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Nonlinear boundary oscillations in strongly correlated electron quantum wires
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We study the influence of a boundary point contact voltage on Coulomb blockadelike oscillations of the
conductance in mesoscopic quantum wires of strongly correlated electrons. Bethe ansatz techniques allow one
to understand lattice boundary effects together with nonconformal many-body behavior for such systems. We
predict a nonlinear dependence of the initiabherenk shift on oscillations with boundary potentials. The
results are obtained for both spinless and spin c4S€4.63-18207)05503-3

Both theoretical and experimental interest in properties of To start let us consider a model of spinless interacting
systems with a boundaipackscattering impurijyhas risen  electrons on a linear lattice df sites related to th&XXZ
recently. On the theoretical side this is connected with thenodel by means of the Jordan-Wigner transformation
development of exact methods to deal with open boundary
conditionst3 Important progress has been achieved using
bosonizationboth Abelian and non-Abeligrand conformal
field theory descriptions of Luttinger liquids with boundary
(or impurity) field.* However, this approach is usually lim-
ited to small coupling constantess than the effective Fermi ‘Mgl M= (gt pny), @
velocities for the corresponding noninteracting syStemd
uses a linearized dispersion for the elementary excitationgherea; (a/) are annihilation(creatior operators for elec-
which neglects effects of the finite lattice spacing. A propertrons in sitej, andnanJ-Taj is the number of electrons at site
treatment of these may lead to answers differing drastically, andA=0 is the strength of thérepulsive interaction.u
from the linearized situation. These difficulties do not ariseand w.. are chemical potentials for bulk electrons and
for exact solutions of the lattice system obtained using théoundary potentials at the right and left boundary, respec-
Bethe ansatz methddCombining Bethe ansatz calculations tively. In an experiment this situation could be realized by
with results from boundary conformal field theory, very re- applying boundary external voltagd$or chiral electrons
cently several important results have been obtained for @ith one scatterer as a plunger voltage applied to this point,
number of models, e.g., th8=1/2 XXZ spin chair® the  one edge would be free, i.qu,, =0). A different realization
quantum sine-Gordofor Thirring field theory model? and  of boundary fields could be potentials due to proximity effect
the Hubbard model with boundary fielfigll of these solu-  of different bulk samplegleads, producing point contact
tions manifest the strong difference between the behavior gbotential difference.
bulk and surface energies, or long-range asymptotics for The mesoscopic effects we want to study in this report
low-lying (gaplesy boundary and bulk excitations. On the reveal themselves for system sizes less than the phase coher-
other hand, recent experiments on quantum wires with impuence length_,,. Hence we consider the conducting regime
rities or boundaries manifest interesting features, e.g., Cowsf a repulsive interaction with gapless excitations,
lomb blockadelike behavior, proximity effects for quantum A =cosy<1, in the insulating caseA(>1) they are sup-
wires connected through lea@tsontact$ to superconductors, pressed exponentially. Using the Yang-Baxter and reflection
and quantum topological effects such as the Aharonov-Bohrequations we diagonalize the Hamiltoniéh. The eigen-
effect for ring geometrie5® states in theN particle sector are characterized by a set of

In this report we propose to study new nonlinear effectsN rapiditiesu;, which are determined by the Bethe ansatz
due to boundaries or backscattering impurities in chiral conequation$
ductors. Since we deal with exactly solvable models, our
results apply to the strong-coupling regime and all lattice N
effects are taken into account. The transfer(dftual) el- 2L ¢(u;,y/2)+ Z+ ¢(u; 'Fx)=27ﬂj+|7§¢. ¢(uj—up,y)
ementary excitations from one boundary to the other alters T B
dramatically mesoscopic properties of the system. We point +h(u+uy,y). )
out that the phase shift due to this transfer provides addi- e A
tional information about the nature of electron interaction inHere ¢(u,y)=2arctaficotytantu], I'-=(2u.—A+e'”)/
guantum wires. [(2u+—A)e'7+1], andl; are positive integers. The corre-

L-1
H= ]21 [—3(afaj 1+ H.C)+AMN—3)(Njs1—3)]
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sponding eigenvalue of the Hamiltoni&b) is L5
N
A H ’
E=(L-1)7— 2 [p+2sim¢’ (U, 9] 3
4 = 10 |

Expanding the ground-state energy in powersLobne
obtains E=LE,.+ Egut+ (L Y)Emest - - -. Here E,, is the e)
energy density of the infinite syster,,,; is the surface en-
ergy connected with the boundari@s impurity), andE csiS
the mesoscopic energy, which—as in systems with periodic
boundary condition¢see, e.g., Refs. 10 and)ttdetermines
the asymptotiqlong-distancg behavior of correlation func-
tions via conformal invarian¢@and topological quantum ef-
fects in one-dimensional1D) systems® As discussed 05 1o 00 S 5o
above, forA>1 the elementary excitations have a gap, ' ' 2p-A ' '
leading to finite-size corrections to the energy
ocexp(—LEgap/th). In the following we concentrate onthe  FIG. 1. ®(u.=pu_) vs boundary chemical potential for the
mesoscopic energy that determines the mesoscopic Coulominiess fermion systerfi) at half filling n= 3.
blockadelike oscillations in conducting quantum wires with-
out (superconductingordering** —(m—2y)/2(w—v) at u.—, see Fig. 1. Since the effect

