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Abstract: The focus of the volatility literature on forecasting and the predominance of the
conceptually simpler HAR model over long memory stochastic volatility models has led to the fact
that the actual degree of memory estimates has rarely been considered. Estimates in the literature
range roughly between 0.4 and 0.6 - that is from the higher stationary to the lower non-stationary
region. This difference, however, has important practical implications - such as the existence or non-
existence of the fourth moment of the return distribution. Inference on the memory order is complicated
by the presence of measurement error in realized volatility and the potential of spurious long memory.
In this paper we provide a comprehensive analysis of the memory in variances of international stock
indices and exchange rates. On the one hand, we find that the variance of exchange rates is subject to
spurious long memory and the true memory parameter is in the higher stationary range. Stock index
variances, on the other hand, are free of low frequency contaminations and the memory is in the lower
non-stationary range. These results are obtained using state of the art local Whittle methods that allow
consistent estimation in presence of perturbations or low frequency contaminations.

Keywords: long memory; high-frequency data; perturbation; spurious long memory; realized
volatility
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1. Introduction

Modeling and forecasting asset volatility is one of the central topics of financial econometrics.
While the early literature has focused on short memory GARCH models, today it is well established
that financial market volatility typically exhibits long memory. Standard models that capture the long-
memory feature are, for example, ARCH(∞) and LARCH models (Giraitis et al., 2007, 2009), as well
as stochastic volatility models that make use of ARFIMA processes. The conceptually simpler HAR
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model of Corsi (2009) can also approximate long memory by using a regression with overlapping
averages of past volatilities. While in the HAR model the actual degree of memory remains unknown,
the other models provide estimates of the memory parameter d.

However, a problem arises when the volatility series are contaminated by level shifts or deterministic
trends, known as low frequency contaminations. In this case standard estimation methods for d are
positively biased.

The issue is that both long memory and mean shifts generate similar time series features such as
significant autocorrelations at large lags or a pole in the periodogram at Fourier frequencies local to zero
(Diebold and Inoue, 2001; Granger and Hyung, 2004; Mikosch and Stărică, 2004). If long memory is
falsely detected in a short-memory time series subject to low frequency contaminations, it is referred
to as ’spurious long memory’. However, recently several methods have been proposed that allow for
robust estimation of d under these circumstances (Iacone, 2010; McCloskey and Perron, 2013; Hou
and Perron, 2014).

Another issue frequently discussed for volatility series is the effect of perturbations. Deo and
Hurvich (2001) and Arteche (2004) show that standard estimation methods are negatively biased if a
noisy volatility proxy is used. Local Whittle based methods that reduce this bias are proposed by
Hurvich et al. (2005) and Frederiksen et al. (2012), among others.

Several studies have estimated the memory parameter in index- and exchange rate variance.
However, most of them use standard estimation methods that do not account for the issues discussed
above. The estimates achieved are roughly in the range of 0.4 < d < 0.6, so in the higher stationary or
in the lower non-stationary region (Andersen et al., 2003; Hurvich and Ray, 2003; Martens et al.,
2009; among others). It is an important question whether d > 0.5 since the features of the underlying
processes are substantially different. In particular, if d > 0.5 the variance of the variance series is
infinite, so that the kurtosis of the returns does not exist. To see this, denote the continuously
compounded asset returns by rt and assume that they are mean zero with conditional
heteroscedasticity of the form

rt = σtηt, (1)

where σt denotes the volatility at day t and it is assumed that ηt
iid
∼ (0, 1) with finite kurtosis Kη. Then

the return kurtosis (Kr) can be decomposed into the kurtosis of the volatility process (Kσ) and that of
the innovation sequence as follows

Kr =
E(r4

t )
E(r2

t )2
=

E(σ4
t )

E(σ2
t )2

E(η4
t )

E(η2
t )2

= KσKη. (2)

If d > 0.5, we have

Var(σ2
t ) = E[σ4

t ] − E[σt]4 = ∞ (3)

with E[σt]4 = E[σ2
t ]2 < ∞. This implies

Kr =

(
Var(σ2

t )2

E[σ2
t ]2

+ 1
)

Kη = ∞. (4)
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Here, we provide a comprehensive analysis of the memory of a wide range of international stock
indices and exchange rates using recently published robust estimation methods. We find that the
variance of exchange rates is in the higher stationary range while the variance of stock indices is in
the lower non-stationary range. Additionally, we find that exchange rates are likely to be subject to
low frequency contaminations which bias standard estimation methods upwards, whereas the stock
index variances are free of spurious long memory.

The rest of the paper is structured as follows. In Section 2 we review the methodological issues
associated with the estimation of long memory in realized volatility time series. This motivates the
use of robust estimation methods reviewed in Section 3. Here, we also provide a Monte Carlo
simulation that analyzes the performance of the robust estimation methods if there is potential for
both - low frequency contaminations and perturbations. Section 4 contains our empirical contribution
that analyzes the memory parameters of a large set of international stock indices and exchange rates.
Finally, Section 5 concludes.

2. The effect of perturbations and level shifts

ARCH-type models usually assume that the daily variance σ2
t is some function of the past squared

returns, so that σ2
t = h(rt−1, rt−2, ...). On the contrary, the stochastic volatility literature usually assumes

that the log-variance logσ2
t is a function of the lagged returns as well as an additional innovation

sequence εt that is specific to the volatility process

logσ2
t = g(rt−1, rt−2, ..., εt, εt−1, ...). (5)

To fit these models, one either has to rely on complicated unobserved component models or it is
necessary to employ a proxy for the unobserved volatility process σt.

Since high frequency data has become widely available, it has become standard practice to use
realized variance as a proxy. Realized variance was popularized (among others) by Andersen et al.
(2001, 2003). Recent examples of long memory models for realized variance include Deo et al. (2006),
Martens et al. (2009) and Chiriac and Voev (2011).

Let the log-price pt of an asset be observed at regular intervals - N times per trading day- and denote
the i-th intraday log-return by ri,t = pi,t − pi−1,t, then the realized variance is given by

zt =

N∑
i=1

r2
i,t, (6)

so that zt = σ2
t (1 + wt), for some error sequence wt and therefore

log zt = logσ2
t + log(1 + wt) ≈ logσ2

t + wt, (7)

for small wt. It is clear from (7) that zt can be regarded as a perturbed version of the underlying
volatility process. The influence of this estimation error in the volatility proxy on the accuracy of the
estimated memory parameter is an important topic in the long memory stochastic volatility literature.

Note however, that Barndorff-Nielsen and Shephard (2002) show that plim zt = σ2
t , as N → ∞,

so that wt → 0. Therefore, zt is a relatively precise estimate of σ2
t and it is sometimes treated as if
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it was a direct observation of the variance process. Nevertheless, a careful analysis of the memory of
volatilities as intended here should take these effects into account.

Another issue that has to be taken into account is the possible presence of low frequency
contaminations such as level shifts or deterministic trends. Especially log-squared returns have been a
prominent example in the literature on spurious long memory, from early contributions such as
Granger and Ding (1996), Mikosch and Stărică (2004) or Granger and Hyung (2004) to more recent
contributions such as Lu and Perron (2010) or Xu and Perron (2014).

We therefore consider the following model for the log realized variance

zt = c + yt + uT,t + wt, (8)

where the variance process zt consists of a short- or long-memory process yt, a constant c, a so called
low frequency contamination uT,t (e.g. a level shift process or trend), and the additive, mean zero, short
memory noise term wt with variance σ2

w < ∞.
A possible data generating process for the low frequency contamination uT,t is a random level shift

process as given by

uT,t =

T∑
t=1

δT,t, where δT,t = πT,tξt, (9)

with ξt ∼ N(0, σ2
ξ) and πT,t

iid
∼ B(p/T, 1), for p ≥ 0. Here, πT,t and ξt are mutually independent and they

are also independent of yt and wt.
To estimate the unknown memory parameter d in applications, it is common to use the local Whittle

estimator of Künsch (1987) and Robinson (1995a). Compared to ARFIMA models this semiparametric
approach has the advantage that it is consistent irrespective of the form of the short run dynamics.
Furthermore, the asymptotic variance of the local Whittle estimator is smaller than that of the log-
periodogram estimator of Geweke and Porter-Hudak (1983) and Robinson (1995b). The discussion
in this paper is therefore focused on the local Whittle estimator that is discussed in detail in the next
section.

In absence of low frequency contaminations in model (8) - that is if ut,T = 0 for all t = 1, ...,T -
Arteche (2004) shows that the local Whittle estimator is biased downwards. Bias corrected versions
of the estimator have been proposed, among others, by Hurvich et al. (2015) and Frederiksen et al.
(2012).

Similarly, in absence of perturbations in (8) - that is when wt = 0 for all t = 1, ...,T - Perron and Qu
(2010) and McCloskey and Perron (2013) show that the periodogram of zt can be decomposed into

Iz,T (λ j) = Iy,T (λ j) + Iu,T (λ j) + Iyu,T (λ j) (10)

=
1

2πT

∣∣∣∣∣∣∣
T∑

t=1

yteiλ jt

∣∣∣∣∣∣∣
2

+
1

2πT

∣∣∣∣∣∣∣
T∑

t=1

uT,teiλ jt

∣∣∣∣∣∣∣
2

(11)

+
2

2πT

T∑
t=1

T∑
s=1

ytuT,tcos(λ j(t − s)).
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For λ j = o(1) they show that

Iz,T = Op

 1
λ2d

j

 + Op

 1
Tλ2

j

 + Op

 1
√

Tλ1+d
j

 . (12)

It follows that the part corresponding to the random level shift process uT,t dominates for
j = o(T (1−2d)/(2−2d)) while the part corresponding to the short- or long-memory process yt dominates
for jT (2d−1)/(2−2d) → ∞.

Hence, local Whittle estimates are biased upwards especially when small bandwidths are used. This
results in the aforementioned effect of spurious long memory.

For the model in (8), it is therefore well established that there are potential effects that cause both
upwards bias as well as downwards bias in the estimated memory parameters if standard methods such
as the local Whittle estimator are used.

