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Nonlinear boundary oscillations in strongly correlated electron quantum wires
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We study the influence of a boundary point contact voltage on Coulomb blockadelike oscillations of the
conductance in mesoscopic quantum wires of strongly correlated electrons. Bethe ansatz techniques allow one
to understand lattice boundary effects together with nonconformal many-body behavior for such systems. We
predict a nonlinear dependence of the initial~coherent! shift on oscillations with boundary potentials. The
results are obtained for both spinless and spin cases.@S0163-1829~97!05503-3#
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Both theoretical and experimental interest in properties
systems with a boundary~backscattering impurity! has risen
recently. On the theoretical side this is connected with
development of exact methods to deal with open bound
conditions.1–3 Important progress has been achieved us
bosonization~both Abelian and non-Abelian! and conformal
field theory descriptions of Luttinger liquids with bounda
~or impurity! field.4 However, this approach is usually lim
ited to small coupling constants~less than the effective Ferm
velocities for the corresponding noninteracting system! and
uses a linearized dispersion for the elementary excitat
which neglects effects of the finite lattice spacing. A prop
treatment of these may lead to answers differing drastic
from the linearized situation. These difficulties do not ar
for exact solutions of the lattice system obtained using
Bethe ansatz method.5 Combining Bethe ansatz calculation
with results from boundary conformal field theory, very r
cently several important results have been obtained fo
number of models, e.g., theS51/2 XXZ spin chain,3 the
quantum sine-Gordon~or Thirring field theory! model,2 and
the Hubbard model with boundary fields.6 All of these solu-
tions manifest the strong difference between the behavio
bulk and surface energies, or long-range asymptotics
low-lying ~gapless! boundary and bulk excitations. On th
other hand, recent experiments on quantum wires with im
rities or boundaries manifest interesting features, e.g., C
lomb blockadelike behavior, proximity effects for quantu
wires connected through leads~contacts! to superconductors
and quantum topological effects such as the Aharonov-Bo
effect for ring geometries.7,8

In this report we propose to study new nonlinear effe
due to boundaries or backscattering impurities in chiral c
ductors. Since we deal with exactly solvable models,
results apply to the strong-coupling regime and all latt
effects are taken into account. The transfer of~virtual! el-
ementary excitations from one boundary to the other al
dramatically mesoscopic properties of the system. We p
out that the phase shift due to this transfer provides a
tional information about the nature of electron interaction
quantum wires.
550163-1829/97/55~3!/1341~4!/$10.00
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To start let us consider a model of spinless interact
electrons on a linear lattice ofL sites related to theXXZ
model by means of the Jordan-Wigner transformation

H5 (
j51

L21

@2 1
2 ~aj

†aj111H.c.!1D~nj2
1
2 !~nj112

1
2 !#

2m(
j51

L

nj2~m1n11m2nL!, ~1!

whereaj (aj
†) are annihilation~creation! operators for elec-

trons in sitej , andnj[aj
†aj is the number of electrons at sit

j , andD>0 is the strength of the~repulsive! interaction.m
and m6 are chemical potentials for bulk electrons a
boundary potentials at the right and left boundary, resp
tively. In an experiment this situation could be realized
applying boundary external voltages~for chiral electrons
with one scatterer as a plunger voltage applied to this po
one edge would be free, i.e.,m150). A different realization
of boundary fields could be potentials due to proximity effe
of different bulk samples~leads!, producing point contact
potential difference.

The mesoscopic effects we want to study in this rep
reveal themselves for system sizes less than the phase c
ence lengthLph. Hence we consider the conducting regim
of a repulsive interaction with gapless excitation
D5cosg<1, in the insulating case (D.1) they are sup-
pressed exponentially. Using the Yang-Baxter and reflec
equations we diagonalize the Hamiltonian~1!. The eigen-
states in theN particle sector are characterized by a set
N rapiditiesuj , which are determined by the Bethe ansa
equations9

2Lf~uj ,g/2!1 (
x56

f~uj ,Gx!52pI j1 (
l51,lÞ j

N

f~uj2ul ,g!

