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Density correlations in the half-filled Hubbard model
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We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive
grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is
not obvious from the Bethe Ansatz/conformal field the@@A/CFT) approach. We show that by supplement-
ing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice
density operators decay exponentiall$0163-18299)12135-(

Recently, density correlation functions have been studiedhat the amplitudes of all contributions to Ed), that decay
for various multicomponent one-dimensional electron sysalgebraically, are identically zero and that the correlator thus
tems within the framework of the bosonization approath. decays exponentially.
An important issue raised in these works is the question The Hamiltonian of the half-filled Hubbard model is of
whether or not these correlators exhibit a power-law behavthe form
ior at large distances in the presence of a Mott-Hubbard gap
(see also Refs. 3 and.4For the particular case of the half 1 1
filled, one-dimensional Hubbard model a bosonization analy- H(U)= — >, {cit,cngr H.c}+ UZ (”m_ —) ( ni| — —)

I

sis yields the expected exponential decay, which at first sight (i) 2 2)
appears to be at odds with the results obtained from the 2
Bethe AnsatZ (see, e.g., Ref. 20 of Ref).1 Herec;,,c! are canonical annihilation and creation opera-

In. one spa_tial dimension, the asymptotic behavior of corigrs for electrons with spinoc on site i, n==3
relation functions can be analyzed by means of the Bethe- 5
Ansatz/conformal ﬁel.d. theo.ryBA/QFT) approach. F'urther- In addition to theSU(2) invariance in the spin degrees of
more, all possible critical dimensions can be obtained ToMyqeqom the Hubbard Hamiltonian on a bipartite lattice com-
the exact solutioR.Since the expansion of the lattice opera- o tes with the generators of a secoSd(2) related to

tors in terms of the conformal fields is not known explicitly, article-hole symmetr§/ In the one-dimensional case, the
the resulting expressions contain unknown amplitudes. Mocal generators of thi§-pairingSU(2) are '

particular, the leading term in the BA/CFT expression for the
correlation function under question could actually vanish. . _
This is the origin of the controversy mentioned above. In 7i :(—1)’CHCH.

certain cases, including the one discussed here, it is possible ©)
to resolve this issue by employing symmetry considerations “— ()T Z_1(1-n)

of the underlying microscopic model. A T I

In this note, we are interested in connected correlatiosatisfying commutation relations mi ,7]J-Z]=t 77;i and

functions of electron densities at half filling. Using the selec-[ 7’1'+ .7, 1=275}. Combining the two symmetries one obtains

tion rules of conservation of numbers of electrons with spinthe \well-known SU(2)® SU(2)/Z,=SO(4)-symmetry of
up and down, one can show from the exact solu{gpecial-  the Hubbard model.

oNic

Uc;racig is the number operator density for electrons.

ized to the case of zero-magnetic fiettat At half filling, the ground statéQ) is anSO(4) singlet®®
Denoting byn(t,x) the density operator at=ayj and timet
Gnn(t,¥)={[n(t,x) —(n)][n(0,0)—{n)]) we want to determine the asymptotic behavior fes of
the connected correlation function
cog mx/ag) x%—v2t?
Ay : +A; +o (D)
[x+ivt] (O +v2t?)? Grn(t,X) =4(7"(t,%) 7°(0,0))

wherev is the spin velocitya, is the lattice spacing amdl; ,

are unspecified amplitudes that depend on the physical pa- :4; (Qf7*(t,x)[n){n| 7*(0,0)|2)

rameters of the problem, i.e., interaction strength and in the

general case magnetic field. Note that in Ef). we have ) , )

omitted similar, subdominant terms. :4; exili(ext—kx)J[{n|#*(0,0][Q)|%. (4)
We will now show that by using th&ll set of selection

rules for the half-filled Hubbard model, one can establishHence, the matrix elements
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(|73 ) (5)

determine which intermediate states will contribute to the
asymptotic behavior of Eq4). 4