Remark: The random level shift specification in (9) is just one example out of a larger class of
processes that generates the behavior of the periodogram specified in (12). Other examples from this
class comprise smooth trends, as shown in Qu (2011) or deterministic structural breaks (McCloskey
and Perron, 2013) and the processes considered by Gourieroux and Jasiak (2001). Recently, Leschinski
and Sibbertsen (2017) provide results that show that this behavior extends to a large class of level shift
processes that are non-degenerate in the sense that the level change is asymptotically rare and occurs
after a non-zero fraction of the sample. The methods discussed here are therefore not restricted to the
random level shift model, but can be applied for a wide range of structural change models.

3. Robust long memory estimation

As argued in the previous section, it is likely that volatility measures are perturbed (even though
the perturbation is less pronounced when the realized variance is used) and subject to low frequency
contaminations. Therefore, robust methods against these issues have to be used to estimate d.

The spectral density function fz(λ) of the perturbed volatility measure process under low frequency
contaminations in (8) at frequency λ is given by

fz(λ) = φy(λ)λ−2d + φw(λ) + φu(λ)λ−2/T (13)

where φa with a ∈ {y,w, u} corresponds to the spectral density of the short run components in yt, wt,
and ut,T . All local Whittle estimation methods are based on the concentrated local log-likelihood as
given by

Ra(d, θ) = log Ĝa −
2d

m − l + 1

m∑
j=1

log λ j +
1
m

m∑
j=1

log (ga), (14)

where Ĝa approximates the spectral density local to zero, m = bT bc is the bandwidth, l is a trimming
parameter which is equal to one except for the trimmed local Whittle estimator, λ j = (2π j/T ) are the
Fourier frequencies, ga is a function that controls for perturbations and/or low frequency
contaminations, and a ∈ {LW, LPWN,mLW, tLW}.
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Depending on whether perturbations, low frequency contaminations, or both are present in the
volatility series, the spectral density in (13) has to be approximated differently local to zero. Therefore,
several estimators can be derived.

For the standard local Whittle estimator it is assumed that there are no perturbations and low
frequency contaminations. Hence, the short memory dynamics of the spectral density of the series zt

in (13) are approximated by a constant G. It follows that

ĜLW =
1
m

m∑
j=1

λ2d
j Iz(λ j) and gLW(d, θ, λ) = 0, (15)

where the periodogram Iz(λ) is given by Iz(λ) = (2πT )−1|
∑T

t=1 zteitλ|2. The standard local Whittle
estimator suggested by Künsch (1987) is then given by

d̂LW = arg min
d

RLW(d). (16)

For 1/m + m/T → ∞, as T → ∞ and d ∈ (−0.5, 0.5) consistency of d̂LW is shown by Robinson
(1995a). Under strengthened assumptions (especially on the bandwidth choice) it is also shown that
√

m(d̂LW − d) a
∼ N(0, 1/4). Velasco (1999) extends these results and shows that the local Whittle

estimator is consistent for d ∈ (−0.5, 1] and asymptotically normal for d ∈ (−0.5, 0.75].
In the case where the volatility measure exhibits short memory dynamics and perturbations, the

local polynomial Whittle with noise (LPWN) estimator of Frederiksen et al. (2012) can be applied.
They extend the idea of Andrews and Sun (2004) who approximate the spectral density local to zero
by a polynomial instead of a constant to reduce the finite sample bias of the local Whittle estimator.
Frederiksen et al. (2012) add an additional polynomial to approximate the spectrum φw(λ) of the
perturbation in (13). Other approaches that try to approximate the perturbation by a constant rather
than a polynomial are, for example, suggested by Hurvich and Ray (2003) who proposed the local
polynomial Whittle estimator with noise (LWN). This estimator is nested in the LPWN estimator if the
polynomials are chosen of order zero.

Precisely, Frederiksen et al. (2012) fit the following two polynomials

log φy(λ) ' log G + hy(θy, λ) (17)
log φw(λ) ' log G + log θp + hw(θw, λ). (18)

to approximate the logarithms of φy(λ) and φw(λ) in (13). Here θ = (θ′y, θρ, θ
′
w)′, θρ = φw(0)/φy(0) is the

long-run signal-to-noise ratio, ha(θa, λ) =
∑Ra

r=1 θa,rλ
2r, and a ∈ {y,w}. Therefore,

ĜLPWN =
1
m

m∑
j=1

λ2d
j Iz(λ j)

gLPWN(d, θ, λ j)
(19)

and gLPWN(d, θ, λ) = exp(hy(θy, λ)) + θρλ
2dexp(hw(θw, λ)). (20)

The estimator is given by

(d̂LPWN , θ̂) = arg min
d∈[d1,d2],θ∈Θ

RLPWN(d, θ), (21)
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where 0 < d1 < d2 < 1 is assumed to be stationary, and Θ is a compact and convex set in RRy × (0,∞)×
RRw . For a properly chosen m and d ∈ (0, 1) Frederiksen et al. (2012) show in their Theorem 2 under
some regularity conditions that the memory estimator is consistent. They further show for d ∈ (0, 0.75)
that it converges in distribution to the normal distribution when perturbations are present. Compared
with the local Whittle estimator the asymptotic variance increases by a multiplicative constant, but the
bias through perturbation and short memory dynamics is reduced.

In case that the volatility series is subject to level shifts or other low frequency contaminations,
the trimmed local Whittle (tLW) estimator of Iacone (2010) and the modified local Whittle (mLW)
estimator of Hou and Perron (2014) can be applied.

The idea of the trimmed local Whittle estimator of Iacone (2010) is to use a trimming of the (l − 1)
lowest frequencies where the contaminations have their biggest effect on the spectral density of the
series according to (12). Therefore, we obtain

ĜtLW =
1

m − l + 1

m∑
j=l

λ2d
j Iz(λ j) and gtLW(d, θ, λ) = 0, (22)

where 1 ≤ l < m ≤ bT/2c, so that

d̂tLW = arg min
d

RtLW(d). (23)

In case l = 1 the estimator is reduced to the standard local Whittle. Under suitable assumptions on
the bandwidth and trimming parameter Iacone (2010) shows consistency and asymptotic normality of
d̂tLW for d ∈ (0, 0.5). Its asymptotic variance is the same as that of the local Whittle estimator.

The modified local Whittle estimator uses another approach to achieve consistent estimates of d
under low frequency contaminations. It adds an additional term to account for φu(λ)λ−2/T -the
influence of the low frequency contamination in the spectral density function of the variance zt. Hou
and Perron (2014) also provide an additional extension of the modified local Whittle estimator to
account for both the perturbation and the low frequency contamination. In this case they approximate
the spectral density φw(λ) of the perturbation by a constant term following the approach of Hurvich et
al. (2005). Denoting θ = (θw, θu)′ as the signal-to-noise ratios of the perturbation and the low
frequency contamination the estimator uses

ĜmLW =
1
m

m∑
j=1

Iz(λ j)
gmLW(d, θ, λ j)

and gmLW(d, θ, λ) = (λ−2d + θw + θuλ
−2/T ) (24)

and is given by

(d̂mLW , θ̂) = arg min
d,θ

RmLW(d, θ). (25)

If θw = 0, we have the modified local Whittle estimator (mLW) and if θw , 0 we have the modified
local Whittle plus noise estimator (mLWN). For θw = 0, a properly chosen m which needs to be larger
than T 5/9 and d ∈ (0, 0.5), Hou and Perron (2014) show consistency and under strengthened
assumptions asymptotic normality of the estimator. The estimator possesses the same asymptotic
variance as the local Whittle estimator. The consistency of these methods for d > 0.5 is addressed in
our simulations below.
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A prominent test to distinguish true from spurious long memory is the Lagrange multiplier-type
test of Qu (2011). Its null hypothesis incorporates all second-order stationary short- or long-memory
processes. Under the alternative, the process is contaminated by some low frequency contamination,
for example a random level shift as given in (9). The test statistic uses the difference between the rates
given in (12) and it is based on the local Whittle likelihood function. It is given by

W = sup
r∈[ε,1]

 m∑
j=1

ν2
j


−1/2

∣∣∣∣∣∣∣∣
[mr]∑
j=1

ν j

 Iz(λ j)

G(d̂LW)λ−2d̂LW
j

− 1


∣∣∣∣∣∣∣∣ , (26)

with ν j = log λ j − (1/m)
∑m

j=1 log λ j, and a small trimming parameter ε. Qu (2011) derives the
consistency and the limiting distribution of (26) for d ∈ (0, 0.5). Sibbertsen et al. (2017) show via
simulations that the test also works in the low non-stationary range for d. Qu (2011) reports critical
values for ε ∈ {0.02, 0.05}, where the first value is recommended for sample sizes T > 500. It is
further recommended to use m = bT 0.7c frequency ordinates. The test of Qu (2011) has several
desirable properties such as not requiring Gaussianity, allowing for conditional heteroskedasticity, not
requiring a precise specification of the low frequency contamination due to its score-type nature and
displaying high finite sample power results compared to competing tests (Leccadito et al., 2015).

