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Abstract

Offshore wind energy plays an important role in the successful implementation of the energy
transition. However, without subsidies, it is not yet sufficiently competitive compared to
other renewables or conventional fossil fuels. This is why offshore wind turbines have to be
structurally optimised with regard to economic efficiency. One possibility to significantly
increase economic efficiency is to improve the reliability or at least to assess present reliability
levels precisely. For an accurate reliability assessment during the design phase, probabilistic
analyses based on time-domain simulations have to be conducted. In this thesis, a methodol-
ogy for a comprehensive probabilistic design of offshore wind turbines with special focus on
their substructures is developed and applied. All investigations are based on time-domain
simulations. This leads to more accurate results compared to semi-analytical approaches
that are commonly used for probabilistic modelling at the expense of higher computing times.

In contrast to previous probabilistic analyses, considering only particular aspects of the
probabilistic design, this work defines a comprehensive analysis that can be split up into the
following seven aspects: deterministic load model, resistance model (failure modes), uncer-
tainty of inputs, design of experiments, sensitivity analysis, long-term extrapolation/lifetime
distribution, and economic effects.
For five of these aspects, scientific innovations are realised, while state-of-the-art approaches
are applied for the last two aspects. First, a method is developed in order to efficiently
consider soil effects in offshore wind turbine simulations. This method is integrated in a state-
of-the-art model for offshore wind turbines to enhance it by considering soil characteristics.
At the same time, the number of degrees of freedom is kept constant. Second, the uncertainty
of the most important inputs, i.e. environmental conditions, is determined. Theoretical
statistical distributions of environmental conditions - like wind speeds - are derived using
real offshore measurement data. State-of-the-art approaches are improved by using more
sophisticated distributions. This enables a better agreement of theoretical and empirical
distributions. Moreover, a variety of environmental conditions - having been neglected so
far - is taken into account. Although there is some inherent uncertainty for every input, this
uncertainty influences relevant outputs (e.g. reliability) only in some cases. Therefore, third,
global sensitivity analyses are applied to determine significant inputs. All other inputs are
set to deterministic values to reduce computing times. Especially for non-linear systems,
the developed approach is more accurate than commonly used sensitivity analyses in the
field of wind energy. Since - due to computational limitations - it is not possible to simulate
the entire lifetime of an offshore wind turbine, long-term extrapolations have to be applied.
These extrapolations increase the uncertainty of lifetime estimations. If probabilistic inputs
are used, this effect is even intensified. Hence, several improved sampling techniques are de-
veloped. They enable a significant reduction of the extrapolation-based lifetime uncertainty
compared to classic approaches. Finally, the effect of variable, distributed lifetimes on the
economic profitability of wind farm projects is investigated. In contrast to state-of-the-art
investigations, economic aspects are not included in the engineering model, but independent



economic and engineering models are combined. This enables high-quality results in both
disciplines.

Using the methodology for comprehensive probabilistic designs that is developed here, it is
demonstrated that probabilistic analyses of wind turbines using time-domain simulations are
possible. For this purpose, it is necessary to reduce computing times by applying adequate
sensitivity analyses and extrapolation techniques. These approaches are developed in this
thesis. Moreover, based on present findings, well-founded recommendations for efficient
and realistic probabilistic simulations of offshore wind turbines are given. Finally, since
the profitability of wind turbines depends significantly on the service life and lifetimes
scatter substantially, deterministic approaches cannot be economically optimised. Hence,
probabilistic analyses are valuable.
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Kurzfassung

Für die erfolgreiche Verwirklichung der Energiewende spielt die Offshore-Windenergie eine
entscheidende Rolle. Allerdings ist sie ohne Subventionen noch immer kaum konkurrenz-
fähig gegenüber anderen erneuerbaren Energien oder fossilen Energieträgern. Daher ist
eine strukturdynamische Optimierung von Offshore-Windkraftanlagen hinsichtlich ihrer
Wirtschaftlichkeit unumgänglich. Eine Möglichkeit, die Wirtschaftlichkeit signifikant zu
steigern, ist die Verbesserung oder zumindest genaue Kenntnis der Zuverlässigkeit von
Windkraftanlagen. Um Zuverlässigkeiten bereits in der Entwurfsphase präzise zu bestimmen,
müssen probabilistische Analysen, die auf Simulationen im Zeitbereich basieren, durchgeführt
werden. Die Entwicklung einer umfassenden Methodik für den probabilistischen Entwurf von
Offshore-Windkraftanlagen mit dem Fokus auf der Substruktur und deren Anwendung ist der
Kern dieser Arbeit. Hierbei ist insbesondere hervorzuheben, dass alle Untersuchungen auf
Simulationen im Zeitbereich basieren. Dies erhöht im Vergleich zu den in der Probabilistik
oft verwendeten semi-analytischen Ansätzen die Genauigkeit, wobei auch die Rechenzeiten
ansteigen.

Im Gegensatz zu bisherigen probabilistischen Ansätzen, die zumeist nur bestimmte Teilaspekte
des probabilistischen Entwurfs berücksichtigen, wird hier eine umfassende probabilistische
Analyse definiert, die aus den folgenden sieben Teilaspekte besteht: Deterministisches
Lastmodell, Widerstandsmodellierung (Fehlermöglichkeiten), Unschärfe in Eingangsgrößen,
numerische Versuchsplanung, Sensitivitätsanalyse, Langzeitextrapolation/Lebensdauervertei-
lung und wirtschaftliche Aspekte.
Wissenschaftliche Neuerungen werden bei fünf der zuvor genannten Punkten erzielt. Für
die anderen beiden Teilaspekte werden Ansätze nach dem Stand der Forschung verwendet.
Zunächst wird eine effiziente Methode zur Berücksichtigung von Bodeneigenschaften entwi-
ckelt. Diese Methode wird in eine Offshore-Windkraftanlagenmodellierung nach dem Stand
der Technik eingebunden, um diese hinsichtlich der Berücksichtigung von Bodeneigenschaften
zu erweitern. Gleichzeitig wird die Anzahl der Freiheitsgrade nicht erhöht. Der zweite Schritt
behandelt die Unschärfe der wichtigsten Eingangsgrößen, der Umgebungsbedingungen. Hier-
zu werden reale Offshore-Messdaten verwendet, um theoretische Verteilungsfunktionen für
Einwirkungsparameter wie Windgeschwindigkeiten abzuleiten. Im Vergleich zu bestehenden
Ansätzen werden durch komplexere Verteilungsfunktionen verbesserte Übereinstimmungen
mit den empirischen Verteilungen erzielt. Außerdem wird eine Vielzahl von bisher vernach-
lässigten Umgebungsbedingungen untersucht. Obwohl jede Größe eine gewisse inhärente
Unschärfe aufweist, hat die Unschärfe nur in einigen Fällen einen Einfluss auf die relevanten
Ergebnisse (z. B. die Zuverlässigkeit). Daher beschäftigt sich der dritte Schritt mit der
Entwicklung globaler Sensitivitätsverfahren zur Bestimmung jener Eingangsgrößen, deren
Unschärfe relevant ist. Alle anderen Eingangsgrößen können deterministisch behandelt
werden, um Rechenzeit zu sparen. Das entwickelte Verfahren zeichnet sich im Vergleich zu in
der Windenergie üblichen Ansätzen durch eine hohe Genauigkeit in Bezug auf nichtlineares
Systemverhalten aus. Für Windkraftanlagen ist die Langzeitextrapolation von besonderer



Bedeutung, da die Simulation der gesamten Lebensdauer mit heutiger Rechenleistung nicht
annähernd möglich ist. Diese Extrapolation stellt eine mögliche Fehlerquelle dar und erhöht
die Unschärfe der Lebensdauerberechnung. Da diese Problematik durch die Verwendung
von probabilistischen Eingangsgrößen verstärkt wird, werden im vierten Schritt verbesserte
Stichprobenverfahren entwickelt. Diese Verfahren sind in der Lage die extrapolationsbedingte
Unsicherheit der Lebensdauervorhersage im Vergleich zu klassischen Verfahren deutlich zu
reduzieren. Im abschließenden Schritt wird der Einfluss einer nicht konstanten (verteilten)
Lebensdauer auf die wirtschaftliche Profitabilität von Windparkprojekten untersucht. Im
Gegensatz zu Untersuchungen nach dem Stand der Forschung werden hierfür nicht nur
wirtschaftliche Aspekte im Ingenieurmodell berücksichtigt, sondern eigenständige ökono-
mische und Ingenieurmodelle kombiniert. Dies ermöglicht qualitativ hochwertige Ergebnisse
in beiden Bereichen.

Mit Hilfe der hier entwickelten umfassenden Methodik kann gezeigt werden, dass probabilis-
tische Analysen von Windkraftanlagen mit Simulationen im Zeitbereich realisierbar sind.
Hierzu müssen Rechenzeiten durch den Einsatz geeigneter Sensitivitäts- und Extrapola-
tionsverfahren verkürzt werden. Entsprechende Verfahren wurden im Rahmen dieser Arbeit
entwickelt. Außerdem werden auf Basis der gewonnenen Erkenntnisse Empfehlungen für
effiziente und realitätsnahe probabilistische Simulationen von Offshore-Windkraftanlagen
gegeben. Abschließend wird die Notwendigkeit von probabilistischen Analysen deutlich,
da Lebensdauern hohe Streuungen aufweisen und die Profitabilität von Windkraftanlagen
signifikant von der Gesamtlaufzeit abhängt. Somit sind deterministische Betrachtungen
wirtschaftlich gesehen nicht optimal.

Schlagworte: Offshore-Windenergie; probabilistische Analyse; Unschärfe; Ermüdung
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1 Introduction

The present thesis is motivated by the need of innovation and progress in the field of offshore
wind energy. Additional developments are required to turn offshore wind energy into a
seminal technology in order to achieve the goals set for the deployment of renewable energies.
In this context, the reliability of offshore wind turbines (OWTs) is an essential factor for cost
reductions and safety reasons. To assess and optimise the reliability of OWTs, probabilistic
analyses for the design1 are required. However, till now, probabilistic analyses of OWTs are
rare, time-consuming, and based on highly simplified models. This research gap is addressed
by the present thesis.
This first chapter starts with a short general motivation, followed by an introduction to
the state of the art. Subsequently, the research gap is mapped out and objectives of this
thesis are specified. Lastly, the outline of this thesis is given and the interconnection of the
included publications is illustrated.

1.1 Motivation

The significance of renewable energies for the global energy production with regard to a
reduction of greenhouse gas emissions and a sustainable utilisation of resources increases
continuously. In Germany, this importance is even more pronounced due to the nuclear
phase-out after the catastrophe in Fukushima in March 2011 in addition to the energy
transition in general. The German government aims at reducing greenhouse gas emissions
by at least 55 % below 1990 levels by 2030 and by at least 80 % by 2050 [153]. Furthermore,
the share of renewable energy in final energy consumption shall be at least 30 % by 2030 and
60 % in 2050 [153]. Wind energy is a pillar for the achievement of these goals, as it already
accounts for a major proportion of the energy in gross power generation with more than
12 % overall and about 40 % of the renewable energy gross power generation in Germany [56].
Furthermore, annual growth rates are still about 10 % in Germany [150] and the European
Union (EU) [52]. Figure 1-1 illustrates the ongoing growth of wind energy.
Offshore wind energy has several advantages compared to onshore wind energy, e.g. higher
power outputs, steadier and less turbulent wind conditions, and less challenges regarding
public acceptance. Nevertheless, the share of offshore wind energy is still quite low with
about 2 % of the total gross power generation in Germany and the European Union [52, 150].
The offshore wind energy market is massively growing as shown in Fig. 1-1. In 2017, 20 %
of wind power installations in the EU were offshore [52]. The main reason for the small
overall share are significantly higher levelised costs of electricity for offshore wind energy
with about 0.15 e

kWh compared to 0.065 e
kWh for onshore wind energy [82]. This is displayed

in Fig. 1-2. Hence, although the first bids for subsidy-free wind farm projects have been
1In this thesis, probabilistic analyses are always used for design purposes. However, it not limited to
probabilistic design but deals with probabilistic analyses in general. Most probabilistic methods covered
here are application-independent and not design-specific.
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made recently, the reduction of costs is essential. These bids are at least partly a “bet on
the future”, on technological improvements of the next years. Therefore, reductions have to
be realised to fasten up the expansion of offshore wind energy and to include it into the
process of energy transition.
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Figure 1-1: Annual installed wind power in the European Union in GW with onshore and
offshore percentages according to the wind report 2017 by the European Academy of Wind
Energy (EAWE) [52].
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in 2016 according to the International Renewable Energy Agency (IRENA) [82].

In contrast to onshore wind turbines, substructures and foundations of OWTs account for a
significant part of their overall costs [121]. Therefore, new concepts, like floating substructures
for greater water depths, are under development. Nevertheless, today, nearly all new installed
substructures are monopiles (nearly 90 %) or jackets (about 10 %) [71]. Improvements and
structural optimisations of these types of substructures with respect to costs will be expedient
- at least for the next decade - to substantially decrease overall costs of offshore wind energy.
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For these optimisations, it is indispensable to accurately model the dynamic behaviour,
environmental conditions (ECs), reliability, etc. There are several standards and guidelines
that define how OWTs and their substructures should be designed and modelled2 [37, 53, 84].

Offshore wind turbines have to be designed with a certain reliability level specified in current
standards [37, 84]. The topic of reliability is of further interest for OWTs. As OWTs are
unmanned structures with no residents in the closer surroundings, reliability is more an
economic than a safety aspect. Hence, costs of offshore wind energy can be decreased
significantly, if the required reliability is regarded as an economic variable instead of a fixed
value, as stated in current standards. However, this is not a straightforward task. First,
this approach needs coupled techno-economic models that are not yet available. Second,
probabilistic models are needed, as all inputs - like environmental conditions or material
parameters - are uncertain. Nevertheless, it is state of the art to model wind turbines using
deterministic time-domain approaches and to consider safety factors to ensure a certain
reliability or to use simplified, less accurate semi-analytical probabilistic approaches.
As a consequence, several aspects regarding the improvement of OWT designs by means of
probabilistic analyses are evident. Four of them are the key topics of this thesis.
First, an adequate modelling of wind turbines meeting all requirements of current standards
is needed. On the one hand, this model has to represent the turbine behaviour accurately,
since only a high accuracy justifies the higher computational costs compared to state-of-the-
art semi-analytical models. On the other hand, computing times have to be still manageable,
since probabilistic analyses demand a significant amount of model evaluations. In this
work, an existing simulation code is enhanced by an effective soil model3 to meet these
requirements (cf. Section 2). This enhancement enables more accurate modelling of the
dynamic behaviour compared to common approaches that neglect soil-structure interaction
[145, 209, 220]. Other improvements of state-of-the-art codes that might be necessary for
the next generation of wind turbines with growing dimensions, for example, geometric or
material non-linearities, are not considered in this work.
Second, the uncertainty of all significant parameters4 has to be characterised. In this work,
only physical (aleatory) uncertainties are considered. Other types of uncertainties - like
model or statistical uncertainties (epistemic uncertainty) - are not taken into account (cf.
Section 1.2.5). For all “important” inputs, underlying theoretical statistical distributions -
representing the inherent, physical uncertainty - are determined. In some cases, literature
values are utilised, whereas for other parameters, distributions5 are derived using available
raw data (i.e. empirical distributions). Compared to previous research [15, 51, 68], more

2Information on coupled aero-hydro-servo-elastic OWT modelling in the time domain is given in Section
1.2.3.

3In this thesis, the term “soil model” is used quite broadly. It is neither limited to geotechnical models nor
it is restricted to real soil-structure interaction with two-way coupling. Here, “soil model” compromises
all methods that are somehow capable of modelling the connection of soil and structure by including soil
characteristics in the structural turbine model.

4“Parameters” is used synonymously with “inputs” here. Examples are wind speeds, steel densities, the
number of rotor blades, structural damping ratios, etc. This is consistent with the common use in
structural engineering. This definition is given here, because in a probabilistic context, definitions do not
agree (the term “parameter” denotes statistical parameters of distributions, e.g. the mean value, while
inputs are called “variables”).

5The expression “distribution” refers to “theoretical statistical distribution functions” or distribution
functions in general. If only empirical distribution functions are meant, this is stated explicitly.



1.2. State of the art 4

sophisticated theoretical distributions are utilised (cf. Section 3) that lead to a more accurate
representation of the real empirical distributions. Since computing times of probabilistic
analyses can be decreased, if the number of probabilistic inputs is reduced, non-influential or
non-significant parameters are set to deterministic values. To identify those inputs that are
influential (i.e. the uncertainty of these parameters influences important outputs, for example,
lifetimes or maximum stresses), global sensitivity analyses are applied. In this context, a
new stepwise global sensitivity method is developed (cf. Section 4) that is characterised by a
good compromise between accuracy and computing time.
Third, the development of a general methodology to determine lifetime distributions and
accompanying economic effects within acceptable computing times and accuracy is required.
Improved sampling concepts are developed (cf. Section 5.1) to reduce the number of required
model evaluations for a well-founded fatigue lifetime estimation. In contrast to other
improved sampling concepts [127, 185], not only simulation data is used for validation
purposes, but the general validity is tested using measurement data (cf. Section 5.2).
And fourth, by applying this lifetime calculation scheme to OWTs and by combining it with
a techno-economic model, economic effects of uncertain lifetimes of various substructure
designs are assessed (cf. Section 6). This combined, interdisciplinary model is capable of
evaluating the economic efficiency of wind turbine designs. This is a major improvement
compared to state-of-the-art concepts that commonly optimise with respect to the structural
weight or capital expenditures [62, 96, 105].
After all, the comprehensive probabilistic modelling presented in this thesis enables a
significant progress in OWT reliability modelling. Unlike most probabilistic approaches
[122, 175, 178, 191], here, all analyses are conducted in the time domain leading to more
realistic results. Moreover, experimental and field measurement data is used frequently to
validate concepts and to achieve more realistic results. For example, for the soil model
(cf. Section 2), large-scale measurements are used, the theoretical statistical distributions
in Section 3 are derived using offshore measurements of environmental conditions, and in
Section 5.2, in situ strain measurements of offshore wind turbines are used for validation
purposes.

1.2 State of the art
In this section, an overview of the state of the art in probabilistic modelling is given.
While some sections focus on offshore wind turbines, most parts - especially definitions and
methods - are generally valid for probabilistic modelling of structures. Since, the significance
of probabilistic analyses is partly based on reliability assessments, the first part covers
reliability aspects - based on semi-probabilistic and probabilistic approaches. On that basis,
the concept of probabilistic analyses is presented and state-of-the-art approaches for OWTs
are discussed. Furthermore, intermediate steps of a full probabilistic analysis are clarified.
The following sections cover the state of the art of the various steps of a probabilistic analysis
with respect to OWTs.

1.2.1 Reliability assessment
Probabilistic analyses are strongly related to reliability assessments. Therefore, before
presenting the state of the art in probabilistic modelling of OWTs, this connection is
described. At first, it has to be defined what is meant by reliability and reliability level.
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Then, a clear distinction between reliability analysis and probabilistic analysis is given.
Lastly, existing reliability methods are presented. For further reading it is referred to
standard textbooks in structural reliability, e.g. Madsen et al. [110] or Melchers and Beck
[116].

Definition: reliability

In general, the reliability of a system is defined as:

reliability = 1− probability of failure. (1.1)

In this context, the probability of failure (Pf ) is the probability that loads or effects (E) are
larger than the corresponding resistances (R):

Pf =
∫ ∫

p(g(E,R) < 0)dEdR. (1.2)

Here, p is the probability density function (PDF) of the limit state function g(E,R) = R−E.
Figure 1-3 illustrates generic probability density functions of effects and resistances.
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Figure 1-3: Illustration of generic failure probabilities with assumed independence of statisti-
cally distributed effects and resistances.

For deterministic inputs (see Fig. 1-4), this design practice would lead to failure probabilities
of zero. However, in reality, structures do fail with a certain probability. The reason for
this possible failure are all kinds of uncertainties. Examples for these uncertainties are
physically stochastic inputs (e.g. material uncertainties), model or measurement uncertainties,
or statistical uncertainties. For the different kinds of uncertainties, there are various
classifications [12, 92, 116] that are presented in detail in Section 1.2.5. In this work,



1.2. State of the art 6

−2 −1 0 1 2 3 4 5 6 7 8 9 100

0.5

1

Save
region

Failure
region

PD
F

Det. effect (Ek) Design effect (Ed)
Det. resistance (Rk) Design resistance (Rd)
Det. limit state function (g(Ek, Rk)) Design limit state function (g(Ed, Rd))

Figure 1-4: Illustration of a generic deterministic design using a safety factor approach (cf.
“Level 1 reliability methods: semi-probabilistic methods” in Section 1.2.1). Deterministic
values are marked with k, design values with d.

only physical (aleatory) uncertainty is taken into account. In any case, neither effects nor
resistances are actually deterministic, but statistically distributed (cf. Fig. 1-3).
To incorporate the different types of uncertainties, several methods of reliability analysis -
presented in the following subsections - are available. Frequently, four groups of methods
are differentiated according to their complexity [43, 110, 116, 173]. This classification is
illustrated in Fig. 1-5. However, there are also slightly different definitions. For example, the
ISO standard (International Organization for Standardization) [86] defines in this context
three so-called levels of verification: semi-probabilistic, reliability-based, and risk-informed.
In general, the topic of structural reliability is discussed in many basic textbooks [110, 116]
and is addressed by several standards [43, 86, 92]. More specific for wind turbines, an
overview of reliability methods applied to wind turbines is given, for example, by Jiang et al.
[91]. All reliability analyses are used to fulfil a design criterion. This means that they are
intended to guarantee that designed structures fail with a probability that is lower or equal
to the desired maximum failure probability (reliability level). Hence, the initial challenge is
the selection of an adequate reliability level.

Reliability level

The reliability level of a structure defines the desired maximal failure probability. For OWTs,
the selection of a suitable reliability level, is an important but not straightforward topic.
In the first place, reliability always has a safety aspect, as failing structures can endanger
people and the environment. However, as OWTs are unmanned structures with no residents
in the closer surroundings, this aspect is less relevant for OWTs. Besides, it is an economic
factor, since neither frequently failing nor massively overdesigned structures are economically
optimised. It is possible to determine an optimal target reliability by applying level 4
reliability analyses (cf. Fig. 1-5). In this case, advanced Monte Carlo simulation (MCS)
considering economic effects is required. Since such analyses are complex and computationally
expensive, commonly, a “suitable” target reliability is defined. For structures in general,
this is done, for example, in Eurocode 0 [43] or in the Joint Committee of Structural
Safety (JCSS) standard [92]. The value for the target reliability level depends on so-called
“consequence classes” defining how risky a failure of this structure is concerning human
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Figure 1-5: Various methods with increasing levels of complexity and growing computational
costs (level 1 to level 4) that can be used to determine or ensure the reliability of a structure
(following Madsen et al. [110]). FORM and SORM stands for first- and second-order
reliability methods, respectively, and MCS for a Monte Carlo simulation. µ and σ are the
mean and standard deviation vector of all inputs.

lives and economic consequences. Additionally, it can depend on the cost for increasing the
reliability and on the reference period. The approach in Eurocode 0 [43] is summarised in
Table 1-1.

Table 1-1: Reliability classes (RC) according to Eurocode 0 [43].

Reliability class Maximal failure probability
Reference period 1 year Reference period 50 years

RC 1 1.33× 10−5 4.83× 10−4

RC 2 1.30× 10−6 7.23× 10−5

RC 3 9.96× 10−8 8.54× 10−6

For OWTs, there has been a long debate which target reliability is appropriate and which
reference period should be utilised [69]. Frequently, the same consequence classes as for
onshore wind turbines were applied, although different boundary conditions apply. On the
one hand, the accessibility of OWTs is limited leading to higher repair costs [201]. Therefore,
a higher reliability level could be applied. On the other hand, OWTs are unmanned structures
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with no residents close to them. Hence, the reliability of OWTs is mainly an economic
aspect with less relevance for the public leading to lower target reliability levels [69, 204].
In the past, inconsistent values were applied. Det Norske Veritas [37] proposes an annual
failure probability of 10−4. This value is chosen by Muskulus and Schafhirt [131] for their
probabilistic analyses as well. Sørensen and Toft [178] recommend significantly higher failure
probabilities (i.e. lower safety levels) of 2× 10−4 to 10−3 for one year. Tarp-Johansen [191]
calibrates safety factors with an annual failure probability of about 2× 10−4. It becomes
apparent that target failure probabilities were not consistent and varied between 10−4 to
10−3. This changed with the new standards by Det Norske Veritas and Germanischer Lloyd
(DNV GL) regarding support structures of wind turbines [40] and floating wind turbines
[41]. Both recommend a nominal annual failure probability of 10−4 and a maximal annual
failure probability 5 × 10−4. This maximal annual failure probability is consistent with
the recommendation in the draft version of the International Electrotechnical Commission
(IEC) standard for onshore wind turbines [85]. Due to the fact that OWTs are unmanned
structures, all proposed values indicate very low reliability classes (below RC 1). For manned
OWTs, nominal annual failure probabilities are decreased to 10−5 [41].

Reliability assessment versus probabilistic analyses

Before presenting the state of the art in reliability analyses, a distinction between reliability
analysis and probabilistic analysis is made.
Reliability analyses are objective-orientated. They are used to demonstrate that design crite-
ria are fulfilled. Hence, the aim of such an analysis is to guarantee a failure probability equal
or smaller than a desired reliability level. This can be done by various methods discussed in
the following subsections. Most commonly, level 1 reliability methods (semi-probabilistic
methods) are used [53, 84]. Level 1 reliability methods (see next subsection) do not consider
uncertainties directly. Failure probabilities are not calculated, but deterministic inputs and
safety factors are applied.
On the contrary, probabilistic analyses are more general procedures (method-orientated).
Although they can be used for reliability assessments as well, their focus does not have to be
the reliability itself. The general idea is to consider uncertainties directly using statistical
distributions of input parameters. The statistical uncertainty proceeds through the model
and leads to statistically distributed outputs like lifetime distributions. A more detailed
description of probabilistic analyses follows in Section 1.2.2.

Level 1 reliability methods: semi-probabilistic methods

Semi-probabilistic reliability analyses (level 1) are still most commonly used and are recom-
mended by current standards. Therefore, the derivation of partial safety factors based on
these target reliabilities is briefly discussed. Partial safety factors aim at guaranteeing that
failure probabilities are equal or lower than the target reliability. Therefore, the characteristic
(deterministic) loads and resistances are multiplied with partial safety factors to increase
loads (decrease resistances) and to get so-called design values. So, a conservative design on
the safe side is achieved. For ultimate load design, this state-of-the-art method is illustrated
by Eq. 1.3 and Fig. 1-4:

γnEd = γnγfEk ≤
1
γm

Rk = Rd (1.3)
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with Ed and Ek being design and characteristic loads, respectively and R being resistances
with the same indices. γ represents partial safety factors for loads (f), resistances (m), and
the consequence of failure of the specific component (n). Values for these safety factors are
given in current standards [53, 83]. Different values for these factors are recommended for
different types of analysis (ultimate, fatigue, etc.) and design situations (normal, abnormal,
etc.). Neither the (calculation) basis nor the degree of conservatism of these factors is always
known. To enable economic designs, safety factors have to be derived carefully for the
specific structure and reliability level. This means that safety factors have to be adjusted
accurately using probabilistic analyses, for example, level 3 or 4 reliability methods. The ISO
standard [86] recommends to only use semi-probabilistic methods, if failure consequences,
reliability classes, failure modes, and material properties can be fairly standardised, as in
this case, safety factors can be sensibly adjusted using more advanced methods.

Level 2 reliability methods: second moment methods

Second moment methods (level 2) are the linking element between semi-probabilistic methods
(level 1) and probabilistic methods (level 3; discussed in the next subsection). Together with
level 3 methods, the ISO standard [86] defines them as reliability-based design procedures.
While semi-probabilistic methods do not yield any information regarding the present failure
probability and probabilistic methods can be very time-consuming, level 2 methods are a
compromise between accuracy and efficiency. Overviews are given, for example, by Melchers
and Beck [116] or Spaethe [182]. Two kinds of second moment methods can be distinguished:
There are statistical moment-based methods - like the first-order second moment (FOSM)
method - and first- or second-order reliability methods (FORM/SORM). In any case, second
moment methods model uncertain parameters by using two values (i.e. the first (µ) and
the second (σ2) statistical moment). Correlations can be taken into account by correlation
coefficients, while the distributions of the parameters are assumed to be normal.
Methods based on statistical moments have the lowest computing times. The limit state
function g(R,E) is approximated by a Taylor series. Depending on the number of terms
of the Taylor series that are kept and of statistical moments that are considered, different
methods are available. For the FOSM method, only the linear term and the first two moments
are used [29]. Hence, the limit state function (g) of the input vector (x) is approximated at
the mean vector (µ) of the N inputs:

g(x) ≈ g(µ) +
N∑

i=1

∂g(µ)
∂xi

(xi − µi). (1.4)

For the quadratic approximation of the Taylor series:

g(x) ≈ g(µ) +
N∑

i=1

∂g(µ)
∂xi

(xi − µi) + 1
2

N∑
i=1

N∑
i=j

∂2g(µ)
∂xi∂xj

(xi − µi)(xj − µj), (1.5)

there are, for example, the second-order third moment6 (SOTM) approach [73] or special
“incomplete second-order approaches” (ISOA) [102].
The reliability methods like FORM or SORM [50, 70, 146] pursue a similar concept of

6Although a third moment method is strictly speaking not a level 2 reliability method, as three values per
input are used, normally, third moment methods are still counted as level 2 methods.
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approximating the limit state function with a Taylor series. However, contrary to moment-
based methods, not the mean value of the input parameters is used to evaluate the limit
state function, but the “most probable point”. This point has to be found by an optimisation
procedure. Therefore, reliability methods need M times more evaluations of the limit state
function than moment-based methods. Here, M is the number of iterations needed to find
the “most probable point”. Depending on the problem, the computational effort of these
methods can be close to moment-based methods. However, for probabilities close to 0.5, the
computational cost can even exceed the effort of MCS [89].

In the field of wind energy, there are several examples using probabilistic approximations:
Márquez-Domínguez and Sørensen [112] use FORM to calibrate fatigue design factors for
OWTs. Kelma et al. [99] approximate loads by applying one-dimensional regressions with
quadratic terms based on time-domain simulations. This enables fast evaluations of the
limit state function at the expense of accuracy.

Level 3 reliability methods: probabilistic methods

Probabilistic methods (level 3) are probably the most straightforward approach. According
to the ISO standard [86], they also represent reliability-based design procedures. Their
methodological basis is MCS. This means that several simulations for effects and resistances
are conducted. The failure probability is the amount of cases where effects are higher than
resistances divided by the overall number of cases. Although this concept is easy to under-
stand and to implement, it is not very frequently used due to several challenges. First, it can
be time-consuming to compute enough cases to approximate failure probabilities or the limit
state function itself. Second, for small failure probabilities, the number of calculations has to
be even higher to get reliable values for the failure probability [67], as the fitted distribution
in the tails does not necessarily agree with the distribution around the mean value. This
means that the empirical distribution might, for example, be well approximated by a normal
distribution around the mean value, but extreme values (i.e. tails) are better fitted by an
extreme value (Gumbel) distribution. And third, effects and resistances cannot be treated
independently, as one and the same input can influence effects and resistances. Consequently,
special sampling methods like importance sampling [35, 106, 152] were developed to reduce
the amount of required samples. Importance sampling concentrates samples on “important”
regions of the data space. For example, more samples are generated for parameter constella-
tions that might lead to failures (g(x) ≈ 0). Other advanced sampling concepts for small
failure probabilities and variations of importance sampling are, for example, line sampling
[33], subset simulation [139], or enhanced Monte Carlo simulation [135]. Another concept of
limiting the overall numerical effort is to reduce the computing time of each model evaluation
by replacing the full simulation model by a meta-model. For meta-models [18, 20], the limit
state function is evaluated several times (generating so-called training data), so that the
design space is covered as good as possible. Then, a mathematical meta-model for the limit
state function - based on the training data - replaces the complex structural model. As the
evaluation of the meta-model (e.g. linear regression, Gaussian process regression, etc.) is
much faster than of the original model, it is evaluated instead of the complex structural
model. It has to be noted that the quality of the approximation depends significantly on
the training data.
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For wind turbine applications, probabilistic methods are not widespread. This is due
to limitations regarding computing times. Moreover, probabilistic results are no longer
unambiguous (i.e. one single value) but distributed. This makes the assessment of the
findings - especially for industry - more complex. Morató et al. [122] apply a Gaussian process
regression as a meta-model for stresses and moments to approximate the reliability of OWT
support structures. Muskulus and Schafhirt [131] calculate failure probabilities of OWTs
using importance sampling. Furthermore, Müller and Cheng [127] compute probabilistic
fatigue damages based on MCS with quasi-random sampling. Other aforementioned advanced
sampling methods have not been used in OWT modelling yet.

Level 4 reliability methods: probabilistic optimisations

Although Veldkamp [204] conducted an optimisation of partial safety factors (i.e. reliability)
with regard to costs already in 2006, probabilistic optimisations (level 4) - for example,
advanced economic MCS - are still not state of the art. These methods take economic
aspects into account when optimising the reliability. This means that reliability levels are
no longer set to constant values but are considered as a variable in the optimisation process
with regard to economic efficiency. In the PSA-OWT (probabilistic safety assessment of
offshore wind turbines) project [69], it is proposed to use such level 4 reliability analyses to
find the optimal safety level. On the one hand, very low reliability levels lead to economically
inefficient structures, since the high failure probability causes follow-up costs. On the other
hand, too high reliability levels are not economically efficient as well. The reason are high
costs that result from making the structure very reliable. Hence, the best reliability level
can only be found by optimising it with respect to the economic efficiency. In Section 1.2.9,
there is a more detailed discussion of economic effects regarding OWT reliability.
For level 4 methods, the definition of the ISO standard [86] is slightly different. The highest
level of verification according to the ISO standard is risk-informed design optimisation.
This means that it also refers to advanced probabilistic optimisations, but focuses not only
economic aspects. Risk-informed methods should cover the whole spectrum of risks from
loss of human lives to environmental aspects all the way to monetary losses. Hence, the
economic optimisation is only part of it.

1.2.2 Probabilistic analysis of offshore wind turbines

Definition: probabilistic analyses

Without a doubt, deterministic models have the great advantage of small computing times.
Moreover, they lead to unambiguous, undistributed results. That is why they are still most
commonly used. However, such approaches do not provide any information on statistical
distributions of the model outputs (e.g. lifetime) resulting from uncertainties. To compute
output distributions (p(y)), full probabilistic analyses are necessary.
The general concept of probabilistic analyses is to replace deterministic input values7 (x)
by variables that are statistically distributed (p(x)). Furthermore, statistical disturbance

7“Inputs” include all physical variables that are used in the “black box” model. These inputs can be load
parameters (e.g. wind speeds) but also resistance or system parameter (e.g. yield strength of steel) and
exhibit aleatory uncertainty.
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variables8 (e) can be introduced. Then, the uncertainty proceeds through the model. This
leads to statistically distributed (i.e. uncertain) outputs. Examples can be forces, stresses,
lifetimes, etc. Augusti et al. [8] summarise probabilistic structural analyses as follows: It
is “to determine the probabilistic properties of the output random process [...] from the
probabilistic properties of the data given as random quantities and from the values of the
data given as deterministic quantities. Another source of uncertainties in the output process
lies in the [...] mathematical (analytical or numerical) model of reality” (Augusti et al., 1984,
pp. 3-4). This quite generally applicable definition is visualised in Fig. 1-6. The deterministic
model can be regarded as a “black box” with uncertain inputs. (Physical) inputs (e.g. wind
speeds) and model parameters (e.g. the uncertainty of the dynamic model) are sampled
using their distributions. The “black box” model is evaluated several times and yields a
distribution of the outputs (e.g. lifetimes).

Deterministic model

(“black box”)

(aleatory uncertainty)

Outputs

x1

x2

x3 e1 = const

e2

y1

y2

y3
x4 = const

(Physical) inputs

(epistemic uncertainty)

(Mathematical) inputs

Figure 1-6: Visualisation of probabilistic structural analyses. Distributions of (physical)
inputs (p(x)) and disturbance variables (p(e), not taken into account in this thesis, cf.
Section 1.2.5) are used to evaluate the deterministic “black box” model N times. The
uncertainty proceeds through the model and yields distributions of outputs (p(y)).

Simplified models

One application of probabilistic analyses is the derivation of distributions for important
outputs. These outputs are, for example, modal properties or lifetimes. Another application
- in the context of reliability analyses - is the calculation of failure probabilities to determine
the risk associated with a structure. Failure probabilities can be used to calibrate safety
factors for level 1 reliability analyses. In this context, the work of Tarp-Johanson, Sørensen,
Márquez-Domínguez, and Ronold et al. has to be mentioned [112, 151, 174, 179, 190, 191].

8“Statistical disturbance variables” are all non-physical inputs, i.e. mathematical model parameters with
epistemic uncertainty, for example, model uncertainty.
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All of them adjust safety factors for wind turbines (or their components) on the basis
of simplified statistical models. Model uncertainties (sometimes also called model errors)
are considered in addition to aleatory uncertainties on the load and resistance side. The
statistical approaches are applied to semi-analytical, simplified limit state equations of load
effects (load responses). When using these simplified models, an analysis in the time domain
is not conducted. Therefore, dynamic effects resulting from uncertainties are not taken into
account by these approaches.
To approximate dynamic effects, some new simplified models - mainly calibrated using
time-domain simulations - have been proposed recently. An approximation of the dynamic
response of the turbine with uncertain input parameters is executed by Kim and Lee [100].
They use a static analysis in combination with a so-called “peak-response factor”, which was
calibrated in advance. This enables an approximation of a dynamic time-domain analysis,
while computing times remain small. So, uncertainties in several input parameters can be
taken into account. Further probabilistic reliability analyses of the full wind turbine system
are performed, for example, by Morató et al. [122] and Abdallah et al. [1]. They apply
Kriging meta-models based on time-domain simulations to reduce the computational cost.
Hence, although their meta-models are relatively accurate approximations, the work is still
based on simplified models that are not capable of representing all non-linear and unsteady
effects. Moreover, the accuracy of these simplified models highly depends on the training
data.

Component models

In contrast to fully coupled aero-hydro-servo-elastic time-domain models for OWTs, where
probabilistic analyses are still extremely rare, for component models, probabilistic modelling
is relatively widespread. The reliability of the foundation of a monopile using uncertain
soil parameters is investigated, for example, by Schmoor and Achmus [164] or Carswell
et al. [23]. Both do not simulate the turbine itself, but use equivalent loads at mudline.
Further probabilistic analyses of foundation piles are conducted by Schmoor et al. [165].
This study takes model uncertainties being calibrated using large-scale experiments into
account. A probabilistic investigation of the transition piece of a monopile is executed
by Lee et al. [105]. Probabilistic analyses of turbine blades for onshore and offshore wind
turbines are conducted, for example, by Hu et al. [74] and Bacharoudis et al. [9]. In both
cases, the analysis is based on meta-models to decrease the computational effort. This
is necessary in these cases, as finite element (FE) models with many degrees of freedom
(DoF) are used for the blades. Furthermore, there are several probabilistic approaches that
derive distributions for modal parameters of the entire wind turbine. An example is the
work of Zaaijer and Vugts [216]. Kallehave et al. [96] add an optimisation process regarding
eigenfrequencies to their probabilistic analysis. Finally, one rare example of the consideration
of polymorphic uncertainty (aleatory and epistemic uncertainty; cf. Section 1.2.5) using
imprecise probability in wind energy is the recent work of Caboni et al. [22]. Caboni et al.
optimise the aerodynamic airfoil design and consider polymorphic uncertainty in a single
key parameter in the airfoil model by using imprecise probabilistic methods. More precisely,
they use traditional probability methods that are combined with evidence theory to create a
range of probabilistic distributions (i.e. imprecise distributions). They conclude that the
use of imprecise probability methods leads to slightly different designs that are more robust
against uncertainties.
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Time-domain models

As mentioned before, probabilistic analyses of fully coupled time-domain models for OWTs
are still quite rare. However, due to increasing computing power and a more pronounced
focus on turbine reliabilities, recently, there have been some applications. The first com-
prehensive probabilistic time-domain analysis of offshore wind turbines - without using
meta-models - was conducted by Cheng [25] in 2002. As computing times at that time
were even more challenging for time-domain simulations, the focus of his work is the load
extrapolation for ultimate loads. Fatigue loads are not considered by Cheng. Based on this
work, Veldkamp [204] carried out another full probabilistic time-domain analysis of OWTs.
As an addition to Cheng’s work, his focus is on fatigue loads. Special emphasis is given
to the model uncertainty of the fatigue model. Cheng and Veldkamp both apply several
simplifications to manage computing times. Soil variability is not considered at all. As the
uncertainty of the soil can be significant [69], this is a clear simplification. Furthermore,
only monopile substructures are analysed. Modern alternatives for greater water depths
like jackets or tripods with more complicated structural models are omitted. Moreover,
the selection of the probabilistic subset is based on their expert knowledge, not being an
objective measure. Another current probabilistic analysis using time-domain simulations is
conducted by Muskulus and Schafhirt [131]. Here, the calculation of wind and wave loads is
uncoupled to keep computing times manageable. Furthermore, the amount of stochastic
variables is relatively small. In contrast to previous studies, a soil model and some soil
uncertainty are included. For OWTs with floating substructures, the first probabilistic study
using time-domain simulations is done by Müller and Cheng [127]. They use quasi-random
sampling to reduce the computational effort. Still, only three environmental conditions are
treated probabilistically. Thence, there is a need for a holistic probabilistic analysis9 using
coupled time-domain simulations.

Probabilistic simulation framework

For a holistic probabilistic analysis, several steps are needed that are related to the classical
probabilistic risk assessment (PRA). Although there are several slightly different methodolo-
gies for PRA in literature [173, 183, 207], the steps are more or less the same. An example
based on Sørensen [173] is shown in Fig. 1-7a. Based on these PRA concepts, holistic
probabilistic simulation schemes can be defined. The general structure of such a scheme is
shown in Fig. 1-7b and is elucidated in section 1.4.1. On the one hand, compared to PRA
schemes, a holistic probabilistic simulation framework does not focus on risks and their
consequences. Therefore, steps like the analysis of failure consequences, risk assessment, and
risk treatment are not directly included but incorporated by investigating economic effects.
On the other hand, the “analysis of probability / uncertainty analysis” is further divided into
the determination of uncertainties and the design of experiments. Furthermore, for OWT
applications, an additional long-term extrapolation is required for a holistic probabilistic
modelling.

9“Holistic probabilistic analysis” means that the analysis does not only cover particular aspects. For
example, probabilistic analyses without sensitivity analyses or an uncertainty assessment of inputs are
possible, if the relevant information is taken from literature. In a holistic concept, these aspects are
included, so that a holistic analysis does not rely on literature values/previous research.
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(a) General probabilistic risk assessment
scheme based on Sørensen [173].
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(b) Holistic probabilistic modelling scheme
developed in this thesis (cf. Section 1.4.1).

Figure 1-7: Probabilistic modelling schemes.

1.2.3 Deterministic modelling of offshore wind turbines

Wind turbine models

Wind turbines in general and OWTs in particular are complex structures exhibiting a
pronounced dynamic behaviour. The interaction of non-linear structural behaviour with
aerodynamics and soil characteristics has to be taken into account. Furthermore, the electric
system, especially the control system of turbines, interacts with the structure. In case
of OWTs, hydrodynamic effects have to be considered as well. Therefore, wind turbine
models tend to be sophisticated and coupled aero-elastic models. This means that the
turbine is not split up into several component models being solved independently, but
dependencies and interactions are taken into account by utilising an overall model. In the
past, static approaches, frequency-domain solutions, or semi-analytical models have been
used. However, current standards require coupled aero-elastic time-domain simulations for
the certification of wind turbines [53, 84]. Normally, these coupled time-domain simulations
are based on deterministic inputs, but consider the stochastic nature of turbulent wind and
irregular waves making their evaluation more time-consuming. These models are called
quasi- or pseudo-deterministic or just deterministic. Over the past years, several time-



1.2. State of the art 16

domain simulation codes meeting the requirements of the standards and being based on
finite elements, multi-body systems (MBS), and modal approaches have been developed.
The codes were initially designed for onshore turbines. With the growth of offshore wind
energy, codes were adapted for offshore applications. Some of the most important codes are
“Bladed” [17], FAST (Fatigue, aerodynamics, structures, and turbulence) [94], and HAWC2
(Horizontal axis wind turbine code 2nd generation) [104]. Overviews of the most common
codes and details regarding differences of codes are given, for example, by Böker [16]. FAST
occupies a special position for research purposes, as the entire source code is open source
and can be adapted and enhanced by everyone.
To adapt onshore wind turbine models for offshore applications, the substructure (e.g.
monopile) has to be included and hydrodynamic loads have to be considered. FE and MBS
models of substructures, in particular of jackets, have many DoF. Hence, to keep computing
times manageable, a reduction of DoF is almost indispensable. Therefore, in most cases,
reduction techniques are applied. A rudimentary approach is a static reduction adapted
from Guyan [57], which rearranges the structural equation so that external forces of the
lower part of the equation system are zero:(

K11 K12
K21 K22

)(
u1
u2

)
=
(

F
0

)
. (1.6)

Here, Kij are sub-matrices of the stiffness matrix, u and F are the displacement and external
force vectors, respectively, and 0 is the zero vector.
More sophisticated reduction methods, preserving modal parameters, are based on the work
of Craig Jr. and Bampton [30]. The general idea is to apply the Ritz transformation:

ΦT MΦü + ΦT CΦu̇ + ΦT KΦu = ΦT F, (1.7)

where M, C, and K are mass, damping, and stiffness matrices, respectively. The matrix
Φ consists of constraint modes (ΦR), fixed-interface normal modes (ΦL), and the identity
matrix (I):

Φ =
(

I 0
ΦR ΦL

)
. (1.8)

Such a modal reduction according to Craig Jr. and Bampton [30] is used, for example,
in HAWC2 and FAST [172, 209]. In FAST, this enables a reduction from thousand DoF
to about 10 DoF for the substructure [172]. The main limitation of all these reduction
schemes is that the linearity of the equations of motion is required. Hence, non-linearities, for
example, resulting from large deformations, cannot be covered. This is not so relevant in the
current context, but might become an important shortcoming, if wind turbine dimensions
continue to increase.
One main challenge in OWT modelling - independent of the code - is the scarcity of real
field measurement data of OWTs to validate models. Hence, it is hardly possible to assess
the accuracy of existing models and to quantify existing model uncertainties. Validations
using field measurement data are not available, so that so far, validations have mainly been
performed against experimental data with scaled structures [148, 149]. Alternatively, codes
were cross-verified in several extensive studies [95, 144, 145, 159]. For these verification
campaigns, a 5 MW reference turbine was defined being mainly based on data of the REpower
5M machine [21] and the Dutch offshore wind energy converter (DOWEC) 6 MW turbine
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[101]. Specifications of this reference turbine and corresponding substructures are defined
in various technical reports [95, 101, 211]. Furthermore, consistent load cases are freely
available and can serve as a reference [210].

Soil model

For OWTs, soil-structure interaction is an important topic that has to be considered in some
way. However, sophisticated soil models based on FE approaches have many DoF making
them unsuitable. An alternative are so-called p-y methods. These methods are based on the
Winkler approach [214] and model foundation piles using beam elements that are supported
by uncoupled non-linear springs. This leads to significantly fewer DoF than FE approaches.
Nonetheless, in contrast to applications in the oil and gas industry, where the use of non-
linear soil models is state of the art [14, 119], for OWTs, it is still quite common to neglect
soil-structure interaction in coupled time-domain simulations. One rare example of the use
of a non-linear soil model in coupled OWT simulations with jacket substructures is the work
of Alati et al. [4]. Commonly, OWTs - especially with jacket substructures - are assumed
to be clamped to the seabed [69, 145, 209]. This simplification is, inter alia, reasoned by
the applied reduction schemes for the substructure (e.g. Craig-Bampton reduction [30]).
Since reduction schemes are not necessary in the oil and gas industry, non-linear soil models
are - as stated before - state of the art for these applications. For OWTs, the reduction of
the substructure - for example, to its first 10 modal DoF - is conducted only once at the
beginning of the time-domain simulation. Hence, a non-linear soil-structure interaction in
each time step is impossible. This means that p-y methods cannot be applied. To combine
reductions of the substructure and considerations of soil characteristics, a soil model has to
be included in the reduction scheme itself. So far, this has not been common practice. This
leads to the first research focus of this thesis: the enhancement of state-of-the-art OWT
models by an effective soil model (cf. Section 2). Therefore, in the following, the state of the
art in soil modelling for OWTs is presented.

There is a wide variety of soil models for OWTs. An illustration of some approaches (non-
exhaustive) is shown in Fig. 1-8. The complexity of the soil model and the number of DoF
increases from the left (clamped structure) to the right (FE model). The simplest approach
is to neglect the soil and to assume the structure to be clamped to the seabed [69, 145, 209].
However, it was shown that the dynamic behaviour cannot be modelled accurately using
this simplified approach [95].
A relatively rudimentary approach is the so-called apparent fixity length. Here, still, a
clamped pile foundation is modelled. However, the rigid connection is not at the seabed,
but at a fictive point below the surface. This approach is described by Zaaijer [217] using
values for the distance of the fictive point below mudline taken from Barltrop and Adams
[11]. Although the apparent fixity approach enables some kind of soil consideration, the
dynamic behaviour - for example, the first eigenfrequency - is not modelled correctly [59].
Therefore, a different apparent fixity approach is used, inter alia, in the OC3 project [140].
The distance below the seabed is determined iteratively by matching the first eigenfrequency
of the substructure. This leads to a better representation of the dynamic behaviour, but
still, higher eigenfrequencies, etc. cannot be matched using the apparent fixity approach.
More detailed models use uncoupled or coupled springs at the seabed, so-called soil matrices
or super-elements [45, 59, 76, 140, 217]. These models are of special interest in this thesis.
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Figure 1-8: Illustration of various soil models for a monopile foundation. The complexity
of the soil model and the number of DoF increase from the left (clamped structure) to the
right (FE model). From left to right: clamped structure, apparent fixity length, soil matrix,
distributed springs, FE model.

On the one hand, they are mostly compatible with reduction schemes for the substructure.
On the other hand, the matrix-based approach yields a more realistic soil representation
than previously mentioned concepts. The matrix-based models can be improved by taking
non-linear load-stiffness correlations into account. For example, Dubois et al. [45] enhance
the classical spring model by assuming load-dependent spring stiffnesses, or Hübler et al.
[76] define operating point dependent soil stiffnesses.
The most common type of soil models for pile foundations are distributed, non-linear springs
like p-y curves as recommended by the American Petroleum Institute (API) standard [6].
Compared to soil matrices, a better representation of the real soil behaviour is possible.
In return, the number of DoF is higher and a compatibility with substructure reduction
schemes is precluded. For standard p-y curves - originally based on the work of Murchison
and O’Neill [129] - the simulation results do not accurately match the simulation results of
FE models or experimental results. This is shown, for example, by Hald et al. [64] and Lesny
and Wiemann [107]. The comparison with experimental data shows that especially for large
pile diameters, p-y curves of the API standard [6] are not valid [64]. For small or initial
loads, stiffnesses are underestimated, whereas for ultimate loads, too high soil stiffnesses
are predicted. Therefore, different p-y curves are proposed, for example, by Kallehave
et al. [97] and Sørensen et al. [180, 181]. Kallehave et al. modify the initial stiffness of
the soil to achieve more realistic results. Sørensen et al. focus on the soil stiffness under
extreme loads. Amar Bouzid [5] and Thieken et al. [193] assess the modified p-y curves
and conclude that none of them are satisfying. That is why Thieken et al. [192] develop a
significantly different p-y model. It is based on completely new “basic p-y curves” taking
both the underestimation for small loads and the overestimation of the soil stiffness for
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high loads into account. Afterwards, the “basic p-y curves” are iteratively adjusted to
consider interaction effects of the deflection line with the bedding resistance as well as the
pile tip effect. Experimental investigations of the performance of the various p-y models in
a dynamic context are missing, although the dynamic soil behaviour is relevant for coupled
OWT simulations.
For special purposes, models with spring-damper combinations [200] or spring-slider combi-
nations [13] can be used, if the focus is on damping.
The most accurate models at the expense of high computing times and a large amount
of DoF are FE models [2, 32]. Despite their good representation of the real soil-structure
interaction, using FE models in coupled time-domain simulations for OWTs is impractical,
since the number of DoF of the soil model would exceed the number of overall DoF.

In this thesis, the focus regarding soil modelling is not on new and accurate models, but on
an efficient consideration of soil-structure interaction in probabilistic, coupled time-domain
simulations for OWTs. Since computing time is a limiting factor for probabilistic time-
domain simulations, for efficient soil modelling, the number of DoF and compatibility with
the overall turbine model, especially if reduction methods are applied, are top priorities.
Thus, p-y curves and FE models are not suitable. Super-element approaches are most
relevant [45, 59, 76, 140, 217] in this context. The possible inclusion of these matrix-based
approaches in the Craig-Bampton reduction was shown by Häfele et al. [59] and Hübler et al.
[76]. The drawback of state-of-the-art linearised super-element approaches is the missing load
dependency. This shortcoming is resolved here (see Section 2) by linearising the non-linear
soil behaviour at the present load level (i.e. operating point). The use of non-linear soil
matrices, as proposed by Dubois et al. [45], is not possible, since non-linear matrices cannot
be included in standard reduction schemes. For the proposed load-dependent, linearised
approach, a limited accuracy compared to, for example, FE models is accepted to fasten up
probabilistic time-domain simulations.

1.2.4 Resistance models and failure modes

In the previous section, the deterministic wind turbine model is described. This model is
capable of simulating acting loads. However, to calculate failure probabilities according to
Eq. 1.2, not only loads or effects (E) have to be known, but resistances (R) are needed as
well. Therefore, the most important failure modes have to be identified. Resistance models
and failure modes are not the focus of this thesis (cf. Section 1.1). Hence, state-of-the-art
approaches are utilised. For OWTs, these approaches and the most important failure modes
that have to be considered are stated in current standards. The IEC [84] gives some general
remarks. Ultimate limit states (ULS), fatigue limit states (FLS), stability (buckling), and
maximal deflections (for example, to prevent blade-tower strikes) are the failure modes
of interest. Further details regarding failure modes and how to model them are given
in standards like the Germanischer Lloyd (GL) or Det Norske Veritas (DNV) standard
for offshore wind energy [37, 53]. These standards provide details for the design of steel
structures, concrete structures, or grouted joints. Since this thesis focuses on monopile and
jacket substructures, which are both made of steel, the focus is particularly on the welded
connections (not looking at grouts). Additionally, guidance for the foundation design is
given, as failures due to geotechnical reasons are considered to be significant as well. As
these two standards just provide general guidance for OWT design, there is a lack of details
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for some failure modes. Therefore, references to specialised standards [38, 184] concerning
resistances of steel structures for ULS and FLS, respectively, and to standards [42] regarding
pile foundations are given.
Here, resistances are modelled as being mainly based on material and geometric parameters.
All standards assume deterministic values for these parameters. However, not only loads are
uncertain, but resistances scatter or are vaguely known as well. This uncertainty is quite
high especially for fatigue resistances. This is the reason why Veldkamp [204] places special
emphasis on the probabilistic modelling of the fatigue resistance. Muskulus and Schafhirt
[131] introduce uncertainties to resistances by using distributed values for the yield strength
of steel. In the PSA-OWT project [69], the variety of the soil resistance is considered and can
exceed the assumed uncertainty in loads. Hence, a probabilistic consideration of geotechnical
limit states can be of special interest.

