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The most general homogeneous monodromy conditions in N = 2 string theory are classified
in terms of the conjugacy classes of the global symmetry group U(1, 1) Zz. For classes which
generate a discrete subgroup I', the corresponding target space backgrounds C ' /I' include half
spaces, complex orbifolds, and tori. We propose a generalization of the intercept formula to matrix-
valued twists, but find massless physical states only for I = 1I (untwisted) and I' = Zz (in the manner
of Mathur and Mukhi), as well as for 1 being a parabolic element of U(l, l). In particular, the 16
Z2-twisted sectors of the N = 2 string are investigated, and the corresponding ground states are
identi6ed via bosonization and BRST cohomology. We Gnd enough room for an extended multiplet
of "spacetime" supersymmetry, with the number of supersymmetries being dependent on global
"spacetime" topology. However, world-sheet locality for the chiral vertex operators does not permit
interactions among all massless "spacetime" fermions.

PACS number(s): 11.25.Hf, 04.65.+e

I. INTRODUCTION

Since the discovery of N = 2 supersymmetric criti-
cal strings in 1976 [1,2], their status has undergone sev-
eral fundamental changes. Initially constructed in taco
spacetime dimensions, they were lately recognized as the
strings naturally living in a four-dimensional spacetime
of apparently nonphysical (4,0) or (2,2) signature [3,4].
The interacting N = 2 string theory was shown to be
closely related to self dual four-dir-nensional field theories,
and it was even conjectured to be the "master theory"
for all integrable models [5]. Recently, some arguments
were presented that the N = 2 string should also be able
to support target ("spacetime") self-dual supersymmetry,
by relating it to the N = 4 fermionic string theory [6].
The appropriate framework for extended self-dual super-
symmetry and supergravity in 2+2 dimensions was devel-
oped in Ref. [7]. Very recently, N = 2 strings reappeared
in a quite difI'erent context of universal string theory, in-
cluding the conventional N = 0 and N = 1 strings as
particular vacua [8].

Despite all these amazing developments, the underly-
ing symmetries and the physical spectrum of the naively
"simple" (compared to the others) N = 2 string theory
remain to be poorly understood. It is known from the cal-
culation of the N = 2 string partition function on a torus
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that there exists just a single massless spacetime boson in
the spectrum of the untmi8ted N = 2 string moving in the
flat (2 + 2)-dimensional background R ' [5]. The study
of the related N = 2 Becchi-Rouet-Stora-Tyutin (BRST)
cohomology with at least some continuous spacetime mo-
menta was recently initiated in Ref. [9]. In addition, there
are elements of the BRST cohomology corresponding to
discrete states at vanishing momentum, A: = 0. They can
be most easily identified and investigated when using a
compactified background 7 ' instead of R ' [10,11],but
discrete states are not going to be the subject of this pa-
per. In order to derive the complete spectrum of the crit-
ical N = 2 string in a fIat background, and to address,
in particular, the issue of "spacetime" fermionic physical
states (with continuous momenta), one must investigate
the most general monodromy conditions for the N = 2
string and their associated BRST cohomologies.

We are going to investigate in this paper all possible
homogeneous twistings of the N = 2 string, and find
those leading to consistent solutions. We distinguish
a hierarchy of three difI'erent types of twists: namely,
with increasing generality (i) those flipping only signs in
the (bosonic) monodromies, (ii) those creating arbitrary
phases around world-sheet cycles, and (iii) those mixing
different string coordinates, leading to noncompact mon-
odromies in a diagonal or Jordan normal basis. Clearly,
the first type comprises the simplest (and, we believe,
the most important) generalizations of the naive Neveu-
Schwarz —and Raymond —type boundary conditions, and
we are going to analyze them erst. As for the second type
of monodromies, the role of the spectral fIout present in
the N = 2 superconformal algebra has to be understood.
Finally, the third monodromy type implies rather un-
usual topologies of the string target space, which may ex-
plain why, to our knowledge, it has not been explored in
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the past. We are particularly interested in backgrounds
which allow massless physical states, in order to analyze
the underlying effective field theory. This does not yet
mean that the other backgrounds are inconsistent. Re-
stricting ourselves to twisted N = 2 strings with massless
ground states, we find only three possibilities: (i) the un-
twisted string as studied, e.g. , by Ooguri and Vafa [5],
(ii) implementing the previously known Mathur-Mukhi
twist [12], and (iii) a peculiar background corresponding
to parabolic elements of U(1,1). We proceed with the
BRST cohomology analysis only in the first two cases,
in order to establish restrictions on interactions of the
Mathur-Mukhi twisted states.

The paper is organized as follows. In Sec. II, we start
with a general discussion of boundary conditions in string
theory, formulate the framework for our subsequent in-
vestigation of general % = 2 string boundary conditions,
and set up our notation. In Sec. III we recapitulate all
the known local and global, continuous and discrete sym-
metries of the Brink-Schwarz N = 2 string action, and
list four types of Z2 twist symmetries. This allows us to
identify 16 possible Z2 monodromy patterns (called sec-
tors) in the case of a closed A' = 2 string. In Sec. IV we
use bosonization techniques to introduce spin and twist
Belds. These Belds are needed to specify the vertex op-
erators creating the ground states in the 16 twisted sec-
tors. Next, we calculate the critical intercepts for all
these sectors, and exhibit the possible massless ground
states. Section V is devoted to a discussion of the spectral
Row in N = 2 string theory. We generalize the boundary
conditions to twists by arbitrary phases and give, again,
the relevant formulae for the ground state energy. The
most general monodromy conditions are the subject of
Sec. VI where we classify all possibilities in terms of the
conjugacy classes of U(l, l), and propose the most gen-
eral intercept formula. We Bnd a somewhat peculiar new
massless background, related to the parabolic conjugacy
class of SU(1,1). Section VII deals with the BRST coho-
mology and interactions in K = 2 string theory. First,
we check the BRST-invariance of the massless candidate
(Z2-twisted) ground states, and, second, investigate their
possible interactions from the locality requirement for the
vertex operator algebra. Our conclusions are summarized
in Sec. VIII. Two Appendices comprise auxiliary infor-
mation about the local transformation laws of the N = 2
string fields (Appendix A) and the N = 2 string BRST
charge (Appendix B).

1
Sp ———

27r
d7. d0 g ~B X ~ BpX (2.1)

yields not only the equations of motion ( X = 0), but
also the constraints

open: X'~ o = 0, X~ o T = 0;

closed: X' periodic, X~ =0 T = 0.
(2.2)

According to the minimal action principle, X is supposed
to vanish for the initial and final string states, while
the "stringy" condition on X' is relevant. More general
boundary conditions than the above are possible, but cor-
respond to identifications in the target space and, hence,
change global topology.

In the case of the N = 1 fermionic gauge-Bxed string
action [13]

1
CXSi ——— &do. 8 X-0 X+ —0-p 0 42' 2

(2.3)

d'((0+X 8 X+ @ . 8+@ + @+.0 @+},

The two different possibilities in choosing the signs in
Eq. (2.4) are relevant, and they lead to the known dis-
tinction between the Ramond (R) and Neveu-Schwarz
(NS) sectors of the % = 1 string theory [13]. In princi-
ple, we are &ee to choose different boundary conditions
for different target space components of 4~. This would,
however, destroy global target space symmetries, such as
spacetime Lorentz invariance.

In the case of the N = 2 string, there are many more
choices for the boundary conditions since both bosonic
and fermionic string world-sheet fields (N = 2 super-
conformal "matter") become complex. The gauge-fixed
% = 2 string action has the form (Z+ = X + iY; @+ =
4' + i@')

where light-cone coordinates (~ ——r + cr as well as real
Majorana-Weyl fermion fields 4~ have been introduced
on the world-sheet, one gets, in addition to Eq. (2.2), the
fermionic constraints

open: @+ ——k4
~

=0, ——0,
(2.4)

closed: 4~ periodic or antiperiodic.

II. STRING BOUNDARY CONDITIONS 1
S2 ———

7r
d'((B+Z+ 0 Z +0 Z+ 0+Z

When varying a string action, some boundary terms
appear. The action principle implies that certain con-
straints are to be added to the string equations of motion,
in order to eliminate the boundary terms.

Varying the gauge-fixed bosonic string action [13]

+4++. 0 4++4+ 8+4 +4+ 0 4+++
. 0+4+).

(2 5)

Zero modes of the Z fields are normally identified with
the coordinates of embedding "spacetime" in which the

We suppress target space indices. The dots stand for their
contractions with a Bat metric g~

The prime and dot over a function mean the differentiation
with respect to o and 7, respectively.
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N = 2 string propagates. Both the dimension and the
signature of this "spacetime" are fixed quantum mechan-
ically, when we require conformal anomaly cancellation
(or nilpotency of the BRST charge) in the absence of
additional propagating degrees of freedom (like Liouville
modes). Critical N = 2 strings are known to live in two
comp/ex dimensions [3] (see Refs. [14,15) for the recent
reviews about the N = 2 strings). The (2,2) spacetime
signature of N = 2 critical string theory is apparently
nonphysical. Consequently, there seems to be no com-
pelling reason to insist on a direct physical interpretation
of the N = 2 string target space at all, or assume it to
be smooth everywhere. Let us therefore allow as much
freedom as possible at this point, and do not even assume
that our Bat spacetime is globally a manifold.

Of course, we do not have total freedom in the choice
of boundary conditions. They have to be compatible
with the symmetries of the action. More precisely, we
demand the action density to be single valued on the
world sheet. Being moved around along a closed path, it
should come back to its original value. The correspond-
ing monodromies of the world-sheet fields must therefore
conspire to produce a symmetry of the action (density).
In order to take into account the constraints which ac-
company the gauge-fixed action (2.5), we shall investigate
the monodromies for the full gauge-invariant action. The
monodromies have to respect the local world-sheet sym-
metries as well as the global target space symmetries.
Classifying allowed boundary conditions (and thus pos-
sible flat backgrounds) requires an analysis of all (global
and local) symmetries. Apart from this, we do not con-
strain our world-sheet fields at all.