Table 1. Bias and standard deviation of the long-memory estimators.
Bias Standard Deviation

d 0.4 0.6 0.4 0.6
σw/ση 0 1 2 0 1 2 0 1 2 0 1 2

LW

0 0.00 0.08 0.17 0.00 0.04 0.10 0.03 0.06 0.09 0.03 0.05 0.07
0.1 0.00 0.08 0.17 0.00 0.04 0.10 0.03 0.06 0.09 0.03 0.05 0.07

0.25 -0.01 0.07 0.16 -0.02 0.03 0.09 0.03 0.06 0.09 0.03 0.05 0.07
0.5 -0.03 0.05 0.14 -0.06 -0.02 0.05 0.03 0.06 0.09 0.02 0.05 0.07

mLW

0 -0.01 -0.01 -0.01 -0.02 -0.01 0.02 0.02 0.03 0.04 0.02 0.04 0.07
0.1 -0.01 -0.01 -0.01 -0.03 -0.02 0.01 0.02 0.03 0.04 0.02 0.04 0.07

0.25 -0.03 -0.03 -0.03 -0.08 -0.08 -0.08 0.02 0.03 0.04 0.04 0.05 0.08
0.5 -0.07 -0.07 -0.08 -0.20 -0.22 -0.24 0.02 0.03 0.04 0.06 0.06 0.07

tLW

0 -0.01 0.01 0.04 -0.01 0.01 0.04 0.03 0.04 0.05 0.03 0.04 0.05
0.1 -0.01 0.01 0.04 -0.01 0.00 0.03 0.03 0.04 0.05 0.03 0.04 0.05

0.25 -0.02 -0.01 0.03 -0.05 -0.04 0.00 0.03 0.03 0.05 0.03 0.04 0.05
0.5 -0.06 -0.05 -0.02 -0.15 -0.14 -0.10 0.03 0.03 0.05 0.04 0.04 0.06

LWN

0 0.02 0.12 0.23 0.01 0.06 0.12 0.03 0.08 0.10 0.03 0.05 0.07
0.1 0.02 0.12 0.23 0.01 0.06 0.12 0.03 0.08 0.10 0.03 0.05 0.07

0.25 0.01 0.12 0.23 0.01 0.06 0.13 0.04 0.08 0.11 0.04 0.06 0.08
0.5 0.01 0.13 0.24 0.01 0.06 0.13 0.04 0.09 0.11 0.04 0.06 0.08

mLWN

0 0.01 0.03 0.11 0.01 0.05 0.11 0.03 0.07 0.15 0.03 0.06 0.08
0.1 0.01 0.03 0.11 0.01 0.04 0.11 0.03 0.07 0.15 0.03 0.06 0.09

0.25 0.00 0.03 0.11 0.00 0.03 0.10 0.04 0.07 0.16 0.05 0.07 0.10
0.5 -0.01 0.02 0.11 -0.01 0.03 0.11 0.05 0.09 0.17 0.06 0.09 0.11
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To evaluate the finite sample performance of the estimators discussed above in the situation we are
facing in our empirical application, we conduct a small Monte Carlo simulation. The data generating
process (DGP) is based on (8), where yt is a fractionally integrated process of order d, wt is white
noise with variance σ2

w, p = 5, and T = 4000, which approximately mirrors the sample sizes in our
empirical application. Since the variance of the perturbations can be expected to be small, we set
σw ∈ {0, 1/10, 1/4, 1/2}, whereas yt is scaled so that the variance of the process is one. Furthermore,
we set σ2

η ∈ {0, 1, 2}, since we do not have any a priori knowledge about the magnitude of potential
mean shifts. The bandwidth parameters are chosen as in the empirical application following the
recommendations of the authors who proposed the respective methods. For the local Whittle
estimator we set m = bT 0.7c.

The results reported in Table 1 are based on 5000 Monte Carlo replications. Starting with the
local Whittle estimator, we can observe the expected result that there is a positive bias if level shift
components are present and the perturbations cause only a slight negative bias due to their moderate
scale. It is worth noting that the bias of the local Whittle estimator is smaller for d = 0.6 than for
d = 0.4, so that all the estimated ds are in the range between 0.5 and 0.7.

Turning to the mLW estimator of Hou and Perron (2014), we observe that the estimator successfully
mitigates the bias caused by the level shift components. However, with increasing magnitude of the
perturbation, the estimator suffers a strong negative bias - much stronger than the original local Whittle
estimator.

Similar results hold true for the tLW estimator of Iacone (2010), but the magnitude of the
perturbation bias is considerably smaller than that of the mLW estimator.

The LWN estimator behaves similarly, but in the contrary direction. It successfully mitigates the
downward bias caused by perturbations, but it suffers from a stronger upward bias in case of level shift
components than the local Whittle estimator.

Finally, the mLWN estimator seems to be mitigating the perturbation bias, but it does not control
the spurious long memory bias to its full extend.

The results of the mLW and tLW estimators for d = 0.6 show that the consistency extends to the
lower non-stationary region - exactly like that of the LW and LPWN.

With regard to the variation of the estimators, we can observe that all methods become increasingly
variable as the influence of the level shifts increases. The mLW estimator turns out to have slightly less
variance than the tLW estimator of Iacone (2010) for d = 0.4, but higher variance for d = 0.6. The
LWN estimator is more variable than the LW estimator and the mLWN estimator is extremely volatile
in presence of level shifts in a stationary long-memory sequence with d = 0.4.

4. The memory of realized volatility

We consider daily realized variances of 41 major stock indices and 10 nominal exchange rates
relative to the US Dollar. The data for the indices is obtained from the ’Oxford-Man Institute’s realised
library’ and was compiled by Heber et al. (2009). The series start between 1996 and 2000 and they
end on 9 June 2017. An overview of the symbols is given in Table 5 and a summary of the start and
end dates as well as the length of the series is given in Table 7 in the appendix.

To construct similar series for the exchange rates, we use 5-minute returns obtained from the
Thomson Reuters Tick History database. The data is cleaned following the recommendations of
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Barndorff-Nielsen et al. (2009) to account for the typical high frequency data quality issues. Similar
to the procedure of Heber et al. (2009), some additional manual edits are made so that the data is
suitable for statistical inference. Since there is no market closure for exchange rates the log-realized
variance is calculated based on all 5-minute log-returns within each 24-hour period. As for the
indices, an overview of the meaning of the symbols is given in Table 6 and starting dates of the
resulting series and the number of observations are given in Table 8. The last observation of all
exchange rate series is from 31 January 2017.

Table 2. Estimated long-memory coefficients of the log-realized variances of the indices.

LW0.6 LW0.7 LW0.8 LWN LPWN(1, 0) LPWN(0, 1) LPWN(1, 1) mLW mLWN tLW Qu0.75

AEX 0.625 0.635 0.577 0.659 0.661 0.670 0.669 0.568 0.658 0.567 0.575
(0.542 0.709) (0.581 0.688) (0.543 0.612) (0.624 0.694) (0.626 0.696) (0.636 0.705) (0.634 0.704) (0.533 0.602) (0.623,0.693) (0.506,0.627)

AORD 0.553 0.586 0.460 0.650 0.611 0.617 0.611 0.344 0.648 0.444 1.061
(0.469 0.637) (0.532 0.640) (0.426 0.495) (0.615 0.685) (0.576 0.646) (0.582 0.652) (0.576 0.646) (0.309 0.379) (0.613,0.683) (0.383,0.505)

BVSP 0.549 0.521 0.475 0.561 0.530 0.522 0.530 0.462 0.561 0.484 0.555
(0.464 0.633) (0.467 0.575) (0.440 0.510) (0.526 0.597) (0.495 0.565) (0.487 0.558) (0.495 0.565) (0.426 0.497) (0.526,0.597) (0.423,0.545)

DJI 0.622 0.586 0.534 0.624 0.594 0.572 0.594 0.488 0.624 0.539 0.610
(0.538 0.706) (0.533 0.640) (0.499 0.569) (0.589 0.659) (0.559 0.629) (0.537 0.607) (0.559 0.629) (0.453 0.523) (0.589,0.659) (0.479,0.600)

FCHI 0.605 0.624 0.564 0.643 0.646 0.656 0.655 0.518 0.642 0.550 0.616
(0.521 0.688) (0.571 0.678) (0.529 0.599) (0.609 0.678) (0.611 0.681) (0.621 0.691) (0.620 0.689) (0.483 0.552) (0.607,0.677) (0.490,0.610)

FTSE 0.650 0.640 0.569 0.672 0.677 0.691 0.691 0.487 0.671 0.544 0.677
(0.566 0.733) (0.586 0.694) (0.534 0.604) (0.637 0.707) (0.643 0.712) (0.656 0.726) (0.656 0.726) (0.452 0.522) (0.636,0.706) (0.483,0.604)

FTSEMIB 0.600 0.607 0.547 0.632 0.626 0.631 0.627 0.522 0.631 0.548 0.557
(0.517 0.684) (0.553 0.660) (0.512 0.582) (0.597 0.667) (0.591 0.661) (0.596 0.666) (0.592 0.662) (0.488 0.557) (0.596,0.665) (0.487,0.609)

GDAXI 0.653 0.637 0.564 0.663 0.667 0.728 0.728 0.471 0.662 0.499 0.722
(0.569 0.736) (0.584 0.691) (0.529 0.598) (0.629 0.698) (0.632 0.702) (0.693 0.762) (0.694 0.763) (0.436 0.506) (0.627,0.697) (0.438,0.559)

GSPTSE 0.603 0.565 0.490 0.642 0.647 0.639 0.651 0.375 0.593 0.451 1.264*
(0.514 0.691) (0.509 0.622) (0.453 0.527) (0.605 0.679) (0.610 0.684) (0.602 0.676) (0.614 0.689) (0.338 0.412) (0.556,0.630) (0.387,0.515)

HSI 0.640 0.557 0.503 0.640 0.646 0.649 0.649 0.384 0.638 0.446 1.461*
(0.554 0.726) (0.502 0.613) (0.467 0.539) (0.604 0.676) (0.610 0.682) (0.613 0.685) (0.613 0.686) (0.348 0.420) (0.602,0.674) (0.383,0.509)

IBEX 0.593 0.596 0.545 0.611 0.617 0.632 0.631 0.510 0.576 0.525 0.858
(0.509 0.677) (0.542 0.649) (0.510 0.580) (0.576 0.645) (0.583 0.652) (0.597 0.666) (0.597 0.666) (0.475 0.544) (0.541,0.611) (0.465,0.586)

IXIC 0.644 0.598 0.552 0.628 0.623 0.579 0.625 0.493 0.625 0.542 0.535
(0.560 0.728) (0.545 0.652) (0.517 0.587) (0.593 0.662) (0.588 0.657) (0.544 0.614) (0.590 0.660) (0.458 0.527) (0.590,0.660) (0.481,0.603)

KS11 0.692 0.622 0.548 0.686 0.691 0.718 0.743 0.407 0.684 0.510 1.181
(0.607 0.776) (0.567 0.676) (0.512 0.583) (0.651 0.721) (0.656 0.726) (0.683 0.753) (0.708 0.778) (0.372 0.442) (0.649,0.720) (0.448,0.571)

MIB30 0.608 0.613 0.550 0.662 0.656 0.661 0.657 0.510 0.661 0.562 0.640
(0.516 0.700) (0.553 0.673) (0.511 0.590) (0.623 0.702) (0.617 0.695) (0.622 0.700) (0.618 0.696) (0.471 0.549) (0.622,0.700) (0.458,0.596)