1.2.5 Uncertainty in input parameters

Theory

After having built up models for loads and resistances, the third step according to the scheme
in Fig. 1-7b is the determination of uncertainties in inputs. Therefore, at first, a short
definition of uncertainty is given. In literature, there are various definitions [12, 92, 116].
One approach is a more theoretical, philosophical differentiation of two types: aleatory and
epistemic [12, 116]. Aleatory uncertainty is random physical variability or scattering of
parameters. It is irreducible. Examples are alternating wind speeds due to changing weather
conditions or spatial and temporal variations in soil conditions. Epistemic uncertainty
covers, for example, lack of knowledge and incomplete, ambiguous or dubious information.
Hence, epistemic uncertainty is reducible. Examples are measurement inaccuracies or model
uncertainties. While probabilistic approaches are used to model aleatory uncertainty, for
epistemic uncertainty, different methods like Bayesian statistics or set-theoretical models can
be applied [12]. If a combination of aleatory and epistemic uncertainties occurs, imprecise
probability can be used to represent both types of uncertainties independently. Another,
more practical, engineering way to classify uncertainties is the differentiation in physical,
statistical, and model uncertainty [92]. This classification can be extended by adding,
for example, measurement uncertainty [173] or phenomenological, decision and prediction
uncertainty and human factors [116].
In any case, in wind energy research, mostly the random physical variability of parameters
(aleatory uncertainty) is considered. Furthermore, some researchers additionally take model
uncertainties into account. Nevertheless, nearly exclusively, probabilistic approaches are
applied, even if model uncertainty is considered [131, 178]. One rare example of the use
of imprecise probabilities is the work of Caboni et al. [22]. The consideration of model
uncertainties is problematic or at least challenging, as first, classical probabilistic models
are only of limited suitability (model uncertainties represent epistemic uncertainty). Second,
the determination of actual model uncertainties for wind turbine models is nearly impossible
due to limited data for model validations (discussed in Section 1.2.3). Frequently, it is
abstained from explicitly considering model uncertainty, as there is an essential lack of
profound analyses of it. Hence, a consideration would always be biased in some way. So,
the rest of this section focuses on aleatory uncertainty, and in this thesis, only aleatory
uncertainty is applied.
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Uncertain/deterministic parameters

To find theoretical statistical distributions for all relevant inputs that are not considered to
be deterministic, there are two main challenges. The first challenge is to determine those
parameters that have to be treated in a probabilistic manner and those that can be set
to fixed, deterministic values. Generally, two approaches can be used. The first one is a
sensitivity analysis. In this case, theoretically, all parameters are considered as probabilistic
inputs in the first place. Using sensitivity analyses, the amount of probabilistic inputs
(probabilistic subset) is reduced. Sensitivity analyses are discussed in Section 1.2.7 in detail.
The second approach is the use of technical expertise10. To some extent, technical expertise
has to be used in any case, since full sensitivity analyses are hardly practical. However,
most studies considering uncertainties in a fully coupled wind turbine model in the time
domain reduce the set of probabilistic parameters by utilising their technical expertise only.
For example, Veldkamp [204, 205] sets several parameters to deterministic values by stating
their influences to be negligible or their variations to be small. Negro et al. [136] investigate
where major uncertainties are present using technical expertise. Their focus is on model
uncertainties. Sørensen and Tarp-Johansen [177] optimise wind turbines with respect to
costs on the basis of a probabilistic reliability model. For this model, they state several
parameters to be uncertain. These examples of only using expert knowledge to set up a
probabilistic subset clarify the need for a more comprehensive uncertainty analysis based on
sensitivity analyses that is conducted in Section 4.

Statistical distributions

The second challenge is to define theoretical statistical distributions for identified, signif-
icant probabilistic parameters. In specific fields, like wind or wave parameters, various
investigations of uncertainties and their statistical distributions are available. To model
the uncertainty in wind parameters, Cheng [25] and Veldkamp [204] use their technical
expertise to state ranges or distributions, respectively. Furthermore, there are several wind
databases available. Ernst and Seume [47] and the PSA-OWT project [68] use data of the
German research platform FINO1 (“Forschungsplattformen in Nord- und Ostsee”) to derive
distributions for wind speeds, turbulence intensities, and wind shear power law exponents.
Bierbooms [15] uses the NESS (North European Storm Study) database [141] to deduce
wind and wave distributions that include interaction effects. Morgan et al. [123] evaluate
different kinds of theoretical statistical distributions for wind speeds on the basis of offshore
measurements in the United States of America (US). Schmidt et al. [162] derive combined dis-
tributions for wind and waves including their directions on the basis of FINO1 measurements.
Häfele et al. [60, 61] take data from the FINO3 platform for their distributions of dependent
wind and wave parameters. Stewart et al. [185, 186] set up a comprehensive database for
wind and wave conditions around the US using buoy measurement data. Distributions
for soil properties are proposed by Zaaijer [217] on the basis of his expert knowledge and
literature research. He divides the uncertainty into spatial and time (changes over lifetime)
uncertainties. For most parameters, he only proposes boundary values but no distributions.
Distributions for soil conditions are proposed, for example, by Kim and Lee [100]. They use
10The terms “technical expertise” and “expert knowledge” are quite vague. They cover knowledge based

on research and industry experience, non-citable literature, unpublished preliminary studies, but also
assumptions, etc. This means that they include all kinds of not further defined or stated sources of
“knowledge”.
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their technical expertise to state distributions. Carswell et al. [24] review current standards
like the DNV standard [36] and available literature [10, 142, 167] regarding distributions for
soil parameters. Material properties are often considered to be deterministic. Therefore,
only a few authors deal with probabilistic material properties [69, 178, 213]. These authors
do not use data to derive distributions but technical expertise and current standards. Zaaijer
[217] deals with some geometrical uncertainties (e.g. manufacturing tolerances). Although
aleatory uncertainty is mainly considered here, some examples for model uncertainty are
given as well. Fatigue model parameters are quite uncertain and might even be regarded as
determining [131, 205]. Here, for example, Veldkamp [204, 205] gives recommendations based
on expert knowledge. Furthermore, model uncertainties of the structural dynamics and the
climate statics are stated, for example, by Tarp-Johansen et al. [190]. Again, values are just
based on expert knowledge. Hence, it is apparent that for model uncertainties, well-founded
investigations for wind turbines are missing. Thus, the use of stochastic variables for model
uncertainties is subjective, and in this work, it is abstained from applying them.

Determination of distributions
Although a variety of theoretical statistical distributions for uncertain inputs for OWT
models is available in literature, a comprehensive compilation is missing. The different
sources - presented in the last subsection - may be incompatible. For example, wave dis-
tributions of deep water sites cannot be combined with wind distributions of nearshore
sites. Hence, for some applications or for parameters that have not been sufficiently covered
in literature yet, the derivation of theoretical statistical distributions from raw data (i.e.
empirical distribution) itself is a suitable alternative to literature values. In this thesis,
a database with theoretical distributions for several wind and wave parameters is set up
(cf. Section 3). Compared to state-of-the-art approaches [15, 51, 68], more sophisticated
theoretical distributions are utilised. For example, multi-modal and non-parametric dis-
tributions are taken into consideration, which improves the agreement of theoretical and
empirical distributions. Furthermore, data quality and/or relevance is improved (e.g. wind
measurements at about hub height) compared to other approaches [186]. And lastly, a larger
number of environmental conditions at the same site (e.g. wind shear, ocean currents, etc.)
are included. This reduces the challenge of incompatible data sources.
If theoretical distributions are derived using raw data, distribution fitting is needed. Ap-
proaches consisting of distribution fitting and testing the goodness of the fit are illustrated,
for example, by Morgan et al. [123]. Relevant methods for the fitting are, for example,
maximum likelihood estimation (MLE) or least mean square errors (MSEs). For the evalua-
tion of the goodness, tests like the Kolmogorov-Smirnov test (KS test) or the calculation
of the coefficient of determination can be used. If extreme values shall be extracted, addi-
tional extrapolation methods like the peak-over-threshold (POT) method are necessary [47].
Extrapolations methods will be evaluated in Section 1.2.8 in more detail.

1.2.6 Design of probabilistic experiments
Knowing the distributions of all significant, probabilistic parameters11, the next challenge is
to generate samples in an efficient manner. This procedure is called “design of probabilistic
11“Significant parameters” are those parameters that are selected (based on expert knowledge) or determined

(based on sensitivity analyses) to be treated probabilistically. This means that the uncertainty of these
parameters significantly influences the considered output.
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experiments” (DOE). Efficient sampling methods are relevant for nearly all disciplines using
simulations. Therefore, there is still ongoing fundamental research [168, 171]. These quite
theoretical considerations go beyond the scope of the present work. Hence, state-of-the-art
approaches - presented next - are utilised. Although purely theoretical considerations
regarding sampling methods are not covered by this work, more advanced sampling methods
are part of this thesis. However, these advanced, new sampling methods are not part of the
DOE itself, but are used for the long-term extrapolation in Section 1.2.8. Therefore, they
are partly dependent on the application and on the extrapolation scheme.
In general, the aim of a sampling process is to generate a set of samples that is as small
as possible by conserving all important information of the input parameters. This means
that samples have to represent (but not reproduce) distributions of the input parameters
and achieve a good resolution of the data space. Two types of sampling methods can be
distinguished. First, there are systematic methods like linear or quadratic sampling or full
factorial designs (cf. Fig. 1-9 (a)) that are mainly used for optimisation purposes [46]. Second,
there are stochastic and quasi-random methods that can be used for sensitivity, robustness,
or reliability analyses. The plain MCS [106, 117, 152] that has its origin in the 1940s (cf. Fig.
1-9 (b)) is probably the most common stochastic sampling method. It is based on the law
of large numbers and generates samples totally randomly. Uniformly distributed random
samples can be transformed to match statistical distributions of (correlated) parameters
afterwards. Using MCS, random samples are only equally distributed for high numbers of
samples. Otherwise, random clusters show up and the data space resolution is getting worse.
That is the reason for latin hypercube sampling (LHS) [114, 152]. It is an enhancement of
MCS that divides the data space into “stripes”, so-called hypercubes, with equal probabilities.
In each hypercube, one random sample is created. This reduces the effect of clustering (cf.
Fig. 1-9 (c)). An overview of enhancements of LHS reducing the correlation among inputs
or guaranteeing a better data space filling than classical LHS is, for example, presented
by Viana [208]. To avoid correlations and clustering that might occur due to the random
sampling process, alternatively, quasi-random sampling methods can be applied (cf. Fig.
1-9 (d)). These sampling techniques are based on quasi-random sequences like the Sobol’
[170] or the Halton sequence [65]. For the calculation of small failure probabilities, very high
numbers of samples are necessary. Therefore, approaches reducing the number of samples
to an acceptable level are needed. A definition of “acceptable level” cannot be given, as it
depends on the application, available resources, etc. One relevant method in this context
is importance sampling (IS) [35, 106, 152] that is illustrated in Fig. 1-9 (e). Here, samples
are mainly generated in the region of interest (e.g. high loads and low resistances that are
potentially leading to failures). This is achieved by changing or replacing the probability
distribution with an alternative distribution, the so-called mass function (cf. Fig. 1-9 (f)).
This mass function can be chosen arbitrarily, but this selection influences the performance
of IS significantly and an optimal mass function concentrates samples where they are needed
(g(E,R) ≈ 0). The potential use of a mass function is the reason why - at the beginning
of this section - it is stated that samples have to represent but not reproduce statistical
distributions. For structural reliability analysis, IS is proposed, for example, by Melchers
[115] or Hannus [66]. Other sampling methods that are suitable for small failure probabilities
are, for example, subset simulation [139] or enhanced MCS [135].

For OWTs and their components, mainly MCS is used [23, 164, 204]. However, recently,
other sampling methods have been applied as well. Müller and Cheng [127] use quasi-random



1.2. State of the art 24

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(b) Monte Carlo sampling

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(c) Latin hypercube sampling

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a) Full factorial design

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

34

35

36
37

38

39

4041

42

43

44
45

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

62

63

64

65

66

67

68

69

70

71

7273

74

75

76

77

78

79

80

81

82

83

84
85

86

87

8889

90

91

92
93

94

95

96

97

98

99

100

(d) Sobol’ sequence

0
0.5

1

0

0.5

1
0

2

4

(f) Mass function for IS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(e) Importance sampling (IS)

Figure 1-9: Generic examples to illustrate the procedure (e.g. systematic or random) and
performance (e.g. space filling) of various sampling concepts: (a) systematic sampling, full
factorial design (b) standard MCS with clusters due to limited sampling (c) LHS for a better
resolution of the data space (d) quasi-random sampling using Sobol’ sequence (e) importance
sampling for more samples in relevant regions of the data space (f) mass function that is
used for the importance sampling (i.e. more samples for high values of the mass function)

sampling based on the Sobol’ sequence. Importance sampling is utilised by Muskulus and
Schafhirt [131] and Stieng and Muskulus [187] to reduce sample sizes for their time-consuming
time-domain simulations.
As mentioned before, in addition to sampling for probabilistic analyses, for lifetime damage
extrapolations, several load situations have to be simulated as well. Therefore, an additional
advanced sampling of “load cases” is needed. This topic is discussed in more detail in Section
1.2.8 and improved sampling concepts are developed and validated in Section 5.1 and 5.2.

1.2.7 Sensitivity analysis

Figure 1-7 shows that sensitivity analyses can be conducted before and after the probability
determination. The aims of both types of sensitivity analyses are different. Homma and
Satelli [72] define the aim of sensitivity analyses as follows: “Sensitivity analysis (SA) of
a model output aims to quantify the relative importance of each input model parameter
in determining the value of an assigned output variable” (Homma and Satelli, 1996, p. 1).
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Bearing that in mind, two objectives of a sensitivity analysis can be highlighted. The first
one is to reduce the amount of parameters that have to be regarded as stochastic. Inputs
without significant influence can be treated deterministically. If this is the aim of the
sensitivity analysis, it has to be conducted before the uncertainty analysis (Fig. 1-7b). The
second objective is to identify subdomains of the full input domain (i.e. input subsets) where
outputs are most sensitive. These subdomains are the best starting points for optimisations.
Hence, this sensitivity analysis has to be conducted after the uncertainty analysis (Fig. 1-7a).
The methodology for both is the same.
In any case, two types of sensitivity analyses have to be distinguished. On the one hand,
there are local methods based on derivatives. These methods are quite efficient concerning
computing time. However, derivatives (∂yi/∂xj) are only valid at one position of the full
data space. For non-linear problems, it is not possible to make general statements based
on local methods [158]. On the other hand, there are global methods. These methods can
be used to analyse the entire data space. However, most global methods are much more
time-consuming. Although state-of-the-art turbine models neglect many non-linearities, for
OWTs, the function mapping inputs to outputs is still fairly non-linear so that local methods
are only partially suitable. Hence, in this thesis, the focus is on global sensitivity analyses.
A good overview is given by Saltelli et al. [158] and reviews are presented, for example, by
Iooss and Lemaître [87] or Tian [194].
In the area of global sensitivity analyses, there is a wide range of approaches from rudimentary
and straightforward to sophisticated ones. A first overview of the general model behaviour
can be achieved by graphical methods like scatter plots, cobweb plots, etc. [157]. One of
the most frequently used approaches in structural engineering is the one-at-a-time (OAT)
sampling [155]. Here, all parameters except one are kept fixed. The “free” parameter is
varied. In most cases, the maximum and the minimum of this parameter are tested. A
sensitivity index (SOAT,i) for the OAT method can, for example, be defined as follows:

SOAT,i = f(x1, x2, . . . , xi + ∆xi, . . . , xN )− f(x1, x2, . . . , xi −∆xi, . . . , xN )
2∆xi

, (1.9)

where f is the model function, x1 to xN are the N input factors and ∆xi is the variation in
the ith input factor. OAT sampling has the advantage of small computing times. It can be
used to identify those parameters that are influential [87] and it never detects uninfluential
ones as significant [155]. The opposite - never detecting influential inputs as non-significant -
is not the case. There are several reasons why OAT sampling should not be used. Saltelli et
al. [155, 158] criticise missing interactions between parameters and the inefficiency for higher
numbers of parameters. Alternatives, like the elementary effects method [125], regressions,
or variance-based methods [72, 169] are given. The elementary effects method is basically a
OAT sampling method. By changing the algorithm so that the variation of the parameters
does not always start from the same point (mean value of all parameters), the elementary
effects method overcomes some shortcomings of the classical OAT sampling. By correlating
input parameters with outputs, a regression analysis can be conducted. The correlation
between inputs and outputs can be used as a measure of global sensitivity. There are
several correlation coefficients available. For example, the standard regression coefficient,
the Pearson correlation coefficient, or the Spearman rank-order correlation are used [46, 87].
For an automatic selection of influential parameters, so-called subset selection methods
were developed. A good overview of different methods, like best-subset selection, forward
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selection, or backward elimination and of different selection criteria, like F-test, Akaike
information criterion (AIC) [3], or Bayesian information criterion (BIC) [166], that can
replace correlation coefficients is given, for example, by Miller [118]. More sophisticated
subset selection methods, so-called shrinkage and selection methods, are the non-negative
garrote method by Breiman [19] and the least absolute shrinkage and selection operator
(LASSO) by Tibshirani [195]. If all interaction effects among inputs and all non-linearities
shall be taken into account and if higher computing times are accepted, variance-based
methods are a good choice [72, 169]. Variance-based methods enable a computation of
so-called “total effects” that include all interactions:

ST i = Ex∼i(Vxi(y|x∼i))
V (y) = 1− Vx∼i(Exi(y|x∼i))

V (y) . (1.10)

Here, V (y) is the unconditional variance of the output y = f(x1, x2, . . . , xi, . . . , xN ).
Ex∼i(Vxi(y|x∼i)) can be interpreted as the expected variance that is left, if all factors
except the ith factor are fixed. Vx∼i(Exi(y|x∼i)) is the expected reduction of the variance, if
all factors except the ith factor are fixed.
As the calculation of total sensitivities is time-consuming, slightly different numerical meth-
ods were developed to improve this computation [72, 90, 156, 169]. Furthermore, there
are stepwise approaches proposed, for example, by Mokhtari et al. [120] that combine
regression methods with variance-based approaches to reduce computing times. On this
basis, in Section 4, a new stepwise sensitivity method is developed. By combining OAT,
a subset selection, and a variance-based approach, computation costs compared to pure
variance-based approaches [72, 169] are approximately halved. Furthermore, it is shown by
Hübler et al. [77] that the accuracy of this new stepwise approach is better compared to most
state-of-the-art simplifications (e.g. OAT analyses or regressions). Only meta-model-based
concepts achieve similar accuracies and could be included in the new stepwise approach to
enhance it.
The field of global sensitivity analysis is extensive. Nevertheless, examples of sensitivity
analyses in offshore wind energy, even for parts of a turbine, are rare. In most cases, the
term “sensitivity analysis” is used for an investigation of different parameter constellations
[23, 31, 131] or local methods are used [7]. For onshore turbines, Robertson et al. [147] use
the elementary effects approach to conduct a comprehensive global sensitivity analysis of
wind parameters. For offshore applications, a “real” global sensitivity analysis can be found
in the work of Ziegler et al. [219]. Ziegler et al. investigate fatigue loads for different site
conditions. In addition to simple OAT variations, they use scatter plots to analyse randomly
generated samples. In the PSA-OWT project [69], linear regressions with Pearson correlation
coefficients and coefficients of determination are used. The sensitivity of eigenfrequencies
of OWTs to changing environmental conditions, material, and geometrical parameters is
investigated. Velarde et al. [203] use linear regressions. They evaluate the sensitivity of
various ECs with regard to ULS and FLS loads of a gravity-based foundation of an OWT.
Stieng and Muskulus [187] analyse the global sensitivity of the failure probability of an entire
OWT. They apply a simplified, uncoupled time-domain model and investigate the sensitivity
of four parameters using a rank correlation. Hübler et al. [77] compare the accuracy and
computational efficiency of different global sensitivity methods for OWTs. They utilise a
coupled time-domain model, but limit their investigations to a single load case.
Nonetheless, only with a reduced number of uncertain parameters, probabilistic time-domain
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simulations are possible nowadays. To perform a well-founded reduction, global sensitivity
analyses are indispensable. Since there is a lack of “real” global sensitivity analyses for
OWTs, this topic is addressed in Section 4.

1.2.8 Long-term extrapolation
Current standards require aero-elastic time-domain simulations for the certification of wind
turbines [53, 84]. Using these simulations, it has to be proved that requirements regarding
failure modes (cf. Section 1.2.4) are met. This means that ULS and FLS proofs have to
be fulfilled. However, simulations for a lifetime of 20 years for FLS or even 50 years for
ULS are not manageable. Therefore, long-term extrapolations have to be applied. Using an
adequate long-term extrapolation, a certain amount of 10-minute simulations is sufficient to
approximate FLS and ULS loads with an appropriate accuracy. Effects like time-dependent
material properties (e.g. ageing, corrosion) are not considered by these extrapolation ap-
proaches or just in a simplified form. In the following, state-of-the-art methods for the FLS
extrapolation are summarised. Subsequently, although ULS is not the focus of this thesis,
some approaches for the ULS extrapolation are presented.

Fatigue limit state

For FLS, in a first step, short-term (10-minute) values have to be calculated, as fatigue
cannot be measured or simulated directly. In a second step, short-term values have to be
extrapolated to lifetime values.

On the one hand, for short-term damages, the procedure is fairly standardised. Recommen-
dations are given by the standards [53, 84]. An illustrative overview of fatigue values based
on measurements can be found in Hübler et al. [78] and is presented in Fig. 1-10.
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Figure 1-10: Flowchart presenting the short-term damage calculation procedure based on
strain measurements or simulated strains according to Hübler et al. [78] (FA: fore-aft, StS:
side-to-side).

The required steps are the following: At first, time series of stresses at all relevant locations
(e.g. blade root, mudline, welded connections, etc.) have to be determined using either
simulated forces and moments or measured strains. As stresses vary around the circumference
of the considered location, a directional dependence has to be taken into account. In this
context, several approaches are used: rotation of coordinates so that all stresses are in
fore-aft or side-to-side direction [78], use of several points around the circumference [38],
etc. Second, rainflow counting [44, 137] is applied to stress time series. Rainflow counting
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determines the number of stress cycles for different stress ranges. Strictly speaking, rainflow
counting should only be applied to cycles with zero mean. Therefore, for cycles with non-zero
mean values, corrections like the Goodman correction [54] can be applied. Third, since
stresses are significantly higher at details like notches, welds, holes, etc., hot spot stresses
have to be calculated. Therefore, so-called ”stress concentration factors” (SCF) - being
defined in standards [38, 48] - are applied to nominal stresses to correct them for increased
stresses at hot spots. Lastly, the conservative linear damage accumulation according to
the Palmgren-Miner rule and S-N curves (stress range versus maximum number of allowed
cycles) according to standards [38, 48] are utilised to determine the produced fatigue damage
of the considered short-term (10-minute) period:

D10min =
I∑

i=1

ni

Ni
, (1.11)

where ni is the number of cycles associated with the stress amplitude ∆σi, Ni is the en-
durance (number of cycles) for the same stress amplitude, and I is the number of considered
stress range bands/bins.

On the other hand, the extrapolation of short-term to long-term (i.e. lifetime) damages is
neither extensively investigated nor standardised. Although there are some requirements in
standards [53, 84], they remain fairly vague. For fatigue calculations, for different ECs, the
data space should be divided into bins. In each bin, at least six simulations of 10 minutes
have to be conducted. For wind speeds, bins with a resolution of less or equal than 2 m s−1

are required. For wave conditions, it is only stated that number and resolution have to be
sufficient. Bins for other ECs like turbulence intensities are not suggested. Hence, to reduce
computing times, in academia, commonly, only wind speed bins are used [131, 204, 220]
and all other ECs are assumed to be constant in each bin. In industry, a finer binning and
bins for more ECs are normally used. This grid-based approach is numerically inefficient
[55] and leads to a high computation effort [185] that is hardly practical in academia and
quite expensive in industry. Recently, Müller and Cheng [126] have shown that constant
ECs in each wind speed bin cannot reproduce the scattering in offshore fatigue measure-
ments. Furthermore, Zwick and Muskulus [220] show that using six simulations per bin
and exclusively wind speed bins (minimum requirements according to standards) leads to
highly uncertain approximations of lifetime damages. This effect is intensified, if scattering
ECs within each bin are included, as it is done by Häfele et al. [60]. The authors show that
even for 2048 overall simulations, distributed to bins according to the statistical occurrence
distribution of the wind speed, the error in the damage at an X-joint of the OC4 (Offshore
Code Comparison Collaboration Continuation) jacket is more than 10 % with a probability
of 5 % (95th percentile). This is why it is necessary to use better extrapolation methods.
A straightforward approach is the use of bins for several ECs (not only wind speed) and
a high resolution, as conducted by Stewart [185]. This grid-based approach is normally
used in industry, but in an academic context, it leads to hardly manageable computing
times. Moreover, Graf et al. [55] and Chian et al. [26] demonstrated that it is numerically
inefficient for high input space dimensions. Therefore, there is a current research focus on
methods reducing the computational effort while preserving a high accuracy. There are two
possibilities to achieve this aim: meta-models and advanced sampling techniques. Meta-
modelling for fatigue damages is applied, for example, by Zwick and Muskulus [221]. They
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reduce the number of simulations by a factor of seven without adding a significant amount of
additional uncertainty by applying a multivariate linear regression. Toft et al. [199] use, inter
alia, a central composite design as meta-model for fatigue damages. Again, the increase in
uncertainty due to the meta-model is small compared to the uncertainty introduced by the
finite number of simulated random seeds. Murcia et al. [130] apply polynomial meta-models
to calculate fatigue loads of an OWT under uncertain ECs. Müller et al. [128] estimate
fatigue damages by applying an artificial neural network regression. Moreover, Huchet
et al. [79–81] use an adaptive Kriging meta-model that reduces the required time-domain
simulations by a factor of 7 and more. Finally, Stewart [185] evaluates different meta-models.
He concludes that genetic programming is more suitable than linear regressions. Since meta-
models always introduce some additional model uncertainty, advanced sampling techniques
are an alternative. Here, Stewart [185] assesses the performance of a so-called “probability
sorting method” that focuses sampling on the most frequently occurring bins. This has
the advantage that bins that do not occur in reality - e.g. a calm sea during a storm -
are not simulated. This approach is similar to the approach by Häfele et al. [61]. Häfele
et al. generate samples according to the dependent probability distribution functions of
all considered ECs. Hence, only frequently occurring conditions are taken into account.
Müller and Cheng [127] apply quasi-random sampling based on Sobol’ sequences. This is
intended to achieve a better space filling design compared to random sampling. However,
the problem of all these approaches is that a low occurrence probability does not necessarily
imply an insignificant contribution to the overall lifetime damage. For this reason, Stieng
and Muskulus [188, 189] apply a sparse version of the state-of-the-art grid-based approach
that only uses grid points with a significant influence on the lifetime damage. The challenge
of this approach is to identify the most important grid points. For this purpose, Stieng
and Muskulus conduct a computationally expansive preliminary study using a full grid.
Hence, their approach can be improved with respect to the computing time. In this thesis,
alternative sampling concepts are developed and validated in Section 5.1 and 5.2.

Ultimate limit state

The best possible situation to determine ultimate loads is the availability of real ULS wind
data. For example, Larsen and Petersen [103] measured ULS loads for a 300-year storm.
However, this favourable situation cannot be assumed. Especially in the design phase, ULS
loads cannot be measured. Normally, wind data of several years is available that does
not include 50-year storms. Even if such an event occurs, the challenge is to recognise
it. Therefore, current standards [53, 84] define design load cases (DLCs) that have to be
simulated. First, these DLCs are based on extreme ECs, like 50-year storms. Second, fault
conditions and other special events have to be simulated. And lastly, for blades, extreme
loads at normal operation have to be extrapolated, since the highest loads (i.e. ultimate loads)
can also occur at rated wind speed and not only under extreme environmental conditions
[25].
Regarding the first type of DLCs (extreme ECs): If extreme ECs are not available, a common
approach is to use maxima of smaller time periods, like one year or four weeks. Annual
maxima have the advantage that seasonal effects are covered as described by Schmidt and
Hansen [161]. However, in many cases the amount of annual maxima is far too small [163].
Therefore, Schmidt et al. propose 4-week maxima [160, 163]. These maxima are fitted with
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Figure 1-11: Generic, exemplary time series that illustrates the picked maxima of various
peak extraction methods: (a) taking the global maximum of the time series (b) subdividing
the time series in blocks and using the maximum of each block (c) extracting all peaks above
a given threshold.

an extreme value distribution type-I (i.e. Gumbel distribution) that can easily be shifted to
other reference periods. So, annual distributions can be computed. The ULS wind speeds
are calculated as the 98th quantile of the annual extreme value distribution.
DLCs for fault conditions and other special events need separate treatment, since they are
nearly completely turbine- and controller-dependent. Moreover, the ability of state-of-the-art
simulation codes to model these events accurately is limited [212].
For extreme loads during normal operation, several methods extracting maximum loads from
time series at different wind speeds are available. Cheng [25] and Toft et al. [197] present
the three most common approaches for wind turbines: global maxima, block maxima, and
POT that are illustrated in Fig. 1-11. These methods have to be combined with a weighted
integration over all significant wind speeds to get a long-term distribution. Applications of
these standard extrapolation methods can be found, for example, in Moriarty et al. [124] or
Lott and Cheng [109]. Still, all these methods lead to quite uncertain results as shown by
van Eijk et al. [202]. An alternative to these three more common methods is the average
conditional exceedance rate (ACER) method by Naess and Gaidai [132, 133]. For the ACER
method, conditional up-crossings (i.e. peaks) are used. This means that peaks are not
selected independently but depending on previous values. This enables - in contrast to POT,
etc. - the use of statistically dependent data without further data processing. Peaks that
are too close to each other - meaning that there is just one physical maximum - are already
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identified by the ACER algorithm and do not have to be sorted out in the post-processing.
ACER is applied to wind speeds by Naess and Haug [134] and Karpa and Naess [98] and to
the ULS design of wind turbines by Ernst and Seume [47] and Toft et al. [196].
To avoid the extrapolation of extreme loads that is necessary for the previously presented
methods (e.g. POT, ACER, etc.), sampling-based approaches can be used. Sampling-based
methods do not rely on an approximated long-term distribution, but actually simulate all
relevant conditions that can lead to ultimate loads. However, for classical MCS, computing
times are still far too high. Hence, advanced sampling methods are needed to waive
extrapolation. One example is the recently developed stochastic importance sampling (SIS)
by Choe et al. [27]. It is based on classical importance sampling (cf. Section 1.2.6), but
accounts for the different behaviour of stochastic simulations (turbulent wind and irregular
waves). Choe et al. [28] demonstrate that extreme loads of wind turbines can be determined
without any extrapolation, if SIS is applied.
Normally, ULS simulations are conducted deterministically. This means that, although
different stochastic representations (random seeds) of the turbulent wind field and irregular
waves are simulated, ECs are kept fixed to deterministic values. For example, constant wind
shear exponents are assumed [124]. The use of probabilistic inputs for ULS simulations can
lead to different results, where extreme loads during normal operation are more relevant.
This is discussed, for example, by Hübler et al. [75].

1.2.9 Economic effects

For OWTs, economic effects of the structural design are of special importance. This has
several reasons. First, for OWTs, the reliability is less related to public safety than for other
structures in civil engineering (e.g. bridges), since human life is not endangered directly.
Therefore, OWT reliability is mainly an economic factor. Second, in comparison to other
structures in civil engineering, OWTs are “high-volume production”. Thence, previous
experience can be used for structural optimisations of many future turbines leading to more
pronounced economic effects. Therefore, for OWTs, structural optimisations regarding the
economic efficiency are of major interest.
In general, these optimisations can be performed based on deterministic or probabilistic
models. Probabilistic models yield more realistic results due to the stochastic nature of
environmental conditions acting on OWTs. For this reason, in this thesis, probabilistic
models are utilised. As discussed before, deterministic models are still state of the art in
OWT modelling. In any case, for optimisations regarding the economic efficiency, some
kind of combined techno-economic model is needed. This means that economic effects
have to be taken into account. So far, in structural optimisations of OWTs, it has been
state of the art to use the structural weight as cost indicator [62, 96, 105, 138]. Even
if cost models - instead of mass considerations - are applied, these models approximate
costs by empirical formulations taking into account material, production, and installation
costs [49, 111]. Effects on the economic viability of entire OWT projects are normally
not considered. For example, interest payments or the risk of defaults on loans are not
included. Moreover, target reliabilities or lifetimes are set to deterministic values (cf. level 1
to 3 reliability methods; Section 1.2.1). Hence, analyses of the trade-off between lifetime
and costs are not possible. A first approach that takes variable lifetimes in engineering
models for OWTs into account is presented by Ziegler et al. [218]. However, they focus
on the trade-off between variable lifetimes and the structural mass and do not consider
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complex economic effects. Nowadays, the missing consideration of economic effects is still
typical for engineering approaches. This lack of probabilistic, interdisciplinary approaches
is addressed in Section 6, where a combined probabilistic techno-economic model is proposed.

1.3 Research gap and objectives

1.3.1 Research gap

For further developments in the offshore wind energy sector, structural reliability is an
important topic. To improve cost efficiency, the reliability of current and future turbines has
to be sufficiently high and best possibly known. In this context, the safety factor approach
- as it is state of the art - is not optimal. It is neither economic nor does it provide any
information on the present reliability level. Therefore, although deterministic simulations
definitively have their advantages - especially regarding computing times and seemingly
unambiguous results - benefits of probabilistic concepts are indubitable. Hence, probabilistic
simulation approaches for OWTs are an important field of research.
For probabilistic OWT simulations, mainly simplified and analytical models have been
utilised so far. Essential research in the field of probabilistic wind turbine simulation
using semi-analytical models is done by Sørensen [112, 174–176, 179, 198], Tarp-Johansen
[190, 191] and Ronold et al. [151]. However, although these semi-analytical models are
commonly used for safety factor calibrations [112, 179] and are quite sophisticated in a
probabilistic context (e.g. some of them include system reliability effects), regarding the
aero-elastic model itself, they are less accurate than time-domain simulations. Furthermore,
current standards even require coupled aero-hydro-servo-elastic time-domain simulations
[53, 84]. As a consequence, future probabilistic approaches should also be based on coupled
time-domain simulations.
Up to now, not many probabilistic approaches have used coupled time-domain simulations
and the existing approaches all have their limitations. Some examples are Cheng [25],
Veldkamp [204], Muskulus and Schafhirt [131], or Müller and Cheng [127]. However,
since computing times are a limiting factor for probabilistic time-domain simulations, all
approaches remain simplified so far. For example, Cheng [25] and Veldkamp [204] both
neglect soil-structure interaction and apply a set of probabilistic parameters that is only
based on expert knowledge. Veldkamp [204] and Muskulus and Schafhirt [131] use a strongly
reduced set of load cases for their fatigue calculations. Furthermore, aerodynamic and
hydrodynamic effects are decoupled by Muskulus and Schafhirt [131]. Finally, complex
economic effects are neglected by all of these authors, while Veldkamp [204] considers at least
some simplified economic effects. All of this points out that there is a significant research
gap in the field of probabilistic time-domain simulations of OWTs. This research gap is
addressed by this thesis.

1.3.2 Objectives

With the research gap regarding probabilistic time-domain simulations of OWTs in mind (cf.
Section 1.3.1), the overall objective of this thesis can be formulated:
Development and establishment of probabilistic analyses using coupled offshore
wind turbine simulations in the time domain.
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The idea of probabilistic time-domain analyses aims - in general - at the following improve-
ments compared to state-of-the-art methods (i.e. deterministic approaches and simplified
probabilistic concepts):

• More realistic simulations including complex OWT behaviour and aleatory input uncer-
tainty
• Reduction of safety factors and/or calibration of them
• Assessment of inherent, physical uncertainties
• Determination of failure probabilities and lifetime distributions

Since probabilistic time-domain analyses are not straightforward, a number of interim goals
are defined for this thesis:

• Effective OWT modelling using coupled time-domain simulations
• Comprehensive knowledge of the aleatory uncertain of input parameters
• Reduction of computing times using efficient long-term extrapolations
• Integrated analysis using an interdisciplinary techno-economic approach

The first goal is the development of an effective soil model to improve state-of-the-art OWT
models. The second one is the derivation of statistical distributions of physically uncertain
parameters. Moreover, significant inputs (i.e. those parameters that have to be treated
probabilistically) and non-significant ones (i.e. those inputs that can be set to deterministic
values) are identified. The third aim is about improved sampling methods to reduce the
computational effort of fatigue damage calculations. And finally, the last intermediate
objective is the assessment of economic effects of structural design changes.

1.4 Outline and connection of publications
1.4.1 Outline
In accordance with Fig. 1-7b, seven steps are part of a complete probabilistic modelling
scheme. In this thesis, five of the seven steps are investigated in detail. These five steps,
corresponding to the defined interim goals/main aspects (cf. Section 1.1 and 1.3.2), also
reflect the structure of this thesis.

• Deterministic model design (Section 2)
- Development of an adequate soil model for OWT simulations in the time domain
(Paper A)

• Aleatory uncertainty of input parameters (Section 3)
- Creation of a database for statistically distributed environmental conditions for
probabilistic OWT modelling based on real offshore measurements (Paper B)

• Sensitivity analysis (Section 4)
- Hierarchical global sensitivity analysis to reduce the number of probabilistic
inputs (Paper C)
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• Long-term extrapolation (Section 5)
- Determination and reduction of uncertainties in fatigue damages due to limited
samples by improved sampling techniques (Paper D)

- Validation of proposed improved sampling techniques using strain measurement
data (Paper E)

• Economic effects (Section 6)
- Investigation of economic effects of statistically distributed lifetimes and variable
costs of OWT substructures (Paper F)

• Summary and outlook

1.4.2 Connection of publications
This thesis includes six journal publications (five have already been published (A-E) and
one is under review with minor revision (F)). All publications cover one aspect of the full
probabilistic analysis. The only exception are Papers D and E that both treat the long-term
extrapolation. As a whole, they make up a comprehensive probabilistic study. Hence, the
connection of the publications is described in the following.

Paper A (cf. Section 2) lays the foundation for the probabilistic analysis. In this publication,
an effective soil model for the deterministic wind turbine model is developed. This work is
slightly different from the others, since it has no direct connection to probabilistic modelling.
Nevertheless, it is essential for the subsequent probabilistic modelling. As quite a large
number of simulations is required for probabilistic analyses, the deterministic model itself
(cf. Fig. 1-6) has to be very efficient. Consequently, the developed soil model in Paper
A incorporates soil characteristics in the wind turbine model with high efficiency but at
the expense of accuracy. The limited accuracy compared to state-of-the-art soil models is
influenced by the subsequent use in probabilistic analyses.
Paper B (cf. Section 3) is the first publication dealing with a probabilistic topic. According
to Fig. 1-6, besides the deterministic model, probabilistically distributed inputs are required.
These distributions are provided by this second publication. Hence, it lays the probabilistic
foundation for the subsequent steps. Surely, probabilistic inputs could also be taken from
literature, but the provided data has the advantage of a good agreement of empirical and
theoretical statistical distributions and of a single data source.
In addition to the determination of statistical distributions for probabilistic inputs, it is
also important to select the “significant” parameters that are treated probabilistically and
those that are fixed at deterministic values. This is done in Paper C (cf. Section 4), but
without using literature recommendations (not available yet) or pure expert knowledge.
Instead, sensitivity analyses are conducted. These analyses are based on simulations that
are executed using the deterministic model of Paper A. The probabilistic input data is part
of Paper B.
Papers D and E cover the long-term extrapolation of fatigue damages (i.e. the derivation
of the lifetime distribution). Since state-of-the-art calculation methods are very ineffective
in a probabilistic context, new methods are developed and validated. For the improved
long-term extrapolation, again, simulations are executed using the deterministic model of
Paper A. Those inputs that are most significant according to the findings of Paper C are
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modelled using statistical distributions of Paper B.
Finally, economic aspects - being the last step of the proposed modelling scheme in Fig. 1-7b
- are modelled probabilistically in Paper F. This work is based on the previous findings and
comprises an entire probabilistic framework including a state-of-the-art deterministic model,
probabilistic inputs according to Paper B and C, and a state-of-the-art fatigue extrapolation.
The soil model according to Paper A and the improved fatigue extrapolation of Paper D and
E are not applied here to be consistent with the state of the art. However, they could easily
replace the utilised standard approaches to reduce computing times or increase accuracy.





2 Deterministic model design

To enable probabilistic analyses of OWTs using coupled time-domain simulations, at first, a
deterministic time-domain model for OWTs is required. On the one hand, this model has to
represent reality accurately. On the other hand, computing times have to be manageable,
as probabilistic analyses can require thousands of model evaluations. In this thesis, the
state-of-the-art model FAST [93] is used. However, FAST normally neglects soil-structure
interaction, as standard soil models (see Section 1.2.3) are not compatible with the applied
Craig-Bampton reduction [30] of FAST. Therefore, an efficient soil model that can be
combined with a Craig-Bampton reduction is developed here to enhance FAST. Probabilistic
aspects, for example the model uncertainty of the developed soil model, are not considered.

2.1 Research context

As discussed in Section 1.2.3 in detail, there is a large variety of soil models for OWT
foundations. The more complex ones with many degrees of freedom (e.g. FE models) are
not suitable for coupled time-domain simulations, but are used for detailed soil-structure
interaction investigations. In time-domain coupled simulations, soil modelling ranges from
soil neglect (i.e. clamped structures) to non-linear p-y curves. Different approaches are
compared, for example, in the OC3 (Offshore Code Comparison Collaboration) project
[95]. However, the most common soil models (i.e. p-y curves) cannot be used, if reduction
schemes - like the Craig-Bampton reduction [30] - are applied. Still, to limit computing
times, some kind of reduction is nearly indispensable for substructures with many DoF like
jackets. Hence, alternative soil models are needed in order not to model jacket substructures
as clamped to the seabed, as it is frequently done [145, 209]. Probably, the most suitable
approach is the reduction of the complete soil-structure interaction to a super-element
(e.g. soil matrix). Soil matrices are proposed, for example, by Zaijer [217], Dubois et al.
[45], Häfele et al. [59], or in the OC3 project [140]. The advantage of these super-element
formulations is that they do not necessarily add any DoF to the system (i.e. do not increase
computing times). Furthermore, they do not have to be linearised, but can be formulated
as a function of applied loads [45]. However, only if they are linearised, it is possible to
combine them with a Craig-Bampton reduction [59]. Since computing times have to be
manageable for probabilistic analyses, in this thesis, the linearised approach of Häfele et al.
[59] is enhanced by including operating point dependent soil matrices.

2.2 Methods

To include soil behaviour in coupled time-domain simulations without increasing computing
times significantly, the super-element approach of Häfele et al. [59] is used as a basis.
Condensed soil-structure interaction matrices are included in the overall stiffness matrix
of the substructure. Therefore, no additional DoF are added. Soil matrices are included
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as flexible boundary conditions. P-y curves are linearised and condensed to compute soil
matrices. In contrast to Häfele et al. [59], linearisations of the p-y curves are conducted
not only for initial stiffnesses but for different loads. Loads are approximated a priori using
a non-linear response surface linking loads and the most important ECs. This enables
operating point dependent soil matrices. Furthermore, not only p-y curves according to
standards [6] but also adapted versions [64, 181, 192] are investigated. For this purpose,
dynamic soil-structure interaction experiments are conducted on a large scale to assess the
performance of various p-y curves in a dynamic context.

2.3 Results

The present enhancement of the approach by Häfele et al. [59] creates a flexible super-element
concept. Soil matrices can be used for all kinds of substructures (monopiles, jackets, etc.)
with and without reduction schemes applied. Moreover, the derivation procedure of soil
matrices is not regulated. This means that different p-y curves, FE models (e.g. for suction
bucket foundations), or experimental results can be used to set up soil matrices.
Dynamic experimental investigations show that the suitability of p-y curves for transient
OWT simulations is limited, since they cannot accurately represent the dynamic soil-structure
behaviour.
Finally, when using the new soil-structure interaction approach in coupled time-domain
simulations for OWTs, it is important to choose condensed p-y curves carefully. Soil
modelling can significantly influence the overall OWT behaviour. The operating point (i.e.
linearisation point of p-y curves) should be taken into account at least for load-sensitive p-y
curves like the approach by Thieken et al. [192]. Nonetheless, a rough load approximation
for the operating point is sufficient for most applications.

2.4 Outlook

In the context of efficient soil modelling, some recommendations for future research can
be derived from the present work. First and most important, current p-y curves should
be reconsidered. New p-y curves for dynamic applications might be advisable. Second,
since p-y curves cannot describe the dynamic soil-structure interaction accurately, the use
of more advanced soil models (e.g. FE models) can be an alternative. Here, the influence
of the computing time should be considered. Only if many simulations with the same soil
matrices are conducted, the use of FE soil models can be efficient. Third, future research
could consider non-linear soil matrices, as proposed by Dubois et al. [45]. This is not a
straightforward task, since Craig-Bampton reductions are not compatible with non-constant
soil matrices. Nevertheless, for high-accuracy simulations, it might be valuable to adjust soil
matrices at least for large load changes. Finally, regarding probabilistic simulations, it can be
concluded that an inclusion of soil super-elements is a significant improvement compared to
clamped substructures. More detailed models - in most cases even operating point matrices
- are not essential, as inherent uncertainties exceed differences in soil modelling.
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2.5 Paper A: Experimentally supported consideration of
operating point dependent soil properties in coupled
dynamics of offshore wind turbines

The following paper is published in Marine Structures, Volume 57 (2018), pages 18-37
(https://doi.org/10.1016/j.marstruc.2017.09.002). The main work was done by the author of
this thesis. Jan Häfele contributed the fundamentals (Section 2 of Paper A) based on previous
work [59]. Cristian Gebhardt and Raimund Rolfes contributed with advisory and supporting
work. Special thanks go to “Fraunhofer-Institut für Windenergie und Energiesystemtechnik”
(IWES) Hannover and to “Testzentrum Tragstrukturen Hannover” (TTH) for preparing the
test pit and installing piles.



Experimentally supported consideration of operating point
dependent soil properties in coupled dynamics of offshore
wind turbines

Clemens Hübler*, Jan H€afele, Cristian Guillermo Gebhardt, Raimund Rolfes
Institute of Structural Analysis, Leibniz Universit€at, Hannover, Germany

a r t i c l e i n f o

Article history:
Received 23 November 2016
Received in revised form 15 August 2017
Accepted 20 September 2017

Keywords:
Soil-structure interaction
Dynamic soil experiments
Offshore wind turbine
FAST
p-y curves
Component-mode synthesis

a b s t r a c t

The consideration of soil properties is necessary to predict the time domain dynamic
behavior of offshore wind turbines. Accurate soil-structure interaction models are in
essence very expensive in terms of computing time and therefore, not directly applicable
to transient calculations of wind energy converters. In this work, the incorporation of
dynamic soil properties is addressed. The basic model, previously developed by the au-
thors, is based on a linearized approach using stiffness and mass matrices representing the
soil-structure interaction. This approach already leads to significant reductions of the
eigenfrequencies compared to clamped boundary conditions which are still commonly
used. Here, the basic approach is enhanced by two aspects. Firstly, different numerical soil
models, based on nonlinear springs, to calculate the matrices are compared to experi-
mental results for embedded piles at conditions similar to the North Sea. Comparisons of
numerically and experimentally determined eigenfrequencies of the piles show that
nonlinear spring models are only suitable for dynamic analyses to a limited extent. Sec-
ondly, a piecewise defined response surface, which enables a linearization of the nonlinear
soil behavior at different approximated operating points, is introduced. This approximation
proves to be sufficiently accurate in the current setting. By analyzing two full offshore wind
turbine examples in time domain, a monopile substructure and a jacket substructure
anchored by piles, further shifts of the eigenfrequencies, being caused by the load-
dependent mechanical properties of the soil, are determined by considering the oper-
ating point.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Time domain simulations are entailed in design and certification of offshore wind turbines. Standards and guidelines
require ultimate and fatigue limit state verifications. In this connection, fully coupled aero-hydro-servo-elastic simulation
codes for the whole offshore wind turbine including the substructure are state of the art. One major challenge is the
consideration of effects of the soil on the dynamic behavior of the whole turbine in the aforementioned coupled models. The
behavior of the soil is highly nonlinear and its stiffness strongly depends, inter alia, on the acting loads. This applies to all
kinds of anchorages like piles or suction buckets. Still, in this work only pile foundations are considered. The spectrum of soil-
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structure interaction models for pile foundations reaches from very complex and nonlinear finite element models [6,14] to
simplified but still nonlinear static p-y curves [4,39]. Furthermore, there exist other nonlinear models based on CPTs cone
penetration tests [2]; or spring-damper combinations with varying complexity [36]. However, these sophisticated, nonlinear
soil-structure interaction models are commonly not coupled with the whole wind turbine, but loads - for example calculated
with previously run turbine simulations - are just applied at mudline. The high number of degrees of freedom required by all
sophisticated soil-structure interaction models and the complexity of offshore wind turbines are the reasons for this
decoupled procedure. To illustrate this problem: For jacket structures in the oil and gas industry, wind loads and controller
actions can be neglected or are not existent and fewer load cases have to be calculated. Therefore, in the oil and gas industry
nonlinear soil models in combination with time domain simulations are used for example by Ref. [7] or [28]. For transient,
coupled wind turbine simulations with noticeable demands for numerical efficiency in their current form due to high
computational cost for a single simulation and the large number of simulations that is required to satisfy the certification
standards, these models are only partly suitable. That is why, nowadays in transient simulations, offshore wind turbines are
often modeled as clamped to the seabed, for instance, see Ref. [9]. These authors outline the implementation of a structural
dynamics module for offshorewind turbines with space-frame substructures into the current FAST framework (an aeroelastic
simulation code by the National Renewable Energy Laboratory, NREL) where the soil is considered to be rigid [26]. use
nonlinear spring models in wind turbine simulations even for optimization purposes. However, the authors only analyze
eigenfrequencies, and no time domain simulations are conducted. The work of [3] is one of the few recent cases that in-
corporates a nonlinear soil model in time domain simulations of offshore wind turbines and studies seismic responses.
However, this leads to very high computing times, as a full FE model of the substructure is needed, and the substructure
cannot be condensed. Hence, only a few load cases can be simulated in an adequate time.

A promising approach to enhance time domain simulations of offshore wind turbines by considering soil properties
effectively with reasonable computing times is a two-step approach by Ref. [19]. This approach is based on linear 6 � 6
stiffness and mass matrices representing the soil-structure interaction and allows an effective consideration of soil charac-
teristics in transient, coupled simulations of offshore wind turbines, even if the substructure is - as in common practice -
condensed with reduction methods like a Craig-Bampton reduction, for instance. However, as the matrices are linear, the
nonlinear behavior of the soil is not taken into account. A linearization is carried out at the zero-deflection point of the piles.
This means that no loads are applied to the pile head and therefore, the pile is not deflected. As the soil stiffness reduces with
higher pile deflections due to increasing loads, disregarding the operating point (i.e. the load conditions) is a simplification,
though it is much less serious than assuming clamped boundary conditions.

The contribution of the present work comprises two aspects. The approach developed by Ref. [19]; named “basic
approach” throughout this work, uses nonlinear springs (i.e. p-y curves) of the American Petroleum Institute [4] to determine
the soil matrices. However, in literature, other p-y curves are available as well. On the one hand [39], and approaches
developed by Refs. [33,34] are supposed to give better approximations of the soil stiffness for ultimate loads. One the other
hand [25], give a changed formulation for p-y curves being more suitable for small and initial loads [27]. introduce a new
formulation for initial stiffnesses and reduce the internal friction angle in order to get better results for small and ultimate
loads [35]. compare different p-y curves with a calibrated FE model. On the basis of their findings that none of the p-y curves
leads to sufficient results, completely new p-y curves are developed that are supposed to be more suitable for all load
conditions. In this work, firstly, large-scale experiments to determine the dynamic soil properties of embedded piles are
presented. These results are then compared to numerical results obtained with different p-ymodels. An assessment, based on
the experimental results, of the nonlinear spring models in the current dynamic context is possible, although it has to be kept
in mind that p-y curves are initially derived from static conditions. Still, due to the lack of alternatives, they are used for
dynamic applications as well. Secondly, an enhancement of the basic approach concerning the linearization is presented. As
the method requires linearized interaction matrices, the present refined approach linearizes at the actual operating point and
no longer at the zero-deflection point. This improvement allows the incorporation of variable soil stiffnesses for different
environmental conditions. Even for the different piles of a jacket substructure, the soil stiffness can vary. In order to determine
the acting loads at a specific operating point effectively, response surfaces (RSs) linking the environmental conditions to the
loads at mudline are utilized.

The present paper is structured as follows: Firstly, a short overview of the basic two-step soil consideration approach is
given. For detailed explanations, it is referred to [19]. Subsequently, different nonlinear spring models for calculating the
stiffness matrices are introduced. Experimental results of the dynamic behavior of soil-pile combinations are presented and
discussed. These results are then compared to numerical results using the different nonlinear spring models in order to
evaluate the suitability of thesemodels. A new approach to determine loads at the operating point, using response surfaces, is
described afterwards, and some results of the load approximation by the response surface method are presented. In this
connection, results of coupled time domain simulations of an offshore wind turbine with jacket substructure and monopile
substructure are given, whereas the operating point is neglected in the first place. The calculations are conducted with the
aero-hydro-servo-elastic simulation code FAST. Then, further examples illustrate the effect of using different p-y models on
the interaction matrices and on the overall turbine behavior. Furthermore, differences between the use of the zero-deflection
point and the response surface method for the consideration of the operating point are pointed out. Lastly, conclusions are
drawn, pointing out limitations and giving an outlook on future work.
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2. Fundamentals

2.1. Effective consideration of soil-structure interaction in coupled analyses of offshore wind turbines

The basis of the present work is a methodology for numerically efficient consideration of soil characteristics in fully
coupled wind turbine simulations described by Ref. [19]. This approach is based on a reduction method by Ref. [8] and is
briefly outlined in this section. The interested reader is referred to the original work for further information.

It is presumed that the equations of motion were derived in the general form:

M €u
!þ C _u

!þ K u!¼ F
!
: (1)

M is the mass matrix, C the damping matrix, K the stiffness matrix, u! the displacement vector along all degrees of freedom
and F

!
comprises the corresponding external forces. The vector u! is partitioned into subvectors of boundary and interior

displacements u!R and u!L, respectively:

u!¼
�

u!R
u!L

�
: (2)

2.2. The partition yields
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�
: (3)

The stiffness matrix K in Eq. (1) is singular due to rigid body motions. In the next step, the displacements at points of
interest are allocated to u!R and u!L:

u!R ¼ u!int ; (4)

u!L ¼
�

u!I
u!base

�
; (5)

where u!int comprises the displacements at the interface between substructure and tower, u!I the displacements of all interior
nodes, except the nodes at the interface between structure and soil (base nodes), and u!base the base node displacements. It
follows:

MLL ¼
�

MI MI;base
Mbase;I Mbase

�
; (6)

KLL ¼
�

K I K I;base
Kbase;I Kbase

�
: (7)

Mbase and Kbase contain the terms from the structural system assembly Mbase;ij and Kbase;ij. The soil terms from the mass
and stiffness matrices Msoil;i and Ksoil;i are assembled at the level of the main diagonal blocks. The modified matrices M*

base
and K*

base read

M*
base ¼

0@Mbase;11 þMsoil;1 / Mbase;1n
« 1 «

Mbase;n1 / Mbase;nn þMsoil;n

1A (8)

K*
base ¼

0@Kbase;11 þ Ksoil;1 / Kbase;1n
« 1 «

Kbase;n1 / Kbase;nn þ Ksoil;n

1A: (9)

Some substitutions yield.�
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: (10)
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In the next step, a Ritz transformation is applied in order to reduce the size of u!L where the transformationmatrixFmaps
u!L onto the generalized coordinates q!m:�

u!R
u!L

�
¼ F

�
u!R
q!m

�
: (11)

For this purpose, a Component-Mode Synthesis is utilized, where the matrix F contains constraint modes FR and fixed-
interface normal modes FL:

F ¼
�

I 0
FR FL

�
; (12)

In this equation, I is the identity matrix, and 0 is the zero matrix.
To calculate FR, the homogenous (all derivatives with respect to time set to zero), static (all boundary DOFs set to unit

displacement) case is considered in Eq. (10), leading to:

FR ¼ �K*�1
LL KLR: (13)

The matrix of fixed-interface normal modes FL is obtained by solving the eigenvalue problem.

K*
LLFL ¼ U2

LM
*
LLFL: (14)

The approach of the Component-Mode Synthesis is to useFm which depicts a truncated subset ofFL neglecting themodes
corresponding to higher frequencies. This procedure is valid as long as the excitation frequency is distinctly within the range
of covered eigenfrequencies in Fm. Applied to Eq. (10), the following is obtained:�
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with

MBB ¼ MRR þMRLFR þFT
RMLR þFT

RM
*
LLFR; (16)

MmB ¼ FT
mMLR þFT

mM*
LLFR; (17)

MBm ¼ MT
mB; (18)

KBB ¼ KRR þ KRLFR: (19)

In this equation, a viscous damping was introduced that affects each mode. Damping effects on the interface nodes are
neglected. Um is the diagonal matrix of eigenvalues corresponding to the truncated subset of eigenvectors in Fm. x is the
critical viscous damping affecting the fixed-interface normal modes. x can be easily considered as a diagonal matrix as well, if
different damping values for each mode are desirable.