Stated difFerently, at the outset we allow a multival-
uednes8 of the N = 2 string coordinates Z and 4. This
implies that generic monodromy factors may appear in
the boundary conditions, and each matter field may live
in a quite general twisted complex bundle. Given a Rie-
mann surface Z to represent the N = 2 string world sheet
after its "Euclideanization, " it is the allowed choice of the
global monodromies, i.e. , "phases" picked up by moving
the matter fields around the cycles comprising a homol-
ogy basis on Z, that will be in question of our discussion
in the following sections.

A monodromy matrix U generates a subgroup I' of
the symmetry group G of the string action. The twisted
string target space is therefore obtained from the un-
twisted one through modding out by I'. On the bosonic
coordinates Z some subgroup Gp Q G is realized, and
the relevant monodromy creates some I'p Q Gp. Clearly,
the bosonic background 8 is simply the quotient space
Ci' /I'o. If one likes to retain a (2+2)-dimensional man-
ifold for 8 locally, 1 p is required to be discrete but not
necessarily finite. Typical examples are orbifolds from
I'p ——Z, n & 2, or tori from I p = Z. The simplest cases
are Z2 orbifolds, i.e. , 8 = C 'i/Z2. For this reason we
shall discuss them first, in the two following sections.
We will return to the general situation in Secs. V and
VI. This means that fields of integral spin are allowed to
pick up signs, i.e. , be double-valued on Z, just as for fields
of half-integral spin. The complete monodromy behavior
will be fixed from the signs picked up by the components

of Z, in addition to an overall sign between Z and 4
related to the NS-R distinction.

A natural example of the twisted boundary conditions
is the Mathur-Mukhi choice considered in Ref. [12],

(2.6)

uniformly with respect to all the (suppressed) target
space indices, with g = +1. This allows us to choose
diferent signs for real and imaginary parts of the fields,
while keeping X =ReZ+ periodic. The choice of bound-
ary conditions in Eq. (2.6) is obviously consistent with
the variation of the action (2.5).

The most conservative (Ooguri-Vafa) choice [5] of the
N = 2 string boundary conditions in the form

(2.7)

is the only one which allows us to keep the single val-
uedness of integral spin fields, and C ' as the consis-
tent (2+2)-dimensional background spacetime for N = 2
string propagation. This choice only deals with untwisted
line bundles and their square roots (spin bundles) to de-
fine fermions, just like for the N = 1 string. The two
possible signs rl = +1 in Eq. (2.7) are common for all the
world-sheet spinors, and correspond to the usual NS-R
distinction familiar from the N = 1 case.

The two boundary conditions presented so far are blind
to the spacetime indices of Z and 4 and thus compatible
with naive real spacetime Lorentz symmetry O(l, l). This
is also true for an additional overall sign flip in Eqs. (2.6)
and (2.7), which doubles the number of such cases to
four. It is conceivable that we might finally need to
sum over all backgrounds or, equivalently, over all spin
structures in the N = 2 string partition function. The
only compelling reason to do so might possibly come from
modular invariance, since the twists imply drastic conse-
quences for the N = 2 moduli space. To address this
issue, one needs a better understanding of N = 2 moduli
space, which is a rather involved problem.

Before going any further, we want to briefm. y discuss our
notation. Target space indices (internal and Lorentz) al-
ways appear as superscripts, world-sheet indices usually
as subscripts. In real components

Z"+ = Z"'+iZ"', C"+ = C"'+i%"' (2 8)

we have the fields Z~'(() and @+'((), with generic mon-
odromy conditions of the form

Z"'(vr) = M"'„,Z '(0), (2.9)

For a genus-h, Riemann surface Z, there are 4 " possible
boundary conditions of this type for the Z fields alone.

and similarly for the 4's. The lower-case Greek indices
p, v = 0, 1 refer to a two-dimensional Minkowski space
of signature (—,+), while the lower case Latin indices
i, j = 2, 3 refer to the real components of the complex
fields. To avoid confusing the same numerical values of
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p and i, we have taken a slightly unusual range for the
lower-case Latin indices, so that we have

a = (pi) = (02, 03, 12, 13). (2.10)

III. TWISTING THE % = 2 STRING

The world-sheet action of N = 2 fermionic string the-
ory reads [16]

d'(e h, ~B Z+ —B&Z + —4 p D 4'
2

- ' 2

+A 0 p @ (cl Z++4 ~ ).~&+p gC (3.1)

where the N = 2 world-sheet supergravity multiplet,
comprising a real zweibein e (() with the metric 6 p =
il qe e&, a complex gravitino field y+((), and a real U(1)
gauge Beld A ((), has been introduced.

The Brink-Schwarz action (3.1) is known to be in-
variant under the following local world-sheet symmetries:
reparametrization invariance, Lorentz invariance, N = 2
supersymmetry, phase and chiral U(1) gauge invariances,
and Weyl and super-Weyl invariances.

The explicit form of all the local transformation laws
in components can be found in Appendix A (see Ref. [17]
for the N = 2 superspace description of the N = 2 string

We use a purely imaginary (Majorana) representation for
two-dimensional Dirac matrices p, o. = 0, 1:p = o2, p
icrq, p = p p = o3, where o;, i = 1, 2, 3 are Pauli matrices,
and {p,pP) = —2q P, with rl = diag( —,+). The Majorana
spinors 4' = (4', @+) decompose into their Weyl parts 4+.
Dirac conjugation (denoted by an overbar) 4 = 4' p does
not include complex conjugation (denoted by a superscript
—). Complex conjugation is explicit in our formulas, and it
always acts 6rst.

Sometimes, we write shorthand Z" for (Z~2, Z"s)
or (Z"+, Z~ ), as well as Z' for (Z, Z ') or Z+ for
(Z +, Z +), and similarly for @, suppressing irrelevant
indices in an obvious fashion. It may also be convenient
to choose spacetime light-cone coordinates Z"" = Z gj,
Z, where g$ is just another set of + signs (index i is
suppressed here. )

In the N = 2 superconformal gauge, the fields (and
ghosts) of the % = 2 string on the Euclidean world sheet
become free, so that they can be decomposed into their
holomorphic and antiholomorphic parts, as is usual in
two-dimensiona). conformal field theory. For definiteness,
we investigate only closed N = 2 strings in this paper. If
not mentioned explicitly, we will consider only the right
movers in the following. As usual, lower case letters will
be used to denote the chiral parts of the matter fields,
except for the Z fields (see Appendix B for more details).

action and its symmetries). In particular, the local U(1)
symmetry acts nontrivially on the fields 4+, y+ and A
only.

The action (3.1) also possesses global continuous invari-
ances associated with target space symmetries: namely,
global translation invariance Ci', global U(1) symme-
try acting on the internal indices of the matter fields Z'
and 4', with complex eigenstates Z+ = Z + iZ and

= 4'2 + i@s, global O(1,1) Lorentz symmetry act-
ing on the spacetime indices of the matter fields Z" and

with light-cone eigenstates Z"~ = Z g$ Z and
'0"" = 4' g$ @ . The intersection of the two symme-
tries is a Z2 symmetry generated by the total sign Rip
PT of all matter fields, where P and T denote the usual
parity and time reversal transformations, respectively.

The full global continuous symmetry of the action is,
however, still larger, since the O(l, l) symmetry can be
extended to U(l, l)=[U(1)CISU(l, l)]/Z2, where the fac-
tors U(1) and Z2 coincide with the ones just mentioned.
More precisely, we may split O(1,1)=SO(l,l)CIZz, with
Z2 generated by the parity P, and add complex boost
and rotation generators to create SU(1,1). The Z2 is
then contained in the product with the U(1) symmetry
already present.

In 2 + 2 dimensions, the natural spacetime Lorentz
symmetry for the N = 2 string is SO (2,2)= [SU(l, 1) Ia
SU(l, 1)]/Z2 [15]. The interaction terms in the action
(3.1), however, break down one of the two SU(1,1) factors
to U(1) CSZ&', with Z2' representing the Mathur-Mukhi
twist (Sec. II). It has been conjectured [6] that the total
global Lorentz symmetry of the N = 2 string in the given
formulation might actually be the remnant of a "hidden"
SO(2,2) symmetry, which presumably exhibits itself in
the equivalent N = 4 supersymmetric formulation of the
same string theory.

Finally, the N = 2 string action (3.1) is invariant under
the four different Z2 twists of the fields:

Z2 . Z ~ —Z and the same for 4,
Z2: Z —+ Z, Z m —Z and the same for 4

Z2' .. Z+ ~ Z+ and the same for @+,

Z2 .. Z-+Zand 4 M —4,

by adjusting the behavior of the N = 2 su-
pergravity fields appropriately (see below) . These
global discrete symmetries are imbedded in the con-
tinuous groups discussed above. In particular,
Z2 ——O(1,1)RU(1)=SU(1,1)RU(1) inverts (PT), whereas
Z2 is a "large" transformation (P) in O(1,1). The twist
Z2' LSO(2, 2) is the only one which is not contained in
U(l, l). The Z2" twist is part of the local U(1) and does
not affect Z; it apparently resembles the usual NS~R
twist in the N = 1 string theory. In the special case
of Z2 monodromies we are therefore going to use the
same labels (NS and R) to distinguish these two cases,
even though their actual meaning is quite different in the

2 string theory. Generally speaking, the NS (R)
sector is characterized by @~' and Z"' having opposite
(identical) monodromy signs. In summary, the total ho-
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mogeneous global symmetry group of the N = 2 string
is Go ——U(1,1)Z2', which is at the same time the maxi-
mal global monodromy group for the matter fields Z or
4', separately. The relative boundary conditions between
Z and 4 can only arise &om local symmetries, so that Z
and 4' monodromies are rigidly related after gauge fixing.