MIBTEL 0.667 0.622 0.532 0.735 0.686 0.693 0.687 0.343 0.735 0.536 1.002
(0.562 0.773) (0.552 0.692) (0.486 0.579) (0.689 0.782) (0.640 0.733) (0.646 0.739) (0.640 0.733) (0.296 0.389) (0.689,0.782) (0.493,0.630)

MID 0.712 0.637 0.564 0.727 0.730 0.754 0.754 0.373 0.726 0.530 1.160
(0.620 0.804) (0.577 0.697) (0.525 0.603) (0.687 0.766) (0.691 0.770) (0.714 0.793) (0.714 0.793) (0.333 0.412) (0.687,0.765) (0.453,0.618)

MSCIAU 0.659 0.606 0.499 0.731 0.698 0.701 0.698 0.297 0.728 0.470 0.721
(0.555 0.762) (0.538 0.674) (0.454 0.545) (0.685 0.776) (0.653 0.743) (0.655 0.746) (0.653 0.743) (0.252 0.343) (0.682,0.773) (0.460,0.599)

MSCIBE 0.730 0.656 0.536 0.805 0.738 0.733 0.790 0.160 0.804 0.501 1.349*
(0.628 0.832) (0.589 0.723) (0.492 0.581) (0.760 0.849) (0.693 0.782) (0.688 0.777) (0.745 0.834) (0.116 0.204) (0.759,0.848) (0.389,0.550)

MSCIBR 0.629 0.567 0.501 0.677 0.670 0.671 0.675 0.358 0.675 0.503 0.628
(0.511 0.747) (0.488 0.645) (0.448 0.555) (0.624 0.730) (0.617 0.723) (0.618 0.724) (0.622 0.729) (0.304 0.411) (0.622,0.728) (0.422,0.580)

MSCICA 0.681 0.614 0.503 0.765 0.680 0.683 0.676 0.215 0.763 0.512 0.636
(0.572 0.789) (0.543 0.686) (0.454 0.551) (0.716 0.813) (0.632 0.728) (0.635 0.731) (0.628 0.724) (0.167 0.263) (0.715,0.811) (0.407,0.599)

MSCICH 0.730 0.676 0.565 0.782 0.724 0.720 0.719 0.263 0.782 0.546 1.103
(0.629 0.832) (0.609 0.743) (0.521 0.610) (0.738 0.827) (0.680 0.768) (0.675 0.764) (0.675 0.764) (0.218 0.307) (0.737,0.826) (0.426,0.598)

The results of the different long-memory estimators applied to the log-realized variances log zt of
the indices are given in Tables 2 and 3. Theoretical confidence intervals are given in brackets below.
For the Qu-test bold-faced values indicate significance at the nominal 10% level; an additional * (**)
indicates significance at the nominal 5% (1%) level. Starting with the local Whittle estimates, we
observe that they tend to decrease as the bandwidth increases from m = bT 0.6c to m = bT 0.8c. Even
though this decrease has a magnitude of up to 0.2 for some of the series, it is moderate for the majority
of them. Nevertheless, this could be seen as an indication for low frequency contaminations in the
respective series. The intuition behind this is given in Section 2: the long-memory component of a
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contaminated series dominates the low frequency contamination at higher frequencies such that the
positive bias of the estimated d decreases if a larger bandwidth is chosen.

Table 3. Estimated long-memory coefficients of the log-realized variances of the indices.

LW0.6 LW0.7 LW0.8 LWN LPWN(1, 0) LPWN(0, 1) LPWN(1, 1) mLW mLWN tLW Qu0.75

MSCIDE 0.680 0.639 0.521 0.781 0.695 0.670 0.680 0.191 0.780 0.493 1.468*
(0.578 0.782) (0.573 0.706) (0.476 0.565) (0.737 0.826) (0.650 0.739) (0.626 0.715) (0.635 0.724) (0.147 0.236) (0.736,0.825) (0.467,0.625)

MSCIES 0.640 0.623 0.519 0.716 0.653 0.656 0.651 0.359 0.714 0.524 0.616
(0.539 0.742) (0.556 0.690) (0.474 0.563) (0.672 0.761) (0.608 0.697) (0.611 0.700) (0.606 0.695) (0.314 0.403) (0.669,0.758) (0.414,0.572)

MSCIFR 0.656 0.619 0.522 0.761 0.680 0.645 0.680 0.237 0.761 0.537 1.054
(0.554 0.758) (0.553 0.686) (0.477 0.566) (0.717 0.806) (0.635 0.724) (0.601 0.690) (0.635 0.724) (0.193 0.281) (0.717,0.806) (0.445,0.603)

MSCIGB 0.693 0.643 0.544 0.773 0.697 0.687 0.676 0.246 0.772 0.542 1.013
(0.591 0.794) (0.576 0.710) (0.499 0.588) (0.729 0.817) (0.652 0.741) (0.643 0.731) (0.631 0.720) (0.202 0.290) (0.728,0.816) (0.458,0.615)

MSCIIT 0.633 0.628 0.532 0.728 0.674 0.680 0.673 0.352 0.727 0.532 1.113
(0.532 0.735) (0.562 0.695) (0.488 0.577) (0.684 0.773) (0.630 0.718) (0.635 0.724) (0.629 0.718) (0.307 0.396) (0.683,0.772) (0.463,0.621)

MSCIJP 0.685 0.568 0.514 0.619 0.626 0.691 0.696 0.437 0.594 0.455 1.372*
(0.581 0.790) (0.499 0.637) (0.468 0.560) (0.573 0.665) (0.580 0.672) (0.645 0.737) (0.650 0.742) (0.391 0.483) (0.548,0.640) (0.454,0.611)

MSCIKR 0.695 0.625 0.534 0.691 0.638 0.639 0.625 0.407 0.689 0.512 0.785
(0.591 0.800) (0.556 0.694) (0.488 0.580) (0.645 0.737) (0.592 0.684) (0.593 0.685) (0.579 0.671) (0.361 0.453) (0.643,0.735) (0.373,0.536)

MSCIMX 0.669 0.603 0.494 0.768 0.705 0.709 0.714 0.184 0.767 0.491 0.967
(0.552 0.786) (0.525 0.681) (0.441 0.547) (0.715 0.821) (0.652 0.758) (0.656 0.762) (0.661 0.767) (0.132 0.237) (0.715,0.820) (0.431,0.593)

MSCINL 0.672 -0.635 0.534 0.772 0.704 0.631 0.704 0.208 0.772 0.574 0.729
(0.571 0.774) (0.569 0.702) (0.490 0.579) (0.728 0.817) (0.660 0.749) (0.586 0.675) (0.660 0.749) (0.163 0.252) (0.727,0.816) (0.396,0.585)

MSCIWO 0.600 0.528 0.445 0.661 0.582 0.582 0.591 0.291 0.658 0.468 0.482
(0.494 0.707) (0.457 0.599) (0.398 0.493) (0.614 0.708) (0.534 0.629) (0.535 0.630) (0.543 0.638) (0.243 0.338) (0.610,0.705) (0.495,0.652)

MXX 0.575 0.503 0.441 0.601 0.576 0.576 0.624 0.343 0.599 0.418 0.848
(0.491 0.659) (0.449 0.557) (0.406 0.476) (0.566 0.636) (0.541 0.611) (0.541 0.611) (0.589 0.659) (0.308 0.378) (0.564,0.634) (0.357,0.479)

N2252 0.618 0.557 0.514 0.589 0.598 0.636 0.636 0.477 0.588 0.504 0.949
(0.533 0.703) (0.502 0.611) (0.478 0.549) (0.554 0.625) (0.563 0.633) (0.601 0.672) (0.601 0.672) (0.442 0.513) (0.553,0.624) (0.442,0.565)

NSEI 0.572 0.515 0.497 0.537 0.549 0.601 0.617 0.470 0.465 0.455 0.622
(0.484 0.660) (0.458 0.572) (0.460 0.534) (0.500 0.574) (0.512 0.586) (0.564 0.638) (0.580 0.654) (0.433 0.507) (0.428,0.502) (0.390,0.520)

RUA 0.646 0.583 0.539 0.663 0.664 0.667 0.665 0.440 0.662 0.541 0.534
(0.554 0.738) (0.524 0.643) (0.499 0.578) (0.623 0.702) (0.624 0.703) (0.627 0.706) (0.626 0.704) (0.400 0.479) (0.622,0.701) (0.385,0.552)

RUI 0.644 0.580 0.537 0.657 0.660 0.665 0.664 0.444 0.657 0.539 0.520
(0.551 0.736) (0.521 0.640) (0.498 0.577) (0.618 0.697) (0.621 0.700) (0.626 0.705) (0.625 0.703) (0.405 0.484) (0.618,0.697) (0.472,0.611)

RUT2 0.549 0.551 0.501 0.574 0.549 0.527 0.549 0.471 0.573 0.494 0.658
(0.465 0.633) (0.497 0.605) (0.466 0.536) (0.539 0.609) (0.515 0.584) (0.492 0.562) (0.515 0.584) (0.436 0.506) (0.538,0.608) (0.434,0.555)

SPTSE 0.681 0.600 0.508 0.742 0.660 0.643 0.652 0.275 0.742 0.485 1.169
(0.581 0.781) (0.534 0.665) (0.464 0.551) (0.698 0.785) (0.617 0.704) (0.599 0.687) (0.608 0.696) (0.231 0.318) (0.698,0.785) (0.470,0.608)

SPX2 0.623 0.586 0.548 0.610 0.591 0.573 0.568 0.534 0.608 0.546 0.562
(0.539 0.707) (0.532 0.640) (0.514 0.583) (0.575 0.645) (0.556 0.626) (0.538 0.608) (0.533 0.603) (0.499 0.569) (0.573,0.643) (0.485,0.607)

SSMI 0.656 0.671 0.590 0.694 0.695 0.707 0.705 0.581 0.693 0.573 1.119
(0.572 0.740) (0.617 0.725) (0.555 0.625) (0.659 0.729) (0.660 0.730) (0.672 0.742) (0.670 0.740) (0.546 0.616) (0.659,0.728) (0.512,0.634)

STOXX50E 0.591 0.594 0.527 0.613 0.618 0.637 0.637 0.480 0.611 0.494 0.828
(0.507 0.675) (0.540 0.647) (0.492 0.562) (0.578 0.647) (0.584 0.653) (0.603 0.672) (0.602 0.672) (0.445 0.514) (0.576,0.646) (0.433,0.554)

Nearly all point estimates are within the lower non-stationary region between 0.5 and 0.6 and the
vast majority of asymptotic confidence intervals are completely in the non-stationary region as well. If
the impact of perturbations and low frequency contaminations is low, this is strong evidence that the
memory of the indices is larger than 0.5.