As detðU2
mÞ and detðKBBÞ are each greater than zero, the stiffness matrix in Eq. (15) is regular, and rigid body motions are

removed from the system. This obviates the need to apply kinematic boundary conditions.

2.3. Application to state-of-the-art bottom-fixed substructure concepts

The proposed method is applicable to most state-of-the-art substructure concepts. However, in particular two types are of
special interest, as they are important for practical applications in offshore wind engineering. These are monopiles and
jackets.

Up to now, the most used substructures are monopiles for economic reasons. In general, this substructure type is relatively
soft. Moreover, the effect of soil-structure interaction is high, as it is a single pile being rammed into the seabed. As it is nearly
coaxial to the vertical center axis of the entire structure, the foundation is affected by a large overturning bending moment.
These physical effects are supposed to lead to a point, where themonopile concept reaches its limits: For high water depths or
turbines with high power, the structure gets too soft, and resonance problems due to rotor motion or wave excitation might
occur. In such cases, jackets become amore reasonable alternative, as the loads are distributed on commonly three (for newer
concepts) or four foundation piles. Additionally, the vertical forces at the base nodes are not alignedwith the jacket center axis
which implies that the bending moment on the piles is significantly lower compared to the monopile concept. Moreover, a
state-of-the-art jacket, which fulfills fatigue and ultimate limit state proofs according to common standards and guidelines, is
a relatively stiff structure and in this case, the structural response is dominated by the physical behavior of the upper
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structural parts or the foundation. Therefore, the soil-structure interaction is very crucial for the structural behavior of jacket
foundations, though the soil stiffness is usually lower compared to a monopile foundation.

2.4. Condensation of the interaction matrices

For the present consideration of soil properties in time domain calculations, the key points are the stiffness and mass
matrices of the soil. The basic approach does not specify how to compute these matrices. Nevertheless, it is state of the art to
use static p-y (lateral, nonlinear springmodels) and T-z curves (axial, nonlinear springmodels) to determine the stiffnesses in
case of pile foundations, though these curves were developed for static loads. Current guidelines recommend to calculate the
spring stiffnesses for the p-y and T-z curves according to [4]. However, the calculated stiffnesses are differing a lot from
experimental results, as it is shown for instance by Refs. [2] and [16]. Experimental results are limited to static and cyclic
effects. So far, to the authors' knowledge, dynamic experiments on a large scale have only been conducted for seismic ex-
citations (e.g. Ref. [29]) and not for natural oscillations or wind turbine specific excitations. In case of seismic excitations, more
sophisticated p-y curves are used that consider cyclic and damping effects as well. However, these seismic p-y curves are not
suitable for the present approach, as linearized soil matrices are needed. Furthermore, seismic loads are not comparable to
those for wind turbines. Experimental results of dynamic soil tests conducted by the authors and comparisonswith numerical
results computed with different static p-y curves are presented in the next section. Other methods to calculate the nonlinear
spring stiffnesses, which are supposed to handle some shortcomings of the API approach, were developed by Refs. [25,27,34]
and [35]; just tomention a few of them. For the axial stiffnesses, cone penetration test (CPT) basedmethods have already been
included in current guidelines [5].

The present approach uses soil matrices instead of nonlinear springs. Still, these curves can be used for the derivation of
the interaction matrices. The procedure is the following: A pile is discretized with Timoshenko beam elements in an FE solver
(e.g. ANSYS). Nonlinear spring elements are distributed in all spatial coordinate directions along its length. A selection of the
different p-y methods is used by the authors. As the systemwill be linearized only once at the beginning, an operating point
has to be chosen before starting a time domain simulation. The choice of the operating point is important, as increasing pile
deflections and acting loads reduce the stiffnesses significantly. For example, according to the [4]; the following equation for
the lateral stiffness, visualized in Fig. 1, applies:

Epy ¼ v

vy

�
A pu tanh

�
k z
A pu

y
��

¼ k z

cosh2
�

kz
A pu

y
� ; (20)

where Epy is the secant soil-spring stiffness, pu is the maximum subgrade reaction, y is the lateral pile deflection, k is the
increase in initial soil stiffness with depth, A is a calibration factor for static or cyclic loading and z is the depth below the
seabed.

Other lateral as well as axial nonlinear spring models also predict smaller stiffnesses for higher loads. Hence, an effective
way of choosing an operating point and determining the loads at mudline for this operating point is desirable and presented
in section “Operating Point Analysis”. After having selected an operating point, the entire dynamic pile-spring system
behavior is linearized at the chosen operating point. Subsequently, it is condensed in the pile head or at the uppermost point.
The static condensation due to [15] is applied for this purpose. As the p-y and T-z curves do not specify a torsional stiffness kj,
a rudimentary approach according to [13] is used to calculate the initial torsional stiffness. However, studies carried out by the

Fig. 1. Plot of the secant soil-spring stiffness according to the [4] for an exemplary monopile with an embedded length of L ¼ 20 m and a diameter of d ¼ 6 m for
different depths z and lateral deflectionsy.
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authors have shown that the torsional stiffness does not have a major impact on the overall turbine behavior. The presented
procedure yields the stiffness matrix as follows:

Ksoil ¼

0BBBBBB@
kx 0 kxz 0 �kxq 0
0 ky kyz kyf 0 0
kzx kzy kz �kzf �kzq 0
0 kfy �kfz kf 0 0

�kqx 0 �kqz 0 kq 0
0 0 0 0 0 kj

1CCCCCCA: (21)

The coordinate system is the following: x is in wind direction, y is to the left (looking in x direction) and z is upwards (c.f.
Fig. 10). The corresponding rotational DOFs with respect to x, y, and z are f, q, and j.

The mass matrix has the same form. For the mass matrix, only the pile weight is considered and no added masses due to
the surrounding soil. This is a simplification. However, this work focusses on soil stiffnesses, and added masses are not a
straightforward problem. Furthermore, Table 1 suggests that the influence of the mass matrix can be disregarded in many
cases. Values for the mass matrix, which do not incorporate added soil masses, can be found in Ref. [19]. However, these
values are in general several orders higher, if added masses are included.

For a pile foundation and the present approach, the soil model is energy-conservative, and there is no axial-lateral
coupling. Therefore, the matrix in Eq. (21) becomes symmetric and simplifies to:

Ksoil ¼

0BBBBBB@
kx 0 0 0 �kxq 0
0 ky 0 kyf 0 0
0 0 kz 0 0 0
0 kyf 0 kf 0 0

�kxq 0 0 0 kq 0
0 0 0 0 0 kj

1CCCCCCA: (22)

Exemplary values for the pile stiffnesses calculated, using the proposed procedure and utilized for the calculations in the
section “Time Domain Results with Initial Soil Stiffnesses”, are given in Table 2.

The same reduction scheme can also be adapted for other foundation types like suction buckets. In this case, if soil models
without energy conservation are applied, unsymmetrical stiffness matrices arise (e.g. kxqskqx), and if lateral and axial
coupling terms are included, all the entries in Eq. (21) are nonzero (e.g. kxzs0; see Ref. [20]).

3. Dynamic soil tests and model assessments

3.1. Experiments for embedded piles

In the last section, several different p-y curves, which can be used to compute linearized soil matrices, were introduced.
However, in literature there is no consensus concerning the suitability of these models. There are some comparisons of the
different p-ymodels with FEmodels and/or experiments in order to find themost accurate p-ymodel. However, these studies
mainly consider static loads or in a few cases cyclic loads. An example is the work of [35]. For the calculation of the stiffness
matrices, the dynamic behavior, even if it is linearized, is of interest as well. Therefore, in this work, the different p-y models
are compared to dynamic measurements of large-scale pile tests. Axial T-z models are not compared here, as the differences

Table 1
Maximum and mean shear forces (H) and bending moments (M) at mudline of an OC3 monopile calculated using FAST and the “basic soil-structure
interaction approach”. All input values are the same (standard load case at rated wind speed), only the entries of the mass matrices are two orders
higher (e.g. mx;case 1 ¼ 7� 104 and mx;case 2 ¼ 7� 106).

Case Hmax ½MN� Hmean ½MN� Mmax ½MNm� Mmean ½MNm�
1 1:4360 0:68981 97:661 78:581
2 1:4426 0:68982 97:658 78:610

Table 2
Soil stiffness parameters for an exemplary pile foundation of a jacket substructure regarded in the section “Time Domain Results with Initial Soil Stiffnesses”
calculated with the presented approach in this section and spring models according to [4].

kx ½Nm�1� ky ½Nm�1� kz ½Nm�1� kf ½Nm�
3:56� 108 3:56� 108 2:91� 109 1:2� 1010

kq ½Nm� kj ½Nm� kxq; kqx ½N� kyf; kfy ½N�
1:2� 1010 2:45� 1010 1:62� 109 1:62� 109
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in vertical soil models can frequently be neglected [20], and the identification of axial modes has emerged as being
complicated. For the classic p-y approaches, it has to be kept in mind that they were not initially developed for dynamic
applications. Nevertheless, due to the lack of alternatives, it is state of the art to use them in transient wind turbine simu-
lations. As the development of new dynamic p-y curves is out of the scope of this work and the use of static p-y curves is
requested by the standards, classic curves are investigated here. In the following, firstly, the experiments are described.
Secondly, the numerical modeling is explained and lastly, results comparing experiments and numerical calculations are
given.

As part of the IRPWind project and in cooperation with Fraunhofer IWES Hannover, six steel piles, as they are used for
jackets, were tested on a large scale in a well-defined, sandy and water-saturated environment in a new geotechnical test pit,
with the dimensions 10 m� 14 m� 9 m, at the Test Center Support Structures in Hanover. The piles have different diameters
and lengths as indicated in Table 3 andwere rammed into the sand. It has to bementioned that the tested structures are jacket
piles. Monopiles have significantly smaller L=d ratios. The sand conditionswere investigatedwithin the project using different
methods (Cone penetration tests, soil samples andwave propagation tests). Results of the cone penetration tests are shown in
Figs. 2 and 3. Fig. 2 displays the CPT raw data: cone resistances versus depth. For Fig. 3, relative densities are calculated using
cone resistances and an empirical correlation method according to [30]. Fig. 4 shows the relative densities that are deter-
mined with soil samples. Results are comparable and a relative density of about 0.74 was determined. Hence, the sand is
dense sand. The soil conditions are similar to conditions in the North Sea. Some additional information on the sand itself are
given in Table 4. For further information concerning the soil preparation and testing, the interested reader is referred for
example to [11]. The pile driving process was interrupted every meter, and dynamic tests were performed. The dynamic tests
were conducted about half an hour after the pile driving was stopped due to limitations in the overall testing time. Surely,
some long-term settling effects of the soil, being less pronounced for sand where most of the settling occurs immediately, are
not covered perfectly. The first test took place after the pile had been driven in 3 m. Tests with an embedded length of less
than 3 m are not possible, as the stability of the pile is not sufficient, and an inclination of the pile could occur.

The tests consist of several excitations at different heights and in all three directions with an impact hammer, and four
triaxial accelerometers (20 g; 100 mV=g) attached to the piles were used to measure the decay process of the pile vibration
with a sampling frequency of 2 kHz. The positions of the accelerometers were changed while the pile was driven into the soil
to keep them above the ground. That is why changing sensor positions is the only possibility to achieve a fairly uniform

Fig. 2. Results of the cone penetration tests: cone resistance versus depth for four different positions in the test pit.

Table 3
Jacket pile dimensions with d, L, Ltot and t being the pile diameter, embedded and total length and wall thickness respectively.

d in mm L in m Ltot in m L=d t in mm

Pile1 273:0 5:7 6:9 20:9 5:0
Pile2 273:0 6:7 7:9 24:5 5:0
Pile3 355:6 5:7 6:9 16:0 6:3
Pile4 355:6 6:7 7:9 18:8 6:3
Pile5 355:6 5:3 6:5 14:9 6:3
Pile6 355:6 6:7 7:9 18:8 6:3
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distribution of the sensors for all embedded lengths. In total, more than 300 decay tests of the six piles with different
embedded lengths and excitations were conducted.

The measured time signals of the accelerometers are analyzed using system identification methods. Here, system iden-
tification through data driven stochastic subspace identification (SSI), firstly introduced by Ref. [37]; is conducted. The
automation of the system identification is done using a triangulation-based extraction of model parameters (TEMP) based on
the work of [17]. The SSI combined with the TEMP method, initially developed for structural health monitoring applications
[18], identifies automatically eigenfrequencies, mode shapes and damping values of the piles at different embedded lengths.
However, some input parameters of the TEMP have to be chosen carefully. These parameters are, inter alia, the maximum,
relative frequency difference between two solutions (fcrit) or the minimum number of model orders in a path (bPcrit). For
further details, it is referred to [17].

Fig. 3. Post-processed results of the cone penetration tests: relative density calculated using cone resistances and an empirical correlation method according [30]
versus depth.

Fig. 4. Relative densities determined using soil samples in different depths and positions. Mean value and one sigma interval are marked (solid and dashed lines
respectively).
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This work focusses on the eigenfrequencies that are compared to those numerically calculated later on. Mainly, three
eigenfrequencies of the piles were identified accurately: The first and the second bending mode and a radial or “breathing”
mode of the piles. The radial mode has a relatively constant frequency over all embedded lengths of about 140 Hz to 145 Hz
for the large pile diameter and of 175 Hzto 180 Hz for the small one. The first bending eigenfrequency increases from about
7 Hz for an embedded length of 3 m to about 60 Hz for L ¼ 6:7 m. The second bending eigenfrequency varies between 45 Hz
and 210 Hz for the different embedded lengths and diameters. The experimentally determined eigenfrequencies for different
embedded lengths are shown in Fig. 5. It has to bementioned that for the second bendingmode, the pile diameter has amuch
greater influence and not in all cases it was possible to identify this mode properly.

For the sake of completeness, some results of the damping identification are depicted in Fig. 6. Increasing and relatively
high damping values for higher embedded lengths for the first bending mode become noticeable. This increase can be

Fig. 6. Experimentally determined damping in % of the critical damping of the piles with smaller diameter d1 and larger diameter d2 for different embedded
lengths. Damping values of the radial modes are scaled with a factor of ten for reasons of clarity.

Fig. 5. Experimentally determined eigenfrequencies of the piles with smaller diameter d1 and larger diameter d2 for different embedded lengths.

Table 4
Properties of the sand utilized for the experiments.

Property Unit Value

Grain diameter 10th percentile ðD10Þ mm 0:22
Grain diameter 30th percentile ðD30Þ mm 0:29
Grain diameter median ðD50Þ mm 0:36
Grain diameter 60th percentile ðD60Þ mm 0:40
Coefficient of uniformity ðCuÞ � 1:82
Coefficient of curvature ðCcÞ � 0:96
Specific gravity ðGsÞ � 2:65
Minimum porosity ðnminÞ � 0:31
Maximum porosity ðnmaxÞ � 0:46
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explained by the geometrical damping of the soil. However, the second bending mode can be more damped for smaller
embedded lengths. Here, nonlinear and material effects overlay the geometric effects. Radial damping values are fairly small
being the reason for a scaled presentation (factor of ten) in Fig. 6. Due to the difficult determination of damping values, the
results have to be interpreted with caution. In the following, the damping is not further considered, as the damping mea-
surements exhibit large scattering, and the static p-y models used here do not model damping.

3.2. Numerical results for embedded piles

In addition to the experiments, numerical calculations were conducted. The piles are modeled with linear Timoshenko
beam elements in ANSYS. The surrounding soil is represented by uncoupled spring elements in all spatial coordinate di-
rections along the embedded length of the pile. The stiffnesses of the p-y and T-z curves are computed according to the
different nonlinear soil models. This is the same procedure as for the computation of the stiffness matrices (c.f. section
“Condensation of the Interaction Matrices”). The basic formulations of the utilized approaches are summarized in the
following.

For the [4] approach, the calculation procedure of the secant soil-spring stiffness Epy is given in Eq. (20). The approaches
according to [33,34,39] and [25] all propose a modification of the increase in the initial soil stiffness with depth (k) [39]. and
[25] propose the following changes of k depending on the pile diameter D:

kWiemann ¼ k
�
Dref

D

�4ð1�aÞ
4þa

(23)

with the reference values Dref ¼ 0:61 m and a ¼ 0:5 to 0:6 and

kKallehave ¼
1
z
k zref

 
z
zref

!m 
D

Dref

!0:5

(24)

with zref ¼ 2:5 m and m ¼ 0:6. The reference diameter remains unchanged (Dref ¼ 0:61 m).
The changes being proposed by Refs. [33,34] focus on errors occurring under ultimate loads [34]. formulates:

kSørensen;2012 ¼ 1
z
a

 
z
zref

!b 
D

Dref

!c 
Es

Es;ref

!d

: (25)

Here, a ¼ 1 MPa is a reference stiffness. For the dimensionless coefficients, the following values are recommended: b
¼ 0:3, c ¼ 0:5 and d ¼ 0:8. For the reference values zref ¼ 1 m, Dref ¼ 1 m and Es;ref ¼ 1 MPa are proposed Formerly et al.,
2010 suggested:

kSørensen;2010 ¼ 1
z
a

 
z
zref

!b 
D

Dref

!c

f0d: (26)

The reference values and constants are the following: b¼ 0:6, c¼ 0:5, d¼ 3:6, zref ¼ 1 m, Dref ¼ 1 m and a ¼ 50 MPa. f
0
is

the internal friction angle [35]. do not modify the k value, but develop completely new basic p-y curves incorporating, inter
alia, the soil unit weight g

0
and the passive earth pressure coefficient Kphg

pBasicThieken ¼ 11
16

g0z1:5Kphg

�
1þ 2 tan

�
f

0��
D0:5: (27)

These basic p-y curves are subsequently adapted iteratively by considering interaction effects of the deflection line with
the bedding resistance and pile tip effects.

The excitations with the impact hammer in the experiments do not lead to significant displacements of the pile in the soil.
Hence, it is only a marginal simplification to assume initial soil conditions in lateral direction (linearization at the zero-
deflection point).

The describedmodel is used to compute the first and second bending eigenfrequencies of piles with the same geometry as
in the experiments and for different embedded lengths. “Breathing” modes cannot be calculated with the utilized beam
model. The use of, for example, shell models, which are capable to simulate radial modes, is not expedient, as p-y curves are
generally applied to beam models, only.
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3.3. Comparison of experimental and numerical results

To evaluate the different soil models, the measured and the calculated bending eigenfrequencies are compared. Fig. 7
shows the normalized first bending frequencies of the piles with the larger diameter for different embedded lengths. The
frequencies are normalized with the experimental values. Results of the piles with the smaller diameter (not shown here) are
comparable. The results of the soil models differ a lot and mostly do not fit the experiments well. The standard model of the
API predicts frequencies that are about 10% lower than the experimental values. This is a significant deviation, considering the
fact that eigenfrequencies are fairly insensitive to changing soil conditions. For example a significant increase of the internal
friction angle from f

0 ¼ 39� (experimental value) to f
0 ¼ 41� only leads to deviations of the first bending eigenfrequency of

about 2e3%. The approaches of [33,34] show even higher deviations. This can be explained by the purpose of these ap-
proaches. They focus on extreme loads. The same applies to [39]. However, as the pile diameters of the test piles are smaller
than the reference diameter of Wiemann and the model is intended for large diameters, this model is only partly applicable
here. The model of [25] fits the experiments best. For this approach, the focus is on initial conditions, as they are present here.
However, in some cases even this model shows differences of about 25% [35]. try to get better approximations for initial and
ultimate limit state conditions with their new approach. However, it is clear that for initial conditions the eigenfrequencies
are overestimated. It has to be mentioned that the approach of Thieken et al. is much more sensitive to changing loads which
is analyzed inmore detail in the last section (see Fig.15). Therefore, for this approach, it might be a significant simplification to
assume initial conditions, as the hammer excitations introduce some loads, even if these loads are fairly small. However, for
loads greater than zero, the soil becomes significantly softer for this approach (c.f. Fig. 8) and therefore, the calculated
eigenfrequencies are getting closer to the measured ones. For all other approaches, the effect of loads greater than zero, if

Fig. 8. Normalized stiffness term kx (normalized with kx0 ¼ f ðH ¼ 0;M ¼ 0Þ) as a function of the shear force (H) and the bending moment (M) at mudline. For
reasons of clarity, the vertical axis only shows values up to kx ¼ 0:4. The initial stiffness kx0 ¼ f ðH ¼ 0;M ¼ 0Þ ¼ 1 is not plotted.

Fig. 7. Normalized eigenfrequencies of the piles with larger diameter for different embedded lengths calculated with different soil models.
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present, leads to greater differences compared to the experimental results. However, as neither the loads at mudline nor the
displacements were measured, a quantitative assessment of this effect is not possible.

For the second bending mode, the identification is not that clear. Therefore, it is abstained from judging the soil models on
this basis as well. However, the numerical calculations fit the experiments even worse in case of the second bending mode
(not shown here), and the errors are changing for different embedded lengths which is not the case regarding the first
bending mode.

After all, the comparisons of experiments and numerical models show that none of these soil models can really predict the
dynamic behavior of the piles, as deviations of up to 25% even for the “best” model occur.

It has to be pointed out that all investigated p-y curves were initially developed for static loads, but are currently used in
dynamic wind turbine applications. Dynamic p-y curves, as for seismic applications [29], have not yet found application in
offshore wind energy. Still, the fact of being developed for static loads explains, at least partly, the deviations between the
numerical and experimental results. However, if models are chosen carefully according to their intended load conditions,
model errors can be reduced. Models that focus on initial conditions can deliver the best results for these conditions.Whether
models that focus on ultimate loads are best suitable for high load conditions or not cannot be investigated with the present
data, as the experiments conducted only apply small loads. Still, it would be valuable to investigate ultimate load conditions.

For the following numerical investigations, the model of [25] is considered in detail, as it fits the experimental results best.
Furthermore, the API model (2002) is analyzed, as this model is proposed by the standards, and the model by Ref. [35]; as it is
quite sensitive to changing loads and has shown promising results in numerical comparisons [35].

4. Operating point analysis

4.1. Method

The second contribution of this work is the incorporation of the operating point. So far, the nonlinear soil-structure
interaction behavior is linearized at the zero-deflection point of the pile which means that no loads are applied at the pile
head and initial soil stiffnesses are assumed. However, the soil stiffness depends on the acting loads at mudline. Fig. 8 il-
lustrates this dependency by displaying the normalized stiffness term kx as a function of the shear force (H) and the bending
moment (M) at mudline. The values of kx are calculated using the procedure from section “Condensation of the Interaction
Matrices” and the spring model according to [35]; as this model shows the strongest dependency between loads and soil
stiffnesses which is advantageous for illustration purposes. For other spring models, the dependencies are comparable, but
less pronounced. Similar figures showing the dependencies of different stiffness values on the acting loads can be found in
Ref. [10]. These authors are using a different method of computing soil matrices, but the results are comparable.

So, it was clarified that the consideration of the operating point is influencing the soil stiffness. However, more important
is the overall wind turbine behavior, for example the maximum loads. Therefore, comparisons of time domain simulations
with clamped boundary conditions (state of the art; c.f. approach (1) in Fig. 9), initial soil stiffnesses ([19]; c.f. approach (2))
and operating point dependent soil stiffnesses (this work; c.f. approaches (3) to (5)) are done in the next step. For the

Fig. 9. Illustration of different possibilities to incorporate the operating point in time domain simulations (c.f. Table 5).
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operating point dependent simulations, previously calculated loads at the operating point are needed. Here, different pos-
sibilities to determine these loads ((3) to (5)) are presented and subsequently, the results are compared. The general pro-
cedure of the different approaches is illustrated in Fig. 9.

Here, approach (1) and (2) do not consider load-dependent soil stiffnesses. Concept (3) determines the loads at the
operating point most precisely, but it uses a quite time-consuming iterative procedure. At first, a fully coupled time domain
simulation of the wind turbine with a clamped structure (1) or with initial soil stiffnesses (2) is conducted. The results of this
first simulation (the calculated loads) are used to linearize the soil stiffnesses at an updated operating point. A second time
domain calculation follows with soil stiffnesses linearized at the updated operating point. As the loads - calculated in this
second step - might be different from the previously calculated ones, the operating point is updated again and a third step
follows. This iterative procedure is repeated until the loads are no longer changing significantly. Although, the loads are
calculated precisely using this procedure, several time domain simulations are needed whichmakes it inefficient. Therefore, a
more detailed analysis of the load dependence of the soil stiffness is valuable. Fig. 8 indicates that there is a significant change
of the soil stiffness, if initial stiffnesses are compared to operating points with loads greater than zero. However, small changes
of operating loads (e.g. H ¼ 2� 105 N; M ¼ 1 MN ±10%) do not change the soil stiffness significantly. This fact leads to the
assumption that there is no need of several iteration steps. It might be sufficient to conduct a first calculation with a clamped
structure (1) for a rough approximation of the loads. The results of this calculation are used for a second coupled simulation
that considers the linearized soil stiffness for the present loads (4). Still, the overall computation time is doubled. To limit the
number of time domain simulations to one, an approximation of the loads at the operating point which replaces the “clamped
calculation” (1) and links environmental conditions to the loads at mudline is introduced (5). The last procedure is by far the
fastest (nearly the same computing time as with approaches that do not consider operating points at all), but the loads are
only roughly approximated. For these five methods, results of time domain simulations are summarized in Table 5.

It is apparent that there are significant differences between clamped boundary conditions (1), initial soil stiffnesses (2) and
stiffnesses at operating points (3e5). Hence, the operating point should be incorporated. However, there is no need for several
iteration steps, as the results are already converged after two steps (compare (3) and (4)). Furthermore, even rough ap-
proximations of the loads at the operating point (5) lead to the same results as the converged solution (3). Therefore, in this
work, an approximate but effective approach is proposed which links environmental conditions to the loads at mudline that
are decisive for the soil stiffness.

For the approximation approach, it has to be specified first what is meant in terms of environmental conditions in the
present case. Regressions and variance-based sensitivity analyses using coupled time domain simulations with probabilistic
input parameters are performed by Ref. [21]. They show that wind speeds and wave heights have a major influence on the
acting loads at mudline. Therefore, these two parameters are related with the environmental condition. Furthermore, the
direction of wind and waves can be even more important, as the four piles undergo different loads in case of a jacket sub-
structure. That is why, for jackets, the third condition parameter is the direction. It is assumed that the wind and wave di-
rection are the same, as it is recommended by common regulations [22], though studies have shown that this is frequently not
the case [32]. The sensitivity analyses show that all other environmental conditions are less significant. This does not mean
that the scattering of all other parameters is not influential, but for the approximation of the loads at mudline less influential
parameters are neglected in the first place.

Secondly, it has to be determined which loads are decisive for the soil stiffness. As it is well-known for p-y curves, the
overturning moment and the horizontal shear force are important for the lateral stiffness, whereas the vertical force is the
determining factor for the axial soil stiffness. Since the loads at mudline vary periodically, and time-variant stiffnesses are
beyond the scope of this work, it was decided that the maximum values of the loads are decisive for the stiffness. This
simplification is due to the fact that the use of a Craig-Bampton reduction of the substructure to its first mode shapes allows
only constant soil stiffnesses, as the reduction is performed just once at the beginning of the time domain simulation. The
choice of maximum values leads to minimum stiffnesses. For the vertical force, the minimum (most negative) and the
maximum are considered as both, compression and tension, can be of interest.

Thirdly, a correlation between the conditions and the decisive loads has to be identified. Coupled time domain calculations
of the whole wind turbine and a clamped substructure using the simulation code FAST and for wind speeds between
vw ¼ 0 ms�1 and vw ¼ 40 ms�1, for wave heights between hs ¼ 0 m and hs ¼ 14 m and wind and wave directions between
a ¼ �45� and a ¼ 45� were computed. The use of a clamped structure is justified by the results in Table 5. The relevant results

Table 5
Maximum andmean shear forces (H) and bendingmoments (M) at mudline of an OC3monopile calculated using FASTand different soil models: (1) clamped
structure, (2) linearization of the soil behavior at the zero-deflection point (c.f. [19]), (3) linearized at iteratively calculated loads (converged solution), (4)
linearized at loads calculated with clamped structure (two iteration steps) (5) Load approximation plus single step.

Case Hmax ½MN� Hmean ½MN� Mmax ½MNm� Mmean ½MNm�
(1) Clamped 1:38 0:690 93:9 78:3
(2) Initial Stiffness 1:44 0:690 97:7 78:6
(3) n Iteration steps 1:45 0:690 101 78:9
(4) 2 Iteration steps 1:45 0:690 101 78:9
(5) Single Step 1:45 0:690 101 78:9
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of these calculations are the maximum loads at mudline for the given, varying environmental conditions. Other directions do
not have to be considered due to the symmetry of jackets with four legs. Fig. 10 illustrates the configuration of the jacket by
showing a horizontal cut through the jacket on mean sea level (MSL).

The results of the time domain simulations using FAST, for example the maximum overturning moments at mudline, are
used as grid points for response surfaces. The challenge is to define functions that can be well fitted to the grid points using a
least square algorithm. Fig.11 illustrates the situation. It shows themaximumhorizontal shear forces atmudline in leg 1 of the
OC4 jacket substructure for different wind speeds. Each data point is the result of a fully coupled time domain simulation.
There is a discontinuity at the cut-off wind speed resulting from the simplified shut-down procedure at cut-off wind speed
which is not considered in detail here. For each time domain simulation in FAST, the turbine is either running or shut off
which leads to this discontinuity. Fig. 11 clarifies that the data space can be divided into sections in order to apply polynomial
approaches. The characteristics of the results are dependent on the turbine controller leading to highly nonlinear discon-
tinuous functions. Hence, the data space is divided into three sections depending on the wind speed that is correlated with
the controller actions. In the first section (below rated wind speed), the blade-pitch control system is inactive. After reaching
rated wind speed, the controller starts to pitch the blades. For wind speeds higher than the cut-off wind speed (third section),
the blades are pitched out completely (pitch angle of 90�), and the turbine is shut off.

Based on this segmentation, polynomials of a maximum degree of three are fitted with good agreement in all three di-
mensions (wind speed, wave height and direction). For most sections, polynomial degrees of one or two are sufficient. For
example, Fig. 11 suggests for the wind speed above cut-off a linear fit. The coefficients of the polynomials were calculated
using a linear regression for each section and force. Here, the effect of higher polynomial degrees was judged using the
adjusted coefficient of determination. A degree as low as possible without losing significant accuracy was selected. The
corresponding coefficients of an exemplary response surface for a jacket are summarized in Table 6, and a plot of another
(two-dimensional) response surface for a monopile and the whole data space is shown in Fig. 12.

The presented approach of linking the decisive loads to the most important environmental conditions using multi-
dimensional, piecewise polynomial response surfaces enables an estimation of the loads at mudline in advance without

Fig. 11. Illustration of maximum horizontal shear forces at mudline in leg 1 of the OC4 jacket for different wind speeds and with hs ¼ 6 m and a ¼ 0� calculated in
time domain simulations using FAST.

Fig. 10. Horizontal cut through the jacket on MSL with coordinate system (dashed), leg numbering and inflow wind angle (dotted).
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further coupled time domain simulations. Of course, it is only an estimatewith thementioned simplifications. Nonetheless, to
determine the load-dependent soil stiffness for a given operating point, such a reduced model is adequate, as slightly
changing loads are not influencing the soil stiffness and the overall turbines results significantly (c.f. Fig. 8 and Table 5).

4.2. Results of the load approximation using a response surface

An effective way to relate loads at mudline to the environmental conditions was presented. In this section, results of load
approximations using the response surface method are presented clarifying that - despite all simplifications - this approach
gives sufficiently accurate approximations. Therefore, it is an appropriate way to determine the soil stiffness beforehand. In
order to analyze the applicability of the method of relating loads to environmental conditions, loads computed with coupled
transient simulations using FAST are compared to loads approximated with the response surface method. Firstly, only grid
points are used. These are the data points that are used to generate the response surface itself. Secondly, the loads are
compared for other points in all different conditions. Lastly, some other environmental conditions (not used for the con-
struction of the response surface) are changed as well in order to check whether these three variables are sufficient.

Fig. 12. Response surface of the overturning moment at mudline for a monopile foundation and all three sections.

Table 6
Coefficients for the three-dimensional response surface of the overturning moment at mudline in leg 1 of the jacket with
11:4 ms�1 � vw ¼ 25 ms�1 . For reasons of simplicity, units are omitted, but all coefficients are in SI units.

Linear regression model M ¼ c0 þ ca a þ cv vw þ ch hs þ cav a vw þ cah a hs þ cvh vw hs þ cv2 v2w þ ch2 h2
s

Coefficient of Estimate

c0 2:8063� 106

ca 1:9605� 103

cv �2:0918� 105

ch 1:0630� 105

cav 1:3382� 101

cah 8:0765� 101

cvh �2:3423� 103

cv2 5:3624� 103

ch2 5:9823� 103

Adjusted coefficient of determination : R2
adjusted ¼ 0:996

Table 7
Relative difference between approximated shear forces and values computed with time domain calculations for different environmental conditions for an
OC3-monopile in %. The wind and wave direction (a ¼ 0�) is not relevant for the symmetric monopile.

vw in ms�1 hs in m Fxy;max in N

Approx. with RS Calculation using FAST Diff.

11 7 2:400� 106 2:404� 106 0.15%
16 10 2:851� 106 2:846� 106 0.18%
1:5 1 2:578� 105 2:653� 105 2.83%
50 14 3:668� 106 3:683� 106 0.41%

C. Hübler et al. / Marine Structures 57 (2018) 18e3732

2.5. Paper A 54



Table 7 shows that, in general, response surface approximations for grid points as well as for other points show less than
3% deviation of the time domain simulations for the monopile and less than 5% for the jacket (not shown). For extrapolated
values (for example for vw ¼ 50 ms�1), the difference is still less than 5%. Therefore, if other environmental conditions are
kept fixed, the proposed approximation proves to be sufficiently accurate.

However, if other environmental conditions are changed, the approximation is less precise. In this study, the air density
(rL), the wave peak period (TP) and the water depth (lwater) are selected to be other important environmental conditions and
are varied. Some results of the approximationwith changing conditions are summarized in Table 8. Errors of mainly below 5%
show that the approximation is still sufficiently exact for the purpose of this work, even in case of changing environmental
conditions. However, it should be reconsidered to include TP as an additional parameter in the response surface estimation, as
it leads to deviations of up to 15%. There are similar results for the monopile, but the errors due to TP are even up to 20% (not
shown). The high influence of the wave peak period, especially for the monopile, can be explained by resonance effects of the
wave loads and the structure itself. Due to the larger diameter, monopiles are more strongly affected by wave loads. For more
precise approximations, the wave peak period has to be included in the calculation procedure of the response surface, as well.
However, this is not performed in this study. Fairly rough approximations are sufficient for the consideration of the operating
point, as soil stiffnesses are not that sensitive to the changing loads around the operating point (c.f. Fig. 8 and Table 5).
Furthermore, the wave peak period is highly correlated with the wave height (e.g. Ref. [12]). Hence, it is not absolutely
necessary to consider it as a fourth parameter, but for example a dependency of the wave height is an effective alternative.

5. Numerical results of coupled simulations

5.1. Time domain results with initial soil stiffnesses

Results of coupled time domain calculations of a whole offshore wind turbine using FAST are shown exemplarily in order
to illustrate the effectiveness of the basic approach. In this section, neither the operating point is taken into account nor the
different soil models discussed in connectionwith the experiments. For the OC4-Jacket [24] as the substructure and different
configurations of soil-structure interaction, the design load case 5.7 is applied. This load case, according to [38]; has a fully
enabled wind turbine with turbulent wind (vw ¼ 18 ms�1) and irregular waves (hs ¼ 6 m). Results are compared for the
bottom fixed or clamped situation, an apparent fixity length approach according to [40] and the condensed stiffness matrix
for the pile foundation according to [19]. For the condensed stiffness matrices, initial conditions are applied, and the [4] p-y
curves are utilized. The use of the operating point and other p-y curves will be discussed in the next section.

For the OC3-Monopile [23], the same three configurations of soil-structure interaction are compared. Additionally, results
of different simulation codes and soil-structure interaction models, summarized in the OC3-report [23], are depicted. The
load case is an operating load case (load case 5.2 of the OC3-report) with a fully enabled turbine, turbulent wind
(vw ¼ 11 ms�1) and irregular waves (hs ¼ 6 m).

Fig. 13 shows exemplary power spectral densities (PSDs) for load case 5.7 of the jacket foundation. It depicts the jacket
shear force at mudline and indicates a shift of the second bending eigenfrequencies from about 1:2 Hz to about 0:9 Hz for the
flexible foundation and to about 0:8 Hz for the apparent length approach. The shift of natural frequencies for the apparent
length approach is slightly higher than for the stiffness matrix approach. The approach of an apparent length of six times the
diameter according to [40] seems to overestimate the effect of a flexible foundation for a jacket structure considering the
employed type of soil and penetration depth.

The power spectral density for load case 5.2 and themonopile foundation is shown in Fig. 14. Here, the good accordance of
the present approach with other codes from the OC3-report is noticeable. All codes from the OC3-report and the basic model
show the samemerged peaks between about 1:2 Hz and 1:8 Hz. Pronounced peaks are not existent. The apparent fixity length
approach is overestimating the flexibility again. Comparisons with other codes are only possible for monopile foundations.
For jackets, the use of a substructure reduction scheme like the Craig-Bampton reduction is necessary in most cases.
Therefore, other soil models like linearized p-y curves are no longer practical, and to the authors' knowledge, nearly no results
of coupled time domain simulations of the whole turbine with a jacket substructure and soil-structure interaction are
available.

In summary, it can be concluded that the selected version of apparent fixity length overestimates the effect of flexibility.
The basic soil-structure interaction approach [19] is comparable to results of other codes of the OC3-report that are only

Table 8
Relative difference between approximated bending moments and values computed with time domain calculations for an OC4-jacket and by applying
different environmental conditions in %. a ¼ 0� , vw ¼ 25ms�1 and hs ¼ 8m are fixed.

TP in s rL in kgm�3 lwater in m Mxy;max in Nm

Approx. with RS Calculation using FAST Diff.

10 1:225 50 2:07� 106 2:13� 106 2.81%
14 1:225 50 2:07� 106 1:78� 106 14.31%
10 1:225 55 2:07� 106 2:09� 106 0.95%
10 1:3 50 2:07� 106 2:17� 106 4.49%
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available for monopile foundations. The clamped situation clearly represents the stiffest configuration of soil-structure
interaction and is a massive simplification.

This analysis makes clear that the presented approach to model soil effects leads to reasonable results. For further results
and a verification of this approach by means of additional code to code comparisons, it is referred to [19].

5.2. Time domain results with operating point consideration

Results of time domain simulations of jackets with pile foundations and of monopiles were presented and discussed in the
last section. However, the results do not incorporate an estimation of the operating point so far which is a major enhancement
compared to the basic approach. Furthermore, so far, the soil matrices were computed only by using the p-y and T-z curves
based on the [4]. However, the experimental results pointed out that the API models do not achieve the best results for
dynamic applications. This section focuses on the changing overall turbine behavior resulting from different operation points
and various soil models. Again, an OC3-Monopile [23] and an OC4-Jacket [24] with the corresponding soils are investigated.

Before analyzing the overall behavior of the turbine by comparing the results of fully coupled time domain simulations, a
study concerning the impact of the operating point and the lateral soil models on the stiffness matrices is conducted. The
effect of the axial soil models can be neglected in most cases [20] and it is, therefore, not regarded in this work. This does not
mean that the vertical stiffness is not influential at all, but the differences of axial soil models are less pronounced and

Fig. 13. Power spectral densities of the shear force at mudline from design load case 5.7 for an OC4-jacket: clamped ( ), apparent length ( ), basic
approach according to [19] ( ).

Fig. 14. Power spectral densities of the shear force at mudline from design load case 5.2 for an OC3-monopile: clamped ( ), apparent length ( ), basic
approach according to [19] ( ), other codes from OC3-report ( ).
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therefore, do not change the overall turbine behavior significantly. So, the values of kx - exemplarily chosen to represent the
lateral soil stiffness - are compared for three different load cases to show the load dependence of the soil stiffness and for
several lateral soil models to show the differences between the models. The load conditions are the initial stiffness (no loads
applied), an operational load case ( vw ¼ 8 ms�1 hs ¼ 6 m) and a 50-year storm load case ( vw ¼ 42 ms�1 hs ¼ 10:5 m) of [31].
The results are shown in Fig. 15. The initial stiffnesses of the API model are used to normalize the values.

Two points are apparent: There are remarkable differences between the soil models, as already known from the exper-
iments. Therefore, a reflection about the usage of the right model is essential, as the intended application area of themodels is
different (c.f. section “Comparison of Experimental and Numerical Results”). Some differences between the models can be
explained by these deviating application areas. Furthermore, this load dependency leads to another feature. The stiffness
decreases with increasing loads. For the [4] approach, there is a stiffness reduction (c.f. Fig. 1), but still, the overall change in
soil stiffness is only about 5% as shown in Fig. 15, and therefore, does not significantly affect the overall turbine behavior.
However, for other models, especially for Thieken, the stiffness differences are more pronounced leading to considerably
changing stiffness matrices. For the model according to [25]; which was identified to be most suitable for dynamic appli-
cations in the tested conditions, the load dependency is considerable as well (about 15%).

It was demonstrated that different load levels and soil models significantly influence the stiffness matrices and the
eigenfrequencies of the tested piles. However, the effects on the overall behavior of wind turbines are of greater interest. Since
it is not possible to generalize the changes of the stiffness matrices, coupled simulations are necessary to investigate overall
effects. In Fig. 16, power spectral densities for an OC3-Monopile under extreme environmental conditions are presented.
Three soil models are chosen: Firstly, the API model, as it is still recommended by the standards. Secondly, the model by

Fig. 15. Normalized kx coefficients for different lateral soil models and load cases. The X signs for the initial conditions (OC3ini and OC4ini) represent the
normalizing values.

Fig. 16. Power spectral densities for OC3-Monopile with different lateral soil models each evaluated with initial soil stiffness (ISS) and load-dependent soil
stiffness (LDSS).
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Thieken et al. as it exhibits the highest load dependence and lastly, themodel by Kallehave et al. as it matches the experiments
best. For all three models, two time domain calculations were conducted with the same extreme environmental conditions,
but the soil behavior is either linearized at the zero-deflection point (initial stiffness) or at the operating point (loads applied).

Two features are visible. Eigenfrequencies of the entire wind turbine depend highly on the soil model. The discrepancy of
the natural frequency of Thieken and API with initial loads at about 4 Hz is approximately 10%. The eigenfrequencies of
Kallehave are just in between. Furthermore, the effect of the load level and therefore, of the response surface application
highly depends on the soil model applied. For the API model, the effect of changing loads can be neglected, whereas for
Kallehave it is significant, and for Thieken it is evenmore pronounced than the discrepancies between themodels themselves.

It can be summarized that the lateral soil model has to be chosen with care and according to the load conditions and the
intended application area of the soil model. It depends on the soil model, whether an estimation of the operating point with
the response surface method is essential or initial conditions can be assumed as in the basic model by Ref. [19].

6. Conclusions

The basic approach by Ref. [19] is an effective method to consider effects of the soil in coupled time domain simulations of
offshore wind turbines. It is very flexible and can be used for different kinds of substructures and anchorages, even if the
substructure is condensed with a Craig-Bampton reduction, as it is common practice. This approach, which is based on
preliminary calculated mass and stiffness matrices, is enhanced here. The approach is independent of the computation
method of the matrices. One way to compute the matrices is the use of nonlinear spring models representing the soil, so-
called p-y curves. P-y curves are important for different types of substructures, for example monopiles and jackets, as both
are exposed to significant horizontal forces andmoments at mudline. The first focus of this work is on different springmodels
that can be found in literature. The models are analyzed in detail using experimental investigations of jacket piles on a large
scale. Additional experiments assessing the applicability of p-y models for monopiles with smaller L=d ratios would be
valuable, as results might be slightly different. By comparing eigenfrequencies of numerical calculations with experimental
ones, large differences between the models themselves and to the experimental results are apparent. It is abstained from
utilizing other modal parameters, e.g. mode shapes, since their detection is more error-prone than it is for eigenfrequencies.
For the calculation of eigenfrequencies, the p-y model by Ref. [25] proved to be most suitable in the present case. As only
eigenfrequencies and no real load conditions were tested, all results have to be treated with caution.

The second focus of the work is on the load dependence of the soil stiffness. The consideration of the operating point is a
major enhancement of the basic approach, as it enables a load-dependent consideration of soil characteristics. The presented
use of response surfaces is an effective way to incorporate the operating point.

Firstly, it was shown that a rough approximation of the loads at the operating point using results of time domain simu-
lations with clamped structures is sufficient and no iterative procedure is needed (c.f. Table 5). Then, the use of a multi-
dimensional, piecewise polynomial response surface approximating the acting loads at the operating point proved to be
sufficiently precise. Thirdly, coupled time domain calculations of wind turbines with substructures, which are modeled as
clamped to the seabed, and of substructures anchoredwith (mono-) piles andmodeledwith the basic approach and initial soil
stiffnesses were conducted. The results were compared, and significant shifts of the eigenfrequencies are recognizable. Af-
terwards, comparisons of the stiffness matrices of pile foundations of jacket substructures and a monopile modeled using
different p-y curves were made. Time domain simulations of wind turbines with these varying matrices were analyzed. It is
very important to point out that there are huge discrepancies between different soil models as already seen in the
experiments.

The present approach of considering soil characteristics is effective, but still very flexible. However, if higher computing
times are manageable, even more accurate results can be achieved by some small modifications. The response surface can be
enhanced with further environmental conditions (e.g. TP), or it can be replaced by an a priori (and iterative) calculation of the
acting loads (e.g. procedure (3) or (4) in Fig. 9). Furthermore, more sophisticated soil models can be applied to compute the
soil matrices, as the use of static p-y curves can lead to uncertain results due to the great differences between the numerical
models and themeasured values. The use or development of specific dynamic p-y curves, as for seismic applications, might be
valuable. Furthermore, the present approach is restricted to time-invariant load-dependent soil matrices. This means that in
case of changing loads over time (time-variant loads), for example transient load cases, the load-dependent soil matrices
remain time-invariant and are not recalculated in each time step. While the substructure is condensed using a Craig-Bampton
reduction, it is not possible to apply time-variant soil matrices. Nevertheless, for unreduced substructures, which is frequently
the case for monopiles, other soil models with time-variant stiffnesses are possibly slightly more accurate.

In future work, a detailed experimental investigation on a large scale of different soil models, including dynamic p-y
curves, for different load conditions should by conducted, as it could help to reduce model errors and to give the maximum
possible guidance on the selection of the most suitable model.
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3 Aleatory uncertainty of input parameters
Since input parameters are not set to deterministic values in probabilistic analyses, statistical
data of these parameters is a basic prerequisite. However, there are two challenges. First, it
has to be defined which parameters should be considered as uncertain and thus be statistically
distributed and which ones can be set to deterministic values. Due to computational
limitations, today, it is unrealistic to include all possible parameters in a probabilistic
analysis. This challenge is addressed in Section 4. Second, in many cases, neither raw data
nor empirical or theoretical statistical distributions are available for the considered site,
turbine, etc. In this case, research databases in literature, being created for “standard”
conditions, are a well-founded starting point. Such a database is set up here.

3.1 Research context
For probabilistic analyses of OWTs and even for deterministic approaches, considering various
wind speeds, the knowledge of empirical or theoretical EC distributions is fundamental.
Therefore, there are several databases for offshore ECs created and/or used in literature.
Some examples are the widely known UpWind database [51], a database for the US by
Stewart et al. [186], and databases based on FINO data by Hansen et al. [69] and Häfele
et al. [61]. Nonetheless, all these databases have some more or less severe limitations. The
design basis of Stewart et al. [186] is only for deep water sites off the coasts of the US. Hence,
it cannot be used for shallow water conditions in the North Sea. Moreover, wind speeds are
not measured at hub height but at buoys only some metres above mean sea level (MSL).
Similarly, for the UpWind design basis [51], wind speeds are given at a reference height of
10m and not at hub height. Furthermore, for conditional parameters (e.g. wave height Hs),
only scatter plots are given. In the PSA-OWT project [69], data of the research platform
FINO1 in the North Sea is used. Here, wind speeds are measured at hub height, but shadow
effects can occur, if sensors are positioned behind the measuring mast. Häfele et al. [61] use
data of FINO3. Due to several sensors at each height, shadow effects are reduced. Häfele et
al. analyse only five ECs. Furthermore, most researches do not use dependent distributions
and just apply “standard” distributions. For example, multi-modal distributions are only
considered by Häfele et al.
Even if statistical distributions of probabilistic inputs are known precisely, another important
factor for accurate OWT simulations are simulation constraints. Here, two of these constraints
- simulation lengths and run-in time (i.e. the time at the beginning of each simulation that
has to be discarded due to initial transients) - are discussed. Recommendations in standards
remain fairly vague [53, 84]. For ULS calculations, normally, 1 h simulation length is
recommended, while 10-minute simulations are proposed for FLS. For run-in times, 5 s or
more are advised. This leads to varying values in literature [61, 95, 206]. To harmonise
utilised simulation lengths based on well-founded analyses, several authors investigate the
simulation lengths required for floating OWTs [58, 63, 185, 186]. For floating OWTs, it is
concluded that a simulation length of 10 min is sufficient, if adequate algorithms are applied
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(e.g. merging time series to reduce the effect of unclosed cycles in the rainflow counting
for FLS). For bottom fixed structures, these investigations have not been performed so far.
Regarding run-in times, there are even less well-founded recommendations. Haid et al. [63]
propose 60 s and the utilisation of initial conditions for floating OWTs. However, no details
are given so that it is not clear why this value is recommended. Zwick and Muskulus [220]
analyse the required run-in time for bottom fixed OWTs by checking the rotor speed to
reach a steady state, although this procedure cannot guarantee that all initial transients are
damped out. They conclude that run-in times up to 200 s depending on the wind speed are
needed. After all, there is a lack of well-founded recommendations for simulation constraints
especially for bottom fixed OWTs.

3.2 Methods

Due to the present limitations of existing databases, in this thesis, a new database, is set up
with the intention to resolve at least some shortcomings. For this purpose, raw data of three
measurement masts in the German North and Baltic Sea (FINO1-3) is used. This data has
the advantage that it is of high quality, for various ECs, for a relatively long measurement
period, and based on wind measurements at hub height. Raw data is post-processed (missing
data is handled and outliers are removed). Afterwards, ECs that cannot be measured
directly (e.g. wind shear exponent) are calculated. In the next step, MLE is used to fit
theoretical statistical distributions to the post-processed data. Since a large amount of
raw data is available, the statistical uncertainty of the fits is fairly small in most cases and
is not further considered. To enable an accurate and realistic representation of the real
data, dependent, “advanced” distributions are used. This means that multi-modal and
non-parametric distributions are considered as well. Furthermore, ECs cannot be considered
as independent. Therefore, for example, for different wind speeds, changing distributions for
the turbulence intensity are defined. The goodness of fits is assessed by applying KS and χ2

tests and the best fitting distributions are selected.
Regarding simulation constraints, convergence studies of fatigue damages and ultimate loads
with respect to simulation length and run-in time are conducted independently. These studies
are based on several thousand probabilistic simulations with various lengths and run-in
times. For ULS, the overall length of all simulations is kept constant (e.g. 600 ten-minute
simulations and 100 one-hour simulations; c.f. Haid et al. [63]). For FLS, in accordance with
the findings of Stewart [185], several simulations are merged (e.g. merging of six 10-minute
simulations to one 1-hour simulation).

3.3 Results

The developed database consists of statistical distributions for three different sites and
thirteen ECs. Dependent, “advanced” distributions are defined leading to accurate fits.
The open-source character of the database makes it a possible basis for future probabilistic
simulations. Furthermore, the database reveals some interesting facts regarding ECs. One
example is the bimodal shape of the wind shear exponent PDF that includes a broad range
of negative values. A second example are relatively low turbulence intensities compared to
standards [84] and other databases [51].
For the investigated bottom fixed OWT, simulation lengths of 10 min are sufficient for ULS
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and FLS calculations. This matches findings for floating OWTs. In probabilistic analyses,
the use of 10-minute simulations is recommended, since it enables the simulation of more
different EC combinations (i.e. six 10-minute simulations instead of one 1-hour simulation).
For run-in times, it is shown that minimum values depend on the structure, wind speed,
and load case (ULS/FLS). Some recommendations are given, although it has to be kept in
mind that run-in times highly depend on the simulation code, damping values, etc.

3.4 Outlook
Although the present database for ECs and simulation constraints is a good starting point
for future probabilistic analyses, its value can be significantly increased, if it is enlarged.
For example, additional sites (including deep water sites for floating OWTs) and more
long-term data (for the investigation of extreme events) should be added. This includes
statistical distributions for extreme events like extreme turbulence intensities that are
also relevant for turbine design (c.f. DLC 1.3 in the IEC standard [84]). Moreover, the
inclusion of more ECs could be beneficial. One example is the change of wind direction over
height (wind veer) that has not been considered so far, but could be determined using the
present FINO data. Furthermore, only aleatory uncertainty (random variations of ECs) is
covered. However, as, for example, the amount of raw data is limited, epistemic uncertainty
(e.g. uncertainty due to incompleteness, statistical uncertainty) occurs as well. To cover
epistemic uncertainty, in future, the present database could be updated to include imprecise
probability data (e.g. using left and right bounds of cumulative density functions (CDFs)
in a p-box approach). Lastly, recommendations regarding run-in times are a valuable help
for designers and researchers, since in most cases, no convergence studies are conducted
in advance. Nevertheless, the validity of these recommendations is limited (e.g. code or
damping dependencies). Therefore, similar investigations for other codes, etc. would increase
the benefit of the present contribution.

3.5 Paper B: Development of a comprehensive database of
scattering environmental conditions and simulation
constraints for offshore wind turbines

The following paper is published in Wind Energy Science, Volume 2 (2017), pages 491-505
(https://doi.org/10.5194/wes-2-491-2017). The main work was done by the author of this
thesis. Cristian Gebhardt and Raimund Rolfes contributed with advisory and supporting
work. Special thanks go to “Bundesamt für Schifffahrt und Hydrographie” (BSH) and the
various operators and funders of the FINO platforms for providing the raw data.
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Abstract. For the design and optimisation of offshore wind turbines, the knowledge of realistic environmen-
tal conditions and utilisation of well-founded simulation constraints is very important, as both influence the
structural behaviour and power output in numerical simulations. However, real high-quality data, especially for
research purposes, are scarcely available. This is why, in this work, a comprehensive database of 13 environmen-
tal conditions at wind turbine locations in the North and Baltic Sea is derived using data of the FINO research
platforms. For simulation constraints, like the simulation length and the time of initial simulation transients, well-
founded recommendations in the literature are also rare. Nevertheless, it is known that the choice of simulation
lengths and times of initial transients fundamentally affects the quality and computing time of simulations. For
this reason, studies of convergence for both parameters are conducted to determine adequate values depending
on the type of substructure, the wind speed, and the considered loading (fatigue or ultimate). As the main purpose
of both the database and the simulation constraints is to compromise realistic data for probabilistic design ap-
proaches and to serve as a guidance for further studies in order to enable more realistic and accurate simulations,
all results are freely available and easy to apply.

1 Introduction

Although the share of offshore wind energy in overall energy
production has been steadily growing over the last years, the
cost of offshore wind energy is still high compared to other
renewable energies (Kost et al., 2013). In order to achieve
potential cost reductions of about 30 % in the next 10 years
(Prognos AG and Fichtner, 2013), a realistic and accurate
simulation of offshore wind turbines and their substructures
is beneficial. On the one hand, for realistic simulations, the
knowledge of scattering environmental conditions is a central
point. In this context, scattering conditions are non-constant
parameters that exhibit stochastic variations and aleatoric un-
certainties, and therefore should be modelled as statistically
distributed. On the other hand, carefully chosen simulation
constraints, like the simulation length or the time of initial
transients, are essential to obtain accurate results. Here, the
simulation length is defined as the usable time for the post-

processing. The time of initial transients is the time that is
removed from each simulation to exclude initial transients re-
sulting from starting a calculation with a set of initial turbine
conditions (like rotor speed). Simulation length plus initial
transient time make up the overall length.