It is not difBcult to deduce the consequences of Eq.
(3.2) for the K = 2 supergravity fields. First, one eas-
ily sees from inspecting the gravitino couplings in the
action (3.1) that the complex gravitino field X+ should
transform under each twisting in exactly the same way as
the complex matter field 4+, uniformly for each o. value.
Under Z2, for example,

(Oz +4x):(Oz +4x),

res 8@:xp~ 8@ = @ Ps xz,

where the tilde over a field means its Z2 twisting. Simi-
larly,

AC -pC;AC .pl+= —AC . p4
(3.4)

The minus on the right-hand side (RHS) of Eq. (3.4) is
important, since it implies

twist
(3.5)

under the Z2 twist.
For the untwisted boundary conditions one gets

Z(vr) = Z(0), A (vr) = A (0),

iI(~) = i1@(0), x (~) = ilx (o),
(3 6)

z+(~) = z-(o), A (~) = —A (o),

~I+(~) = q@
—

(o), x+(~) = i1x
— (0).

(3.7)

where the signs g = +1 in the second line are in cor-
respondence with each other and denote additional op-
tional Z2" twist, i.e., the NS-R option. For the Z2 twisted
boundary conditions one has instead

Equation (3.7) implies, in particular, that the (Abelian)
first Chem class c =

2 J'& I", I"—:dA, associated with
the U(1) gauge field A on a Riemann surface Z, has to
vanish for such twisted boundary conditions.

The monodromy group U(1,1)Z2' does not have room
for all 16 independent sign choices of the four Z"'
(or 4'~') components. From the possibilities listed in
Eq. (3.2) it is clear that in each Z2 twisting there must
always be an even number of minuses among the four
components (pi), in order for the compensating mon-
odromy of the supergravity fields y+ and A to exist.
For instance, flipping only one component of 4, say 4
is inconsistent with the N = 2 string action, as can easily
be seen from the term

A @ . p 4 =2iA (4 p @"—4 p 0"). (38)

We have checked the compatibility of any even twisting
with all the local symmetries of the N = 2 string action
(3.1), listed in Appendix A. The procedure is straightfor-
ward, and it simply determines the behavior of the local
symmetry parameters under the twisting. The (super-
conformal) gauge fixing in K = 2 string theory results
in the N = 2 superconformal algebra in terms of the
currents associated with the residual symmetries. The
related ghost structure and the BRST charge are well
known [12,18,19], and the results are collected in Ap-
pendix B. Naturally, the boundary conditions of the cur-
rents and, hence, their moding, depend on the twisting,
e.g. , Eq. (3.7) implies an antiperiodic U(1) current J.

An Abelian subgroup of the full symmetry group is
U(1)SO(l, l)U(1)s „s,g, where the first two factors
represent global symmetries. Let (q, s, e) be the corre-
sponding charges of various fields (including ghosts) with
respect to U(1), SO(1,1), and U(1)s „s,g, respectively.
Their complete list is compiled in Table I. The rest of the
K = 2 supergravity fields, (e, A ), the reparametriza-
tion ghosts (b, c) and the U(1) ghosts (b, c) are all inert
with respect to U(1) SO(1,1) U(1)s „s g.

The monodromy conditions for all the Z2-twisted sec-
tors of the closed N = 2 string are collected in Table II,
where pluses and minuses mean periodicity and antiperi-
odicity, respectively. There are 2 = 16 sectors in total,
due to the Z2 twist group.

TABLE I. The charges (q, s, e) and conformal dimensions b. of the world-sheet fields with re-
spect to U(1), SO(1,1), U(1)s „s,s and Vir, respectively. Blanks appear where the fields are not
eigenstates.

Field Z+ Z t~ Z~~+ 0 + 0 t~ C t~+ t+

+1 +1
pter. g+ pter x.'

0 0 0

tl1 N1 N1 N1

+1 +1 +1

Let us call these twistings even.
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TABLE II. The Zz monodromy conditions for the (twisted) sectors of the N = 2 closed string
(right movers only). The last rows give conformal dimensions and local U(1) charges of the associ-
ated zero-momentum ground states (Sec. IV).

No.
zII I

2

1 2

R NS R
4

NS
6 7 8 9 10 11 12 13

NS R NS R NS R NS R
14 15 16
NS R NS

Z02
Z03
g12 +
g13 +

@02
@03

Q 12

@13

+
0
0

+
0
0

+
0

~1

+ +
0

+
1
4

+
0
0

+
1

0
0 0 0 0 0 0 0 0

IV. BOSONIZATION, SPIN FIELDS, AND
TWIST FIELDS

The gauge-fixed action (2.5) is accompanied by a ghost
action. It is well known [14,15] that the ghost systems
appropriate for the N = 2 string are the reparametriza-
tion ghosts (b, c), an anticommuting pair of free world-
sheet fermions with conformal dimensions (2, —1), the
X = 2 supersymmetry ghosts (P', p') or (P+, p+), two
commuting pairs of free world-sheet fermions with con-
formal dimensions ( —,—2), and the U(1) ghosts (b, c),
an anticommuting pair of free world-sheet fermions with
conformal dimensions (1,0).

Since the superconformal ghosts (P', p') carry a space-
time index i associated with the target space where the
N = 2 string lives, the spacetime properties of the phys-
ical N = 2 string states (to be determined by the BEST
cohomology) may depend on their ghost structure as well.
This would clearly be quite diferent from the conven-
tional cases of the bosonic and N = 1 supersymmetric
strings. To settle the framework for identifying the Z2-
twisted BRST-invariant states, we have to build up the
ground states for all sectors (given in Table II) out of
the single K = 2 super-SL(2, C) invariant vacuum ~0).
This can be done by introducing spin and Z2 twist fields
for the matter and ghost fields, and using bosonization
[20—22]. The spin fields twist world-sheet fermions, while
the twist fields twist world-sheet bosons. From now on
we employ planar complex coordinates (z, z) for the Eu-
clidean world sheet.

The chiral fermionic fields @~'(z) can be bosonized as

q oi ~ (egg' + ega')

(e1'4' el4*) (4 I)

where g and $ simply stand for + and —.In Eq. (4.1)
two real scalar bosons P'(z) have been introduced, with
the operator product expansion (OPE):

gF(z)qP(u)) - h*' ln(z —ur). (4.2)

Using the light-cone combinations

@g$i ~ eg$4'' (4.3)

we can construct the spin fields S '""(z) with helicity in-
dex g$ as

g~ f'4 ~ ~%4 /2 (4.4)

We choose the notation t$ for the spacetime light-cane
coordinates in order to distinguish them from the com-
plex internal ones 2+ i3. The spin fields S"t~ twist the
fermions g"' with respect to the index p, , which corre-
sponds to the action of Zz' and the (+—+—)-type bound-
ary conditions in Table II.

The convenient application of the bosonization proce-
dure actually depends on the monodromy conditions un-
der consideration. If the twist is applied with respect to
the index i, which corresponds to the action of Z2 and the
(++——)-type boundary conditions in Table II, difFerent
bosonization rules have to be introduced as [22)

Normal ordering is always suppressed, as well as cocycle
operators [21].
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with the OPE as

P"(z) gP(io) - h"" ln(z —w).

The associated U(1) and U(1)s „s,g eigenfields are

(4.6)

yP, + ~ P +P" SP,+ ~ kP" /2 (4.7)

b = e, c = e, with o.(z)o(io) ln(z —io). (4.8)

Similarly, for the U(1) ghosts (b, c) one has

b = e, c = e, with o(z)o(io) ln(z —io). (4.9)

As for the superconformal ghosts (P', p'), the bosoniza-
tion rules of Refs. [20,21] imply

pz( )
~ —&p' gga ~ —rp'+s' ggz

p'(z) = il'e~ = e +~,

(p'(z) y' (ur) —b'~ ln(z —n)),

g'(z)( (w) 8'
Z —QJ

(4.10)

where the auxiliary (g', (') conformal system of spin (1,0)
has also been bosonized as

i ~ —8' gi ~es'

with 8'(z) 0' (w) b'~ ln(z —ur).

(4.11)

The solitons e+~ are outside the monomial Geld algebra
of (P', p'); however, one finds that

e~ = b(p'), e ~ = 8(p'). (4.12)

Alternatively, one can bosonize the complex linear com-
binations p+ = p Sip and p+ = p Sip:

p+ ~ —Ip g(+ ++ ~ ~Re +

b(p+) = e~, 8(p+) = e

+(z)~+(~) - —ln(z —~),
2(z)$+(io)- (4.13)

where rl+ and (+ are not just linear combinations of the
fields appearing in Eq. (4.11).

Here and in what follows we use the standard results
[20,21] for free chiral bosons p C (o', o, p', 8'):

h[e~~] = q(q —Q), p(z) p(io—) e ln(z —io), e = +I,
2

Q = 3, Q- = 1, Q~' = —2, Qs' ——1, (4.14)

The (q, s, e) charges of any spin field can be found in
Table I. We can also formally define a "little" spin Geld
S~' which simply sign Hips the boundary condition of
the individual fermion vP"' and has conformal dimension
h, = —.16'

The reparametrization ghosts (b, c) are bosonized as
[21]

e IO) e"IO) e 'IO) e"IO) (4.16)

in the canonical ghost sectors. We pick the first member
of this list here. Concerning the superconformal ghost
pictures, we introduce the notation

~k;qz, qs) = exp
~

—(k+ Z +k Z+)
~

xe"~+"~+ (0)~0) (4.17)

and concentrate on the canonical values q; 6 (—1, —2 j.
In the following, 'R++++ denote the 16 sectors of theNS, R

complete Fock space of states, with the four signs corre-
sponding to the signs for Z"' appearing in each column
of Table II.

The reference state ~0) is not BRST invariant. Our rep-
resentative of the true 'R++++ ground state with momen-
tum k is given by ~k, —1, —1), which has q = s = e = 0
and 6 =

2
k+ . k, as can easily be computed &om

Eq. (4.14). BRST invariance requires h = 0, which
translates into the masslessness condition k+ k = 0.
In summary, one Gnds a massless neutral physical space-
time scalar boson.

