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Abstract
If the boundary conditions of the quantum vacuumare changed in time, quantum field theory
predicts that real, observable particles can be created in the initially emptymodes.Here, we realize this
effect by changing the boundary conditions of a spinor Bose–Einstein condensate, which yields a
population of initially unoccupied spatial and spin excitations.We prove that the excitations are
created as entangled pairs by certifying continuous-variable entanglement within themany-particle
output state.

1. Introduction

The quantized vacuumcontains pairs of virtual quanta in all availablemodes of the physical system. The static
Casimir effect [1] is ameasurable consequence of this process. In the original setting, twomirrors experience an
attractive interaction due to the reduced number of electromagneticmodes in the volume between them. First
attempted in 1956 [2], the Casimir forcewas preciselymeasured between a plane and a sphere in the late 1990s
[3, 4] and between parallel plates in 2002 [5]. If themode density is not varied in space but in time, for example by
amodulation of themirror’s distance [6] or by changing the refractive index [7], the virtual quanta can be turned
intomacroscopic numbers of real excitations (see figure 1(a)). This so-calledDynamical Casimir effect (DCE)
[8] has been observed in themicrowave regime [9, 10]. The excitations are created by nonadiabatic changes of
the boundary conditions [11, 12].Moreover, this process creates pairs, which leads to the generation of
entangledmany-particle states out of the vacuum.

Bose–Einstein condensates (BECs) of diluted gases offer the possibility to study this effect either by
modulating themagneticfield [13] or the atomic scattering-length [14]. In this case, the atomic BEC acts as a
backgroundfield out of which atoms can be transferred to different, initially unoccupiedmodes. These
unpopulatedmodes represent the empty electromagneticmodes of the original setting. Thesemodes can be
excitedwith either spatial (scalar Bogoliubovmodes) or spin excitations. The externalmodulationmust now
alter the energy of these unpopulatedmodes, which can be realized by amodulation of the external trapping
potential or themagnetic field. Both schemes have been realized experimentally by driving spatial excitations
[15] or spin excitations [16]. In [15], the effect has been demonstrated for the first time, but the pure quantum
character could not be proved.While [16] demonstrates the suppression of thermal excitations and a squeezing
of spin-nematic observables, a proof that theDCE creates entanglement ismissing.

In this article, we demonstrate the excitation of both spin and spatial degrees of freedom in a spinor BECby
theDCE.We prove that the spin excitations are created in the formof entangled pairs by a violation of a
continuous-variable entanglement criterion [17, 18]. The experimental data is supported by a theoretical
description of the system in terms of a numerical Bogoliubov analysis.
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2. Theoretical description

Weconsider an F=1 spinor BEC initially prepared inm=0. The system is described by the bosonic operators
rmy
ˆ ( ) that annihilate atomswith spinm at position r


. Using Bogoliubov’s approximation r r0 0y y= +

 ˆ ( ) ( )
r0dy
ˆ ( ), where r0y

( ) is themean-field, and r0dy
ˆ ( ) denote scalarfluctuations of them=0 condensate. Up to

second-order in thefluctuations, the spinfluctuations r1y
ˆ ( ) decouple from the scalarfluctuations, and are

given by theHamiltonian:
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where H M V r U U n r2eff
2 2

0 1 0 m= -  + + + -
 ˆ ( ) ( ) ( ) , withM the atomicmass, n r r0 0

2y=
 ( ) ∣ ( )∣ ,V r

( )
the external trapping potential,μ the chemical potential,U g g2 30 0 2= +( ) ,U g g 31 2 0= -( ) , and
g a M4F F

2p= , with aF the scattering-length for the collisional channel with total spin F. In equation (2), q
denotes the quadratic Zeeman energy(QZE) term. This energymay be externallymodified usingmicrowave
fields. In particular, qmay bemodified in time, which is a key feature in the following (seefigure 1(b)).

