙105 (1.52∙106) 3.7∙106  ≈ 6∙105 – 2∙106

 

Comparing load level wise calculated fatigue load cycles in crack initiation and crack propagation 

phases to the measurement results from Kremer (2005), the analytical calculations with Model 1 and 

Model 2 are in a plausible order of magnitude. Thereby, at the highest tested load horizon HCF1 the 

overall load cycles until rupture are substantially affected by crack propagation. The proportional 

contribution decreases at lower load levels and overall load cycles are increasingly dominated by 

technical crack initiation. Consequently, with decreasing load level the accuracy of the approximation 

of the experimental results depends more strongly to the previously elaborated damage parameter 

characteristics.  

A graphical comparison of the complete S-N curves until rupture, calculated with different damage 

parameters and including the variant consideration of the support effect at the notch, is given in 

Figure 4-28. The non-conservative nature of the PSWT-parameter’s estimation under consideration of 

the notch sensitivity factor ns is further enhanced by the additional consideration of crack propaga-

tion. Only when neglecting the support action, an acceptable approximation of the experimental re-

sults is achieved, which however is the most conservative among the considered damage parameter 

configurations. For the PJ-parameter, neglecting ns leads to a slightly more conservative load cycle 

estimation, which causes an improved approximation of the experimental results in the transition 

region to the endurance limit.  

Generally, also when using the cyclic material data obtained from Incremental-Step-Tests (Figure 

4-29) a good analytical result quality is obtained in the upper high cycle fatigue range at both exper-

imentally investigated load horizons. Here the overestimation of the PSWT-parameter with considera-

tion of the notch sensitivity factor is compensated by the more conservative progression of the strain-

life curve and the beneficial impact of the lower ns-value obtained with IST based material data. Due 

to the strain-life curve progression, at lower load levels no distinct transient development towards an 

endurance limit, as present in the experimental results and calculations with material data from con-

stant amplitude tests, is displayed by the analytical results. Moreover, the earlier discussed re-

strictions for prediction of the actual endurance limit apply.  
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The depicted calculation results with cyclic material data from the two testing procedures support 

the previously made assumption that the base material’s actual fatigue life behaviour at higher load 

cycles is somewhat overestimated by the strain-live curve from constant amplitude tests and under-

estimated by its IST based counterpart. 

 

Figure 4-28: Analytical fatigue curves until rupture with different damage parameter approaches con-
sidering cyclic material data from constant amplitude tests 

 

Figure 4-29: Analytical fatigue curves until rupture with different damage parameter approaches con-
sidering cyclic material data from Incremental-Step-Tests (IST)  
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4.4.4 Consideration of the boundary-layer effect 

The experimental results on M36 HV-bolt sets, presented in Chapter 3.3, have evidently shown a 

significant reduction of the fatigue strength caused by hot-dip galvanizing. Thus far, this behaviour 

is not represented in the applied calculation methodology. In order to provide a legitimate analytical 

approximation of the fatigue strength also for hot-dip galvanized HV-bolts, an adaption of the calcu-

lation approach is necessary, which in particular considers the effect of the boundary layer.  

As elaborated in Chapter 2.1.4, for structural steel components with hot-dip galvanizing, fatigue 

cracks are initiated at locations where shrinkage cracks in the zinc coating reach up to the base 

material surface. The corresponding model assumption (derived by Ungermann et al., 2015, and 

acknowledge for bolt-alike notch geometries by Simonsen, 2015 and Oechsner et al., 2015) sug-

gests that at these locations at the tips of the shrinkage cracks, microstructural stress peaks occur 

which under cyclic loading favour premature fatigue damage of the component (Figure 4-30). 

 

Figure 4-30: Model representation of the damage effect caused by galvanizing boundary layer accord-
ing to Ungermann et al. (2015), Simonsen (2015) and Oechsner et al. (2015) 

Engineering models for consideration of the boundary layer effect 

Generally, the relevance of surface effects on the fatigue life diminishes in the phase of technical 

crack propagation, see Radaj & Vormwald (2007). This can also be presumed for the here contem-

plated impact of hot-dip galvanizing. An implementation of the damage effect of the zinc coating is 

therefore particularly to be considered within the strain-life approach for calculation of crack initiation 

fatigue life. Given the complex causative damage process on microstructural level, which is not yet 

conclusively investigated, simplified engineering models are introduced. 

In the research project “Experimental and analytical assessment of the fatigue strength of bolts with 

large dimensions under consideration of boundary layer effects” (Oechsner et al., 2015) an adaption 

of the “thin surface layer model” by Seeger & Heuler (1984) (see Chapter 2.2.5) was pursued for 

integration of the effect of hot-dip galvanizing to the notch-strain approach. Thereby the general load-

bearing and base material behaviour is considered unaffected by the surface layer. The assumed 

stress concentration at the shrinkage cracks may be incorporated by adding a supplemental load 
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component as virtual residual strain εr to the bolt’s relation between nominal load L (here equivalently 

expressed by the nominal bolt stress S) and local strain ε at the fatigue critical location inside the 

thread, derived from the FE calculation. This procedure is illustrated as Variant 1 in Figure 4-31, left, 

with an exemplary chosen strain addend εr = 0.75 %. 

As the strain increment is applied constantly at all nominal load levels, the cyclic strain range after 

load reversal Δε remains unaffected, apart from an increase of the mean strain level. In the evalua-

tion of the local stress-strain (σ-ε) behaviour, the virtual residual strain leads to a corresponding 

residual stress σr, present at unloaded conditions. However, already at unmodified loading condi-

tions the prevailing high mean stress level causes strongly plastic local deformations. The consid-

ered strain augmentation thus only leads to a marginal increase of the local stress level of the cyclic 

hysteresis.  

 

Figure 4-31: Variants of adjusting the nominal load (S) – local strain (ε) relation for inclusion of the 
damage effect caused by hot-dip galvanizing to the strain-life approach  

εr
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Original S-ε relation

σ - ε

S - ε

PJ = 2.81
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As a consequence, due to the threshold of the mean stress sensitivity (see Chapter 4.4.1), also at 

the here incorporated rather large residual strain increment, no increased fatigue damage is consid-

ered by the PJ-parameter. Also using the PSWT-parameter, the experimentally determined reduction 

of fatigue life caused by hot-dip galvanizing cannot be reproduced with strain increments εr in a 

technically reasonable order of magnitude. 

Additional to the residual strain increment, the “thin surface layer model” allows the consideration of 

a separate local stress-strain relation (i.e., material behaviour) of the boundary layer. As illustrated 

in the schematic depiction of the model in Figure 2-14, for surface layers with higher strength attrib-

utes than the base material, this, at identical local strains, leads to an augmented local stress range 

of the surface layer. In the original application purpose of the model for surface strengthened com-

ponents (see Bruder & Seeger, 1996), fatigue crack initiation is then considered to occur in the sur-

face layer. However, the here investigated boundary layer is notably softer than the base material 

(instrumented indentation tests by Oechsner et al., 2015 have shown hardness and elasticity values 

of the zinc coating of about half compared to the high strength steel base material). The actual 

stresses in the coating are therefore smaller than in the base material. Moreover, as previously indi-

cated, owing to shrinkage processes, the zinc coating must be considered fully cracked already in 

the initial production state before cyclic loading. Thus, an explicit consideration of the boundary 

layer’s material behaviour is not suitable for the present application purpose. A modification of the 

base material’s local σ-ε relation caused by the zinc coating cannot be regarded plausible, either.  

Given the aforementioned observations, the “thin surface layer model” is not considered qualified for 

incorporation of the damage effect of the zinc coating to the analytical fatigue calculation with the 

stain-life approach.  

An alternative approach for modification of the bolt’s S-ε relation is illustrated as Variant 2 in Figure 

4-31, right. Thereby, to incorporate the negative impact of the zinc coating to the local loading con-

ditions, a factor f is applied to the original strains determined without boundary layer. This also results 

in an augmentation of the strain range Δε under cyclic loading. Similar to Variant 1, the local stress-

strain relation is maintained identical to the uncoated material state. However, the increased strain 

and likewise enhanced corresponding stress range results in a higher fatigue damage, displayed in 

the damage parameter evaluation (P(ε) < P(ε*)). 

Different to the basic assumption of the “thin surface layer model”, in the suggested approach the 

load dependent occurring local strains are considered affected by the boundary layer. Thereby, ra-

ther than a contribution to the load-bearing behaviour of the surface layer, the strain augmentation 

may be interpreted as an additional geometrical impact. This corresponds to the aforementioned 

model assumption of a microscopic notch effect caused by the shrinkage cracks. As no physically 

substantiated estimation is obtainable, the magnitude of the considered strain enlargement factor f 

is adjusted solely empirically. The aspired reduction of the analytically calculated endurance limit 

between hot-dip galvanized and uncoated black bolts of about 20 to 25 %, indicated by the experi-

mental results, can be achieved by introducing a strain factor f = 1.25 – 1.30. Corresponding analyt-

ical fatigue calculation results are presented in Figure 4-32 and Figure 4-33. Therein, an estimated 
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base material endurance limit εa,D = 0.24 % is considered (see Chapter 4.4.2) and macro-crack prop-

agation load cycles are calculated independently of the boundary layer. Additionally to the full load 

cycles until rupture, analytical crack initiation fatigue curves of the galvanized bolts are plotted in the 

red dotted lines.  

 

Figure 4-32: Calculation results considering the effect of hot-dip galvanizing with strain adjustment 
Variant 2 and PJ damage parameter (ns= 1.15, material 32CrB4, cyclic material data from constant am-
plitude tests) 

 

Figure 4-33: Calculation results considering the effect of hot-dip galvanizing with strain adjustment 
Variant 2 and PSWT damage parameter (ns= 1.0, material 32CrB4, cyclic material data from constant 
amplitude tests) 
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As can be observed from the comparison between analytical and experimental results, using the 

suggested approach, the effect of hot-dip galvanizing can expediently be incorporated to the calcu-

lation procedure with both PJ and PSWT damage parameter. Certainly, similar to the uncoated M36 

bolts, with the latter an appropriate approximation of the experimental results is only obtained when 

neglecting the stress-mechanical support effect (ns = 1.0). Based on the directly triggered endurance 

limit reduction, the effect of the zinc coating is extended to the upper high cycle fatigue range. Since 

at higher nominal load levels fatigue life is increasingly affected by macroscopic crack propagation, 

the calculation results with and without boundary layer consideration approximate. This tendency 

generally reflects the behaviour found in the experimental results. Still, contrary to uncoated bolts, 

including the boundary layer consideration, the analytical fatigue approximation in the upper high 

cycle fatigue range shows an overestimating tendency compared to the test results. Correspond-

ingly, the deviation between uncoated and galvanized bolts at the upper tested load level is notably 

less severe in the analytical calculation than in the experimental results. This observation gives rise 

to the assumption that also the macroscopic crack propagation phase, which at this load level forms 

a significant contribution to the overall fatigue life, is to a certain degree affected by the zinc coating.  

The accuracy of the result approximation in the transition region to the endurance limit, where fatigue 

life is increasingly governed by technical crack initiation, mainly depends on the applied damage 

parameter approach and the earlier discussed influence of the strain-life curve progression. Addi-

tional calculation results with the PJ-parameter under negligence of the notch sensitivity factor and 

with the more conservative strain-life curve from IST are included in Appendix E.4. In both calcula-

tions, the reduction of crack initiation load cycles leads to an improvement of results in the TEL as 

well as at the lower tested load level in the upper HCF. A similar tendency is observable in the 

comparison between the depicted calculation results in Figure 4-32 and Figure 4-33.  

Alternatively, instead of adjusting the local loading conditions, an equivalent calculation result can 

be achieved by reducing the applied damage parameter – fatigue life relation (P-life curve). Thereby, 

an additional modification factor is to be considered in analogy to the notch sensitivity factor ns  

(ntotal = nzinc ∙ ns, with nzinc < 1.0). This approach is emblematic for an alternative interpretation of the 

underlying damage mechanism, where the zinc coating is assumed to affect the fatigue load-bearing 

capability of the base material, rather than the local loading conditions. However, thereby different 

correction factors are required for the two considered damage parameters (ΔSa,D = 20 % 

→ nzinc (PJ) ≈ 0.6; nzinc (PSWT) ≈ 0.9). The here applied load dependent procedure provides the ad-

vantage that an identical strain adjustment factor f causes an equivalent effect on the calculation 

results with both damage parameters.  

Discussion of the boundary layer impact in the macroscopic crack propagation phase 

It can be presupposed that the principle macro-crack propagation behaviour of uncoated and hot-

dip galvanized bolts with the same base material is largely equivalent. However, the shape of the 

propagating crack verifiably variates in dependence of the boundary layer. Kremer (2005) for electro-

chemical galvanized bolts as well as Eder et al. (2018) for hot-dip galvanized bolt-alike notched 

specimens report of tendentially more crescent- (i.e., circumferential) rather than half-moon-shaped 
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fracture surfaces, compared to the uncoated counterparts. The same tendency can be observed 

from the fracture surfaces of the tested bolts of the here present study (see Appendix F.1). Moreover, 

compliantly with the results from Kremer, for all boundary layer states fracture surfaces show a more 

pronounced circumferential tendency with increasing loading (Eder et al. performed tests at only one 

load level). 