1f~uj1ul ,g!. ~2!

Here f(u,g)52arctan@cotgtanhu#, G65(2m62D1eig)/
@(2m62D)eig11#, and I j are positive integers. The corre
1341 © 1997 The American Physical Society
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1342 55BRIEF REPORTS
sponding eigenvalue of the Hamiltonian~1! is

E5~L21!
D

4
2(

j51

N

@m12singf8~uj ,g!#. ~3!

Expanding the ground-state energy in powers ofL one
obtainsE5LE`1Esurf1(L21)Emes1•••. Here E` is the
energy density of the infinite system,Esurf is the surface en-
ergy connected with the boundaries~or impurity!, andEmesis
the mesoscopic energy, which—as in systems with perio
boundary conditions~see, e.g., Refs. 10 and 11!—determines
the asymptotic~long-distance! behavior of correlation func-
tions via conformal invariance12 and topological quantum ef
fects in one-dimensional~1D! systems.13 As discussed
above, for D.1 the elementary excitations have a ga
leading to finite-size corrections to the ener
}exp(2LEgap/\v

F). In the following we concentrate on th
mesoscopic energy that determines the mesoscopic Cou
blockadelike oscillations in conducting quantum wires wi
out ~superconducting! ordering.14

Following Ref. 15 one obtains the finite-size~mesoscopic!
energy with open boundaries: for largeL the sums in Eqs.
~2! and ~3! can be replaced by integrals using the Eul
Maclaurin formula giving

Emes5pvFF @DN2Q~m6!#2

2j2~Q!
1N12

1

24G , ~4!

where vF plays the role of a Fermi velocity and is dete
mined by the dispersion relation near the Fermi point,
Ref. 6,DN5N2n(m)L with n being the band filling, and
N1.0 is the number of~bosonic! particle-hole excitations
near the Fermi point. The dressed chargej(Q) is a measure
for the interactions determining the critical properties of t
system.11 It can be interpreted as the number of electrons
each of the elementary excitations forming the Fermi sea
holons. The boundary potentials enter Eq.~4! through the
‘‘boundary shift’’ Q(m6), which is the corresponding con
tribution to the integrated densityr of the uj , namely,
(1/2)*2Q

Q r(u)du5n(m)2Q(m6)/L.
To calculate the dependencies of Fermi velocity, dres

charge, and the boundary shiftQ on coupling parameterg,
and bulk (m) and boundary (m6) chemical potentials we
have to solve linear integral equations of the struct
y(u)5y0(u)2(1/2p)*2Q

Q f8(u2v)y(v)dv ~for the open
boundary case, only symmetric limits of integration are p
sible!. For the dressed chargey(u)5j(u) the driving term is
just y0(u)51. At half filling corresponding toQ5` these
integral equations can be solved by Fourier transforma
resulting inj(Q5`)5Ap/2(p2g) for the dressed charg
and

2~p2g!Q~m6!5g2 (
x56

arctanS cotg22mx2D11

2mx2D21D .
~5!

Equation ~5! shows the strongly nonlinear dependence
Q on the boundary potentials: increasingm6 from negative
values the boundary shift increases monotonically u
2m6511D whereQ jumps by2p/2(p2g). Beyond this
point, Q continues to increase monotonically, reachi
ic
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2(p22g)/2(p2g) at m6→`, see Fig. 1. Since the effec
of the two boundaries enters additively in Eq.~5! it is pos-
sible to cancel this effect completely by suitable tuning
m6 . The discontinuity at the points 2m6511D indicates
the creation of surface bound states, which also changes
surface energyEsurf. To conserve the zero topologica
charge of the ground state at half filling these edge bo
states have to be created either in pairs or together wi
bulk excitation~kink!. This creation of a bulk excitation is
the microscopic origin of the oscillations that we will stud
below.

