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Abstract: The “Sonar Hopf” cochlea is a recently much advertised engineering design of
an auditory sensor. We analyze this approach based on a recent description by its inventors
Hamilton, Tapson, Rapson, Jin, and van Schaik, in which they exhibit the “Sonar Hopf”
model, its analysis and the corresponding hardware in detail. We identify problems in the
theoretical formulation of the model and critically examine the claimed coherence between
the described model, the measurements from the implemented hardware, and biological data.
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1. Introduction

The description of biological processes in terms of mathematics and physics is a challenge of great
importance as an advanced step in explaining natural phenomena. Well worked-out examples connecting
biology, nonlinear physics or mathematical bifurcation theory are relatively rare, implying that each
new example is of great interest. The mammalian hearing system provides in this context an important
example. The recent article “Understanding the mathematics of hearing using electronic circuits” by
Hamilton, Tapson, Rapson, Jin, and van Schaik [1] therefore attracted our interest. The authors declare



Sensors 2011, 11 5809

the aim of their presentation as follows: “We show that the observed active behavior of the cochlea can
be modeled as a change in the quality factor of the individual resonant sections in a discretized model,
and that this has the dynamics which embody the Hopf bifurcation”. Below, we discuss to which extent
this aim is achieved. We discuss the mathematical terminology used in the approach, the appropriateness
of the modeling (the “Sonar Hopf” approach), and finally the quality of agreement between the results
from the model, from the electronic implementation, and biological example.

2. Fundamental Equation

In many applications, a differential equation d
dt
x = f(x) depends at least on one parameter λ, so

that we need to study the solution manifold of a parametrized family of generally nonlinear differential
equations. Since in such families generally different types of asymptotic solutions are present, it is
of interest to study how these asymptotic solutions change their characteristics, upon a change of the
parameter λ. The term “(local) bifurcation” is used to describe a “qualitative” or topological change
of the solution behavior, upon a small (smooth) change of a system parameter λ (called the bifurcation
parameter). At the bifurcation point itself, the system is at “criticality”. In most cases this means that
as a function of the bifurcation parameter, the system is not differentiable at the bifurcation point, e.g.,
if the equilibrium point is about to become unstable and to give way to a stable oscillatory behavior.
For continuous dynamical systems described by an ordinary differential equation (ODE), this can be
indicated by a vanishing real part of one of the eigenvalues of the Jacobian, whereupon the ODE becomes
nonhyperbolic at this parameter value. Among the different bifurcation types offering such a behavior
is the Hopf bifurcation (see, e.g., [2]). Its normal form (i.e., the simplest example displaying such a
behavior) is usually written as [3,4]

dz

dt
= z(λ+ b | z |2), λ ∈ R, b, z ∈ C (1)

This system admits a fixed point at (x, y) = (0, 0). If Re(b) < 0, a (supercritical) Hopf bifurcation
occurs, leading to a limit cycle z(t) for λ > 0 with r =

√
−λ/Re(b), ω = Im(b) and z(t) = reiωt. For

Re(b) > 0, we have an unstable limit cycle for λ < 0. In this case, the bifurcation is called subcritical.
Rewriting the forced variant of this equation [3,4] erroneously, Hamilton et al. [1] start from

dz

dt
= (µ+ iω0)z − z3 + Feiωt, F, µ, ω ∈ R, z ∈ C (2)

From the cubic term, the authors conclude “Hence, Equation (1) possesses important dynamics
observed in the mammalian cochlea”. As a first remark, we point out that because of the mixed product
occurring in z2 ∈ C, the promised Hopf bifurcation will not occur. Explicitly, the bifurcation analysis of
the system in the absence of drive yields

d

dt

(
x

y

)
=

(
µx− ω0y − x3 + 3xy2

µy + ω0x+ y3 − 3x2y

)
(3)

This system has a fixed point P (0, 0) at the origin and two fixed points

P2,3 = ±

 √
−µ+

√
µ2 + ω0

2 (µ+
√

µ2 + ω0
2)/(

√
2ω0)√

−µ+
√

µ2 + ω0
2/
√
2

 (4)
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The first fixed point at the origin has the eigenvalues λa1,2 = µ ± iω0. Increasing µ from negative
to positive values changes its nature from stable via elliptic to unstable. The eigenvalues of the two
remaining fixed points are determined by λb,c = −1

2
(3µ ±

√
µ2 − 15ω0

2). Upon increasing µ, their
stability changes from unstable via elliptic to stable if ω0 ≥| µ | /

√
15 holds, which normally will be the

case. A vector field plot of this system illustrates these results in Figure 1.