Eder et al. (2018) point out that according to Milella (2013) a more crescent-shaped beach mark 

pattern and resultant fracture surface can be associated with increasingly severe stress concentra-

tions, whereas at milder stress concentrations a more levelled beach mark progression develops 

(see Figure 4-34). The varying fracture surface development can be attributed to the abundance of 

occurring incipient surface cracks under cyclic loading in the base material at the notch root. These 

observations correlate with the boundary layer and load level dependent fracture surface tendency 

of the experiments, described above. 

 

Figure 4-34: Schematic illustration of fracture surfaces after fatigue crack propagation of round 
notched specimens following severe (left) and mild (right) stress concentrations; adapted from 
Eder et al. (2018) and Milella (2013)  

The described crack shape variation may be considered in the analytical calculation of macro-crack 

propagation by means of the crack depth to width ratio a/c, for instance in a semi-elliptical surface 

crack model according to FKM-Guideline (2006), as suggested by Kremer (2005). Thereby, a more 

strongly circumferential crack shape and correspondingly considered crack width c causes a reduc-

tion of crack propagation load cycles. However, the consideration of a fully circumferential surface 

crack, as hypothesised in the numerically validated crack propagation model applied in the presented 

calculations (see Chapter 4.4.3), already implies a theoretical unfavourable limit state of the actually 

present single-sided crack initiation. A crack shape dependent adaption is thus not appropriate in 

the approximative geometry model.  

It needs to be acknowledged that the here applied macro-crack propagation calculation, using an 

approximative crack propagation model and assumed material parameters, designates a rather gen-

eral estimation approach. It aims for a manageable practical applicability based on technically avail-

able model assumptions. Investigations of advanced crack propagation calculation methods of bolts 
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including numerically aided crack propagation functions, as performed for instance by 

Olveda et al. (2014) and Stranghöner et al. (2018), were not in the scope of the present dissertation. 

In the further development of such models the specific crack shape adaption for consideration of the 

surface layer impact is advisable. 

4.5 Extended sensitivity studies 

Up to this point, the elaborated analytical fatigue assessment procedure was solely validated and 

adjusted on the basis of the experiments on M36 HV-bolts, under axial loading, with nominal preload, 

and with the respective set of material data from the original bolt material. In this conclusive chapter 

the validation is extended to an increased framework of boundary conditions. In a first step, the 

induced effect by variations of the bolt geometry, and in particular by an increased bolt diameter, is 

evaluated. Secondly, the importance of knowledge about material data determined for the original 

bolts’ base material is assessed. Finally, the effect of varying loading conditions is evaluated. In this 

context, the scope of experimental validation is extended to the test results of black and hot-dip 

galvanized M64 HV-bolts as well as test results of M48 HV-bolt from the literature.  

4.5.1 Impact of the bolt geometry 

As elaborated in the state of the art of this dissertation, size effects, which influence the fatigue 

strength of HV-bolts, may arise from a variety of different origins (see Chapter 2.1.4). Contrary to the 

performed experimental investigations, the analytical calculation procedure, within boundaries, pro-

vides opportunity for isolated assessment of different size effects. Thus, to distinctly investigate the 

impact of geometry dependent variations which arise at bolts with increased diameters, possibly 

differing base material characteristics are disregarded at this stage, and analytical calculations are 

performed with identical base material data. In the sequel, firstly the sole geometrical impact of in-

creased bolt diameters is evaluated. Secondly, the potential statistical size effect is assessed. 

Geometrical size effects 

Due to the normatively standardized thread geometries, which at different bolt diameters are not 

geometrically similar, a potential geometrical impact on the fatigue strength arises from the specific 

diameter dependent notch geometry. Figure 4-35 shows the development of the ratio between nom-

inal bolt diameter d and thread pitch p, as indicator for the geometrical sharpness of the introduced 

notch. They are compared to the calculated linear elastic stress concentration factors at the notch 

root derived with 2D axisymmetric FE models (see Chapter 4.3.2).  

A further diameter dependent impact is imposed by the stress-gradient in lateral direction from the 

notch root and the correlating support effect provided by the lesser loaded surrounding material. The 

normalised lateral stress developments from linear elastic FE calculations, starting at the most criti-

cally loaded location at the notch root, are illustrated in Figure 4-36 (expressed by the related notch 

stress concentration Kt / Kt,max). Jointly, the thereof derived related stress gradients  and stress-

mechanical support numbers ns, calculated with the approach by Siebel & Stieler (1955) (see Chap-
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ter 2.2.5 as well as Appendix E.1), are given. The thereby considered material dependent macro-

scopic notch sensitivity factor np is identical for all diameters. Additionally to the here investigated 

large-size diameters, the graphic shows the results for smaller bolt size M16, for comparison. 

 

Figure 4-35: Comparison of notch sharpness expressed by the d/p-ratio and resulting notch effect ex-
pressed by the linear elastic notch stress concentration Kt in dependence of the bolt diameter 

 

   

Bolt 
size 

 ns = nnp 

(Eq. 2-23) (Eq. 2-22 / 2-24) 

M72 1.71 1.134 

M64 1.71 1.134 

M48 2.07 1.141 

M36 2.65 1.151 

M16 5.11 1.178 

   

Figure 4-36: Stress gradients and corresponding notch sensitivity factors in dependence of the bolt 
diameter  

In order to quantify the impact of the two mentioned geometry dependent effects, Figure 4-37 shows 

analytical fatigue calculation results for large-size HV-bolts between diameters M36 and M72. Re-

sults are shown separately for the upper HCF (left) and the endurance limit (right). Crack initiation 

load cycles are calculated with the PJ damage parameter and cyclic material data from constant 

amplitude tests for material 32CrB4. For approximation of the bolts’ endurance limit a base material 

strain endurance limit εa,D = 0.24 % is assumed (see Chapter 4.4.2). 

From the calculation results without consideration of the notch sensitivity factor (ns = 1.0) the partic-

ular impact of the variant thread geometries can be assessed. As visible in Figure 4-35, despite the 

notable increase of the d/p-ratio, the actual resultant notch stress concentrations deviate only slightly 

from bolt diameter M36 upwards. Correspondingly, only a fractional reduction of endurance limits 
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related to thread geometry is present in the analytical calculations. It can therefore be concluded that 

for the investigated diameter range between M36 and M72 no relevant impact is imposed on the 

bolts’ fatigue strength by the variant thread characteristics. 

 

Figure 4-37: Comparison of analytical fatigue calculation results for HV-bolt sets with different diame-
ters (Sm = 630 N/mm², PJ damage parameter, material 32C4B4, cyclic material data from constant am-
plitude tests) 

Regarding the stress-mechanical size effect, it can be observed in Figure 4-36 that the linear elastic 

stress gradient significantly decreases from smaller bolt size M16 up to the large-diameter range 

between M36 and M72. Correspondingly, under elastic-plastic conditions a stronger development of 

plastic strains in the material adjacent to the notch root must be expected with increasing bolt diam-

eter, thus reducing the support action. While between diameters M36 and M48 still a notable varia-

tion of the stress gradient is present, from bolt diameter M48 upwards the reduction tendency per-

ceptibly diminishes. Between diameters M64 and M72 no further depletion occurs. The described 

tendency is reflected in the corresponding notch sensitivity factors ns. However, in the analytical 

calculation of the endurance limit (Figure 4-37, right), apart from the given general enlargement of 

the calculated fatigue strength, the additional inclusion of the diameter dependent notch sensitivity 

factor only causes a marginally stronger deviation between the considered diameters than imposed 

by the notch geometry itself. As the deviation of calculated endurance limits between bolt size M36 

and M72 is little more than 1 N/mm², the impact indicated by the here considered calculations with 

the PJ-parameter is negligible. From the previous investigations in Chapter 4.4 it is evident that an 

assessment with the PSWT-parameter, which is not depicted here, would result in a notably stronger 

diameter related impact of the stress-gradient. However, considering the thus far performed studies, 

it must be assumed that the effect of the stress-mechanical support number is strongly overestimated 

and thus not properly reflected in calculations with the PSWT-parameter. 
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In the upper HCF (Figure 4-37, left) the calculated load cycles until technical crack initiation are 

subjected to a reduction of about 15 % between bolt sizes M36 and M72 by the combined effect of 

notch geometry and support action. However, this somewhat stronger deviation than found for the 

endurance limit largely resolves in the final fatigue curves until rupture and the additional consider-

ation of macro-crack propagation. 

When using the crack propagation Model 1 presented in Chapter 4.4.3, the diameter dependent 

stress gradient is inherently included in the calculation by the applied radial stress development 

throughout the bolt diameter (equivalent to the stress development used for determination of the 

stress-mechanical support effect in Figure 4-36). In all calculations the assumed initial crack depth 

is maintained equally to ai = 0.1mm. The final crack depths, required for the calculations, are esti-

mated, based on the microscopic measurements of the fracture surfaces of the tested M36 and M64 

bolts (see Appendix F.1). As the final crack depth has a minor impact on the calculated load cycles, 

these approximative values can be considered sufficiently accurate. With only about 4 % reduction 

of calculated crack propagation load cycles between diameters M36 and M72, no significant impact 

of the diameter is indicated by the applied crack propagation calculation. This is reflected in the final 

load cycles until rupture. Thereby, in accordance with the described diameter dependent behaviour 

of the stress gradient, the visible slight reduction tendency for the most part arises between bolt size 

M36 and M48. It resolves at further increased diameters. Since no major effect is imposed by the 

diameter related stress gradient, as previously indicated in Chapter 4.4.3, crack propagation load 

cycles in a similar order of magnitude may also be calculated with the simplified crack propagation 

Model 2. 

The results show that neither changes of the thread geometry nor the stress gradient, resultant from 

an increased bolt diameter, need to be expected to cause a major reduction of the fatigue strength. 

In the comprehensive validation, performed in the previous Chapter 4.4, it was shown that equally 

to the PSWT damage parameter also with the above considered PJ-parameter a better approximation 

of the experimental results is achieved when disregarding the support number ns and thus the stress-

mechanical size effect. As the here applied approach by Siebel & Stieler (1955) was mainly derived 

for the purpose of assessing smaller dimension components than in the present case, it is probable 

that for the given magnitude of considered diameters the actually present support effect and its ben-

eficial implication are overestimated. When using the alternative approach given in FKM-Guide-

line (2012) for calculation of a stress-gradient dependent notch sensitivity factor, for all here consid-

ered bolt diameters (including M16) the calculation yields a value n = 1. This supports the previously 

stated assumption. 

Statistical size effect 

The statistical size effect considers the increased probability of fatigue-relevant material defects to 

emerge at larger structural components. As the initial formation of a microscopic fatigue crack is 

mainly a surface related process, the statistical assessment may usually be affiliated to the contem-

plation of the highly stressed surface area of the investigated structural component (rather than ma-

terial volume). Accordingly, by evaluation of a Weibull-distribution (aka., “weakest-link model”) the 



Extended sensitivity studies  143 

 

statistical size effect may be incorporated to the strain-life concept with the statistical notch sensitivity 

factor nw according to Equation 4-6 (see Vormwald & Seeger, 2015; FKM-Guideline, 2012). 

Thereby, the surface area of the reference material specimen Aref is related to the critically loaded 

surface area of the investigated component Aσ. According to FKM-Guideline (2012), for structural 

steel the Weibull exponent may be estimated to kw ≈ 30.  
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While for the application of the weakest-link model in the present investigation the applicable refer-

ence surface area is distinctly given by the dimensions of the base materials specimens, the approx-

imation of the bolts critical surface area is fairly ambiguous. In the literature it is referred to a section 

of the structural component with more than 90-95 % of the maximum principle stress being an ap-

propriate approximation basis (see Sonsino, 1993). A corresponding surface area can be deter-

mined with the aid of linear elastic FE calculations. To avoid an overestimation of the actual physi-

cally present critical surface area, it is essential to consider the continuous pitch of the thread in the 

FE model (see Chapter 4.3). For the here investigated large-size HV-bolt sets the numerical calcu-

lations yield a critical loaded surface area inside the thread with at least 95 % of the maximum prin-

ciple stress (Kt,95%) with an extension over roughly a quarter of the bolts circumference (1/2 π) and a 

height of about half of the bolts notch radius (1/2 R). Neglecting the curvature of the notch root, the 

critical surface area A95% may therefore be analytically approximated by assessing a cylindrical sur-

face section with the bolts core diameter d3 (see Figure 4-38, left). Considering a critical surface with 

at least 90% of the maximum stress concentration, the surface area doubles to approximately half 

of the bolts circumference (A90% ≈ 2 ∙ A95%). For the present investigation it is suspected that the 

stronger confinement of the fatigue critical area inside the thread represented by the lower bound of 

the surface area estimation (A95%) reflects a more appropriate approximation of the actual physical 

conditions. 

 

Figure 4-38: Approximation of the critically loaded surface area at the bolt thread with a 3D FE model 
(left) and development of the statistical size effect acc. to Eq. 4-6 (right) 

Figure 4-38, right shows the development of the statistical notch sensitivity factor nw in dependence 

of a critical surface area Aσ and corresponding HV-bolt diameter on the basis of the specimen size 
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from the cyclic material tests under constant amplitude loading (CA; cylindrical section with d = 4 mm 

and h = 20 mm). The corresponding values are given in Table 4-7. Therein, additionally the resulting 

notch sensitivity factor derived for the differently sized material specimens used for the Incremental-

Step-Tests are included (IST; cylindrical section with d = 8 mm and h = 25 mm).  