The mesoscopic energy in the ground state of the sys
is obtained by minimization of Eq.~4! with respect toDN,
which is achieved by replacingN2n(m)L2Q(m6) with its
fractional part to the nearest integer.16 This leads to periodic
oscillations of the mesoscopic energy connected to
change of the number of electrons in the system. These
cillations can be observed when the external bulk poten
~an external voltage! is varied, and are just the well-know
Coulomb blockadelike oscillations. They are a conseque
of the finite lattices considered here: although they are de
mined from finite-size data such asEmesthe conformal prop-
erties are characteristics of a continuum model. Since on
discrete set of densities can be realized on a finite lattice
finds a nonanalytic dependence of the mesoscopic energ
the chemical potential.16 Variation of boundary~point con-
tact! potentials allows for the investigation of the nonline
~coherent! shift of the Coulomb blockadelike oscillations du
to these potentials. Similar coherent oscillation shifts w
observed very recently in experiments for the loop geome
with a quantum dot embedded into a metallic ring.8 Here
both Coulomb blockade and Aharonov-Bohm oscillations
persistent currents were measured, the latter existing du
ring geometry~see Ref. 17!. In the noninteracting system
D50, the discontinuity ofQ is at 2m651 where one of the
bulk electrons is transferred into the boundary bound st
In this case only the monotonic shift of the initial phase f
Coulomb blockadelike oscillations can be observed. F
D51, the largest value giving a conducting ground sta
Q degenerates to a step function taking values 0 and61/2.
Away from half filling the Coulomb blockadelike oscilla
tions persist for bulk voltages less than the critical on

FIG. 1. Q(m15m2) vs boundary chemical potential for th

spinless fermion system~1! at half filling n5
1
2 .
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which corresponds to the gap opening for excitation~com-
plete band filling!, andQ reaches zero at such critical poin
Generally, one finds that the discontinuity ofQ decreases
with the interaction as seen in Fig. 1.

For the case of spin fermions we consider the repuls
Hubbard model with the Hamiltonian

H5 (
j51

L21 F2(
s

~aj ,s
† aj11,s1H.c.!14Unj↑nj↓G

2m(
j51

L

(
s

njs2(
s

~m1n1,s1m2nL,s!, ~6!

whereU>0 is the Hubbard constant ands5↑,↓ is the spin
of the electrons. Here the states are characterized by two
of quantum numbers, namely,N quasimomentakj ~con-
nected with charged holon excitations! and M rapidities,
uj , connected with spinons (N andM are numbers of elec
trons and down spin electrons, respectively!. Constructing
Bethe ansatz equations, and calculating the finite-size cor
tions for open boundary conditions as above we obtain
the relevant terms in the mesoscopic energy at fillin
n,1:

Emes5pvc
FF @~DN2Qc!Z222~DM2Qs!Z21#

2

2~detZ!2 G
1pvs

FF @~DN2Qc!Z122~DM2Qs!Z11#
2

2~detZ!2 G .
Here the Fermi velocities for spin and charge excitations
different in general,DN5N2nL, DM5M2mL, n andm
being band filling and density of spin↓ electrons, respec
tively. Without external magnetic fields one hasm5n/2 and
the components of the dressed charge matrix can be pa
etrized by a single numberj asZ1152Z125j, Z225221/2,
Z2150.10 The boundary shiftsQc52Qs[Q(m6) are func-
tions of the boundary chemical potentials. Using this we
tain the following expression for the mesoscopic energy:

Emes5pvc
F ~DN2Q!2

2j2
1pvs

F ~DN22DM !2

4
. ~7!

FIG. 2.Q(m15m2) vs boundary chemical potential for sever
values of the densitync in the Hubbard model withU51.
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Here Q5(1/2)@*2Q
Q u(k)dk21#, where u(k) is deter-

mined from the integral equation given above wit
kernel f8(k,k8)5cosk*2`

` dv exp@2Uuvu1i(sink2sink8)v#/
2cosh(Uv), and driving term

u0~k!5
1

2p (
x56

12mx
2

11mx
222mxcosk

2
cosk

4Ucosh@~p/2U !sink#
.