Figure 1. Vector field plot with isoclines (red lines) and fixed points (filled circles). Two
solutions emanating from different initial conditions (green, blue) illustrate that a bifurcation
from a central previously stable, fixed point to two stable fixed points has occurred (ω0 = 1,
µ = 0.5, F = 0).
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For observing the Hopf bifurcation, the term | z2 | z, instead of z3, is essential. This problem
propagates through several works of the authors, leading to the conclusion that its origin cannot
be accidental.

3. Bifurcation Terminology

The aim in the design of natural and artificial sensors is mainly the implementation of signal
sensitivity, i.e., the ability to react to faint stimuli with a greatly enhanced response in comparison
to normal stimulation, and with damped response upon a strong stimulation. Behaviors of that sort
are common in systems close to bifurcations [5–7]. The description of the “Sonar Hopf” model
promotes the following view [1]: “When operating at the bifurcation point (µ = 0) the system is said
to be supercritically stable”. Let us explain the origins, meanings and implications embodied in this
description and point out why such a usage of terms should be abandoned. Locally, at the bifurcation
point, the system is linearly marginally stable. According to the Hartman–Grobman Theorem, the
behavior is then defined by higher order expansion terms. Although at the origin the normal form
system’s behavior is characterized by asymptotic stability [2,8], a critical slowing down behavior towards
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this solution is observed: Transients evoked by small perturbations of the system relax generally but
exorbitantly slowly. For the practical purpose in question, the system therefore reacts under these
conditions in a manner that will be perceived as non-stable. If the subsystem describing the active part
of the cochlea (in their language: the resonator) is at rest in the absence of a forcing, from where upon
stimulation it is then led into stable oscillations, the transition is from a subcritical (below criticality) via
the bifurcation point (criticality) to a supercritical state (where the system is now above criticality).

In addition to this local notion of bifurcation used, also a global notion exists. In the Hopf case, a
bifurcation from a stable fixed point to a stable limit cycle of initially zero amplitude and fixed frequency
is called “supercritical”. If we observe the collapse of an unstable limit cycle with a stable fixed point at
the origin, by which the system is expelled to second, larger and stable limit cycle, this would be called
“subcritical”. The second limit cycle also depends on the bifurcation parameter. Reducing the bifurcation
parameter, the limit cycle generally becomes smaller, until it breaks down and the system falls on the
stable solution at the origin, introducing hysteresis in this way. The problem in the terminology as used
is that local and system level (i.e., global) notions of bifurcations are combined on the same level without
any warning.

“When the system is supercritically stable and is driven at ω0, the response is nonlinear with high gain
for small forcings and smaller gains for larger forcings”. Exactly at the bifurcation point, the system is
only linearly marginally stable and the gain diverges for ever smaller forcings [4]. Noise will naturally
push the system beyond the bifurcation point, implying that the system then would be above criticality.
The description continues “If it is driven at ω = ω0 +∆ω, ∆ω ̸= 0, then the response is approximately
linear for sufficiently small input”, where the obvious assumption is that we are still at the bifurcation
point. This simple picture with respect to the detuning ∆ω only holds below criticality; for non-vanishing
detuning on the supercritical side, additional frequencies will emerge with increased detunings. Together
with phenomena of locking this substantially complicates the picture.

When the “Sonar Hopf” system is said to be “supercritically operated”, a local variation of the
bifurcation parameter seems to be addressed but is referred to in terms reserved for the system level;
systems displaying a subcritical Hopf bifurcation generally require huge changes in their system
parameters (or are not capable at all) to produce supercritical Hopf bifurcations. A central statement
made is “Supercritical stability describes a system which is at the point of bifurcation from a single
stable state to a bistable region, where the bifurcation is a Hopf bifurcation” (see also [9]). However, a
supercritical Hopf bifurcation does not change a steady state stable fixed point into a bistable solution, but
a stable fixed point into a stable time varying oscillation (a limit cycle). In the local picture no bistability
is involved. A system able to display a supercritical Hopf bifurcation can always be operated below
or above—or more difficult, at—the bifurcation point. The important information whether the “Sonar
Hopf” system is operated below (“subcritical”) or above (“supercritical”) criticality remains unclear,
within the description given. Whereas a system close to a bifurcation point could be used on either side
of the bifurcation point as a small signal amplifier [5–7], it should be also noted that each bifurcation and
each side with respect to the bifurcation point brings about its own fingerprint (e.g., how the nonlinearity
scales [10]). It is only upon a close inspection of the design of their device [9] that the reader arrives at
the guess that the “Sonar Hopf” device is in fact designed to operate below criticality.
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4. “Sonar Hopf” Equation

Even more importantly, a genuine Hopf bifurcation might not necessarily be involved in the described
“Sonar Hopf” cochlea framework. In the approach, a feedback system is used to vary the quality factor
of the basilar membrane at each the intensity (and frequency) of the input signal [Note: In contrast to
how the authors of [1] perceive it, we feel that not the damping by the basilar membrane, but the viscous
damping of the fluid much is the governing biophysically element for the dissipation active at a given
point along the cochlea]. To change the quality factor Q ∈ R, the quantity

ζ :=
1 + AQ

Q

where A ∈ R is the feedback gain term, is monitored. For the resonant system, the equation

Γ = (
ω0s

s2 + sω0ζ + ω0
2
)(Θ + AΓ) (5)

is obtained. The claim then is that “A feedback loop that adds the weighted energy of its output signal
to its input possesses the dynamical properties of a Hopf bifurcation”.