Table 4-7: Critical surface areas and corresponding notch sensitivity factors for expression of the 
statistical size effect 

Bolt 
size 

A95% 

[mm²]

nw 

CA IST 

(Aref = 250 mm²) (Aref = 630 mm²) 

M72 21.98 1.084 1.118 

M64 19.26 1.089 1.123 

M48 11.87 1.107 1.142 

M36 7.05 1.126 1.162 

M16 1.54 1.185 1.222 

Despite the significantly larger overall dimensions, the critical surface areas at the bolt threads are 

substantially smaller than the specimens’ reference areas. Thus, analogously to the stress-mechan-

ical notch sensitivity factor, the consideration of the statistical size effect causes an increase of the 

analytically calculated fatigue strength. The associated effects are in a comparable order of magni-

tude. However, when considering the material data from CA tests, they are on a slightly lower level. 

Moreover, as can be observed by the comparison of Figure 4-39 and Figure 4-37, a slightly stronger 

diameter related impact is imposed by the statistical than by the stress-mechanical size effect.  

 

Figure 4-39: Diameter dependent analytical calculation of the endurance limit under consideration of 
the statistical size effect (Sm = 630 N/mm², PJ damage parameter, material 32C4B4, cyclic material data 
from constant amplitude tests) 

Endurance limit

ns= 1.0

ns = nw (CA)
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Nonetheless, as can be observed in Figure 4-38, right, in the investigated large-size diameter range 

the applicable Weibull-distribution reaches a relatively shallow progression. Thus, the divergence of 

the calculated endurance limits between bolt diameters remains small. When using a critical surface 

area A90% the analytically determined fatigue strengths further approximate the calculation results 

without notch sensitivity factor (ns = 1).  

It can be concluded that, such as the two previously evaluated diameter related impact factors, also 

the statistical size effect (in terms of the effect of an increasing bolt diameter) only minorly influences 

the crack initiation fatigue life of large-site HV-bolts. This is in accordance with the general observa-

tions regarding the statistical size effect of high strength steel components by Böhm & Heckel (1982) 

(see Chapter 2.1.4). Nevertheless, a possible combined consideration of statistical and stress-me-

chanical notch sensitivity factor in the analytical fatigue calculation according to Equation 2-25 would 

lead to a further overestimation of the experimental fatigue strength of the tested HV-bolts. As dis-

cussed above, the occurrence of a pronounced stress-mechanical size effect at large-size bolt di-

ameters is questionable. It is thus to be preferred to use a support number ns constituted solely by 

the statistical size effect, which may gain relevance in dependence of the size of the reference ma-

terial specimens. Moreover, the statistical size effect becomes of notable significance in the analyti-

cal fatigue calculation of smaller bolt diameters (see Figure 4-38, right). However, given the small 

potential impact, for the here investigated bolt sizes neglecting both stress-mechanical as well as 

statistical size effect can be regarded acceptable. 

It is plausible that statistical ramifications, for instance due to a higher density of microstructural voids 

at larger component sizes, may also influence to a certain degree the fatigue life during macroscopic 

crack propagation. However, after initiation of the technical crack the here applied surface related 

weakest-link model cannot readily be transferred to the succeeding macro-crack propagation phase. 

Thus, in the present investigation no statistical effect is incorporated in the analytical calculation of 

load cycles during macro-crack propagation. 

4.5.2 Impact of the bolt material 

In the present section the potential impact on the analytical fatigue assessment of deviating cyclic 

material data, derived for different high-strength bolt materials, shall be assessed. In the framework 

of the present dissertation, comparison background for bolt material data was only acquired with the 

simplified evaluation method based on Incremental-Step-Tests (IST). Therefore, in the first instance 

a comparison is carried out using cyclic material data given in the literature for different materials 

derived with the more convincing test procedure with constant amplitudes (CA), as it was utilized 

here solely for the M36 bolts’ material 32CrB4. For the juxtaposition, only cyclic material data of 

materials with similar strength properties (strength class 10.9) and with comprehensive experimental 

background, which includes a determined strain endurance limit, are considered. Additionally, the 

analytically estimated set of cyclic material data provided by the Uniform Material Law (UML) by 

Bäumel & Seeger (1990) is included in the evaluation. The estimation is based on the static material 

properties of the M36 bolt material 32CrB4. Thereby, as for the 32CrB4 material itself, the strain 

endurance limit is assumed to εa,d = 0.24 % (see Chapter 4.4.2). 
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Figure 4-40: Comparison of cyclic material curves for high-strength steels given in the literature 

 

Figure 4-41: Individual comparison of analytical fatigue calculations for M36 bolts (Sm = 630 N/mm², 
PJ damage parameter, ns = 1.0) with original 32CrB4 material data from constant amplitude tests (black 
lines) to calculations with material data from the literature (dotted lines: crack initiation; dashed lines: 
rupture)  
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The cyclic material curves of the considered materials are shown in Figure 4-40, together with the 

curves for the original M36 bolt material 32CrB4 as well as the thereof derived UML. The underlying 

cyclic material parameters are included in Appendix E.5. Additionally, the 32CrB4 material curves 

derived from IST are plotted as reference. Below, in Figure 4-41, the results of analytical fatigue 

calculations for the M36 HV-bolt geometry with different cyclic material data (coloured lines) are 

compared individually to the results with the original bolt material’s data from CA tests (black lines). 

All calculations consider identical crack propagation load cycles. The decisive benchmark criterion 

for the comparison are therefore the crack initiation load cycles depicted in dotted lines and the 

calculated endurance limits.  

Within the here considered sample of materials a good agreement and close similarity of load cycles 

in the upper high cycle fatigue range (HCF) is achieved with the most resembling alloy specification 

36CrB4. The good compliance of cyclic material characteristics also indicates that the strain endur-

ance limit approximation of the original bolt material is appropriately chosen. For the two further 

considered material alloys notably stronger deviations occur. Thereby, the variations of calculated 

load cycles in the upper HCF are essentially precipitated by the different progressions of the mate-

rials’ strain-life curves. At relevant fatigue loading conditions, calculated strain amplitudes at the 

notch root are mostly restricted to the linear region of the cyclic stress-strain curves, with close re-

semblance of all considered materials. Only at high nominal stress amplitudes and in a fatigue life 

range of N < ≈ 104, noteworthy plastic deformations may occur in the cyclic hysteresis. Thus, a ma-

terial specific impact of the cyclic stress-strain curve is restricted to this area. Moreover, as discussed 

in Chapter 4.4.2 on the example of the IST based cyclic material curves, an earlier development of 

plastic deformations under cyclic loading may affect the analytical calculation of the endurance limit. 

However, the discrepancies between the considered materials in the upper region of the cyclic 

stress-strain curves are notably less pronounced than precipitated by the material testing procedure 

with variable amplitudes. At the here considered high mean stress level (Sm = 630 N/mm²) a possible 

impact on the calculation procedure from the monotonic material behaviour may effectively arise 

only from the slightly varying strength limit Rm, which affects the upper and thus the mean stress 

level of the cyclic hysteresis. However, also with the presumably overestimated mean stress sensi-

tivity of the PSWT damage parameter, only a slight impact is imposed upon the calculation results. 

With the here applied PJ-parameter the given changes of monotonic material behaviour between 

high-strength materials do not affect the calculation. 

A significant deviation of analytical fatigue results in the upper HCF, to an extent that also a notable 

shift of calculated load cycles until rupture is visible, occurs in the calculation with the UML. Moreo-

ver, even though an identical strain endurance limit is considered, the analytically calculated endur-

ance limit is raised by the impact of the cyclic stress-strain curve.  

Despite the limited evaluation background, which originates from the lack of comprising experimen-

tally substantiated material data, the presented comparison in Figure 4-40 convincingly illustrates 

that cyclic material data between materials with comparable strength characteristics are only limit-

edly transferable. This especially concerns the strain-fatigue behaviour, for which changes may have 



148   Analytical Fatigue Investigations 

 

a notable effect on the analytically estimated fatigue life. The given material assessment indicates 

that a better compliance might be suspected at resembling or identical alloy specifications. Obvi-

ously, this supposition requires further validation. It must also be considered that a general scatter 

of cyclic material properties is likely to arise due to the specific production as well as testing condition, 

regardless of the specific alloy specification. Thus, generally, knowledge about the specific cyclic 

material characteristics is crucial for an appropriate analytical fatigue assessment. To gain 

knowledge about the transferability of cyclic material properties, an extension of the presently given 

background of meaningful cyclic material data for high-strength bolt materials is required. Due to 

differences in the methodical analytical calculation approach, the objections by Marten (2009) 

against the application of the UML for calculation of preloaded bolts cannot directly be transferred to 

the here applied procedure. Nonetheless, the given comparative calculation emphasizes that the 

UML cannot be regarded as a reliable approximation tool. It needs to be considered as a very rough 

approximation of the actual material behaviour and may lead to significant deviations of results com-

pared to the actual bolt material.  

The compositions of the above considered material alloys are primarily representative for production 

of HV-bolts with diameters smaller or equal M36. Due to production reasons, for larger diameters 

commonly superior quality alloys with combined proportions of chromium (Cr), nickel (Ni) and mo-

lybdenum (Mo) are used. The simplified IST based material tests, described in 4.2.2, have generally 

revealed a good resemblance of cyclic material behaviour between the investigated bolts M36 and 

M64 (30CrNiMo8) as well as M48 (34CrNiMo6) by Marten (2009). The most pronounced deviation 

of strain-life curves occurs between the M36 and M64 bolt material (see Figure 4-7). Therefore, the 

impact of the actual bolt material to the analytically calculated fatigue strength of the M64 bolts is 

evaluated in Figure 4-42, on the example of the NT-galvanized specimens.  

In the analytical calculation the strain enhancement factor f = 1.275, introduced in Chapter 4.4.4 for 

consideration of the boundary layer effect by hot-dip galvanizing, is incorporated. Additionally to the 

results of the M64 HV-bolts, the median S-N curve (Ps,50%) for the NT-galvanized M36-HV-bolts is 

depicted in grey colour for comparison purposes. Since with the IST based material data no conclu-

sions regarding the endurance limit are feasible, only the upper HCF is considered in the analytical 

calculations. 

The analytical results exhibit only a minor deviation of calculated crack initiation load cycles and 

hence confirm the comparability of underlying cyclic material properties. Given the good compliance 

between the CA and IST based strain-life curves in the upper HCF, observed for M36 bolt material 

32CrB4, as well as the validation of the two testing procedures given by Vormwald & Seeger (1988), 

it is assumed that an adequate comparability may also be suspected for the unknown strain-life 

behaviour of the M64 as well as the M48 bolt materials at constant amplitude loading. As elaborated 

beforehand, for a comprehensive analytical fatigue calculation, which extends to the transition region 

and the endurance limit, material data from IST is not appropriate. Hence, for the present studies it 

is assumed legitimate to use the 32CrB4 material data from CA test as good approximation also in 

analytical fatigue calculations of the experimentally investigated bolts with diameters M64 and M48.  
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As a consequence, similar to the geometrical impact factors, investigated in the previous chapter 

4.5.1, the analytical calculations do not suggest a significant “material-technological” size effect in 

the crack initiation phase. However, due to the lack of a meaningful fracture mechanical material 

data basis, the impact of material dependent crack propagation parameters cannot be evaluated. 

The investigation results indicate that the attested reduction of the experimental fatigue strength 

between the tested NT hot-dip galvanized M36 and M64 bolts in the upper HCF (see Figure 4-42) is 

predominantly attributable to a reduction of bearable load cycles in the macroscopic crack propaga-

tion phase.  

 

Figure 4-42: Impact of the bolt material in the analytical fatigue calculation of the M64 HV-bolt sets  
(PJ damage parameter, ns = 1.0)  

 

Figure 4-43: Comparison of analytical fatigue calculations for M64 HV-bolts (B, NT) with and without 
consideration of the strain enhancement factor to experimental results (PJ damage parameter, ns = 1.0) 
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Nevertheless, the result comparison illustrated in Figure 4-43 shows that only with consideration of 

a strain enhancement factor in the strain-life concept an acceptable approximation of the experi-

mental results is achieved. Without application of the strain factor, the fatigue strength, especially at 

lower load levels, is clearly overestimated. Thus, for the black M64 bolts also a reduction of crack 

initiation load cycles compared to their diameter M36 counterparts needs to be assumed. 

Additionally to the variation of the materials, sensitivity studies were performed where the friction 

coefficient inside the paired thread was varied from the here regularly applied value μ =0.1. Thereby, 

in accordance with analogous analytical investigations by Seybold (2005) and Marten (2009), at ax-

ial loading conditions only a marginal impact was observed. In fact, with the here applied 2D axisym-

metric FE-model, as refined implementation from the model used by Marten, an even smaller impact 

is indicated. Even with an increased friction coefficient μ =0.3, which can be considered close to the 

theoretical upper end for a completely degreased steel to steel contact surface (see Kloos & Tho-

mala, 1979), only a marginally increased notch sensitivity factor of Kt = 4.60 is derived (compared to 

Kt = 4.56 for μ = 0.1, see Chapter 4.3.2). In an analytical fatigue calculation, considering both crack 

initiation and macro crack propagation, this leads to an irrelevant effect. The calculated S-N curves 

are almost identical to the results shown in Figure 4-43.  