Among the candidates for the 'R++++ ground state

The mode expansions of the fields and currents for this case
are given in Appendix B.

If the U(1) gauge field is twisted, there is no c zero mode.
In this case, only a twofold degeneracy arises, and we shall
need g-

where Q is a background charge, and the factor e takes
into account statistics. It follows that the spin Gelds S"~~
twisting @' and y', as well as the spin fields S"'+ twisting
g", have conformal dimensions equal to +s. Similarly,

the fields e ~ ~2 twisting P' and p' as well as the fields
e ~ ~2 twisting P+ and p+ have conformal dimension
equal to +—.

To describe the possible N = 2 string ground states
corresponding to all the sectors listed in Table II, we
start from the formal vacuum state ~0) in the untwisted
sector (2), which satisfies the standard constraints (n E
Z, r E Z+ —,')

n-„]0) = 0 n & 0, q„-]0) = 0 r &1/2,
b„]0) =0 n& —1, c„]0)=0 n&2,

(4.15)
P„'~0) = 0 r & —1/2, p'~0) = 0 r & 3/2,

b„iO) = 0 n & 0, c„iO) = 0 n & 1.

The conformal dimension of the state ~0) is h = 0, and all
its charges vanish, by deGnition. Like in the N = 1 string,
the BRST cohomology comes in an inGnite number of
copies labeled by picture numbers. More precisely, there
are two picture-changing operators for the N = 2 string:
namely, K'(z) = (QBRsT, ('(z)). On top of this, there is
a fourfold degeneracy represented by
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there are four states of the type S 't~s "t~k; ——,——).
Requiring the ground state to be a U(1)s „s,d singlet
leaves us with two possibilities:

of the % = 2 string (Table II). For example, for the
'R++ sector one R.nds the doublet

S '"S '"~k; —— —-) and S '"S '"~k —— —-), (4.18)
t S '

~k; —1, —1), (4.21)

which have all charges vanishing and h = 0, provided
k+ . A; = 0 again. In contrast to the NS sector, we
identify a neutral massless physical vector.

One may argue, however, that spectral Bow moves
us from the g component of this vector to the 'R++++
ground state scalar and further to the $ component, ef-
fectively identifying all three degrees of freedom (in the
untwisted theory). In Sec. VII we will test for their BRST
invariance.

To actually describe the twisted sectors, we need Z~
twist fields t"'(z), whose role is to twist the boundary
conditions for the bosonic Z fields [23]. The twist fields
generically act as

~pv$zgt.*(.)az.'( )- (4.19)

where t is another (regular) twist field. These twist fields
act trivially on g's. The conformal dimension of the twist
field, h[t~'] = is, and the OPE

pv$zg
t"'(z) t"' (to)

(z —tu) /
(4.2Q)

were calculated in Ref. [24]. The results of Ref. [24] im-
ply conformal dimensions equal to + 8 for the twist fields
t' = t 't ' (no sum) and t"—:t"2t"3 (no sum), while
the dimension of t—:t t t t is equal to +—. This
is consistent with the change in ground state energy due
to a general U(1) twist, as will be seen in Eq. (5.3) for
a = z. We assume that all twist fields are Virasoro pri-
maries. They carry global U(1) and SO(l, l) charges but
are neutral under U(l)s „s,~ (see Table I).

Using the spin and twist fields just introduced allows us
to construct the ground states for the Zq twisted sectors

t S '""e ~k; —1, —2). (4.22)

Since the superconformal ghosts (P, p ) (and, in fact,
y ) have to be twisted too, one needs the q3 —

2 picture
in Eq. (4.22). Finally, the appearance of another "spin"
field e / in Eq. (4.22) is due to the twist of the U(1)
gauge field A (see Table II).10

With conformal dimensions h[e /
] = —

s and h[t ] =
+8, the conformal dimension of the ground state in the
Q+ + sector adds up to 0, as given in Table II. Note
that the local U(1) charge e is not defined here, since
the U(1) current J(z) is half-integral moded. This de-
stroys the spectral Bow and also explains the blank slots
in the last line of Table II. BRST invariance will further
constrain this state (Sec. VII).

A difFerent method to calculate conformal dimensions
h (or critical intercepts) associated with these ground
states consists of collecting the corresponding contribu-
tions to the intercept from the periodic (P) or antiperi-
odic (A) world-sheet bosons and fermions in each sector
separately. The standard results [13] are displayed in Ta-
ble III. Our results for the N = 2 string critical intercepts
(—h) are given in the last row of Table II.

Completing the list of the candidate ground state for
all the twisted sectors listed in Table II, we find (multiple
sign choices are correlated)

where the twist field t has been used to twist the Z ',
while the spin field S was needed to twist the v(1'. The
superconl'ormal ghosts (P', p') are untwisted. The con-
formal dimensions of the fields contributing to this state
add up to 4, and its local U(1) charge equals +2. These
properties will be in conHict with BRST invariance.

The candidate ground state for the '8+ + sector
takes the form [22]

NS, R
++++

~NS, R
++——

~NS, R
++

~NS, R

~k; —1, -1), S'~~S'~~~k: —
—,', --,')

t'S'+ ~k; —1, —1), t'S'+ ~k: —
—,', —

—,')
t0S0+~k; —1, -1), toS'+~k; —-' --')
t't'S'+S'+~k; —1, —1), t't'~k; —-'„—-', )

whereas

Ns, R t3S3,gyes/2~k 1 1) t3S2 tge~/2~k 1 1)
~Ns, R . t03tl2 S03S12ecr/2 [k. 1 1 1 t03t12 S02 S13ecr/2

~ k. 1 1)+ +

The existence of this state in the spectrum of the 1V = 2 string was noticed in Ref. [22].
This also follows from the structure of the BRST charge (Appendix B), where the U(1) ghost field c multiplies the U(1)

current J(z).
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TABLE III. Contributions to (minus) the intercept of mat-
ter and ghost fields for periodic (P or R) and antiperiodic (A
or NS) boundary conditions.

8 = C ' /(Z Z ), i.e. , a product of cones.
It is worthy to notice here that the Z2'-twisted (com-

plex elliptic) boundary conditions of the type

Sector
PorR

Aor NS

Complex
boson

+ 1
24

Complex
fermion

+—112

1
24

(b, c)
+—112

1
24

(b, c)
+—112

1
24

(P' v')
1

12

+—124

Z~+ ( ) + +2msa" Zgs~ ((l)
@P+( )

+2mia" +2miviII~~(0)

&.+(~) = —e+"*"&+(0),
(5.2)

and quite similar for 'R + +, and 'R ++ . In all cases,NS, R NS, R

the momenta will have to be adjusted for BRST invari-
ance.

To compute the values of h, for zero momentum in all
sectors, it is useful to collect

allo —1 —-')] = —
s allo ——.

' —1)l = —-'.
(4.28)

8 = C"/Z, or C"/Z', or C"/Z,', (4.24)

which represents a cone or a half-space, a quarter-, or
an eighth-space in C ', respectively. The first eight sec-
tors of Table II contain spacetime bosons, whereas the
ground states of sectors (9)—(16) are good candidates for
spacetime fermions.

V. SPECTRAL FLOW

We are now going to consider more general mon-
odromies parametrized by arbitrary phases:

Z"+(~) = +e+ ' Z"+(0),
+2mia" +2miv@P+(0)

& ()= —e ''"X (o)

(5.1)

where the angles a" and v are valued in Si = R/Z, and
the signs are correlated. The special values a" = 0 and
al" = — correspond to the cases considered in Sec. III,2
namely, sectors (1)—(8). Similarly, the values v = 0 and
v =

2 correspond to the NS and R sectors, respectively,
in our notation. Stated differently, the complex vectors
Z+ and 4'+ are subject to U(1) U(1) boundary condi-
tions, with a relative angle v between Z and 4. We call
these monodromies complex elliptic, for reasons to be ex-
plained in the following section. Clearly, a "good" target
space arises only in case a" are rational, which leads to

With the values given above and in Table I we obtain
massless states in all sectors but (4), (6), and (8) of Ta-
ble II. The local U(1) charges are only defined in the first
eight sectors. Neutrality is impossible in sectors (3)—(6)
of Table II.

The spacetime interpretation of the Z2 twists consid-
ered so far is quite clear. Depending on how many of the
three twists Z2, Z2, and Z2' for Z we are permitting, the
target space will be an orbifold

2 ) —=) (n+a)
n+Z+a nFZ 8=—1

——,
' + -'a(1 —a) =: f(o,),

+i'2 —2(a+ v+ 2)(1 —a —v —2)

f(a+ v+ 2), —

= &(-I n)

(5.3)

do not give anything new, since the phases in Eq. (5.2)
can easily be removed up to signs by rescaling the fields
[12], leaving just the sectors (9)—(16) of Table II.

The angle v in Eq. (5.1) parametrizes rotations be-
tween the NS and R sectors, and it can be identified with
the parameter of the spectral fIoto in the % = 2 supercon-
formal algebra [5,25]. To understand this specific feature
of the N = 2 string, one has to investigate the N = 2
supermoduli space. It is not hard to see that different
choices of v in Eq. (5.1) are simply related by shifts in
the complex moduli of the U(1) gauge field A [5]. Since
we are instructed to finally integrate over all moduli, any
amplitude has to be averaged over v eventually. It seems
to follow that monodromy sectors related by spectral fIow
should be identified, as happens in globally N = 2 super-
conformal field theory. This is not really true, for the
following reason. For a given n-string amplitude, the
U(l) moduli are represented by nontrivial Wilson lines.
Hence, we may shift the fermionic rnonodromies for each
homology cycle individually, in particular for the cycles
around the punctures. However, there are n —1 indepen-
dent homology cycles for a tree-level n-string amplitude.
Consequently, exactly one of the fermionic boundary con-
ditions of the different asymptotic string states cannot be
altered by the spectral fIow. More specifically, we can ro-
tate all but one v parameters to zero. Of course, the
amplitude will have to vanish unless the "last" v was
zero from the beginning. However, the vanishing of an
amplitude does not mean that any of its external states
does not exist. In the example of a two-point function,
we should indeed identify the NS-NS with the R-R prop-
agator (and all interpolations); however, the NS-R corre-
lation function (and all others with a relative twist) are
genuinely different, albeit zero. In summary, the spec-
tral fIow does relate some string amplitudes, but does
not identify NS with R states physically. Instead, we
have a one-parameter family of distinct states labeled by
v C [O, I].