Turning to the LPWN estimates, we first observe that the estimates are very stable across the
different specifications of the estimator. The level of the estimates tends to be higher than that of the
local Whittle estimates. Most of them are in the range between 0.6 and 0.7. This further supports the
previous finding that the index variances possess non-stationary long memory and points to the fact
that the measurement error in the log-realized variance still has a magnitude so that it causes
downward bias in the local Whittle estimator.

The right hand side of Tables 2 and 3 shows the results of the mLW and tLW estimators of Hou
and Perron (2014) and Iacone (2010) as well as the mLWN estimator. In all cases the mLW estimates
are smaller than the local Whittle estimates and in some series the memory drops by a considerable
amount. The same holds true for the tLW estimator of Iacone (2010), but the reduction in memory

Quantitative Finance and Economics Volume 2, Issue 1, 137–159.



148

compared to the local Whittle estimates is of a smaller magnitude. This could be seen as evidence for
low frequency contaminations in the variances. However, the results of the mLWN estimator are more
in line with those of the LPWN estimators and the test of Qu (2011) fails to reject the null hypothesis
of true long memory for the vast majority of index series. At the 5% significance level the test of Qu
(2011) only rejects for GSPTSE, HSI, MSCIBE, MSCIDE and MSCIJP.

Having in mind that the mLW and tLW estimators are severely downward biased in the presence of
moderate perturbations, we therefore conclude that there is no evidence for spurious long memory.
Hence, the LPWN estimator is most suitable to give the best estimate of the true memory of the
variances of the stock indices under consideration.

We therefore find that the memory of stock index variance is non-stationary. Most stock index
variances display memory parameters in the range between 0.6 and 0.7, which is far in the
non-stationary region.

In Table 4 we report the results for the realized variance of exchange rates. Here, we observe some
major differences compared to the results for the variances of indices, discussed above. First of all, the
local Whittle estimates decrease heavily when the bandwidth increases. Again, this can be seen as an
indication of low frequency contaminations by the same arguments as discussed above.The assertion
that the exchange rate variances exhibit spurious long memory is further supported by the fact that
both the mLW estimator of Hou and Perron (2014) and the tLW estimator of Iacone (2010) are reduced
compared to the local Whittle estimates. But most importantly, the Qu (2011) test rejects strongly for
all currencies considered. This is clear evidence for the presence of spurious long memory. Only the
mLWN estimator does not show evidence for a lower degree of memory. However, the results show a
very high variability and we know from the simulations in the previous section that the estimator fails
to control the spurious long memory bias, if the level shift component is large. Finally, the LPWN
estimates are much higher compared to the local Whittle estimates, which is also consistent with the
observation that the LPWN estimators have a larger spurious long memory bias than the standard local
Whittle estimator, as shown in our simulations.

Table 4. Estimated long-memory coefficients of the log-realized variances of the exchange rates.

LW0.6 LW0.7 LW0.8 LWN LPWN(1, 0) LPWN(0, 1) LPWN(1, 1) mLW mLWN tLW Qu0.75

AUD 0.648 0.558 0.404 0.782 0.625 0.507 0.889 0.051 0.782 0.367 2.765**
(0.575 0.722) (0.512 0.605) (0.375 0.433) (0.753 0.811) (0.596 0.655) (0.477 0.536) (0.859 0.918) (0.022 0.080) (0.753,0.811) (0.317,0.417)

BRL 0.615 0.554 0.465 0.635 0.641 0.630 0.640 0.329 0.634 0.400 1.924**
(0.530 0.699) (0.500 0.608) (0.430 0.500) (0.600 0.670) (0.606 0.677) (0.595 0.665) (0.605 0.675) (0.293 0.364) (0.599,0.670) (0.339,0.461)

CAD 0.676 0.560 0.438 0.766 0.693 0.680 0.838 0.140 0.765 0.335 3.447**
(0.603 0.749) (0.514 0.606) (0.408 0.467) (0.737 0.795) (0.663 0.722) (0.651 0.709) (0.809 0.867) (0.111 0.170) (0.735,0.794) (0.285,0.385)

CHF 0.586 0.522 0.406 0.674 0.601 0.597 0.678 0.222 0.673 0.384 2.542**
(0.513 0.659) (0.476 0.568) (0.377 0.435) (0.645 0.703) (0.572 0.630) (0.567 0.626) (0.649 0.707) (0.192 0.251) (0.644,0.703) (0.334,0.434)

EUR 0.619 0.508 0.372 0.765 0.646 0.602 0.794 0.090 0.764 0.316 3.132**
(0.544 0.695) (0.460 0.555) (0.342 0.403) (0.734 0.795) (0.616 0.677) (0.571 0.632) (0.764 0.825) (0.059 0.120) (0.733,0.794) (0.264,0.369)

GBP 0.662 0.566 0.406 0.824 0.713 0.676 0.835 0.023 0.823 0.355 3.388**
(0.590 0.735) (0.520 0.611) (0.377 0.435) (0.794 0.853) (0.684 0.742) (0.647 0.705) (0.806 0.864) (-0.006 0.052) (0.794,0.852) (0.305,0.405)

INR 0.517 0.498 0.445 0.539 0.549 0.596 0.626 0.375 0.380 0.384 2.259**
(0.436 0.597) (0.447 0.550) (0.412 0.478) (0.506 0.572) (0.516 0.582) (0.563 0.629) (0.593 0.659) (0.342 0.408) (0.347,0.413) (0.327,0.441)

JPY 0.561 0.462 0.416 0.558 0.499 0.462 0.499 0.342 0.555 0.405 1.466*
(0.488 0.633) (0.417 0.508) (0.387 0.445) (0.529 0.587) (0.470 0.528) (0.433 0.491) (0.470 0.528) (0.313 0.371) (0.526,0.584) (0.356,0.455)

RUB 0.708 0.567 0.503 0.708 0.707 0.852 0.919 0.286 0.703 0.334 2.908*
(0.617 0.798) (0.509 0.626) (0.464 0.541) (0.669 0.746) (0.669 0.746) (0.813 0.890) (0.881 0.957) (0.248 0.324) (0.664,0.741) (0.267,0.401)

ZAR 0.758 0.679 0.538 0.842 0.751 0.726 0.886 0.113 0.842 0.481 3.178**
(0.682 0.833) (0.631 0.727) (0.508 0.569) (0.811 0.872) (0.721 0.782) (0.696 0.757) (0.856 0.916) (0.083 0.143) (0.811,0.872) (0.429,0.534)

If we now consider the mLW and tLW estimators that are most likely to give consistent estimates
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in this setup, we observe that all estimates are in the stationary region. In particular the estimator of
Iacone (2010) gives estimates that lie consistently between 0.3 and 0.4. The results for the Hou and
Perron (2014) estimator are a bit more variable and are found to be in the range between 0.05 and 0.4.

To ensure the robustness of our findings, we consider a variety of alternative specifications. The
results of these exercises are given in the appendix. First, we consider realized kernels instead of
realized variances for the indices. Realized kernels are a measure of variance that is more robust to
market microstructure effects. The results are given in Tables 9 and 10 in the appendix. Furthermore,
in Tables 11 and 12, we construct confidence intervals for the local Whittle estimator using the
frequency domain bootstrap procedure of Arteche and Orbe (2016). Finally, we apply the trimmed
log-periodogram regression of McCloskey and Perron (2013) as an alternative to estimate the memory
robust to spurious long memory. These results can be found in Tables 13 and 14. The results of all
these analyses are remarkably similar to those presented here, which highlights the robustness of our
findings.

Considering these results, we are able to establish a number of key findings. First of all, there is
a considerable difference between the behavior of stock index variances and exchange rate variances.
The stock index variances exhibit true long memory in the non-stationary range between 0.6 and 0.7.
In contrast to that, the exchange rate variances show clear signs of spurious long memory and the true
long memory of the series is only around 0.3.

5. Conclusions

In Section 2 we discuss the effect of measurement error and level shifts on estimates of the memory
parameter in log-realized variances using the local Whittle estimator of Künsch (1987) and Robinson
(1995a). In the recent literature a large number of new local Whittle estimators has been proposed
that are robust to these effects, most importantly those of Hurvich et al. (2005), Frederiksen et al.
(2012), Iacone (2010) and Hou and Perron (2014). These are discussed in Section 3, where we also
conduct a simulation study to evaluate the performance of these methods if both of these complications
are incurred at the same time. We find that, while the estimators are successful in mitigating the bias
they are build to address, they become more vulnerable to the bias they do not account for. That
means the LPWN estimator has a larger bias due to spurious long memory than the standard local
Whittle estimator and the modified and trimmed local Whittle estimators have a larger bias in presence
of perturbations. In our empirical application we are able to establish some new stylized facts about
the memory in realized variances. Considering a wide range of stock indices, we find that the index
variances are true long-memory processes with a memory parameter between 0.6 and 0.7, which is in
the non-stationary range. As discussed in the introduction, this means that long memory stochastic
volatility models are able to reproduce the finding that the kurtosis of stock market returns is infinite.
Exchange rate variances, however, exhibit spurious long memory and the true memory parameters are
between 0.3 and 0.4, which is far in the stationary region.
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Supplementary

Table 5. Identification codes of the indices.