From a general discussion point of view, it is true that by means of an appropriately operated feedback
loop, a large class of nonlinear dynamical systems can be brought from fixed-point into oscillatory
behavior—some of them by means of a Hopf bifurcation, but not necessarily—as well as from chaos
into regular oscillations, and so on [11–13]. Whether the feedback mechanism will produce the desired
oscillation and what kind of bifurcation it will demonstrate depends on the delay necessarily involved,
and the feedback strength. Moreover, every control system when active has effects additional to the
original system, compare, e.g., [14,15]. In full generality, the above claim therefore is incorrect.

More specifically, the “Sonar Hopf cochlea” extends a resonator model by positive feedback, with
the objective to use a parametrized positive feedback function so that a limit cycle emerges by means
of the Andronov–Hopf mechanism. Unfortunately the discussion of the Andronov–Hopf bifurcation in
feedback systems as provided is fragmentary, partly wrong and historically inadequate. The key point
made in [1] is that the equation

1

ω0

dΓ

dt
+ (ζ − gµ)Γ +

∫
ω0Γdt+ gΓ | Γ |2 −Θ = 0 (6)

precisely models their electronic system. About this equation the authors say “.. is in the form of a first
order system that displays the dynamical properties of the Hopf bifurcation.” “We are on the critical
point, and hence supercritically stable when ξ = gµ. Therefore, using this model we are able to tune the
resonators to stable, critical, and unstable operating points simply by varying µ.” From the biophysical
point of view, the introduction of the feedback function

A = g(µ− | Γ |2) (7)

that leads to this equation seems to be motivated by the nonlinear term of the Poincaré’s Hopf equation
normal form, adequate for systems of the van der Pol equation type. Equation (6) is, however, not of the
van der Pol type. Therefore, the choice (7) is arbitrary, since it is unrelated to any modeling assumptions
of the cochlea. Also authors’ conclusion that a Andronov–Hopf bifurcation arises is in no way obvious.
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We note that in contrast to the statement provided in [1], the fundamental integro-differential Equation (6)
is of second and not of first order. A first order system would not be able to generate stable oscillations.

The analysis provided up to this point does not reach beyond a steady state, pure tone analysis. If
a feedback mechanism is needed to keep it at the desired bifurcation location, even if the amplification
had the correct form, this would not be instantaneous. Different unwanted effects all known from delay
control mechanisms must be expected. The dynamic response, a very essential feature of a cochlear
device, cannot safely be retrieved from this oversimplified picture. Whereas the ultimate mathematically
precise description would probably have to be given in terms of spectra of resonances [16], an
“acceptably correct” mathematical description would at least require the framework of delay differential
equations. The proof for the occurrence of a Hopf bifurcation given in the manuscript [17] unfortunately
points to the void. The presented framework is therefore insufficient for pinning down auditory Hopf
amplification behavior by approximatively implementing compressive nonlinearity (to whatever extent
of precision, see the discussion below). The characteristics of a Hopf system embrace much more than
that, and the mammalian hearing process makes, in fact, heavy use of many of these properties [18].

From an engineering point of view, ignoring relevant mathematic details in this description, the “Sonar
Hopf” construct is an example of well-known feedback systems with limit cycles, known under the
name of Lure systems. For a systematic engineering approach to Lure type systems with nonlinear
feedback and limit cycles, the theory of Sepulchre and Stan [19] would have been helpful (see also the
dissertation of Stan [20] for further details). This analysis can be applied to rather general linear systems
(including resonators) with nonlinear feedback functions, resulting in a sophisticated formulation of the
Andronov–Hopf bifurcation of Lure systems. Within this theory [19], a sound mathematical discussion
of the system class depicted in Figure 4 of [1] could be given, along the Figures 2 and 3 as follows.

Figure 2. Equivalent representations of the Lure SISO nonlinear system described.