To calculate the ground state dimensions for the gen-
eralized boundary conditions in Eq. (5.1), one needs to
sum up the relevant contributions from the N = 2 string
fields. The basic formulas for the vacuum energy of a
twisted complex boson and a twisted complex fermion
are [26,27]
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TABLE IV. Contributions to the vacuum energy. The left column corresponds to the generalized
boundary conditions in Eq. (5.1). The right column gives the result for the discrete Z~'-twisted cases
(9)—(16) of Table II. v E [

——,—] and a" C [
———v, ——v].

Twists

b, c
)

b, c

a' a'

f(a') + f(a')
f(a—'+ v+ -', ) —f(a'+ v+ —,')

—f(o)
2f(v + —,')

—f (0)

Z+ ~ Z+ and @+ -+ y+

f(o) + f(-,')
—f(o) —f(-,')

—f(o)
f(0) + f(-,')

—f(-,')

h = h'+h'
a"(v+ -) for a" E [0, ——v]

h" =
a"(v —2) for a" E- [

———v, 0]

&(n) —f (u+ v+ —,') = u(v+ —.') + (v' ——.'). (5.4)

The U(1)s „s,d charge for the ground states in question
is given by ]e] = ([a

~

+ [a [), where it is defined. It
follows that, for a given v, h, is a symmetric, periodic, and
piecewise linear function of a and a, whose derivatives
jump on the lines a~ = 0 as well as a" =

2
—v and a~ =

—
2
—v. Moreover, h is positive everywhere except at a

a = 0 and for v = +2, where it vanishes identically.
The ground state energy equally follows from comput-

ing the N = 2 superconformal algebra in terms of the
N = 2 string BRST currents. The relevant central ex-
tension terms A(m, ) in the Virasoro subalgebra, having
the form

[L,L "] = (m —n)L + A(m)b (5.5)

are at most cubic in m. The total m contribution to
A(m), being independent of the twisting phases, vanishes
in the critical dimension. The coefficients of the terms
linear in 2m sum to minus the critical intercept; they are
collected in Table III. See Refs. [12,29] for the explicit

where a 6 [0, 1] in the first line and a + v + i g [0, 1]
in the second one. This result forces the conformal di-
mensions of general complex twist fields and. spin fields
to be equal to h[t] = —a(1 —a) and h[S] = —(a + v)
respectively. In adding the individual contributions of
the difI'erent fields, care has to be exercised in order to
make sure that the periodic argument of the function f
is always taken from the interval [0, 1], where Eq. (5.3)
applies. In general, one has to create a list of case dis-
tinctions [12]. The results of counting are summarized
in Table IV. The terms quadratic in a" cancel among
bosons and fermions due to

calculations in this approach.
The conclusions we can draw for the % = 2 string

from the spectral flow analysis are the following. First,
the corresponding R and NS sectors of Table II are not to
be identi6ed although they are related by spectral flow.
This differs from one of the conclusions of Ref. [5]. In fact,
one has a one-parameter family of distinct states here.
Second, the conformal dimension h, of the ground state
changes under the spectral flow unless a = a = 0. If
we accept only massless gauge-singlet states as physical
[19,28], the two angles ai' in Eq. (5.1) are required to
vanish. Although the Ramond ground state is always
massless, we would generally consider it to be unphysical,
from a continuity argument. Hence, only states without
U(1) U(1) twist and, in particular, without Z2 or Z2
twist survive, leaving only the (Ooguri-Vafa) states, i.e. ,
sectors (1) and (2), from the first 8 sectors of Table II.
Third, this discussion does not apply to the Z2-twisted
states, where all sectors (9)—(16) remain. Their invari-
ance under spectral flow is in line with the twisting of
the gauge field, which eliminates all U(1) moduli. Each
of these discrete sectors may be generated from, say, sec-
tor (9) by the action of Z2, Z2, and Z2" twists in (3.2).

All this gives reasons to identify the ground states
in the untwisted (Ooguri-Vafa) sectors (1) and (2) as
physical spacetime bosons, whereas the ground states in
the (Mathur-Mukhi) sectors (9)—(16) should be physi-
cal spacetime fermions Demandi. ng the ground states
of all occurring sectors to be massless, only Z2 and Z2"
twists are permitted, selecting sectors (1),(2) and (9),(10)
at most. Since each sector contributes only one or two
physical degrees of freedom, Z2 twists leave room for a
2~ 2y spacetime supermultiplet in the complex half-
space 8 = C ' /Zz'. These observations partially sup-
port the idea of space-time extended supersymmetry in

Note that this expression is not periodic.
For instance, A(m) = —(1 —3Q )m + 2b,~m for an anti-

commuting (b, c)-type system with background charge Q.

This is naively "obvious" in the "double" light-cone gauge
for the N = 2 string, where all the excitations of Z's and 4's
disappear.
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N = 2 string theory, put forward in Ref. [6]. However,
nontrivial target space topology seems to be needed to
realize it. In principle, the spectral flow parameter v may
take values different Rom 0 or 2. The corresponding ver-
tex operators, however, have little chance of leading to a
local operator algebra (see Sec. VII).

VI. GENERAL MONODROMY CONDITIONS

and det g = —1, so that

(6.6)

where o" = (il, o), and o = (o.i, oz, o3) are Pauli matri-
ces. Each value for g determines a basis for the target
space components of the fields. Different bases are re-
lated by linear Geld redefinitions:

We are now in a position to discuss the most general
monodromy conditions for the N = 2 string. Let us con-
centrate on the Z fields, and arrange them into a complex
doublet as

Z ~ Z = MZ, Zt ~ Zt = ZtMt, (6.7)

forming the linear matrix group Gl (2,C). The redefined
Geld Z has the monodromy

( zo+Z= I,+ I, Zt=(z, z ), (6 1)
Z—:MZ m MUZ = (MUM )MZ

= (MUM )Z—:UZ, (6.8)

where Z = Z +iz, Z = Z +iz . The fields g
and y can be treated similarly. The Gelds Z enter the
N = 2 string action via the kinetic term, B~Z~ g - 0+Z,
where rI = diag( —,+) is the two-dimensional complex
target space metric. The kinetic term is obviously in-
variant under the unitary transformations

so that Eq. (6.7) induces

U+ U=MUM

At the same time, the action is unchanged,

(6.9)

Z ~ UZ, Zt ~ ZtUt, with UtnU = (6 2)
ZtgZ —ZtgZ, (6.10)

l~l' —IPI' = l.
)

(6.3)

The corresponding su(1, 1) Lie algebra generators satisfy
the relations

[Li) L2] = L3) [L3)L3] ——+Li) [L3)Li] = +L2,

(6.4)

where Lq and L2 are noncompact and Hermitian, and
L3 is compact and anti-Hermitian. In our basis (6.1), L3
turns out to be diagonal:

As remarked earlier, these U(1,1) transformations, to-
gether with similar compensating rotations of 4 and
y, actually constitute the global continuous symmetry
group of the full action (3.1).

We shall now consider arbitrary U(1,1) transforma-
tions (6.2) as possible monodromies (z —+ e 'z). The
determinantal phase factor may be split off trivially. This
is just the U(1) factor corresponding to a + a, which
was ruled out in the last section. The remaining SU(1,1)
subgroup can be realized as

so that the new metric takes the form

(6.11)

Any two metrics (6.6) are related this way. Apparently,
the determinantal factor of M merely leads to a com-
plex rescaling, which is rather trivial. We therefore take
M ESL(2,C). When M E SU(1,1), Eq. (6.11) becomes

q = rI, and, hence, U is conjugate to U in U(l, l). How-
ever, when M g'SU(1, 1), one gets q g q, which implies a
change in the metric eigenvalues.

Given a fixed basis and metric g, we must consider
two monodromies as equivalent if they are related by a
global symmetry transformation M CU(l, l). Therefore,
if we are interested in aLL inequivalent monodromies U
of the N = 2 string, we need to consider all the con-
jugacy classes of U(1,1)=[U(1) SU(1, 1)]/Z3. These
are labeled uniquely by the determinant det U, corre-
sponding to the U(1) factor, and the normalized trace
(det U) i~ trU, corresponding to the trace in SU(l, l).
The absolute value of the normalized trace can be either
less than 2, equal to 2, or greater than 2, which dis-
tinguishes the so-called elLiptic, parabolic, and hyperbolic
cases, respectively.

For a generic SU(1,1) monodromy of the form

(1 0) ' & ( i 0)'—
, It' 0 )I (6.5)

(z'l (~ p l (z'l
r

z' I( + )=I p* n II zi I() (6.12)

Of course, the matrix representation depends on the
choice of basis. For a different choice, the form of the
Hermitian metric g changes, and it dictates the struc-
ture of the SU(1,1) monodromy matrix via Eq. (6.2). In
general, the only restrictions on the metric are gt = g

Plus the Z2' twist.' Except if ltrUI = 2.
We can actually take (det U) due to the sign ambiguity

from Zq.
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substituting the mode expansion

I Zi 1(o) =).e"" K(o) I i (6.13)

(Z~ &
Z = ~ ~ Z& ~

. Here, of course, we just get

(e' 0
Kh~v(~) =

I e. I, (6.21)

yields the equation

K(o + 7r) = i, .
i

K(o.).
(n P

)
(6.14)

but the plane wave modes remain complex. The target
space interpretation is also more transparent in this basis.
The identifications

With K(0) = IL we have U = K(zr). Introducing the
su(1, 1) generators as

~

=exp ) 0,L, .(a P
)

(6.15)

we find the solution in the form

K(o.) = exp —) 8,L,
7r

(6.16)

Let us be more precise for the basis (6.1), i.e. , when
rt = diag( —,+). If just the compact generator appears,
0~ = 2+08~3, one gets

Zt =,e-Zt Z4 =,-8-Z4 (6.22)

(6.28)

and yields

create two similar tori (with real modulus 0). Hence, the
background 8 is just their tensor product. One should
remark that in this situation an additional Z2 twist does
not allow us to set 0 = 0 by rescaling Z, as was the case
in Eq. (5.2). Here, it leads to yet another target space.