Consequently, given the obtained results of this and the previous section, the analytical fatigue in-

vestigations do not suggest that either a base material related or a geometrically imposed impact 

factor was causative for the low fatigue strength of the tested black M64 HV-bolts. Likewise, an 

increased friction coefficient, due to variant lubrication characteristics inside the thread, is not indi-

cated as plausible justification.  

4.5.3 Impact of loading conditions 

Preload level 

Finally, the sensitivity of the analytical fatigue assessment procedure to loading conditions shall be 

assessed. To this end, firstly, the impact of the preload level in analytical fatigue calculations with PJ 

and PSWT damage parameters is evaluated in Figure 4-44. The analytical calculations are plotted in 

comparison to the fatigue test results from Marten (2009) on HV-bolts M48, which were executed at 

reduced mean load level Sm ≈ 0.15 Rp0.2. As only NT hot-dip galvanized bolts were tested, the ana-

lytical results consider the introduced strain enhancement factor f = 1.275. Cyclic properties from 

constant amplitude tests for material 32CrB4 with endurance limit estimation were used. The con-

sidered load levels are restricted to nominal stress-ratios R > 0 (for the lowest depicted mean load 

levels the nominal stress range varies between R ≈ 0.6 at the endurance limit and R ≈ 0.1 in the top 

region of the upper HCF). Due to the limitations of comparable macro-crack propagation material 

constants for corresponding stress-ratios, load cycles until rupture were only calculated for the nom-

inal mean stress level Sm = 0.7 Rp0.2. 

To accurately capture the assumable local loading conditions at the thread caused by the experi-

mental load application, the initial loading path is calculated with the combined material consideration 
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approach, described in Chapter 4.3.3. Thereby, monotonic material conditions are assumed up to 

the nominal mean stress level Sm. For consideration of presumable cyclic relaxation effects during 

the following cyclic ramp up phase, cyclic stabilized material behaviour is supposed between Sm and 

upper load level Smax. As discussed in Chapter 4.3.3, the applied approach for calculation of the 

initial loading path notably affects the resulting mean load of the cyclic hysteresis at reduced nominal 

preloads (see also Figure 4-17). 

The calculations confirm that, similar to the bolts of diameter M36 and M64, a good analytical ap-

proximation is also achieved to the experimental results of the M48 HV-bolts at reduced mean load 

level, if the PJ damage parameter is used (Figure 4-44, left). Due to the previously discussed mean 

stress dependent characteristics of the damage parameter (see Chapter 4.4.1), no deviations of the 

calculation results occur at considered mean stresses between 0.7 and approximately 0.25 Rp,0.2 

(the coinciding crack initiation fatigue curves are therefore depicted in identical colouring). At mean 

load level 0.15 Rp,0.2 the analytical calculation predicts an incipient beneficial impact on the crack 

initiation fatigue life at higher load levels, as an effect of the lower part of the cyclic hysteresis falling 

below the theoretical crack opening stress considered in the PJ-parameter definition. Only at further 

decreased mean stress (not illustrated) the increase of analytically predicted fatigue life extends to 

lower load levels and eventually to the endurance limit (approx. 0.1 Rp,0.2). However, it needs to be 

considered that due to manufacturing tolerances at the actual bolt-to-nut assembly, at very low 

stress-ratios a presumable positive material damage behaviour can be superimposed by negative 

effects of an insufficient stress distribution inside the paired thread. Correspondingly, Schnei-

der (2011) found that endurance limit estimations with the strain-life approach overestimate the ex-

perimental results of threaded fasteners of experiments with constant low nominal stress-ratio 

R = 0.1.  

 

Figure 4-44: Comparison of analytical fatigue calculations with different mean load levels to experi-
mental fatigue results from Marten (2009) on NT-galvanized M48 HV-bolt sets (ns = 1.0, material 
32CrB4 (CA), εa,d = 0.24 %; left: PJ-parameter; right: PSWT-parameter)  
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For the here considered range of mean stress levels, the analytical calculations with the PJ-param-

eter reflect well the collated findings from experimental investigations in the literature for residual 

stress free bolts, rolled before heat treatment (see Chapter 2.1.4). They confirm that no substantial 

impact on the endurance limit is to be expected and that an impact is limited to the upper HCF, 

especially at higher load levels. It needs to be assumed that a beneficial effect of a reduced mean 

load will likewise occur in the macroscopic crack propagation phase. Correspondingly, contrary to 

the comparison with NT-galvanized M36 bolts tested at regular preload (Chapter 4.4.4), the analyti-

cally calculated load cycles until rupture at mean load level Sm = 0.7 Rp,0.2 underestimate the exper-

imental results at Sm ≈ 0.15 Rp,0.2, especially at the upper tested load horizon.  

At increased mean load levels compared to the conventional nominal preload, the analytical fatigue 

assessment procedure does not indicate an effect on the crack initiation fatigue life. Calculations 

with the PJ-parameter yield similar results with mean load level 0.9 as with 0.7 Rp,0.2. This, however, 

is contradictory to experimental investigations by Schneider (1992) as well as Weber (2010), which 

both found a tendential reduction of the endurance limit at this very high mean load level range. It 

was validated in this dissertation that no substantial impact on the local hysteresis’ stress level, and 

accordingly to the damage calculation, occurs as a consequence of an increased mean load level 

above 0.7 Rp,0.2. However, demonstrably, the local strains at the maximal loaded turn of the thread 

significantly increase (see Figure 4-14). It can be assumed that the expansion of plastic deformations 

inside the thread may lead to a reduction of the support action at the notch root as well as possibly 

an enlargement of the fatigue critical area prone to crack initiation. Both related effects (i.e., stress-

mechanical and statistical size effect) have been demonstrated to be mostly insignificant for the here 

considered bolt diameters. This circumstance provides basis for the assumption that the impact of 

high preload levels is less pronounced at large-size bolts than for the smaller bolt sizes, which were 

subject of investigation in the aforementioned studies in the literature. Still, further experimental val-

idation in fatigue tests under high mean load level is indispensable for validation of this hypothesis.   

Contrary to the calculations with the PJ damage parameter, the application of the PSWT-parameter 

(Figure 4-44, right) leads to a strong overestimation of the experimentally determined fatigue strength 

at the reduced mean load level 0.15 Rp,0.2. Evidently, the mean stress sensitivity of the damage 

parameter does not accurately describe the actual physical mean stress dependent behaviour of the 

bolts and anew, similar to its unrealistic susceptibility to the notch sensitivity factor, the PSWT-param-

eter is proven overly sensitive. Thus, despite its generally good approximation of the fatigue strength 

at regular mean load level and notch sensitivity factor ns = 1.0, its suitability for application in an 

analytical fatigue assessment of HV-bolts must be regarded as very limited.  
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Bending impact 

Unlike the conventional experimental set-up for bolt fatigue tests, the prevailing axial stresses of HV-

bolts in L-shaped ring-flanges are systematically superimposed by eccentricity resultant bending 

stresses. The actually occurring magnitude of these stresses strongly varies in dependence of the 

flange geometry as well as preload and flange imperfections. With the purpose of illustrating the 

general effect of a combined stress state on the bolts’ fatigue behaviour, the loading situation is 

emulated here in a simplified way. Corresponding analytical fatigue calculations with the PJ damage 

parameter, using a 3D axisymmetric FE-model (see Chapter 4.3.1) are illustrated in Figure 4-45. 

The two considered bending affected load situations are simulated in a way that the nominal stress 

at the bolt shaft is formed proportionally by 25 / 75 % bending / axial stresses (dotted blue line) and 

50 / 50 % bending / axial stresses (dotted red line), respectively. Thereby, the bending stresses are 

included only in the cyclic hysteresis. In the initial loading path, representing the monotonic preload-

ing process, still purely axial loading conditions are maintained.  

The analytical calculations (including the strain enhancement factor f = 1.275) are plotted in compar-

ison to experimental results for NT-galvanized M48 HV-bolt sets tested under pure cyclic bending 

loading, published by Schaumann & Marten (2008). Similar to the analytical calculations, the estab-

lished mean stress during the experiments can be considered purely axial. The experimental mean 

load level was approximately 0.4 Rp,0.2, which is within the previously identified range without impact 

on the analytical calculation results with the PJ damage parameter. Due to the preload, the bolts 

were always maintained entirely under tension during the experiments. It is noted that the symbolic 

illustration of the loading condition in Figure 4-45 is thus representative only for the applied cyclic 

loading.  

Additionally, the corresponding results for the axially loaded M48 bolts by Marten (2009), which were 

established in the same test series and with identical bolt production batches, as well as the analyt-

ical calculation results at pure axial loading are plotted as reference. Pure cyclic bending loading had 

to be omitted in the analytical calculations because of numerical restrictions. 

For a valid comparison, all shown results, both analytical and experimental, need to be representa-

tive for fatigue failure at an identical location (i.e., in the first load bearing turn of the thread). In the 

analytical calculations this is secured by the circumstance that at the considered loading conditions 

the maximum stress and strain concentration at the paired thread still notably exceeds the further 

existing local peaks, for example under the bolt head or at the shaft transition. In the experimental 

investigations by Schaumann & Marten (2008) under bending loading a notable number of speci-

mens failed due to fatigue crack initiation under the bolt head, whereby the location of the failure 

was strongly dependent on the bolt manufacturer. Compliantly with the evaluation approach sug-

gested by Schaumann & Marten for the comparison of fatigue test results with varying failure loca-

tion, in the below depicted illustration of bending fatigue test results only specimens from one pro-

duction batch are included, where the occurrence of fatigue failure was restricted to the first load-

bearing turn of the thread. When contemplating the entire test series, including additional specimens 

from two further bolt manufactures which mainly showed failures under the bolt head, a significantly 
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larger scatter of results occurs. Thereby the resultant mean value of the endurance limit for combined 

consideration of the failure locations lies below the here depicted value but still above the experi-

mental endurance limit for axial loading. 

It is noted that, unlike the axial load fatigue tests, the experiments under bending were aborted when 

the initiation of a fatigue crack of a magnitude noticeable by the resonance testing facility was de-

tected, and not at full or directly impending rupture of the specimens. In the upper HCF the two 

depicted experimental S-N curves are therefore only limitedly comparable. In the analytical assess-

ment of macro-crack propagation the consideration of bending stresses would generally be feasible 

by corresponding adjustment of the applied specific stress distribution along the crack. The applied 

auxiliary crack propagation model from Pyttel et al. (2008) was, however, only numerically validated 

and confirmed for pure axial loading. It is thus refrained from calculating full load cycles until rupture 

and only analytical crack initiation load cycles determined with the strain-life approach are shown. 

Nevertheless, direct comparability between analytical and experimental results under bending in the 

upper HCF cannot be granted either because the experimentally detected crack size needs to be 

assumed larger than the considered technical crack size of 0.1 mm in the calculations. The main 

benchmark criterion for a result evaluation is thus the endurance limit, which remains unaffected by 

the aforementioned restraints. Still, results are also depicted for the upper HCF for informative  

purposes.  

 

Figure 4-45: Comparison of analytical fatigue calculations under axial loads with and without bending 
influence (PJ-parameter, ns = 1.0, material 32CrB4 (CA), εa,d = 0.24 %) to experimental results for NT-
galvanized M48 HV-bolt sets under pure axial and pure bending cyclical loading from Marten (2009) 
and Schaumann & Marten (2008) for crack initiation in the first load-bearing turn of the thread 

From the comparison between analytical results in Figure 4-45 with different loading conditions it 

can be confirmed that the expected beneficial effect of bending to the fatigue strength is reasonably 

represented by the calculation procedure. Thereby, with increasing bending contribution to the nom-

inal stress state, the calculated endurance limit is noticeably elevated compared to a calculation at 
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pure axial loading. It needs to be considered that, as indicated previously, for pure axial stresses the 

application of the 3D FE model representation for determination of the notch strains leads to a slight 

increase of the calculated fatigue strength compared to the application of a 2D axisymmetric model 

(depicted as reference in the grey dotted line). This numerical impact is presumed to be also included 

in the bending affected calculations in a similar order of magnitude. Thus, a valid qualification of the 

isolated impact of bending can be performed by comparison to the calculation results under axial 

loading using the equivalent 3D axisymmetric FE model. 

In the calculation with 25 % bending contribution to the nominal stress, only a minor elevation of the 

calculated endurance limit compared to the analytical result with axial loads of a factor 

Sa,d,bend / Sa,d,ax ≈ 1.05 occurs. The beneficial impact noticeably increases at the calculation with 50 % 

bending impact on an endurance limit elevation of approximately 1.2. From the depicted experi-

mental test results, restricted to the comparison between bolts with dominating failure location in the 

first load-bearing turn of the thread, an increased endurance limit of bolts tested under pure cyclic 

bending (100 %) of a factor of 1.5 was determined. The analytical results are therefore in good quan-

titative agreement with the experimental findings. From the calculations, it can be noticed that the 

beneficial impact on the fatigue strength does not increase linearly with the bending contribution in 

the nominal loading but distinctly develops at larger bending impact. Concerning HV-bolts in ring-

flanges, the actual bending impact can be presumed relatively small to the here considered stress 

states. Thus, the expectable fatigue strength may be assumed very comparable to pure axial loading 

conditions and a potential beneficial impact caused by the loading situation needs to be considered 

as mostly insignificant. 