2.1.Homogeneous case
The connection between the spin dynamics in the presence of a time-dependentQZE and theDCEbecomes
particularly evident when considering a homogeneous BEC, i.e.V r 0=

( ) . In that case, n r n0 =
( ) is a constant

and U n0m = .With this equation (2)may be re-written inmomentum, k, space:
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where ak m,ˆ denotes the bosonic operator for particleswith spinm andmomentum k. Employing the operators

a a a 2k k k, ,1 , 1=  -ˆ ( ˆ ˆ ) , we introduce the Bogoliubov transformation a b bcosh sinhk k k k k, , , , ,a a= +    - ˆ ˆ ˆ †
,

with U n ksinh 2 k, 1a x=  ( ), where k k M q k M q U n2 2 22 2 2 2
1 x = + + +( ) ( )( ) is the Bogoliubov

spectrumof spin excitations.Using this transformation H k b b b bk k k k k1 , , , ,x= å ++ + - -ˆ ( )( ˆ ˆ ˆ ˆ )
† †

.
For the caseof a suddenquenchof theQZE froman initial valueqi to afinaloneqf,we introduce theBogoliubov

modes a b bcosh sinhk k k k k, , , , ,a a= +    - ˆ ˆ ˆ †
, evaluated forqi, and a c ccosh sinhk k k k k, , , , ,a a= +    - ˆ ˜ ˆ ˜ ˆ † ,

evaluated forqf. The initial Bogoliubovmodes fulfill the vacuumstatistics b b 0k k, ,á ñ = 
ˆ ˆ†

.Whenquenchingq, the

initial Bogoliubovmodesproject into thenewones: c b bcosh sinhk k k k k, , , , ,a a= D - D    - ˆ ˆ ˆ †
,with k,aD =

k k, ,a a- ˜ . As a result, as for the traditionalCasimir effect, thequenchof theQZEresults right after thequench in
non-zerooccupations of thenewBogoliubovmodes, c c0 0 sinhk k k, ,

2
,aá ñ = D  ˆ ( ) ˆ ( )† . In addition,

c c0 0 sinh 2k k k, ,
1

2 ,aá ñ = - D -  ˆ ( ) ˆ ( ) . After the quench, the evolutionof theBogoliubovmodes is trivial

c t ce 0k
k t

k,
i

,f = x


-
ˆ ( ) ˆ ( )( ) , where kfx ( ) is calculated for qf.

This occupation of the spin Bogoliubovmodes results in the creation of particles in F m, ñ∣ = 1, 1 ñ∣ . Indeed,
using the relation between ak,ˆ and ck,ˆ , wemay obtain the population in 1, 1ñ∣ , n t a ak k k,1 ,1 ,1= á ñ( ) ˆ ˆ† , which is at

Figure 1. (a) Schematic principle of the originally proposedDynamical Casimir effect. The system includes two perfectly conducting
plates which allow for a discrete spectrumofmodeswhichmay be populatedwith photons. Changing the distance of plates non-
adiabatically will result in an energetic shift of the lightmodes (black arrows). If the frequency of themodulation (green arrow) is
resonant to a certainmode, a pair of virtual photons is turned into real photons (green circles). (b)Our analogue setup: by
manipulating the energy difference of the Zeeman levels, we can excite spins out of our spinor Bose–Einstein condensate into initially
emptymodes.
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any time equal to that in 1, 1- ñ∣ :
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This creation of particles in the levels 1, 1 ñ∣ constitutes the spin analogue of the recently reported Sakharov
oscillations observed in scalar BECswhen quenching the interactions [19].

On the other hand, if q(t) is periodically-modulated in time, the resulting spinor dynamics resembles the
DCE. TheHeisenberg equations for the Bogoliubovmodes are of the form:

t
b t f b t g t b t

d

d
i , 5k k k k k, , ,= -   - 

ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )
†

where f kk xº ( ) and g t q t U n k2k 1
2x= -( ) ˙( ) ( ) .We introduce the expected values
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, and A t b t b ti h.c.k k k, , ,º  á ñ -  - ( ) ( ˆ ( ) ˆ ( ) )
† †

.
These two sets of equations can be summarized into one set by defining P Pk k,= , S Sk k,=   and
A Ak k,=  . The dynamics of these expected values is given by the equations:
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which generalizes equations (3) and (4). Hence, as for the quench, the time-dependentQZE results in aDCE,
where the number of particlesmay be significantly enhanced employing a periodically-modulated q(t)with a
frequencymatching resonantly one half of a Bogoliubovmode.