Regarding the first point, current guidelines (IEC, 2009)
already define that simulations should mirror the chang-
ing environmental conditions at the precise site of a wind
turbine. However, for academic research, real site data are
rarely available, and, even for industrial purposes, data qual-
ity might be poor for some parameters or long-term data
might be missing. As a result, various research projects have
characterised environmental conditions at specific sites or en-
tire areas and published statistical distributions as a refer-
ence. Probably the most frequently used example is the UP-
WIND design basis (Fischer et al., 2010). Further examples
are the work of Stewart et al. (2015), the PSA-OWT project
(Hansen et al., 2015), and the investigations by Häfele et al.
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(2017). All these reference conditions have some limitations.
The design basis of Stewart et al. (2015) is only for deep-
water sites off the coasts of the United States of America. The
wave state of deep-water sites is not comparable to shallow-
water conditions in the North Sea, as significant wave heights
generally increase with the water depth (Hansen et al., 2015).
Additionally, wind speeds are not measured at hub height and
therefore have to be extrapolated, which increases uncertain-
ties. For the UPWIND design basis, the wind speed is just
given at a reference height of 10 m and not at hub height as
well. Furthermore, no statistical distributions for conditional
parameters (e.g. the wave height Hs depends on the wind
speed vs) are given, only scatter plots. In the PSA-OWT
project, data of the research platform FINO1 in the North Sea
are used. Here, the wind speed is measured at hub height, but
shadow effects can occur if sensors are positioned behind the
measuring mast. Häfele et al. (2017) use data of the research
platform FINO3, which has several sensors at each height to
reduce shadow effects. However, only five environmental pa-
rameters (wind speed and direction, wave height, period and
direction) are analysed, and the data period is only 5 years.
Hence, the need for a comprehensive database, covering sev-
eral sites and the most important parameters, becomes obvi-
ous in order to enable future research that is based on realistic
data. Missing conditions are, for example, the turbulence in-
tensity, the wind shear, or ocean currents.

As to the second point, simulation constraints are fre-
quently chosen based on experience, literature values, or rec-
ommendations in current standards. However, considering
the simulation length and time of initial transients, recom-
mendations in the guidelines are mainly fairly vague (GL,
2012; IEC, 2009). Simulation lengths of 10 min for fatigue
calculations (FLS), and 1 h or less for ultimate loads (ULS)
are frequently recommended. For the initial transients, it is
advised to discard lengths of 5 s or more. Literature values
partly differ significantly. To reduce the effects of initial tran-
sients, the first 20, 30, or 60 s are discarded, for example
(Vemula et al., 2010; Jonkman and Musial, 2010; Hübler
et al., 2017), and simulation lengths of 10 min and 1 h are
common practice (Jonkman and Musial, 2010; Popko et al.,
2012; Cheng, 2002). However, longer simulation lengths are
partly used as well, especially in the oil and gas industry or
for floating substructures (DNV, 2013). Still, all these rec-
ommendations are not underpinned with detailed analyses.
For floating offshore wind turbines, such investigations were
conducted for the simulation length by Stewart et al. (2015),
Stewart et al. (2013) and Haid et al. (2013). It is shown that
simulation lengths of 10 min are sufficient for ULS and FLS
loads. The observation that ULS and FLS loads tend to be
higher for longer simulations is not for physical reasons but
due to unclosed cycles in the rainflow counting for the FLS
case and a result of the averaging technique in the case of
ULS loads. Both can be handled by adapting the algorithms.
Concerning the time of initial transients, Haid et al. (2013)
recommend 60 s and the utilisation of initial conditions. This

recommendation is based on an analysis which has not been
further specified. For a jacket foundation, Zwick and Musku-
lus (2015) conducted a study investigating lengths of simu-
lations and initial transients and also concluded that 10 min
is sufficient, as long as 10 min time series are merged before
the rainflow counting is applied. The required time of ini-
tial transients is determined by checking the rotor speed to
reach a steady state. However, the initial conditions are not
applied, and a steady speed does not guarantee that all tran-
sients are damped out. Therefore, the need for well-founded
guidance on simulation lengths and times of initial transients
for bottom-fixed substructures becomes clear. For the simu-
lation length, useful preliminary work is available, but it is
limited to jacket substructures. Concerning initial transients,
extensive studies are rare and do not concentrate on the con-
vergence of the relevant loads (FLS and ULS). Furthermore,
scattering environmental conditions are not taken into ac-
count. This is a simplification especially in the case of the
initial transients, as this variation might lead to more pro-
nounced resonance effects (e.g. rarely occurring low wave
peak periods that are close to the natural frequency of the
structure; see Sect. 2.4) and therefore to more pronounced
initial transients.

After all, the listed shortcoming in state-of-the-art mod-
elling assistance motivated the current work that focuses on
the following aspects:

1. deriving an open-access database for various scatter-
ing environmental conditions at different sites to enable
more realistic modelling;

2. giving well-founded guidance on simulation length re-
quirements and the time needed to exclude initial tran-
sients, when these realistic conditions are applied, to im-
prove accuracy of numerical simulations.

In order to address these topics, firstly, a database for all sig-
nificant environmental conditions is derived from real data of
the FINO research platforms. In this work, the data source is
introduced, the analysis is described, and the resulting dis-
tributions and some interesting findings are presented. Sec-
ondly, required simulation lengths and times of initial tran-
sients are determined. For this purpose, the probabilistic sim-
ulation approach and the simulation model are explained.
Then, studies of convergence are conducted for the simula-
tion length and the time of initial transients. A monopile and
a jacket substructure, FLS and ULS loads, and different wind
speeds are considered. Recommendations are summarised.
Lastly, the benefits and limitations of the current approach
are summarised, and a conclusion is drawn.

2 Comprehensive database

2.1 Raw data

Environmental conditions can vary significantly among var-
ious turbine sites. As these states affect loads, and therefore
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Table 1. Environmental conditions (wind speed vs, significant wave heightHs, wave peak period Tp, and turbulence intensity TI) of the K13
shallow-water site (UPWIND design basis; Fischer et al., 2010). The wind shear exponent is α = 0.14, and wind and wave directions are
usually set to zero, but scatter plots are available.

vs (m s−1) 2 4 6 8 10 12 14 16 18 20 22 24 26

TI (%) 29.2 20.4 17.5 16.0 15.2 14.6 14.2 13.9 13.6 13.4 13.3 13.1 13.0
Hs (m) 1.07 1.10 1.18 1.31 1.48 1.70 1.91 2.19 2.47 2.76 3.09 3.42 3.76
Tp (s) 6.03 5.88 5.76 5.67 5.74 5.88 6.07 6.37 6.71 6.99 7.40 7.80 8.14

Figure 1. Positions of the three FINO platforms in the North and Baltic Sea, adapted from OpenStreetMap.

the design of offshore wind turbines, precise data of spe-
cific turbine location are valuable. Real site data are scarce,
which is the reason for the previously mentioned reference
databases (Fischer et al., 2010; Hansen et al., 2015; Stew-
art et al., 2015; Häfele et al., 2017). These databases define
conditional, statistical distributions for some of the most im-
portant environmental conditions: wind speed and direction,
wave height, direction, and peak period. However, other con-
ditions are fixed for each wind speed or are set completely
constant. The states of the frequently used UPWIND design
basis are summarised in Table 1 as an example.

In this study, scattering conditions are derived directly
from offshore measurement data. The raw data are taken
from the three FINO platforms, and conditional distribu-
tions for the following 13 environmental parameters are de-
termined: wind speed and direction, wave height, peak pe-
riod and direction, turbulence intensity, wind shear expo-
nent, speed and direction of the sub- and near-surface current,
and air and water density. The FINO measurement masts
are located in the North Sea and Baltic Sea and are oper-
ated on behalf of the German Federal Ministry for the Envi-
ronment, Nature Conservation, Building and Nuclear Safety
(BMUB).1 for details. The locations of the three FINO sites
are marked in Fig. 1.

1Raw data of the FINO platforms are freely available for re-
search purposes. See http://www.fino-offshore.de/en/

For all three sites, maximum, minimum, mean, and stan-
dard deviation values of the wind speed, measured at dif-
ferent heights between 30 and 100 m above mean sea level,
are available for 10 min intervals. Wind speeds are mea-
sured with cup and ultrasonic anemometers. In this study,
cup anemometers are used, as these sensors are available at
more different heights. For FINO1 and 2, the anemometers
are positioned on jibs in secondary wind directions to re-
duce shadow effects. For FINO3, three anemometers are in-
stalled around the mast to minimise shadow effects. Sensors
at different heights allow a detailed analysis of shear effects.
Wind direction, air pressure, temperature, and humidity are
measured at different heights as well. Buoys in the imme-
diate vicinity of the research platforms (about 150 m) mea-
sure the wave conditions. Mean values of significant wave
heights, wave directions, wave peak periods and water tem-
peratures are measured every 30 min. Furthermore, acous-
tic Doppler current profilers (ADCPs) close to the platforms
measure ocean current velocities and directions at different
water depths using the Doppler effect of sound waves. The
platforms FINO1, 2, and 3 have been measuring continu-
ously since 2004, 2007, and 2009 respectively, resulting in
7 to 13 complete years of measurement data, and enabling at
least some long-term predictions. Data of incomplete years
are not taken into account in order not to introduce bias due
to seasonal effects.
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2.2 Conditional distributions

In this work, raw data of the FINO measurement masts are
used to set up a database for correlated, scattering envi-
ronmental conditions. As the post-processing of raw data
is time-consuming and it is unnecessary to repeat it each
time environmental conditions are used, conditional proba-
bility distributions (i.e. P (Y = y|X = x), with X being the
independent random variable, Y the dependent one, and P
the probability function) for environmental conditions are
derived to make the database easy to use. Firstly, post-
processing is carried out to identify sensor failures (missing
data) and measurement failures (outliers). Missing data are
not interpolated but instead left out, in order not to introduce
any bias. As sufficient data of proper signal quality are avail-
able (e.g. more than 350 000 data points for the wind speed
even for FINO3), this approach is practicable. Wind speed
data are synchronised with the wind direction data. This en-
ables a selection of the anemometer in front of the mast for
FINO3. For FINO1 and 2, wind speed values are discarded if
the jib is located directly in the tower shadow. The turbulence
intensity (TI) can be computed as the quotient of the standard
deviation of the wind speed in a 10 min interval (σv) and the
mean wind speed in this interval (vs) according to Eq. (1):

TI=
σv

vs
. (1)

For the wind shear, Eq. (2) applies according to the standard
of IEC (2005):

vs(z)= vs(z0)×
(
z

z0

)α
, (2)

where z is the height above mean sea level, z0 is a refer-
ence height, vs(z) and vs(z0) are wind speeds at the specified
heights, and α is the wind shear exponent. At the FINO plat-
forms, the wind speed is measured at eight different heights.
Therefore, it is possible to determine the wind shear exponent
for every 10 min interval by assuming z0 = 90 m and apply-
ing a non-linear regression. The air density can be calculated
using Avogadro’s law in Eq. (3) and the measurements of hu-
midity (φ), air pressure (phumid), and temperature in degrees
Celsius (Tair):

ρair =
phumid

Rhumid Tair
. (3)

As humid air can be regarded as a mixture of ideal gases, the
following equation applies for Rhumid:

Rhumid =
Rdry

1−φ psat
phumid

(
1− Rdry

Rvapour

) , (4)

where Rdry = 287.1 J kg−1 K−1 is the specific gas constant
for dry air, Rvapour = 461.5 J kg−1 K−1 for water vapour, and

psat is the saturation vapour pressure that can, for example,
be calculated using the August–Roche–Magnus formula:

psat = 6.1094hPa× e
17.625×Tair
Tair+243.04 . (5)

For the water density, a semi-analytical approach by Millero
and Poisson (1981) of the following form is applied:

ρwater =A (Twater)+B (Twater)S+C (Twater)S1.5

+DS2, (6)

where S is the salinity; Twater is the water temperature at the
surface; A, B, and C are polynomial functions of the wa-
ter temperature; and D is a constant. As constant salinity is
assumed, the water density is a function of the water tem-
perature. For all wave parameters, 3 h mean values are cal-
culated, as wave conditions stay stationary for a duration of
about 3 h (GL, 2012). For the speeds and directions of sub-
and near-surface currents, measured current values (vm and
θm) have to be converted in order to separate sub- and near-
surface components. According to, for example, IEC (2009),
the following two equations apply for sub- and near-surface
currents respectively:

vSS(z)= vSS(0m)
(
d − z

d

) 1
7

(7)

and

vNS(z)=

{
vNS(0m)

(
20 m−z

20 m

)
for z <= 0

0 for z > 0.
(8)

Here, vSS(z) and vNS(z) are the sub- and near-surface current
speeds at a position z below the water surface, and d is the
water depth. For reasons of clarity, the following notation is
introduced: vSS(z)= vSS,z. The velocity profiles are shown
in Fig. 2. Obviously, the near-surface current does not exist
below a reference depth of 20 m. Hence, it is possible to use
measurement data of a depth of 20 m (or more) to directly get
the sub-surface direction (θSS,20 = θm,20) and to calculate the
speed, for example for FINO2 (d = 25 m):

vSS,0 = vSS,20

(
25m− 20m

25m

)− 1
7
. (9)

For the near-surface current, measurements close to the
surface (e.g. vm,2) can be used. However, these measure-
ments include sub- and near-surface components, as shown
in Fig. 3.

Therefore, the sub-surface component at 2 m has to be
calculated using Eq. (7), and the sub-surface direction is
assumed to be constant over depth (θSS,20 = θSS,2 = θSS,0).
Then, trigonometrical relationships can be applied to calcu-
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Figure 2. Velocity profiles of the sub- and near-surface currents
according to Eqs. (7) and (8) respectively, with a water depth of
25 m and normalised speeds (vSS,0 = vNS,0 = 1).

late the near-surface current at 2 m:

vNS,2 =

√
v2

SS,2+ v
2
m,2− 2vSS,2vm,2 cos

(
θm,2− θSS,2

)
, (10)

θNS,2 = θm,2+ arcsin

(
vSS,2

sin
(
θm,2− θSS,2

)

vNS,2

)
. (11)

Lastly, the reference near-surface current vNS,0 is given by

vNS,0 = vNS,2

(
20m

20m− 2m

)
. (12)

A depth-independent near-surface direction is assumed, and
therefore θNS,0 = θNS,2.

After having post-processed the measurement raw data,
maximum likelihood estimations are applied to the processed
data of the regarded 13 environmental conditions in order
to fit several statistical distributions. In addition to unimodal
distributions, and if several distinct peaks are distinguishable,
multimodal distributions are fitted as well, as it is assumed
that the peaks are due to physical phenomena. However, as
multimodal approaches have more degrees of freedom, they
always fit the data better, even in the case of a physically uni-
modal shape. Therefore, they have to be chosen with care in
order not to fit physically unimodal distributions with multi-
modal approaches.

Considering the example of wind speed and wave height, it
is self-evident that some environmental parameters are con-
ditioned by others, and dependencies have to be defined. For
example, the case of a calm sea during a storm is very un-
likely. Analysing scatter plots of the environmental inputs
and taking a literature review into account, the dependencies
in Table 2 are defined, although it is possible to define them
differently (see Stewart, 2016), as mainly the correlation is
significant, and the determination of cause and effect is sec-
ondary.

One of the most common ways to include dependencies
in statistical distributions is to split up the data of the de-
pendent parameters into several bins of the independent pa-
rameters (e.g. Stewart, 2016; Johannessen et al., 2002; Li et

vm,2

vSS,2

vNS,2

θSS,2

θNS,2

θm,2

Figure 3. Vectorial analysis of ocean current components at a depth
of 2 m (measured values (m), near- and sub-surface components
(NS and SS)).

al., 2015). To illustrate this approach, for example, the wave
peak period is fitted in several bins of 0.5 m wave height
(e.g. P (Tp)= P (Tp|1.5m≤Hs < 2 m)). The bin widths for
the dependent parameters are summarised in Table 2 as well.
For highly correlated parameters, an alternative to the bin-
ning procedure is to model only the deviation between the
parameters. Here, the direction of the near-surface current
that is highly dependent on the wind direction is an exam-
ple. Therefore, by modelling the deviation 1NS according to
Table 2, the following applies:

θNS =1NS+ θwind (13)

Visual inspections and objective criteria using
Kolmogorov–Smirnov tests (KS tests) and chi-squared
tests (χ2 tests) are used to select the best fitting distribution
for each environmental condition. Although the KS test is
less powerful than other statistical tests, it is still used due
to its suitability for small samples (occurring, for example,
for dependent variables and high wind speeds), where χ2

tests are not applicable. For one parameter, it is attempted to
chose only one distribution for all bins and sites in order to
keep the database easy to use. However, as noted in Table 2,
in some cases several distributions are selected to increase
the accuracy of the fits.

Directional parameters like θwind are treated differently,
as classical, parametric distributions can hardly fit several
peaks in continuous distributions (0◦= 360◦). Therefore, a
non-parametric kernel density estimation (KDE) is used to
fit directional parameters.

2.3 Resulting distributions

In order to establish a full database, statistical distribution
and their parameters for all 13 environmental conditions, the
three sites and all bins (if necessary) have to be provided.
Furthermore, for non-parametric distributions the underlying
data are needed. The main ideas are explained here; however,

www.wind-energ-sci.net/2/491/2017/ Wind Energ. Sci., 2, 491–505, 2017

3.5. Paper B 68



496 C. Hübler et al.: Development of a database of scattering environmental conditions

Table 2. Dependencies, statistical distributions, and bin widths for environmental conditions derived from FINO1–3 data.

Parameter Statistical distributions Dependencies Bin sizes

Wind speed (vs) Weibull – –
Wind direction (θwind) Non-parametric KDE Wind speed 2 ms−1

Turbulence intensity (TI) Weibull, gamma Wind speed 2 ms−1

Wind shear exponent (αPL) Bimodal normal Wind speed 2 ms−1

Air density (ρair) Bimodal log-normal – –
Significant wave height (Hs) Gumbel, Weibull Wind speed 2 ms−1

Wave peak period (Tp) Bimodal Gumbel Wave height 0.5 m
Wave direction (θwave) Non-parametric KDE Wave height and wind direction 1.0 m and 30◦

Water density (ρwater) Trimodal normal – –
Near-surface current (vNS) Weibull – –
Sub-surface current (vSS) Weibull, Gumbel – –
Deviation NS direction (1NS) Bimodal normal (Wind direction and NS direction) –
SS direction (θSS) Non-parametric KDE – –
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Figure 4. Weibull distributions for the wind speeds for all three
sites.

due to the comprehensiveness of the data, detailed and addi-
tional information is provided in an easily applicable form, in
the Supplement. At this point, only two examples are shown
in Figs. 4 and 5.

2.4 Special findings

In this section, some noteworthy findings of this database,
mainly resulting from the consideration of scattering, are
pointed out. Three examples are presented: the importance
of wave peak periods, the high scattering of wind shear ex-
ponents, and the behaviour of the turbulence intensity.

Wave loads are of particular importance if the wave fre-
quency is close to the first natural frequency of the struc-
ture. Standard offshore wind turbines have first bending fre-
quencies of about 0.25 to 0.3 Hz (Jonkman and Musial,
2010; Popko et al., 2012) corresponding to eigenperiods of
less than 4 s. If state-of-the-art databases are used (see Ta-
ble 1), there will be no resonance. However, real data sug-
gest that resonance effects are problematic even for higher
wind speeds, as wave peak periods of less than 4 s occur (see
Fig. 6).
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Figure 5. Distribution of the significant wave height for different
wind speeds and the FINO1 site. For vs ≤ 10 m s−1, Gumbel distri-
butions are applied. For higher wind speeds, Weibull distributions
fit the data more accurately.

Concerning the wind shear exponent, in the standards and
most current databases (e.g. GL, 2012; Fischer et al., 2010),
constant values for all wind speeds are proposed. However,
this assumption is a massive simplification. Ernst and Seume
(2012) showed that the wind shear exponent significantly de-
pends on the wind speed. Here, it is shown (see Fig. 7) that
it does not only vary between wind speeds but also scatters
remarkably within each bin as well, and might even be nega-
tive.

For the turbulence intensity, this database reveals that
state-of-the-art approaches are mainly conservative, as too
high turbulence intensities are assumed. This is shown in
Fig. 8, where the turbulence intensity for all three sites is
compared to a standard database (Fischer et al., 2010) and
to current standards (IEC, 2009). All three sites exhibit sim-
ilar mean turbulence intensities and 90th percentile values
(Q0.9). For the comparison with literature values, the 90th
percentile is of importance, as standards require simulations
with this percentile value. However, even for the 90th per-
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Figure 6. Probability distribution of the wave peak period for
vs= 11–13 m s−1 for the FINO3 site.
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Figure 7. Distribution of the wind shear exponent for different wind
speeds for the FINO2 site.

centile, the UPWIND database is very conservative. The least
conservative case (category C) in IEC (2009) fits the Q0.9
values relatively well, but it predicts slightly higher turbu-
lence intensities for wind speeds above about 10 m s−1. Con-
sidering the fact that using the 90th percentile is a conser-
vative assumption and that the measurements include some
wake effects due to wind farms near to all measurement
masts, it can be concluded that state-of-the-art assumptions
for turbulence intensities are probably unnecessarily conser-
vative. The wake effects are depicted in Fig. 9, where turbu-
lence intensity measurements of FINO1 from 2011 to 2016
are shown. In this period, the wind farm Alpha Ventus was
operating on the east side of FINO1. Therefore, west wind
leads to free stream conditions and east wind to wake con-
ditions. Obviously, free stream conditions lead to even lower
turbulence intensities, whereas wake conditions increase the
turbulence, especially for smaller wind speeds, as also de-
tected by Hansen et al. (2012).

3 Simulation assistance

In the previous section, a comprehensive database for scatter-
ing environmental offshore conditions was developed. How-
ever, even with realistic input parameters the accuracy of nu-
merical simulations is significantly influenced by constraints
like their lengths and the time eliminated to exclude ini-
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Figure 8. Turbulence intensity (mean value and 90th percentile
(Q0.9)) for different wind speeds compared to the literature.

tial transients. Therefore, in this section, efficient simulation
lengths and times of initial transients for varying wind speeds
and different types of loading and substructures are deter-
mined. This is achieved by analysing the convergence of rel-
evant quantities (i.e. FLS and ULS loads). Before conducting
these studies, the overall probabilistic simulation approach is
explained, as it differs from the approach in the standards.
Subsequently, the utilised simulation model and the chosen
environmental conditions are briefly presented.

3.1 Probabilistic simulation approach

For the design of offshore wind turbines, several design
load cases (DLC1.1 to 8.3) have to be simulated according
to the standards (IEC, 2009). These load cases cover ulti-
mate and fatigue loads during power production, idling and
fault conditions, and several special cases like start-up or
shut-down. Stochastic inputs for turbulent wind and irregu-
lar wind are included. Nevertheless, the DLCs remain quasi-
deterministic, as environmental conditions like turbulence in-
tensities and wind shear do not scatter. In order to guaran-
tee safe designs despite the deterministic approach, several
ULS load cases, covering extreme environmental conditions
(e.g. DLC1.3 for turbulence or DLC1.5 for wind shear), are
needed.

In this work, statistically scattering environmental condi-
tions are applied, and therefore a probabilistic simulation ap-
proach is used. This probabilistic approach differs from the
deterministic load-case-based approach. For the probabilis-
tic approach or “real-life” approach, it is not necessary to
simulate any load cases of extreme environmental conditions
(e.g. DLC1.3 to 1.6), but the use of scattering conditions
leads directly to simulations that represent the real lifetime
of the turbine (without fault, start-up, or other special situ-
ations). Hence, simulations (e.g. 10 000 simulations) cover
a realistic period of power production and idling, leading to
about 2.3 months of turbine lifetime (for 10 000 simulations).
As environmental conditions scatter, effects like high turbu-
lences, extreme wind shear, high waves, small wave periods,
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Figure 9. Shadow effects on the turbulence intensity for FINO1 and
free stream (western) and wake (eastern) conditions.

and others are covered and do not have to be considered sep-
arately. Load cases are not simulated explicitly, but are cov-
ered implicitly by conducting probabilistic simulations.

That is why the two approaches do not differ significantly
for FLS. The “real-life” approach covers DLC 1.2 and 6.4.
For ULS, the “real-life” approach covers all power produc-
tion cases (DLC 1.1–1.6) and DLC 6.1 by applying scattering
environmental conditions. As the “real-life” approach cannot
simulate 20 years of turbine lifetime (or even a return period
of 50 years), a load extrapolation, as required for DLC 1.1,
is needed in order to calculate an ULS design. However, this
extrapolation is not needed here, as it does not influence the
investigated simulation constraints.

As common in academia, only power production and
idling is simulated. Fault cases, start-up, etc. are not taken
into account due to several reasons. Firstly, at least for the
jacket, fault cases are less relevant (Vemula et al., 2010).
Secondly, these load cases are very controller and design de-
pendent and need special treatment (e.g. there is no need of
removing initial transients for start-up load cases). Thirdly,
this work is not intended to calculate exact fatigue damages
or ultimate loads for the whole turbine lifetime, as no tur-
bine design or optimisation is done. The exclusion of some
load cases does not affect the recommendations on simu-
lation constraints that are given for power production and
idling conditions. As there is no need of exact FLS and ULS
lifetime loads in this study, an assessment of the probabilistic
approach concerning accordance with the standards is neither
conducted nor needed, but this would be valuable for further
applications of probabilistic approaches.

3.2 Simulation setup

As environmental conditions vary for various turbine sites, a
database being used for the studies of convergence has to be
chosen. The basis developed in this work is appropriate, and
the FINO3 site is chosen. Some conditions, like air and wa-
ter density, are kept fixed, as it was shown that their variation

is of minor importance (Hübler et al., 2017). An attempt is
made to keep the convergence study as simple as possible,
and to focus on the most relevant parameters. Hence, for the
probabilistic approach, statistically scattering values accord-
ing to the determined distributions of wind speed and direc-
tion, wave height, direction and period, turbulence intensity,
and wind shear exponent are used in all simulations. In addi-
tion, the following assumptions are made for all simulations:

– The turbulent wind field is computed according to
the Kaimal model and using the software TurbSIM
(Jonkman, 2009) with a different wind seed for each
simulation.

– Irregular waves are calculated according to the JON-
SWAP spectrum using varying wave seeds for all simu-
lations.

– Soil conditions of the OC3 model (Jonkman and Musial,
2010) are applied.

– The current, second-order and breaking waves, wave
spreading effects, marine growth, local vibration effects
of braces, joint stiffnesses, and degradation effects are
neglected.

The time domain simulations of the convergence study
are conducted using the aero-servo-hydro-elastic simulation
framework FASTv8 (Jonkman, 2013). A soil model (Häfele
et al., 2016) applying linearised soil-structure interaction ma-
trices enhances this code. The NREL 5 MW reference wind
turbine (Jonkman et al., 2009) with two different substruc-
tures is investigated: Firstly, the OC3 monopile (Jonkman
and Musial, 2010) and secondly, the OC4 jacket (Vorpahl et
al., 2013). The outcomes of the FAST simulations are, in-
ter alia, time series of forces, moments, and stresses for each
element of the substructure.

Since the convergence of fatigue and ultimate loads is in-
vestigated in the next step, the calculation concept of these
two loads is briefly explained.

For the jacket, the procedure of the fatigue analysis in ac-
cordance with DNV (2010) is the following: for each connec-
tion of each joint (K joints, Y joint, butt welds, etc.), eight
hotspot stresses around the circumference of the intersec-
tion have to be calculated using the time series. The needed
stress concentration factors (SCFs) depending on the joint
geometry are calculated according to Appendix B of DNV
(2010). The fatigue damage is calculated with a fatigue limit
of 52.6 MPa at 107 cycles. This corresponds to the DNV-GL
S-N curve 90 (for cathodic protection) as used in the orig-
inal design (Vemula et al., 2010). For all stresses, rainflow
counting evaluates the stress cycles. As recommended by the
current standards, the conservative damage accumulation ac-
cording to the Palmgren–Miner rule is assumed using a slope
of the S–N curve of 3 before and 5 after the fatigue limit
for both substructures. The separated fatigue calculation (and
summation over all simulations) for each connection of each
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joint is necessary, as damages in each connection and joint
are different for each simulation, and the highest values do
not always occur in the same joint (for example due to the
probabilistic variation of the wind direction). Finally, the de-
cisive damage for the jacket is the highest accumulated value
of all connections of all joints.

For the monopile, the fatigue procedure is similar, but is
done according to European Committee for Standardization
(2010b), where a detail of 71 MPa for transverse butt welds
and an additional reduction due to the size effect (t > 25 mm)
is recommended. Differing from the recommendations in
European Committee for Standardization (2010b), the same
slopes of the S–N curves as for the jacket are used.

For the ULS analysis, maximum stresses are decisive and
extracted from the time series. For the monopile, European
Committee for Standardization (2010a) is used to analyse the
plastic limit state, cyclic plasticity limit state, and buckling
limit state (LS1–3). For the jacket, NORSOK N-004 is ap-
plied for tubular members and joints, which takes combined
axial, shear, bending, and hydrostatic loadings into account.
In both cases, the yield stress is 355 MPa.

Additionally, ultimate limit state proofs for the foundation
piles are performed including axial and lateral soil proofs ac-
cording to GEO2 (DIN 1054, 2010) and a plastic limit state
proof (LS1) for the steel pile below mudline. Especially for
the monopile, the last proof might be decisive as the bend-
ing moment frequently reaches its maximum below mudline.
For all ULS proofs, utilisation factors, being the percentage
of the maximum loads, are the outcomes.

3.3 Simulation length

The simulation length significantly influences the overall
computing time of the load assessment. However, there is
no conclusive consensus concerning the length needed. Cur-
rent standards recommend, for example, 10 min or 1 h calcu-
lations. The offshore oil and gas industry prefers simulation
lengths of 6 h to cover all low-frequency hydrodynamic ef-
fects.

The use of 10 min simulations can potentially reduce the
computing time by a factor of about 36 compared to 6 h sim-
ulations. Hence, a study of convergence for bottom-fixed off-
shore wind turbines is conducted here. For floating wind tur-
bines, it is referred to Stewart (2016), who showed that for
floating structures all physical effects can be covered with
10 min simulations.

The presented outcomes of this study focus on the
monopile substructure, but a jacket is analysed as well and
results (not shown) are generally comparable. For several
wind speed bins, 500 simulations with a total length of 10 h
are conducted. As the initial transient behaviour is analysed
subsequently, a clearly sufficient time, being discarded to ex-
clude the initial transients, of 4 h is chosen. With elimination
of these 4 h of initial transients, the total length of 10 h re-
duces to a maximum available length (simulation length) of

6 h for the convergence study. In a first step, the convergence
of FLS loads is analysed. Afterwards, the ULS case is inves-
tigated.

The procedure to calculate the mean fatigue damage for
each wind speed bin is the following: from the basis of
the 500 ten-hour simulations having different random seeds
and varying environmental conditions, 500 cases are selected
(with replacement). For each simulation, the fatigue damage
is calculated and weighted with the simulation length. The
mean value of all cases is calculated. This procedure is re-
peated 10 000 times (bootstrapping) to assess the associated
uncertainty.

Figure 10 displays the normalised mean fatigue damages
for different wind speeds and simulation lengths between
10 min and 6 h. The values are normalised with the 6 h val-
ues, and error bars show the ±σ confidence intervals (68 %)
that are estimated using a bootstrap procedure with 10 000 re-
samplings.

It is apparent that due to scattering environmental condi-
tions and the limited number of simulations the uncertainty
is relatively high. A detailed investigation of the fatigue load
uncertainty, when scattering environmental conditions are
applied, is valuable but out of the scope of this work (see
Sect. 4). Nevertheless, from Fig. 10 it is apparent that there
are no pronounced trends for changing simulation lengths. A
slight increase in fatigue loads for higher simulation lengths
might be suspected given the fact that such behaviour was
observed for floating substructures by Stewart (2016). In or-
der to focus on the simulation length effects, the variation of
environmental conditions is neglected in a second step (only
varying random seeds). This reduces the uncertainty, making
it possible to clearly identify a slight increase in FLS loads
of about 5 % for higher simulations lengths (see Fig. 11,
non-merged case). However, as shown by Stewart (2016) for
floating substructures, the increasing fatigue loads are not
due to any physical effect (all important low-frequency ef-
fects of waves are already covered by 10 min simulations),
but can be explained by the effect of unclosed cycles in the
rainflow counting. Cycles that are not completed at the end
of the simulation are approximated by counting them as half
cycles. The longer the simulation, the less influential this ap-
proximation is, as the number of half cycles compared to
the number of full cycles reduces. A quite straightforward
approach to reduce the problem of half cycles is to merge
several shorter simulations (e.g. 10 min simulations) into a
longer one (e.g. 6 h simulation). This means fatigue damages
are not calculated for each time series separately but rather
for longer time series consisting of several shorter ones that
are just appended to each other. It is possible to either append
different 10 min time series to each other or each time series
is duplicated and appended several times to itself. If scatter-
ing environmental conditions are assumed, in some simula-
tions, fairly different load levels occur. In these cases, load
levels of the simulations might not fit, and additional cycles
can be introduced by merging different time series, leading to
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Figure 10. Normalised mean fatigue damage (500 simulations) for
increasing simulation lengths and different wind speeds.
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Figure 11. Normalised mean fatigue damage (500 simulations) for
increasing simulation lengths and vs= 9–11 m s−1. Environmental
conditions are kept constant to demonstrate the effect of merging
time series more clearly.

unreasonably increased fatigue damages. Merging each time
series with itself guarantees fitting load levels. A downside
of this is that the computing time of the post-processing is
slightly increased. The effect of merging several shorter sim-
ulations with themselves to generic and repetitive 6 h time se-
ries (e.g. each 10 min time series is duplicated 36 times and
is appended to itself to create a 6 h time series) is demon-
strated in Fig. 11. It can be seen that the simulation error of
about 5 % too low FLS loads for non-merged 10 min simula-
tions can be compensated for by merging time series in the
post-processing.

For the ULS loads, the calculation procedure is similar.
From the basis of the 500 ten-hour simulations, 500 cases
are selected (with replacement). The maximum value of all
simulations is taken as decisive utilisation factor. This pro-
cedure is repeated 10 000 times (bootstrapping) to assess the
associated uncertainty.

The convergence is shown in Fig. 12. Obviously, ULS
loads are higher for longer simulations. Again, this increase
is not due to any physical phenomenon, but a result of differ-
ent overall computing times. Clearly, 500 ten-minute simula-
tions should not be compared to 500 six-hour simulations but
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Figure 12. Normalised mean ULS utilisation factor (500 simula-
tions) for increasing simulation lengths and different wind speeds.

instead to about 14 six-hour simulations (Haid et al., 2013).
Therefore, in a second step, the ULS calculation procedure is
slightly adapted. Now, 500 cases are only selected for 10 min
simulations. For all other simulations length, the number of
cases is reduced to keep the over simulation length constant
at 5000 min (i.e. 250 cases for 20 min simulation, for exam-
ple). This comparison is displayed in Fig. 13 and makes clear
that ULS loads do not depend on the simulation length but in-
stead on the overall computing time. A second fact being vis-
ible in Fig. 13 are the higher uncertainties for longer simula-
tion lengths. Since 10 min simulations lead to a higher num-
ber of cases than 6 h simulations for the same total length
(i.e. 500 and 14), shorter simulations better cover rare cases,
and therefore scattering environmental conditions leading to
less uncertainty.

After all, the investigations of this section suggest that sim-
ulations of 10 min length are sufficient independent of the
type of load or investigated substructure, or wind speed. At
this point, it has to be noted that only two types of substruc-
tures are analysed and environmental conditions typical for
the North Sea. For significantly different substructures or lo-
cations, the validity might be limited. Notwithstanding the
above, for ULS loads, the same overall time has to be com-
pared in order to achieve reliable results. By keeping the sim-
ulation length short, more simulations can be conducted in
the same overall computing time leading to a better conver-
gence of ULS loads. For FLS loads, simulation errors due
to the simulation length can be reduced by merging the time
series.

3.4 Initial transients

For the analysis of the simulation length, the first 4 h of each
simulation were discarded to guarantee a steady-state oper-
ation of the turbine. However, removing 4 h of initial tran-
sients and only using 10 min of simulation is computation-
ally very expensive. Therefore, the convergence of FLS and
ULS loads with respect to the time of initial transients is anal-
ysed. As initial conditions, like an initial rotor speed, influ-
ence the initial transient behaviour (Haid et al., 2013), initial
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Figure 13. Normalised mean ULS utilisation factor for increasing
simulation lengths (constant overall length of 500×10 min, leading
to 500 to 14 simulations) and different wind speeds.

rotor speeds and blade pitches depending on the wind speed
are set here. These initial conditions are quasi-static states
determined using prior simulations.

As the initial transient behaviour is affected by the type of
substructure and the load condition, the time that has to be re-
moved is analysed in each wind speed bin for FLS and ULS
loads and for both types of substructures separately. Com-
monly, time series are investigated to estimate times of ini-
tial transients (Zwick and Muskulus, 2015). Although this is
a straightforward approach, here it is considered to not be
expedient. For a fatigue assessment, the convergence of the
fatigue damage has to be analysed, and for the ULS analysis,
maximum loads or utilisation factors have be considered.

For each wind speed bin, 10 000 simulations for the
monopile and 500 for the jacket were conducted according to
the simulation setup in Sect. 3.2. This means that each simu-
lation has its own random seed for irregular waves and turbu-
lent wind, and in addition, different wind speeds and direc-
tions, wave heights, directions and periods, turbulence inten-
sities and wind shear exponents according to the FINO3 data
are applied. The high and unequal number of simulations
is needed to exclude effects of the number of simulations,
mentioned in the previous section and addressed in Sect. 4,
as well as possible. For the monopile, each simulation at
operating conditions is 900 s long (600 s simulation length
plus 300 s of initial transients) and 1800 s at idling condi-
tions. When the turbine is idling, the aerodynamic damping
is lower, leading to more pronounced initial transients. For
the jacket, all simulations are 720 s long. Using this simu-
lated database, it is possible to analyse the effect of different
initial simulation times removed on the fatigue damage and
utilisation factors in order to determine optima. The analysed
simulation length is kept constant at 600 s, while the removed
length varies between 0 and 300 s (1200 s for idling; 120 s for
the jacket).

Figure 14 displays the convergence of the fatigue damage
of the monopile substructure at operating conditions. Here,
300 s or 120 s values are used as a reference, the so-called
“converged value”. The 10 h simulations in Sect. 3.3 were
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Figure 14. Initial transient behaviour of the operating wind turbine
with a monopile substructure for different wind speeds. Percentage
difference in the fatigue damage compared to the “converged” value
(300 s).

used determine these values, where the error due to initial
transients can be neglected and is much smaller than the er-
ror due to the number of simulations. For idling conditions
(not shown), the initial transient behaviour takes longer, as
the aerodynamic damping is lower. For the same reason, the
transients are shorter for higher wind speeds. For the jacket
substructure displayed in Fig. 15, the transients decay much
faster in all wind speed bins. As jackets are less influenced
by wave loads, being not always aligned with the wind, the
aerodynamically marginally damped side-to-side modes are
less excited, leading to a shorter transient behaviour. This in-
terpretation is supported by the fact that for the jacket, idling
conditions, where the hydrodynamic behaviour dominates,
have shorter initial transients.

The convergence of ULS utilisation factors for both sub-
structures is shown in Figs. 16 and 17. It becomes apparent
that initial transients are short independent of the type of sub-
structure and wind speed. The cycles with high amplitudes
occurring at the beginning of each simulation are damped
out within a few seconds, and hence are not influencing the
ULS behaviour. More problematic are less damped cycles
with smaller amplitudes leading to the previously presented,
higher times of initial transients for FLS loads.

The recommended times that should be discarded to
exclude initial transients for both substructures, being al-
ways a compromise between computing time and accu-
racy (here, errors below 5 %), are summarised in Table 3.
It has to be mentioned that the general validity is limited,
as these times of initial transient might vary, for exam-
ple, for different aero-elastic codes, numerical solvers, time
constants of the aero-elastic models, or substantially dif-
ferent substructures. For example, jackets for 10 MW tur-
bines might behave differently due to larger diameters of
legs and braces increasing wave effects. However, for sim-
ilar applications (e.g. FASTv8, NREL 5 MW turbine, OC3
monopile, or OC4 jacket) that are not rare in academia (e.g.
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Table 3. Recommended times that should be discarded to exclude initial transients for simulations with OC4 jacket and OC3 monopile
substructures for different wind speeds to achieve errors below 5 %.

vs in m s−1 Case < 3 3–5 5–7 7–9 9–11 11–13 13–15 15–17 17–19 19–21 21–23 23–25 > 25

Monopile
FLS

720 s 240 s 240 s 240 s 240 s 240 s 240 s 150 s 120 s 60 s 60 s 60 s 360 s
Jacket 40 s 30 s 50 s 40 s 50 s 50 s 50 s 50 s 50 s 60 s 50 s 50 s 10 s

Monopile
ULS

< 10 s < 10 s < 10 s < 10 s 10 s 10 s 10 s 10 s 10 s 10 s 10 s 10 s < 10 s
Jacket < 10 s 20 s 20 s 20 s 20 s 20 s 20 s 20 s 20 s 20 s 20 s 20 s < 10 s
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Figure 15. Initial transient behaviour of the wind turbine with a
jacket substructure for different wind speeds. Percentage difference
in the fatigue damage compared to the “converged” value (120 s).
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Figure 16. Initial transient behaviour of the wind turbine with a
monopile substructure for different wind speeds. Percentage differ-
ence in the utilisation factor (ULS) compared to the “converged”
value (120 s).

Zwick and Muskulus, 2015 or Morató et al., 2017), the given
values represent a well-founded guidance for simulation se-
tups. Furthermore, these results should sensitise the research
community to the problem of initial transients especially in
the case of fatigue. For fatigue, the time of initial transients
might be higher than frequently presumed in the literature.
This is due to weakly damped cycles with small amplitudes
that cannot directly be identified when looking at time series.
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Figure 17. Initial transient behaviour of the wind turbine with a
jacket substructure for different wind speeds. Percentage difference
in the utilisation factor (ULS) compared to the “converged” value
(120 s).

4 Benefits and limitations

The benefit of the current work is twofold. Firstly, a com-
prehensive database for scattering environmental conditions
was set up, which is freely available and easy to use. Sec-
ondly, two simulation constraints (simulation length and time
of initial transients) were analysed, and well-founded recom-
mendations are given.

The main advantages over existing databases are the fol-
lowing: the database covers several different sites situated
in different oceans. It has to be admitted that the sites are
fairly similar, as they are all in shallow-water conditions.
Additionally, the database contains statistical distribution for
much more environmental conditions than existing ones. As
was shown, for example, by Hübler et al. (2017) that not only
main conditions like the wind speed are influencing the dy-
namic behaviour of offshore wind turbines, knowledge of
additional parameters is beneficial. Current databases con-
sist frequently of raw data that need to be post-processed,
which is a time-consuming process. Here, on the one hand,
easily applicable statistical distributions are given. On the
other hand, the complexity of dependent environmental con-
ditions is still covered by utilising conditional distributions
and multimodal and non-parametric approaches. In contrast
to many existing databases, the raw data are of good quality.
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For example, wind speeds are measured at heights compara-
ble to hub heights of current turbines, and there is no need for
extrapolations, as is the case for buoy measurements. Still,
more data would be valuable in order to achieve more reli-
able distributions in high-wind-speed bins that rarely occur.
After all, the developed database is capable of improving
offshore wind turbine modelling by providing more realis-
tic inputs for simulations in academia, where real site data
are scarce. One example of improved offshore wind turbine
modelling is given in Sect. 3.3 and 3.4. The inclusion of prob-
abilistic inputs leads to a significant and realistic increase in
fatigue damage scattering requiring high numbers of simula-
tions. Hence, deterministic inputs underestimating this scat-
tering can lead to biased fatigue values. Detailed analyses of
the effect of scattering environmental conditions on fatigue
damage, and therefore of the needed number of simulations,
are part of upcoming work of the authors.

Concerning the second benefit, the simulation constraints,
it has to be kept in mind that not only realistic modelling but
also small simulation errors are important in order to model
accurately. In this context, the chosen simulation length and
time of initial simulation transients matter. So far, these
values are frequently chosen without profound knowledge.
Some approaches to gain a deeper insight into these con-
straints (Stewart, 2016; Zwick and Muskulus, 2015) concen-
trate on simulation lengths or specific types of substructures
and are not taking realistically scattering environmental con-
ditions into account. In this work, the scattering of the con-
ditions is addressed and different bottom-fixed substructures
are analysed. This enables recommendations for simulation
lengths and times of initial transients depending on the wind
speed, the type of substructure, and the considered load case
(ULS or FLS). However, the general validity of the current
results has to be slightly restricted, as only one design of
each type of substructure was investigated. Therefore, the
initial transient behaviour might be slightly different for sig-
nificantly different designs. Furthermore, for the time be-
ing removed to exclude initial transients, the values might
also differ between different simulation codes and are only
tested for the FASTv8 code. Different numerical solver or
time constants of the aero-elastic models might also influ-
ence the time of initial transients. Nevertheless, even in these
cases, firstly, the given recommendations can be regarded as
a well-founded starting point for further investigations. Sec-
ondly, and even more important, they clarify the challenge of
a well-founded choice.

5 Conclusions

This work aims to help future simulation work to be more re-
alistic and accurate. In order to achieve this objective, a freely
available and comprehensive database for scattering environ-
mental conditions was set up. This database consists of con-
ditional statistical distribution for many parameters and can

be applied without further post-processing. All needed infor-
mation (statistical distribution and their parameters) is given
in the Supplement. In academia, this database enables sim-
ulations with probabilistic environmental conditions making
them more realistic. For industry purposes, this work might
lead to a reconsideration of the current practice. This study
shows that the use of deterministic values that are either only
dependent on the wind speed (e.g. turbulence intensity) or
even totally constant (e.g. wind shear) does not represent re-
alistic offshore conditions. However, for a well-founded re-
consideration of the current practice, a detailed assessment
of probabilistic approaches compared to deterministic load-
case-based ones is needed.

Additionally, scientifically sound recommendations are
given for the choice of simulation lengths and times to be
removed to exclude initial transients. Simulation lengths of
10 min are generally sufficient, and can even help to reduce
uncertainties. However, in the case of FLS loads, times se-
ries should be merged, and for ULS situations, the overall
computing time has to be kept constant. Recommendations
concerning the initial transients have to be handled with care
due to limitations of the general validity. The values are sum-
marised in Table 3 and can help to improve the accuracy
of simulations, and to reduce computing times. It should be
noted that a partly significantly longer initial transient be-
haviour compared to values in the literature was detected.
Literature values are mainly based on educated guesses so
far.

An enlargement of the current database to include addi-
tional offshore sites, other types or designs of substructures,
or investigations for other simulation codes and numerical
solver would be definitely valuable to increase the general
validity. Furthermore, even for the utilised FAST code, ad-
ditional investigations concerning the amount of eigenmodes
representing the substructure would be beneficial, as a reduc-
tion of retained eigenmodes might reduce the time of initial
transients.

Data availability. The raw data are taken from the FINO plat-
forms – operated on behalf of the Federal Ministry for the Environ-
ment, Nature Conservation, Building and Nuclear Safety (BMUB)
– and are freely available for research purposes (http://www.
fino-offshore.de/en/). The derived database, consisting of statisti-
cal distribution for 13 partly dependent environmental conditions
and three offshore sites, is freely available. All needed information
concerning the statistical distribution and their parameters is given
in the Supplement.

The Supplement related to this article is available online
at https://doi.org/10.5194/wes-2-491-2017-supplement.
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4 Sensitivity analysis

In probabilistic analyses, the inherent physical uncertainty of inputs (e.g. ECs) but also
model uncertainties, etc. are modelled as probabilistic variables. For complex models, the
number of variables can be extremely high making full probabilistic analyses - treating all
parameters probabilistically - nearly impossible. Therefore, in this context, a central issue is
the determination of “significant” parameters. Here, “significant” means that the uncertainty
of those variables influences relevant outputs, whereas “insignificant” parameters can be
set to deterministic values without changing the outcomes. The selection of significant
parameters being modelled probabilistically can either be based on expert knowledge or -
more objectively - on sensitivity analyses. Here, a new stepwise sensitivity method being a
good compromise of accuracy and computing time is developed and applied to a coupled
time-domain model for OWTs.

4.1 Research context

Today, normally, OWTs are simulated using deterministic inputs. In case of probabilistic
approaches, the number of statically distributed inputs has to be limited. Although there
are objective methods to identify those parameters that are to be modelled probabilistically
(sensitivity analyses), parameters are mostly selected based on expert knowledge. While this
procedure might be sufficient for well-known applications, where expert knowledge has been
built up over decades, for a relatively new industry like OWTs, the use of expert knowledge
can lead to disadvantageous parameter selections. Therefore, sensitivity analyses should be
used.
In this context, three different types of sensitivity analyses can be differentiated: parameter
studies, local approaches, and global methods. For parameter studies, various parameter
combinations are tested. This is the most straightforward approach. It is used regularly
for OWTs [23, 31, 131]. However, it does not yield any objective measure of sensitivity.
Local methods are mainly useful, if sensitivities in a specific region of the data space are
needed, but for parameter selections, the entire data space can be relevant. Hence, global
methods are most expedient. Still, there are only a few examples which use global sensitivity
methods for OWTs [187, 219]. The main reason for this limited use of global methods are
high computing times. Recently, it has been shown that the application of stepwise global
methods or meta-model-based ones can reduce computing times significantly [77]. Hence, it
can be concluded that there is a need for efficient global sensitivity methods for OWTs that
enable an objective parameter selection for subsequent probabilistic analyses.

4.2 Methods

Due to the described need for efficient and objective parameter selections for probabilistic
analyses, in this thesis, a new global sensitivity analysis is developed, and subsequently,
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applied to OWTs. Only global methods are considered, since OWT models are fairly non-
linear and, a priori, the area of interest (i.e. the input subdomain leading to the highest
sensitivities and/or critical outputs like structural failures) is unknown. Both facts disqualify
local approaches. In the field of global sensitivity methods, there is a wide range of methods
from simple OAT sampling with low computing times to sophisticated variance-based
approaches that include all non-linearities and parameter interactions at the expense of an
increased computational effort. To find a compromise between accuracy and computing
time, a stepwise approach is developed. This approach consists of an OAT sampling in
the first step, a linear regression in the second one, and finally, a variance-based analysis.
Since the number of probabilistic parameters is reduced by the first two steps, there are less
uncertain parameters included in the variance-based analysis. Thus, the computing time,
which highly correlates with the number of uncertain parameters, can be limited, while the
high accuracy of the final, variance-based analysis is preserved. The presented idea of a
stepwise parameter reduction is quite flexible, since the three steps are interchangeable. For
example, Hübler et al. [77] use the approach of this thesis, but replace the second step by a
meta-model-based sensitivity analysis.
As ULS and FLS can be design-driving for OWTs and since significant parameters for both
limit states do not have to be the same, the developed stepwise approach is applied to ULS
and FLS independently.

4.3 Results

Regarding the results, two aspects have to be distinguished: first, results concerning the
sensitivity methods (methodological findings), and second, outcomes regarding the parameter
selection for OWTs (applied findings).
For the sensitivity method, on the one hand, it is shown that simplified sensitivity ap-
proaches do not yield accurate results. They are not always capable of determining the
same probabilistic subset as the reference (variance-based) method. The reason for the lack
of performance is mainly that interactions are not covered properly. However, especially
for soil parameters and other parameters that are related to eigenfrequencies of the OWT,
interactions are really important. On the other hand, compared to pure variance-based
analyses, computing times can be reduced to approximately a third. Hence, the stepwise
approach is a suitable compromise between accuracy and computational effort.
Regarding the parameter selection, it becomes apparent that only a few parameters are
influential. Especially for FLS, only about 25 % of the inputs have to be treated probabilis-
tically. The most important parameters are wind and wave conditions, while soil conditions
are partly influential, and production tolerances of the steel components can be neglected.

4.4 Outlook

In this thesis, it is shown that the new sensitivity analysis outperforms some simplified
approaches and that it is computationally more efficient than pure variance-based approaches.
However, a comprehensive assessment of advantages and shortcomings is not done. Such an
assessment can be found in Hübler et al. [77]. There, it is also recommended to interchange
the second step of the analysis by a meta-model-based variance-based analysis in order to
increase the accuracy. Further developments regarding the most suitable second step and
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meta-model-based approaches are advisable.
Moreover, in this thesis, parameters are modelled as uncorrelated. Since parameters that
are highly correlated in reality are, in the end, not analysed here (e.g. wind speed and wave
height), this simplification is acceptable. Still, the inclusion of correlated parameters - as in
Hübler et al. [77] - in future analyses is recommended. Sensitivity methods for correlated
parameters can be found, for example, in Xu and Gertner [215] or Jacques et al. [88].
Furthermore, the types of parameters that are considered in sensitivity analyses have been
limited so far. Only wind, wave, soil, material, and geometric (manufacturing tolerances)
inputs with aleatory uncertainty are taken into account, whereas inputs on the resistance
side (e.g. parameters of Miner’s rule, etc.) and epistemic uncertainty (e.g. vaguely known
model uncertainties or statistical uncertainties due to limited data) are neglected. An
extension of the sensitivity analysis regarding these types of variables could lead to a broader
knowledge of relevant uncertainties/parameters. Furthermore, the inclusion of the resistance
side would allow an assessment of uncertainty with respect to the reliability of the structure
(i.e. reliability analysis).
Apart from that, the present sensitivity analyses neglect the stochastic behaviour of the
OWT models. Hence, future research could address this problem by applying sensitivity
methods for stochastic systems [34, 113].
Finally, using present findings, for future probabilistic simulations, a relatively large number
of inputs can already be fixed to deterministic values, which will lead to significantly reduced
computing times and more stable, more robust solutions.

4.5 Paper C: Hierarchical four-step global sensitivity analysis of
offshore wind turbines based on aeroelastic time domain
simulations

The following paper is published in Renewable Energy, Volume 111 (2017), pages 878-891
(https://doi.org/10.1016/j.renene.2017.05.013). The main work was done by the author of
this thesis. Cristian Gebhardt and Raimund Rolfes contributed with advisory and supporting
work.
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a b s t r a c t

Although uncertainties are present in all real parameters, numerical calculations of the structural
behaviour of offshore wind turbines are usually conducted with deterministic values. However, with this
approach, optimisation processes can be misleading and reliability levels cannot be calculated. The
reasons for deterministic calculations are high computing times of probabilistic approaches and the lack
of knowledge about the scatter of data. For deterministic approaches, more complex models with higher
computing times are possible, although they, are less generally valid. Therefore, it is useful to identify the
most influential parameters that have to be treated in a probabilistic manner using sensitivity analyses is
valuable. Contrary to rudimentary sensitivity approaches being used in offshore wind energy so far, this
paper presents a new four-step sensitivity analysis reducing the probabilistic parameter subset step by
step and aiming to achieve a compromise between computing time and complexity. It can be shown that
for different substructures and different load cases, only a small parameter subset is influential and many
other inputs can be regarded as deterministic without losing accuracy. However, attention must be paid
to the slight differences among substructures. Therefore, it must be highlighted that not all results are
general.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, wind energy in general and recently
offshore wind energy in particular have become more and more
important for global energy production. However, the costs for
offshorewind energy are still too high comparedwith energy based
on coal to be really competitive [1]. For offshore wind turbines
(OWTs), substructures and foundations account for a significant
part of these costs [2]. Therefore, both the probabilistic analysis and
the optimisation of substructures of offshorewind turbines become
necessary. Since the design of OWTs has to be based on holistic time
domain simulations, as stated in current standards [3], the calcu-
lations are fairly time-consuming. Furthermore, for an optimisation
or a probabilistic analysis, a high amount of calculations is neces-
sary which leads to computing time issues. Hence, apart from the
development of suitable time domain models, the identification of
the most relevant input parameters is crucial to treat non-
influential inputs as deterministic. In this context, non-influential

inputs means that the scattering and uncertainty of these param-
eters do not influence the outputs significantly.

Current time domain models are based on finite elements (FE),
multi-body systems (MBS) and modal approaches. Aerodynamics
and hydrodynamics are coupled with the elastic behaviour of the
turbine and its controller, which makes the overall system highly
non-linear and quite complex. Turbulent wind fields, irregular
waves as well as geometric non-linearities due to large rotations or
shortening/lengthening are taken into account as well. The
complexity of existing time domain codes allows only considering
of a limited number of probabilistic input values. Some of the most
important aero-elastic codes are GH BLADED, FAST, FLEX5 and
HAWC2. An example of an even more sophisticated code with
computing times of several days, and therefore not suitable for
probabilistic calculations, can be found in Ref. [4]. Overviews of the
most common codes and details concerning the differences of the
codes are given by Passon and Kühn [5] and B€oker [6] for example.
FAST occupies a special position, as the whole source code is open.
Hence, FAST can be adopted and enhanced by everyone for ad hoc
applications.