The distribution of linear elastic stresses along the thread of the 3D axisymmetric FE model, which 

correlates with the development of elastic-plastic strains, is presented in Figure 4-46. The considered 

loading conditions are similar to the analytical calculation in Figure 4-45. Visibly, under bending in-

fluence a less severe stress concentration develops in the first load-bearing turn. Simultaneously, 

stress re-distributions are indicated by increasing concentrations in the last loaded turn and the free 

loaded thread. In accordance with the observations made with the analytical fatigue calculation re-

sults, a substantial decrease of the maximum notch stress concentration Kt only occurs at the stress 

state with larger bending contributions. At a stress state with only 25% bending impact, the stress 

development barely deviates from purely axial loading.  

As further potential causes for the improvement of the fatigue strength with increasing bending im-

pact, a stronger stress-mechanical support effect can be suspected. The latter may originate from a 

tendentially lower stress gradient in radial direction from the notch root, arising at bending affected 

compared to pure axial loading. However, for the here analytically evaluated loading situation with 

the largest bending impact (50 %), no significant differences of the stress gradient in the direct vicin-

ity of the notch root occur compared to the calculation with axial loading (see Figure 4-36). Thus, 

similar to the axially loaded bolts, the support effect due to the stress gradient may be regarded as 
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negligible also under a bending affected stress state. It is thus not considered to significantly con-

tribute to the improved fatigue strength. Correspondingly, in all calculations, depicted in Figure 4-45, 

the support number was maintained as ns = 1.0.  

In conclusion, the improved fatigue strength evoked by bending, at large-size bolts is dominantly 

attributable to the changing stress distribution inside the thread. For small bolts, where the stress-

gradient is considered to impose a stronger impact, an additional beneficial effect may occur. More-

over, an impact of a changing critical loaded surface area (i.e., statistical size effect) is thinkable. 

 

Figure 4-46: Distribution of linear elastic notch stress concentration along the thread at purely axial 
and bending affected nominal loading calculated with axisymmetric 3D FE model 

4.6 Findings 

The previous chapter contained thorough investigations on the analytical fatigue assessment of 

large-size HV-bolts. The applied methodology was based on the established strain-life approach and 

supplemented by linear elastic fracture mechanics calculations. With the fundamental background 

of earlier works, a further development for the application to large-size HV-bolts was systematically 

elaborated. Moreover, the refined methodology was used to exemplary assess specific fatigue-rele-

vant characteristics, such as size effects, material impacts and loading conditions. Even though such 

investigations can hardly substitute entirely comprehensive experimental investigations, they provide 

valuable insights with drastically reduced monetary and temporally efforts.  

In the sequel, the most relevant findings are summarised which concern both the general application 

conditions of the evaluation method as well as conclusions regarding large-size bolt fatigue. 

Provision of base material data 

Comparative calculations with varying sets of material data have highlighted that knowledge about 

the actual base material’s cyclic behaviour is crucial for an accurate analytical fatigue assessment. 

This mainly concerns the strain amplitude – fatigue life relation. Material data derived from a con-

densed testing procedure with strain-controlled Incremental-Step-Tests, instead of a comprehensive 
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constant amplitude test series, can provide a reasonable basis for fatigue life calculations in the 

upper high cycle fatigue range. However, they disqualify for any conclusions regarding the endur-

ance limit, also if the latter is explicitly determined by supplemental stress-controlled tests. 

Based on cyclic material data from strain-controlled constant amplitude tests, which were limited to 

the high upper high cycle fatigue range, a reasonably accurate approximation of the tested HV-bolts’ 

endurance limit could be achieved by appropriately estimating the base material’s strain endurance 

limit. Still, the full potential of the comprehensive material testing procedure may only be exploited, 

when constant amplitude material tests are also extended to a higher load cycle range and the ma-

terial’s endurance limit is experimentally verified. If the extended testing efforts associated with such 

tests are embraced, a strongly improved quality of analytical results obtained with the strain-life ap-

proach can be expected. 

The analytical investigations have indicated that the effect of cyclic mean stress relaxation at high 

mean strains has a minor effect on the fatigue strength of preloaded HV-bolts. It may therefore be 

considered acceptable to neglect the effect in analytical calculations. Compared to the accurate ex-

perimental verification of the strain-life behaviour at loading conditions with R = -1, the execution of 

base material tests with high mean strains for investigation of cyclic relaxation can be regarded sec-

ondary. 

For the application of linear elastic fracture mechanics, solely standard material parameters from the 

literature were applied. Since in the upper high cycle fatigue range fatigue characteristics of HV-bolts 

can be considered strongly affected by macro-crack propagation, it is recommendable to take actual 

fracture mechanical properties of customary HV-bolt base materials into closer consideration. 

Numerical assessment of local loading conditions 

It was verified that for large-size HV-bolt sets the consideration of the actually given continuous  

pitch of the bolt thread within a 3D numeric implementation does not result in a more severe fatigue 

critical stress and strain development inside the paired thread, compared to an axisymmetric mod-

elling approach. Instead, the results suggest an improved stress redistribution capability when the 

continuous thread pitch is incorporated. Resultant slightly lower stress and strain peaks inside the 

thread lead to an increased fatigue life estimation in the analytical fatigue calculation. However, a 

3D model implementation is considerably more sensitive to numerical modelling characteristics than 

a 2D axisymmetric model and requires extensive numerical adjustment studies. It is therefore advis-

able to favour a 2D axisymmetric FE modelling approach for the assessment of local loading condi-

tions of large-size HV-bolts. If the analysis requires the consideration of the continuous pitch (e.g., 

when assessing stress states under rotational tightening), corresponding FE models need to be 

evaluated with high diligence. For the consideration of bending affected stress states, the application 

of a rotational symmetric extension of a 2D plane element to a 3D volume element model can be 

regarded a suitable simplified modelling approach. However, also here the aforementioned remarks 

apply. Still, at all modelling approaches numerical sensitivity studies to mesh and contact definitions 

are indispensable.   
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Analytical fatigue damage assessment 

Among three investigated damage parameters, the PJ-parameter by Vormwald (1989) has proven 

vastly superior for the assessment of fatigue damage until technical crack initiation of preloaded, 

large-size HV-bolts. Contrary, due to its pronounced mean stress sensitivity at the relevant notch 

sharpness and loading conditions, the popular PSWT-parameter needs to be regarded limitedly suit-

able. Especially at calculations with mean stresses, reduced from the nominal preload level, calcu-

lations with the PSWT-parameter lead to unrealistic results. Moreover, it shows overly sensitive to a 

possibly incorporated notch sensitivity factor. Even though earlier studies had indicated certain po-

tentials, the PM-parameter by Narberhaus (1999) can be considered unqualified for the application 

in the here presented evaluation methodology for large-size HV-bolts. 

A notch sensitivity factor can be used to incorporate both stress-mechanical and statistical size ef-

fects to the analytical calculations. However, the performed evaluations suggest that a stress-me-

chanical support action has an insignificant effect at the diameter range ≥ M36 and hence superior 

results are achieved when the corresponding notch sensitivity factor is maintained at n = 1.0. Also a 

statistical size effect, incorporated based on a weakest-link model and the relation of fatigue critical 

surface areas, only has a small impact on the here considered large-size diameter range. In the 

present study it is therefore found acceptable to likewise disregard the effect in the analytical fatigue 

calculation for improvement of results. However, generally its actual magnitude, when incorporated 

into the strain-life approach, also depends on the size of the specimens, used for determination of 

base material data. It is thus recommended to generally analyse the potential impact constituted by 

the statistical size effect. If found appropriate, a notch sensitivity factor may than be constituted by 

the statistical rather than the conventionally applied stress-mechanical consideration. The statistical 

size effect also gains importance at bolt diameters smaller than contemplated in the here presented 

study. 

For fatigue calculations of hot-dip galvanized HV-bolts, the originally applied calculation methodol-

ogy needs to be modified. To incorporate the complex damage mechanism considered decisive for 

the negative effect of hot-dip galvanizing, a simplified engineering model is suggested. Thereby, an 

empirically defined enhancement factor is applied to the local strain development, numerically de-

termined for conditions without boundary layer. The strain enhancement factor leads to increased 

stress and strain ranges of the hysteresis compared to uncoated conditions at identical nominal 

loading, and thus a larger damage effect. The procedure is in accordance with the hypothesis, intro-

duced in the literature, that a microscopic stress concentration effect at shrinkage cracks in the zinc 

layer is causative for the impact on the fatigue strength. 

The application of simplified analytical crack propagation models combined with established material 

parameters for the application to HV-bolts has proven an appropriate auxiliary tool for the estimation 

of full load cycles until rupture. Among potential models, a hollow cylinder representation under var-

iable stress with circumferential surface crack, as suggested by Pyttel et al. (2008), can be consid-

ered most appropriate. However, in the absence of fracture mechanics software for numerical inte-

gration of the geometry function, a simplified round bar model at constant tension can be regarded 
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an acceptable alternative. Nonetheless, the here applied simplified and strongly generalized meth-

odology for application of linear elastic fracture mechanics to large-size HV-bolts lacks potential for 

systematic evaluation of fatigue-relevant impact factors in the macro-crack propagation phase. Thus, 

for a more accurate analytical assessment in the upper high cycle fatigue range, especially at high 

load levels, advanced, numerically aided crack propagation models are necessary. Thereby, for in-

stance, differently shaped fracture surfaces may be incorporated, which can be supposed to intro-

duce an impact of hot-dip galvanizing to the endurable load cycles also in the macro-crack propaga-

tion phase. 

Impact factors on large-size bolt fatigue 

Performed sensitivity studies suggest that in the large-size diameter range between M36 and M72 

no significant size-effect is introduced by either, the variant notch geometry of the thread or the 

stress-mechanical support action related to the stress gradient. Likewise, no pronounced statistical 

impact needs to be expected. Neither of these factors may thus plausibly be assumed causative for 

the found discrepancies of the fatigue strength between M36 and M64 bolts in the experimental 

investigations.  

In general, variant cyclic material properties of high-strength bolt materials can be considered to 

potentially introduce relevant scatter of endurable load cycles. However, between HV-bolts with di-

ameters M36 and M64, experimentally investigated within the framework of this dissertation, rather 

comparable base material properties were confirmed, at least for the crack initiation phase. However, 

it needs to be presupposed that the reduction between normal temperature hot-dip galvanized bolts 

with diameters M36 and M64, present in the upper high cycle fatigue range, is dominantly caused 

by varying macro-crack propagation characteristics. Here, potential impact factors need to be further 

investigated. 

Concerning the severe reduction of fatigue strength found for uncoated, black M64 HV-bolts an im-

pact in both macro-crack propagation and crack initiation phase needs to be supposed. Given the 

previously described findings, neither a geometrical nor a material related impact can be assumed 

decisive. Likewise, potentially altered friction properties inside the thread were not indicated as plau-

sible explanation. Thus, also after the analytical investigations, the exact cause for the obtained 

reduction of fatigue strength remains uncertain. 

Presupposing an appropriate mean stress dependent damage assessment of the PJ-parameter, the 

analytical calculations indicate that crack initiation load cycles (and thus endurance limit) of large-

size HV-bolts are mostly unaffected by the mean stress level above approximately 0.15 Rp,0.2. How-

ever, in the upper HCF an additional mean stress impact needs to be expected during macro-crack 

propagation. Similar to the mean stress level, the experimentally acknowledged beneficial impact of 

bending on the fatigue strength of HV-bolts is reflected well in the analytical calculation. However, a 

significant effect is only introduced at pronounced bending contributions. At superimposed stress 

states which are substantially dominated by axial loading, as expectable in conventional flange ge-

ometries, the fatigue resistance is to be supposed very similar to purely axial loading conditions.
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5 Summary and Future Research 

5.1 Summary 

The fatigue safety of large-size bolting assemblies in ring-flange connections is of fundamental im-

portance for the structural integrity of support structures for wind turbines. Prior to the research pre-

sented in this dissertation, the cyclic load bearing characteristics of HV-bolt systems were not 

properly verified for the range of large diameters, commonly used in practical application. Experi-

mental knowledge about the impact of the bolt diameter on the fatigue strength, especially under 

loading conditions with representative high mean stress level, was missing. Moreover, the impact of 

hot-dip galvanizing, required for corrosion protection, was not conclusively quantified. 

The review of the state of the art acknowledged that the validation of the design assumptions used 

for dimensioning of large-size bolting assemblies was primarily provided by a sole fatigue test series 

on HV-bolts of diameter M48. Even though comprehensive, the respective tests were performed at 

a substantially reduced mean load level, compared to the nominal preload. This had imposed inse-

curities regarding the transferability to the actual loading conditions. Comprising tests on specimens 

from multiple manufactures, the investigations still provided a fundamental groundwork for the here 

presented extended investigations. Apart from the mentioned study, further knowledge about spe-

cific fatigue characteristics of HV-bolts was mostly established in investigations on substantially 

smaller diameters than applied in today’s modern support structures for wind turbines. This is due to 

the fact that fatigue testing on large-size HV-bolts, especially at representative mean load level, are 

cost and time consuming because of the high required testing loads. Therefore, analytical fatigue 

assessment methods, in particular the strain-life concept supplemented by linear elastic fracture 

mechanics, were contemplated in the here presented research as potentially capable additions to 

essential experimental investigations. Consequently, the performed research had two major aims. 