Codes Indices Codes Indices
AEX AEX Index MSCIDE MSCI Germany
AORD All Ordinaries MSCIES MSCI Spain
BVSP Bovespa Index MSCIFR MSCI France
DJI Dow Jones Industrials MSCIGB MSCI UK
FCHI CAC 40 MSCIIT MSCI Italy
FTSE FTSE 100 MSCIJP MSCI Japan
FTSEMIB FTSE MIB MSCIKR MSCI South Korea
GDAXI German DAX MSCIMX MSCI Mexico
GSPTSE S&P/TSX Composite Index MSCINL MSCI Netherlands
HSI Hang Seng MSCIWO MSCI World
IBEX Spanish IBEX MXX IPC Mexico
IXIC Nasdaq 100 N2252 Nikkei 250
KS11 KOSPI Composite Index NSEI S&P CNX Nifty
MIB30 Milan MIB 30 RUA Russell 3000
MIBTEL Italian MIBTEL RUI Russell 1000
MID S&P 400 Midcap RUT2 Russell 2000
MSCIAU MSCI Australia SPTSE S&P TSE
MSCIBE MSCI Belgium SPX S&P 500
MSCIBR MSCI Brazil SSMI Swiss Market Index
MSCICA MSCI Canada STOXX50E Euro STOXX 50
MSCICH MSCI Switzerland

Table 6. Identification codes of the exchange rates.

AUD BRL CAD CHF EUR GBP INR JPY RUB ZAR

USD/Australian Dollar USD/Brazilian Real USD/Canadian Dollar USD/Swiss Franc USD/Euro USD/British Pound USD/Indian Rupee USD/Japanese Yen USD/Russian Rouble USD/South African Rand
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Table 7. Starting dates and available observations of the indices.

Symbol Start Date Obs Symbol Start Date Obs
AEX 03-01-2000 4440 MSCIDE 02-07-1999 2427
AORD 04-01-2000 4358 MSCIES 02-07-1999 2441
BVSP 03-01-2000 4266 MSCIFR 02-07-1999 2416
DJI 03-01-2000 4360 MSCIGB 09-06-1999 2448
FCHI 03-01-2000 4441 MSCIIT 02-07-1999 2443
FTSE 04-01-2000 4379 MSCIJP 05-12-1999 2430
FTSEMIB 03-01-2000 4398 MSCIKR 06-12-1999 2231
GDAXI 03-01-2000 4413 MSCIMX 07-10-2002 2253
GSPTSE 02-05-2002 3772 MSCINL 02-07-1999 1602
HSI 03-01-2000 4026 MSCIWO 12-02-2001 2447
IBEX 03-01-2000 4406 MXX 03-01-2000 4361
IXIC 03-01-2000 4362 N2252 04-01-2000 4225
KS11 04-01-2000 4290 NSEI 06-01-2000 3780
MIB30 03-01-1996 3261 RUA 03-01-1996 2091
MIBTEL 04-07-2000 3289 RUI 03-01-1996 3262
MID 03-01-1996 2176 RUT 03-01-2000 4359
MSCIAU 05-12-1999 3258 SPTSE 04-01-1999 3262
MSCIBE 02-07-1999 2314 SPX 03-01-2000 4357
MSCIBR 07-10-2002 2435 SSMI 04-01-2000 4364
MSCICA 13-02-2001 1577 STOXX50E 03-01-2000 4417
MSCICH 10-06-1999 2003

Table 8. Starting dates and available observations of the exchange rates.

Symbol Start Date Obs
AUD 01-01-1996 6700
BRL 27-10-2000 4311
CAD 02-01-1996 6754
CHF 02-01-1996 6781
EUR 05-05-1998 6090
GBP 01-01-1996 6856
INR 01-01-1998 5001
JPY 02-01-1996 6866
RUB 06-01-2005 3483
ZAR 15-02-1996 6087
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Table 9. Estimated long-memory coefficients of the log-realized kernels.

LW0.6 LW0.7 LW0.8 LWN LPWN(1, 0) LPWN(0, 1) LPWN(1, 1) mLW mLWN tLW Qu0.75

AEX 0.618 0.630 0.576 0.654 0.652 0.656 0.654 0.566 0.654 0.573 0.561
(0.535 0.702) (0.576 0.683) (0.541 0.610) (0.619 0.689) (0.618 0.687) (0.621 0.691) (0.619 0.688) (0.531 0.601) (0.619,0.689) (0.513,0.634)

AORD 0.555 0.593 0.471 0.647 0.613 0.619 0.613 0.364 0.645 0.458 1.003
(0.471 0.639) (0.539 0.647) (0.436 0.506) (0.612 0.682) (0.578 0.648) (0.584 0.654) (0.578 0.648) (0.329 0.399) (0.610,0.680) (0.398,0.519)

BVSP 0.548 0.522 0.475 0.566 0.532 0.530 0.532 0.458 0.566 0.482 0.521
(0.464 0.633) (0.468 0.577) (0.440 0.510) (0.531 0.601) (0.496 0.567) (0.495 0.565) (0.496 0.567) (0.423 0.493) (0.531,0.601) (0.421,0.544)

DJI 0.631 0.605 0.561 0.631 0.610 0.590 0.610 0.548 0.630 0.568 0.730
(0.547 0.715) (0.551 0.659) (0.526 0.596) (0.596 0.666) (0.576 0.645) (0.555 0.624) (0.576 0.645) (0.513 0.583) (0.595,0.665) (0.507,0.629)

FCHI 0.608 0.623 0.553 0.645 0.648 0.659 0.658 0.494 0.644 0.536 0.668
(0.525 0.692) (0.569 0.676) (0.518 0.587) (0.610 0.680) (0.613 0.683) (0.624 0.693) (0.623 0.692) (0.459 0.528) (0.609,0.678) (0.476,0.597)

FTSE 0.650 0.650 0.591 0.673 0.674 0.671 0.671 0.578 0.671 0.588 0.663
(0.566 0.733) (0.596 0.704) (0.557 0.626) (0.638 0.707) (0.639 0.709) (0.636 0.706) (0.636 0.706) (0.543 0.613) (0.636,0.706) (0.527,0.649)

FTSEMIB 0.597 0.624 0.555 0.643 0.622 0.630 0.622 0.532 0.642 0.565 0.581
(0.513 0.680) (0.570 0.677) (0.520 0.589) (0.608 0.678) (0.588 0.657) (0.595 0.665) (0.588 0.657) (0.497 0.566) (0.607,0.676) (0.504,0.625)

GDAXI 0.649 0.643 0.573 0.668 0.673 0.715 0.715 0.487 0.667 0.524 0.714
(0.566 0.733) (0.590 0.697) (0.538 0.607) (0.634 0.703) (0.638 0.707) (0.680 0.749) (0.681 0.750) (0.452 0.522) (0.633,0.702) (0.464,0.585)

GSPTSE 0.612 0.578 0.509 0.640 0.648 0.653 0.653 0.404 0.563 0.462 1.281*
(0.524 0.701) (0.521 0.635) (0.472 0.546) (0.603 0.677) (0.611 0.685) (0.616 0.690) (0.616 0.690) (0.367 0.441) (0.526,0.600) (0.398,0.527)

HSI 0.641 0.561 0.522 0.616 0.624 0.669 0.701 0.433 0.503 0.460 1.261*
(0.555 0.727) (0.506 0.617) (0.486 0.558) (0.580 0.652) (0.588 0.660) (0.633 0.705) (0.665 0.737) (0.397 0.470) (0.467,0.539) (0.397,0.523)

IBEX 0.593 0.596 0.552 0.608 0.615 0.624 0.624 0.518 0.604 0.533 0.763
(0.509 0.676) (0.542 0.650) (0.517 0.586) (0.574 0.643) (0.581 0.650) (0.589 0.659) (0.589 0.659) (0.483 0.553) (0.570,0.639) (0.473,0.594)

IXIC 0.657 0.608 0.570 0.634 0.625 0.594 0.603 0.545 0.584 0.562 0.578
(0.573 0.741) (0.554 0.661) (0.535 0.605) (0.599 0.669) (0.590 0.660) (0.559 0.629) (0.568 0.638) (0.510 0.580) (0.549,0.619) (0.501,0.623)

KS11 0.699 0.632 0.558 0.680 0.684 0.735 0.739 0.430 0.678 0.518 1.420*
(0.614 0.783) (0.578 0.686) (0.523 0.594) (0.644 0.715) (0.649 0.719) (0.699 0.770) (0.704 0.774) (0.395 0.465) (0.643,0.713) (0.457,0.579)

MIB30 0.601 0.605 0.530 0.671 0.651 0.657 0.650 0.444 0.670 0.541 0.653
(0.509 0.694) (0.545 0.665) (0.491 0.569) (0.632 0.711) (0.612 0.690) (0.618 0.696) (0.611 0.690) (0.405 0.483) (0.631,0.709) (0.466,0.604)

MIBTEL 0.659 0.611 0.513 0.737 0.686 0.693 0.686 0.297 0.736 0.515 1.038
(0.554 0.765) (0.541 0.681) (0.466 0.559) (0.691 0.784) (0.640 0.733) (0.647 0.740) (0.639 0.732) (0.251 0.344) (0.689,0.782) (0.472,0.610)

MID 0.713 0.634 0.560 0.729 0.733 0.756 0.756 0.362 0.728 0.524 1.204
(0.621 0.806) (0.575 0.694) (0.521 0.600) (0.690 0.768) (0.693 0.772) (0.717 0.796) (0.716 0.795) (0.323 0.401) (0.689,0.768) (0.433,0.598)

MSCIAU 0.638 0.588 0.476 0.727 0.684 0.687 0.683 0.265 0.724 0.445 0.696
(0.535 0.742) (0.520 0.656) (0.431 0.521) (0.682 0.773) (0.639 0.729) (0.642 0.732) (0.638 0.728) (0.220 0.311) (0.679,0.770) (0.455,0.593)

MSCIBE 0.715 0.631 0.511 0.793 0.731 0.731 0.757 0.154 0.792 0.467 1.240
(0.613 0.817) (0.564 0.698) (0.466 0.555) (0.749 0.837) (0.687 0.776) (0.686 0.775) (0.712 0.801) (0.109 0.198) (0.747,0.836) (0.364,0.525)

MSCIBR 0.603 0.548 0.490 0.644 0.649 0.654 0.653 0.382 0.641 0.481 0.447
(0.485 0.720) (0.469 0.626) (0.437 0.543) (0.590 0.697) (0.596 0.703) (0.601 0.707) (0.600 0.706) (0.329 0.435) (0.588,0.694) (0.388,0.546)

MSCICA 0.660 0.598 0.483 0.749 0.673 0.677 0.670 0.223 0.747 0.484 0.641
(0.551 0.769) (0.526 0.670) (0.435 0.531) (0.701 0.797) (0.624 0.721) (0.629 0.726) (0.622 0.718) (0.175 0.271) (0.699,0.795) (0.385,0.577)

MSCICH 0.706 0.646 0.537 0.772 0.720 0.722 0.743 0.237 0.771 0.505 1.125
(0.604 0.807) (0.579 0.713) (0.492 0.581) (0.727 0.816) (0.675 0.764) (0.677 0.766) (0.698 0.787) (0.192 0.281) (0.727,0.815) (0.398,0.570)
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Table 10. Estimated long-memory coefficients of the log-realized kernels.