It is current practice to assume the input parameters for these
time domain models to be deterministic. However, in reality almost* Corresponding author.
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all inputs are uncertain in some way. Therefore, the determination
of statistical distributions for input parameters either from expert
knowledge or from statistical measurement or experimental data is
indispensable for probabilistic analyses. In this paper, the focus is
on environmental and geometrical inputs (cf. Table 1), as these
inputs cannot be influenced by the numerical model itself or the
turbine design. Cheng [7] and Veldkamp [8] use their expertise to
state ranges and distributions for wind and wave parameters. Ernst
and Seume [9] and Schmidt et al. [10] derive statistical distributions
for wind parameters from data of the German research platform
FINO1. Morgan et al. [11] analyse different wind speed distributions
based on measurements in the US. Work on combined wind and
wave distributions is conducted by Schmidt et al. [12] on the basis
of FINO1 measurements. Distributions for soil properties based on
expert knowledge and a literature research are stated for example
by Zaajier [13]. The reliability analysis of Kim and Lee [14] is based
on differently distributed soil properties. Sørensen and Toft [15]
give, inter alia, some guidance on material parameters. Wei et al.
[16] state some information on material scattering as well. Infor-
mation on geometrical inputs can be found for example in Ref. [17].
Ziegler et al. [18] use statistical distributions for all kinds of pa-
rameters for a probabilistic fatigue load estimation. Toft et al. [19]
analyse the influence of uncertain wind parameters on fatigue
loads. In this context, statistical distributions for the uncertainties
in wind and fatigue model parameters are given.

Sensitivity analyses to determine the most relevant inputs are
quite infrequent in the field of structural offshore wind turbine
modelling. If used, they are mainly applied to turbine parts. In most
cases, the investigation of different input combinations is already
called sensitivity analysis [20e22], though this approach cannot
detect global phenomena. Some recent approaches fill this gap of
global sensitivity analyses. Goretzka and Rolfes [23] analyse the
most influential parameters for turbine eigenfrequencies with the
aid of a linear regression. Ziegler et al. [24] conduct a sensitivity
analysis concerning different site conditions for fatigue loads. In
addition to simple one-at-a-time variations, they use scatter plots
to qualitatively analyse randomly generated samples. Stieng and
Muskulus [25] analyse the global sensitivity of the failure proba-
bility of the whole OWT. A simplified, uncoupled time domain
model is applied and the sensitivity of four parameters is investi-
gated using a rank correlation. However, all this recent work is
based on simplified models and the global sensitivities are either
based on qualitative, linear or monotonic approaches without in-
teractions (cf. [26]). Therefore, they are not suitable for an adequate
analysis of non-linear models with interaction effects, as it can be
done with variance-based methods and an aero-hydro-servo-
elastic simulation code.

Due to the lack of sensitivity analyses for OWTs, this paper fo-
cuses, firstly, on the investigation of fundamental parameters and,
secondly, on non-influential parameters by means of a sensitivity
analysis. The challenge in this context is that aero-elastic turbine
models are highly non-linear and at the same time computing
times are high. Therefore, neither standard sensitivity approaches

for linear models nor plain variance-based methods can be used.
This is why in this paper, a global four-step sensitivity algorithm is
developed and shown in Fig. 1. The approach is based on the idea of
a stepwise parameter selection of Mokhtari et al. [27] to reduce the
computing time of a final variance-based analysis. The first step is a
parameter selection based on expert knowledge just to get a
starting subset. A one-at-a-time analysis in the second step is used
to check whether a more sophisticated sensitivity analysis can
possibly reduce the number of influential parameters. Subse-
quently, a regression reduces the probabilistic subset for the fourth
step. The regression is globally valid, but in the present case, it does
only cover bilinear effects and no higher order terms. The last step
is a time-consuming variance-based sensitivity analysis which in-
cludes all non-linearities and interactions between the parameters.
This four-step algorithm reduces the computational effort signifi-
cantly compared to plain variance-based methods. At the same
time, the final parameter selections are still based on the full non-
linear time domain model and not on approximations as it is the
case for meta-models. This meets the requirements of the complex
turbine models better.

The paper is organised as follows: Firstly, the time domain
model used is presented and the deviation of statistical distribu-
tions is explained concisely. Subsequently, an introduction to the
different global sensitivity methods as part of the four-step algo-
rithm is given. After having introduced the general methodology,
results of an application of this sensitivity scheme to offshore wind
turbines are presented. Finally, the methodology and outcomes are
discussed in the last section.

Table 1
Classification of input parameters.

Category Main Application Examples

Algorithm Numerical optimisation Time step sizes, integration method
Model Model development Cut-off frequency of wave spectrum, no. of modes for Craig-Bampton reduction
Control Turbine design/optimisation Blade pitch algorithm, nacelle yaw algorithm
Configuration Turbine design/optimisation Turbine height, wall thickness of design pile, no. of legs of the jacket
Environmental Probabilistic analysis Wind speed, soil density, wave height, wave direction
Geometrical Probabilistic analysis Deviations in pile wall thickness or pile diameter
Material Probabilistic analysis Young modulus or Poisson ratio of the steel

Fig. 1. Scheme of four-step sensitivity analysis for the substantial reduction of prob-
abilistic input parameters in time domain offshore wind turbine models.
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2. Methodology

There are several time domain simulation codes. Theoretically,
all of them could be used for the present sensitivity analyses.
However, due to the open source character of FAST, the code is
easily adaptable to the specific needs. Therefore, the FAST code is
used in this study. The code considers aero-hydro-servo-elastic
coupling and includes, inter alia, non-linear effects of large rota-
tions which are due to rigid body motions, non-linearities of the
control system and due to geometrical stiffening. The structural
model of an onshore wind turbine in FAST comprises up to 23
DoFs. This limited number of DoFs makes probabilistic calculations
possible within adequate simulation times. Since offshore sub-
structures are commonly computed by FE methods using beam
elements with hundreds of nodes and often thousands DoFs, a
reduction method called Component-Mode-Synthesis has been
implemented in FAST [28], which is based on the work of Craig
and Bampton [29]. This reduction method allows an appropriate
structural representation with about 5e15 DoFs [30], but the
turbine is modelled clamped to the seabed [31]. Since the un-
certainties in the soil are considered to be significant, this is a
massive simplification in the current context. Hence, to overcome
this drawback, an adequate soil model by H€afele et al. [32] based
on linearised mass and stiffness matrices is added to the FAST
model.

2.1. Statistical distributions

It is common practice to assume parameters in time domain
simulation as deterministic, although in reality, there are different
kinds of uncertainties in all parameters. Examples for uncertainties
are model uncertainties, measurement errors, lack of knowledge,
physically stochastic inputs and human errors. Probabilistic models
try to take some of these uncertainties into account by assuming
statistical distributions for the input parameters. Therefore, in or-
der to conduct profound sensitivity analyses, statistical distribu-
tions for the input parameters have to be derived. This can, firstly,
be based on expert knowledge and secondly, on statistical mea-
surement data. Expert knowledge based distributions are quite
unreliable, as they only rely on experience. However, often there is
insufficient data to derive distributions directly. In these cases, the
use of expertise, frequently based on literature reviews, is the only
alternative. If sufficient measurement data is available, substanti-
ated statistical distributions can be derived. The deviation consists
of three main steps. In the first step, different, potentially suitable
distributions are selected. Here, the symmetry or the number of
peaks of the data distribution can be used as an aid. Secondly, the
distributions chosen are fitted to the data using methods like the
maximum likelihood estimation (MLE), the least mean square error
or methods of moments. In this paper, the fit is performed using the
MLE method, because its estimates are mostly more precise
compared to other fitting methods. The MLE is based on the max-
imisation of the likelihood:

Lðq; xÞ ¼
Yn
i¼1

f
�
xðiÞ
���q�; (1)

where L is the likelihood, q is the vector of distribution
parameters that are varied, x is the sample vector with the samples
xð1Þ to xðnÞ, f ð…Þ is the assumed distribution and n is the number of
samples. Finally, the goodness of the fits of the different distribu-
tions can be evaluated with goodness tests. Some of the most
common tests being used here as well are the Kolomogorow-
Smirnow (KS) test and the Chi-squared test.

2.2. Sensitivity analysis

The objective of sensitivity analyses is, inter alia, to quantify the
significance of all uncertain input parameters for a considered
model output [33]. This means that sensitivity analyses investigate
the effect of variations in inputs (x) on the outputs (y). Parameters
that turn out to be non-influential can be treated deterministically
in further analyses. Sensitivity analyses can be performed qualita-
tively or quantitatively and on a local or global level. Local ap-
proaches, based on derivatives vyk=vxl at one specific point in the
full data space, are only locally valid and general statements are
only possible, if the model is linear. Global methods can either give
better linearisations of non-linear models over the whole data
space or are capable of globally analysing non-linearmodels. On the
other hand, global methods are much more time-consuming.
Nevertheless, this study focuses on global approaches. In the area
of global sensitivity analyses, there is a wide range from rudi-
mentary and straightforward approaches to sophisticated ones that
are suitable for different kinds of problems and models. In this
paper, a new four-step sensitivity analysis is conducted in order to
stepwise reduce the amount of input parameters in a model that
have to be considered in a probabilistic manner. Exemplarily, the
FAST model is used here, but the scheme can be applied to all kinds
of models and applications. The four steps are shown in Fig. 1. The
underlying theory of all four steps is summarised in the following.

The first step is a significant reduction of parameters by the use
of expert knowledge and decision making. This step is highly
subjective, but it is necessary to get a starting subset and to focus on
specific parameters. In this context, the parameters can be classi-
fied into different categories according to Table 1. This sensitivity
study is not meant to be an evaluation of the robustness of the
models used, e.g. the model for the wave loads. Therefore, algo-
rithm, model and control parameters are treated deterministically.
Furthermore, the design of the turbine shall neither be investigated
nor optimised here. Hence, the configuration parameters remain
unchanged as well and the focus is on parameters of statistical
nature. The decision, whether some environmental, material or
geometrical inputs are considered to be treated deterministically, is
based on the expert knowledge of the authors and a broad litera-
ture research. Additionally, the aspect of missing probabilistic data
for certain parameters is taken into account. Nevertheless, an iso-
lated consideration of the probabilistic parameters is not possible,
as there are always interactions with the deterministic values as
well. For example, depending on the deterministic control algo-
rithm, the effect of statistically distributed wind speeds can be
different.

With this starting set of probabilistic parameters, the second
step is the one-at-a-time (OAT) analysis which is one of the most
frequently used approaches in structural engineering. This step is to
clarify whether subsequent steps are useful or the probabilistic
subset cannot be reduced significantly. However, this step does not
reduce the probabilistic subset itself. Depending on the algorithm,
the OAT analysis can be regarded as a local and a global analysis.
The general concept is to vary one parameter while keeping all
others fixed. In most cases, only the maximum and theminimum of
the parameters are tested. If many parameters have to be varied,
the implementation of a probabilistic preprocessor, that automat-
ically changes the input files, starts the simulations and reads the
output files, is beneficial. The OAT procedure has the advantage that
the model has to be evaluated only a few times. Hence, it can be
used to identify those parameters that are influential [26] and it
never detects non-influential inputs as significant [34] which
makes it suitable for the second step in this scheme. Only if some,
but not nearly all, parameters are detected to be influential, further
steps are valuable. A significant index for the OAT method can be
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defined as follows:

SOAT;k¼
f ðx1;…;xkþDxk;…;xmÞ� f ðx1;…;xk�Dxk;…;xmÞ

2Dxk
; (2)

where SOAT;k is the OAT sensitivity index corresponding to the kth
input factor, f ð…Þ is the model function, x1 to xm are the m input
factors and Dxk is the variation in the kth input factor. A normal-
isation of the indices is valuable, if different parameters with het-
erogeneous variations are compared.

After having clarified that the probabilistic subset can be
reduced, the third step is a regression analysis that is combined
with an automated subset selection. The whole data space is ana-
lysed using a regression. However, this approach gives only a
(bilinear) approximation of the real model which is subsequently
used for the parameter reduction. Higher order effects are neglec-
ted in this step. For regression analyses, the input parameters are
correlated with the considered output. For this purpose, Monte-
Carlo sampling (MCS) is conducted. This means that the model is
evaluated n times with m independent input parameters randomly
generated according to their statistical distributions:

Xn�m ¼

0BBB@
xð1Þ1 xð1Þ2 / xð1Þm

xð2Þ1 xð2Þ2 / xð2Þm
« « 1 «

xðnÞ1 xðnÞ2 / xðnÞm

1CCCA: (3)

For a better coverage of the full data space and/or less correla-
tions between the sampled inputs, latin hypercube sampling (LHS)
or other more advanced sampling methods can replace the MCS, as
the sampling method is freely selectable. The outcomes of the n
model evaluations (yðiÞ) are fittedwith the n sample vectors (xðiÞ) by
means of a least square algorithm. In case of a linear regression,
only the first two terms of Eq. (4) are used for the fitting, which is a
line of best fit in case of one input factor. If interaction effects or
higher order terms are taken into account, the third and fourth
term in Eq. (4) respectively are utilised as well. In this paper, a
bilinear approach with the first three terms is used. The fitted
outcomes (byðiÞ) are:

with bð0Þ, bð1Þk , bð2Þk , bð1Þk;l being the constant regression parameter and
the regression parameters for the linear, quadratic and first order
interaction terms respectively. Whether higher order terms
improve the fit or not, highly depends on the nature of the non-
linearity. Since all non-linearities are covered within the fourth
step of this sensitivity scheme, in this step only interactions are
taken into account. The goodness of the fit can be evaluated with
the coefficient of determination (COD) and thewith aid of themean
outcome (y):

COD ¼ R2 ¼
Pn

i¼1
�byðiÞ � y

�2Pn
i¼1
�
yðiÞ � y

�2 (5)

The COD represents the proportion of the variance in the output

which can be explained by the input variables. However, the COD
always increases with the number of model term m. Therefore, it
tends to significantly overfit the model. The adjusted coefficient of
determination takes the number of model terms m into account
reducing the problem of overfitting:

R2adjusted ¼ 1�
�
1� R2

� n� 1
n�m

: (6)

By fitting only one input variable to the output data, a single
parameter COD for all inputs (R2k ) can be computed which is simply
the square of the correlation coefficient in the linear case. Higher
CODs indicate more significant influences of this input. Further-
more, the effect on the overall coefficient of determination of
adding or removing inputs from the overall model can be analysed.
If the removal of a specific input from the model does not reduce or
even increases the adjusted coefficient of determination, this input
can be regarded as not influential. An automation of this process is
the subset selection which is part of the third step. There are
various methods of selecting the best subset and additionally
different criteria for estimating the best subset. In this paper, two
selection methods are used. Firstly, a straightforward approach of a
forward selection is used. Here, the starting point is a constant
model without any significant model parameters. Subsequently,
parameters are added to the model one after the other as long as
the model is getting better. The parameter that improves the model
most is added first. One simple approach of evaluating the good-
ness of the model is the adjusted COD. Other criteria approximate
the information that is lost by applying a specific meta-model (in
this case multiple regressions with different number of model
terms). This is performed by judging the goodness of the model fit
using the likelihood function and penalising the number of model
terms (e.g. with þ2m for the AIC). Such criteria are the Akaike In-
formation Criterion (AIC) [35]

AIC ¼ �2 logL ðy;Xn�m;bÞ þ 2m (7)

and the Bayesian Information Criterion (BIC) [36]

BIC ¼ �2 logL ðy;Xn�m;bÞ þm lnðnÞ; (8)

where m and n are the number of model parameters and samples
respectively and logL ðy;Xn�m;bÞ is the log-likelihood of the model
with the parameters as above. There are different definitions of
these criteria, especially other constant factors that do not change
the overall behaviour. All different criteria have their advantages
and shortcomings. For example, the BIC tends to underfit (keeps to
few model parameters) the model, whereas the AIC and the
adjusted COD overfit the model. Furthermore, the BIC will, if
possible, result in the true model for n/∞, but, on the other hand,
the AIC is asymptotically optimal which means that the squared
error is as small as possible. The strengths of all criteria cannot be
combined in one and the same index [37]. Therefore, for varying
applications different criteria or even the simultaneous use of
several ones can be valuable.

Selection methods like the forward selection do not always find

byðiÞ ¼ bð0Þ þ
Xm
k¼1

�
bð1Þk xðiÞk

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Linear regression terms

þ
Xm
k¼1

Xm
l¼kþ1

�
bð1Þk;l xðiÞk xðiÞl

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Additional first order interactions

þ
Xm
k¼1

�
bð2Þk

�
xðiÞk
�2	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Additional quadratic terms

zyðiÞ; (4)
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the best model. Therefore, another approaches called “shrinkage
methods” can be used to find the best model. These methods
reduce the parameter coefficients (b) in the regression model to-
wards zero instead of only keeping or removing them. This pro-
cedure does not guarantee to find the best model as well, but it
reduces the variance in the parameter coefficients and hence, leads
to better model fits. Classical shrinkage methods are not appro-
priate for a subset selection, as all parameters are kept in the model
and only their influence is reduced by “shrinking” the coefficients.
However, there are further shrinkage methods, like the LASSO
method [38], that combine the advantages of shrinking and
reducing the set of parameters. This is achieved by reducing the
coefficient of insignificant parameters down to zero. The linear
LASSO method without interaction effects, which is used here, is
based on the following equation with the definitions as before,
bLASSO being the new vector of “shrunk” regression parameters and
t � 0 a tuning parameter:

bLASSO ¼ arg min
bð1Þ

24Xn
i¼1

 
yðiÞ � bð0Þ �

Xm
k¼1

bð1Þk xðiÞk

!2
35

subject to
Xm
k¼1

��bð1Þk

�� � t:

(9)

It can be understood as a minimisation of the l2 norm of the
difference between the fitted outcomes (byðiÞ) and the real outcomes
(yðiÞ) with a secondary condition keeping the sum of regression
parameters small in order to reduce insignificant parameters down
to zero.

It is apparent that there are different regression and subset se-
lection methods that can be used in the third step. Here, four ap-
proaches are combined. A forward selectionwith the adjusted COD,
the AIC and the BIC are utilised. Additionally, the LASSO method is
applied. If a parameter is selected by one of these approaches, it is
further investigated in step four.

The fourth and last step of the sensitivity analysis is a global
variance-based sensitivity analysis [39]. This analysis includes all
non-linear high order effects and interactions between all input
parameters. Hence, if no meta-model is used, this analysis con-
serves the whole complexity of the time domain model. On the
other hand, it needs a large number of model evaluations, because
conditional variances are analysed. This means, the influence on the
total variance of keeping one factor fixed is investigated, which
needs n� ðmþ 2Þ model evaluations. The total effects STk that
include all higher order and interaction effects can be calculated as
follows:

STk ¼
Ex�k

�
Vxkðyjx�kÞ

�
VðyÞ ¼ 1� Vx�k

�
Exk ðyjx�kÞ

�
VðyÞ : (10)

here, VðyÞ is the unconditional variance of the output
y ¼ f ðx1; x2;…; xk;…; xmÞ, Ex�k ðVxkðyjx�kÞÞ can be interpreted as the
expected variance that would be left, if all factors except the kth
factor are fixed and Vx�k ðExk ðyjx�kÞÞ is the expected reduction of the
variance, if all factors except the kth factor are fixed. The first order

effects Sk can also be calculated without any additional model
evaluations:

Sk ¼
VxkðEx�i ðyjxkÞÞ

VðyÞ : (11)

here, Vxk ðEx�i ðyjxkÞÞ can be understood as the expected reduction of
the variance, if the kth factor is fixed. For the mathematical back-
ground and a good overview of the sampling and numerical
computation of the conditional variances and expectation and
consequently of the sensitivity measures, the interested reader is
referred to Saltelli et al. [40].

Finishing this section, Table 2 summarises the four steps
included in the sensitivity scheme. The number of simulations is an
approximate which will be explained later. It is included here to
give an idea of the numerical cost. It has to be mentioned that this
scheme is quite flexible and the methods in each step can be
replaced by alternatives, if the general character of the stepwise
parameter reduction is kept.

3. Sensitivity results

In this section, the results of the four-step sensitivity analysis are
presented. It is divided into four subsections according to the steps
performed. First of all, some general information about the simu-
lation procedure is given. The time domain simulations of the
turbine are conducted with the FASTv8 code [41] of the “National
Renewable Energy Laboratory” (NREL). This code has been
enhanced by a soil model described in Refs. [32] and [42]. The soil
matrices required are based on the axial CPT method of FUGRO [43]
and the lateral model of Thieken et al. [44]. The decision for these
two soil models is based on experimental and numerical compar-
isons of different soil models ([44] and [45]). In all cases, the
operating point is considered according to [42]. The consideration
of the operating point is important as, especially the model by
Thieken et al., leads to highly load-dependent soil stiffnesses. The
wind fields are computed externally using TurbSim [46], which is
capable of generating turbulent wind fields. Two substructures are
investigated. Firstly, the OC3 monopile [47] and secondly, the OC4
jacket [48] are investigated in this study in order to apply the
proposed four-step methodology to significantly different offshore
wind energy applications. The choice of these two turbines is based
on the scarcity of data, especially of the turbine controller, of real
offshore wind turbines. Therefore, the use of cross-verified simu-
lation turbines is probably the best and most common alternative.
All simulations have a simulation time of 10 min as proposed in
current standards. Additional 60 s at the beginning of each simu-
lation are used to account for transient start-ups. The choice of 60 s
for the start-ups should be sufficient, as in common code com-
parisons (e.g. Ref. [47]) only 30 s are used. For the OAT analysis,
simulations of 10 min are quite short. A simulation of 1 h length or
six 10-min simulations might be more reliable. However, the OAT
analysis is only the first, non-selective step, and for the other ap-
proaches (regression and variance-based), several simulations are
conducted as part of the procedure. Therefore, the usage of 10-min
simulations is justified.

Table 2
Steps of the multi-step sensitivity analysis.

No. Method Approach Aim No. of simulations

1 Expert knowledge Subjective selection Get a starting subset and focus on desired parameter categories 0
2 One-at-a-time “Local” variation of one parameter Clarification if further steps are valuable 2�m
3 Regression Global approximation of all parameters Reduction of the parameter subset based on a (bilinear) approximation 20�m
4 Variance-based Global and non-linear approach Final parameter selection with all non-linearities and interactions 1000� ðmþ 2Þ
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3.1. Parameter selection and statistical distributions

In this paper, the first step of the sensitivity analysis in this
paper is a reduction of the parameter set using expert knowledge.
The focus of the present sensitivity analysis is on environmental
conditions likewind, wave and soil conditions, material parameters
of the substructure and local geometrical parameters of the sub-
structure and foundation. Local geometrical parameters are, e.g.,
small changes in inputs, like pile diameters or wall thicknesses
resulting from fabrication tolerances. Global or larger changes of
the geometry resulting from different designs are not investigated
here. The same applies to algorithm, model and control parameters.
All parameters that are selected in the first step are summarised in
Table 3. Here, E, n, r, d and t are the Young's modulus, Poisson's ratio,
density, diameter and (wall) thickness, respectively. The index i
indicates that there are several values for this parameter. This is the
case for soil properties, since the soil is modelled with three layers
(cf. Fig. 3(a)), and for substructure components, as the substructure
consists of piles with different wall thicknesses and diameters. This
subdivision could be further expanded, so that each component of
the substructure would have its own uncorrelated parameters
which would be closer to reality, since fabrication tolerances are
mainly uncorrelated. However, it has been decided to limit the
number of independent values to an adequate level to avoid un-
necessary complications. Furthermore, in order to keep the model
“simple” and because of a lack of information, it is abstained from
using correlations between the different input parameters. It is
important to mention that especially for the soil parameters their
effects are restricted to the models applied. In Table 3, for all inputs,
statistical distributions have been derived either from literature
research or from real data. Some distributions and the source of
information are given in Table 4. In the introduction of this work,
there is an overview of common statistical distributions in offshore
wind energy (e.g. Refs. [9e15]). For the selection of distributions to
be utilised for the fitting of the real data, these sources are used,
inter alia.

As indicated in Table 4, several distributions have been derived
from data of the FINO3 research platform. This platform is located

in the North Sea, 80 km to the west of the island Sylt. Wind and
wave conditions have been measured continuously since 2009.
Further data of the FINO1 platform, also located in the North Sea, is
used for comparison, as for FINO1 more data (since 2003) is
available. The FINO-WIND research programme is funded under the
“Wind Energy Initiative” of the German Federal Ministry for Eco-
nomic Affairs and Energy (BMWi) and “Projekttr€ager Jülich”. After
some data cleansing (e.g. range constraints, cross-field validation),
different distributions are fitted to the data with an MLE. The
goodness of the fits is evaluated with KS and Chi-squared tests. For
the choice of distributions that are fitted, existing distributions in
offshore wind turbine literature (e.g. Refs. [9e15]), expert knowl-
edge and the shape of the data distribution are taken into account.
Two examples are presented in Fig. 2(a) and (b). For the air density
at FINO1, the importance of bimodal distributions becomes
obvious. For FINO3 (not shown here), the two peaks are less
distinct. However, on the basis of the FINO1 data fit, bimodal dis-
tributions are fitted to the FINO3 data with best accordance as well.
Fig. 2(b) clarifies the challenges of directional distributions. Several
peaks are present and no tails develop, as there are nomaximum or
minimum angles. Therefore, classical parametric distributions can
hardly fit directional data. The Kernel distribution as a non-
parametric distribution realises an adequate fit as shown. Howev-
er, dependencies between different parameters should be taken
into account. As shown here, the fit of the wind direction is only
valid for wind speeds between 12m s�1 and 14m s�1. Therefore, for
wind and wave parameters, correlations are assumed.

It has to be mentioned that the choice of the distributions in-
cludes some subjective decisions, as different distributions for one
and the same parameter are proposed in literature, and especially
the distribution parameters vary significantly between different
turbine sites. However, this paper focuses on the sensitivity of the
inputs. Therefore, it is sufficient to assume realistic distributions
mainly being derived from real measurement data. For even more
profound results, the influences of different distributions and/or
statistical parameters should be analysedwith the aid of robustness
analyses. However, robustness analyses are beyond the scope of the
present study.

Table 3
List of all parameters that are treated as non-deterministic (MG: marine growth, SS: substructure).

Wind Wave Soil Material Geometry

Wind speed (vs) Water depth (Lwater) Unit weight (g0i) Young mod.(Esteel;SS) Hub mass (mhub)
Power law exp. (aPL) Water density (rwater) Friction angle (f0

i) Pois. ratio (nsteel;SS) Nacelle mass (mnac)
Wind direction (qwind) Wave height (Hs) Embedded length (Lin) Density (rsteel;SS) Platform mass (mplat)
Air density (rair) Wave direction (qwave) Relative density (Dr;i) Young mod.(Epile;foundation) Pile diam.(dpile;SS;i)
Turb. intensity (TI) Wave period (Tp) Cone tip resistance (qc;i) Pois. ratio (npile;foundation) Wall thickn.(tpile;SS;i)
Yaw error (J) MG thickn.(tMG) Soil layer thickn.(tsoil layer;i) Density (rpile;foundation) Pile diam.(dpile;foundation)
Vertical flow angle (qv) MG density (rMG) Shear modulus (Gs;i) Wall thickn.(tpile;foundation)

Table 4
Parameter distributions for OC3 monopile.

Parameter Unit Distribution Mean CoV Source Notes

Lwater m Normal (N) 20 0.04 [17] Adjusted m

vs m s�1 Weibull 10.94 2.32 FINO3 data Values are Weibull parameters a and b
rair kg m�3 Bimodal Gumbel 1.21 0.022 FINO3 data m2 ¼ 1:25, CoV2 ¼ 0:016 and p ¼ 0:87
qwind

� Kernel e e FINO3 data No parametric fit possible
tMG m Uniform e e [49] 0 m e 0.2 m
tsoil layer;1 m Uniform e e [13] 14 m ± 5 m
Esteel;SS N m�2 Log-Normal (LN) 2:1� 1011 0.02 [15] e

f0
1

� Truncated LN 33 0.15 [17] Adjusted m; 29+ and 45+ as boundaries
qv

� Normal (N) 0 1 [8] e

tpile;SS m Truncated N 0.06 0.1 [17] 0.0587 m and 0.0613 m as boundaries
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3.2. One-at-a-time sampling

The input parameters that shall be analysed in the present
sensitivity analysis have been identified in the previous section.
Now, the results of the second step of the four-step methodology
are presented. This step consists of an OAT analysis. As explained in
section 2.2, this step is intended to clarify whether subsequent
steps are useful, as a subset reduction is only possible if some, but
not almost all, inputs are influential. For all m parameters, three
values are chosen. The first one is the deterministic (“mean”) value.
The other two are maxima and minima or 4-s intervals for non-
bounded distributions. Then, the 2�m full time domain calcula-
tions are conductedwith all parameters fixed to their “mean” value,
except for onewhich either takes its “minimum” or its “maximum”.
The maximum values of the overturning moment, the shear force
and in case of a jacket the axial force at mudline are chosen as
outputs, since these forces andmoments are frequently decisive for
the reliability of the substructure. The forces and moments are

shown in Fig. 3 and the nomenclature is explained in Table 6. By
analysing the change in these outputs, the significant indices SOAT ;k
can be calculated. In order to calculate comparable significant
indices for all m inputs, the change in the input Dxk has to be
normalised. Here, the maximal range of the input is used to
normalise the changes which leads to Dxk ¼ 1 c k. For two outputs,
the tenmost influential parameters for the monopile and the jacket
are illustrated in Fig. 4(a) to (d). It becomes apparent that quite
similar parameters, mainly wind and wave parameters, are most
influential. Furthermore, in most cases only very few parameters
have amajor impact which is in particular obvious in Fig. 4(b). Here,
the effect of the first input (Hs) is already more than ten times
higher than the effect of the fifth input (qwind). This suggests that it
is generally possible to reduce the probabilistic subset significantly
and further steps are valuable. The least influential parameters are
not shown here, but again there are some parameters that are not
influential for both substructure and all outputs (maximum and
fatigue loads at mudline, cf. Table 6 and Fig. 3). Examples are the

Fig. 2. Probability density functions (PDFs) for different parameters based on FINO data with fitted distributions.

Fig. 3. Visualisation of the soil layer, forces and moments and leg numbering using an exemplary jacket.
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density and the Poisson's ratio of the foundation piles and the shear
modulus (Gs;i) of the soil. The lack of influence of the shear modulus
of the soil is due to the soil model applied [32]. It is only needed for
the torsional stiffness, and torsional stiffness is insignificant.

Only extreme situations without interaction effects are consid-
ered with this kind of OAT analysis. Extreme parameters do not
necessarily lead to extreme outputs. Especially for soil, material and
geometrical parameters, non-extreme parameters and combina-
tions of parameters can lead to resonance and therefore, to
maximum responses. This shall be illustrated shortly with the aid of
an exemplary oscillator having an eigen frequency of u2

0 ¼ k
m. Its

mass (m) varies between 1 and 3 and its stiffness (k) is between 1
and 3. The oscillator is excited with a frequency of U2 ¼ 2:5. Hence,
it is obvious that neither an extreme value of k nor of m can lead to
resonance, while the other value is fixed to 2 (/u2

0 � 2). Only a
combination of high (not maximum) values for k and small (not
minimum) ones form (for examplem ¼ 1:1 and k ¼ 2:75) will lead
to maximum responses. It is obvious that wind turbine systems are
not that simple, but similar combined effects occur. Therefore, it is
inappropriate to select parameters only on the basis of these re-
sults. This step only clarifies that a further step by means of a

regression analysis including global and first-order coupling effects
is needed. The number of significant parameters has not been
reduced in this step, as the OAT analysis does not cover any inter-
action effects. Therefore, for a subset reduction based only on an
OAT analysis, the risk of reducing the probabilistic subset too much
and of neglecting influential, highly interactive parameters is very
high. An example in the present context is the soil parameter f0

3. By
taking extremes in the OAT analysis, it is not detected to be influ-
ential (cf. Fig. 4), but if the full four-step approach is applied, it is
one of the significant inputs (cf. Table 8).

3.3. Regression analysis and subset selection

For the regression analysis, 30�m samples for the monopile
and 20�m samples for the jacket are generated with an LHS al-
gorithm that reduces the correlations between the uncorrelated
inputs. m is the number of inputs. This amount of samples should
be sufficient [50] as also indicated in Fig. 5, which shows the co-
efficient of variation (CoV) of the maximum shear force for several
calculations with different numbers of samples. It can be recog-
nised that above 10 samples per input the variation of the CoVs
tends to zerowhichmeans that each regressionwith this number of
samples will have nearly the same outcome. The number of sam-
ples for the jacket calculations is smaller, as more samples are more
challenging because of the high computing times. The distributions
derived in the previous section are applied for the sampling. As
indicated for the wind direction, some inputs are not independent
of each other. qwind, aPL, TI, Hs depend on the wind speed, Tp is
correlated with the wave height and qwave depends on the wind
direction and thewave height. Why this fact is of minor importance
and all inputs are considered to be uncorrelatedwill be explained in
the next sections.

At first, some qualitative and quantitative results of preliminary
considerations are discussed. Scatter plots are presented in Fig. 6.
These results are not used for the subset selection but are intended
to assist the reader in understanding the general behaviour. For vs

Fig. 4. Significant indices SOAT ;k for the most important parameters (Step 2).

Fig. 5. Convergence of the coefficient of variation of the maximum shear force at
mudline in wind direction (FXmax to investigate the no. of samples needed for step 3).
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and Hs, a linear tendency becomes apparent, whereas for Tp, a non-
linear relationship with the shear force can be recognised. For other
parameters, like the Poisson's ratio, the scatter is totally random.
Still, the tendencies are not very clear which is the reason why
these qualitative outcomes are supported by preliminary, quanti-
tative results. A linear regression is performed, and the single-
parameter adjusted CODs and the overall adjusted COD, in case
all parameters are taken into account, are calculated for different
outputs and the two substructures. An exemplary result is shown in
Fig. 7. For the main forces at mudline, the overall adjusted CODs are
between 0.3 and 0.6, whereas for the moments only values be-
tween 0.05 and 0.3 are achieved. Furthermore, besides the five
“main inputs” vs, Tp, Hs, qwind and qwave no other parameters can be
clearly identified to be influential. For other outputs that are not
shown here, the “main inputs” are ranked differently and the in-
fluence of, for example, Tp or vs is clearer. The fact that no other
parameters can be identified is due to the regression model and not
to the unimportance of all other parameters. Therefore, the
importance of the other parameters is investigated subsequently.

After these preliminary considerations, step three starts with
two additional regressions. For these regressions, the “main inputs”
are fixed to specific values covering a wind state at rated wind
speed, which is decisive for fatigue calculations, and an ultimate
limit state (ULS). Here, the wind state is defined as a fixed envi-
ronmental condition for the wind speed, its direction and the sea
state. On the one hand, fixing the “main inputs” reduces non-
linearities by removing the directional influences (e.g.
FXmax ¼ f ðcosðqwaveÞ;…Þ) and on the other hand, effects of other
parameters can be identified, since they are no longer dominated

by the “main effects”. Furthermore, the correlated inputs are fixed
now. Therefore, it is no longer a simplification to consider the in-
puts as uncorrelated. Hence, a first outcome of the preliminary
considerations in step three is that vs, Tp, Hs, qwind and qwave have to
be treated in a probabilistic way (cf. Fig. 7; further results of re-
gressions for different outputs underlining this outcome are not
shown here). From here on, only different wind states are consid-
ered, but no variations in these parameters themselves. Both wind
states are chosen in accordance with the FINO3 data and the
derived statistical distributions. The fixed values are summarised in
Table 5, where 0+ indicates north wind and 90+ east wind. For both
states, 20�m or 30�m samples, depending on the substructure,
are generated and linear regressions are conducted. Here, m is
reduced by 5, as the “main inputs” are fixed. The overall adjusted
CODs and the highest single-parameter CODs are displayed in
Fig. 8(a) e (d). Results of the monopile and the jacket for maximal
loads and damage equivalent loads (DELs) as outputs are presented.
The DELs are calculated using a rainflow algorithm, linear damage
accumulation according to the Palmgren-Miner rule and a
Goodman correction for loads with mean values unequal to zero.
The wind state vs ¼ 11 ms�1 is used for the DELs, since this wind
state corresponds with the rated wind speed. It has been shown
that in many cases the highest fatigue damages result from rated
wind speed, although higher DELs can occur at higher wind speeds,
as the occurrence probability is much higher at rated wind speed
compared to wind speeds close to cut-off [51]. For ULS loads, the
vs ¼ 35 ms�1 wind state, which is derived using extrapolation
analysis based on FINO3 data, is decisive which is the reason why
this wind state is utilised for maximum loads. It has to be
mentioned that the chosen ULS load case is a fairly moderate one,
but the general trends of the sensitivity analysis should not be
significantly influenced by this choice. The nomenclature of the
outputs is summarised in Table 6.

From Fig. 8, it is apparent that the use of fixed “main inputs”,
firstly, leads to a more appropriate use of the linear regression, as
the adjusted CODs achieve values closer to 1 compared to the
preliminary considerations including the “main inputs” (cf. Figs. 7
and 8). Furthermore, the effects of other parameters can be iden-
tified. In this context, mainly two further parameters become sig-
nificant: tMG and f0

3. It depends on the output, substructure and
wind state which parameters are most influential. Not all influen-
tial parameters can be easily identified in Fig. 8. For example Lwater

Fig. 6. Scatter plots for different inputs and the maximum monopile shear force at mudline (FXmax) as output (qualitative, preliminary considerations for step 3).

Fig. 7. Overall adjusted CODs (to the right of the red bars) and single-parameter CODs
(to the left of the red bars) for maximum monopile overturning moment at mudline
and perpendicular to the wind direction (quantitative, preliminary considerations for
step 3 including “main inputs”). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 5
Values of the “main inputs” for the two wind states.

vs in m s�1 Hs in m Tp in s qwind in � qwave in �

11 1.5 6 270 315
35 8 13 310 270
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in Fig. 8(b) can be regarded as influential as well. For a clear and
objective identification, an automated subset selection is per-
formed next. However, some general statements are already
possible. For example, the thickness of the marine growth (tMG) is
more decisive for jackets than for monopiles. Jackets have more
braces where marine growth can occur, and as the diameters of the
braces are smaller, the percentage increase because of marine
growth is higher. Still it has to be kept in mind that the wave load
effects are non-linear. Therefore, for different jackets (e.g. with
three legs), the sensitivity of the marine growth might not be that
pronounced. On the other hand, the internal friction angle f0

3 in-
fluences monopiles more than jackets. The reason is that f0

3 affects
the lateral soil stiffness and not the axial one (for the applied soil
model) and monopiles mainly experience lateral loading, whereas
jackets are subjected to combined axial and lateral loads. These
results show that not only one output can be considered for the

variable selection, as parameters having no influence on a certain
output can still have significant influence on other important out-
puts. Nevertheless, it is obvious from Fig. 8 that some outputs seem
to be not influential for all outputs.

So far, in step three, five “main inputs” have been identified in
preliminary considerations. The first part of step three consists of
regressions without the “main inputs” (cf. Fig. 8) making clear that
slightly different parameters are most influential for different
substructures and outputs. The second part of step three is the
selection of the influential inputs using automated subset selec-
tions as described in section 2.2 (Step 3). Several outputs are
investigated. For the jacket substructure, eight outputs are
considered that have been identified to be the decisive loads. The
outputs are FX2;max, MY2;max, FZ1;min, FZ1;max, FZ1;DEL, FZ2;DEL, FY3;DEL
and MX4;max according to the nomenclature in Table 6. For DELs,
generally, the loads perpendicular to the wind direction are less

Fig. 8. Overall adjusted CODs (to the right of the red bars) and single-parameter CODs (to the left of the red bars) for different outputs, wind states and substructures (step 3 - part 1;
without “main inputs”). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Nomenclature of the outputs.

Symbol Output Load case Substructure

FXmax Maximum shear force at mudline in wind direction vs ¼ 35 ms�1 Monopile
FYmax Maximum shear force at mudline perpendicular to the wind direction vs ¼ 35 ms�1 Monopile
MXmax Maximum overturning moment at mudline perpendicular to the wind direction vs ¼ 35 ms�1 Monopile
MYmax Maximum overturning moment in wind direction vs ¼ 35 ms�1 Monopile
FYDEL DEL of the shear force at mudline perpendicular to the wind direction vs ¼ 11 ms�1 Monopile
FZ1;max Maximum tensile axial force at mudline in leg 1 vs ¼ 35 ms�1 Jacket
FZ1;min Maximum compressive axial force at mudline in leg 1 vs ¼ 35 ms�1 Jacket
FY3;DEL DEL of the shear force at mudline perpendicular to the wind direction in leg 3 vs ¼ 11 ms�1 Jacket
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damped. At the same time, the excitation loads parallel to the wind
directions are higher. Still, for the analysed system, it was found
that themean DELs in side-to-side direction are slightly higher than
in fore-aft direction. This outcome is not generally valid and might
be due to not aligned wind and wave directions and applied yaw
errors, both increasing side-to-side excitation loads. For the
monopile, four main outputs have been identified. These outputs
are: FXmax, MXmax, FYDEL and MXDEL. For all outputs, a subset se-
lection based on a forward selection with the adjusted COD, AIC
value and the BIC value as selection criterion and one selection
based on the LASSO method are performed. Here, the criteria for
the jacket model are stricter compared to the monopile, as
computing times for the jacket are much higher and a greater
reduction of parameters is necessary. A subset selection based on
the forward selection and the BIC for MYmax as well as a forward
selection based on the adjusted COD with FYDEL as the output are
exemplarily shown in Fig. 9(a) and (b). The abscissa displays the
added input parameter in each step. Parameters connected with
the ∧ sign represent first-order interaction effects that are taken
into account as well. The selection stops, if the BIC value no longer
decreases (no model improvement) or the adjusted COD increases
less than 0.001 (insignificant model improvement).

The subset selections with the four different criteria or methods
lead to similar but slightly different results. For the final selection
before variance-based sensitivity methods are used, the results of
all four subset selections types are taken into account. When a
parameter is selected for any output by one of the selection types, it
is kept for this type of substructure. For this reason, the criteria are
fairly strict. For example, the small improvements of the adjusted
COD are not further considered, as it can be seen in Fig. 9(b) and
from the boundary of 0.001 which is chosen based on expert
knowledge. For the monopile, 14 parameters are selected as

influential plus the five fixed “main inputs” (14 þ 5). Because of
high computing times for jacket substructures, the criteria are
stricter and only 9þ 5 parameters are chosen here. The parameters,
including the “main inputs”, for both substructures can be found in
Table 8 on the left hand side. More frequently selected and thus
more influential parameters are listed first.

It is possible to reduce the size of the probabilistic subset and to
create a linearisedmeta-model, as it is frequently used for variance-
based sensitivity analyses, using a bilinear regression analysis.
However, non-linearities have not been considered, and even if
higher order terms are included in the regression, it remains an
approximation. Hence, the fully non-linear time domain turbine
model and not a meta-model is analysed with a variance-based
approach in the next step. This enables the consideration of all
kinds of non-linearities and also interactions of higher order.
However, adequate simulation times of the variance-based
approach applied to the turbine model are, especially for the
jacket substructure, only possible because of the reduced proba-
bilistic subset (cf. Table 7).

3.4. Variance-based sensitivity analysis

The final step of the presentedmulti-step sensitivity analysis is a
variance-based sensitivity analysis that covers all interactions be-
tween inputs and all higher order effects. The variance-based
method is applied to the reduced probabilistic subset (cf. Table 8,
left), as computing times are onlymanageable for a small amount of
parameters for the underlying time domain simulations. Just like
for the regression analysis, two load cases (vs ¼ 11 ms�1 and
35 ms�1) for the two considered substructures are analysed. Even
for a reduced probabilistic subset, computing times are challenging,
as n� ðmþ 2Þ samples have to be calculated. Therefore, the choice

Fig. 9. Forward selections for monopile substructures based on different selection criteria and for different outputs (step 3 - part 2; without “main inputs”).

Table 7
Approximate total computing times for the different substructures for both (2�) load cases.

No. Method No. of parameters No. of simulations Substructure Computing time

1 Expert knowledge >100 0 Both none
2 One-at-a-time 40 2� ð35þ 5Þ Monopile 1 h

48 2� ð43þ 5Þ Jacket 30 h
3 Regression 35 2� 30� 35 Monopile 18 h

43 2� 20� 43 Jacket 3 weeks
4 Variance-based 14 2� 2000� ð14þ 2Þ Monopile 3 weeks

9 2� 750� ð9þ 2Þ Jacket 30 weeks

e Plain var.-based 40 2� 2000� ð40þ 2Þ Monopile 8 weeks
48 2� 750� ð48þ 2Þ Jacket 136 weeks
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of sample size (n) is of high importance. Saltelli et al. propose
n � 500 [40]. However, if n ¼ 500 is chosen, the results are insuf-
ficient and inconsistent, if different methods for the calculation of
the sensitivity indices are applied. Therefore, in this paper n ¼ 2000
for the monopile analysis and n ¼ 750 for the CPU-intensive jacket
analysis are chosen. Table 7 summarises the approximate
computing times for the different approaches used in this paper on

a “2� Intel Haswell Xeon E5-2630 v3 (8-cores, 2.40 GHz, 20 MB
Cache, 85 W)” computer node, several nodes being used in parallel
which is not taken into account in the table. The computing times of
plain variance-based analysis (only step one and four) are given for
comparison. This explains that the proposed four-step analysis re-
duces the computation cost by more than a factor of 4 (for the
jacket). A first approximation of the reduction factor is the quotient

Table 8
List of the influential parameters for jacket and monopile selected using a regression-based subset selection (left) in the third step and a variance-based method (right) in step
four. The “main inputs” are in bold. Parameters not selected in the fourth step are in grey.

Fig. 10. Total and first-order effects for different outputs, wind states and substructures calculated with a variance-based sensitivity analysis (step 4; without “main inputs”).
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of the number of initial input parameters to the number of inputs in
the fourth step.

In Fig. 10(a) e (d), total and first-order sensitivity indices for
different outputs, load cases and substructures are shown that are
calculated with algorithms according to [52]. It becomes apparent
that the sample size is still fairly small, as first-order effects are
sometimes slightly higher than total effects, some sensitivity
indices are slightly negative and different calculation algorithms
(see Ref. [40]) give marginally varying results (not shown here).
These problems are less severe for the jacket compared to the
monopile, if the same number of samples is used. This can be
explained by the smaller amount of inputs in the probabilistic
subset (m) for the jacket. Therefore, the reduction of the probabi-
listic subset with the first three steps is even more important.
Although these problems indicate that the convergence is not
complete but just below a certain limit, the results are still much
better than for n ¼ 500, and larger sample sizes can hardly be
realised because of limited computing power. Furthermore, this
sensitivity analysis is “only” supposed to identify those parameters
that have to be treated in a probabilistic manner. Therefore, the
precise values of the sensitivity indices are of minor importance,
and an incomplete convergence is acceptable.

The variance-based analysis enables some general conclusions
concerning non-influential and themost important parameters. For
both substructures, only a very limited number of parameters is
really influential. Some parameters, like f0

3 or g03 for the monopile,
influence all outputs, whereas others only influence either
maximum or fatigue loads. Resonance is highly influenced by the
effects of soil and geometrical parameters. This can be seen by
comparing the total and first-order indices of soil and geometrical
parameters. The total effects are much higher than the first-order
indices which means that they exhibit high interactions effects.
For other parameters, like Lwater or rair, this is not the case. Hence,
these parameters do not interact that much. Furthermore, inter-
action effects are more relevant for the fatigue loads. After all, the
parameters in Table 8 on the right hand side are themost influential
ones for the monopile and the jacket, respectively. The most
influential parameters are listed first, but the first five “main in-
puts” (in bold) are unranked as they are not studied in detail. It
becomes apparent that the order of the selected parameters is
different from the results of the regression in Table 8 on the left
hand side. Soil and geometrical parameters are ranked higher,
whereas other parameters are not selected (in grey) at all or are
ranked lower. This can be explained by a more precise consider-
ation of interactions and high-order terms. Hence, the final
variance-based analysis has additional benefits compared to the
previous steps.

4. Conclusion and outlook

In this paper, a multi-step global sensitivity analysis scheme is
developed and results for two offshore wind turbine applications
are presented. The idea of the multi-step approach is to identify the
most influential parameters with aminimum amount of computing
time, but by considering non-linear and interaction effects at the
same time, requiring fully coupled time domain simulations. This is
achieved by a stepwise reduction of the probabilistic subset of
parameters. Such an approach is especially valuable, when every
single simulation is time-consuming and meta-modelling is either
not expedient or not desired. Therefore, the approach presented is
especially adequate for offshore wind turbine calculations which
have to be conducted in time domain. The CPU-intensive calcula-
tions one reason why practically no sophisticated or global sensi-
tivity analyses for wind turbines have been conducted so far. This
deficit is resolved with the current sensitivity analysis.

The four-step method has proved to be an adequate alternative,
in case plain variance-based methods are too time-consuming. A
comparison of both sides of Table 8 shows that a regressionwithout
subsequent variance-based analysis leads to a different variable
selection, as interaction and high-order effects are not covered
properly. Hence, the higher computing time of the presented
method compared to regressions is compensated by more accurate
results. For this reason, the approach can be regarded as a
compromise between variance-based and less precise sensitivity
analyses. The general concept of the multi-step approach is very
flexible. Each step has its own purpose, but the methods that fulfil
this aim are not fixed. For example, it is possible to replace the OAT
method by “Elementary Effects”, the bilinear regression by rank or
quadratic regressions and the variance-based method by the
“Fourier Amplitude Sensitivity Test”.

The results of the sensitivity analysis make clear that only a few
parameters are influential, and these parameters are mainly the
same independent of the substructure. Hence, the results are of
some general character. Nevertheless, this statement has to be
examined by investigating more different substructures, and
attention has to be paid to the small but not insignificant differ-
ences. Furthermore, it is important to notice that for fatigue loads
different parameters have to be considered compared to ultimate
loads. Therefore, it is not adequate to limit sensitivity analyses
either to ultimate loads or to fatigue loads. On the other hand, if for
both cases the influential parameters are known, the probabilistic
subset can be optimised for each output. This means that it does not
necessarily have to be the same for each output which can help to
reduce computing times.

In this study, the convergence of the variance-based step is
neither examined in detail nor is it totally completed. Such an
investigation should be conducted in a further analysis together
with a comparison of the results of a plain variance-based analysis
with those of the present multi-step analysis. However, these
considerations are beyond the scope of this paper, and for jacket
substructures the computing times are hardly manageable (cf.
Table 7).

As this study shows that soil parameters have large interactions
effects, it can be assumed that the consideration of correlations
between the soil parameters may change the results. For this
reason, it is worthwhile to repeat this study with correlated inputs,
if correlations are known which is generally not the case. Addi-
tionally, different soil models should be investigated, as it is known
that there are significant differences between the models
commonly used.
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5 Long-term extrapolation

To certify OWTs, aero-elastic time-domain simulations are required by current standards
[53, 84]. However, due to computational limits, it is not possible to simulate the entire
turbine lifetime of normally 20 years. Therefore, some kind of long-term extrapolation is
needed to extrapolate ULS and FLS values of some limited simulations to the entire lifetime.
In this thesis, the focus is on FLS long-term extrapolation, since dominating failure modes
of OWT substructures are FLS failures. Improved sampling techniques for the long-term
extrapolation are developed and validated.

5.1 Methodologies for fatigue assessment of offshore wind
turbines

5.1.1 Research context
The fatigue assessment of OWT substructures consists of two parts. First, the short-term
damage (fatigue damage of a 10-minute simulation) has to be determined. This procedure
is fairly normalised. Second, the short-term damage has to be extrapolated to a long-term
or lifetime damage. Here, procedures are not standardised. This extrapolation is subject of
the present section of this thesis.
Nevertheless, some remarks regarding the standard short-term damage calculation are given:
For the considered case (e.g. load case and EC combination), an aero-elastic time-domain
simulation is used to compute stress time series for all relevant locations (i.e. hot spots like
welded connections). Rainflow counting and time series are used to determine the number of
stress cycles for different stress amplitudes. Since there are stress concentrations at various
hot spots, SCFs are applied. Finally, Miner’s rule and S-N curves according to standards
[38, 48] are applied to calculate the resulting short-term fatigue damage of this time series.
The uncertainty of the short-term damage depends significantly on model uncertainties of
Miner’s rule and S-N curves. This uncertainty is not further considered here, as this work
focuses on the long-term extrapolation.
For the long-term extrapolation, only vague recommendations are given by standards
resulting in various extrapolation concepts. One of the most common ones in academia, used,
for example, by Zwick and Muskulus [220], is the following: The entire wind speed range is
split up into bins of 2 m s−1 or less. In each bin, all other ECs are set to constant values,
while they can differ between the various bins. For example, for higher wind speeds, wave
heights increase, but within a wind speed bin, the wave height is constant. Subsequently,
for each wind speed bin, six simulations are conducted to reflect different realisations of
turbulent wind and irregular waves. In the end, mean damages of all bins are weighted
according to their occurrence probability and are extrapolated to the desired lifetime.
This procedure has several shortcomings that are pointed out, for example, by Müller and
Cheng [126], Zwick and Muskulus [220], or Häfele et al. [61]. First, the assumption of
constant ECs in all wind speed bins cannot reproduce the scattering of real offshore fatigue
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measurements [126]. Therefore, probabilistic simulations are required. Second, even if
constant ECs in each bin are assumed, six simulations lead to fairly high uncertainties due to
limited sampling [220]. And third, if probabilistic simulations are conducted, the challenge
of small uncertainties (due to finite sampling) is intensified [61].
Thus, there is a recent research focus on new long-term extrapolation techniques. In industry,
normally bins for more ECs (e.g. wave heights) and a finer binning are used. This plain
increase of the sampling effort while using the standard grid-based approach is also applied
by Stewart as his reference approach [185]. Although such a procedure can lead to relatively
low uncertainties due to finite sampling, this uncertainty reduction is only achieved at the
expense of a high computational effort. This means that it is a quite inefficient concept, as
shown, for example, by Graf et al. [55]. For industry, this inefficiency implies higher costs,
and for academia - frequently having limited computational resources - it even might not
be applicable. Hence, other concepts are valuable. One concept is the use of meta-models
for fatigue damages [79, 185, 199, 221]. While this approach can reduce computing times
significantly, the use of meta-models always adds some additional model uncertainty to
the results. A second approach is the use of other sampling techniques. For example, one
possibility is to determine the number of samples according to the occurrence probability
of each bin (c.f. MCS) instead of a constant number of samples per bin [61, 185]. This
means that there are no longer six (or another fixed number of) samples per bin, but less
samples for rarely occurring high wind speeds and more samples for frequently occurring
wind speeds close to rated wind speed. After all, there is still the need for further research
to improve the extrapolation procedure which has been the reason for the development of
two new extrapolation methods proposed in this thesis.

5.1.2 Methods
Due to the insufficient accordance of scattering of simulated fatigue damages and measured
ones, if constant ECs are assumed [126], and due to the thematic focus of this thesis, a
probabilistic approach is utilised here for the long-term extrapolation. Short-term fatigue
damages are calculated according to the previously described standard approach. For the
long-term extrapolation, two new advanced sampling techniques are developed: damage
distribution based Monte Carlo simulation (DMCS) and reduced bin Monte Carlo simulation
(RBMCS).
The idea of DMCS is to conduct more simulations where they are needed (c.f. importance
sampling). In this context, this means that the number of simulations per bin is weighted
according to the damage distribution (weighted lifetime damage). For example, if the wind
speed bin 9 to 11 m s−1 accounts for 10 % of the overall lifetime damage, 10 % of the samples
are generated in this bin. This has the advantage that uncertainties of “important” bins are
reduced. The main challenge is that the damage distribution is not known a priori. This
problem is handled by an initial “guess” of the damage distribution - using some equally
distributed samples - and subsequent updates of it.
The concept of RBMCS is to reduce the number of bins by merging bins of similar damage
behaviour. If, for example, the bins 3 to 5 m s−1 and 5 to 7 m s−1 are merged, more
simulations can be conducted in all other bins. If the damage behaviour in merged bins
is similar, the increase in uncertainty in these bins is small compared to the decrease in
uncertainty in all other bins. Here, the main challenge is to decide which bins should be
merged.
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5.1.3 Results
The present investigation yields two results. First, if probabilistic approaches are used, the
use of six simulations per bin leads to really high uncertainties due to limited sampling.
This underpins results of Häfele et al. [61]. Second, neither the standard approach of equally
distributed samples over all wind speed bins nor sampling according to the occurrence
probability [61, 185] are suitable for reducing the uncertainty due to limited sampling.
RBMCS outperforms both other approaches and is quite robust, for example, towards the
overall sampling size. In most cases, DMCS yields even better results. However, care has to
be taken, if damage values of one and the same bin are scattering a lot and overall samples
sizes are fairly small. Hence, this is only relevant in academia with small sample sizes.
Furthermore, DMCS has to be modified if parallelised simulations are used.