2.2. Trapped case
The analysis of the experimental realization of theCasimir effect demands a careful consideration of the trapping
potential. In order to determine Heff

ˆ , we first obtain the initial density profile n r0
( ) from the corresponding

scalarGross–Pitaevskii equation:
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We then evaluate the eigenfunctions rjj
( ) of Heff

ˆ , such that H r E rj j jeff j j=
 ˆ ( ) ( ). Expressing
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0òc j j= ( ) ( ) ( ). For a sufficiently tight confinement, wemay assume i j i i i, ,c c¹  , and

U E Ei j i i j1 ,c -¹  ∣ ∣ (this is indeed the case for our experimental parameters). In that case, H hj j1 åˆ ˆ , with
h E q a a U a a h.c.j j m j m j m jj j j1 , , 1 ,1 , 1c= + å + += -
ˆ ( ) ˆ ˆ ( ˆ ˆ )† † † .Wemay then introduce the Bogoliubov transformation

a b bcosh sinhj j j j j, 1 , , , ,a a= +    ˆ ˆ ˆ†
, with Usinh 2 j jj j, 1a c x=  , where E q Uj j jj

2
1

2x c= + -( ) ( ) are the

corresponding Bogoliubov energies. Then, apart from constants, h b b b bj j j j j j, , , ,x= ++ + - -
ˆ ( ˆ ˆ ˆ ˆ )

† †
amaximal transfer

rate to the excited spin states is thus reached for a large and imaginary Bogoliubov energy ξj, which is obtained
for specific resonance conditions for q, where
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q E . 12j j= - ( )

Wemay proceed at this point as for the free-space case, obtaining the equations for the dynamics of the

Bogoliubovmodes: b t f b t g t b ti
t j j j j j

d

d , , ,= +  
ˆ ( ) ˆ ( ) ( ) ˆ ( )

†
, with f j j x= , and g t q t U t2j jj j1c x=( ) ˙( ) ( ).We

introduce P t b t b tj j j, ,º á ñ ( ) ˆ ( ) ˆ ( )
†

, S t b t b t c.c.j j j, ,º á ñ ++ -( ) ˆ ( ) ˆ ( )
† †

, and A t b t b ti c.c.j j j, , ,º á ñ -+ + -( ) ( ˆ ( ) ˆ ( ) )
† †

.
Thus, the results for the trapped case resemble the free-space results by replacing themomentum states by
eigenstates of the effective potential.

3. Experimental observation

Weemploy almost pure 87RbBECs in a crossed-beamoptical dipole trapwith trapping frequencies 2π×(150,
160, 220)Hz. The 22 000 atoms in the BEC are prepared in the hyperfine level 1, 0ñ∣ . At our appliedmagnetic
field ofB=2.6G, themagnetic field-inducedQZE is qB=487 Hz. Before initiating the dynamics, we empty
the levels 1, 1 ñ∣ with twomicrowave pulses from 1, 1 ñ∣ to 2, 2 ñ∣ followed by a light push resonant to the
F=2manifold to ensure that there are no excitations present in these levels. In our experiments, we apply an
effective shift of theQZE qd by amicrowave dressing field that couples the levels 1, 1- ñ∣ and 2, 2- ñ∣ . Atoms are
transferred from the level 1, 0ñ∣ to the levels 1, 1 ñ∣ in the trap’s groundmode if the sumof dressing field and
themagnetic-field-inducedQZEmatches the resonance condition(12), q q q qB d 0º + = [20–22]. Figure 3(a)
shows this transition from the stable into the unstable regionwith the according resonance in the number of
transferred atoms at the boundary of these regions (in orange). There are further resonances (blue infigure 3(a))
at q q qj 0= < , when the difference q0−qj is approximately equal to the energy difference Ej− E0 to the jth

excitedmode of the effective potential. Otherwise, the BEC remains in the state 1, 0ñ∣ and no atoms are
transferred. In our experiments, thefirst two excited spatialmodes are seen as one resonance, because two trap
frequencies are close to degeneracy. Nevertheless, as shownwith the absorption images, they can be individually
addressed by choosing the correct QZE.

The analogueDCE is realized in the regime q>q0, where the BEC is stable. Here, the intensity of the
microwavefield ismodulated sinusoidally, yielding a corresponding oscillation of theQZE. If the frequency of
theQZEoscillation is resonant to approximately twice theQZEdifference to a specific resonance,
f q q h2 j= -( ) , atoms are parametrically excited to the respectivemode. This process can be described as a

parametric amplification of vacuumfluctuations in the 1, 1 ñ∣ modes. The number of the transferred atoms is
detected by state-selective absorption imaging.Wewill show that the amplification of vacuum fluctuations leads
tomeasurable populations in the levels 1, 1 ñ∣ in spin and spatial degrees of freedomand confirm the quantum
origin of the dynamics by quantifying the created continuous-variable entanglement.