In the BA/CFT approach to correlation functions in inte- ~—JU exp—2#/U), for U—O. (8)
grable models one usually proceeds as follows: Firstly, one ™

calculates the finite-size sca]ing behavior of the energjes If one considers correlation functions of “point-split”
and moment, of the low-lying states entering the expres- 4. ditias such asiPd=3 Cj’r ¢;.1, the above symmetry

sion (4). Seco_ndly, One Uuses the quantl_Jm_ numb_ers of theo\rgument does not imply the vanishing of, e.g., the matrix
operator entering the matrix element to eliminate “'ncompat'element(S'l‘]N(ps)(0,0)|0>, where|ST) denotes a spin-triplet
ible” intermediate states. Finally, the CFT relation betweengy itation3 Given that symmetry does not force such matrix
finite-size energies and scaling dimensions is used to obtaigiements to vanish we expect them to be nonzero, which then
the asymptoti¢power law behavior of correlation functions  jmmediately implies an algebraic decay like in Edj.
by summing over the remaining low-lying intermediate  we emphasize, that to establish the exponential decay of
states. G, in the above way it is essential th&t) There is arexact

In Ref. 5 only particle numbers for spim-electrons were symmetry in the charge sector of the microscopic Hamil-
used in the second step. This corresponds to taking into atenian(2). In general this symmetry may not be obvidas
count only guantum numbers associated with the Cartan getis the case for the Hubbard mogldR) The ground state is a

eratorsS? and 7? but not those with the total spir§2 and singlet of the corresponding algebra. Note that the above

72. As a result, one obtains E6L), which seems to indicate considerations still hold in the presence of a magnetic field

that G,,,, decays algebraically for large distances in spite of> the grou_n_d stain the half-filled bang remains a sir}glet
the presence of a charge gap at half filling. We will nowmc the 7-pairing SU?). (3) All charged (nonsingle} excita-

show, by considering th&ull set of SO(4) quantum num- tions are gapped.

; . . : We note that these conditions are fulfilled for the half-
bers, that only intermediate states with a gap contribute t?llled Hubbard model on a bipartite lattice amy dimension
Eq. (5) and the density correlations decay exponentially. ’

Let us calculate the totap-spin quantum number of the provided thatU is larger than the critical Mott-Hubbard

: . . value®
state #7|Q): using the commutation relations between the

.. ) _ Analogous conclusions can be reached for spin-spin cor-
t’{}'epa'rég?riaze;i%rﬁinndetgzsﬁicgmgﬁg Is a singlet under  q)ations in theattractive Hubbard model by employing dis-
7-

crete symmetries of the HamiltonigB). Under the particle-
hole transformation for spin up

A(U)= %—2+4Zl (—D"[V1+(nU/2)*~nU/2]

(i) =[ 72, 7111 =2(75|Q)), (6)

showing that this state is a triplet of thepairingSU(2). As
a consequence, only intermediate states thatzapmiring  the Hamiltonian (2) transforms according toH(U)
triplets can contribute to the correlation functieh. —H(—U), whereasn-pairing and spin S(2) symmetries

As is well known onlypure spin excitations are gapless in are interchangeds®~ »® a=+,—,z. Furthermore, the
the repulsive half-filled Hubbard model. However, these areground state of the attractive Hubbard model is a spin sin-
all singlets of thez-pairing SU(2).° Therefore the corre- glet. This implies that spin-spin correlation functions in the
sponding matrix element&) vanish identically and cannot attractive Hubbard model decay exponentially at large dis-
contribute inG,,. We conclude that the lowest energy in- tances
termediate states with nonzero matrix elemef$ are
holon-antiholon scattering states with energy above the (S%(t,x)$%0,0)) —exp(— Bx), X—°, (10
I\_/Iott—Hubbard gap. As a result.the density-density ,Co”ela'vvhere[g’>0 for anyU<O0.
tion function exhibits exponential decay at large distances
for any positiveU

¢ i—(=Dlef; , ¢ 1= C)
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Gnn(t,X)—exp —ax), x—oo.
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