5.1.4 Outlook
In this first step, the two long-term extrapolation methodologies for fatigue damages are
only tested for one type of substructure, one site (set of ECs), and simulated data using the
aero-elastic simulation code FAST. This means that a general validity has not been shown
yet. This is done in Section 5.2.
Furthermore, it should be noted that these improved sampling techniques can be combined
with meta-models for fatigue - addressed in Section 1.2.8 and 5.1.1 - to further reduce
computing times and/or uncertainties.
A parallelised version of DMCS could help to increase computational efficiency.

5.1.5 Paper D: Methodologies for fatigue assessment of offshore wind turbines
considering scattering environmental conditions and the uncertainty due
to finite sampling

The following paper is published in Wind Energy, Volume 21 (2018), pages 1092-1105
(https://doi.org/10.1002/we.2216). The main work was done by the author of this thesis.
Cristian Gebhardt and Raimund Rolfes contributed with advisory and supporting work.
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Abstract
For substructures of offshore wind turbines, the fatigue limit state is in most cases a deci-
sive design factor. However, to calculate the fatigue lifetime of wind turbines, numerous time
domain simulations for different load cases with changing environmental conditions are neces-
sary. According to the state of the art, wind speed bins (of 2 m s−1) are employed, while keeping all
other environmental states constant. However, assuming constant parameters in each wind speed
bin is an unfounded simplification. Therefore, in this study, methodologies for fatigue assess-
ment considering scattering environmental conditions are investigated by assuming statistical
distributions for environmental conditions for all wind speeds that are derived using real data
measured at the North Sea research platform FINO3. These statistical distributions are used to
conduct time domain simulations of an OC3 monopile—with a 5-MW wind turbine—using the
aero-servo-hydro-elastic simulation framework FAST. The fatigue lifetime is calculated, and its
uncertainty due to finite sampling is assessed. It is shown that if scattering environmental states in
each wind speed bin are applied, the uncertainty due to finite sampling is significant. Furthermore,
only some wind speed bins contribute to the overall fatigue damage. Based on these findings, in
a last step, different Monte Carlo sampling concepts are investigated to reduce the number of
simulations needed to calculate the fatigue lifetime with a defined uncertainty. By combining sev-
eral wind speed bins and by sampling according to the damage distribution, it is proved that the
number of simulations can be reduced by more than 30% without increasing the uncertainty.
KEYWORDS
fatigue limit state, offshore wind energy, scattering environmental conditions, simulation error,
uncertainty

1 INTRODUCTION
The share of offshore wind energy in overall energy production has grown over the last years. However, the cost of offshore wind energy is still
high compared with other renewable energies.1 As it is forecast that substructure improvements can potentially reduce the overall turbine cost
by more than 5%,2 an accurate and reliable simulation of offshore wind turbine substructures is beneficial. For substructures made of steel, mainly
the fatigue limit state is decisive.3 To calculate the fatigue lifetime of wind turbines, numerous time domain simulations are necessary. Current
standards4 define that these simulations should mirror the changing environmental conditions at the precise site of a wind turbine. However, for
research purposes, these data are scarcely available, and even in industrial projects, the data quality is frequently poor because information on some
parameters or long-term data is missing. This is why several research projects characterized environmental conditions at specific sites or entire
areas and published statistical distributions as a reference. Examples for data bases of main conditions (wind speeds, wave height, wave period, and
wind and wave directions) are the UPWIND design basis,5 the work of Stewart et al,6 the PSA-OWT project,7 Häfele et al,8 or Hübler et al9 In this
work, the data basis of Hübler et al9 is utilized, as it is—beside other advantages—the only one where additional environmental conditions, like the
turbulence intensity or the wind shear, are considered in a statistical manner (see Table 2 for considered environmental conditions).
1092 © 2018 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/we Wind Energy. 2018;21:1092–1105.
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If for a specific site, data are available, it is state of the art to simplify the fatigue lifetime calculation roughly as follows10-12: The range of wind
speeds in power production (eg, 3 m s−1 to 25 m s−1) is divided into several bins of 2 m s−1 or less. All other environmental conditions are assumed to
be constant within these wind speed bins, although Müller and Cheng13 recently showed that constant environmental conditions in each wind speed
bin cannot reproduce the scattering observed in offshore fatigue measurements. Only the stochastic process of turbulent wind and irregular waves
is considered in each bin by conducting 6 simulations (random seeds) per bin, as it is proposed by the standards.4 Although this is a state-of-the-art
procedure, Zwick and Muskulus10 show that using only 6 simulations (random seeds) per wind speed bin leads to highly uncertain approximations
of the lifetime damage. The reason for this uncertainty is the limited number of samples. Other types of uncertainty like errors of the aeroelastic
model, the probability distributions, or the S-N curves are not taken into account, although they can be significant as well. For the remainder of
this work, the expression “uncertainty” always refers to the uncertainty due to finite sampling. The effect of finite sampling is even intensified, if
scattering of other environmental conditions within each bin is included, as it is done by Häfele et al.8 The authors show that even for 2048 overall
simulations, distributed to the bins according to the statistical occurrence distribution of the wind speed, the error in the damage at an X-joint of the
OC4 jacket due to finite samples is more than 10% with a probability of 5% (95th percentile). This high error results from the inclusion of stochastic
effects (random seeds) and probabilistic effects (scattering environmental conditions).

Even for the simplified procedure, neglecting the scattering of environmental conditions in each wind bin and conducting only 6 simulations per
bin, numerous time domain simulations are still necessary. That is why there exist several approaches to decrease the computing time by using
meta models for fatigue damages. Examples are Zwick and Muskulus,14 Müller et al,15 Toft et al,16 or Stewart.17 Zwick and Muskulus reduced
the number of simulations by a factor of 7 without adding a significant amount of additional uncertainty by applying a multivariate linear regres-
sion. Müller et al also use a linear regression, but it is based on a Box-Behnken design. Toft et al utilize, inter alia, a central composite design
as meta model for the fatigue damage. Linear regressions and genetic programming are applied by Stewart, while generic programming shows
better results.

Although a lot of work was done recently to enable reliable fatigue damage calculations within adequate computing times, there are still some
major shortcomings. Three existing drawbacks according to the state of the art are treated in this study. Firstly, environmental conditions are
no longer treated as constant within each wind speed bin, as Müller et al15 found out that variable environmental conditions can reproduce
measurement variability more precisely. Secondly, so far, mainly jacket and floating substructures were investigated. Here, monopiles—widely
neglected in uncertainty analyses—are investigated. And lastly, reduction concepts based on efficient sampling are developed. This differs from
meta model-based approaches, as no approximation errors due to the meta model are added. Therefore, the following unanswered questions are
addressed in the present work:

1. How high is the uncertainty of fatigue damages due to finite sampling for monopiles, if realistic, scattering environmental conditions in all wind
speed bins are assumed?

2. To what extent is it possible to reduce the number of time domain simulations without adding additional simulation errors?
To address these topics, firstly, the utilized data basis for all significant environmental conditions, further settings, and the applied structural

and fatigue model are presented. Secondly, a study of convergence for the number of simulations to assess the uncertainty in fatigue damages is
conducted. Having determined the potential error in the lifetime damage, 3 sampling concepts for reducing the number of simulations without
increasing the simulation error are presented and evaluated. It is abstained from applying meta models in this study, as these models add at least
some model error. Lastly, the benefits and limitations of the current approach are summarized, and a conclusion is drawn.

2 SIMULATION SET-UP
2.1 Scattering environmental conditions
For various turbine sites, the environmental conditions can be fairly different. As these states significantly affect the fatigue damage of offshore
wind energy plants, precise data of the specific turbine location are valuable. However, real site data are scarce, which is the reason for the formerly
mentioned approaches of reference data bases.5-9 Although these data bases define conditional, statistical distributions for some environmental
conditions, others are considered to be constant in each wind speed bin or even in all of them. The constant states of the frequently used UPWIND
design basis are exemplarily summarized in Table 1.

TABLE 1 Environmental conditions of the K13 shallow water site (UPWIND design5 basis)a
vs, ms−1 2 4 6 8 10 12 14 16 18 20 22 24 26
Hs , m 1.07 1.10 1.18 1.31 1.48 1.70 1.91 2.19 2.47 2.76 3.09 3.42 3.76
Tp , s 6.03 5.88 5.76 5.67 5.74 5.88 6.07 6.37 6.71 6.99 7.40 7.80 8.14
TI, % 29.2 20.4 17.5 16.0 15.2 14.6 14.2 13.9 13.6 13.4 13.3 13.1 13.0

aThe wind shear exponent is considered to be constant (𝛼 = 0.14), and wind and wave directions are usually set to zero but can be taken fromscatter plots as well.
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TABLE 2 Dependencies, statistical distributions, and bin widths for environmental conditions derived from FINO3 data
Parameter Statistical distribution Mean value Dependencies Bin sizes Bin ranges
Wind speed (vs) Weibull 9.8 m s−1 None None -
Wind direction (𝜃wind) Nonparametric KDE 207◦ Wind speed 2 m s−1 0-34 m s−1
Turbulence intensity (TI) Weibull 5.4% Wind speed 2 m s−1 0-34 m s−1
Wind shear exponent (𝛼PL) Bimodal normal 0.088 Wind speed 2 m s−1 0-32 m s−1
Significant wave height (Hs) Gumbel 1.6 m Wind speed 2 m s−1 0-28 m s−1
Wave peak period (Tp) Bimodal log-normal 7.3 s Wave height 0.5 m 0-7 m
Wave direction (𝜃wave) Nonparametric KDE 252◦ Wave height 1.0 m 0-7 m

Wind direction 36◦ 0-360◦

In this study, an adopted version of the data basis of Hübler et al9 is used. For 13 environmental parameters and 3 sites, conditional distributions,
derived from offshore measurement data from FINO platforms, are available. The FINO platforms are measurement masts in the North and Baltic
Sea, which are operated on behalf of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB)*.
In this work, the focus is on the 7 conditions in Table 2 that were measured at the FINO3 site, which is located 80 km west of the island Sylt near to
the wind farm DanTysk and measures since 2009. For further details concerning the platform and the data, it is referred to the original source.9

According to Hübler et al,9 distributions for all 7 environmental conditions are fitted to the data. The best fitting distributions—evaluated with
Kolmogorov-Smirnov and 𝜒2 tests—are chosen, while keeping distributions as simple as possible (eg, multimodal distributions are only used, if the
distribution of the raw data clearly exhibits several peaks). The resulting distributions and mean values are summarized in Table 2. As the parameters
are not independent of each other, conditional distributions are defined. Hence, the data of the dependent parameters are split up into several bins
of the independent parameters. To illustrate this approach, for example, the wave direction is fitted in several bins of 1 m wave height and 36◦ wind
direction, eg, p(𝜃wave) = p(𝜃wave|1m ≤ Hs < 2m,36◦≤ 𝜃wind < 72◦), where p is the probability density function. The dependencies, bin widths,
and overall bin ranges for the dependent parameters are summarized in Table 2 as well. Bin ranges mark the limits for which sufficient data were
available to fit distributions. For the statistical parameters of the distributions and more detailed explanations, it is referred to the data basis.9

2.2 Further settings
In this study, the scattering of the previously mentioned 7 environmental conditions is taken into account, although variations of other conditions
might be influential as well.18 However, for other parameters, either no data are available or they are assumed to be less significant. The following
assumptions are made for all simulations:

- The turbulent wind field is calculated with the Kaimal model using the software TurbSim.19
- The JONSWAP spectrum according to IEC 61400-3 Annex B4 is used to compute irregular waves.
- The soil conditions of the OC3 phase II model20 are assumed.
- Current, second-order and breaking waves, wave spreading effects, marine growth, and local vibration and degradation effects are neglected.

2.3 Simulation prerequisites
For the calculation of fatigue lifetimes, numerous numerical simulations in time domain are necessary. In contrast to the deterministic, design load
case–based approach recommended by the standards,4 a probabilistic simulation approach is applied here. Therefore, in this subsection, firstly, the
probabilistic approach is explained. Secondly, the time domain simulation model and the utilized substructure are described. And lastly, the fatigue
calculation is clarified.

2.3.1 Probabilistic simulation approach
According to the standards,4 for the fatigue design of offshore wind turbines, several design load cases (eg, DLC1.2 or 2.4) have to be simulated. These
load cases cover fatigue loads during power production, idling and fault conditions, and several special cases like rotor stops. Although stochas-
tic inputs for turbulent wind and irregular wind are included, the DLCs remain quasi deterministic, as environmental conditions like wave heights
and turbulence intensities do not scatter. For example, for DLC1.2 (power production), several wind speed bins have to be used, while other envi-
ronmental conditions shall be selected together with the associated wind speed (ie, Hs = f(vs)). Although the deterministic design aims to cover
all critical events, it can be problematic, as some nonobvious fatigue driving conditions—like a wind-wave misalignment of 90◦ in combination with
wave periods close to the eigenfrequency—might not be analysed. Especially for fatigue in side-side direction being significantly influenced by the
wave induced turbine reaction, the deterministic wind focused approach might not always be conservative.

*Raw data of FINO platforms are freely available for research purposes. See www.fino-offshore.de/en/ for details.
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FIGURE 1 Number of simulation for different wind speeds using 130 000 overall simulations. Fairly homogeneous sampling due to applied bins,
but in each bin, samples are generated using Monte Carlo simulation (shading illustrates the bins)

One possibility to overcome the shortcomings of the standard approach and to take scattering conditions at least partly into account is to apply
several bins for the other environmental conditions, as it is done by Stewart.17 However, even if only 4 environmental conditions are used, this
approach results—as discussed by Stewart—in an enormous computational effort with more than 100 000 bins (number of vs bins multiplied by
number of Hs bins multiplied by … ). For the 7 probabilistic environmental conditions of this work, millions of simulations would be necessary.

Therefore, in this work, a probabilistic simulation approach based on Monte Carlo simulation (MCS) and taking statistically scattering environ-
mental conditions into account is applied. To be in accordance with the deterministic wind speed bins, the whole wind speed range is split up into
bins, before applying MCS in each bin. For N overall samples, this means:

1. Split up the wind speed range into several (M) bins of, eg, 2 m s−1. In each bin, Nbin = N∕M samples are generated to guarantee fairly
homogeneous sampling over all wind speeds.

2. For each sample, the wind speed is determined according to a truncated version of the corresponding Weibull distribution (cf Table 2), for
example, p(vs) = p(vs|0m s−1 ≤ vs < 3m s−1) for the first bin.

3. If the wind speed is below cut-in or above cut-off, idling conditions are assumed. Otherwise, an operating turbine is simulated. Start-up or
shutdown are not simulated.

4. Wind direction, turbulence intensity, wind shear exponent, and significant wave height are calculated using their statistical distributions, while
the distributions themselves depend on the wind speed.

5. Wave peak period and wave direction are determined, while their statistical distributions depend on the previously calculated wave heights
and wind directions (cf Table 2).

This bin-based approach—being an equally distributed Monte Carlo simulation (EMCS)—has the advantage that although all environmental con-
ditions are computed according to their statistical distribution, it guarantees a fairly homogeneous sampling over all wind speeds (same number
of simulations in each wind speed bin, but no completely uniform sampling, as the probability distribution of the wind speeds remains unchanged
within each wind speed bin). Hence, rarely occurring wind speeds (eg, storm events) are simulated as well. If the simulation results of each wind
speed bin are weighted using the occurrence probabilities, the EMCS still converges to the “real” value for a sufficient amount of samples. For a
better understanding, in Figure 1, the occurrence probability of wind speeds using the EMCS approach is illustrated.

In this study, only power production (at different wind speeds) and idling conditions (below cut-in and above cut-off) are simulated. This is com-
parable to DLC 1.2.4 Fault cases (eg, DLC 2.4), start-up (DLC 3.1), etc, are not taken into account, as these load cases are very controller and
design dependent making general conclusion nearly impossible. Furthermore, for highly transient conditions, like rotor stops, the widely linearized
state-of-the-art simulations models (eg, FAST or HAWC2) are only limitedly valid. Since these special events account for a significant amount of
fatigue damage, the overall lifetime damages being calculated here cannot directly be used for design purposes. Additional damage due to start-ups,
installation, etc—all having their own uncertainty—have to be added.

2.3.2 Time domain model
The time domain simulations are conducted using the aero-servo-hydro-elastic simulation framework FASTv821 of the “National Renewable Energy
Laboratory” (NREL). By including a soil model22 that applies soil-structure interaction matrices at the base node (cf Figure 2), this code is enhanced.
The required soil matrices are based on non-linear spring models. In axial direction, the Fugro-05 method, recommended in the standards,23 is used,
and in lateral direction, the model of Thieken et al24 is applied. Based on experimental comparisons25 and the numerical results of Thieken et al,24
the decisions for the soil models were made. Soil stiffnesses for operating conditions are assumed.26

The NREL 5-MW reference wind turbine27 with the OC3 monopile20 as substructure is investigated (see Figure 2). The choice of this turbines is
influenced by the scarcity of real data, especially of the turbine controller. Therefore, the use of a reference simulation turbine and its corresponding
control algorithm27 is a proper and quite common alternative. The substructure incorporates 1% critical structural damping20 being important for
the idling load cases with reduced aerodynamic damping. The simulation length is set to 10 minutes according to current standards4 and findings
of Hübler et al9 A merge of several 10-minute simulations to improve the accuracy of the fatigue damage calculation9,10 is not performed due to
increasing computing times. The “run-in” time or length of initial transients (ie,. the time that has to be removed from each time series to exclude
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FIGURE 2 Visualization of the OC3 monopile and the 5-MW turbine. Inertial frame coordinate system: x pointing downwind, y pointing to the left
when looking downwind, z pointing vertically upward opposite to gravity [Colour figure can be viewed at wileyonlinelibrary.com]
TABLE 3 Recommended “run-in” times for fatigue simulations with an OC3 monopile and for different wind speeds to achieve errors below 5%

vs in m s−1 < 3 3-5 5-7 7-9 9-11 11-13 13-15 15-17 17-19 19-21 21-23 23-25 > 25
Monopile 720 s 240 s 240 s 240 s 240 s 240 s 240 s 150 s 120 s 60 s 60 s 60 s 360 s

initial transients resulting from starting a calculation with a set of initial turbine conditions) depends, inter alia, on the wind speed. Therefore, varying
“run-in” times determined by Hübler et al9 and summarized in Table 3 are applied.

2.3.3 Fatigue assessment
The outcomes of the FAST time domain simulations are, inter alia, time series of forces and moments for each element of the monopile. Using these
time series, it is either possible to calculate damage equivalent loads or the real lifetime fatigue damage. Both quantities have different uncertainties.
Throughout this paper, the lifetime fatigue damage being a function of the stresses amplitude is used.

The welds of the monopile are exposed to higher fatigue damages, as stresses are concentrated in these hot spots (welds). Therefore, hot spot
stresses have to be calculated according to Eurocode 3, part 1-9.28 For transversal welds, the stress concentration is more critical (a detail of 71 MPa
according to Eurocode 3) than for longitudinal welds (detail of 90 MPa). Hence, here, only transversal welds are investigated, and an additional stress
concentration factor due to the size effect of the monopile wall thickness (t > 25 mm) is applied.28

In most cases, for monopiles, shear stresses (𝜏) are significantly lower than direct stresses (𝜎). Therefore, the normal stress transverse to the weld
can be approximated as follows:

𝜎⟂ = FzA +

√M2x + M2y
S , (1)

where F and M are forces according to the coordinate system in Figure 2, A is the cross section area, and S is the section modulus. This procedure is a
simplification and slightly conservative, as for each evaluated location of the monopile (cf Figure 2), always the maximum normal stress is assumed.
This means that a directional dependence in each location for different load cases is neglected (M =

√M2x + M2y ). This conservative approach is
similar to the use of the highest hot spot stresses for jackets.14

For the normal stress in all elements, a rainflow counting evaluates the stress cycles. The conservative linear damage accumulation according to
the Palmgren-Miner rule is assumed, as it is recommended by current standards. The damage for each time series (j) and each location (k) in each
wind speed bin (m) is calculated as follows:

D(k)TS,j,m =
I∑

i=1
niNi , (2)
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where ni is the number of cycles associated with the stress amplitude Δ𝜎⟂,i, Ni is the endurance (number of cycles) for the same stress amplitude,
and I is the number of considered stress amplitudes. The slope of the S-N curve is set to 3 before and to 5 after the fatigue limit. This differs slightly
from the Eurocode approach, where an additional cut-off limit at N = 108 is presumed.

The lifetime damage of each element (D(k)LT ) is the weighted sum of the damages of all time series in all wind speed bins:

D(k)LT =
M∑

m=1

J(m)∑
j=1

(
D(k)TS,j,m

Jtotal Pr(m)
J(m)

)
, (3)

where M is the number of wind speed bins, J(m) is the number of time series depending on the wind speed bin, Pr(m) is the occurrence probability
of the wind speed bin, and Jtotal is the number of total time series during the lifetime (eg, 6 × 24 × 365.25 × 20 for 20 years lifetime and 10-min
simulations).

Finally, the overall lifetime damage of the substructure (D) being considered in the following is the maximum lifetime damage of all K locations:
D = max(D(1)LT , · · ·,D(K)LT

)
. (4)

For the present monopile with its purely cylindrical shape the critical location is at mudline (cf Figure 2; locations below mudline are not considered),
and therefore, D = DmudlineLT . However, the critical location might differ between different designs. Hence, the approach of using the location with the
maximum damage is more generally valid.

3 STUDY OF CONVERGENCE
The determination of lifetime damages is a time-consuming process, which has to be reliable at the same time. Therefore, the investigation of the
number of simulations needed to enable a robust lifetime assessment in an adequate computing time is a challenge. This problem is even intensi-
fied by the use of several scattering environmental conditions, as additional uncertainties are introduced. Therefore, this section focuses on the
determination of the number of simulations needed for the EMCS approach in Section 2.3.1. A compromise between computing time and remaining
uncertainty has always to be made. However, this study is, firstly, supposed to give guidance for well-founded decisions, and secondly, to quantify
the resulting errors.

For constant environmental conditions in each wind speed bin and a jacket substructure, Zwick and Muskulus10 already showed that following
the recommendations in the standards of using six 10-minute simulations, the error in fatigue damages with a probability of occurrence of 1% (1%
error (𝜖1%); cf Equation 5) is up to 29%. As environmental conditions are set to constant values, this uncertainty is solely due to the stochastic nature
of turbulent wind and irregular waves.

In this work, more realistic environmental states, scattering in each wind speed bin, are assumed. This leads to more strongly scattering fatigue
damages in each wind speed bin, since the stochastic nature of turbulent wind and irregular waves is considered together with the scattering of
environmental conditions. The increased uncertainty of the damage values is indicated in Figure 3A. Here, the normalized fatigue damages of 10 000
simulations with wind speeds of 15 to 17 m s−1 are shown. For reasons of clarity, the horizontal axis ends at a normalized fatigue damage of 4, while
some rare cases (less than 3%) exhibit values up to 215. In the following, a study of convergence is conducted to determine the number of simulations
(N) that is necessary to achieve a certain reliability of the damage calculation. For this purpose, 10 000 simulations are conducted in each wind
speed bin. These simulations have not only different random seeds, but scattering environmental conditions as well. Subsequently, 10 000 random
combinations of Nmin = 6 up to 10 000 simulations are selected with replacement using a bootstrap (BT) procedure.29 The bootstrap approach
allows to approximate the uncertainty in the fatigue damage for different combination sizes that is introduced by using a limited number of samples.
The uncertainty in each samples (eg, due to model errors and uncertainties in the S-N curve) is not investigated, as discussed in Section 1. The
resulting distributions of mean fatigue damages for different combination sizes (normalized with the mean value of Nmax) are shown in Figure 3B for
a wind speed of 15 to 17 m s−1. It can be seen that the uncertainty reduces with increasing combination sizes. The 99th percentiles are marked, as
this value can be used to calculate the 1% error (𝜖1%):
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FIGURE 3 Illustration of the scattering and uncertainty of fatigue damages for vs = 15 − 17m s−1. Normalization with to the mean value of 10 000
simulations [Colour figure can be viewed at wileyonlinelibrary.com]
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𝜖1% =
Q99 − 𝜇Nmax

𝜇Nmax
. (5)

As the 1% error varies for different numbers of simulations, it is shown in Figure 4A as a function of N. Since the simulation error depends on the
wind speed as well, Figure 4B displays the 1% error for all wind speeds and several combination sizes.

The most conspicuous feature is the enormous amount of simulations needed to reach small simulation errors. This increases overall computing
times significantly. Therefore, the reasons for this high uncertainty are investigated in detail. Firstly, the scattering of the lifetime damage in one
wind speed bin is analysed. For the wind speed of 15 to 17 m s−1, for example, 95% of the fatigue damages are in the range of zero to 2.65 times
the mean value (cf Figure 3A). However, there are some rare values exceeding the mean by a factor of 200 and more. Therefore, it is important to
know the reason for these outliers, as they dominate the convergence behaviour, lead to high uncertainties, and influence the overall fatigue damage
significantly. The main physical reason for these high damages is resonance. Monopile substructures are heavily influenced by wave loads. If waves
excite the eigenfrequency of a wind turbine and the damping is low, high damage values occur. The first eigenfrequency of the monopile is about
0.25 Hz.20 In general, wave peak frequencies are lower with 0.1 to 0.2 Hz (cf Table 1). However, as the environmental conditions scatter, higher wave
peak frequencies occasionally occur as well. Figure 5A shows the distribution of the wave peak periods for vs = 15-17ms−1. The rare occurrence
of waves with Tp ≈ 4s (0.25 Hz) is obvious. Figure 5B illustrates that these rare cases of resonance lead to the outliers of the fatigue damage, as
the highest damages occur for Tp ≈ 4s. This analysis makes clear that this effect is absent in case of constant environmental conditions. In this
study, the relatively low design value for the structural damping of 1% is used.20 However, damping values are fairly uncertain, especially the soil
damping. Various standards recommend values between 1% and 5%,30 and measured overall damping values during idling conditions can be about
2%.31 Hence, higher damping values are realistic as well. In this case, resonance effects would be much less pronounced. Some other reasons for
outlier—not being further discussed, as less significant than the wave resonance and since a detailed discussion of all reasons is out of the scope of
this work—are sea states with high waves or “extreme” turbulence, wind shear at lower wind speeds, or the stochastic nature of turbulent wind and
irregular waves.10

After having clarified this main feature, another aspect shall be addressed. The uncertainty reduces with higher wind speeds (see Figure 4B).
Wave peak periods increase with the wind speed. Therefore, the probability of wave periods close to the eigenfrequency of the structure decreases
significantly, and the probability of resonance effects diminishes. In addition, but less significant, up to rated wind speed, wind loads increase leading
to reduced uncertainties for higher wind speeds as well.

FIGURE 4 Lifetime damage 1% error (𝜖1%) for different wind speeds and numbers of simulations per wind speed evaluated using 10 000 bootstrap
samples (with replacement) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Investigation of the high uncertainties in fatigue damages by analysing resonance effects (exemplary for vs = 15 − 17m s−1)
[Colour figure can be viewed at wileyonlinelibrary.com]
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Finally, it is of interest to know how many simulations per wind speed bin are needed to achieve an “acceptable” error (eg, a 1% error of 25%).
Figure 4A indicates that for vs = 15-17 m s−1, about 2500 simulations are needed. However, the uncertainties for different wind speed bins vary
(cf Figure 4B), and according to Equation 3, the overall lifetime damage consists of the damages of all time series and wind speed bins. If the lifetime
damages of all wind speed bins are summed up, a 1% error of 25% is achieved for about 1000 simulations per bin.

This result leads to 2 implications. Firstly, the assumption of constant environmental conditions might lead to unreliable results, as the rare cases
of high loads (eg, resonance cases) are neglected, which might lead to nonconservative designs. It cannot be guaranteed that the high scattering
of damage values is covered sufficiently by current safety factors, especially because resonance cases are not considered by the DLCs defined in
current standards. Secondly, as an enormous amount of simulations is needed, reduction techniques are essential. That is why the next section gives
an insight into the distribution of fatigue damages over wind speed, which is subsequently used in Section 5 to develop such reduction techniques.

4 DISTRIBUTION OF FATIGUE DAMAGES
The convergence and uncertainty studies in the last section show that about 1000 simulations per bin are required. That is why a reduction of the
number of simulations by preserving a constant level of accuracy at the same time is valuable. To be able to develop well-founded reduction schemes,
a better knowledge of the lifetime damage is helpful. If conditions leading to a high proportion of the overall damage and those resulting in nearly no
damage are known, it is possible to concentrate sampling on regions of the design space (here, only the wind speed design space) resulting in high
damages to reduce the number of required samples. Therefore, in this section, 2 questions concerning the fatigue damage are answered:

- Do idling load cases (below cut-in and above cut-off) have significant influence on the fatigue lifetime?
- To which extent is the fatigue damage correlated to the wind speed?
The first question aims at a possible exclusion of (or a special focus on) idling load cases. The second one targets identifying the most relevant

wind speeds for well-founded (importance) sampling.
To address these 2 problem statements, the lifetime damage for each wind speed bin is calculated separately. Physically, this means that lifetime

damages are calculated, while it is assumed that only a single wind speed (bin) occurs for the whole lifetime. Mathematically, the mean fatigue
damage for each wind speed bin is calculated separately using Equation 3 with one bin (M = 1), 10 000 simulations in this bin (J(m)=10 000) and
a probability of this bin of one (Pr(m) = 1). The results are presented in Figure 6A. It is apparent that the highest fatigue damages occur below
cut-in and above cut-out (values > 1 are possible, as the occurrence probability is not taken into account). In both cases, the turbine is idling and
aerodynamic damping is reduced. Similar results of a significant amount of damage for idling conditions was shown, for example, by Aasen et al.32
However, it has to be mentioned that, as discussed before, higher damping values (eg, due to a significant amount of soil damping) would reduce the
damage proportion being produced below cut-in. Furthermore, many real control algorithms start to pitch in for wind speeds below cut-in. In this
case, the aerodynamic damping is increased and low wind speed fatigue becomes less significant.

So far, the probability of occurrence of each wind speed bin is set to one (Pr(m) = 1). This helps to assess the damage caused by single events or
time series (eg, storm events with vs > 25 m s−1 lead to high damages). However, Figure 6A does not give any information on the contribution of
each wind speed bin to the overall lifetime damage (eg, storm events are so rare that their contribution to the lifetime damage is small). To take the
probability of occurrence of each wind speed bin into account, Figure 6B shows the weighted lifetime damage, where Pr(m) = f(vs) < 1.

The damage distribution (weighted lifetime damage versus wind speed bins for the most critical section; D(m)) in Figure 6B helps to answer the 2
questions concerning the relevance of idling load cases and the D-vs correlation. Firstly, it is apparent that, although idling conditions are relatively
rare (Pr(vs < 3m s−1) + Pr(vs > 25m s−1) < 0.03), idling load cases still produce significant damage (cf Figure 6A). The main reason is a reduced
aerodynamic damping for idling conditions. Still, for low wind speeds, the mean wave height is only about 1 m (cf Hübler et al9 or Table 1), and there-
fore, the energy input is quite low. However, due to the scattering wave heights, for those load cases, values above 2 m are possible as well leading to
a significant amount of energy input, which is marginally damped. Secondly, low wind speeds (vs < vrated) have a significant influence on the overall
damage (here, nearly 40 %). For small wind speeds, the scattering of the wave peak period is higher and more resonance cases occur.9 For high wind

FIGURE 6 Mean fatigue damage for all wind speed bins based on 10 000 simulations per bin
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speeds, the increase of aerodynamic loads—slightly visible in Figure 6A—is totally compensated by decreasing occurrence probabilities. Therefore,
wind speeds above 18 m s−1 do not contribute significantly to the overall damage. Thus, it can be deduced that there is a significant, but non-linear
relationship between wind speed and fatigue damages. In accordance with Figure 6B, high wind speeds are less relevant due to their low occurrence
probabilities. Wind speeds around rated wind speed result in the highest fatigue damages. Low wind speeds—especially below cut-in—are still quite
relevant. This specific distribution of damages is not generally valid but mainly accounts for the considered site and substructure. Still, maximum
fatigue damages around rated wind speed are typical. Anyhow, the reduction concepts in the next section can be used independently of the precise
shape of the damage distribution.

The sum of the weighted lifetime damages over all wind speed bins in Figure 6B is below one (D ≈ 0.2). This can be explained by several facts.
Firstly and most important, the design of the OC3 monopile was not conducted for this specific site. For example, the turbulence intensity at
the FINO3 site9 is significantly lower than the recommended value in standards. Secondly, the absence of marine growth reduces fatigue, as
hydrodynamic loads are decreased. Thirdly, for the damage calculation, no Goodman correction is applied. The usage of a Goodman correction
would increase fatigue, as fatigue limits are reduced for cycles with nonzero mean values. And lastly, relatively long “run-in” times are used
(cf Table 3). For too short “run-in” times, fatigue damages are overestimated, as not all initial transients are damped out and artificial damage
is introduced.9

5 REDUCTION STUDY
With the gained knowledge of the lifetime damage distribution, it is possible to conduct a preliminary assessment of several concepts to decrease the
number of simulations using efficient sampling. At the same time, the simulation error should not be increased, which differs from other approaches
that introduce additional errors by their approximations (meta models) of the fatigue damage.8,10,16 It has to be mentioned that further in-depth
investigations of these concepts are still necessary and forthcoming, as here only one site and one substructure are investigated. Three different
concepts are studied in addition to the equally distributed bin-based Monte Carlo simulation (EMCS):

1. Pure Monte Carlo simulation (PMCS): Samples are generated according to probability distributions (cf Table 2). No bins are applied.
2. Damage distribution–based Monte Carlo simulation (DMCS): The number of samples in each wind speed bin is in accordance with the damage

distribution (cf Figure 6B). In each bin, MCS—based on (truncated versions of) the probability distributions in Table 2—is applied.
3. Reduced bin Monte Carlo simulation (RBMCS): Samples are equally distributed over the wind speed bins, but several bins with similar general

behaviour are merged. Again, in each bin, MCS—based on (truncated versions of) the probability distributions in Table 2—is applied.
For all these concepts, only the first step in Section 2.3.1 (the binning) is changed. The realistic wind speed dependent sampling of the other envi-

ronmental conditions remains unchanged. All concepts have their advantages and shortcomings that are evaluated in the following before applying
them to the simulation results.

5.1 Reduction concepts
5.1.1 Pure Monte Carlo simulation
The idea of PMCS is that some wind speeds rarely occur. The question is: Why should we aim at a homogeneous sampling as strived by EMCS?
Why should the same amount of simulations for these rarely happening load cases (wind speed bins) be conducted as for others? If it is sampled
according to the probability distribution of the wind speed (PMCS), more results of frequently occurring load cases are available, which makes the
approximation of these conditions more reliable. PMCS is also used by Häfele et al8 and is similar to the “probability sorting method” of Stewart,17
but does not rely on previously defined bins, and includes some random effects.

The great advantage of this approach is that the wind speed distribution is generally known, and as the EMCS, it convergences for a sufficient
number of samples to the “true” value. On the downside, low occurrence probabilities do not mean low percental damages, eg, vs < 3 m s−1. There-
fore, PMCS reduces uncertainties for wind speeds around rated wind speed. However, it might lead to a really uncertain approximation of the not
negligible damages produced by rarely occurring wind speeds.

5.1.2 Damage distribution–based Monte Carlo simulation
DMCS aims at conducting many simulations for those load cases leading to high damages by applying the damage distribution (cf Figure 6B; D(m))
for the sampling (comparable to importance sampling). For example, if 20% of the damage is produced by one bin, 20% of all samples should be in
this bin. Theoretically, DMCS leads to a far more accurate approximation, as more data are available where it has significant influence. However, the
damage distribution is generally not known. Hence, in a first step, an approximated damage distribution (prior function) has to be determined by
conducting, for example, Napprox = 20 simulations in all wind speed bins (ie, 20 × 13 = 260 EMCS cases). However, an approximation based on
only 20 simulations per bin is not precise enough (5% error of about 100% depending on the wind speed). Therefore, Bayesian statistics is applied
to update the initially approximated damage distribution after each new sample. The procedure is the following:
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FIGURE 7 Tree diagram: example to illustrate damage distribution–based Monte Carlo simulation and its possible bias [Colour figure can be
viewed at wileyonlinelibrary.com]

1. Conduct Napprox × M simulations (eg,260 EMCS).
2. Calculate the prior function (ie, initial damage distribution; D(m)) being the weighted mean damage of Napprox = 20 cases in each bin.
3. The next sample (j + 1) is generated according to the damage distribution (ie, prior function). This means that it is sampled from the bin (mj + 1)

where quotient of the number of samples and the number of samples required by the prior is minimal: mj+1 = arg min( J(m)
∑Mm=1 D(m)

D(m)
∑Mm=1 J(m)

).
4. Calculate the damage of the sample (D(k)TS,j+1,mj+1 ) and update the damage distribution using Equations 3 and 4, as D(mj + 1) has changed.
5. Continue with steps 3 and 4 until the desired number of samples (eg, 1000) is generated.
6. Calculate the overall lifetime damage (D) using all generated samples.
For an illustration of the DMCS procedure, Figure 7—showing a simple example—can be used: There are 2 boxes (wind speed bins) with 2 coins

each (2 possible simulation outcomes). The values of the coins (fatigue damages of the simulations (D(k)TS,j,m)) in the first box are 1 and 9 (9 represents an
outlier, for example, due to wave resonance), and 3 and 3 in the second box. The occurrence probability of the boxes are Pr(1) = 0.3 and Pr(2) = 0.7.
We are interested in weighted mean value (D). For infinite sampling (see upper part of Figure 7), the mean values of the 2 boxes will converge to
D(1) = 5 and D(2) = 3, and therefore, the weighted mean value is D = 3.6. Now, not infinite sampling is applied, but only 3 samples are used,
and these samples are generated according to the DMCS procedure (see lower part of Figure 7). Hence, in step 1, Napprox × M samples are needed.
There are 2 boxes (M = 2,) and we decide to use Napprox = 1. This means that one sample in each box is drawn (initial prior determination). For
this simple example, there are only 2 possible outcomes for these 2 samples (branch 1/2 or branch 3/4). In step 2, the prior function is calculated.
For probability branch 3/4, it is D = {9 × 0.3,3 × 0.7} = {2.7,2.1}. Step 3 requires that the next (3rd draw) sample is generated according to
the damage distribution. Hence, mj+1 = arg min( J(m)

∑Mm=1 D(m)
D(m)

∑Mm=1 J(m)

)
= arg min({ 1×4.8

2.7×2 ,
1×4.8
2.1×2

})
= arg min ({0.84,1.14}) = 1. This means that, for branch

3/4, the 3rd draw is taken from box 1. Possible outcomes of this 3rd draw are 9 and 1 (branches 3 and 4, respectively). Assuming that a 1 was drawn
(branch 4), the damage distribution is now updated in step 4: D = {0.5 × (9 + 1) × 0.3,3 × 0.7} = {1.5,2.1}. As we reached the desired number of
samples, a repetition of steps 3 and 4 is not necessary. Still, a 4th draw (in branch 4) would be taken from box 2, as mj+1 = arg min({ 2×3.6

1.5×3 ,
1×3.6
1.5×3

})
=

arg min ({1.6,0.8}) = 2. In step 6, D is calculated. For branch 4, it follows: D = 5 × 0.3 + 3 × 0.7 = 3.6. The other branches and possible
compensation effects of biased results are discussed in Section 5.2.2.

The advantage of applying Bayesian statistics to update the approximated damage distribution is that the initial approximation can be fairly rough.
Therefore, step 1 is not very time-consuming. However, there are 2 drawbacks. Firstly, a significantly biased estimation of the damage distribution
can lead to biased results (see Section 5.2.2). Secondly, the postprocessing of each simulation has to be conducted directly in order to update the
damage distribution. This is problematic, if parallelized simulations are used.

5.1.3 Reduced bin Monte Carlo simulation
RBMCS does not rely on an approximated damage distribution but reduces the number of bins, as also conducted by Stewart.17 However, while
Stewart increases bin sizes equally, here, the idea is to merge bins with similar physical and generalized damage behaviour. Hence, for the investigated
monopile, with its wave and wind dominated behaviour, the division in wind speed bins can follow more or less the controller actions (idling, no pitch,
around rated, pitching, idling). An additional focus is on low wind speeds with more pronounced wave-resonance effects. Thence, the wind speed
bins are the following: <3 m s−1, 3 to 7 m s−1, 7 to 11 m s−1, 11 to 13 m s−1, 15 to 25 m s−1, and >25 m s−1.

Therefore, RBMCS consists of fewer bins with more cases in each bin. As in each bin MCS is conducted, the RBMCS also converges to the “cor-
rect” value. Since there are more cases in bins with similar behaviour, the uncertainty in each bin can be reduced. Nevertheless, a challenge is the
determination of the optimal combination of merged bins.
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5.2 Concept evaluations
To evaluate the different concepts, the lifetime fatigue damage (D) is calculated according to Section 2.3.3. For this calculation, Nhigh = 10000 or
Nlow = 1000 overall samples are generated using the different sampling concepts. Two different number of cases are chosen, as the number of
simulations influences the performance of the concepts. To estimate the statistical variation in D, NBT = 10,000 random combinations of the Nhigh
or Nlow simulated samples are selected with replacement (bootstrapping). Finally, the normalized lifetime damage distribution (D̂) is computed. For
this normalization, ideally the “real” lifetime damage should be used. As all concepts use MCS in each bin and the bins are weighted using their
occurrence probability, for a sufficient number of samples, all concepts converge to the “real” value. Here, all 13 × Nmax = 130,000 simulations
of the EMCS concept are used as reference. For this number of samples, the convergence is sufficient with errors at the 5th and 95th percentile
(determined using bootstrapping) of about 5%:

D̂ =
DN,conceptDNmax ,EMCS

. (6)

For the 3 concepts and the standard case (EMCS), Tables 4 and 5 present the mean value of D̂, the coefficient of variation, and the errors of D̂ at
the 95th and 99th percentile (cf Equation 5). The coefficient of variance is introduced, as for a reduced (biased) mean value, the 95th and 99th
percentile are closer to the overall mean by definition. Hence, the errors at high percentile values have less informative value. For DMCS, the number
of simulations used for the approximation of the damage distribution (Napprox × M) is given as well.

5.2.1 Evaluation PMCS
The results in Tables 4 and 5 show that PMCS does not have any advantages over the EMCS approach. In this study, for small sample sizes (Table 5),
PMCS performs slightly better than EMCS, whereas for more simulations (Table 4), EMCS has lower uncertainties than PMCS. In both cases, the dif-
ferences are negligible. The explanation for the lack of improvement is that PMCS reduces uncertainties for wind speeds around rated but increases
errors for rarely occurring wind speeds. Both effects cancel each other out.

5.2.2 Evaluation DMCS
On the one hand, DMCS reduces the 1% error by more than 50% compared with the EMCS concept (cf Table 4). The reduction is even more pro-
nounced, if less cases are used (>80%). On the other hand, DMCS highly depends on the estimation of the damage distribution. Hence, on the
downside, the reduction in uncertainty can come along with a biased mean value (see Tables 4 and 5). As discussed before, having a biased mean
leads to less informative values of the errors at percentiles, but the coefficient of variation can still clarify that DMCS actually reduces the uncer-
tainty. Although the uncertainty is reduced, the mean value is not accurately determined. To understand the reason for this bias, the short example,
illustrated in Figure 7, is helpful. In Section 5.1.2, the general procedure of DMCS is discussed by exemplary using branch 4. To understand the pos-
sible bias of DMCS, all branches (possible outcomes of 3 draws) are discussed. For branch 3/4, the selected value of box 1 is a “high outlier,” as it

TABLE 4 Errors and uncertainties in fatigue damage using different concepts andNhigh = 10000 simulations in total (recommended concept in bold)
EMCS PMCS DMCS RBMCS

Cases for approximation - - 20 × 13 -
Normalized mean 1.00 1.00 0.95 1.00
Coefficient of variation 0.110 0.111 0.071 0.086
Error at the 95th percentile in % 19.77 20.24 6.40 15.15
Error at the 99th percentile in % 30.41 32.25 12.90 22.18

Abbreviations: DMCS, damage distribution–based Monte Carlo simulation; EMCS, equally dis-tributed MCS; PMCS, pure MCS; RBMCS, reduced bin MCS.

TABLE 5 Errors and uncertainties in fatigue damage using different concepts andNlow = 1000 simulations in total (recommended concept in bold)
EMCS PMCS DMCS RBMCS

Cases for approximation - - 20 × 13 -
Normalized mean 1.00 1.00 0.80 1.00
Coefficient of variation 0.350 0.346 0.194 0.271
Error at the 95th percentile in % 61.30 60.51 7.71 51.70
Error at the 99th percentile in % 131.25 129.99 25.33 89.30

Abbreviations: DMCS, damage distribution–based Monte Carlo simulation; EMCS, equallydistributed MCS; PMCS, pure MCS; RBMCS, reduced bin MCS.

5.1. Paper D 110



HÜBLER ET AL. 1103

significantly exceeds the mean value of this box (9 > 5). Due to this overestimation of the outcomes of box 1, further sampling is concentrated on
this box, ie, the 3rd draw is taken from it. If another “high outlier” is drawn (branch 3), the weighted mean value remains biased (Dbranch 3 = 4.8). How-
ever, if the 3rd draw is a low value (branch 4), the outlier is compensated and the bias is reduced or even removed (Dbranch4 = 3.6). More problematic
are “low outliers” for the initial prior determination (branch 1/2). Here, due to the low value, further sampling is concentrated on other boxes (wind
speed bins) and a compensation is nearly not possible (Dbranch 1 = Dbranch 2 = 2.4). Combining all possible outcomes (branches), the weighted mean
value is biased (DDMCS = 3.3 < 3.6 = Dreal).

Having this simple example in mind, the bias in DMCS becomes clear. For high numbers of overall simulations, the compensation works better and
the bias is less significant and diminishes for an infinite number of cases. Therefore, the concept still performs well. However, for fewer overall cases,
it is not suitable, as the approximation becomes significantly biased. It should be noted that the more pronounced the outliers are, as it is the case
for the monopile, the more the bias increases. It can be assumed that for substructures with less pronounced outliers (eg, wind dominated jackets),
DMCS is less biased.

5.2.3 Evaluation RBMCS
RBMCS does not need an a priori approximation of the damage distribution. Therefore, its performance is relatively independent of the number of
overall simulations and it is unbiased. For small numbers of cases, it is recommended to use RBMCS, although the errors are significantly higher than
for DMCS (see Table 5). However, due to the significant bias of DMCS in this case, RBMCS is the best alternative. One challenge is the determination
of the best combination of merged bins that is partly based on experience. An interesting observation is that RBMCS outperforms PMCS, whereas
Stewart17 concluded that his “probability sorting method” (roughly comparable with PMCS) performs better than his bin reduction, which has cer-
tain similarities with RBMCS. One reason for this difference is the fact that the current RBMCS does not increase bin sizes purely systematically,
but based on physical damage behaviour.

5.2.4 Summary concept evaluations
After all, it has to be pointed out that a reduction of the errors in fatigue damage of more than 30% compared to EMCS and PMCS is possible
without any extra work by applying efficient sampling. According to this study, DMCS is the best choice, if many simulations are conducted. For fewer
simulations, the approximation of the damage distributions gets significantly biased, which finally results in biased lifetime damages. Therefore, in
this case, RBMCS being the most stable one is recommended. Still, the error reduction of RBMCS is less pronounced, and it needs expert knowledge
of the user to define the merged bins.

For both concepts, optimizations concerning the bin selection (RBMCS) or the number of simulations for the prior function (DMCS) are possible.
For this study, for both parameters, several values were tested, and the current settings reduce the fatigue damage errors significantly. However,
using optimized settings, both concepts might be even more beneficial.

6 BENEFITS AND LIMITATIONS
At least for steel parts of offshore wind turbines, the fatigue damage lifetime is of major importance. Therefore, this study focuses on an effi-
cient and accurate way to determine fatigue lifetimes for realistic, scattering environmental conditions. Exemplary, a monopile substructure was
investigated. Different types of substructures or varying designs were not taken into account being the major limitation of this work, as a gen-
eral validity of the proposed methodology was not tested so far. Furthermore, as discussed before, a quite low structural damping is assumed. This
leads to increased fatigue damages in idling conditions, where aerodynamic damping is missing. Although different designs and damping values
might change the damage distribution and turbine behaviour, the authors expect the reduction methods still being valid due to their application
independent approaches.

To overcome the state-of-the-art simplification of constant environmental conditions and to simulate more realistic ones, statistical distributions
for 7 scattering environmental conditions, derived from real data, were applied. Only other, less significant conditions were set constant. Taking
into account these scattering environmental states, an assessment of the distribution of fatigue damage over all wind speeds including the result-
ing uncertainty due to finite sampling was carried out. Other types of uncertainty like the error in Miner's rule are not taken into account, although
both types can have the same order of magnitude of about 50% error at the 95th percentile.33 It was shown that the use of scattering environmen-
tal conditions is essential. The uncertainty in fatigue damages is much higher than predicted by deterministic approaches.10 Therefore, the use of
deterministic damage calculations and state-of-the-art safety factors might be nonconservative, as safety factors are not calibrated for these high
uncertainties. Only some wind speeds contribute significantly to the overall lifetime damage. This fact enables a reduction of the needed simula-
tions. It has to be pointed out that this study is limited to operating and idling conditions. Start-up or maintenance cases are excluded, for example,
as it is discussed by Jonkman and Buhl.34 Still, so far even idling conditions are rarely taken into account in academia.10,14

Based on the damage distribution, several concepts of reducing the amount of simulations and maintaining the same uncertainty were developed.
It was proved that it is possible to reduce the error by more than 30% without adding an additional approximation error (being the case for meta
model-based approaches) or todecrease the numberof simulations by more than30% and keepingthe errorconstant. Amore detailed analysis of the
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influence of concept parameters, eg, the number of simulations used for the approximation of the prior function, is still forthcoming. Furthermore,
the great potential of the application of Bayesian statistics to reduce the uncertainty was shown (cf Tables 4 and 5). However, Bayesian updated
damage distributions can lead to significantly biased results, and their use is restricted, if parallel computing is utilized. Therefore, an intensive study
of Bayesian updating could be valuable. For example, an update of the damage distribution after several samples—so far, it is updated after each new
sample—is a possibility. A consideration of not only the mean damage but also the variance of the damage in each wind speed bin could be another
starting point. Moreover, the general validity for different substructures should be checked, as up to now, the results are exemplary and general
conclusions concerning the number of simulations needed to capture fatigue damage are only restrictedly possible.

7 CONCLUSION
The main objective of this study is to answer the following 2 questions concerning the fatigue damage calculation stated in the introduction: How
high is the uncertainty of fatigue damages due to finite sampling for monopiles, if realistic, scattering environmental conditions in all wind speed
bins are assumed? To what extent is it possible to reduce the number of time domain simulations without adding additional simulation errors? For
the first one, it was shown that realistic environmental conditions cannot be ignored, as calculation errors of fatigue damages are much higher than
expected. Concerning the second one, this work demonstrates that, although a case reduction is not straightforward, the error in fatigue lifetime
calculation occurring with a probability of 1% can be reduced by more than 30% when efficient sampling techniques are applied.

Further work should especially address the general validity of this work by investigating the effect of other substructures, designs, and realistic
conditions of other offshore sites. Moreover, the combination of the presented reduction concepts with meta models or other simplification tech-
niques (eg, aligned wind and wave direction) is a valuable starting point for a further reduction of the fatigue damage computing time. Lastly, an
interesting concept is the use of correlations with environmental conditions. The example of the wave peak period shows that specific environmen-
tal conditions lead to high fatigue damages. If unfavourable conditions can be identified, a weighting in the sampling using stochastic importance
sampling could be beneficial. Lastly, this work only addresses fatigue damages due to idling and operating conditions. Since start-ups can lead to a
significant amount of damage, a probabilistic analysis and an uncertainty assessment of starting and stopping turbines could be valuable.
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5.2 Validation of improved sampling concepts for offshore wind
turbine fatigue design

5.2.1 Research context
In the previous section, it was shown that the long-term extrapolation of fatigue damages of
OWT substructures is a fairly uncertain process due to finite sampling. There are various
concepts that try to enable accurate approximations of lifetime damages in combination
with moderate computing times, but all of them have their shortcomings. Therefore, two
new concepts were introduced. Both perform well for the presented setting. However, a
general validity of the concepts for different substructures, simulation codes, wind turbine
sites, sample sizes, etc. has not been proved yet. Furthermore, all recent research approaches
focus on numerical data. This is not surprising, as measurement data is typically not
available during the design phase. Nevertheless, numerical data can include purely numerical
anomalies. Moreover, not all sources of uncertainty that are present in reality are covered
by state-of-the-art simulations (e.g. breaking waves). In addition, for measurement data,
normally, extensive data sets of up to several years are available and enable analyses of the
convergence of the approaches for large sample sizes. That is why the use of measurement
data - being treated like “realistic simulation data” - is a promising approach to prove the
general applicability of the two concepts.

5.2.2 Methods
To investigate the validity of the two previously developed sampling concepts for long-term
extrapolation, first, a test function that mimics real fatigue behaviour is investigated. Second,
real offshore measurement data is used. The measurement data is treated like “realistic
simulation data”. This has the advantage that numerical effects are excluded and an extensive
validation data set of more than 120 000 samples for two structures is available. Strain gauge
data at the transition piece of two OWTs sampled for several years and provided by the
Belgian partners is utilised here.
Strain gauge data is post-processed to calculate short-term damages for all 10-minute mea-
surement intervals (cf. Fig. 1-10). Then, the uncertainty due to finite sampling and reasons
for it are analysed. Subsequent, the convergence of several standard and both advanced
sampling algorithms - RBMCS and DMCS - for increasing sample sizes is investigated. Since
a test function, measurement and simulation data are used and turbines, substructures, and
site conditions are different, it is possible to draw general conclusions, i.e. to validate the
sampling concepts.

5.2.3 Results
Using a test function and strain measurements of offshore wind turbines and treating
them as “realistic simulation data”, it is possible to validate the previously developed
fatigue uncertainty reducing sampling techniques. The performance of both concepts is
relatively independent of the system (turbine, substructure, site, etc.) and of simulation
code specifications. While RBMCS is also independent of the sample size (academic and
industry approaches), the performance of DMCS is influenced by the number of samples.
The more samples are used, the more pronounced is the benefit of DMCS. This is especially
relevant for industry applications with classically large sample sizes.
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RBMCS reduces 1 % errors12 by about 10-20 % compared to MCS and DMCS achieves
reductions of up to 50 % compared to MCS. A reduction of the 1 % error by 25 % is
synonymous with halving the required samples while keeping the uncertainty constant.
Regarding uncertainty due to finite sampling in general, it is shown that it is high (in the
same order of magnitude as other important types of uncertainty like the model uncertainty
of Miner’s rule), that it depends significantly on the substructure and turbine, and that it
is considerably influenced by controller actions. Hence, although quantitative conclusions
concerning the uncertainty are difficult, commonly applied approaches in academia should
perhaps be reconsidered.

5.2.4 Outlook
In this section, measurement data being treated as “realistic simulation data” is used to
determine long-term damages. Nevertheless, extrapolation methods are still intended to
be used for simulation data, since it is assumed that the designer can decide how many
samples are needed in each bin. If long-term extrapolations are to be based on measurements
only, different extrapolation techniques have to be used. For measurement data, limited
data is normally not problematic (thousands of 10-minute measurements in one year), but
representative data is challenging (e.g. rare occurrence of storm events). Such a measurement-
based lifetime estimation can be a valuable addition to simulations, as, for example, proposed
by the current lifetime extension standard [39]. Therefore, long-term extrapolation techniques
for measurement-based lifetime estimations are an important field of future research. First
approaches can be found in Hübler et al. [78] or Loraux and Brühwiler [108].

5.2.5 Paper E: Validation of improved sampling concepts for offshore wind
turbine fatigue design

The following paper is published in Energies (https://doi.org/10.3390/en12040603), Volume
12 (2019), article number 603. The main work was done by the author of this thesis. All
other authors contributed with advisory and supporting work. Special thanks go to the
partners from OWI-lab (Offshore Wind Infrastructure Application Lab), Vrije Universiteit
Brussel for providing the raw data.