Rather unusual is the parabolic situation (~trU~ = 2)
which is generated by either one of the nilpotent combi-
nations

(6.17)
( ) ~f

1+ z0o' +z0o
~i8o. 1 —i0a.

In the light-cone basis, we have

(6.24)

which obviously corresponds to the elliptic case (~trU~ (
2). Indeed, setting 0 = a —a and multiplying U, ~~

=
K,»(zr) with the U(l) phase e' ~ + l just reproduce the
complex elliptic monodromy of Eq. (5.1). As was already
mentioned, the target space is a tensor product of two
cones for the case of rational angles.

'I'urning on a noncompact generator, e.g. , 0~ = 2vr0b~l,
leads to the prime example of a hyperbolic class:

g ~(0 01~ g ~(0 zl
E' 'r'

1 01 — (1 2i0cr l
+ ( 2i8o. 1 ) '

q 0 1 (6.25)

The background 8 in this case is remarkable. From K
for example, we read oÃ the identifications

( cosh 0o.
h~p( ) =

i „.„h0
sinh0a. &

cosh 0a )i
' (6.18) Z" —= Zt+ 2zr0(iZ~), (iZ" -=(iZ~), (6.26)

Here, we find ~trU~ ) 2, and U GSO(1,1) is the real
Lorentz symmetry already discussed in Sec. III. The
mode expansion becomes complex and matrix valued:

(6.19)

The alternative is to switch to a basis where Ll is di-
agonal. This is achieved by taking

(1 1 l — i , (1 0
V'2 0 )

which is topologically a complex cone. The entire iZ~ =
0 axis has to be identified to a single point through which
pass (almost) all straight lines. i~ The metric rI = —oi
on this cone degenerates for two di8'erent real sections:
either Z"" =g$ Z"~+ or Z"+ = +iZ~+ leads to a van-
ishing of ~Z~ = Z" Z~++Z" Zt+. This leaves room for
null planes, just like in C ' . It is also exceptional that
~trU~ = 2 labels not one but three conjugacy classes: the
identity class as well as the two parabolic ones generated
by N+ and ¹

One should add that any SU(l, l) monodromy matrix
(6.15) can be factorized into a product of three matrices,
with each being in one of the standard forms displayed
above. However, there is always a basis in which it just
takes the standard form corresponding to its (elliptic,

( 0&=~-10 ~

(6.20)

which simply brings us to the familiar light-cone basis,
If this is not done, one ends up with a non-Haussdor8'

space.
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( 2iu cr

K(o) =
l 0

0 l . t'~P 0&=exp 2il i lo.
) q0a)

=:exp [2io A„~], (6.27)

and leads to the value f (a ) + f (o, ) in Table III, with

f(a) = —
i2 + za(1 —a). The natural attempt is to view

the result as arising from the trace

(6.28)

with the matrix A = A„ i of real angles taken from a
"fundamental domain" since, again, this expression is
not periodic. For a general U E U(1,1), one should fac-
tor off the U(1) phase e' '~2 and use the su(1, 1) algebra
parametrization (6.15). Inserting

hyperbolic, or parabolic) nature.
The ground state energies calculated for the complex

elliptic case in Sec. V are all based on Eq. (5.3). This
equation needs to be generalized to the other cases (hy-
perbolic or parabolic). The complex elliptic case corre-
sponds to

VII. BRST COHOMOLOGY AND
INTERACTIONS

We have assumed in Sec. IV that the spin fields S(S'
or S~), as well as the twist fields t (t' or t") are all pri-
mary and have conformal dimensions h, = 8. This does
not mean, however, that they are superconformal pri-
maries. They are not, in fact, as follows &om examining
the OPE's of these Gelds with the N = 2 superconformal
algebra generators G+ = @+ clZ+ and J = 4@ @+.
In particular, the OPE G+(z)(St)(tp) gives rise to the
new field (I'+S) t+ of dimensions 6 =

4 and h =
where spacetime p matrices I'"+ = I'" + il" have been
introduced.

Depending on the spin Geld, the p matrices act either
on the U(1) index as (I'"')+ +, or on the O(1,1) index as
(Fv*)N, 1'4

Our task now is to consider an action of the BRST
charge in the form [11]

3

Op —ll + ) 0~.1,
27ri 2 j=1

(6.29) dz
Q = Qi + Q2+ Qs Q' = j*(z)

p 27rz

= t"Tt~t + 6c|9c&
into the basis-independent formula (6.28) we arrive at

2f(0) = ——+ Op(4ir —Op) + (Oi + 02 —Os),
1 1 1 2 2 2

6 16a2 16' 2

(6.30)

j2 ——2(p+G + p G+ + 2cJ),
—b(V+~~ —

V ~~+)
+ 4c(p+7 —p Y+),

(7.1)

IO&I/4' if Os ( 4ir(v+ -'),
v + 2 if Os & 4vr(v + -). (6.31)

For hyperbolic twists, however, the "angles" 01 and 02 are
no longer periodic, and the naive summation of contribu-
tions to the ground-state energy based on Eq. (6.30) gives
a vanishing result. Looking back to the lesson learned in
Sec. V, we should nevertheless expect a vanishing ground
state energy only for v =

2 and for at most Z2' and/or
parabolic twists.

for Op E [0, 4vr] and Os g [lOp
—2irl —2', —

lOp
—2vrl + 2z].

These restrictions arise from o," g [0, 1 and the relations
Op

——2z (a + a ) and Os ——2z'(a —o, ). The quadratic
form in 0~ is nothing but the invariant length-squared
of a boost or rotation vector associated to the action of
so(2, 1) = su (1,1) in (2+1)-dimensional Minkowski space.
Time-, space-, and lightlike vectors are seen to belong
to elliptic, hyperbolic, and parabolic conjugacy classes,
respectively. Remarkably, the ground state energy takes
the untwisted value only for Op

——0 mod 4' and a lightlike
vector (0;}, i.e. , in the identity and parabolic classes,
with possible Z2' twist. A direct calculation of the I p

eigenvalue of the ground state conGrms this. We already
know from Table IV that elliptic SU(1,1) twists change
the conformal dimension of the ground state, since for
Op = Oi ——Oz = 0 and lvl ( z we found

V(,)( ) = —
b( )b( -)(St)

x exp(2 (k+ Z +. k Z+))(to), (7.2)

which creates the 'R++ ground state having the spinor
wave function u(k). Using the bosonization formulas
(4.13) and the relevant OPE's:

According to Eqs. (4.19) and (4.20), the twist field t has
dimensions h, = —and 6 = —.

on the candidate ground states or the corresponding ver-
tex operators creating these states.

First, the BRST operator of Eq. (7.1) annihilates the
(untwisted) NS ground state lk)++++ —lk; —1, —1) when
k+ k = 0. The same is also true for the (untwisted)
R ground states lk)++++ ——S 'ttS '"~lk; —2, —2), pro-
vided that k~ = 0 = k~ or k~ = 0 = k~, for the upper
or lower choice of sign, respectively. These momentum
constraints imply k+ k = 0 but are more stringent.

Second, let us investigate sectors (3) and (4) of Ta-
ble II, where the combined twist (St) or S t acting
on lk)++++ yields lk)++ or lk)++, respectively. To
this end, consider the OPE's of the BRST currents j,(z)
with the NS vertex operator of Eq. (4.21), expressed in
complex notation:
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+ (z)b (&+) (u') (z —m) 9 (m),

P+(z) ~(~+)(~) -, 1

@"+(z)S (m) I'"+S (tu),

qPV
DZ" (z)t (~) t"+(~),

Z —Q)

(7.3)
v„,( ) = —.—,a( +)s( -)(st)'(st)'

x exp[-'(k+ Z + k Z+)] (zv) (7.8)

we get

Third, we come to the (————)-type boundary con-
ditions. For the NS vertex operator

we find

h.
j~(z) V(4) (~) -, (~c)V(4) (~) (7.4a)

2 (z) V(4) (m)-

(7.4b)

1 2 —.[~+a(~-)(-'k'+) r'-
gz —zv

+(+ ~ —)]
x(St) exp( —'(k+ . Z + k Z+))(vu)

e/2+ CV(4) (10),

j,(z)V(s)(~)-

j2(z)V(s)(~)-

(7.9a)

js (z)V(s) (to) regular.

The BRST invariance requires

(7.9b)

(c)c)V(,) (zv),

1 2 —,u, c[&+S(&-)'(ko+ro-SoS'
gz —w

-k'+r'-s's') + (+ ~ -)]t't'
x exp[2(k+ Z + k . Z+)](m)

e/2+ cV(s) (tU),

i -[1 —1]js(z) V(4) (xv) —c V(4) (m) regular,
Z —tU

(7.4c)

h = -'+ -'k+ . k- = 02 2

where Eq. (7.4c) follows due to a cancellation among the
terms produced &om p P+ = 2c)p and p+P = 2c)(o+.
Equation (7.4) implies that the Zz-twisted NS ground
state is BRST closed provided it satisfies the three con-
ditions

u„k"+F"+ = 0 (no sum), e = 0. (7.10)

This implies k+ k = —1 and k"+ = 0, which cannot be
achieved.