The feedback system of Figure 3 has the following energy interpretation: Passivity of Hk∗ (with k∗

identifying the bifurcation point) allows for a lossless exchange of energy between two storage elements.
The static nonlinearity ϕk “regulates” the dissipation in the feedback system, restoring energy when it
is too low, and dissipating energy when it is too high. In the celebrated van der Pol oscillator, the two
storage elements are a capacitor and an inductor, whereas the dissipation is regulated by means of (for
instance) a tunnel-diode circuit modeled as a static negative (i.e., active) resistance. Theorem 2 in [19]
extends this feedback mechanism for oscillations to higher-dimensional systems. It can be noted that
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the local argument given there in the proof of Theorem 2 essentially shows that the (arbitrary) passive
system H reduces to an integrator on the center-unstable manifold. It should also be noted that, starting
from an arbitrary passive system H , putting an integrator in the feedback loop as in Figure 3 forces the
Hopf bifurcation scenario because of the resulting presence of a zero at s = 0 in the transfer function

Gk(s) =
sH(s)

s+ (1− k)sH(s)
(8)

Figure 3. Forcing the Hopf bifurcation with an integrator in the feedback loop and H passive.
The case H(s) = 1/s corresponds to Lienard systems.

We feel that for a “scholarly” approach as taken in the paper, these relations fundamental for the
understanding of the “Sonar Hopf” concept should not be ignored. We also note that the electronic
literature notion of an “operating point” generally does not embrace the unstable fixed point at the origin.
Finally, the absolute signs used in Equation (6) make no sense in the given context because this equation
is an equation in the reals.

5. “Sonar Hopf” Electronic Cochlea

The main claim then is that the response of the constructed electronic device is faithfully represented
by Equation (5). As a proof, in Figure 5 of [1], two device measurements are shown. Of interest is that in
the response provided in Figure 5(b), even the most fundamental traces of a Hopf bifurcation are missing.
Close to the bifurcation point, a Hopf system will display the “critical slowing down” phenomenon (in
this context, a citation of [17] would have been helpful). Moreover, there is a huge offset from the
zero line, pointing into different directions depending on the signal size. A proper Hopf system would
be hardly doing that. To corroborate these objections, we numerically simulate their equation, where
we use Equation (4) in [9] at the parameters given therein (note that in this equation, the absolute
signs make no sense either). Using an effective µeff := µg − R = −0.2, corresponding to the third
curve displayed in Figure 2 of [9], we find a critical slowing down that contradicts the behavior of their
device, see Figure 4. Therefore, the behavior of their electronic system is not generated by a genuine
Hopf system.
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Figure 4. Blue: Envelope of the exponential decay from larger towards smaller stimulation
according to Equation (5), using the same temporal units as in [1]. Red: Results from
the device (according to Figure 5(b) in [1]). The asymmetric response and the substantial
decay mismatch indicate that Equation (5) does not provide an accurate description of the
electronic device.
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Figure 5. (a) Original measurements (2004) from a cochlea with directly implemented
Hopf amplifier outer hair cells, reproduced in [21]. Input stimulation range: 80 dB. For
more refined measurements and more complete information see, e.g., [22,23] and, most
recently, [24]. (b) Chinchilla cochlea [25]. To be compared with Figure 6(a) from [1].
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The concluding statement “We present a two dimensional (2D) model of the cochlea which includes
supercritically stable amplification (a Hopf bifurcation) in a physiologically realistic way” seems
therefore insufficiently supported by mathematical and biological evidence. The implementation of a
compressive nonlinearity similar to that observed in a Hopf system is not sufficient for establishing
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a Hopf system. The cochlea active amplifiers are located in the outer hair cells that are likely to
undergo Hopf bifurcations. From here to arrive at the postulated “change of the quality factor” in a
“physiologically realistic way” [1] seems to require more care, even more so if a “biophysically realistic”
meaning were implied as well—perhaps not necessarily from an electronic device design point of view,
but certainly from a biophysics and mathematics point of view.

For the reader it would also have been interesting to be able to compare the “Sonar Hopf”
implementation against a direct implementation of active Hopf hair cells amplifiers, such as the earlier
electronic Hopf cochlea [21,26,27], which is based directly on a Hopf process of the auditory outer
hair cells.

Recently, this device was used to gain insight into the perception of mammalian hearing [18]. For
this to substantialize, extending the earlier presentation [22], in [18] a generic comparison between this
cochlea and the biological measurements was provided [24]. These results summarize the state of art
of the correspondence between electronic Hopf cochlea designs and the mammalian hearing system that
has already been achieved. We feel that the “Sonar Hopf” cochlea article could have benefitted from
bringing these results (known to the authors) to the attention of the reader.

6. Conclusion

Our analysis shows that the close correspondence between the “Sonar Hopf” device and behavior of
a genuine system at a Hopf bifurcation point claimed in [1] is mostly formal. In essential parts, the
biological foundation is not from first principles and the mathematical formulation is misleading. With
our review, we hope we have identified and clarified the most pertinent shortcomings and have pointed
out contexts that might have been helpful for the reader to better understand and assess the “Sonar Hopf”
cochlea concept.
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