3.1.Dynamical Casimir ground-mode resonance
In our experiments, we observe the analogueDCEby setting theQZE to a value of q q h 71 Hz0- =( ) , far in
the stable regime.Wemodulate theQZE q/h for 700 mswith an amplitude of 48 Hz by controlling the intensity
of themicrowave dressing field. Figure 2(a) shows the fraction of transferred atoms as a function of the
modulation frequency f. The data shows a resonance at 145 Hz, which is approximately twice theQZEdifference
to the groundmode, q q h2 142 Hz0- =( ) . The datamay be compared to the theoretical prediction in
figure 2(b). Here, the frequency of the ground-mode resonance at 147 Hz is in good agreement with the
experimental results. The difference between the theoretical prediction and twice theQZEdifference

q q h2 0-( ) may be explained by slight inaccuracies in the determination of themodulatedQZE fromdc
measurements, as well as drifts and anharmonicities in the trapping potential. On resonance, the transferred
fraction of atoms follows an exponential growth.We calculate a theoretical spin excitation rate of
Ω/2π=1.01 Hz thatmatcheswell the experimental rate ofΩ/2π=1.06 Hz, as it is obtained from the
maximally transferred fraction on resonance. In contrast to the theoretical calculations, the experimental
resonancewidth of 2.7 Hz is four times larger than thewidth of the theoretical resonance of 0.7 Hz. This is a
result of the varying total number of atoms in our BECs as discussed below. The excited state resonances at the
frequencies 187 and 192 Hz are not visible in our experimental data.Wewill address this issue in the next
paragraph.

3.2. Excited resonance
We further study the analogueDCEon an excited spatialmode. As seen infigure 2(b), the creation rate of
excitations is smaller and narrower for excited spatialmodes due to the reducedmode overlapχjj. For such
reduced spin excitation rates, our system is dominated by additional loss processes, such as atomic collisions that
transfer the atoms from the excited trapmode to the groundmode. As the exponential growth rate depends on
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the bosonic enhancement of initially transferred atoms, a significant loss can lead to a complete inhibition of the
growth process. Furthermore, fluctuations of the total number of atoms lead to a further suppression of the
resonance, as discussed below.

Tomitigate the influence of the loss processes, we enhance the creation rate on the first excited spatialmode
by an initial transfer of seed atoms to the chosenmode. Prior to ourDCEprotocol, we deliberately transfer seed
atoms to thefirst excited spatialmode by choosing a resonantQZE q=q1 (see figure 3(a)). The creation of seed
atoms is facilitated by enabling spin-changing collisions via ourmicrowave dressing for 150 ms on the first
excited spatialmode at (q−q0)/h=−16.9 Hz. In themean, 1.7%of the atoms are transferred to the excited
spatialmode (gray shaded area infigure 3(b)).

We further increase the signal by increasing themodulation amplitude.We oscillate q/h from45 to 363 Hz
for amodulation time of 650 ms.Due to a nonlinearity, the oscillation is slightly distorted from a pure sinusoidal
shape and is centered around 214 Hz. For these experimental parameters, we observe not only the population of
the groundmode of the effective potential, but also of the seeded first excitedmode (see figure 3(b)). The
frequencies of the groundmode and the excited-mode resonances are determined byGaussian fits yielding 422
and 462 Hz. The inset infigure 3(b) shows the spatialmode profile of the excited atoms. Resonances
corresponding to a certainmode display the respective spatial profile.

The theoretical calculations infigure 3(c) agree qualitatively with the experimental results. The results are
displayed for three different total numbers of atoms. The positions of the excited-mode resonances shift several
resonancewidths depending on the number of atoms. This number-dependent shift of the narrow lines
combinedwith our experimental fluctuations of the total atoms number of 1800 atoms presents a reasonwhywe
were unable to observe the excited resonances without seed atoms. Furthermore, the theoretical results show a
systematic shift to highermodulation frequencies compared to the experimental results. Again, this effectmay
be explained by slight inaccuracies in the determination of themodulatedQZE fromdcmeasurements, as well as
drifts and anharmonicities in the trapping potential. Our results show the parametric excitation of atoms into
different spin and spatialmodes by an analogue of theDCE.