Following Ref. 15 one obtains the finite-sig@esoscopic  of the two boundaries enters additively in E§) it is pos-
energy with open boundaries: for largethe sums in Egs. sible to cancel this effect completely by suitable tuning of
(2) and (3) can be replaced by integrals using the Euler-u- . The discontinuity at the pointsg2.=1+A indicates
Maclaurin formula giving the creation of surface bound states, which also changes the

surface energyE,s. TO conserve the zero topological
. [AN—O(u+)]? N charge of the ground state at half filling these edge bound
Emes= v W*’ o4l (4 states have to be created either in pairs or together with a
bulk excitation(kink). This creation of a bulk excitation is
wherev" plays the role of a Fermi velocity and is deter- the microscopic origin of the oscillations that we will study
mined by the dispersion relation near the Fermi point, se®elow.
Ref. 6, AN=N—-n(u)L with n being the band filling, and The mesoscopic energy in the ground state of the system
N*>0 is the number ofbosoni¢ particle-hole excitations s obtained by minimization of Eq4) with respect toAN,
near the Fermi point. The dressed cha£§®) is a measure which is achieved by replaciny—n(u)L— 0O (u-) with its
for the interactions determining the critical properties of thefractional part to the nearest inted&This leads to periodic
system:* It can be interpreted as the number of electrons fooscillations of the mesoscopic energy connected to the
each of the elementary excitations forming the Fermi sea ofhange of the number of electrons in the system. These os-
holons. The boundary potentials enter E4) through the cillations can be observed when the external bulk potential
“boundary shift” ®(u«-), which is the corresponding con- (an external voltageis varied, and are just the well-known
tribution to the integrated density of the u;, namely, Coulomb blockadelike oscillations. They are a consequence
(1/2)f9Qp(u)du= n(u)—0O(u)/L. of the finite lattices considered here: although they are deter-

To calculate the dependencies of Fermi velocity, dressedhined from finite-size data such &s,.sthe conformal prop-
charge, and the boundary shét on coupling parametey, erties are characteristics of a continuum model. Since only a
and bulk () and boundary &) chemical potentials we discrete set of densities can be realized on a finite lattice one
have to solve linear integral equations of the structurdinds a nonanalytic dependence of the mesoscopic energy on
y(u)=y°(u)— (1/2m) % 5¢' (u—v)y(v)dv (for the open the chemical potentidf Variation of boundary(point con-
boundary case, only symmetric limits of integration are posiact potentials allows for the investigation of the nonlinear
sible). For the dressed chargéu) = £(u) the driving term is  (coherenk shift of the Coulomb blockadelike oscillations due
just y°(u)=1. At half filling corresponding t@Q= these !0 these potentials. Similar coherent oscillation shifts were
integral equations can be solved by Fourier transformatio®bserved very recently in experiments for the loop geometry

resulting in&(Q=c)=m/2(w— y) for the dressed charge With a quantum dot embedded into a metallic ringlere
and both Coulomb blockade and Aharonov-Bohm oscillations of

persistent currents were measured, the latter existing due to
Y2u,—A+1 ring geometry(see Ref. 1Y In the noninteracting system,
2(m—y)O(ps)=y— > arctar( Cots — 1 1) - A =0, the discontinuity o® is at 2u. =1 where one of the
X==* Mx . .
(5) bqu.eIectrons is transferred into the bound.ar.y. bound state.
In this case only the monotonic shift of the initial phase for
Equation (5) shows the strongly nonlinear dependence ofCoulomb blockadelike oscillations can be observed. For
on the boundary potentials: increasipg from negative A=1, the largest value giving a conducting ground state,
values the boundary shift increases monotonically until® degenerates to a step function taking values 0 Add.
2pu+=1+A where® jumps by —m/2(7— ). Beyond this Away from half filing the Coulomb blockadelike oscilla-
point, ® continues to increase monotonically, reachingtions persist for bulk voltages less than the critical one,
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FIG. 2. ®(«+=u_) vs boundary chemical potential for several

values of the density, in the Hubbard model with)=1. FIG. 3. Oscillations of mesoscopic ener(#) vs chemical po-

tential for a Hubbard modell{=1) on a lattice ofL =50 sites for

. . . boundary potentialg. . =u_=0.5, 0.9, 1.1, 1.8bottom to top.
which corresponds to the gap opening for excitatjoom- yp B & b

plete band filling, and® reaches zero at such critical point.
Generally, one finds that the discontinuity 6f decreases
with the interaction as seen in Fig. 1.