LW0.6 LW0.7 LW0.8 LWN LPWN(1, 0) LPWN(0, 1) LPWN(1, 1) mLW mLWN tLW Qu0.75

MSCIDE 0.666 0.630 0.502 0.779 0.711 0.707 0.761 0.179 0.778 0.443 0.678
(0.564 0.768) (0.563 0.696) (0.457 0.546) (0.734 0.823) (0.666 0.755) (0.663 0.752) (0.717 0.806) (0.135 0.224) (0.733,0.822) (0.426,0.584)

MSCIES 0.628 0.604 0.499 0.706 0.654 0.657 0.653 0.339 0.703 0.488 0.673
(0.526 0.730) (0.537 0.671) (0.454 0.543) (0.662 0.751) (0.609 0.698) (0.613 0.702) (0.609 0.698) (0.295 0.384) (0.658,0.747) (0.364,0.522)

MSCIFR 0.649 0.614 0.501 0.767 0.679 0.675 0.726 0.194 0.766 0.490 1.302*
(0.548 0.751) (0.548 0.681) (0.457 0.546) (0.723 0.811) (0.635 0.724) (0.631 0.720) (0.682 0.770) (0.150 0.239) (0.722,0.810) (0.409,0.568)

MSCIGB 0.674 0.629 0.524 0.765 0.696 0.696 0.720 0.237 0.764 0.514 1.113
(0.572 0.776) (0.562 0.696) (0.480 0.568) (0.720 0.809) (0.651 0.740) (0.652 0.741) (0.676 0.765) (0.193 0.281) (0.719,0.808) (0.411,0.568)

MSCIIT 0.625 0.609 0.510 0.725 0.672 0.677 0.675 0.315 0.723 0.496 1.260*
(0.524 0.727) (0.542 0.676) (0.466 0.555) (0.680 0.769) (0.628 0.717) (0.633 0.722) (0.631 0.720) (0.271 0.360) (0.679,0.767) (0.436,0.593)

MSCIJP 0.673 0.568 0.508 0.628 0.634 0.682 0.686 0.457 0.624 0.453 1.362*
(0.568 0.777) (0.499 0.637) (0.462 0.554) (0.582 0.674) (0.588 0.680) (0.636 0.728) (0.640 0.732) (0.411 0.503) (0.578,0.670) (0.417,0.575)

MSCIKR 0.678 0.602 0.519 0.673 0.621 0.605 0.601 0.400 0.671 0.494 0.925
(0.574 0.782) (0.533 0.671) (0.473 0.564) (0.628 0.719) (0.575 0.667) (0.559 0.651) (0.555 0.647) (0.354 0.446) (0.625,0.716) (0.371,0.534)

MSCIMX 0.640 0.576 0.470 0.748 0.669 0.673 0.678 0.189 0.747 0.464 0.930
(0.523 0.757) (0.499 0.654) (0.417 0.523) (0.696 0.801) (0.616 0.722) (0.620 0.725) (0.626 0.731) (0.136 0.242) (0.695,0.800) (0.414,0.575)

MSCINL 0.662 -0.621 0.522 0.755 0.678 0.641 0.678 0.252 0.755 0.532 0.825
(0.561 0.764) (0.555 0.688) (0.478 0.566) (0.711 0.800) (0.634 0.722) (0.597 0.685) (0.634 0.722) (0.208 0.296) (0.710,0.799) (0.370,0.559)

MSCIWO 0.596 0.526 0.428 0.675 0.599 0.600 0.597 0.247 0.672 0.432 0.540
(0.490 0.703) (0.455 0.597) (0.381 0.475) (0.628 0.722) (0.552 0.646) (0.553 0.647) (0.550 0.644) (0.200 0.294) (0.625,0.719) (0.454,0.611)

MXX 0.585 0.522 0.447 0.620 0.629 0.625 0.634 0.329 0.618 0.404 0.692
(0.501 0.669) (0.468 0.576) (0.412 0.482) (0.585 0.655) (0.594 0.664) (0.590 0.660) (0.599 0.669) (0.294 0.364) (0.583,0.653) (0.343,0.465)

N2252 0.627 0.552 0.512 0.579 0.588 0.643 0.643 0.498 0.577 0.496 1.005
(0.542 0.712) (0.498 0.607) (0.477 0.548) (0.543 0.614) (0.552 0.623) (0.607 0.678) (0.607 0.678) (0.462 0.533) (0.542,0.613) (0.434,0.558)

NSEI 0.579 0.518 0.523 0.539 0.552 0.596 0.611 0.500 0.500 0.492 0.628
(0.492 0.667) (0.461 0.575) (0.486 0.560) (0.502 0.576) (0.515 0.589) (0.559 0.633) (0.574 0.648) (0.463 0.537) (0.462,0.537) (0.427,0.557)

RUA 0.648 0.582 0.540 0.659 0.664 0.669 0.668 0.444 0.659 0.539 0.558
(0.556 0.741) (0.523 0.642) (0.501 0.579) (0.620 0.699) (0.625 0.703) (0.630 0.709) (0.629 0.707) (0.404 0.483) (0.620,0.699) (0.348,0.516)

RUI 0.646 0.580 0.538 0.655 0.660 0.668 0.667 0.446 0.655 0.536 0.555
(0.554 0.738) (0.520 0.640) (0.498 0.577) (0.616 0.694) (0.621 0.700) (0.628 0.707) (0.627 0.706) (0.406 0.485) (0.616,0.694) (0.470,0.608)

RUT 0.567 0.564 0.514 0.589 0.563 0.540 0.563 0.479 0.587 0.506 0.654
(0.483 0.651) (0.510 0.618) (0.479 0.549) (0.554 0.624) (0.529 0.598) (0.505 0.575) (0.529 0.598) (0.444 0.514) (0.552,0.622) (0.445,0.567)

SPTSE 0.672 0.589 0.503 0.729 0.653 0.633 0.641 0.290 0.728 0.479 0.909
(0.572 0.772) (0.523 0.655) (0.459 0.547) (0.685 0.773) (0.609 0.697) (0.589 0.676) (0.597 0.685) (0.246 0.333) (0.684,0.772) (0.467,0.606)

SPX 0.628 0.596 0.564 0.618 0.603 0.588 0.581 0.550 0.617 0.567 0.480
(0.544 0.712) (0.542 0.650) (0.529 0.599) (0.583 0.653) (0.568 0.638) (0.553 0.623) (0.546 0.616) (0.516 0.585) (0.582,0.652) (0.506,0.628)

SSMI 0.658 0.688 0.615 0.706 0.705 0.714 0.712 0.560 0.706 0.611 0.861
(0.574 0.742) (0.634 0.741) (0.580 0.650) (0.671 0.741) (0.670 0.740) (0.679 0.749) (0.677 0.747) (0.525 0.595) (0.671,0.741) (0.550,0.672)

STOXX50E 0.598 0.594 0.533 0.614 0.619 0.638 0.639 0.484 0.612 0.503 0.678
(0.514 0.681) (0.541 0.648) (0.499 0.568) (0.579 0.648) (0.585 0.654) (0.604 0.673) (0.604 0.673) (0.450 0.519) (0.577,0.647) (0.443,0.564)

Quantitative Finance and Economics Volume 2, Issue 1, 137–159.



156

Table 11. Estimated long-memory coefficients of the log-realized variances. Confidence intervals
using the bootstrap procedure of Arteche and Orbe (2016) are given in brackets below.

LW0.6 LW0.7 LW0.8 LW0.6 LW0.7 LW0.8

AEX 0.625 0.635 0.577 MSCIDE 0.680 0.639 0.521
(0.525 0.721) (0.580 0.693) (0.540 0.613) (0.616 0.818) (0.607 0.742) (0.525 0.612)

AORD 0.553 0.586 0.460 MSCIES 0.640 0.623 0.519
(0.466 0.629) (0.526 0.635) (0.424 0.498) (0.583 0.788) (0.574 0.711) (0.463 0.573)

BVSP 0.549 0.521 0.475 MSCIFR 0.656 0.619 0.522
(0.450 0.626) (0.466 0.587) (0.440 0.509) (0.531 0.732) (0.555 0.683) (0.460 0.571)

DJI 0.622 0.586 0.534 MSCIGB 0.693 0.643 0.544
(0.535 0.696) (0.527 0.637) (0.502 0.569) (0.533 0.763) (0.546 0.688) (0.466 0.573)

FCHI 0.605 0.624 0.564 MSCIIT 0.633 0.628 0.532
(0.526 0.681) (0.569 0.676) (0.530 0.599) (0.596 0.792) (0.570 0.713) (0.493 0.593)

FTSE 0.650 0.640 0.569 MSCIJP 0.685 0.568 0.514
(0.559 0.730) (0.579 0.693) (0.533 0.606) (0.541 0.728) (0.560 0.691) (0.479 0.581)

FTSEMIB 0.600 0.607 0.547 MSCIKR 0.695 0.625 0.534
(0.512 0.686) (0.549 0.656) (0.510 0.584) (0.571 0.794) (0.488 0.641) (0.466 0.560)

GDAXI 0.653 0.637 0.564 MSCIMX 0.669 0.603 0.494
(0.544 0.757) (0.573 0.697) (0.523 0.601) (0.596 0.794) (0.555 0.687) (0.492 0.581)

GSPTSE 0.603 0.565 0.490 MSCINL 0.672 -0.635 0.534
(0.508 0.681) (0.506 0.621) (0.452 0.528) (0.553 0.777) (0.523 0.675) (0.436 0.550)