12The 1 % error is a measure of the uncertainty and is defined as the deviation of the lifetime at the 1st

percentile to the “real”, reference lifetime. Here, the reference lifetime is calculated using the full measured
data set of three years. For more information, it is referred to Section 5.2.5.
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Abstract: Fatigue damage is a design-driving phenomenon for substructures of offshore wind
turbines. However, fatigue design based on numerical simulations is quite uncertain. One main
reason for this uncertainty is scattering offshore conditions combined with a limited number of
simulations (samples). According to current standards, environmental conditions are sampled using
a deterministic grid of the most important environmental conditions (e.g., wind speed and direction,
significant wave height, and wave period). Recently, there has been some effort to reduce the inherent
uncertainty of damage calculations due to limited data by applying other sampling concepts. Still,
the investigation of this uncertainty and of methods to reduce it is a subject of ongoing research.
In this work, two improved sampling concepts—previously proposed by the authors and reducing
the uncertainty due to limited sampling—are validated. The use of strain measurement data enables
a realistic estimate of the inherent uncertainty due to limited samples, as numerical effects, etc., are
excluded. Furthermore, an extensive data set of three years of data of two turbines of the Belgian wind
farm Northwind is available. It is demonstrated that two previously developed sampling methods
are generally valid. For a broad range of model types (i.e., input dimensions as well as degrees of
non-linearity), they outperform standard sampling concepts such as deterministic grid sampling or
Monte Carlo sampling. Hence, they can reduce the uncertainty while keeping the sampling effort
constant, or vice versa.

Keywords: offshore wind energy; fatigue; uncertainty; monitoring; strain measurements;
sampling concepts

1. Introduction

The share of offshore wind energy in overall energy production is growing rapidly. Even though
the first subsidy-free offshore wind auction bids have been made recently, costs are still relatively
high compared to other renewable energies such as onshore wind energy [1]. On the one hand,
the waiver of subsidies is provoked by the expected increase in electricity prices. On the other hand,
it is forecast that the levelized cost of energy (LCOE) will decrease [2]. Hence, to enable subsidy-free
offshore wind energy, optimizations of the whole structure are needed. Here, the improvement of
the substructure—in most cases monopile substructures/foundations—is an important possibility to
reduce costs.

For substructures made of steel, in most cases, the fatigue lifetime is decisive for the design.
To calculate fatigue damages of substructures in the design phase, numerous time-domain simulations
are needed. Commonly, these simulations are conducted with state-of-the-art aero-hydro-servo-elastic
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codes such as FAST [3] or HAWC2 [4]. Current standards [5] define that these simulations should
mirror changing environmental conditions (EC) at the precise site of a wind turbine. Commonly,
this is achieved by sampling EC using a deterministic grid. In academia, mostly, one-dimensional
grids (only wind speed) are applied, leading to a “quasi-deterministic” fatigue damage calculation,
which is roughly done as follows [6–8]: The range of wind speeds in power production (e.g., 3 m s−1 to
25 m s−1) is split up into steps (so-called bins) of 2 m s−1 or less. All other EC are set to constant values
within these wind speed bins. Turbulent wind and irregular waves are considered in a stochastic
process in each bin by conducting simulations of an overall length of one hour (normally divided into
six 10 min simulations) per bin, as it is proposed by standards [5]. In industry and some academic
studies [9–11], the same approach but with finer binning and bins for more EC (e.g., wind direction,
wave height and period) is used to increase the accuracy and to reduce the uncertainty at the cost of
higher computing times [9].

For the simplified one-dimensional academic approach, it was shown by Müller and Cheng [12]
that it cannot reproduce the scattering observed in offshore fatigue measurements. Moreover, it leads
to highly uncertain approximations of the lifetime damage due to a very limited number of samples [6].
In the present contribution, we only investigate the uncertainty introduced by so-called finite sampling
(i.e., limited cases/samples) and the selection of these samples during the design phase. Other sources
of uncertainty, for example the error in Miner’s rule or the uncertainty of stress concentration
factors, are not the topic of this investigation. The multi-dimensional grid-based approach—used in
industry—leads to more accurate approximations of the long-term fatigue damage. However, it was
repeatedly shown that it is numerically inefficient [10,11]. Therefore, either meta models [9,13,14],
replacing time-domain simulations and reducing the computing time of each model evaluation
significantly, are applied or alternative sampling concepts, improving the computational efficiency by
reducing the number of model evaluations while conserving the same level of uncertainty, are needed.
In this work, the latter approach is investigated.

Two different types of improved sampling concepts can be differentiated. First, there are those
approaches that still consider a deterministic grid, but only use the most important grid points.
Stieng and Muskulus [15,16] determine the most important grid points in a computationally expansive
preliminary study using a full grid. Velarde and Bachynski [17] estimate the relevant grid points by
applying a simple sea state-damage correlation. While Stewart [9] assumes in his “probability sorting
method” that “important” is equivalent to “probable”.

The second type of improved sampling concepts are probabilistic approaches taking scattering EC
into account, which makes simulations more realistic and deals with the deviations to measurement
results [12]. The most frequently applied probabilistic sampling concept is Monte Carlo sampling
(MCS). In the context of fatigue design of offshore wind turbine substructures, MCS has recently
been investigated by various authors [10,11,16,18,19]. On the one hand, probabilistic approaches can
reproduce measurement results more precisely [20] and MCS is more suitable for high-dimensional
input spaces [10,11]. On the other hand, fatigue damage approximations using probabilistic approaches
and limited samples are quite uncertain [18,19] and MCS becomes inefficient (i.e., converges slowly)
for highly non-linear model functions [10]. Therefore, to limit computing times while uncertainties are
kept on an adequate level, improved sampling techniques are needed. For example, Hübler et al. [18]
and Stieng and Muskulus [16] concentrate their sampling on the input subspace leading to high
damages or Müller and Cheng [21] apply quasi-random sampling based on Sobol’ sequences.

One shortcoming of all previously mentioned studies is the fact that they are all based on pure
simulation results. Although the use of simulated data for design purposes is not surprising, since
measurement data is not available at this stage, still, the general validity of these numerical findings is
not warranted. Are these sampling methods valid independent of the considered system (i.e., turbine,
substructure, site, etc.), used simulation code, dimension of the input space, etc.? This is the reason
the objective of this study is to validate two sampling concepts that were previously developed by
Hübler et al. [18]. In this context, “validation” does not mean that their benefit is proven mathematically,
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but their performance is assessed using a broad range of wind turbine specific applications. For this
purpose, first, a generic test function is applied, and second, real offshore strain measurements are
used. The measurements are treated like simulation results for fatigue design. This may seem slightly
odd in the first place, since in the design phase, measurements are not available. Nevertheless, this has
two major advantages. First, although measurement data is not perfect due to measurement errors,
purely numerical effects and simulation/model errors are excluded by using “realistic simulation
data” (i.e., measurement data). Second, using measurement data, an extensive number of samples
(144 samples per day and several years of measurements) for different turbines is available. This enables
an assessment of these concepts not only for small sample sizes—as it is common in academia—but
also for large data sets—as done in industry approaches, so that the convergence of the approaches
can be analyzed. Convergence studies through simulations would hardly be feasible in an academic
context. After all, this enables an assessment of the general validity of numerical approaches for
different systems, sample sizes, and independent of simulation code specifics.

After a general introduction to damage calculation and extrapolation (Section 2) and a brief
presentation of different sampling concepts (Section 3), a test example is analyzed (Section 4). This test
example mimics the real fatigue behavior and helps to get a first insight in the performance of
the various sampling concepts for changing input space dimensions and degrees of non-linearity.
Subsequently, real offshore measurement data of the Belgian wind farm Northwind is taken as “realistic
simulation data” (Section 5). Damage calculations using this data are conducted and the uncertainty of
this calculation is analyzed. For this purpose, bootstrapping in combination with different numbers of
samples and various sampling concepts is used for the damage extrapolation. Therefore, it is possible
to assess the general validity of reduction concepts, proposed in literature.

2. Damage Calculation

The fatigue damage calculation procedure for offshore wind turbine substructures is a two-stage
process. First, the short-term damage of a single short (normally 10 min) measurement or simulation
is determined. Second, the long-term or lifetime damage is calculated by extrapolating short-term
damages of several samples (i.e., measurements or simulations) to the entire lifetime. Here, the choice
of the samples, and therefore the sampling concept, is essential. Improved sampling concepts are the
focus of this work and are discussed in the following sections. In this section, the general procedure
of calculating and extrapolating fatigue damages—being applied in this work and being mostly
independent of the sampling concept—is presented. Some shortcomings and alternatives are briefly
discussed. While the short-term fatigue damage calculation procedure is relatively standardized, there
is no consensus on how to extrapolate short-term values to long-term lifetime damages.

2.1. Short-Term Damage

An overview of the standard short-term damage calculation procedure is given in Figure 1.
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Figure 1. Flowchart presenting the short-term damage calculation procedure based on strain
measurements or stress simulation (FA: fore-aft, SS: side-to-side). Explicitly stated methods such
as Hooke’s law are common examples but could also be replaced by more accurate methods.
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If the damage calculation is based on strain measurements, as in this work (c.f. Section 5.1), the
measured axial strain signals (εz) are used to calculate tensile stresses (σz) according to Hooke’s law:

σz = Eεz. (1)

Here, E is the Young’s modulus of steel, and for measurement positions above mean sea level, it is
assumed that longitudinal and radial stresses are negligible, as hydrostatic loads do not act. In case
of simulation data, normally, stresses are directly available, so that this first step is not necessary.
With three sensors around the circumference of the monopile (substructure), the tensile stresses of all
sensors can be used to calculate the bending moments in two perpendicular directions (Mnorth and
Mwest) and the normal force (FN) using the following equation:

σz(θis) =
Mnorth

S
cos(θis)−

Mwest

S
sin(θis) +

FN
A
∀ is = {1, 2, 3}, (2)

with θis being the angle of the isth sensor to the northern direction and A and S being the cross-section
area and section modulus, respectively. For a cylindrical monopile, the section modulus is defined
as follows:

S =
π
(
r4

out − r4
in
)

4rout
, (3)

where rout and rin are the outer and inner radius of the monopile, respectively.
Subsequently, the stresses parallel (fore-aft (FA)) and perpendicular (side-to-side (SS)) to the

wind direction can be computed by rotating the moments (Mnorth) and (Mwest) by an angle φ to the
wind direction.

Knowing FA and SS stresses, a rainflow cycle counting of stress ranges (∆σz,i) is performed
for both directions. Here, ∆σz,i is the stress range of the ith band (also called block or bin) in the
factored stress spectrum (cf. Annex A of Eurocode 3 [22]). The number of required stress bands
(nσ) was determined in a preliminary convergence study. Fulfilling the requirements by current
standards [23,24], nσ = 500 bands—logarithmically spaced between 10 kPa and 1 GPa—are used.
A conservative approach of using the higher cycle count of the FA and SS direction, i.e., this is
equivalent to a single dominant wind direction, is applied. More sophisticated approaches, taking the
wind direction into account, can reduce conservatism, but should not influence the performance of the
sampling concepts, and therefore, are not investigated in this work.

Subsequently, an extrapolation of the loads to other positions (i.e., heights) can be performed for
all stress bands. Extrapolations are needed, if measurements at critical positions are not possible or
have not been done. In this case, for example, the so-called “virtual sensing concept” of Maes et al. [25]
that is based on a modal approach can be applied. In this work, we do not apply any load extrapolation,
but evaluate the fatigue damage at the precise measurement position. This position might not be the
design-driving location (e.g., the most critical weld). However, for the present analysis, this is not
essential, since we do not analyze the design itself.

For nominal stresses at the position of interest (here: the measurement position), an overall
safety factor (SF) consisting of several sub-factors is applied to get a representative value for the
concentrated stresses at the specific detail. First, a stress concentration factor for the present detail
is used (here: SCF = 1.0 according to a recommended practice of Det Norske Veritas [23]). Second,
a correction for high wall thicknesses—the so-called size effect (SE) correction—is applied [23].
Third, a material safety factor (here: MSF = 1.25 due to limited accessibility, and therefore, no
inspections [26]) is used. In this work, these three factors are taken from the original industry design
of the monopiles. Additionally, when measuring with welded—instead of glued—fiber Bragg gratings
(FBG), a correction of the reduced sensitivity of welded FBG (FSF = 0.9) [27] is needed. In addition,
last, an additional safety factor (ASF) covering unexpected behavior, etc., and being easily adjustable
is introduced. All these factors can be regarded as uncertain themselves. However, since—as stated in
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the introduction—only the uncertainty due to limited sampling is topic of the investigation, this is not
relevant here. The corrected stress ranges—for the stress concentration at the present detail—can be
calculated using:

∆σcor,i = ∆σz,i × SF = ∆σz,i × SCF× SE× FSF×MSF× ASF. (4)

The last step to calculate the damage of each sample (10 min measurement) is the application of a
linear damage accumulation according to the Palmgren-Miner rule, and the application of S-N curves
according to the standards [23] and the state of the art [6,9,12]. Here, DNV S-N curve D in air is applied.
The fatigue damage for each measurement time series (Dj) according to the Palmgren-Miner rule can
be calculated as follows:

Dj =
nσ

∑
i=1

nij

Ni
, (5)

where i and j are indices for the stress band and the time series, respectively, and nij is the number of
cycles associated with the stress range ∆σcor,ij. The endurance (Ni; number of maximum cycles) for the
same stress range is obtained from the corresponding S-N curve.

2.2. Long-Term Damage

Having calculated the short-term damages, one of the most uncertain and most unreliable aspects
of the lifetime damage calculation, which has not been sufficiently investigated so far, follows next:
the extrapolation to the long-term. Here, only one method of extrapolating damages Dj to a lifetime
damage DLT in combination with different sampling concepts presented in the next section is applied.
Alternative extrapolations are mentioned, but for details, it is referred to, for example, Hübler et al. [28],
who investigate the effect of alternative approaches on extrapolated lifetimes for service life extensions.
To extrapolate fatigue damages, all damages (Dj) are sorted into several (M) bins of EC. Depending
on the sampling concept, the dimension of the binning (dg) can differ. For example, for pure MCS,
no bins are applied (dg = 0), while for a deterministic grid approach, one (wind speed; dg = 1) or
more (wind direction, significant wave height, and wave period; dg = 4) dimensions of the binning are
possible. For each of these bins, the mean value of all J(m) corresponding damage values is calculated.
Alternatively, the 90th percentile can be used for a more conservative estimate (c.f. Hübler et al. [28]).
Each bin has a certain occurrence probability (Pr(m)) that is either given in design documents (as
it is for this work) or must be determined by using environmental measurement data (e.g., SCADA
wind data of several years). The mean damage of each bin is now weighted with the corresponding
occurrence probability. Finally, to get the lifetime damage (DLT), the weighted mean damages of all

Mt = ∏
dg
id=1 Mid bins must be summed up and multiplied by a time factor. From this, it follows:

DLT =
20 years
10 min

Mt

∑
m=1

(
Pr(m)

1
J(m)

J(m)

∑
j=1

Dj(m)

)
. (6)

Finally, the overall lifetime L in years is the inverse of the lifetime damage multiplied by the design
lifetime of 20 years:

L =
20 years

DLT
. (7)

2.3. Damage Uncertainty

It has been shown how fatigue damages can be calculated (c.f. Section 2.1) and extrapolated
(c.f. Section 2.2) using a specific number of samples (i.e., damage values Dj). As offshore conditions
are scattering, some uncertainty of the extrapolated design lifetimes that depends on the number of
used samples is introduced. In literature, the number of simulations required to achieve acceptable
uncertainty levels was investigated in various computational studies [6,18,19]. However, first,
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this number depends significantly on the sampling concept [10,18]. In addition, second, all these
studies are limited to simulation data. Therefore, an isolated investigation of the performance of
the sampling concepts regarding fatigue damage uncertainties without including purely numerical
effects or model errors has not been done before. That is why in this work, various sampling concepts
(see Section 3) are assessed and validated using measurement data. For this purpose, the convergence of
the sampling concepts for increasing numbers of samples is analyzed. The methodology to determine
the resulting uncertainty of the different sampling concepts using measurement data is the following:

1. Measure strain values at real offshore wind turbine substructures.
2. Calculate hot spot stresses for a relevant position using Equations (1) to (4).
3. Calculate damages of all 10 min measurements using Equation (5).
4. Sample short-term damages using the chosen sampling concept (Section 3).
5. Extrapolate short-term damages to a lifetime value using Equations (6) and (7).
6. Repeat steps 4 and 5 NBT = 10,000 times using bootstrapping (i.e., sampling from all available

data (here: about 120,000 usable samples) with replacement).

3. Sampling Concepts

3.1. Deterministic Grid (DG)

The standard sampling approach proposed by the standards is a uniform, deterministic
rectangular grid of EC (variables). For all d variables, the design space is separated into M bins
(e.g., the wind speed range is split up into bins of 2 m s−1 or less). For all Md combinations of variables
(i.e., each bin), at least one sample is needed. In each bin, all EC are kept constant at their mean
value making the approach quasi-deterministic. This means that for example in the wind speed
bin 6.5–8.5 m s−1, the wind speed is always 7.5 m s−1. DG becomes very inefficient for high input
dimensions (d), as Md samples are required.

3.2. Monte Carlo sampling (MCS)

MCS is a standard approach for probabilistic simulations that generates all samples (JΣ) by
applying the (dependent/joint) statistical distributions of all variables. For linear systems, this has
the advantage of a constant convergence rate of J−0.5

Σ independent of the input dimension. However,
for highly non-linear systems, MCS becomes inefficient, since rarely occurring events determine the
converge behavior [10].

3.3. Equally Distributed Monte Carlo Sampling (EMCS)

EMCS is a probabilistic version of DG. Just as for DG, a grid of EC is set up. However, the
grid dimension (dg) is chosen to be smaller than the input dimension d. Normally, it is set to one.
In contrast to DG, in each bin, EC are not kept constant, but MCS is applied. Hence, in the wind speed
bin 6.5–8.5 m s−1, wind speed values between 6.5 m s−1 and 8.5 m s−1 are possible and other EC are
sampled from their (dependent) distributions. For dg = 0, EMCS becomes MCS, and for dg = d, it is
DG. For more details regarding EMCS, it is referred to Hübler et al. [18].

3.4. Damage Distribution-Based Monte Carlo Sampling (DMCS)

DMCS by Hübler et al. [18] is based on EMCS, but its idea is to focus samples on load cases
leading to high damages by applying the damage distribution (i.e., weighted lifetime damage versus
wind speed) to the sampling. This is comparable to importance sampling. For example, if 15% of the
damage is produced by a bin, 15% of the samples should be drawn from this bin. In theory, DMCS
improves the accuracy significantly, as more data is available where it is influential. However, since
the damage distribution is normally not known in advance, in a first step, an approximated damage
distribution (prior function) must be determined by sampling, for example, Napprox = 20 cases in
M = 14 bins (e.g., 20× 14 = 280 EMCS cases). As an approximation based on only 20 samples per
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bin is not precise enough, Bayesian statistics is applied to update the initially approximated damage
distribution after each new sample. It becomes apparent that DMCS is more suitable for larger sample
sizes being typical for industry applications, since the estimation of the damage distribution improves
with every additional sample. The DMCS procedure is the following:

1. Sample Napprox ×M cases (e.g., 280 EMCS cases).
2. Calculate the prior function (i.e., initial damage distribution), being the weighted mean damage

of Napprox cases in each bin.
3. The next sample (j + 1) is generated according to the damage distribution (i.e., prior function).

This means that it is sampled from the bin (mj+1) where the quotient of the number of samples

and the number of samples required by the prior is minimal: mj+1 = arg min
(

J(m)∑M
m=1 D(m)

D(m)∑M
m=1 J(m)

)
.

4. Calculate the damage of the sample (Dj+1) and update the damage distribution.
5. Continue with steps 3 and 4 until the desired number of overall samples (e.g., JΣ = 1000)

is generated.

3.5. Reduced Bin Monte Carlo Sampling (RBMCS)

To be independent of an approximated damage distribution, another concept is RBMCS of
Hübler et al. [18]. It is also based on EMCS and reduces the number of bins by merging bins
with similar physical and generalized damage behavior. For example, for small monopiles with
a wind-dominated behavior and highest loads around rated wind speed, low wind speed bins can be
merged, and for high wind speed bins, the bin sizes are slightly increased: <4.5 m s−1, 4.5–6.5 m s−1,
6.5–8.5 m s−1, 8.5–10.5 m s−1, 10.5–12.5 m s−1, 12.5–14.5 m s−1, 14.5–18.5 m s−1, 18.5–22.5 m s−1, and
>22.5 m s−1. RBMCS reduces the number of bins and leads to more cases in each bin. As in each bin
random sampling (MCS) is conducted, RBMCS converges to the “correct” value for a sufficient number
of samples. Since there are more cases in bins with similar behavior, the uncertainty in each bin can be
reduced. Nonetheless, it can be a challenge to determine the optimal combination of merged bins.

4. Test Example

To gain a better insight in the performance of the various sampling techniques, a test function is
analyzed in a first step, before measurement data is used for the validation (c.f. Section 5).

4.1. Theory

The test function is based on the test function of Graf et al. [10]. It mimics real fatigue behavior by
representing a damage distribution and is capable of modelling different input space dimensions as
well as degrees of non-linearity. The test function is defined as:

f (x) =

[
d

∑
id=1

((
1
2

)id−1
xmmat

id

)] 1
mmat

, (8)

where x is the d-dimensional input vector and mmat mimics the real fatigue behavior by introducing
a “material” (Wöhler) exponent. All inputs are sampled from independent, truncated Weibull
distributions (scale parameter a = 3, shape parameter b = 1.12, xmax = 24) and are weighted

with the factor
(

1
2

)id−1
. The decreasing importance of the inputs while the dimension increases also

mimics real fatigue behavior, as the influence of the first random inputs (e.g., wind speed) is more
pronounced than of others (e.g., wind direction). For all five sampling concepts (c.f. Section 3), this
function is evaluated for dimensions up to six and exponents up to 20. Increasing dimensions represent
a growing number of influential EC and higher exponents lead to a more pronounced non-linear model
behavior. The grid of DG is equidistant between zero and xmax. For EMCS, dg = 1 and M = 15 are
used. For DMCS, dg = 1, Napprox = 5, and M = 15 are applied. The merging of the bins for RBMCS
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(dg = 1) depends on mmat, since the overall behavior changes with an increasing exponent. M = 15
bins are merged to eight bins. For small mmat, higher bins are merged, and vice versa.

4.2. Results

The performance of the five sampling concepts for different dimensions and degrees of
non-linearity is displayed in Figure 2.
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Figure 2. Convergence of the five sampling concepts using the test function f (x) and different input
dimensions d and exponents mmat. For non-deterministic concepts, several runs were conducted and
a “representative” one is shown here. (a) d = 1, mmat = 1; (b) d = 6, mmat = 1; (c) d = 6, mmat = 4;
(d) d = 6, mmat = 20.

Graf et al. [10] have already shown that for linear systems and low dimensions (Figure 2a),
DG performs tremendously well, since it converges with J−1

Σ . MCS requires the highest number of
samples to converge. However, for higher dimensions, DG becomes very inefficient (Figure 2b), as
its convergence rate reduces to J−1/d

Σ , while MCS still converges with J−1/2
Σ . The challenge of fatigue

damage extrapolations is that the dimension of the input space is high, and in addition that single
events (samples) can determine the whole fatigue behavior. Hence, the model is high-dimensional and
non-linear (Figure 2c,d). The problem of DG for high dimensions has already been discussed and is
also visible for non-linear models, although it becomes less relevant. Increasing d are uncritical for
MCS, but high mmat reduce the convergence rate, so that MCS is not efficiently applicable to highly
non-linear models (Figure 2d). Alternatives to DG and MCS are the probabilistic bin-based approaches.
EMCS and RBMCS combine advantages of DG and MCS. Therefore, they perform similar to MCS
for high dimensions, where DG is not applicable. If DG is performing better than MCS (e.g., low
dimensions) or the damage distribution (here: f (x)) does not resemble the sampling distributions (here:
Weibull), as it is the case for high mmat, EMCS and RBMCS outperform MCS. DMCS has the advantage
of concentrating samples in “important” bins. Its convergence is comparable to the other bin-based
approaches for linear models, as in this case, its importance sampling does not differ significantly from
uniform sampling in EMCS. For non-linear models, DMCS outperforms all other approaches.

To summarize, as the performance of DG and MCS depends on the dimension of the input space
and the degree of non-linearity of the model, both cannot generally be applied efficiently. EMCS leads
to similar results as MCS, while—for a direct comparison—the similarity of the sampling and the
damage distribution is relevant. In most cases, RBMCS is quite similar to EMCS. However, when
equipped with well-founded expert knowledge to merge bins appropriately, RBMCS can be quite
beneficial as demonstrated in Hübler et al. [18]. Finally, DMCS always converges relatively fast and
can be regarded as the most appropriate sampling concept for this test function.
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5. Validation

In the previous section, sampling concepts were tested using a test function. That yields a better
insight in their performance. However, for a profound validation, measurement data is needed.

5.1. Measurement Set-Up

In this work, measurement data of a large measurement campaign in the Belgian Northwind
offshore wind farm is used. Data of this measurement campaign was used in several previous
investigations. For detailed information regarding raw data and data quality, it is referred, for example,
to Weijtjens et al. [29].

Northwind is located about 37 km off the Belgium coast (see Figure 3a), and has moderate water
depths of 16 m to 29 m. The wind farm consists of 72 Vestas V112-3 MW turbines. For all turbines,
monopile foundations with diameters of 5.2 m are used.

(a) (b) (c) (d)

Figure 3. Illustration of the investigated turbines, the metocean stations, and the measurement
set-up. (a) Location of the wind farm Northwind and the used metocean stations ( c©OpenStreetMap
contributors (openstreetmap.org) Copyright: CCBY-SA). (b) Northwind layout with both instrumented
turbines marked. (c) Vestas V112 turbine. (d) Fiber Bragg gratings welded to the transition piece.

Since October 2014, strain measurements of two instrumented turbines are available. In this
work, we use three years of data from 1st November 2014 to 31st October 2017. The two turbines,
instrumented by OWI-lab, are marked in Figure 3b. The positions of the turbines on both sides of
the wind farm enable an analysis of slightly different wind conditions, as free inflow conditions are
given for different wind directions. Moreover, both turbines are located at different water depths.
This leads to slightly different designs of the two monopiles, and therefore, to varying eigenfrequencies
(see Table 1). Both turbines are instrumented, inter alia, with seven FBG as strain gauges spread over
two different levels (see Figure 3c,d). The strain gauges are positioned at the interface between tower
and transition piece (TP) and the interface between TP and monopile. Here, the lower measurement
layer between TP and monopile is used. For this layer, FBG are welded to the wall making a correction
due to reduced sensitivities necessary [27]. The chosen configuration of the strain gauges (spread
around the circumference) and a temperature compensation enable a determination of bending
moments at these interface levels.

Table 1. Main properties of the considered turbines (eigenfrequencies according to Weijtjens et al. [30]).

Turbine Location Type Hub Height Water Depth Eigenfrequency Diameter Monopile

H05 South Vestas V112 71 m 18.9 m 0.30 Hz 5.2 mD06 North 26.9 m 0.27 Hz
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In addition to the strain data, metocean data of various sources is available. In the first instance,
wind data (e.g., wind speeds or turbulence intensities) can directly be derived using SCADA data of
the turbines. Wave conditions are measured at several locations around the wind farm. High-frequency
wave data (sampling frequency of 1 Hz) is available from a wave radar in Belwind. The position of
the wave radar is marked in Figure 3a. However, as the wave radar was not measuring during the
whole measurement period (it was removed in June 2016), additional information of the offshore high
voltage substation (OHVS) on “Bligh Bank” (also marked in Figure 3a) has to be used, if no data of the
wave radar is available. SCADA data is also used to exclude time periods with a curtailed turbine
and down-times.

5.2. Resulting Uncertainty

Short-term damages of all measured strain signals are calculated using the procedure in Section 2.1.
If 10 min damages of wind speed bins are analyzed separately, the scattering of these values shows
qualitatively the amount of uncertainty in short-term damages. Figure 4a displays for a wind speed
of 16.5 m s−1 < vs < 18.5 m s−1 and 3 years of data (about 5000 samples for this wind speed bin) the
occurrence frequency of fatigue damages (Dj). All damages are normalized with the mean value of all
damages of these wind speeds. Damages scatter significantly and reach values of more than 2.5 times
the mean value with a probability of 5%. High outliers, reaching values of more than 100 times the
mean value, are not shown, but can significantly influence the overall fatigue damage behavior and
demonstrate a non-linear model behavior comparable to the analyzed test function.

The uncertainty in lifetime damages can be assessed by calculating the probability density function
(PDF) of the fatigue lifetime. It can be determined by using the long-term extrapolation in Section 2.2
and the bootstrapping in Section 2.3. Exemplary PDF for different numbers of samples and EMCS
are presented in Figure 4b. Due to reasons of confidentiality, lifetimes are normalized with the mean
lifetime of using the whole 3-year data (µ3years).

0 1 2 3 4 5
0

500

1,000

95th percentile

Normalized fatigue damage (up to 99th percentile)

Fr
eq

ue
nc

y
of

oc
cu

rr
en

ce

(a)

0.5 1 1.5 2
0

2

4

6 ΔL1,J (m)=6

Normalized lifetime

PD
F

J (m) = 6 J (m) = 20 J (m) = 75
L1,J (m)=6 L1,J (m)=20 L1,J (m)=75

(b)

Figure 4. Illustration of the scattering and uncertainty of fatigue damages based on measured strain
data for turbine H05. (a) Frequency of occurrence of normalized fatigue damages for a wind speed
of 16.5 m s−1 < vs < 18.5 m s−1. The 95th percentile is marked. (b) Lifetime PDF for three different
numbers of samples (J(m)) in each bin (EMCS). The 1st percentiles are marked.

125 Chapter 5. Long-term extrapolation



Energies 2019, 12, 603 11 of 20

It is demonstrated that using only a few samples (commonly done in academia [6,12]) leads to
high uncertainties. At the expense of higher computing times, the uncertainty can be reduced by
increasing the number of samples, as it is done in industry. This trade-off is the reason improved
sampling concepts are investigated in this work.

In most cases, the full lifetime PDF (see Figure 4b) is not the focus, as the main interest is to
guarantee safe designs. Hence, the lowest lifetime approximations (e.g., the 1st percentile) are more
relevant. Therefore, the 1% error (∆L1) is defined as the deviation of the lifetime at the 1st percentile
(marked in Figure 4b) to the “real” lifetime (estimated using the whole three years of strain data):

∆L1 =
µ3years − L1

µ3years
. (9)

For EMCS and six samples per bin, the 1% error is about 40% (∆L1,J(m)=6 = 1−0.61
1 = 0.39; see Figure 4b).

Hence, a higher number of samples and/or another sampling concept are recommended. The number
of samples per bin is not the best comparative value, as it does not incorporate the number of bins.
Therefore, in the remainder of this work, we always relate to the overall number of samples (JΣ).

To gain a deeper understanding of the uncertainty due to finite sampling for the present
measurement data, the reasons for it are determined in the next section.

5.3. Reasons for High Uncertainty

In general, relatively rare but highly damaging events are the reason for high uncertainties due
to finite sampling (i.e., slow convergence with increasing number of samples). These events are only
covered, if a high number of samples is used. On the one hand, highly damaging single events (with
low occurrence probabilities, for example, a 100-year storm) do not contribute a lot to the overall
damage [21]. On the other hand, a relatively small amount of load situations leads to a high proportion
of the overall damage. Hence, it is important to determine reasons for highly damaging but not
too unlikely situations for the Northwind monopiles. Figure 5 gives an insight in scattering and the
EC that are responsible for the damage. High wind speeds lead to high mean damages. However,
these values do not scatter significantly, and furthermore, are not responsible for the highest damage
values. The highest “outliers” occur for high turbulence intensities and wind speeds around rated
wind speed (cf. Figure 5b). For these wind speeds, the maximum thrust loads occur, as blades have not
been pitched out yet. Furthermore, for high turbulence intensities, fluctuations in the wind speed are
more pronounced and cannot always be covered by relatively slow pitch controller actions. However,
normal operation is not responsible for maximum damages. Rotor stops, shown in Figure 6, increase
damages dramatically, as at least one very large cycle is introduced by the rotor stop event. These rare
stopping events at rated wind speed drive the uncertainty for the present measurement data. Other
conditions increasing the uncertainty are, for example, highly scattering (significant) wave heights or
turbulence intensities (cf. Figure 5a).
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Figure 5. Investigation of the reasons for high uncertainty. (a) Scatter plot showing damages depending
on wind speed and turbulence intensity (representative 1-month measurement data of D06). “Outliers”
are marked with circles. (b) Scatter plot showing damages depending on the wind speed (representative
1-month measurement data of D06). “Outliers” are marked with circles.
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Figure 6. 10 min time series of a rotor stop event around rated wind speed: Normalized measured
strains (FBG) versus time.

Hence, current results make clear that there can be various reasons for sampling induced
uncertainty. In Hübler et al. [18], the main reason is wave resonance. In contrast, for the present
measurement data, controller actions are decisive. If the reason for the high uncertainty is known,
these rare cases can be excluded from the standard load case (DLC 1.2 in IEC 61400-3 [5]) and be treated
separately. For normal shut downs, etc., this is usually done. They are not included in DLC 1.2, but
have their own (deterministic) load cases (DLC 4.1, etc.). However, it is not possible to exclude all rare,
highly damaging cases. Therefore, sampling concepts such as RBMCS and DMCS that are designed to
reduce the uncertainty compared to standard approaches are needed to keep the sampling effort small.
In the next section, the previously developed probabilistic bin-based approaches by Hübler et al. [18]
(RBMCS and DMCS) are validated and compared to DG, MCS, and EMCS.

5.4. Convergence of Improved Sampling Concepts

For an assessment of the different concepts, the lifetime (L) is calculated according to Section 2.
For this calculation, different numbers of overall samples (JΣ) are generated using the various sampling
concepts and the available 3-year data (about 120,000 usable samples). The bootstrap procedure
is repeated 10,000 times to estimate the statistical variation in L. Last, the lifetime distribution is
normalized by the “real” lifetime (using 3 years of data):

L̂ =
LJΣ ,concept

µ3years
. (10)
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To evaluate the performance of RBMCS and DMCS, the same procedure is conducted for samples that
are generated using DG, MCS, and EMCS. For EMCS, RBMCS, and DMCS, dg = 1 and M = 14 is
used. For RBMCS, the applied merging of the bins to M = 9 is explained in Section 3.5. For DMCS,
Napprox = 20 is applied. DG uses a grid dimension of dg = 5 (i.e., wind speed and direction,
(significant) wave height and period, and turbulence intensity). However, for high-dimensional grids,
using measurement data, data is not available for all grid points. Very unlikely EC combinations—not
occurring during the three years of measurements and making up more than 50% of all grid points for
M ≥ 3—are not taken into account. Hence, the applied (sparse) DG approach for measurement data is
only partly comparable to the (full) standard DG for simulation data.

To illustrate the general performance of the two improved concepts, Figure 7 shows the lifetime
PDF that are generated using RBMCS and DMCS compared to EMCS. As in Hübler et al. [18],
EMCS serve as reference here. The uncertainty is significantly reduced, and more reliable lifetime
approximations are achieved, while the number of samples remains constant. Especially for DMCS,
it becomes apparent that the lowest lifetimes are much less uncertain. As samples are concentrated on
bins with high damages, low lifetime outliers are effectively removed.
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Figure 7. Illustrative assessment of the performance of the two improved sampling concepts for turbine
H05: normalized lifetime PDF (normalized with the mean lifetime using 3 years of data (µ3years) for
reasons of confidentiality). (a) Lifetime PDF for JΣ = 2800 and EMCS compared to DMCS. (b) Lifetime
PDF for JΣ = 2800 and EMCS compared to RBMCS.

For an objective assessment of the concepts, the convergence of three evaluation criteria—L̂ (or
rather its deviation from µ3years; ∆µ), ∆L1, and the coefficient of variation (CV)—for an increasing
number of overall cases for all concepts and both turbines is illustrated in Figures 8 and 9.
The coefficient of variation is defined as the ratio of the standard deviation (σ) to the mean value (µ):

CV =
σ

µ
. (11)

It is introduced, as for a reduced (biased) mean value, the 1st percentile is closer to the “real”
mean by definition. Here, a biased mean value can have two reasons. First, if the sample size is
relatively low, it might not have been converged yet. Second, the binning procedure can influence the
mean value, if measurement data is used in combination with long-term design EC distributions for
the bin probabilities (cf. Section 2.2). In this case, bin probabilities do not correspond completely to
the occurrence probability of the samples in each bin. Therefore, errors at high percentiles can have
less informative value. In addition to the illustration of the convergence in Figures 8 and 9, some
quantitative results are given in Table 2.
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Figure 8. Convergence of the five sampling concepts using measurement data of H05. (a) Lifetime
mean value errors (∆µ). (b) Lifetime 1% error (∆L1). (c) Lifetime coefficient of variation (CV).
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Figure 9. Convergence of the five sampling concepts using measurement data of D06. (a) Lifetime
mean value errors (∆µ). (b) Lifetime 1% error (∆L1). (c) Lifetime coefficient of variation (CV).

Table 2. Errors and uncertainties in lifetime using different concepts and 1000 as well as 10,000 overall
samples; measurement data of H05. Changes (of CV and ∆L1) refer to the reference approach (EMCS).

EMCS DMCS RBMCS MCS EMCS DMCS RBMCS MCS

Overall cases (JΣ) 1050 1050 1035 1050 10,010 10,010 10,035 10,010
Cases for approximation – 20× 14 – – – 20× 14 – –
Normalized mean (E(L̂)) 1.01 1.02 1.00 1.00 1.00 1.00 1.00 1.00
Coefficient of variation (CV) 0.069 0.045 0.045 0.048 0.023 0.015 0.015 0.016
CV change in % – −34.8 −34.5 −29.8 – −36.8 −34.6 −30.7
Error (∆L1) in % 15.75 9.66 11.94 12.65 6.43 3.43 3.66 4.12
∆L1 change in % – −38.7 −24.2 −19.7 – −46.7 −43.1 −35.9

First, it becomes apparent that the increase of the number of cases is a possible but not very
effective way to reduce uncertainties. Then, for both turbines, uncertainties and possible reductions of
the two improved concepts are quite similar. Although the sparse version of DG theoretically improves
the performance of DG, as “impossible” EC combinations are not taken into account, DG requires
a much higher number of samples to achieve adequate uncertainties. Furthermore, it converges to
a different mean value due to the varied binning procedure. This biased mean value only occurs
for measurement data, where the occurrence probability of each bin does not completely match the
long-term EC distributions. As postulated before [10,11], MCS outperforms DG. The good performance
of MCS is supported by similar sampling and damage distributions (see Figure 10a). For such similar
distributions, it has already been shown with the help of the test function (cf. Figure 2c) that MCS can
outperform EMCS and RBMCS. Hence, EMCS still converges faster than DG, but does not perform
as good as MCS. RBMCS is an improvement of EMCS and performs better than MCS for the present
measurement data. Improvements of ∆L1 of about 10% and 30% compared to MCS and EMCS,
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respectively, are achieved. DMCS shows the best convergence behavior. It reduces ∆L1 by around 20%
and 40% compared to MCS and EMCS, respectively. This may not sound that much. However, having
in mind that for plain MCS, a reduction of ∆L1 of 25% means doubling the sampling effort, these are
considerable reductions. Furthermore, the slower convergence of the mean value (bias of the mean
value for small sample sizes described by Hübler et al. [18]) is not that relevant. It is mainly apparent
for samples sizes just above Napprox ×M = 280, where only a few samples are generated according to
the damage distribution. The main disadvantage of DMCS is that it requires some samples to generate
an initial prior. For sample sizes smaller than JΣ = Napprox ×M, DMCS is equal to EMCS.
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Figure 10. Qualitative comparison of the sampling distributions of EMCS (PrEMCS(m)) and MCS
(PrMCS(m)) with the actual damage distribution (D(m)). (a) Measurement data. (b) Simulation data of
Hübler et al. [18].

5.5. Comparison of the Performance for Simulation and Measurement Data

Finally, the performance of MCS, EMCS, RBMCS, and DMCS is evaluated for previously published
simulation results [18] and the present measurement data (treated as “realistic simulation data”) and
for the different designs (OC3 monopile and different Northwind designs). DG is not taken into
account, as first, no simulation data is available. Second, DG is hardly applicable to measurement data.
In addition, third, DG features a poorer performance compared to all other concepts. The variety of
applications can demonstrate the general performance of the concepts. Table 3 gives an overview of
the reduction concepts based on the previous computational analysis [18]. Two different sample sizes
(academia and industry) are shown.

Table 3. Errors and uncertainties in lifetime using different concepts and 1000 as well as 10,000 overall
samples; simulation data [18]. Changes (of CV and ∆L1) refer to the reference approach (EMCS).

EMCS DMCS RBMCS MCS EMCS DMCS RBMCS MCS

Overall cases (JΣ) 1000 1000 1000 1000 10,000 10,000 10,000 10,000
Cases for approximation – 20× 13 – – – 20× 13 – –
Normalized mean (E(L̂)) 1.00 1.25 1.00 1.00 1.00 1.05 1.00 1.00
Coefficient of variation (CV) 0.259 0.162 0.213 0.257 0.099 0.066 0.079 0.100
CV change in % – −37.5 −17.8 −0.8 – −33.3 −20.2 +1.0
Error (∆L1) in % 56.76 20.21 47.10 56.52 23.32 11.43 18.15 24.39
∆L1 change in % – −64.4 −17.0 −0.4 – −51.0 −22.2 +4.6

In contrast to measurement data, for simulation data, MCS does not perform better than EMCS.
This clarifies the relevance of sampling distributions in comparison with the damage distribution,
and therefore, the missing general applicability of MCS. For the simulation data, the distributions are
shown in Figure 10b, where D(m) is more similar to PrEMCS(m).

For RBMCS, the results are quite consistent again. Reductions of the 1% error of about 20%
compared to EMCS and MCS are achieved without introducing any bias.
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For DMCS, the reductions of ∆L1 are above 50% independent of the sample size.
This approximately matches the measurement results for high numbers of samples (e.g., JΣ > 500).
The “poorer” performance for measurement data, if a small number of samples is chosen (e.g.,
JΣ = 300), is a result of the previously mentioned disadvantage of DMCS (i.e., it needs some samples
for the prior creation). For simulation data and DMCS, there is a pronounced bias of the mean value
especially for low numbers of samples. To understand the bias for simulation data, its reason is
briefly explained. As DMCS concentrates its sampling on bins with high damages, it cannot represent
damages correctly, if there are high outliers in bins with low median damages. In this case, too low
damages are estimated by the prior, and therefore, only a few samples are generated for these bins.
This leads to an insufficient coverage of high outliers (see Hübler et al. [18] for more information).
For the simulation data of the OC3 monopile, there are such outliers—due to wave resonance—in bins
of low median damages (e.g., low wind speeds). For the measurement data of the wind-dominated
Northwind monopiles, this is not the case. Hence, the reason for the bias of DMCS is not the simulation
data itself, but the wave resonance. In any case, the bias diminishes for a sufficient number of samples.

To conclude: The performance of RBMCS is robust by decreasing the 1% error by about 20–30%
compared to EMCS independent of other conditions. DMCS can achieve significantly higher error
reductions of 40–50% compared to EMCS and 20–50% in comparison with MCS. Hence, it achieves
the best results for the test function, simulation data, as well as measurement data. However, for very
small sample numbers, the performance is limited. For wave resonance-dominated structures, biased
results can occur, if the number of cases is chosen too small to guarantee a convergence of the mean
value. Both problems are not relevant for large sample sizes that are common in industry.

6. Benefits and Limitations

As the fatigue design of substructures of offshore wind turbines is a time-consuming process that
must be accurate at the same time, the present study focuses on the validation of previously developed
sampling methods that reduce the uncertainty due to finite sampling. For this validation, no actual
simulation data is used but, first, a test function, and second, real offshore strain measurements
that are considered to be “realistic simulations”. The test function helps to demonstrate the general
performance for different types of problems. It is shown that the concepts perform well for a broad
range of input dimensions as well as degrees of non-linearity. Measurement data has, on the one
hand, the advantage that purely numerical effects (e.g., errors of the aero-elastic model) are excluded.
Furthermore, a very extensive number of samples for two different structures is available, which
would not have been feasible through simulations in an academic context. Hence, the current work
can assess the proposed methods for different systems (turbines, substructures, sites, etc.) and sample
sizes (convergence study) and independent of any simulation code specifications. On the other hand,
measurement errors occur and must be treated carefully. For example, spikes in strain signals due to
measurement errors must be filtered or removed manually.

The present outcomes underpin the recently repeatedly formulated presumption [6,12,18] that
standard recommendations concerning lifetime extrapolations (in academia) lead to unacceptable
uncertainties due to finite sampling (cf. J(m) = 6 in Figure 4b) that are in the same order of magnitude
as other important types of uncertainty that are not the topic of this investigation (e.g., the error of
Miner’s rule [31]).

Regarding sampling methods that reduce the uncertainty in the damage approximation without
increasing the number of samples (i.e., computing time), two concepts are validated. Previously,
they performed well for simulation data and one set-up. Here, they are tested for measurement data,
different turbine designs, and a test function and are compared to standard approaches such as MCS
or deterministic grid sampling. It is shown that these two concepts are generally valid independent of
the structure (e.g., OC3 or Northwind monopile) and reason of the uncertainty (e.g., wave resonance
or rotor stops). They lead to 1% error reductions of about 30% and 40% compared to EMCS for RBMCS
and DMCS, respectively. A reduction of the 1% error of 25% is tantamount to halving the required
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samples while keeping the 1% error constant. DMCS enables higher uncertainty reductions compared
to RBMCS, but it can be slightly biased for smaller sample sizes. An important factor for industry is
that the benefit of DMCS compared to other sampling concepts grows with increasing sampling effort.

7. Conclusions

The main objective of this study is the validation of sampling concepts that reduce the uncertainty
due to finite sampling. This validation is performed by assessing the concept performance for a broad
range of applications and data types. For this purpose, real offshore measurement data is used and
treated as “realistic simulation data”. This enables an assessment of previously developed methods
while simulation errors, etc. are excluded and by using a large data set for the validation.

It is shown that uncertainties are high, depend significantly on the design of (monopile)
substructure and turbine, and are considerably influenced by controller actions. Therefore, quantitative
conclusions concerning the uncertainty are difficult. However, commonly applied approaches in
academia should be reconsidered, as deterministic approaches cannot reproduce the real uncertainty
due to rare, highly damaging situations. A possibility to reduce the sampling effort is to exclude
rare, highly damaging events from probabilistic analyses and to add them as additional deterministic
damages. For normal shut-down events, etc. this is commonly done. For wave resonance, this is
unusual and more challenging.

To overcome the problem of uncertain damage extrapolations, in industry, the number of
simulated load situations is much higher than in academia at the expense of high computational
costs. Alternatives to the plain increase of sampling are valuable. Such an alternative are advanced
sampling concepts. Without adding additional computation effort, it is possible to increase the
reliability of the damage extrapolation (error reductions of up to 50% or reducing the sampling effort to
approximately a fifth) by applying advanced sampling concepts. Here, the relatively general validity
of such concepts was proven. It is recommended to use DMCS—especially for larger sample sizes in
industry. RBMCS can be an alternative for smaller sample sizes, for example in academia. In future,
such concepts could replace the inefficient grid-based approach that is recommended by the standards.

After all, based on present findings and previous simulation-based results, it can be concluded that
lifetimes of designs—relying on very limited simulation data—can be relatively uncertain. Therefore,
the consideration of measurement-based fatigue lifetime calculations is valuable. Certainly, it is hardly
possible to use measurements during the design phase before having built a turbine. However, for
lifetime extension, current standards [32] already recommend to use measurement data, if possible.
Hübler et al. [28] show that measurement-based lifetime approximations are not completely certain
as well. Still, if available, strain measurements for lifetime approximations are definitely a valuable
addition to design simulations and should be further investigated.
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Nomenclature

The following nomenclature is used in this manuscript:

a Scale parameter of the truncated Weibull distribution
A Cross-section area
ASF Additional safety factor
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b Shape parameter of the truncated Weibull distribution
CV Coefficient of variation
d Input dimension (i.e., number of variables)
dg Dimension of the binning
D (Short-term) Damage
DLT Lifetime damage
E Young’s modulus or expected value
f Test function
FN Normal force
FSF Correction factor for reduced sensitivity of welded FBG
i Index for the stress band
id Index for the (binning) dimension
is Index for the sensor
j Index for the time series/sample
J Number of time series/samples in a bin
JΣ Number of overall samples (in all bins)
L Lifetime
L1,J(m) Lifetime at the 1st percentile for J(m) samples in each bin (EMCS)
L̂ Normalized lifetime distribution
m Index for the bins
mmat (Material) Exponent of the test function
M Number of bins of one input
Mnorth Bending moment in northern direction
MSF Material safety factor
Mt Total number of bins of all inputs
Mwest Bending moment in western direction
ni Number of cycles associated with the stress range ∆σcor,i
nσ Number of stress bands
Napprox Number of samples per bin for the prior creation in DMCS
NBT Number of bootstrap evaluations
Ni Endurance (number of maximum cycles) for ∆σcor,i obtained from an S-N curve
Pr Occurrence probability of a bin
rin Inner radius of the monopile
rout Outer radius of the monopile
S Section modulus
SCF Stress concentration factor
SE Factor for the size effect
SF (Overall) Safety factor
vs Wind speed
x d-dimensional input vector
xmax Upper limit of the truncated Weibull distribution
∆L1 Lifetime error at the 1st percentile
∆µ Deviation of L̂ from µ3years
∆σcor Corrected stress range
∆σz Stress range
εz Axial strain
θ Angle between sensor and northern direction
µ Mean value
µ3years Mean lifetime of using the whole 3-year data
σ Standard deviation
σz Tensile stress
φ Angle between northern and actual wind direction
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Abbreviations

The following abbreviations are used in this manuscript:

DG Deterministic grid
DLC Design load case
DMCS Damage distribution-based Monte Carlo sampling
EC Environmental condition
EMCS Equally distributed Monte Carlo sampling
FA Fore-aft
FAST Fatigue, aerodynamics, structures, and turbulence
FBG Fiber Bragg grating
HAWC2 Horizontal axis wind turbine code 2nd generation
MCS Monte Carlo sampling
LCOE Levelized cost of energy
OC3 Offshore Code Comparison Collaboration
OHVS Offshore high voltage substation
OWI Offshore Wind Infrastructure Application
PDF Probability density function
RBMCS Reduced bin Monte Carlo sampling
SCADA Supervisory control and data acquisition
SS Site-to-side
TP Transition piece
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6 Economic effects

While previously presented work in this thesis is intended to build up a framework for prob-
abilistic structural analyses of OWTs, this last section focuses on the effects of probabilistic
modelling. Economic effects are investigated by combining the developed probabilistic
structural OWT model with an economic viability model for offshore wind farms. This
enables an evaluation of the influences of scattering (due to aleatory uncertainty of ECs) and
variable (due to different designs) OWT lifetimes as well as variable capital expenditures
(e.g. substructure costs) on the profitability of wind farm projects.

6.1 Research context

In contrast to most structures in classical civil engineering (e.g. bridges), for OWTs, reliability
is not related to public safety, since practically no human lives are directly endangered
by potentially failing OWTs. Therefore and due to the need for competitive wind energy,
structural optimisations of OWTs with respect to the economic efficiency are an important
field of research. However, economic effects of structural changes are not trivial and
coupling economic and engineering models is a challenging task. Hence, for most engineering
approaches, the structural mass is used as a cost indicator [96, 105]. This procedure does
not always lead to optimal structures with regard to economic efficiency. For example, a
lightweight structure with a complicated manufacturing process might have higher overall
costs than a heavier structure that can easily be produced at a low price. As an alternative,
costs or capital expenditures (CAPEX) can be used [49, 111]. Although, CAPEX are a
better measure for the economic viability of OWT projects, some important aspects are still
neglected. These are, for example, costs during the project lifetime due to operation and
maintenance or interest payments. Furthermore, state-of-the-art approaches utilise constant
(not uncertain and not variable) lifetimes. Fixed lifetimes can lead to non-optimal designs.
For example, Ziegler et al. [218] show the effect of lifetime extensions. This points out that
economic effects are not sufficiently considered in engineering approaches of OWTs.
Surely, there are complex economic wind farm models that are capable of investigating the
previously discussed effects. However, on the economic side, the engineering aspects are
widely simplified. Common simplifications are the use of constant lifetimes or bundled cost
inputs for substructures and foundations [154].
Neither pure engineering nor pure economic approaches can yield optimal designs. Combined
approaches are needed, but to the author’s knowledge, there exist no combined probabilistic
approaches so far.

6.2 Methods

In this thesis, the presented probabilistic engineering approach is combined with an economic
viability model being developed by the partners of this work [143]. The engineering model
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is the proposed FAST model with probabilistic inputs. Using this simulation approach,
variable lifetimes (lifetime distributions) can be computed for various designs. Furthermore,
a simplified cost model for the substructure is used to approximate the CAPEX of different
substructure designs. Lifetime distributions and substructure costs are used as inputs for
the economic model.
The economic viability model is not a simplified model for engineering purposes, but a
sophisticated economic model whose details might be hard to understand without a profound
economic background. The general idea is to simulate an economic agent to represent real-
world investment decisions. The model calculates the minimum price per unit of generated
electricity (marginal cost) that is sufficient to fulfil two requirements. First, the mean
adjusted present value (APV) has to be positive to get equity capital (e.g. of investors).
Second, with a probability of 75 %, the project has to be able to repay its debts during the
entire project duration to get debt capital (e.g. of banks).
Using this combined model, a realistic wind farm project in the North Sea is simulated.
Seven slightly different designs of the substructure are analysed. More durable designs with
higher lifetimes but increased substructure costs and cheaper designs (low costs but reduced
lifetimes) are created. This enables an analysis of the trade-off between lifetime and initial
costs.

6.3 Results

The first important feature revealed by the combined analysis is that even small changes of
the substructure affect the overall viability of a wind farm project. Hence, it is important to
take all aspects of the project and all components of the OWT into account.
In accordance with current initiatives to extend wind turbine lifetimes, this study shows
that in most cases, the effect of increased lifetimes outweighs the influence of higher initial
costs. However, it has to be kept in mind that this effect can reverse, if the overall lifetime
is limited. This means that an increase of the substructure lifetime is not valuable, if an
overall lifetime extension is not possible, since for example, the rotor blade lifetime cannot
be increased. Nevertheless, the trade-off in favour of lifetime clarifies that lifetime extensions
or higher design lifetimes in general can be valuable.
Finally, in contrast to state-of-the-art approaches, it has to be remarked that fixed design
lifetimes hinder optimal designs. The lifetime itself should be regarded as a stochastic
variable that has to be optimised with respect to economic efficiency.

6.4 Outlook

The present combined structural and economic analysis is intended to be a first step showing
the potential of probabilistic structural analyses and of the consideration of complex eco-
nomic effects. However, a comparative study demonstrating the benefits compared to pure
structural weight or CAPEX considerations is missing so far. Nonetheless, in this field of
research, there is a large potential for promising work. At first, real structural optimisations
are needed, as only different designs are analysed here. For this purpose, a two-way coupled
techno-economic model has to be developed. The present approach is a mere combination of
a structural and an economic model, i.e. it is one-way coupled. So, the economic model has
no retroactive effect on the structural model, as needed, for example, for optimisation tasks.
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Furthermore, design changes are limited to wall thicknesses and diameters. Design variables
- like the number of legs, joint geometries, etc. - are kept constant so that significantly
different designs are not considered.
Apart from that, the present analysis focuses on the substructure. Design variations and
variable lifetimes of other important components would result in even more significant
effects on the wind farm viability. Moreover, the consideration of the lifetime of all relevant
components would solve the challenge of judging whether lifetime extensions are possible or
unrealistic.
In addition, only monopiles have been investigated so far. Other types of substructures, like
jackets or floating substructures, have higher initial costs which might influence the trade-off
between lifetimes and initial costs.