The first was the extension of the experimental validation of the HV-bolts’ fatigue characteristics to 

the large-size diameter range at representative loading conditions. Secondly, but equally significant, 

was the methodical investigation of an analytical fatigue assessment procedure that is suitable for 

the evaluation of specific fatigue-relevant impact factors. 

To appropriately supplement the hitherto available experimental background, a systematic testing 

program was implemented, consisting of three different steps. Firstly, a fundamental baseline was 

established by an extensive test series with more than 100 individual test runs on HV-bolt sets of 

diameter M36. Secondly, the experimental scope was extended to bolts with very large diameter 

M64, representative for the upper range of commonly applied HV-bolt sizes. Due to the high technical 

requirements, this test series was performed with a reduced number of specimens compared to the 

M36 tests. Thirdly, the two aforementioned test series performed at constant amplitude loading were 

supplemented by tests on M36 HV-bolts with variable amplitude loading sequences, to evaluate the 

bolts’ fatigue performance at less academic and more service-alike loading conditions. All mentioned 

tests were performed at representative high mean load level at designated pure axial loading. More-

over, the impact of the boundary layer effect was investigated by including tests in all series on 

uncoated, black as well as hot-dip galvanized specimens.  
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The tests revealed a substantial impact of hot-dip galvanizing on the fatigue performance, which was 

equivalently attested at constant as well as variable amplitude loading. The magnitude of the effect 

was quantified for the M36 HV-bolts at constant amplitude loading with a reduction of the endurance 

limit of approximately 20 %, compared to uncoated conditions. Moreover, a notable decrease of the 

fatigue strength was also imposed in the upper high cycle fatigue range. The cause for the negative 

impact is presumably attributable to shrinkage cracks in the zinc boundary layer that lead to a prem-

ature fatigue crack initiation. However, the superior fatigue performance of uncoated specimens was 

not confirmed on the tested M64 HV-bolts. Here, the fatigue strength of black and hot-dip galvanized 

bolts was found at an almost identical level, owing to a considerable reduction of the fatigue strength 

between uncoated M36 and M64 HV-bolts. Thus, without the aid of further systematic investigations 

of potential causes, a superior fatigue classification in the design of large-size HV-bolts without cor-

rosion protection needs to be questioned. Even though significantly less pronounced, a slight reduc-

tion of fatigue strength was also observed between the tested M36 and M64 bolts with hot-dip gal-

vanizing boundary layer, which was increasingly pronounced at higher load levels. However, the 

found discrepancies could not conclusively be ascribed to the increased bolt diameter. Instead, the 

variant production chain and manufacturer as well as loading frequency might likewise have had a 

pivotal effect. 

Despite the variations between the experimentally determined fatigue strengths, the secure cover-

age given by the fatigue classification of HV-bolts in the detail catalogue of the Eurocode 3 (FAT50) 

was confirmed for all tested bolt configurations. Thereby, considering the extended experimental 

background, the necessity of a further reduction of the fatigue class was indicated for bolt sizes 

larger than M36. However, the corresponding diameter reduction function applied in the Eurocode 

appeared conservative. Furthermore, the tests performed at variable amplitude loading indicated a 

notable underestimation of fatigue life at lower fatigue load levels, introduced by the considered 

damage accumulation hypothesis in the Eurocode 3. Recommendations for a less conservative ser-

vice-life assessment given in the mechanical engineering guideline VDI 2230 could be confirmed by 

the here presented investigations. However, for any fatigue life verification of large-size HV-bolts 

subjected to amplitudes above the endurance limit with the S-N curves provided by the guideline, a 

shift of the knee-point to 1∙106 load cycles at a maintained endurance limit is indispensable to se-

curely cover the experimental results. 

In the systematic analytical investigations, the application of the strain-life concept to preloaded 

large-size HV-bolts was thoroughly evaluated and refined. For the studies, cyclic material parame-

ters, determined on specimens from the core of the experimentally investigated M36 HV-bolts, 

served as the primary material data base. These parameters were established in strain-controlled 

constant amplitude material tests. Moreover, to extend the possibilities for validation of analytical 

calculation results, further cyclic material data was determined for the base materials of the tested 

M64 bolts as well as for bolts from the earlier test series on M48 HV-bolts. To reduce material testing 

efforts, in these tests an abbreviated testing procedure based on Incremental-Step-Tests was used. 

Thus, to enable a direct comparison of the two procedures, an additional set of material parameters 

was established for the M36 bolts’ base material as well. 
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The provision of cyclic material data from the applied abbreviated testing procedure could be verified 

as a suitable alternative for the calculation of load cycles in the upper high cycle fatigue range. For 

the analytical evaluation of the endurance limit, however, comprehensive cyclic material data from 

constant amplitude material tests are indispensable. Despite lacking material test data in the relevant 

high load cycle range, in the present study an acceptable estimation of the material’s strain endur-

ance limit could be achieved based on relevant data from the literature. However, material specific 

results of elaborate material tests in the high load cycle range are expected to further improve the 

significance of analytical fatigue evaluation results. 

For the determination of the local cyclic loading conditions in the paired thread with the aid of nu-

merical methods, an axisymmetric finite element implementation was confirmed as a preferable mod-

elling approach. In this context, it was verified that for a range of diameters between M36 and M72 

no fatigue critical local stress and strain augmentations are imposed by a more elaborate, and like-

wise numerically sensitive, finite element implementation with consideration of the continuous thread 

pitch. For the final constitution of the cyclic hysteresis resulting from the nominal outer loading, mon-

otonic material behaviour was considered along the initial loading path up to the nominal mean load. 

Afterwards cyclic stabilized material conditions were assumed.  

Different damage parameters were evaluated for the necessary transformation of the damage con-

tribution implied by the strain-based material data to the strongly mean stress affected cyclic loading 

conditions at the bolt thread. Thereby, the PJ damage parameter was identified as strongly preferable 

to the popular PSWT- and the PM-parameter, its empirical modification. To enable analytical fatigue 

calculations of crack initiation load cycles not only for uncoated but also for hot-dip galvanized HV-

bolts, an engineering approach was introduced and verified to include the presumed complex dam-

age mechanism induced by the zinc boundary layer in a simplified, manageable manner. Thereby, 

a strain-enhancement factor was applied to the numerically determined relation between outer load-

ing and local strains. The magnitude of the factor was empirically calibrated, based on the experi-

mentally quantified variation of the M36 bolts’ endurance limit with undisturbed black and galvanized 

boundary layers.  

Finally, to enable an appropriate comparison between the analytical and experimental fatigue 

strengths, macroscopic crack propagation load cycles were calculated additionally, with the aid of 

linear elastic fracture mechanics. To this end, established generalized analytical models and fracture 

mechanics material parameters were used.  

As such, with the elaborated fatigue assessment procedure good approximations to all considered 

experimental test series on M36 and M64 HV-bolts at nominal mean load level as well as M48 HV-

bolts at reduced mean load level were achieved. This also implied calculations with superimposed 

axial and bending loading. A beneficial impact of bending on the fatigue strength of the bolts, as 

acknowledged in the literature, was indicated by the analytical calculations to occur in a non-linear 

manner and only at pronounced bending contributions.  
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Potential size-effects were individually evaluated in terms of geometrical as well as statistical ramifi-

cations of an increased bolt diameter. For neither of these factors, the performed investigations in-

dicated a meaningful impact on the fatigue strength for bolt diameters above M36. These findings 

corroborated the supposition, that the found differences between the experimentally investigated 

M36 and M64 HV-bolts were not primarily induced by diameter related effects.  

5.2 Recommendations and future research 

The experimental and analytical investigations in this dissertation indicated that the fatigue strength 

of large-size HV-bolt sets between the diameters M36 and M72 is not critically affected by geomet-

rical or statistical diameter related impacts. Instead, found discrepancies between the available ex-

perimental investigation can probably be ascribed to generally scattering impact factors, as for in-

stance the specific material properties, production chain and testing conditions. Given the achieved 

extended experimental background, a superior fatigue classification of large-size HV-bolts into an-

other than the presently designated fatigue class FAT 50 of the Eurocode 3 is not justified. However, 

the obtained results evidently indicate that the incorporated steadily decreasing diameter reduction 

function of the Eurocode notably underestimates the fatigue strength of bolts with diameters > M48. 

It is thus recommended to seek for an adaption of the reduction function in order to avoid an overly 

conservative design. To this end, the exclusion of further reductions of the design fatigue class from 

diameter M48 upwards can be regarded as an appropriate modification. A reasonable range of afore-

mentioned potential scattering impacts is already included in the existing experimental background 

for large-size HV-bolts because of the multitude of tests on bolts from variant manufactures and at 

different test stands. Still, further designated fatigue tests, which include the evaluation of the endur-

ance limit of HV-bolts with very large diameters M64 or M72, could corroborate the proposed adap-

tion. 

A further potential of resolving given conservatisms in the design assumptions is indicated by adapt-

ing the applied damage accumulation hypothesis and the corresponding standardized S-N curve 

progression of the Eurocode 3 at load cycles below the endurance limit. Obviously, to this end, con-

clusive validation, required for an appropriate adaption, is lacking because of missing experimental 

background in the very high load cycle range between 108 and 109, occurring during the service life 

of wind turbines. A systematic testing program, using modern resonance technology for experiments 

at constant amplitudes, supplemented by variable amplitude loading tests reaching into the relevant 

very high load cycle range could provide remedy in this regard. Even though such tests are highly 

elaborate, a potential correction of the applied damage accumulation hypothesis would significantly 

assist an economical service-life design. 

Considering the two aforementioned factors, it needs to be assumed that with the presently applied 

design approach the fatigue life of large-size HV-bolts in ring-flanges is underestimated. This ten-

dency is still increased by the commonly considered further reduction of the fatigue class, due the 

negligence of bending stresses in the stress transfer function between tower shell and bolts. A strong 

potential for a more economical design therefore also lies within the adaption of the underlying bolt 
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stress assessment approach, in order to enable a superior utilization of the bolt’s actual fatigue ca-

pacity. In this context, the appropriate handling of flange imperfections and the secured ascertain-

ment of the required preload need to be considered as equally significant as the fatigue strength of 

the bolts itself. 

Analytical fatigue assessment methods have the potential to assist the required further development 

of the overall fatigue assessment approach of bolts in ring-flanges. In this regard, it is recommended 

to further evaluate the potential accuracy of the strain-life approach, when the progression of the 

base material’s strain-life curve at high load cycle numbers, including the strain endurance limit, is 

experimentally ascertained. Moreover, advanced numerically aided macro-crack propagation mod-

els and individually determined fracture mechanics material parameters have great potentials to in-

crease the accuracy of the analytical prediction in the upper high cycle fatigue range. Extended 

numerical models could then be used to assess the bolts’ fatigue capacity under the actually occur-

ring loading conditions within geometrically variable L- or T-shaped flanges. 

For the accurate physical description of the boundary layer effect of hot-dip galvanizing as well as 

its incorporation into the analytical assessment approach apart from simplified engineering models, 

further advanced fundamental research is required. 
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Appendix A – Experimental fatigue investigations 

A.1 Calculation formulae of the staircase method 

Methodology of staircase method according to Dixon & Moods as given in DIN 969 (1997): 

 

 
  D  

 
a,50% ao all

A
F F F x

C
   Endurance limit, survival probability Ps,50% 

  
  D  

 

2

a all 2

C E A
S(F ) 1.62 F 0.029

C
 Standard deviation 

where: Columns:  

  
 

 

2

2

C E A
0.3

C
 

(1) Amplitude 

(2) Test event (X or O) 

x = +0.5  if DTE = O 

x = - 0.5  if DET = X 
(3) Sum of rupture per amplitude 

Fao:  lowest amplitude of decisive test event (4) Sum of run-outs per amplitude 

ΔFall:  load increment (5) Index number, starting with 0 at Fao 

Decisive test event / DTE (X or O):  

event with lower number of occurrences 
(6) Sum of DTE per amplitude 

C,A,E: Sums of columns (6),(7), (8)  (7) Product of (5) and (6) 

 (8) Product of (5) and (7) 

 

  

(1) (2) (3) (4) (5) (6) (7) (8)

Fa [kN] X = Rupture O = Run-out X O z f z f z²f

Fa,1

Fa,2

Fa,3

Fa,4

…

Specimen No. 1 2 3 4 5 6 7 8 9 10 11 12 13 … ∑ ∑(3) ∑(4) - ∑(6) ∑(7) ∑(8)

C A E
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A.2 Test results of constant amplitude tests on M36 HV-bolt sets 

Uncoated, black: 

Transition region to the endurance limit (TEL) 

Test No. 
(chronological) 

Specimen No. 
(evaluation) 

Amplitude 
Fa 

Amplitude  
Sa 

Rupture/ 
run-out 

Failure  
location 

Load cycles 

[-] [-] [kN] [N/mm²] 
[R / RO] 
(RRO No.) 