HSI 0.640 0.557 0.503 MSCIWO 0.600 0.528 0.445
(0.546 0.724) (0.500 0.604) (0.467 0.541) (0.562 0.765) (0.573 0.695) (0.480 0.590)

IBEX 0.593 0.596 0.545 MXX 0.575 0.503 0.441
(0.498 0.668) (0.542 0.651) (0.504 0.576) (0.506 0.661) (0.448 0.558) (0.406 0.470)

IXIC 0.644 0.598 0.552 N2252 0.618 0.557 0.514
(0.564 0.708) (0.545 0.648) (0.516 0.586) (0.509 0.701) (0.497 0.609) (0.474 0.549)

KS11 0.692 0.622 0.548 NSEI 0.572 0.515 0.497
(0.604 0.767) (0.570 0.672) (0.510 0.582) (0.475 0.656) (0.456 0.567) (0.464 0.533)

MIB30 0.608 0.613 0.550 RUA 0.646 0.583 0.539
(0.537 0.703) (0.511 0.633) (0.491 0.567) (0.489 0.729) (0.429 0.615) (0.381 0.511)

MIBTEL 0.667 0.622 0.532 RUI 0.644 0.580 0.537
(0.509 0.681) (0.551 0.670) (0.512 0.589) (0.558 0.722) (0.517 0.641) (0.502 0.575)

MID 0.712 0.637 0.564 RUT 0.549 0.551 0.501
(0.571 0.746) (0.558 0.683) (0.475 0.582) (0.459 0.625) (0.497 0.603) (0.468 0.534)

MSCIAU 0.659 0.606 0.499 SPTSE 0.681 0.600 0.508
(0.626 0.802) (0.574 0.701) (0.526 0.603) (0.554 0.719) (0.517 0.634) (0.500 0.571)

MSCIBE 0.730 0.656 0.536 SPX 0.623 0.586 0.548
(0.547 0.741) (0.540 0.672) (0.452 0.544) (0.540 0.693) (0.528 0.638) (0.516 0.581)

MSCIBR 0.629 0.567 0.501 SSMI 0.656 0.671 0.590
(0.636 0.823) (0.594 0.714) (0.490 0.577) (0.561 0.742) (0.618 0.718) (0.558 0.624)

MSCICA 0.681 0.614 0.503 STOXX50E 0.591 0.594 0.527
(0.552 0.753) (0.489 0.642) (0.448 0.557) (0.498 0.685) (0.541 0.644) (0.491 0.560)

MSCICH 0.730 0.676 0.565
(0.542 0.782) (0.524 0.689) (0.444 0.574)
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Table 12. Estimated long-memory coefficients of the log-realized kernels. Confidence intervals using
the bootstrap procedure of Arteche and Orbe (2016) are given in brackets below.

LW0.6 LW0.7 LW0.8 LW0.6 LW0.7 LW0.8

AEX 0.618 0.630 0.576 MSCIDE 0.680 0.639 0.521
(0.512 0.711) (0.573 0.687) (0.536 0.611) (0.616 0.818) (0.607 0.742) (0.525 0.612)

AORD 0.555 0.593 0.471 MSCIES 0.640 0.623 0.519
(0.464 0.635) (0.534 0.647) (0.436 0.507) (0.583 0.788) (0.574 0.711) (0.463 0.573)

BVSP 0.548 0.522 0.475 MSCIFR 0.656 0.619 0.522
(0.459 0.620) (0.468 0.577) (0.436 0.510) (0.531 0.732) (0.555 0.683) (0.460 0.571)

DJI 0.631 0.605 0.561 MSCIGB 0.693 0.643 0.544
(0.539 0.702) (0.548 0.655) (0.525 0.599) (0.533 0.763) (0.546 0.688) (0.466 0.573)

FCHI 0.608 0.623 0.553 MSCIIT 0.633 0.628 0.532
(0.518 0.692) (0.569 0.676) (0.515 0.587) (0.596 0.792) (0.570 0.713) (0.493 0.593)

FTSE 0.650 0.650 0.591 MSCIJP 0.685 0.568 0.514
(0.552 0.728) (0.590 0.701) (0.556 0.627) (0.541 0.728) (0.560 0.691) (0.479 0.581)

FTSEMIB 0.597 0.624 0.555 MSCIKR 0.695 0.625 0.534
(0.509 0.683) (0.565 0.672) (0.519 0.590) (0.571 0.794) (0.488 0.641) (0.466 0.560)

GDAXI 0.649 0.643 0.573 MSCIMX 0.669 0.603 0.494
(0.53 0.763) (0.577 0.702) (0.533 0.612) (0.596 0.794) (0.555 0.687) (0.492 0.581)

GSPTSE 0.612 0.578 0.509 MSCINL 0.672 -0.635 0.534
(0.508 0.688) (0.522 0.630) (0.470 0.545) (0.553 0.777) (0.523 0.675) (0.436 0.550)

HSI 0.641 0.561 0.522 MSCIWO 0.600 0.528 0.445
(0.543 0.715) (0.509 0.609) (0.486 0.556) (0.562 0.765) (0.573 0.695) (0.480 0.590)

IBEX 0.593 0.596 0.552 MXX 0.575 0.503 0.441
(0.493 0.675) (0.544 0.646) (0.514 0.587) (0.506 0.661) (0.448 0.558) (0.406 0.470)

IXIC 0.657 0.608 0.570 N2252 0.618 0.557 0.514
(0.577 0.722) (0.552 0.659) (0.536 0.602) (0.509 0.701) (0.497 0.609) (0.474 0.549)

KS11 0.699 0.632 0.558 NSEI 0.572 0.515 0.497
(0.608 0.777) (0.576 0.679) (0.526 0.591) (0.475 0.656) (0.456 0.567) (0.464 0.533)

MIB30 0.601 0.605 0.530 RUA 0.646 0.583 0.539
(0.495 0.676) (0.542 0.661) (0.489 0.564) (0.489 0.729) (0.429 0.615) (0.381 0.511)

MIBTEL 0.659 0.611 0.513 RUI 0.644 0.580 0.537
(0.560 0.738) (0.545 0.672) (0.458 0.557) (0.558 0.722) (0.517 0.641) (0.502 0.575)

MID 0.713 0.634 0.560 RUT 0.549 0.551 0.501
(0.624 0.796) (0.566 0.693) (0.518 0.597) (0.459 0.625) (0.497 0.603) (0.468 0.534)

MSCIAU 0.638 0.588 0.476 SPTSE 0.681 0.600 0.508
(0.535 0.727) (0.521 0.646) (0.430 0.518) (0.554 0.719) (0.517 0.634) (0.500 0.571)

MSCIBE 0.715 0.631 0.511 SPX 0.623 0.586 0.548
(0.607 0.814) (0.564 0.695) (0.462 0.553) (0.540 0.693) (0.528 0.638) (0.516 0.581)

MSCIBR 0.603 0.548 0.490 SSMI 0.656 0.671 0.590
(0.526 0.713) (0.471 0.627) (0.436 0.548) (0.561 0.742) (0.618 0.718) (0.558 0.624)

MSCICA 0.660 0.598 0.483 STOXX50E 0.591 0.594 0.527
(0.521 0.771) (0.517 0.670) (0.423 0.544) (0.498 0.685) (0.541 0.644) (0.491 0.560)

MSCICH 0.706 0.646 0.537
(0.607 0.793) (0.582 0.708) (0.494 0.583)
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Table 13. Estimated long-memory coefficients of the log-realized variances applying the
estimator of McCloskey and Perron (2013) with theoretical confidence intervals in brackets
below.

Variances Confidence Variances Confidence
AEX 0.570 MSCIDE 0.510

(0.525, 0.614) (0.537, 0.651)
AORD 0.433 MSCIES 0.507

(0.385, 0.481) (0.452, 0.569)
BVSP 0.467 MSCIFR 0.541

(0.420, 0.514) (0.448, 0.566)
DJI 0.559 MSCIGB 0.601

(0.514, 0.604) (0.484, 0.597)
FCHI 0.569 MSCIIT 0.557

(0.525, 0.614) (0.544, 0.658)
FTSE 0.554 MSCIJP 0.538

(0.510, 0.599) (0.500, 0.614)
FTSEMIB 0.557 MSCIKR 0.566

(0.512, 0.601) (0.478, 0.597)
GDAXI 0.573 MSCIMX 0.509

(0.529, 0.618) (0.507, 0.625)
GSPTSE 0.458 MSCINL 0.563

(0.409, 0.508) (0.438, 0.579)
HSI 0.503 MSCIWO 0.401

(0.455, 0.550) (0.506, 0.620)
IBEX 0.557 MXX 0.444

(0.513, 0.602) (0.397, 0.491)
IXIC 0.575 N2252 0.487

(0.531, 0.620) (0.440, 0.534)
KS11 0.541 NSEI 0.478

(0.496, 0.586) (0.429, 0.527)
MIB30 0.578 RUA 0.569

(0.522, 0.623) (0.332, 0.469)
MIBTEL 0.548 RUI 0.567

(0.528, 0.629) (0.518, 0.619)
MID 0.579 RUT2 0.506

(0.488, 0.608) (0.460, 0.552)
MSCIAU 0.487 SPTSE 0.513

(0.528, 0.629) (0.517, 0.618)
MSCIBE 0.545 SPX2 0.564

(0.427, 0.547) (0.520, 0.609)
MSCIBR 0.481 SSMI 0.596

(0.488, 0.602) (0.551, 0.641)
MSCICA 0.503 STOXX50E 0.526

(0.408, 0.553) (0.481, 0.570)
MSCICH 0.594

(0.439, 0.567)
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Table 14. Estimated long-memory coefficients of the log-realized variances applying the estimator of
McCloskey and Perron (2013) with theoretical confidence intervals in brackets below.

AUD BRL CAD CHF EUR GBP INR JPY RUB ZAR

0.406 0.441 0.390 0.352 0.260 0.313 0.433 0.401 0.423 0.506
(0.366, 0.447) (0.394, 0.489) (0.349, 0.431) (0.310, 0.394) (0.211, 0.309) (0.269, 0.357) (0.388, 0.478) (0.361, 0.441) (0.370, 0.476) (0.467, 0.546)
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