Figure 2.The relative number of atoms in them=±1 levels is shown as a function of themodulation frequency f of the quadratic
Zeeman energy. (a)Experimental results with one clearly visible resonance corresponding to the groundmode. The full orange line is
a Gaussian fit, yielding a resonance frequency of 145 Hz. Themaximum transfer corresponds to a excitation creation rate of
Ω/2π=1.06 Hz. (b)The theoretical calculations showone clearly visible resonance at 147 Hzwith a corresponding excitation
creation rate ofΩ/2π=1.01 Hz. Both the position and the creation ratesmatch the experimental results. Two smaller resonances are
also visible at the frequencies 187 and 192 Hz, corresponding to spatially excitedmodes.
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4. Entanglement characterization

In this section, we prove the quantumnature ofDCEby demonstrating the quantum correlations between the
excitations created in the twomodes. For these experiments, we employ the sequence of section 3.1, with a
shortermodulation time of 110 ms. Following our previous work [23], we demonstrate the quantum
correlations between the quadratures of the levels 1, 1 ñ∣ , defined as x a a1 21 1 1= +  ˆ ( ˆ ˆ )† and
p i a a21 1 1= -  ˆ ( ˆ ˆ )† . In our experiments, we detect either the x or the p quadratures of both levels 1, 1 ñ∣
by unbalanced atomic homodyne detection.Our BEC acts as the local oscillator for the homodyne detection. A
radio-frequency pulse couples 15%of the local oscillator with the levels 1, 1 ñ∣ . The local oscillator phase θ can
be adjusted via a variable holding timewith deactivatedmicrowave dressing. For each holding time, we obtain a
linear combination of both quadratures X x pcos 4 sin 41 1 1q q p q p= - + -  

ˆ ( ) ˆ ( ) ˆ ( ), with the
corresponding variancesV XVar1 1 qº [ ˆ ( )]. For θ=3π/4, the variance of the difference
V X XVard 1 1q qº -+ -[ ˆ ( ) ˆ ( )] is squeezed, while for θ=5π/4, the variance of the sum

Figure 3. (a) For specific values of theQZE q=qj, we observe well resolved resonances in the unstable region of the BEC,where
distinct spatialmodes are populated via spin dynamics towards the levels 1, 1 ñ∣ . The spatial profile of themodes is observed in our
absorption images (see inset). The colored lines areGaussian fits to guide the eye. (b)Parametric excitations populate distinct
resonances by varying themodulation frequency of the quadratic Zeeman energy after generating seed atomswith collisional
interactions. The gray shaded area indicates themean transfer due to spin-changing collisions. Same colors indicate the samemodes.
(c)Theoretically obtained resonances for different total numbers of atoms. The brightness corresponds to different total number of
atoms and different colors indicate differentmodes.
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V X XVars 1 1q qº ++ -[ ˆ ( ) ˆ ( )] is squeezed. Consequently, the local oscillator phases 3π/4 and 5π/4 can be
associatedwith the x and p quadratures. These two quadratures show sub-shot-noise fluctuations (blue and
purple dots infigure 4(a)), which indicates two-mode squeezing. Additionally, no phase dependence is visible
for the quadrature correlations of the individualmodes (red and orange dots infigure 4(a)). As a consequence,
there is no one-mode squeezing, which follows our predictions.We prove entanglement with the inseparability
criterionVd+Vs<2 [17, 18] for two collective atomicmodes (see figure 4(b)). The strongest violation is
Vd+Vs=1.51±0.17 proving entanglementwith 2.9 standard deviations.

5. Conclusion

In conclusion, we have demonstrated that spin dynamics in spinor BECs resembles theDCE.Wehave observed
the generation of atompairs in initially empty excited states of the systemby a resonantmodulation of the energy
of the excited states. The created pairs carry entanglement, whichwe have proven by detecting the non-classical
correlations between the quadratures. This central finding unveils the deep connection between theCasimir
Effect and the generation of non-classical states. In the future, the parametric generation of entangled atompairs
can be employed as a versatile tool for the generation of entangled atomic ensembles. Themodulationmethod
offers a fast initialization of the pair generation process compared to conventionalmethods, where the
resonance conditions is reached by ramping theQZE to the unstable regime.
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