For the dressed chargej(k), the equation has similar struc
ture as foru(k) with the driving term being unity and with
the kernel replaced by its transpose.Q now defines the Fermi
point for quasimomenta of charge excitations, and depe
on bulk chemical potential. In general, Fermi velocitie
dressed charge matrix and boundary shifts depend on ex
nal magnetic fields~both bulk and boundaries! also, but this
case will be reported elsewhere.18

Naturally, the situation is similar to the case of repulsiv
spinless electrons studied above. The boundary shift n
depends both on the value of Hubbard constant and exte
potential ~bulk voltage!. The dependence of boundary shi
Q on m6 is shown in Fig. 2. Again,Q jumps at boundary
potentialsm651 by an amount depending on the interactio
@note that the energy scales in Eqs.~1! and ~6! differ by a
factor of 2#. In the noninteracting case,U50, we simply
have two copies of the spinless electrons considered abo
the boundary shift depends monotonically onm6 and jumps
by 22 when surface bound states are created. The stro
coupling limit,U→`, corresponds to the free spinless ele
tron case, because Hubbard repulsion works as an additi
Pauli principle. In this limit, the boundary shift is found to
be Q~m6!5~1/p!(x56arctan$@~11mx!/~12mx!#tanQ/2%2 1

2,
whereQ5pn. Note that the jump ofQ at boundary poten-
tialsm651 is21 for any~metallic! band filling; see Fig. 2.
Going to large but finite values of the Hubbard constant th
jump increases toDQ5212(ln2/U)sinpn. For intermedi-
ate values ofU the equations have to be solved numerical
Again one finds oscillations ofEmeswith the particle number
or, equivalently, the bulk chemical potential with a jump i
the phase atm651 ~see Fig. 3!. The size of this jump
changes from22 in the noninteracting case to21 in the

FIG. 3. Oscillations of mesoscopic energy~7! vs chemical po-
tential for a Hubbard model (U51) on a lattice ofL550 sites for
boundary potentialsm15m250.5, 0.9, 1.1, 1.5~bottom to top!.
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1344 55BRIEF REPORTS
strong-coupling limit, depending onU and the filling in be-
tween. The main effect of the massless spinon excitation
the oscillations is a parity effect leading to a period doublin
for an odd number of electrons, the ground state contain
virtual spinon shiftingEmes by pvs

F/4. Since vs
F→0 for

U→` this effect disappears in the strong coupling limit.
The oscillations studied in this report can be observed

sufficiently small temperatures,T;\vF/L. For higher tem-
peratures mesoscopic oscillations decrease exponen
with temperature and the shape of sharp resonance
smeared~sawtoothlike oscillations into cosinelike ones!.

To conclude, we have studied the effect of boundary po
contact potentials on the coherent mesoscopic oscillation
strongly correlated quantum wires. We predict a nonlin
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behavior for ~coherent! initial shift~s! of mesoscopic Cou-
lomb blockadelike oscillations due to boundary shiftQ. A
measurement of the discontinuity of this phase shift near
boundary potentialm651 allows for a direct determination
of the effective interaction constants for 1D strongly cor
lated electron systems. Our results were obtained both
spinless and for spin electrons. The effects can be chec
experimentally by studying Coulomb blockadelike oscill
tions either for chiral strongly correlated electron quantu
wires with point contact potential backscatterer, or for qua
tum wire connected with point contacts to external voltag
~leads connected with bulk samples!.
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s.
.

G.

r
.

1C. L. Kane and M. P. A. Fisher, Phys. Rev. B46, 15 233~1992!.
2S. Ghoshal and A. B. Zamolodchikov, Int. J. Mod. Phys. A9,
3841 ~1994!; P. Fendley and H. Saleur, Nucl. Phys.B428, 681
~1994!; P. Fendley, A. W. W. Ludwig, and H. Saleur, Phys. Re
Lett. 74, 3005~1995!.

3A. M. Tsvelik, Phys. Rev. B52, 4366~1995!; P. A. de Sa and A.
M. Tsvelik, ibid. 52, 3067~1995!.

4R. Fazio, F. W. J. Hekking, and A. A. Odintsov, Phys. Rev. Le
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