For the case of spin fermions we consider the repulsiv

Here =(1/2)[f9Q6(k)dk—1], where 6(k) is deter-
mined from the integral equation given above with
kernel ¢'(kk')=cok[”..dw exf —U|w|+i(sink—sink ) w]/

Hubbard model with the Hamiltonian 2coshUw), and driving term
L-1 . 1) 1—pu? cok
H= J.Zl —Z, (8j,48j+1,+H.C)+4UN;N;, (K= 1+ pu2—2ucok  4Ucosh (w/2U)sink]’

L For the dressed chargg€k), the equation has similar struc-
—n X 2 Nje— 2 (N, +pong,), (6)  ture as ford(k) with the driving term being unity and with
=1 e 7 the kernel replaced by its transpo§enow defines the Fermi
whereU=0 is the Hubbard constant amc= 1, | is the spin  Point for quasimomenta of charge excitations, and depends
of the electrons. Here the states are characterized by two seé?§ bulk chemical potential. In general, Fermi velocities,
of quantum numbers, namel\N quasimomentsk; (con- dressed charge matrix and boundary shifts depend on exter-
nected with Charged holon excitationand M rapiditiesl nal magnetic f|e|d$b0th bulk and boundariéalso, but this
u;, connected with spinons\(andM are numbers of elec- Case will be reported elsewheffe. _
trons and down spin electrons, respectiyel@onstructing _Naturally, the S|tuat|o.n is similar to the case of rep_ulswe
Bethe ansatz equations, and calculating the finite-size corregPinless electrons studied above. The boundary shift now
tions for open boundary conditions as above we obtain foflepends both on the value of Hubbard constant and external
the relevant terms in the mesoscopic energy at fillinggPotential (bulk voltage. The dependence of boundary shift

n<1i: O on w. is shown in Fig. 2. Again® jumps at boundary
potentialsx . =1 by an amount depending on the interaction
[[(AN=0)Zy— (AM—0)Z,]? [note that the energy scales in E@$) and (6) differ by a
Emes 7 2(dez)? factor of 2. In the noninteracting cas¢)=0, we simply
have two copies of the spinless electrons considered above:
e [(AN=0)Z;,—(AM —-09Z1,)? the boundary shift depends monotonically @n and jumps
s 2(de)? : by —2 when surface bound states are created. The strong-

coupling limit, U—<, corresponds to the free spinless elec-

Here the Fermi velocities for spin and charge excitations aréron case, because Hubbard repulsion works as an additional
different in generalAN=N—-nL, AM=M-mL, n andm  Pauli principle. In this limit, the boundary shift is found to
being band filling and density of spih electrons, respec- be O(u.)=(1/m)2,_ . arctaf[(1+ w,)/(1— u,) tarnQ/2}—3,
tively. Without external magnetic fields one has=n/2 and  whereQ= mn. Note that the jump of at boundary poten-
the components of the dressed charge matrix can be paramals . =1 is —1 for any(metallic band filling; see Fig. 2.
etrized by a single numbef as Z,;=2Z,,= ¢, Z,,=2" %2, Going to large but finite values of the Hubbard constant this
Z,1=0.1° The boundary shift®.=20,=0(ux.) are func- jump increases ta® = — 1— (In2/U)sinmn. For intermedi-
tions of the boundary chemical potentials. Using this we ob-ate values ofJ the equations have to be solved numerically.
tain the following expression for the mesoscopic energy:  Again one finds oscillations d&.sWith the particle number

or, equivalently, the bulk chemical potential with a jump in
@) the phase aju-.=1 (see Fig. 3 The size of this jump

£ (AN-0)? £ (AN=2AM)?
' changes from—2 in the noninteracting case to1 in the

Emes™ ch—2§2_+7rvs 4
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strong-coupling limit, depending od and the filling in be-  behavior for(coherenk initial shift(s) of mesoscopic Cou-
tween. The main effect of the massless spinon excitations olomb blockadelike oscillations due to boundary slé¥t A
the oscillations is a parity effect leading to a period doubling:measurement of the discontinuity of this phase shift near the
for an odd number of electrons, the ground state contains oundary potentiak. =1 allows for a direct determination
virtual spinon shifting E,es by m)g/4_ Sincev§—>0 for  of the effective interaction constants for 1D strpngly corre-
U this effect disappears in the strong coupling limit,  1ated electron systems. Our results were obtained both for
The oscillations studied in this report can be observed fopPinIess and for spin electrons. The effects can be checked
sufficiently small temperatured.~#v /L. For higher tem- experimentally by studying Coulomb blockadelike oscilla-

peratures mesoscopic oscillations decrease exponential ns either for chiral strongly correlated electron quantum

with temperature and the shape of sharp resonances yuires with point contact potential backscatterer, or for quan-

smearedsawtoothlike oscillations into cosinelike ohes tum wire connected with point contacts to external voltages

To conclude, we have studied the effect of boundary poin‘Ieads connected with bulk samples
contact potentials on the coherent mesoscopic oscillations in This work has been supported in part by the Deutsche
strongly correlated quantum wires. We predict a nonlineafForschungsgemeinschaft under Grant No. Fr 737/2-1.
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