More easily, the 'R sector with

6= —+-k+ k =0, uk +I'+ =0, e~=+-~~ =0,4 2 2 j
(7 5)

V7(~)=ce ~ ~e ~ ~tt'
x exp[-'(k+ . Z + k . Z+)](m) (7.11)

where e is the local U(1) charge of the state. Apparently,
V~4~ cannot be annihilated by the BRST charge.

Next, we do the same calculation for the 'R++ sec-
tor, where the relevant vertex operator has the form

yields

h
jg (z)V(7) ( to) - (Bc)V(7) (u'), (7.12a)

It follows that

i(z)V(s)(ur)-

j2(z)v(s) (va)-

6
(Bc)V(s) (m),

e/2
CV(4) (BI)

V(s)(ur) = uce ~ ~ e ~ ~ S t'
x exp(z(k+ Z + k . Z+))(ur). (7.6)

j2(z) v(~) (~)-

(7.7a)

1/2
c[g+e~ e ~ ~ (—ik+) . @

+ 2 — 2

gz —m

+(+ ++ —)]t t exp[2(k+ . Z + k Z+)]
e/2

x(u) + cv(7)(m),

1+ terms of order
1

and
gz —m'

(7.7b)

js (z) V(s) (m) 2 c V(4) (va) regular.
Z —QJ

(7.7c)

Although now h = 2k+ . k vanishes for a massless ex-
citation, again the vertex operator (7.6) is not BRST
invariant, in particular because e = + 2 g 0.

[2 —
2]js (z)V(7) (ur) c V(7) (m) regular,

Z —Q)
(7.12c)

which is regular if k = 0 since h =
2 k k and e = 0

here. We do not consider this as a spacetime field degree
of freedom.

The last new pattern comes from the discrete 'R+
sectors. It is now more convenient to express the BRST
current in the real component fields, as given in Eq. (B14)
and bosonized in Eq. (4.10). In particular, looking at
'RN+s + with
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V(io)(to) = uce ~ e ~ e ~ S t e'(" ' +" '
(to),

(7.13)

physical states, we choose the ground states in the sectors
NS R NS R8++++, 'R++++, 'R+ +, and 'R+ + . namely,

we obtain

6
g, (z) V(,ol (to) — ((9c)V(,o) (to), (7.14a)

~NS . C,
—~p —tp i(k Z +k Z )++++

~R . yf$ —tp /2 —~p /2g2, f$g3, f$ i(k Z +k Z )++++ . ——ce e ' ' e

(7.17)

j2(z)V(io)(~)- 1,/2 uce~e ~e~ Tl( —ik)
Z —QJ P

~pysgsts i(k Z +k .Z l(

(terms linear in k ), (7.14b)
Z —Q)

~NS . ~f$ cr/2 —(p —~p /2g3)ggt3 ik Z
+ + ~

~R . ping cr/2 —tp /2 —tp g2, fgt3 ik Z
+—+—

with k . k +k . k = 0 in the first case and k~' = 0 or
k~' = 0 in the other three, corresponding to the chosen
helicity.

On one hand, using the OPE structure of the bosonized
fields among themselves, viz. ,

js (z) V(io) (to) regular, (7.14c)

where h, = 2k' k'. Notice that the charge-measuring
term cJ in j2 does not lead to a singularity. To obtain
a vanishing BRST commutator, we have to request not
only k' k' = 0 and the Dirac equation

"()e"( ) - ( — )""( )
~ ~ (z)e

~"(z)~"T(~) - (z —~)'""(~)
(7.18)

uk'r~' = —-'u(aT'r~'+ k~'r T')
p 2

i@T2u4(l k~)T, l ikl2uT(f'Ts)4, T
2 (7.i5)

we And that interactions between the sectors 'R++++ and
'8+ '+ seem to be forbidden, since the relevant OPE is
not local:

but also set k to zero. The latter is not surprising,
since we created the twisted state on the border of the
half-space C /Zz' so that its transversal momentum gets
trapped at k = —k . Furthermore, the Dirac equation
(7.15) reads

u~k~ = 0 and u~k~ = 0, (7.i6)

so that one helicity is removed, e.g. , by choosing k~ = 0
and uT = 0, i.e. , taking only S " in Eq. (7.13). With
these requirements, V~yp) does create a BRST-invariant
state with lightlike momentum kt2 g 0. Similar calcula-
tions for 'R+ + as well as the remaining sectors (11)—
(16) arrive at the same conclusion.

The analysis above allows us to make the statement
that our candidate ground states in sectors (1),(2) and
(9)—(16) are actually the physical states; i.e. , they rep-
resent the BRST cohomology classes. Indeed, they are
BRST closed, as we have explicitly showed, while they
cannot be BRST exact (i.e. , of the type Q~w)) because
there are no candidates for a star state with the correct
ghost and picture numbers and conformal dimension, in
the case of a ground state. Since the NS-R pairs of sec-
tors (9)—(16) are related by simple coordinate relabeling,
we do not consider them separately, but restrict ourselves
to (9) and (10) from now on.

We have yet to show that our physical vertex operators
form a local Beld algebra. To this end, we should inves-
tigate their mutual operator products. Equivalently, we
are going to address interactions among the 2V = 2 string
physical states (cf. Ref. [22]). Generally speaking, the re-
quired mutual locality of the vertex operators is expected
to impose some constraints on the allowed interactions.

As representatives of the Z2-twisted N = 2 string

)
—S/2( )k k'

(7.i9)

and quite similarly in the other cases. On the other
hand, each of the three triples (Ci, T",T"), (T",:-",A"),
and (T~, :-T,A") have local OPE's among themselves, as
can easily be checked using Eq. (7.18) again. The non-
localities do not yet mean that interactions between the
triplets are impossible, since for closed strings the left-
moving (chiral) fields still have to be combined with the
right-moving ones to complete the full vertex operators.
As the example of the nonsupersymmetric O(16)O(16)
string showed [30—32], square root singularities in the
OPE's may disappear when the proper Gliozzi-Scherk-
Olive (GSO) projection is applied for modular invariance.
Hence, an asymmetric (with respect to the left- and right-
moving degrees of freedom) GSO projection may allow
us to keep more than two interacting spacetime fermions
in the theory. To settle this question, one should study
the "bosonized lattice" of Ref. [21], which in our case is
a direct product of two (1,1)-dimensional (half-integral)
Lorentzian lattices for the right movers, and once more

For consistency in the twisted string, we must put A: = 0
for its untwisted states as well, efFectively reducing the theory
to (1 + 1) dimensions. See also Ref. [22].

The signature arises from the sign difFerence between the
OPE's of Eqs. (4.2) and (4.10). The twist fields are irrelevant
here, since the combination t e is local with any vertex
operator as long as k = 0.
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(C.T~T,") =1, (7.20)

for the left movers. At the same time it is rather clear
that the continuous spectral flow family v E [

—2, 2] has
little chance to survive the final locality test, except for
v = 0 and v = 2, i.e. , in the well-known NS and R sec-
tors.

Iii order to test fulI locality, we need to look at (tree-
level) amplitudes, i.e. , correlation functions of vertex op-
erators. The nonvanishing three-point amplitude for the
ground state physical "scalar" in the 'R++++ sector was
constructed by Ooguri and Vafa [5]. Admitting also the

Q++++ sector, one easily computes, for example,

as expected from conformal invariance. For the one-
boson —two-fermion amplitude we also find

(Tl=tAt) (7.21)

which is encouraging. Ghost-number conservation does
not permit other three-point functions.

The vanishing of the tree-level bosonic four-point func-
tion (4' 4„4,4 ) [5] is most easily verified in our ap-
proach by computing the equivalent (because of spec-
tral flow) amplitude (T T„T,T ) as follows ((x, ~i

1, . . . , 4) = (x, y, z, i'�)):

[(T1TTTLTS) + (TtTlTTTl) + (TtTSTLTT )]

2

'(x;) [(S S S S )'+(S S S S )'+ y~g~g~g~) ]
2

x,,'[(x —y)(z —~) —(x —z)(y —~) + (*—~)(y — )] = o

(7.22)

where we defined x;j = x; —xj, as usual. The crucial
relative signs emerge from carefully taking into account
the suppressed cocycle operators [21].

VIII. CONCLUSIONS

Our motivation for twisting the N = 2 string was
driven by the search for more physical states in N = 2
string theory defined in 2+ 2 dimensions. An arbitrary
twisting implies a locally flat background 8 for N = 2
string propagation, which is not just C ' but has non-
trivial global topology. Backgrounds induced by twisting
generically take the form 8 = C ' /I'o, where a discrete
group I'0 is generated by elements of the global symme-
try group which act on the bosonic coordinate fields Z"'.
For flat backgrounds, the global homogeneous symmetry
group with nontrivial Z action is isomorphic to U(1,1)
Zz. Its action on the fermionic coordinates is identi-
cal. On top of this, there exists the spectral flow labeling
the overall mismatch of bosonic and fermionic boundary
conditions. It generates a U(1) family of sectors interpo-
lating between the NS- and R-like sectors of the N = 2
string. We have found four types of different Z2 twists
leading to sixteen different sectors to consider. One of
the twists originated Rom the spectral flow and does not
alter the background, while two more are contained in
the global U(l, l) symmetry of the N = 2 string.

The quantized critical % = 2 string theory can be
conveniently described in the N = 2 superconformal
gauge by introducing ghosts for the gauge-fixed local
symmetries and the corresponding BRST charge. Us-
ing bosonization techniques, we constructed the spin and
twist fields which actually implement all the Z2 twists
mentioned above. Next, we identified the ground states
of the sixteen Z2-twisted sectors of the 2V = 2 string,

as well as their conformal dimensions and local U(1)
charges. The "spacetime" interpretation of the twists
is based on the orbifolds and semi-spaces in Eq. (4.24)
as possible target spaces for N = 2 string propagation.
Half of the ground states were recognized as candidates
for spactime bosons, whereas the Z2'-twisted half sug-
gested an interpretation as spacetime fermions. Not all
of these states are, however, physical states identified as
representatives of BRST cohomology classes.