[Head /  
Thread] 

[-] 

1 1 48.0 58.8 R T 623 772 

2 2 45.0 55.1 R T 837 364 

3 3 42.0 51.4 R T 602 282 

4 4 39.0 47.8 R T 1 543 027 

5 6 36.0 44.1 R T 3 110 162 

6 8 33.0 40.4 RO (RRO2) - 5 000 014 

7 10 36.0 44.1 R T 2 491 435 

8 14 33.0 40.4 RO (RRO1) - 5 000 011 

9 12 36.0 44.1 R T 1 751 877 

10 24 33.0 40.4 RO (RRO5) - 5 000 014 

11 16 36.0 44.1 RO (RRO6) - 5 000 010 

12 20 39.0 47.8 R T 2 066 003 

13 5 37.5 45.9 R T 1 505 709 

14 7 34.5 42.2 R T 1 475 508 

15 9 34.5 42.2 RO (RRO3) - 5 000 015 

16 11 34.5 42.2 RO (RRO4) - 5 000 020 

17 13 34.5 42.2 R T 2 569 297 

18 15 34.5 42.2 DL - 5 000 010 

19 17 37.5 45.9 R T* 4 364 338 

20 18 36.0 44.1 RO - 5 000 013 

21 19 37.5 45.9 RO - 5 000 015 

22 21 37.5 45.9 R T 4 842 258 

23 22 36.0 44.1 R T 3 985 944 

24 23 34.5 42.2 R T 2 108 133 

* Crack initiation in the second load bearing turn of the thread: 

 

 

Test No. 19
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Upper high cycle fatigue range 

Specimen No. 
Amplitude 

Fa 
Amplitude 

Sa 
Failure  
location 

Load cycles 

[-] [kN] [N/mm²] 
[Head /  
Thread] 

[-] 

1 

56.0 68.6 

T 282 947 

2 T 293 013 

3 T 320 665 

4 T 327 651 

5 T 329 612 

RRO1 T 476 382 

RRO2 T 306 432 

6 

84.0 102.9 

T 85 125 

7 T 94 864 

8 T 95 240 

9 T 119 644 

10 T 124 538 

RRO3 T 107 508 

RRO4 T 116 236 

RRO5 
66.0 80.8 

T 228 812 

RRO6 T 201 194 
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Normal temperature hot-dip galvanized: 

Transition region to the endurance limit (TEL) 

Test. No./ 
Specimen No. 

Amplitude 
Fa 

Amplitude  
Sa 

Rupture/ 
run-out 

Failure  
location 

Load cycles 

[-] [kN] [N/mm²] [R / RO] 
(RRO No.) 

[Head /  
Thread] 

[-] 

1 36.0 44.1 R T 542 157 

2 34.0 41.6 R T 642 385 

3 32.0 39.2 R T 818 503 

4 30.0 36.7 R T 1 251 035 

5 28.0 34.3 R T 1 077 581 

6 26.0 31.8  RO (RRO3) - 7 470 041 

7 28.0 34.3 R T 1 889 803 

8 26.0 31.8  RO (RRO1) - 10 682 531 

9 28.0 34.3  RO (RRO2) - 10 031 579 

10 30.0 36.7 R T 1 138 788 

11 28.0 34.3  RO - 5 237 323 

12 30.0 36.7 R T 1 461 350 

13 28.0 34.3  RO (RRO4) - 6 140 465 

14 30.0 36.7 R T 997 824 

15 28.0 34.3 R T 1 617 662 

16 26.0 31.8 R T 2 568 772 

17 24.0 29.4  RO - 5 111 123 

18 26.0 31.8  RO T 8 660 270 

19 28.0 34.3 R T 2 066 240 

 

Upper high cycle fatigue range 

Specimen No. 
Amplitude 

Fa 
Amplitude  

Sa 
Failure  
location 

Load cycles 

[-] [kN] [N/mm²] 
[Head /  
Thread] 

[-] 

1 

44.0 53.9 

T 242 071 

2 T 243 785 

3 T 247 640 

4 T 269 469 

5 T 291 094 

RRO1 T 252 711 

RRO2 T 240 238 

6 

66.0 80.8 

T 102 038 

7 T 107 078 

8 T 108 032 

9 T 110 374 

10 T 114 027 

RRO3 T 95 302 

RRO4 T 106 278 
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High temperature hot-dip galvanized: 

Transition region to the endurance limit (TEL) 

Test No. 
(chronological) 

Specimen No. 
(evaluation) 

Amplitude 
Fa 

Amplitude  
Sa 

Rupture/ 
run-out 

Failure  
location 

Load cycles 

[-] [-] [kN] [N/mm²] [R / RO] 
(RRO No.) 

[Head /  
Shaft / 
Thread] 

[-] 

1 1/16 32.0 39.2  R T 1 518 685 

2 2/1 30.0 36.7  R T 3 130 138 

3 5/2 28.0 34.3  R/ RO H 5 291 116 

4 3/6 28.0 34.3  R T 2 126 734 

5 4/15 26.0 31.8  R/ RO S 6 138 806 

6 16/3 26.0 31.8  RO - 9 558 587 

7 7/14 28.0 34.3  R/ RO T 8 731 405 

8 17/7 26.0 31.8  RO ( RRO1) - 11 500 831 

9 15/4 28.0 34.3  RO ( RRO2) - 18 020 964 

10 6/5 30.0 36.7  R T 1 535 633 

11 18/8 28.0 34.3  RO ( RRO4) - 11 154 910 

12 8/9 30.0 36.7  R/ RO H 5 918 444 

13 9/17 32.0 39.2  R T 789 717 

14 10/11 30.0 36.7  R T 3 616 310 

15 11/10 28.0 34.3  RO - 9 556 232 

16 12/13 30.0 36.7  R S 1 938 170 

17 13/12 28.0 34.3  RO ( RRO3) - 7 574 707 

18 14/18 30.0 36.7  R T 1 795 902 

R/RO: Rupture, but after reaching 5∙106 load cycles 

 

Upper high cycle fatigue range 

Specimen No. 
Amplitude 

Fa 
Amplitude  

Sa 
Failure  
location 

Load cycles 

[-] [kN] [N/mm²] 
[Head /  
Thread] 

[-] 

1 

44.0 53.9 

T 299 143 

2 T 308 280 

3 T 319 775 

4 T 320 893 

5 T 340 462 

RRO1 T 300 690 

RRO2 T 338 181 

6 

66.0 80.8 

T 104 243 

7 T 107 442 

8 T 110 101 

9 T 115 048 

10 T 132 297 

RRO3 T 107 362 

RRO4 T 134 204 
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A.3 Test results of constant amplitude tests on M64 HV-bolt sets 

Specimen No. 
Amplitude 

Fa 
Amplitude  

Sa 
Failure  
location 

Load cycles 

[-] [kN] [N/mm²] 
[Head /  
Thread] 

[-] 

Uncoated, black: 

1 350 130.79 T 24 200 

2 300 112.11 T 38 547 

3 250 93.42 T 50 438 

4 225 84.08 T 68 009 

5 200 74.74 T 86 469 

6 150 56.05 T 191 247 

7 125 46.71 T 331 530 

8 105 39.24 T 1 006 998 

9 90 33.63 - 2 357 301* 

Normal temperature hot-dip galvanized 

1 300 112.11 T 32 207 

2 250 93.42 T 56 072 

3 225 84.08 T 63 183 

4 200 74.74 T 82 222 

5 175 65.40 T 135 399 

6 150 56.05 T 172 660 

7 125 46.71 T 291 091 

8 100 37.37 T 707 122 

9 85 31.76 T 1 355 440 

* Test ended manually without rupture 
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A.4 Additional result illustrations of variable amplitude tests on M36 HV-bolt 

Close-up illustration of test results with different boundary layers  

 

*: Test-runs performed with reduced loading sequence due to omission of lowest loading blocks (see 

Oechsner et al., 2015)  
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Evaluation of damage accumulation hypothesis based on constant amplitude S-N curves for 

uncoated, black and high-temperature (HT) hot-dip galvanized HV-bolt sets 
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Appendix B – Material Tests 

B.1 Individual results of monotonic material tests 

Bolt size M36, 32CrB4, boundary layers B, NT, HT  

Bolt No. M36 B1* MEAN 

B 

M36 NT1 MEAN 

NT Spec. No 1_1 1_2 1_3 1_4 2_4 2_2 2_3 2_4 

Rp,0.2 [N/mm²] 1039 1045 1049 1043 1044 1074 1073 1073 1075 1074 

Rm [N/mm²] 1114 1117 1118 1116 1116 1153 1152 1157 1160 1156 

A [%] - - - - - 14.79 14.76 14.50 14.87 14.73 

Ag [%] - 4.40 - 4.43 4.41 4.81 4.80 4.77 4.78 4.79 

E [N/mm²] - 213960 - 214620 214290 210142 218248 197383 204051 207456 

 

Bolt No. M36 HT1 M36 HT2 MEAN 

HT Spec. No 1_1 1_2 1_3 1_4 2_1 2_2 2_3 2_4 

Rp,0.2 [N/mm²] 1003.2 1012.8 1019.2 1010.8 1013.2 1008.1 1017.7 1005.8 1011 

Rm [N/mm²] 1088 1095 1100 1095 1096 1089 1101 1087 1094 

A [%] 15.16 15.36 15.39 15.33 15.55 15.39 15.09 15.44 15.34 

Ag [%] 5.16 5.06 5.12 5.06 5.10 4.86 5.10 5.07 5.07 

E [N/mm²] 245581 186660 241190 198979 214946 219982 222515 199524 216173 

*results from Oechsner et al. (2015) 

Bolt size M48, 34CrNiMo6, boundary layers NT 

 

 

 

 

 

Bolt No. M48 NT1 M48 NT2 MEAN 

NT Spec. No 1_1 1_2 2_2 2_2 

Rp.0.2 [N/mm²] 1045 1040 1018 1017 1030 

Rm [N/mm²] 1132 1129 1117 1113 1123 

A [%] 15.60 15.40 15.55 15.86 15.60 

Ag [%] 5.06 5.07 5.05 5.07 5.06 

E [N/mm²] 205713 209212 204136 209982 207261 
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Bolt size M64, 30CrNiMo8, boundary layers B, NT 

Bolt No. M64 B1 

Spec. No 1_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 

Rp,0.2 [N/mm²] 1027 1024 1015 1012 1027 1018 1020 1016 

Rm [N/mm²] 1145 1141 1130 1124 1147 1134 1134 1135 

A [%] 16.11 15.86 15.90 15.59 16.12 15.85 16.21 15.64 

Ag [%] 5.30 5.29 5.32 5.31 5.29 5.31 5.29 5.29 

E [N/mm²] 200298 203398 203519 203787 205220 209496 204638 198198 

 

Bolt No. M64 B2* M64 NT1* MEAN 

B1 

MEAN 
B2 

MEAN 
B 

MEAN 
NT Spec. No 1_1 1_2 1_2 1_2 

Rp.0.2 [N/mm²] 995 994 986 993 1020 995 1015 990 

Rm [N/mm²] 1124 1121 1113 1119 1136 1123 1134 1116 

A [%] -  -  -  -  15.91 - 15.91 - 

Ag [%] 5.38 5.7 5.38 5.14 5.30 5.54 5.35 5.26 

E [N/mm²] 204200 204000 203300 203900 203663 204100 203675 203600 

*results from Oechsner et al. (2015) 
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B.2 Stress evaluation of strain controlled material fatigue tests 

Stabilized stress level and load cycles until technical crack initiation Nc from strain controlled material 

tests are defined in dependence of the stress development throughout the test run. The two graphics 

depicted below illustrate the evaluation procedure that was analogously used in the test series with 

constant amplitudes by Oechsner et al. (2015) as well as for the Incremental-Step-Test (IST) evalu-

ation. 

After a notable mitigation of the stress decrease during the early test phase the stress level approx-

imately stabilises. Based on the peak stress levels of the stabilized test phases a linear regression 

is defined. Technical crack initiation is assumed when the peak stress level falls below a parallel of 

the extrapolated regression line with a margin of more than ~2 %. Stress level or load block at 1/2 ∙ Nc 

are used for determination of the Ramberg & Osgood relation. 

Stress development during constant strain amplitude test (from Oechsner et al., 2015): 

 

Stress development during Incremental-Step-Test: 
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Appendix C – Numerical calculations  

C.1 Summary of mesh and contact parameters of finite element models 

 2D Axisymmetric 3D Axisymmetric 
3D Full 

Global Sub 

Mesh 

Element type1 
Plane 182 

(4 node struct. solid) 
Solid 185 

(8 node structural solid) 

Elements along  
notch root radius (A) 
(num. [-] / size [mm])3  

~60 / ~0.02  6 / ~0.17 14 / ~0.07 

Elements in radial direction 
from notch root until  
0.5 ∙ thread depth (B) 
(num. [-] / size [mm])3 

15 / var. ~0.12 to ~0.05 4 / ~0.3 12 / ~0.1 

Elements in circumferential 
direction (180°) 
(num. [-] / size [mm])3 

- 80 / ~0.6 48 / ~1.0 112 / ~0.4 

Total number of nodes 13 730 994 478 491 781 480 928 

Contact (Augmented Lagrangian / isotropic Coulomb friction) 

Normal contact  
stiffness factor FKN1.2 10 (10) 300 (20) 300 (20) - 

1 acc. to ANSYS Inc. (2016) 

2 value in brackets denotes contact stiffness factor applied in calculations with linear-elastic material definition 
3 element size given for geometry M36 

 

2D / 3D Axisymmetric Model 3D Full Model (Sub model)

A

B
A

B
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C.2 Results of path evaluations for HV-bolts M48. M64 and M72  

The depicted results are analogous to Figure 4-13 (bolt geometry M36) from FE calculations with 

linear-elastic material behavior and evaluation paths as shown in Figure 4-12. 