6.5 Paper F: Influence of Structural Design Variations on
Economic Viability of Offshore Wind Turbines: an
Interdisciplinary Analysis

The following paper is under review (minor revision) for Renewable Energy. The version
printed here is the submitted “author’s version”. The work was conducted in cooperation
with partners from the “Information Systems Institute” of “Leibniz Universität Hannover”.
The partners mainly worked on economic aspects, while engineering parts were conducted
by the author of this thesis. Cristian Gebhardt, Raimund Rolfes, and Michael Breitner
contributed with advisory and supporting work.
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Abstract

Offshore wind energy is a seminal technology to achieve the goals set for renewable energy deployment.
However, today’s offshore wind energy projects are mostly not yet sufficiently competitive. The optimization
of offshore wind turbine substructures with regard to costs and reliability is a promising approach to increase
competitiveness. Today, interdisciplinary analyses considering sophisticated engineering models and their
complex economic effects are not widespread. Existing approaches are deterministic. This research gap is
addressed by combining an aero-elastic wind turbine model with an economic viability model for probabilistic
investment analyses. The impact of different monopile designs on the stochastic cost-efficiency of an offshore
wind farm is investigated. Monopiles are varied with regard to diameters and wall thicknesses creating
designs with increased lifetimes but higher capital expenditures (durable designs) and vice versa (cheaper
designs). For each substructure, the aero-elastic wind turbine model yields distributions for the fatigue
lifetime and electricity yield and different capital expenditures, which are applied to the economic viability
model. For other components, e.g. blades, constant lifetimes and costs are assumed. The results indicate
that the gain of increased stochastic lifetimes exceeds the benefit of reduced initial costs, if the overall
lifetime is not governed by other turbine components’ lifetimes.
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1. Introduction1

Although offshore wind energy is a steadily growing market [1] and a promising technology to achieve2

the long-term goals set for renewable energy deployment, its LCOE is still high compared to other energy3

supply types [2, 3]. Today, OW energy is - apart from some rare and special examples - not yet competitive4

without financial support mechanisms [4], as compensation according to current electricity market prices5

does not enable a profitable and financially viable construction and operation of OW farms. Consequently,6

increasing the cost-efficiency of this technology is one of the major objectives of current research. As7

OWT substructures and foundations account for nearly 20 % of the overall OW farm CAPEX (including8

planning, installation, and component costs, but excluding OPEX) and represent a significant cost reduction9

opportunity [2, 5], their optimal design with regard to costs and reliability is a promising approach. This10

means that a change in paradigm for optimal designs is required. In contrast to state-of-the-art optimization11

approaches, not only costs need to be minimized, but the trade-off between variable lifetimes and component12

costs needs to be analyzed in interdisciplinary approaches to find the most cost-efficient structural design.13

Nevertheless, such interdisciplinary approaches, considering both the complex engineering and economic14

aspects of OWT structural designs, are still unusual.15

On the part of engineering analyses, most optimization approaches minimize the structural weight as a cost16

indicator [6–9]. Muskulus and Schafhirt [10] give a comprehensive review of these optimization approaches.17

Even if cost models are applied instead of mass considerations, the costs are, in general, approximated18

by empirical formulations taking into account material, production, and installation costs [11, 12]. The19

effects of reduced masses or costs on the economic viability of entire projects are not evaluated, as economic20

aspects, like risk-adjusted discount rates, etc., are not taken into account. Furthermore, lifetimes are set21

to deterministic, constant values. This disables an analysis of the trade-off between lifetime and costs. A22

first approach to take variable lifetimes in engineering models for OWT into account is conducted by Ziegler23

et al. [13]. However, they focus on the trade-off between variable lifetimes and mass, and - as typical for24

engineering approaches - do not consider complex economic effects.25

On the part of economic analyses, substructures and foundations are, in general, considered as a bundled cost26

input within the CAPEX of an OW farm. Furthermore, as with the engineering analyses, the operating OWT27

lifetime is typically treated as a deterministic, constant value commonly set to 20 years [14–16]. In addition,28

several economic studies conduct simple deterministic sensitivity analyses regarding the lifetime, but do29

not consider any dependencies of the lifetime on other model inputs [17–19]. A first approach to analyze30

the effects of lifetime extension measures for onshore wind turbines on the LCOE is developed by Rubert31

et al. [20]. They link the lifetime to model inputs, like retrofits of different components, and also conduct32

deterministic sensitivity analyses. However, due to the significant variability of offshore conditions, economic33

effects of structural design variations are different, if probabilistic approaches are applied. Nevertheless,34

comprehensive probabilistic economic analyses of OW farms that take into account the complex economic35

effects of structural designs on the trade-off between operating lifetime and the cost of OWT cannot be36

found.37

This research gap is addressed by combining an aero-elastic OWT model with an economic viability model.38

The combined model can deal with probabilistic inputs based on real offshore measurements and OW39

investment characteristics. An overview of the combined approach is illustrated in Fig. 1. This concept40

enables analyzing the effects of substructure design variations on the cost-efficiency of OW farms. Therefore,41

it is possible to assess the trade-off between substructure lifetime - being modeled using a probability42

distribution - and substructure CAPEX with regard to the cost-efficiency of each design. To this end, both43

models are outlined in the following and are then applied to a concise OW farm case study.44

2. Aero-elastic wind turbine model45

2.1. Time domain model46

The dynamic OWT behavior is very complex due to several reasons: nonlinearities, transient load cases,47

scattering environmental conditions, highly coupled subsystems, etc. Hence, aero-hydro-servo-elastic sim-48

ulations in the time domain are required by the standards [21]. One software being capable of simulating49

2
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Figure 1: Visualization of the combined engineering and economic model.

these coupled systems in approximately real time and being used in this study is the FASTv8 software code50

by the NREL [22]. Using FAST, in this study, the NREL 5 MW reference wind turbine [23] is investigated.51

Well-founded reference turbines are only available for 5 MW [23] and 10 MW [24]. Since a wind farm with52

a commission date of 2020 - where normally 6-8 MW turbines are used - is considered (cf. Section 3.1), the53

use of a relatively small 5 MW turbine is justified. The corresponding OC3 phase I monopile (cf. Fig. 2) is54

used as substructure [25]. Slight design changes of the OC3 monopile are applied to analyze the effect of55

design variations on the economic viability of an entire OW farm.56

Using the aero-elastic model and various EC that mirror the changing EC at the offshore site as inputs, it57

is possible to calculate time series of forces and moments acting on all structural components. The focus58

is on the design of steel substructures, so that fatigue damages are most critical. Therefore, time series are59

post-processed to approximate the fatigue lifetime, as described in Section 2.3. At this point, the limitation60

of this work to the substructure is highlighted. Constant lifetimes and costs for all other turbine parts (e.g.61

blades) are assumed. This approach is unproblematic as long as the substructure has a lifetime below 2062

years. In this case, the lifetime of other components is not completely exploited. For substructure lifetimes63

above the 20-year design lifetime, this concept is questionable. A lifetime extension of other components is64

not always possible without significantly increasing the costs. This drawback of the present approach and65

some possible workarounds are discussed in Section 4.66

For all simulations, the simulation length is set to 10 minutes according to current standards and previous67

research [21, 26]. The “run-in” time (i.e. the time that has to be removed from each time series to exclude68

initial transients) is set to values between 60 and 720 seconds according to Hübler et al. [26]. The turbulent69

wind field is calculated using the Kaimal model and the software TurbSim [27]. The JONSWAP spectrum70

is applied to compute irregular waves. To keep the simulation setup as simple as possible and to be in ac-71

cordance with the OC3 study [25], currents, second-order and breaking waves, local vibrations, degradation72

effects, and soil conditions are not taken into account. These common assumptions might affect the precise73

lifetimes values, but do not limit the general conclusions.74

3
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Figure 2: Visualization of the OC3 monopile and the NREL 5 MW reference wind turbine. Inertial frame coordinate system:
x downwind direction, y to the left when looking downwind, and z vertically upwards.

75

2.2. Probabilistic simulation approach76

FAST is capable of simulating time series of forces and moments for a given set of EC. Ideally, the entire77

(20 year) design lifetime of a wind turbine would be simulated. However, due to computational limitations,78

this is hardly possible. Hence, to get well-founded lifetime approximations, it is not only necessary to79

calculate the resulting damages of each simulation (see Section 2.3), but also to use a representative set of80

load cases. These load cases should mirror the entire OWT lifetime. This can either be done by applying a81

deterministic, DLC based approach, as proposed by current standards [21] or a probabilistic approach [28].82

In any case, the damage extrapolation is based on a limited number of simulations so that fatigue damage83

designs become relatively uncertain. Here, a probabilistic bin based approach is utilized: the EMCS [28].84

This means: The wind speed range is split up into several bins of 2 m s−1. In each wind speed bin, the85

same number of Nbin = 100 simulations is conducted. The use of a relatively high number of simulations86

in each bin (current standards recommend at least six simulations per bin) is required, since simulation87

results within each bin scatter significantly. Reasons for these highly uncertain loads within one and the88

same bin are, first, random realizations of the turbulent wind and the sea state (i.e. random seeds) [29],89

and second, other statistically distributed EC (e.g. wave heights or turbulence intensities) [28]. The EC for90

each simulation are determined by sampling from given statistical distributions. Hence, in each bin, MCS91

is applied. The difference to plain MCS is that more simulations are conducted for high wind speeds having92

very low occurrence probabilities, but leading to relatively high damages. Therefore, depending on the93

damage-wind speed correlation, the intensified sampling for high wind speeds by EMCS reduces the error94

due to limited sampling. To illustrate the EMCS approach, Fig. 3 shows the applied sampling distribution95

for wind speeds, being a piecewise defined Weibull distribution and no longer the real wind speed Weibull96

distribution (FWbl). For a detailed description, it is referred to the original source [28].97

Dependent statistical distributions for seven EC (wind speed (FWbl) and direction, turbulence intensity,98

wind shear and wave height, period and direction) are taken from the database in Hübler et al. [26]. For99

this database, measurement data of the FINO3 measurement mast in the North Sea is used.100

2.3. Lifetime calculation101

To approximate the substructure lifetime, the lifetime fatigue damage has to be calculated. Therefore,102

the forces and moments for the most critical location are needed. The applied lifetime calculation procedure103

4
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Figure 3: EMCS sampling distribution for wind speeds. Fairly homogeneous sampling due to applied bins, but in each bin
samples are generated using truncated Weibull distributions and MCS leading to discontinuities at the boundaries of bins.
Shading illustrates the bins.

[28] is briefly explained in the following: The monopile welds are exposed to higher fatigue damages compared104

to the rest of the monopile (e.g. plain steel plates), as stresses are concentrated in these hot spots (welds).105

Hence, in a first step, hot spot stresses are calculated according to Eurocode 3, part 1-9 [30]. As the stress106

concentration at transversal welds is more critical (a detail of 71 MPa according to Eurocode 3) than at107

longitudinal welds, only transversal welds are investigated. An additional stress concentration factor due to108

the size effect of the monopile wall thickness (t > 25 mm) is applied [30]. Since the considered monopile has109

a pure cylindrical shape and hot spots below mudline are not taken into account, the design driving location110

- being exposed to the highest bending moments - is at mudline. For this location marked in Fig. 2, the111

lifetime calculation is conducted.112

In most cases, for monopiles, shear stresses (τ) are negligible compared to direct stresses (σ). Thence, the113

normal stress transverse to the weld can be approximated as follows:114

σ⊥ =
Fz
A

+

√
M2
x +M2

y

S
. (1)

Here, F and M are forces and moments (cf. Fig. 4), A is the cross section area, and S is the section modulus.115

This procedure is a simplification, as the maximum normal stress is assumed and a directional dependence116

for different load cases is neglected (M =
√
M2
x +M2

y ).

z

x
y

My

Mx

Fz

σ⊥

Figure 4: Illustration of relevant forces and moments acting on the monopile cross section.

117

For the normal stress, a rainflow counting evaluates the stress cycles and the linear damage accumulation118

according to the Palmgren-Miner rule is applied. The damage for each time series (j) in each wind speed119

5
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bin (m) is calculated as follows:120

DTS,j,m =
I∑

i=1

ni
Ni

; ∀j ∈ J(m),m ∈M, (2)

where ni is the cycle number associated with the stress amplitude ∆σ⊥,i, Ni is the endurance (cycle number)121

for the same stress amplitude, and I is the number of considered stress amplitudes. M and J(m) are the122

bin number and the number of time series depending on the bin, respectively. Since EMCS with 13 bins123

and 100 samples per bin is applied, it follows M = 13 and J(m) = 100. The slope of the S-N curve is set to124

three before and to five after the fatigue limit.125

In general, the extrapolated lifetime damage (DLT ) is the weighted sum of the damages of all time series in126

all wind speed bins:127

DLT =
M∑

m=1

J(m)∑

j=1

(
DTS,j,m

JtotalPr(m)

J(m)

)
, (3)

where Jtotal is the number of total time series during the lifetime (e.g. 6 × 24 × 365.25 × 20 for a 20-year128

lifetime and 10-minute simulations). Pr(m) = FWbl(bm) − FWbl(am) is the occurrence probability of the129

mth wind speed bin according to the real wind speed Weibull distribution (FWbl) and decreases for high130

wind speeds. am and bm are the minimum and maximum wind speeds of the mth bin, respectively. Pr(m)131

is not related to the EMCS sampling distribution (piecewise defined Weibull distribution, cf. Fig. 3) that is132

only relevant for the sampling.133

However, since yearly realizations of the EC are needed for the economic model, here, yearly damages for134

each year (t) are calculated first:135

Dyear,t =
M∑

m=1

Jy(m)∑

j=1

(
DTS,j,m

Jtotal,yPr(m)

Jy(m)

)
, (4)

where Jy(m) is the number of time series per year depending on the bin (assuming a lifetime of 20 years136

Jy(m) = 100/20 = 5) and Jtotal,y = 6×24×365.25 is the number of total time series during one year. Using137

the same EC realizations, the annual electricity yield (Yt) is calculated:138

Yt =
M∑

m=1

Jy(m)∑

j=1

(
P (v)

Jtotal,yPr(m)

Jy(m)

)
, (5)

where P (v) represents the realization of a cumulative power curve of all wind turbines of an OW farm at139

wind speed v.140

The damage after T years is the sum of the yearly damages:141

Dsum =
T∑

t=1

Dyear,t. (6)

If Dsum exceeds 1, the substructure lifetime (L) is reached. Hence, L can be determined by finding T ∗ being142

the last value for T where Dsum < 1. Since the end of life will normally not be reached at the end of full143

years, Dsum = 1 and therefore L is approximated by using partial years.144

In this work, a probabilistic lifetime calculation is applied. Hence, Eqs. 4, 6, and the determination of L are145

not evaluated once, but NBT = 10,000 times using a bootstrap algorithm. This means: Having Nbin = 100146

simulation results available in each bin, 5 samples per year - corresponding to 100 samples per 20 years design147

lifetime - are drawn randomly with replacement from each bin. Therefore, for each bootstrap evaluation148

(NBT ), different cases (DTS,j,m) are randomly selected which leads to varying yearly damages (Dyear,t),149

lifetimes (L), and electricity yields (Yt). This bootstrap approach enables an uncertainty estimation due150
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to finite sampling in combination with varying EC and yields the lifetime PDF (cf. Fig. 5) as well as the151

electricity yield PDF. At this stage, it has to be clarified that the resulting variability of lifetime values152

is mainly due to the uncertain extrapolation process that is part of today’s turbine designs. If the entire153

lifetime would be simulated, the variation would only be due to the long-term EC scattering, which is much154

smaller.155

Since, for example, the reference design is not designed for the investigated OW farm site, quite damaging156

load cases for fault conditions are not taken into account, and safety factors - like the material safety factor157

- are not applied, the calculated lifetime does not match the 20-year design lifetime, but is significantly158

higher (by a factor of about 75). This is not problematic, since this is an exemplary study that does not159

intend to actually find the best design. However, to ensure reasonable results for the economic viability,160

substructural lifetimes have to be close to realistic project durations (typically 20 years). Therefore, all161

lifetimes are normalized using the 5th percentile of the lifetime of the reference design (i.e. it is assumed that162

the reference design lifetime is at least 20 years with a probability of 95 %).163

2.4. Cost model for the substructure164

The cost model for the substructure CAPEX is based on Häfele and Rolfes [8]. Some changes are made165

to adjust this model to monopiles. For example, welding costs are significantly lower for monopiles, as166

the welding is automated. It is assumed that the substructure CAPEX (Csub) consists of costs for the167

monopile (Cmono), the transition piece (CTP ), the tower (Ctower), and secondary components (Cadd) (e.g.168

boat landings, etc.):169

Csub = Cmono + CTP + Ctower + Cadd. (7)

Since only slight design variations are carried out, it can be assumed that transition piece, tower, and170

secondary components are not significantly affected. Therefore, their costs per mass can be set to constant171

values (see Table 1). Monopile costs are further divided into raw material costs (Cmat), welding costs172

(Cweld), fixed production costs (Cprod), and coating costs (Ccoat):173

Cmono = Cmat + Cweld + Cprod + Ccoat. (8)

Table 1: CAPEX for various parts and aspects. Adapted using several sources.

Cost type Cost Adapted sources

CTP 2600 EUR/t [11]
Ctower 2500 EUR/t [31]
Cadd 5900 EUR/t [11]
Cmat 920 EUR/t [11, 32]
Cweld 0.33 MEUR/m3 [11, 32]
Cprod 0.20 MEUR [11, 32]
Ccoat 200 EUR/m2 [11, 33]

174

Here, the material costs are proportional to the mass, the welding costs to the weld volume, and the coating175

costs to the surface area. For the coating costs, an initial (onshore) coating (down to 5 m below mudline)176

and an additional (offshore) patch coating of 2 % of the surface area are assumed. This leads to the relatively177

high costs per m2.178

2.5. Design of substructures179

To analyze the effect of substructural design variations on lifetimes and costs, and in the end on the eco-180

nomic viability, a reference structure is needed. As stated in Section 2.1, this reference is the well-established181

OC3 monopile substructure with the NREL 5 MW turbine. In this study, seven design variations are in-182

vestigated: the reference OC3 monopile, three more durable designs (with increased wall thicknesses and183

7
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diameters of the monopile) and three cheaper ones (decreased thicknesses and diameters). The design184

changes are summarized in Table 2.185

186

Table 2: Analyzed substructures with small design changes.

Design Abbreviation
Change in Change in
diameter wall thickness

Reference Ref – –
Design 2 D+ +1 % –
Design 3 D− −1 % –
Design 4 t+ – +2 %
Design 5 t− – −2 %
Design 6 Dur +1 % +2 %
Design 7 Chp −1 % −2 %

3. Economic viability model187

In order to measure the cost-efficiency of substructure designs, an economic viability model for financial188

analyses of wind farms is applied in a simulation study of a project located in the German Exclusive189

Economic Zone of the North Sea. The economic viability model is an extension of the model presented in190

Piel et al. [34]. It simulates an economic agent to depict the investment decisions of real-world corporations191

investing in OW farms. The economic viability model is reformulated as an optimization problem. It yields192

the required minimum sales price per unit of generated electricity - the marginal cost (in ct/kWh) - for193

which the analyzed OW farm would exactly meet the investment criteria of both debt (see Section 3.2) and194

equity (see Section 3.3) investors taking into account each substructure design separately (see Section 3.4).195

The marginal cost is comparable to the LCOE and has a similar meaning [34]. However, as it considers the196

specific project finance characteristics (see Sections 3.1-3.3). It allows for more precise financial analyses of197

OW farms. Consequently, the marginal cost is utilized as the competitiveness criterion for the comparison198

of substructure designs according to the following rationale: The lower the marginal cost of the OW farm,199

the higher the cost-efficiency of the analyzed substructure design.200

3.1. Cash-flow simulation201

The economic viability model combines a state-of-the-art cash-flow calculation for OW farms oriented202

towards Piel et al. [34] with the MCS approach of the aero-elastic OWT model. This enables the simulation203

of uncertain cash-flows using the NBT = 10,000 realizations provided by the aero-elastic OWT model for204

the annual gross electricity yield and the turbine lifetime as well as CAPEX of the different substructure205

designs. For every turbine of the investigated OW farm, the cash-flows are simulated until the end of the206

corresponding lifetime realization (i.e. no electricity is produced by a turbine after reaching its end of life,207

Yt = 0 ∀ t > T ∗). The cash-flow simulation is based on an income statement and a cash-flow statement,208

as shown in Table 3. Both statements are simulated for each year of the project life cycle and each MCS209

iteration. This yields PDF estimations of the unlevered FCF, which serve as the basis for the debt sculpting210

in Section 3.2 and the project valuation in Section 3.3.211

Table 4 shows the project characteristics of the OW farm under investigation to which the cash-flow simu-212

lation is applied. The cost data is derived from Reimers and Kaltschmitt [35] using their experience curve213

theory model in consideration of an estimated total installed wind energy capacity of 741.70 GW (34 GW214

offshore [36]) in 2020 [37]. The financing data is oriented towards the cost of capital forecast for German215

OW farms commissioned in 2020 from Prognos and Fichtner [5]. The tax data refers to the German tax216

legislation. The annual revenues Ri,t = p · Yi,t ·NOH are calculated by multiplying the sales price per unit217

of generated electricity p by the gross electricity yield Yi,t and the net operating hours NOH in each year218
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Table 3: Income and cash-flow statements.

Income statement Cash-flow statement

Revenues EBIT
− OPEX − Taxes on EBIT
= EBITDA + Depreciation

+ Decommissioning provision expenses
− Depreciation − CAPEX
− Decommissioning provision expenses − Decommissioning expenses
= EBIT = Unlevered free cash-flow

Table 4: Project characteristics of the OW farm under investigation.

General data Cost data

Distance to shore 10 km CAPEX
Distance to port 20 km -Project development 110 MEUR
Water depth 20 m -Installation 2.4 MEUR/turb.
Commissioning date 01.01.2020 -Rotor, nacelle and tower 8.2 MEUR/turb.
Wind turbines 80 NREL 5 MW -Substructure Substructure costs
Total capacity 400 MW -Insurance and financing 36 MEUR
OW farm efficiency 74 % OPEX
Net operating hours 6500 h/turb. -Operation & maintenance 0.20 MEUR/turb.
Wind resource Wind speed PDF -Insurance 0.10 MEUR/turb.
Project duration Lifetime PDF Decommissioning expenses 0.51 MEUR/turb.

Tax data Financing data

Corporate tax 31 % Unlevered cost of capital 5.6 %
Straight line depreciation 16 years Cost of debt 3.5 %
Provision expenses Discounted at 5.5 % Debt service period 16 years

t = (0, ..., Ti), where Ti represents the total project life cycle length. The net operating hours are derived219

from the OW farm efficiency stated in Prognos and Fichtner [5]. All probabilistic parameters are denoted220

by the index i = (1, ..., NBT ) with NBT as the number of MCS iterations.221

3.2. Debt sculpting222

In recent years, OW farms were, to a large extend, funded via non-recourse project finance which typically223

features high shares of debt [38]. The debt-to-equity ratio can be optimized by means of a debt sculpting224

model based on the unlevered FCF resulting from the cash-flow simulation. Optimizing the debt-to-equity225

ratio utilizes the leverage effect of debt financing, which increases the profitability from equity investors’226

perspective, if the cost of debt is lower than the IRR [39]. In order to optimally utilize the leverage effect,227

the debt sculpting model yields the maximum amount of debt capital that can be raised such that the228

investment criteria of debt investors are exactly met. In project financing, debt investors typically consider229

a certain DSCR target as their investment criteria. The DSCR measures the coverage of the contractual debt230

service by the cash-flow available for debt service [40]. Based on the DSCR target, debt sculpting entails231

calculating the repayment schedule of debt capital such that the debt service, including interest payments232

and principal repayments, is tailored to the cash-flow available for debt service (here: unlevered FCF) [40].233

Consequently, the debt sculpting ensures that a minimum DSCR is maintained in each year of the debt234

service period.235

The DSCR is calculated as follows:236

DSCRi,t =
FCFi,t

INTt + Pt
; ∀i ∈ NBT , t ∈ TDebt, (9)
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where FCFi,t is the unlevered FCF, INTt is the annual interest payment, Pi,t is the annual principal237

repayment, and TDebt is the length of the entire debt service period. Based on a predefined minimum DSCR238

target, the maximum debt service capacity is calculated as follows:239

DSCt =
F−1FCF,t(α)

β
; ∀t ∈ TDebt, (10)

where F−1FCF,t is the inverse of the unlevered FCF CDF, α is a confidence level, and β is the predefined240

minimum DSCR target. Both α and β represent the investment requirements of debt investors. Debt241

investors of OW farms are typically willing to invest, if the DSCR is equal to β = 1.2 with a confidence of242

1 − α = 75 % throughout all debt service periods [40]. A DSCR greater than one implies that the project243

is able to cover the debt service in a specific period by the FCF generated in the same period, and thus,244

indicates the soundness of the project corporation. Given that the debt capital is raised in form of zero245

coupon bonds, the maximum amount of debt capital is derived from the debt service capacity as follows:246

D =

TDebt∑

t=1

DSCt
(1 + rd)t

, (11)

where rd is the cost of debt. Zero coupon bonds do not pay any interest and their principal is the amount to247

be repaid at the time to maturity. Thus, with coupon-stripping any bond can be separated into individual248

securities each representing a zero coupon bond selling at different discounts depending on the time to249

maturity [41]. This property enables sculpting the debt to the debt service capacity in each individual250

debt service period such that the summed security values equal the maximum amount of debt capital to be251

raised. Based on the latter, the principal repayments (Pt) and interest payments (INTt) can be calculated252

as follows:253

Pt =
DSCt

(1 + rd)t
; ∀t ∈ TDebt (12)

and254

INTt = DSCt − Pt; ∀t ∈ TDebt. (13)

Due to the debt sculpting, the sum of principal repayments and interest payments is equal to the debt255

service capacity in each year of the debt service period. This ensures that the minimum DSCR target of the256

debt investors is fulfilled and the maximum amount of debt capital is raised.257

3.3. Valuation258

In order to enable the evaluation of the OW farm profitability, the present economic viability model259

utilizes the APV method to estimate a PDF of the project value by discounting the unlevered FCF to the260

valuation date. Following Myers [42], the APV method is applied as follows:261

APVi =

Ti∑

t=0

FCFi,t
(1 + re)t

+
τ · INTt
(1 + rd)t

; ∀i ∈ NBT , (14)

where τ is the corporate tax rate and re is the unlevered cost of equity. In market-oriented financing and262

industrialized economies, the alternative WACC method is widely used. The APV method is applied to263

valuing investments in economies of high uncertainty and scarce financial markets where stable debt-to-264

equity ratios are hard to obtain [43]. As the latter applies to OW farms, the use of the APV method is265

the best choice [44]. This is due to the explicit tax-shield consideration, which represents tax advantages266

arising from debt financing, in the second fraction of the APV equation. The APV method enables a267

straightforward tax-shield adjustment for changes in the debt-to-equity ratio during the project life cycle.268

However, if consistently applied, the alternative WACC method with the corresponding NPV would lead to269

the same project value [34].270
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3.4. Marginal cost calculation271

The combination of cash-flow simulation, debt sculpting, and APV method yields several KPI in the272

form of PDF. These KPI are the basis for the optimization model that quantifies the marginal cost of the273

analyzed OW farm. As the implementation of wind farms depends on balancing the interests of both equity274

and debt investors, the optimization model considers an economic agent that represents the perspectives275

of both groups of decision-makers. By keeping the investment behavior of real-world corporations in the276

realm of wind farms, the economic agent measures the soundness of the analyzed project from debt investor277

perspective by way of the DSCR and utilizes the APV to analyze the profitability from equity investor278

perspective. A simple mathematical formulation of the optimization problem is as follows:279

MinimizeMinimizeMinimize p subject to (15)
280

E(APV ) ≥ 0 (16)

and281

F−1DSCR,t(α) ≥ β; ∀t ∈ TDebt, (17)

where E(APV ) is the expected APV and F−1DSCR,t is the inverse of the DSCR CDF. The optimization282

model minimizes the sales price per unit of generated electricity p by accounting for the trade-off between283

APV and DSCR, which is strongly influenced by the debt share. The first constraint represents the general284

investment requirement of the equity investors. It determines that they are willing to invest, if the expected285

APV is nonnegative. This is equivalent to an expected (unlevered) IRR that is equal to or greater than the286

(unlevered) cost of capital - a typical investment rule of equity investors of OW farms [45]. Accordingly, the287

second constraint represents the investment requirement of the debt investors.288

In order to find an analytical solution for the optimization problem, a derivative of the expected APV with289

respect to p is used:290

dE(APV )

dp
= (1− τ) ·

T∑

t=1

E(Yt)

(1 + re)t
+ τ · (1− τ) ·

TDebt∑

t=1

F−1
Y,t(α)

β

(1 + rd)t
· (1− (1 + rd)

−t), (18)

where T is the maximum total project life cycle length for all iterations, E(Yt) is the expected electricity291

yield, and F−1Y,t (α) with 1 − α = 75 % is the 25th percentile of the electricity yield. The mathematical292

derivation of Eq. 18 using Eq. 14 is given in Appendix A. The first addend refers to the discounting of the293

unlevered FCF in the APV method. The second addend refers to the discounting of the tax-shields and is294

based on the second constraint. By means of the revenues, the sales price per unit of generated electricity p295

affects the unlevered FCF as well as the tax shield. The latter is based on p due to the debt sculpting, which296

maximizes the amount of debt financing, and thus, determines the interest payments considered in the tax297

shield calculation. The derivative measures the sensitivity of changes in the expected APV with respect to298

a change in p.299

Since the APV in Eq. 14 is linear in the price p (cf. Appendix A), the exact solution of the optimization300

problem can be found by means of the derivative. The cash-flow simulation, debt sculpting, and APV301

method are conducted using an initial guess pinitial ∈ R+ \ {0}. Afterwards, the minimum sales price per302

unit of generated electricity is calculated as follows:303

p∗ = pinitial −
E(APV )
dE(APV )

dp

, (19)

where the second subtrahend represents the change of the initial guess necessary to set the expected APV304

exactly to zero. As stated in Section 3, the resulting minimum sales price per unit of generated electricity305

p∗ represents the marginal cost and thus the competitiveness criterion.306
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Table 5: Approximated substructure costs and lifetimes.

Design
Substructure costs

Difference
Expected substructure

Difference
Coefficient of Variation

in MEUR lifetime in years of the lifetime

Ref 2.84 – 23.4 – 0.086
D+ 2.87 +1.09 % 26.6 +13.9 % 0.091
D− 2.81 −1.09 % 22.7 −3.08 % 0.066
t+ 2.88 +1.32 % 26.7 +14.2 % 0.076
t− 2.80 −1.30 % 21.0 −10.1 % 0.094
Dur 2.91 +2.46 % 30.2 +29.2 % 0.068
Chp 2.78 −2.33 % 17.3 −26.0 % 0.084
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(a) Lifetime PDF for cheaper designs
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(b) Lifetime PDF for more durable designs

Figure 5: Lifetime PDF for different substructure designs.

4. Results307

4.1. Lifetimes and substructure costs308

State-of-the-art design investigations for OWT frequently focus on the structural mass. However, rele-309

vant outputs for investors rather concern the cost-efficiency. Consequently, the presented engineering and310

economic models are combined to focus on the relevant economic results. Nevertheless, as the outputs of311

the aero-elastic OWT model - substructure lifetimes and CAPEX - are needed for the financial analyses (cf.312

Fig. 1), first, these intermediate results are presented in brief.313

The approximated costs of all seven substructures are summarized in Table 5. The lifetime distributions314

are shown in Fig. 5 and indicate the effect of design variations on the lifetime. On the one hand, decreased315

diameters and wall thicknesses result in lower costs. On the other hand, the mean lifetimes of these designs316

decrease as well. Analogical results are apparent for the durable designs, which have higher costs, but also317

higher mean lifetimes than the reference design. This trade-off between costs and lifetime leads to opposite318

effects concerning the profitability and soundness of the OW farm. It has to be further analyzed to assess319

the overall effect on the cost-efficiency of the substructure designs.320

Before analyzing the cost-efficiency, the lifetime distributions are briefly discussed. Figure 5 shows that321

substructure lifetimes between about 12 and 40 years are possible. If substructure lifetimes are very low for322

cheap designs, the whole OWT can only be operated for this limited period. However, for durable designs,323

it is questionable whether the whole OWT can be run for the increased substructure lifetime. Lifetimes of324

other components (e.g. rotor blades) will limit the overall lifetime in this case. Hence, the positive effect of325

durable designs is overestimated. Since a lifetime extension of some years for other parts might be possible,326

while an extension of more than about 10 years is definitely unrealistic, in a second step, the overall lifetime327

is limited to 20, 25, and 30 years. Exemplary, for a limit of 30 years, the adjusted lifetime PDF are displayed328

in Fig. 6. Here, the difference to the unlimited lifetime is mainly visible for the durable design. However,329
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for a limitation of 20 years (not shown), the lifetime distributions of all design are significantly “truncated”330

and the more durable designs have constant lifetimes of 20 years.
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(a) Lifetime PDF for cheaper designs
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(b) Lifetime PDF for more durable designs

Figure 6: Lifetime PDF for different substructure designs using a maximum lifetime of 30 years.

331

4.2. Cost-efficiency332

In consideration of the outputs of the aero-elastic OWT model, the economic viability model is applied333

to the project characteristics of the OW farm given each substructure design separately. Figure 7 shows the334

results of the optimization model for the reference substructure design. For a sales price of 8.57 ct/kWh,335

the following applies: E(APV ) = 0 and F−1DSCR,t(25 %) = 1.2. The APV PDF mean value is nil (see336

Fig. 7(a)) and the 25th percentiles of the DSCR PDF are equal to the DSCR target of 1.2 (see Fig. 7(b)).337

Hence, the investment criteria of both equity and debt investors are exactly fulfilled, which means that the338

marginal cost is equal to the estimated sales price. The economic viability model is congruently applied339

to the other substructure designs. Table 6 shows the calculated marginal cost of all substructure designs340

and their percentage deviations from the marginal cost of the reference design. To enable an additional341

design comparison by means of the APV, the resulting APV PDF of the OW farm for each design given the342

marginal cost of the reference design are shown in Figs. 8 to 10. In addition, the corresponding expected343

APV and expected unlevered IRR are shown in Table 7. The unlevered IRR is used to compare the results344

for different substructures, as it is independent of a project’s individual leverage which changes for the345

considered substructure design. As the marginal cost for the reference design is used, the corresponding346

expected APV is equal to zero and the expected unlevered IRR is equal to the unlevered cost of capital.347

The results show that - for the unlimited lifetime (“unltd”) - the analyzed OW farm has the lowest marginal348

cost in consideration of the durable substructure design (Dur), which has the highest cost, but longest349

expected lifetime. Consequently, following the defined competitiveness criterion, the durable design is the350

most cost-efficient solution among all substructure designs. Accordingly, the cheapest substructure design351

(Chp) is least cost-efficient and has the highest marginal cost. Taking all substructure designs into account,352

the results indicate that the marginal cost decreases with increasing diameters and wall thicknesses. Hence,353

for the present setup (i.e. turbine, project characteristics, minor design variations, etc.), it holds true that354

the more durable a substructure design, the more competitive it is compared to the reference design, and355

vice versa.356

As discussed before, an unlimited lifetime is not realistic, as other turbine parts are not considered. If a357

limitation of the lifetime to 25 or 30 years is introduced (“max25” and “max30”), the APV PDF of the more358

durable designs feature a negative skewness (see Fig. 9(b)), as they highly dependent on the lifetime PDF359

that are also skewed due to the “truncation”. The positive effects of increased durability decrease, as the360

total lifetime potential of these substructure designs is not fully used (i.e. the durable design cannot exploit361

its full lifetime of up to 40 years). This means that the cost-efficiency of the more durable design variations362

is overestimated for the unlimited case. Nevertheless, although the durable design is overdesigned in the363

limited cases (“max25” and “max30”), it is still the most cost-efficient one. Hence, for the investigated364

monopile, it is reasonable to slightly overdesign the substructure to guarantee the design lifetime and even365
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Figure 7: APV and DSCR PDF for the reference substructure design.

a lifetime extension of several years.366

If it is assumed that the lifetime of other turbine parts cannot be extended and the overall lifetime is367

limited to 20 years (“max20”), it becomes clear that a significant overdesign (e.g. the durable design with368

an expected lifetime of more than 30 years, i.e. the substructure lifetime exceeds the fixed turbine lifetime369

by 50 % on average) will lead to less cost-efficiency. Table 6 shows that for this case, a cheaper design (D−)370

is the most cost-efficient solution. This means that in some cases, reduced lifetimes can even be beneficial.371

Furthermore, variances of the APV PDF decrease significantly given a lifetime limitation of 20 years (cf. Fig.372

10(b)), since then, for most designs, the lifetime is constant. Hence, the marginal cost of the substructure373

designs differs only slightly, except for the cheapest design that features lifetimes below 20 years with a374

significant probability. From this, it follows that cheap designs with expected lifetimes significantly lower375

than 20 years should be avoided and that longer lifetimes using more durable designs are promising in most376

cases.377

The results for the expected APV and unlevered IRR shown in Table 7 confirm the findings from the378

comparison according to the marginal cost. The highest expected APV can be achieved with the most379

durable substructure design. The cheapest design results in the lowest expected APV. The same holds true380

for the unlevered IRR. A comparison of Figs. 8(b) and 9(b) makes clear that the advantage of the durable381

design decreases for more realistically limited maximum lifetimes. Although the lifetime restriction to 30382

years only affects more durable designs (cf. Fig. 6), these designs are still most competitive. In contrast, if383

lifetimes are strictly limited to the design lifetime of 20 years, all designs are affected (cf. Fig. 10), since for384

all lifetime PDF, a significant part above 20 years is “truncated”. Given this lifetime limitation, the more385

durable designs lead to quite similar results, as they have nearly constant lifetimes of 20 years. Cheaper386

designs become much more competitive. In this case, the design with a reduced diameter (D−) is the most387

cost-efficient one, as it has lower substructure costs (cf. Table 5), but the lifetime still reaches the maximum388

of 20 years with a probability of about 95 % (cf. Fig. 5). The most durable design (Dur) - being the best389

design for less limited lifetimes - has even slightly lower expected APV and unlevered IRR than the reference390

case. The reason are higher CAPEX for the substructure, whereas the lifetime cannot be increased due to391

the limitation to 20 years.392

5. Discussion, limitations and outlook393

The effects of substructural design variations on the OW farm’s economic viability using an interdisci-394

plinary, probabilistic simulation approach that combines engineering and economic models are analyzed. It395

becomes apparent that even small changes in the designs can lead to significantly different marginal cost396

for OW farms. Results indicate that the effect of varying lifetimes exceeds the effect of changes in initial397

costs. This means that for the considered OW farm, more durable designs with higher lifetimes outperform398

cheaper designs. This implies strong incentives for investors to make rather sustainable investment decisions399
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Table 6: Marginal cost (in ct/kWh) given each substructure design and different maximum lifetimes (unltd: unlimited, max30:
maximum of 30 years, max25: maximum of 25 years, max20: maximum of 20 years). Best designs in bold.

Design
Marginal cost (in ct/kWh) Deviation from Ref

unltd max30 max25 max20 unltd max30 max25 max20

Ref 8.57 8.57 8.59 8.99 0.00 % 0.00 % 0.23 % 4.84 %
D+ 8.28 8.28 8.44 8.99 −3.44 % −3.39 % −1.57 % 4.91 %
D− 8.64 8.64 8.64 8.97 0.76 % 0.76 % 0.79 % 4.68 %
t+ 8.27 8.27 8.43 9.00 −3.50 % −3.48 % −1.71 % 4.94 %
t− 8.85 8.85 8.85 9.03 3.25 % 3.25 % 3.26 % 5.40 %
Dur 8.03 8.08 8.41 9.01 −6.29 % −5.70 % −1.87 % 5.08 %
Chp 9.50 9.50 9.50 9.51 10.9 % 10.9 % 10.9 % 10.9 %
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Figure 8: APV PDF for different substructure designs.
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Figure 9: APV PDF for different substructure designs using a maximum lifetime of 30 years.
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Figure 10: APV PDF for different substructure designs using a maximum lifetime of 20 years.
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Table 7: APV and IRR given each substructure design. Best designs in bold.

Design
APV in MEUR IRR in %

unltd max30 max25 max20 unltd max30 max25 max20

Ref 0 −0.00 −3.14 −61.0 5.56 5.56 5.52 4.54
D+ 49.4 48.6 21.8 −61.9 6.25 6.24 5.91 4.53
D− −10.1 −10.1 −10.6 −58.9 5.42 5.42 5.42 4.58
t+ 50.4 50.0 23.8 −62.3 6.27 6.27 5.95 4.53
t− −41.7 −41.7 −41.9 −67.2 4.84 4.84 4.84 4.39
Dur 95.1 85.4 26.3 −64.1 6.76 6.67 5.98 4.50
Chp −125 −125 −125 −125 2.94 2.94 2.94 2.94

regarding turbine substructures.400

The present analyses are limited to a single monopile design (including small design variations). Therefore,401

a general validity of these results is not given. Especially for other substructure types, the trade-off between402

lifetime and CAPEX might be differently valued. If the substructure CAPEX are higher, being the case for403

jackets or floating substructures, the economic advantage of longer lifetimes will be smaller or even diminish.404

The results of the “max20” case indicate that sometimes it might be even beneficial to reduce lifetimes, if405

this limits the CAPEX.406

For the sake of simplicity, OPEX are considered to be constant for all designs and over time. For a more407

realistic representation, in future research, the influence of variable OPEX should be investigated as well.408

Normally, cheaper designs cause higher OPEX. Another limitation of the analyses refers to the constant409

unlevered cost of capital and the corresponding effect of discounting on the trade-off between lifetime and410

CAPEX. Higher unlevered cost of capital, as for example, caused by country risk premiums, significantly411

reduces the impact of cash-flows in later years due to a higher discounting such that the economic effect of412

lifetime extensions becomes less important, and vice versa.413

Regardless the type of effect, the combined engineering and economic analysis clarifies that the lifetime414

should not be considered as a constant. It should be included as an important variable that has to be415

optimized relative to the corresponding CAPEX by analyzing the economic effect of their trade-off.416

This leads to some open issues that should be addressed by upcoming work: First, so far, only the effect417

of different designs was analyzed. As noted before, in future optimizations, the OWT lifetime should be418

regarded as a variable. Hence, such an optimization of the substructure taking into account an optimal419

lifetime would be beneficial. It might lead to significantly different “optimal” structures compared to opti-420

mizations using constant lifetimes. Second, such future optimizations should also consider variable unlevered421

cost of capital, which depend on the risk inherent to the analyzed substructure design. For example, more422

durable designs decrease the overall project risk and should thus slightly reduce the unlevered cost of capital423

due to a lower beta factor (risk measure), and vice versa. This could further increase the cost-efficiency424

of durable substructure designs. Third, so far, only the design of the substructure was varied. The whole425

economic viability topic using probabilistic, interdisciplinary analyses can be applied to other turbine parts426

as well. Hence, upcoming work should also address other components (e.g. blades). The inclusion of other427

components will probably lead to even more pronounced differences in the marginal cost.428

Appendix A429

The purpose of this derivation is to show the derivative of the expected APV with respect to the sales
price per unit of generated electricity (cf. Eq. 18):

dE(APV )

dp
= (1− τ) ·

T∑

t=0

E(Yt)

(1 + re)t
+ τ · (1− τ) ·

TDebt∑

t=0

F−1
Y,t(α)

β

(1 + rd)t
· (1− (1 + rd)

−t).
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The starting point is the adjusted present value in Eq. 14. The APV can be split in two addends, the
unlevered APV (uAPVt) and the discounted tax shield (DTSt):

APV =
T∑

t=0

FCFt
(1 + re)t

+
τ · INTt
(1 + rd)t

=
T∑

t=0

uAPVt + DTSt .

dE(APV )

dp
=

d

dp
E

[
T∑

t=0

uAPVt

]
+

d

dp
E

[
TDebt∑

t=0

DTSt

]
.

Using Table 3, the first addend of the APV equation - the unlevered APV - can be rearranged as follows,
where we denote depreciation as DEP , decommissioning expenses as DECEX , its provisions as PDC , and
the taxes on EBIT as TAXt:

d

dp
E

[
T∑

t=0

uAPVt

]
=

d

dp
E

[
T∑

t=0

FCFt

(1 + re)
t

]

=
d

dp
E

[
T∑

t=0

EBIT t − TAX t − CAPEXt −DECEXt +DEP t + PDCt

(1 + re)
t

]
.

It is assumed that CAPEXt, DECEXt, DEPt, and PDCt are independent of p and constant in our case.
Therefore, we can simplify as follows:

d

dp
E

[
T∑

t=0

uAPVt

]
=

d

dp
E

[
T∑

t=0

EBIT t − TAX t

(1 + re)
t

]

=
d

dp
E

[
T∑

t=0

EBIT t − τ · EBIT t

(1 + re)
t

]

=
d

dp
E

[
T∑

t=0

EBIT t · (1− τ)

(1 + re)
t

]

=
d

dp
E

[
T∑

t=0

(Rt − (OPEXt +DEP t + PDCt)) · (1− τ)

(1 + re)
t

]
.

DEPt, and PDCt are still independent of p and constant. The same holds true for OPEXt. However, it is
conceivable that specific contractual arrangements feature dependency on the revenues and thus on the price
p. An example could be the land lease. As we assume turbine dependent OPEXt, they are independent of
p and constant in our case. It follows:

d

dp
E

[
T∑

t=0

uAPVt

]
=

d

dp
E

[
T∑

t=0

Rt · (1− τ)

(1 + re)
t

]

=
d

dp
E

[
T∑

t=0

Yt · p · (1− τ)

(1 + re)
t

]

= (1− τ) ·
T∑

t=0

E(Yt)

(1 + re)
t .
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For the second addend - the tax shield (TSt), Eqs. 9 to 13 and Table 3 are used for the following rearrange-
ments:

d

dp
E

[
TDebt∑

t=0

DTSt

]
=

d

dp
E

[
TDebt∑

t=0

TS t

(1 + rd)
t

]

=
d

dp
E

[
TDebt∑

t=0

τ · INT t

(1 + rd)
t

]

=
d

dp
E

[
TDebt∑

t=0

τ · (DSC t − Pt)

(1 + rd)
t

]

=
d

dp
E



TDebt∑

t=0

τ ·
(

DSC t − DSC t

(1+rd)
t

)

(1 + rd)
t




=
d

dp
E

[
TDebt∑

t=0

τ ·DSC t

(1 + rd)
t ·
(

1− (1 + rd)
−t
)]

=
d

dp
E



TDebt∑

t=0

τ · F
−1
FCF,t (α)

β

(1 + rd)
t ·

(
1− (1 + rd)

−t
)

 .

As before, FCF can be expressed as:

FCF = (Yt · p−OPEXt +DEPt + PDCt) (1− τ)− CAPEXt −DECEXt +DEPt + PDCt

and OPEXt, CAPEXt, DECEXt, DEPt, and PDCt are independent of p and in our case constant.
Therefore, it holds:

F−1FCF ,t(α) = F−1Y ,t(α) · p · (1− τ) + c

where, c = − (OPEXt +DEPt + PDCt) (1− τ)−CAPEXt−DECEXt +DEPt +PDCt. We can further
rearrange the second addend:

d

dp
E

[
TDebt∑

t=0

DTSt

]
=

d

dp
E



TDebt∑

t=0

τ · F
−1
Y ,t (α)·p·(1−τ)+c

β

(1 + rd)
t ·

(
1− (1 + rd)

−t
)

 .

Since the previous term does not contain any random variable, the expected value of the term is the term
itself, it follows:

d

dp
E

[
TDebt∑

t=0

DTSt

]
= τ · (1− τ) ·

TDebt∑

t=0

F−1
Y,t(α)

β

(1 + rd)t
· (1− (1 + rd)

−t).

Finally, the full expression in Eq. 18 is:

dE(APV )

dp
=

d

dp
E

[
T∑

t=0

uAPVt

]
+

d

dp
E

[
TDebt∑

t=0

DTSt

]

= (1− τ) ·
T∑

t=0

E(Yt)

(1 + re)t
+ τ · (1− τ) ·

TDebt∑

t=0

F−1
Y,t(α)

β

(1 + rd)t
· (1− (1 + rd)

−t).
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7 Summary and outlook

7.1 Summary
In this thesis, a comprehensive probabilistic framework for the time-domain sim-
ulation of offshore wind turbines is developed and applied. In contrast to previous
probabilistic simulation approaches, the entire framework is based on time-domain simula-
tions. This is only possible with adequate efficiency due to several innovations with respect
to various aspects, e.g. sensitivity analyses or long-term extrapolations.
Primary intention of this work is to enable time-domain probabilistic simulations that model
inherent physical uncertainties directly. There are manifold reasons why probabilistic simu-
lations can outperform state-of-the-art deterministic approaches and simplified probabilistic
approaches, being based on semi-analytical expressions. Some examples are the capability
of calibrating and reducing safety factors, the possibility to compute failure probabilities,
the chance to assess present uncertainties, a more realistic and accurate representation of
the structure, and a more general validity compared to semi-analytical methods, since no
calibration for different load cases is needed. Nevertheless, probabilistic approaches are not
commonly used, since comprehensive and efficient methodologies are missing. Therefore,
a probabilistic framework - consisting of the following steps - is built up in this work: At
first, deterministic models for the structure and possible failures (failure modes) are needed.
Second, the aleatory uncertainty in all inputs has to be quantified. Third, a probabilistic
design of experiments is required that includes an objective selection of uncertain parameters.
Fourth, efficient and accurate long-term extrapolations have to be conducted. Finally,
relevant evaluation criteria, for example, the assessment of economic effects, are necessary.
To set up such a framework, the aforementioned aspects are thoroughly investigated. Regard-
ing the deterministic modelling, an effective soil model is developed. This soil model
is incorporated in the state-of-the-art aero-elastic simulation code FAST and enables a more
realistic representation of soil-structure interaction for OWTs. To quantify inherent physical
uncertainties of some of the most important inputs, a database containing statistical
distributions of various wind and wave parameters is created. For this purpose,
raw data of offshore metocean measurements is analysed. Concerning the probabilistic
design of experiments, a methodology for an accurate but efficient identification of
the most important uncertain parameters is developed. The method is based on
the objective, stepwise reduction of probabilistic parameters by means of several sensitivity
analyses. Long-term extrapolations for OWT loads are challenging. Therefore, two new
sampling concepts for long-term extrapolations are proposed. These concepts can
help to reduce the uncertainty due to finite sampling. Both concepts are proved to be
generally valid, since they perform well for different turbines, sites, and measurement
and simulation data. Finally, an innovative, combined techno-economic approach
is tested that is capable of assessing probabilistic economic effects of design changes of
OWT substructures, if lifetimes are no longer set to constant values.
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The achieved results of this work can be divided into three categories: general outcomes of
the probabilistic framework, methodological developments, and application-specific interim
findings.
Generally speaking, this thesis provides a framework for probabilistic OWT simulations.
The framework can, for example, be used to improve designs using probabilistic methods
or to calibrate safety factors for subsequent semi-probabilistic analyses. Nevertheless, it
has to be mentioned that no ready-for-use software solution is provided. This means that
the framework provides new methods and useful interim findings that can be used for
probabilistic analyses, but each analysis still requires an extensive workload and some expert
knowledge to combine the proposed steps as needed.
Regarding the methodological developments, the following outcomes can be quoted: The new
soil-structure module for FAST is useful for all probabilistic analyses that are conducted with
FAST. For other simulation codes, it should be possible to adapt the presented soil model.
The stepwise sensitivity analysis is code- and application-independent and can be useful for
all kinds of probabilistic analyses - not only for OWTs. However, sensitivity analyses are
not essential for probabilistic analyses. Sometimes, it is sufficient to use findings of previous
research - like outcomes of the present sensitivity analysis - to select the most important
parameters. Sampling concepts for more efficient long-term extrapolations of fatigue loads
are not only useful for probabilistic simulations but also for (quasi-)deterministic ones.
Due to turbulent wind fields and irregular waves, even deterministic approaches require
a relatively high number of simulations that can be reduced using the proposed sampling
methods. It is shown that the sampling concepts are code-, structure-, and site-independent.
A transfer to other applications needs major adaptions, but should be possible. Finally,
on the one hand, the proposed combined techno-economic model is - just like sensitivity
analyses - not essential for the framework. On the other hand, this model represents a
relatively generally applicable model that can be used for all kinds of economic investigations
of OWTs.
Lastly, some OWT-specific interim findings are achieved. These findings can be used directly,
but they are hardly transferable to other applications. Distributions for probabilistic wind
and wave parameters are now available for future work. This means that it is possible to
conduct forthcoming probabilistic analyses without an a priori uncertainty quantification.
The most important input parameters are identified and form a well-founded basis for
upcoming probabilistic work that does include an own sensitivity analysis. Finally, it is
shown that the lifetime of the substructure influences the economic viability of an OWT
wind farm project significantly. So, even for deterministic approaches, this result suggests
that longer lifetimes could be valuable and that the lifetime should be treated as a design
variable that has to be optimised with respect to economic efficiency.

7.2 Limitations and outlook

Although benefits of probabilistic analyses are indisputable, for OWTs, deterministic ap-
proaches are still state of the art. Some of the main reasons are high computing times,
seemingly unambiguous results, the lack of customised probabilistic methods for OWTs, and
missing software solutions. Although this thesis focuses on the development of methods for
a probabilistic simulation framework for OWTs and some of the developed methods help to
limit the computational effort, a major limitation is that software solutions are not addressed.
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This leads to future work that is needed to establish probabilistic analyses as standard
approaches. To establish probabilistic approaches in industry, software solutions are needed
in the first place. Of course, there are commercial software solutions for probabilistic analyses
in general, e.g. OptiSlang [46]. However, the incorporation of such commercial probabilistic
programmes into wind turbine modelling schemes is definitely not straightforward. Certainly,
it is unrealistic that complete probabilistic simulations of wind turbines will be possible
with just a few clicks. However, the various steps and methods in the present framework
have to be coupled and automated to make the framework easier to use without deeper
knowledge of probability theory or a high workload. The next point is that although the
proposed concepts already reduce computing times significantly, the computational effort
is still not manageable for many applications. Hence, research is required that deals with
a more efficient simulation set-up. This could be, for example, the use of meta-models for
fatigue calculations or advanced sampling methods (e.g. importance sampling) for the design
of experiments. There are still many possibilities to improve probabilistic analyses in such a
framework.
Independent of a faster and easier framework, further potential for improvement is that the
performance of the present framework is not conclusively assessed. Such an assessment is
started in Section 6, but should be continued in future work to demonstrate the real benefits
of this probabilistic approach for industry and academia. Running holistic examples for
various turbines, sites, etc., would reveal the benefits of probabilistic approaches. Moreover,
existing shortcomings can be identified. In this context, it should be noted that previous
examples (Section 5.1, 5.2, and 6) are limited to a probabilistic analysis that considers
aleatory uncertainties of ECs over the lifetime. Design uncertainties (e.g. manufacturing
tolerances or soil conditions) are not taken into account, since they are of secondary impor-
tance (cf. Section 4). Nonetheless, they would increase the value of the probabilistic analysis.
Other important sources of uncertainty not considered in this work are statistical and model
uncertainties. Although model uncertainties are hardly quantifiable, further research should
address this important type of uncertainty by applying imprecise probability methods.
The topic “model uncertainty” leads to the next limitation. Regardless of probabilistic
considerations, limitations concerning the deterministic “black box” model have to be men-
tioned. For OWT modelling, the coupled aero-hydro-servo-elastic simulation code FAST
is used in this thesis. Although FAST is state of the art and is certified for wind turbine
design certifications in industry, it is partly simplified. Many types of non-linearities are not
considered, e.g. material and most geometric non-linearities. Hence, the accuracy, especially
for wind turbines with growing dimensions that exhibit larger deformations, can be limited.
So, future research should also address the question of the influence of the “black box” model.
Here, this assessment is only done for the uncertainty reduction in Section 5 by validating
the proposed models using measurement data.
Finally, focusing on the probabilistic analysis itself (i.e. not taking into account the com-
plexity due to the coupled modelling in the time domain), there are several aspects that
can be improved. In this respect, future work should address topics that are already state
of the art, if semi-analytical models are used for the probabilistic analysis. However, these
advanced probabilistic approaches, e.g. Bayesian approaches or system reliability, which
cannot be applied to time-domain simulations directly, have to be adapted, and are out of
the scope of this thesis.
Although individual outlooks for each step of the framework have already been given in
the corresponding sections, a brief outlook for some steps is given here too. These outlooks
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concentrate on implications on the overall framework. Starting with the uncertainty assess-
ment: Probabilistic analyses get more realistic, if not only aleatory uncertainty but also
epistemic uncertainty is taken into account. Second, sensitivity analyses do not have to be
part of a probabilistic framework. It is also possible to select important parameters based
on previous investigations. However, if sensitivity analyses are included, low computing
times are essential. Therefore, for possible future software solutions, it is recommended to
use meta-model-based sensitivity analyses. They are less accurate, but can be implemented
into an automated framework more easily. Third, further improvements for long-term
extrapolations are necessary. Based on achieved results, advancements of sampling concepts
can limit computing times. It should be noted that the long-term extrapolation is the most
time-critical part of probabilistic analyses. Lastly, although an economic analysis is included
in the present framework and yields interesting and valuable results, for an automated
framework, it is recommended to decouple economic analysis and probabilistic framework or
at least to keep one-way coupling. The reason for this advice is the complexity of economics.
For most engineers, it will be complicated or even impossible to assess economic analyses
or to judge outcomes. Hence, it is advisable to separate the two analyses, and to run
the downstream economic work together with economists using probabilistic results of the
structural analysis.
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