The most general homogeneous monodromies of the
N = 2 string were shown to be classified by the conjugacy
classes of U(1,1) and the Z2 twist of complex conjuga-
tion. They naturally split into three difFerent groups:
elliptic, parabolic, and hyperbolic, only the first type
having been considered in the past. We proposed the
formula of Eq. (6.30) for the vacuum energy of the arbi-
trarily U(l, l)-twisted ground state, by generalizing the
result known for the elliptic case. Searching for mass-
less ground states, we were able to restrict them to the
(possibly Z2-twisted) identity and parabolic conjugacy
classes. The latter gives a previously unknown massless
background with interesting properties. The former leads
back to C ' which yields four of the sixteen Z2 sectors
upon twisting by Z2' and/or spectral flow.

The presence of the spectral flow relating the R- and
NS-type sectors of the N = 2 string does not mean that
these are to be identified. The spectral flow modifies
fermionic boundary conditions for each homology cycle
on the world-sheet separately. For a tree-level amplitude,
this leaves one combination of the external fermionic
boundary conditions unchanged. More specifically, we
can always choose the fermionic monodromy of one ex-
ternal state to be invariant under the spectral flow. In
particular, we have a U(1) family of two-point functions,
indexed by the relative boson-fermion monodromy mis-
match, most of which have to vanish. Hence, a rigid
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U(1) label should be attached to any state. In this paper
we have only considered the Z2 subset denoted by NS
and R.

Prom the world-sheet point of view, the twistings con-
sidered in this paper have drastic consequences for the
N = 2 supergravity fields as well. We are used to the
fact that gravitini may be antiperiodic around world-
sheet cycles, but, e.g. , the Mathur-Mukhi twist also im-
plies a double val-ued Abelian gauge field [see Eq. (3.7)].
In other words, we are dealing with a double cover of
the world sheet. Alternatively, one may put A—:0,
which amounts to consistently truncating to N = 1 su-
pergravity. It can be shown [33] that there actually exist
only two different GSO projections of the N = 2 string,
one corresponding to the untwisted (spacetime bosonic)
theory, the other leading to the Mathur-Mukhi-twisted
theory containing spacetime bosons and fermions.

The crucial check of our Z2-twisted ground states as
candidate physical states comes from the analysis of the
BRST cohomology. %'e have found that only some of
these states are physical, namely, one scalar, one vector,
and two spinors. Moreover, the interactions among the
would-be physical states were analyzed from the view-
point of world-sheet locality, needed for an unambiguous
definition of the conformal field theory correlation func-
tions. It turned out that either three bosons or else, one
boson and two fermions may coexist. The consequences
can be found in Ref. [33].

Still, there is room for N = 2 spacetime supersymme-
try to be present, although the numbers of physical bo-
son and fermion degrees of freedom we obtained are not
enough to support the maximal spacetime supersymme-
try advocated in Ref. [6]. The BRST approach to gauge
theories is well-known to be based on canonical (unitary)
quantization. The notion of unitarity is, however, quite
formal in 2+2 dimensions. This is related to the fact that
in the covariant Lagrangian description of self-dual (su-
persymmetric) field theories in 2+ 2 dimensions one-half
of the fields are usually the (propagating) Lagrange mul-
tipliers for the other half, and vice versa [7]. The BRST
cohomology may have selected those half of the (super)
self-dual states with positive norms. The remaining half
represents an equal number of ghost states having nega-
tive norms, which are, however, needed for the covariant
[with respect to SO(2,2)] description of N = 2 string
theory. This effectively doubles the number of states in
the game, and may open a way for the N = 4 spacetime
supersymmetry of the (ghost-) extended theory. More
studies are needed to resolve this issue.

APPENDIX A: LOCAL SYMMETRIES OF THE
BS ACTION

be = (PBpe + epB $P,

bx =( ~px +xpo (p

bA = (PEA + ApB (P,
bZ = ( 0 Z, biIi = ( 8 iII.

(A1)

(ii) For Lorentz invariance:

= lG' be
1bx = —
—,lp3x

bA =bZ=bC =0.
(A2)

(iii) For N = 2 extended supersymmetry:

be = —2iYp y +H c.,
by = (8 + 2~ p3 —iA )e,

bA~ —e ep3p~ (l9p + 2 (1ipp3 zAp) y~ + H.c.,

bZ = —2E'4)

biII = ip e(BpZ+ 2gp@).

(iv) For phase and chiral gauge invariances:

be = bZ=0,
r

ZA+~ Zp3A+~)

bA~ = l9~0! + E'~ Opo!)

bC = io.4+ io.p34.

(A4)

(v) For Weyl and super-Weyl invariances:

be =oe
1

bract 2 +ex + pck g)

SA = happ p zl+ H.c.,
bZ = 0, bC = ——,'0-%.

(A5)

In this Appendix, we list the infinitesimal field
transformation laws corresponding to the local two-
dimensional symmetries of the Brink-Schwarz (BS) ac-
tion (3.1).

(i) For reparametrization invariance:
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nP —1 cxP
)

(e, y) = ur (e) + [imp p y + H.c.],
where e P is the Levi-Civita symbol, and u (e) is the
conventional gravitational connection in two dimensions.
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APPENDIX B: N = 2 STRING BRST CHARGE

In this Appendix, the standard results needed to in-
troduce the N = 2 string BRST charge

are summarized.
The OPE's for the chiral parts of the matter fields

representing the N = 2 string coordinates are

Z'" (z) Z~" (io) b*~ g—""ln(z —io),

b(z) = ) b„z ", c(z) = ) c„z "+',
n+Z

satisfy the OPE

1
b(z)c(io)

The N = 2 superconformal ghosts

1&'"(z)@"(~)-
(B1) p+( ) ) p+ n —3/2—

n+Z

~'() =).~.+ (B5)
The N = 2 currents associated with the superconformally
gauge-fixed N = 2 string action take the form

r( ) = ——,'Bz+. Bz-+ —,'@+.B@-+—,'@-.By+

= —
2

(BZ'"Bz„' —@'"Bg„' = ) L„z
n+Z

G+(z) = BZ+. @+ = BZ'~@„*+'s*'BZ'~@~
—n —3/2

n
n+Z

J(z) = 4' . @+ = s'~/*~/'„—= ) J„z ", (B2)
n+Z

where the mode expansions on the RHS of Eq. (B2) and
all the equations below are valid for the untwisted R-type
boundary conditions, for definiteness. For the twisted
and/or NS-type boundary conditions, the moding on the
RHS of Eq. (B2) and the mode expansions below have to
be appropriately modified. The currents (B2) form the
N = 2 superconformal algebra with central extension.

The repararnetrization ghosts

satisfy the OPE

p'(z)~ (~) -—
p (z)~'(~) -—

7

Z —BJ

Z —QJ
(86)

h'+ P ]=5' P+]=2b +,o.

Finally, the anticommuting U(1) ghosts

b(z) = ) b z , c(z) = ) c z

associated with the Abelian local invariance of N = 2
string theory, have the OPE

b(z)c(u))
1

(c b )=h
Z —tU

The full BRST-invariant generators read

which imply the (only nonvanishing) commutation rela-
tions

Tq~t ——(QBRs~, b) = T —2bBc —(Bb)c —bBc —4[P Bp+ + P+Bp ]
—4[p+BP + p BP+],

G,+, = [QBRs~, P+] = G —2bp+ —46Bp+ —2(Bb)p+ + 2P+Bc+ (BP+)c+ 2P c,

Jt~t —(QBRs~) b) = J + bBc+ (Bb)c+ 4[P+p —P p+].

They imply, in particular, the mode expansions

(B10)

L tot

g+, tot
m

Jtot
m

(QBRS~, b ) = L + (m —n)b + c —nb + c + 4(m, —2n)[p + p+ + p + p ] —&ob~, o)

BRST ~

G+ —2b +„p+„—2(m —n)b +„p+„+(2n —m)p++„c „+2p

(QBRsg, b ) = J —mb +„c „+4[p++„p „—p +„p „]—&oem, o)

where normal-ordering ambiguity constants Ao and Bo have been introduced.
The N = 2 BRST charge is given by

dZ .
QBRST — .QBRST(z))

0 2%2
(B12)

We are grateful to Jan Bischoff for helping us to check some of the formulas listed below.
Normal ordering is applied whenever an ambiguity arises.
Summation over repeated indices is always understood.
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with the BRST current having the form

jBR T(z) = cT + bcBc+ bcBc —4c[P Bp+ + P+Op ]
—4c[p+clP + p BP+] + 2[p G+ + p+G ]

+ J ~ ~'b+ [~ ~~' —~'~~ ]b+ ."[P-'~ P—~']+.'~[ (P'~ +P ~')]
In terms of real fields,

jBRsT(z) = cT+ bccic+ bcBc —2c[p Op + p Op ]
—2c[p clp +p Bp ]

[clZ @ BZ 1b ]+ [BZ g —OZ g ]+ — Q
2

—[7 & + 7 & ]b+ 2i [& 0"t —t 0"t ]b+ —c[& p —7 p ] + 4cl[c(p 7 + p 7 )].

(B13)

(B14)

The total derivative terms have been adjusted to make the current jBRST BRST exact and turn it into a conformal
primary of h = 1 and e = 0. It follows

QaRsT = c— L + z~ G++ 2~+ G + 2c—
—

2 (m —n)c ~c nb~+a —7 ~"t+„b~+n —(m —n)7 ~ 7+nb~+n

+nc c „b +„+-'(m —2n)c [P++„p „+P +„p+„]+4c [P++„p „—P +„p+„]—Aoco —B coo
(B15)

The BRST generators (Bll) satisfy the N = 2 superconformal algebra without central extension, while the BRST
charge QgRsT = 0, when the complex target space dimension is two and the intercept takes its critical value under
the given boundary conditions.
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