 

 

Max. Kt:

3D Full:

2D Axisym.:

3D Axisym.:

4.49

4.53

4.49

A

AHV-bolt set M48

Max. Kt:

3D Full:
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4.51

4.56

B

BHV-bolt set M64

Max. Kt:

3D Full:

2D Axisym.:

4.58

4.62

C

CHV-bolt set M72



Appendix D – Damage parameter evaluation 203 

 

Appendix D – Damage parameter evaluation 

D.1 Comparison of fatigue load cycles from material tests on material 32CrB4 

at high mean strains, taken from Oechsner et al. (2015), with damage pa-

rameter estimations (ns =1.0) 

Calculation results: 

Material tests under high mean strain (εm = 1.1%, σo ≈ Rm): 

εa 0.65% 0.40% 0.25% 0.20% 

Rσ = σu/ σo -0.97 -0.66 0.01 0.20 

Load cycles N 2450 8420 4.90∙104 1.33∙105 

Deviation of calculated load cycles N: 

PSWT -527 (22%) -2798 (33%) -3.4∙104 (68%) -7.0∙104 (53%) 

PM -554 (23%) -4318 (51%) -4.3∙104 (88%) -1.2∙105 (90%) 

PJ -341 (14%) -1991 (24%) -3.7∙104 (75%) -1.1∙105 (80%) 

Strain-life curve -348 ( - ) +2233 (x1.3) +1.6∙106 (x33) (+~108) → ∞ 

 

Haigh-diagrams: 

 

N = 1.33 ∙ 105

Rσ = -1
R σ = 0

R σ = 0.5

Rm

PSWT

PJ

PM

Kt = 1.0

(ns = 1.0)

P = εa

Test εa = 0.2%



204  Appendix 

 

 

 

 

N = 4.90 ∙ 104

Rσ = -1
R σ = 0

R σ = 0.5

Rm

PSWT

PJ

PM

Kt = 1.0

(ns = 1.0)

P = εa
Test εa = 0.25 %

N = 8420

Rσ = -1

R σ = 0

R σ = 0.5

Rm

PSWT

PJ

PM

Kt = 1.0

(ns = 1.0)

P = εa

Test εa = 0.45 %

N = 2450

Rσ = -1

R σ = 0

R σ = 0.5

Rm

PSWT

PJ

PM

Kt = 1.0

(ns = 1.0)
P = εa

Test εa = 0.65 %
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D.2 Collocation of numerically calculated local loading conditions of a M36 HV-

bolt set for different fatigue load levels 

The following exemplary given calculation results were obtained from numerical calculations using 

32CrB4 material data for monotonic and cyclic loading (constant amplitude tests) and a 2D axisym-

metric FE model. The cyclic material response was synthesizes as described in Chapter 4.3.3. 

Sm Sa RS σ1,a σ1,m εa,1 εm,1 Rσ1 Rε1 N (PJ) 

[N/mm²] [N/mm²] [-] [N/mm²] [N/mm²] [%] [%] [-] [-] [-] 

630 

30.0 0.91 136.86 1194.25 0.071 1.958 0.79 0.93 7.37E+09 

45.0 0.87 205.00 1129.72 0.091 2.028 0.69 0.91 5.27E+06 

60.0 0.83 269.86 1068.43 0.119 2.114 0.60 0.89 3.81E+05 

75.0 0.79 335.81 1006.08 0.148 2.204 0.50 0.87 7.39E+04 

100.0 0.73 446.96 901.81 0.198 2.376 0.34 0.85 1.91E+04 

122.4 0.67 547.01 809.00 0.243 2.563 0.19 0.83 9.39E+03 

140.8 0.63 624.77 737.63 0.280 2.746 0.08 0.82 6.49E+03 

  



206  Appendix 

 

Appendix E – Technical crack initiation 

E.1 Calculation of notch sensitivity factors  

The following notch sensitivity factors for different bolt sizes material data and loading conditions are 

calculated according to Equations 2-22 to 2-25. No statistical size effect is considered in the below 

calculations.  

Macroscopic notch sensitivity factor (N = 5∙105): 

 
εpl εel np 

[%] [%] [-] 

32CrB4 
Const. Ampl. 

0.266 0.002 1.005 

32CrB4 
IST 

0.202 0.014 1.033 

 

Stress mechanical and total notch sensitivity factor at purely axial loading conditions: 

 
σ1,max dx dσ  Rm n np n 

[N/mm²] [mm] [N/mm²] [1/mm] [N/mm²] [-] [-] [-] 

M36 2872.6 0.08063 614.9 2.655 1116 1.156 

1.005 1.151 
Const. 
Ampl. 

1.033 1.119 IST 

M48 2859.5 0.104 615.1 2.066 1116 1.146 1.005 1.141 

Const. 
Ampl. 

M64 2861.1 0.124 609 1.713 1116 1.140 1.005 1.134 

M72 2910.5 0.125 621.5 1.711 1116 1.140 1.005 1.134 

M16 2699.0 0.042 576.6 5.109 1116 1.184 1.005 1.178 

 

Stress mechanical and total notch sensitivity factor at loading conditions with equally super-

imposes axial (50%) and bending loading (50%): 

 
σ1,max dx dσ  Rm n np n 

[N/mm²] [mm] [N/mm²] [1/mm] [N/mm²] [-] [-] [-] 

M36 2002.10 0.083 418.6 2.52 1116 1.154 1.005 1.149 
Const. 
Ampl. 
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E.2 Fatigue curves with modified PM – damage parameter 

The below diagrams show the classification of calculation results with a ‘modified’ PM  damage pa-

rameter, where the PM-values, derived for the local loading condition of the bolt, are evaluated on 

the basis of the P-life curve for the PSWT parameter, which establishes the basis of the PM-parame-

ter’s development. For reference the ‘original’ PM curves, applied in methodically consistency with 

the other investigated damage parameters, as well as the PSWT parameter curves are plotted. Results 

are shown for cyclic material data for bolt material 32CrB4 from constant amplitude tests and FE 

calculations with a 2D axisymmetric model. 

Results of analytical fatigue calculation for M36 HV-bolt: 

 

Damage parameter evaluation in Haigh-Diagram:  

 

Pm (orig.)

Test:Sm = 630 N/mm²

M36 (B)

(Ps,50%)

N = 1 ∙ 105 Kt = 1.0

(ns = 1.0)
Rm

P = εa

PSWT

PM

Rσ = -1

R σ = 0

R σ = 0.5

modif.

orig.
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E.3 Additional endurance limit calculation results  

Graphical depiction of analytical calculated endurance limits for M36 bolts and base material 

32CrB4 with material data from Incremental-Step-Tests: 

 

Analytical calculated endurance limits for M36 bolts and base material 32CrB4 without con-

sideration of the notch sensitivity factor (ns = 1.0): 

 
Material data from  

constant amplitude tests 
Material data from 

Incremental-Step-Tests (IST) Test result 
M36 (B) 
(Ps,50%) Estimated base material 

endurance limit  
εa,D [%] 

(A) (B) (C) (A) (B) (C) 

0.27 0.24 0.22 0.27 0.24 0.22 

Sa,D [N/mm²] 

PSWT 56.1 44.01 37.14 53.79 43.92 37.79 

43.36 

PJ 58.62 47.12 40.77 67.85 55.01 47.05 

ND [-] 4.6∙105 3.3∙106 2∙107 9.7∙104 2.2∙105 4.3∙105 1.2∙106 

 

 

 

 

ns = 1.0 

ns = 1.0 

M36 (B)

(Ps,50%)

Test:

M36 (B)

(Ps,50%)

Test:

C

B

A

C

B

A
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E.4 Additional analytical fatigue calculation results for hot-dip galvanized 

HV-bolts (M36) 

 

 

 

 

 

 

 

Sm = 630 N/mm²

Analytical

(in. cr. / rupt.) 

M36 - black

Test

(Ps,50%)

M36 NT-galv.

Analytical

(rupture)

Test

(Ps,50%)

(εa,D = 0.24 %)

Sa,D

-22 %

PJ (ns = 1.0), CA, f (→ε*) = 1.275 

Sm = 630 N/mm²

Analytical

(in. cr. / rupt.) 

M36 - black

Test

(Ps,50%)

M36 NT-galv.

Analytical

(rupture)

Test

(Ps,50%)

PJ (ns = 1.12), IST, f (→ε*) = 1.275
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E.5 Cyclic material data taken from the literature 

Material 36CrB4 41Cr4 42CrMo4 41Cr4 30CrNiMo8 30CrNiMo8 UML2 

Source 
Schneider 

 (2011) 
Schneider 

 (2011) 
Boller et al. 

(1982)1 

Ott &  
Nowack 
(1985)1 

Boller &  
Seeger 
(1983)1 

Boller &  
Seeger 
(1983)1 

Bäumel & 
Seeger 
(1990) 

Rε [-] -1 

Rm [N/mm²] 1124 1121 1111 904 910 910 1116 

E [N/mm²] 206 630 205 120 211 400 200 000 206 000 206 000 214 290 

σf' [N/mm²] 1 208 1 037 1 555 1 288 1 106 643 1674 

b [-] -0.060 -0.043 -0.086 -0.093 -0.073 -0.025 -0.087 

εf' [-] 0.8 3.432 1.447 0.221 0.549 0.190 0.427 

c [-] -0.71 -0.911 -0.710 -0.537 -0.611 -0.507 -0.58 

K' [N/mm²] 1 208 979 1 368 1 675 972 695 1841.4 

n' [-] 0.086 0.047 0.104 0.174 0.085 0.049 0.15 

εa,D [%] 0.242 0.259 0.272 0.197 0.231 0.218 - 

ND [-] 1.4∙106 2.9∙106 1.4∙105 3.8∙105 2.0∙105 2.9∙106 - 

1 taken from materials database Boller et al. (2008) 
2

 calculated with monotonic material properties from original M36 HV-bolt material 32CrB4 
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Appendix F – Macroscopic crack propagation 

F.1 Fracture surfaces and crack depth measurements 

Results of crack depth measurements with digital microscope: 

M36 HV-bolts Upper higher cycle fatigue range Transition region to endurance limit 

Sa [N/mm²] 103 81 69 54 44 37 34 

 Final crack depth [mm]: 

Black (B) 

6.1 - 10.0 - 11.7 - - 

4.9 - 12.1 - 13.3 - - 

4.0 - 8.0 - 11.5 - - 

NT-galv. 

- 6.5 - 11.0 - - 12.9 

- 5.4 - 9.0 - - 12.4 

- 8.0 - 9.3 - - 11.4 

HT-galv. 

- 8.3 - 9.2 - 13.1 12.8 

- 8.7 - 8.7 - 12.5 - 

- 8.0 - 8.8 - 11.4 - 

Mean 
5 7.5 10.0 9.3 12.2 12.3 12.4 

8.0 12.3 

 

M64 HV-bolts Upper higher cycle fatigue range 

Sa [N/mm²] 131 121 93 84 75 56 47 

 Final crack depth [mm]: 

Black (B) 9.5 9 11.3 10 11.1 12.5 13 

NT-galv. - 9.3 10.5 11.2 11.5 12 - 

Mean 11.0 

 

Applied final crack depth [mm] in macroscopic crack propagation calculation 

Bolt M36 M48 M64 M72 

Upper HCF 8 9 11 11.5 

TEL (Sa <50 N/mm²) 12 13.5 16.5 17.25 
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Depiction of exemplary fracture surfaces of tested M36 HV-bots: 

 
Upper higher cycle  

fatigue range 1 
Upper higher cycle  

fatigue range 2 
Transition region to  

endurance limit 

B 

   

Sm / Sa : 630 N/mm² / 103 N/mm² Sm / Sa : 630 N/mm² / 69 N/mm² Sm / Sa : 630 N/mm² / 44 N/mm² 

Load cycles: 9∙104 Load cycles: 3∙105 Load cycles: 3∙106 

Crack shape: crescent Crack shape: half-moon Crack shape: half-moon 

NT 
/  

HT 
   

Sm / Sa : 630 N/mm² / 81 N/mm² Sm / Sa : 630 N/mm² / 54 N/mm² Sm / Sa : 630 N/mm² / 34 N/mm² 

Load cycles: 1∙105 Load cycles: 3∙106 Load cycles: 1∙106 

Crack shape: crescent / circumferential Crack shape: crescent Crack shape: half-moon 

 

6.1 mm

20 mm

12.1 mm

20 mm

11.7 mm

20 mm

5.4 mm

20 mm

11.0 mm

20 mm

11.5 mm

20 mm
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Depiction of exemplary fracture surfaces of tested M64 HV-bots: 

 
Upper higher cycle fatigue range Transition region to endurance limit 

B 

  

Sm / Sa : 630 N/mm² / 93 N/mm² Sm / Sa: 630 N/mm² / 39 N/mm² 

Load cycles: 5∙104 Load cycles: 1∙106 

Crack shape: crescent / circumferential Crack shape: half-moon to crescent 

NT 

  

Sm / Sa: 630 N/mm² / 93 N/mm² Sm / Sa: 630 N/mm² / 37 N/mm² 

Load cycles: 5∙104 Load cycles: 7∙105 

Shape: crescent / circumferential Crack shape: half-moon to crescent 

 

 

11.3 mm

20 mm

13.2 mm

20 mm

10.5 mm

20 mm

13.0 mm

20 mm
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