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Abstract

Background: The use of artificial endoprostheses has become a routine procedure
for knee and hip joints while ankle arthritis has traditionally been treated by means
of arthrodesis. Due to its advantages, the implantation of endoprostheses is
constantly increasing. While finite element analyses (FEA) of strain-adaptive bone
remodelling have been carried out for the hip joint in previous studies, to our
knowledge there are no investigations that have considered remodelling processes
of the ankle joint. In order to evaluate and optimise new generation implants of the
ankle joint, as well as to gain additional knowledge regarding the biomechanics,
strain-adaptive bone remodelling has been calculated separately for the tibia and the
talus after providing them with an implant.

Methods: FE models of the bone-implant assembly for both the tibia and the talus
have been developed. Bone characteristics such as the density distribution have
been applied corresponding to CT scans. A force of 5,200 N, which corresponds to
the compression force during normal walking of a person with a weight of 100 kg
according to Stauffer et al., has been used in the simulation. The bone adaptation
law, previously developed by our research team, has been used for the calculation of
the remodelling processes.

Results: A total bone mass loss of 2% in the tibia and 13% in the talus was
calculated. The greater decline of density in the talus is due to its smaller size
compared to the relatively large implant dimensions causing remodelling processes
in the whole bone tissue. In the tibia, bone remodelling processes are only
calculated in areas adjacent to the implant. Thus, a smaller bone mass loss than in
the talus can be expected. There is a high agreement between the simulation results
in the distal tibia and the literature regarding.

Conclusions: In this study, strain-adaptive bone remodelling processes are simulated
using the FE method. The results contribute to a better understanding of the
biomechanical behaviour of the ankle joint and hence are useful for the optimisation
of the implant geometry in the future.

Background
Arthrodesis is a preferred and most used operative therapy in advanced symptomatic

arthrosis of the ankle [1]. The objective is pain relief with a stable osseous fusion.

Disadvantages are the loss of movement in the joint accompanied by an increased

mobility in the transversal joint (Chopart joint) as a compensation reaction. This can

lead to secondary overloading and arthrosis. The activity of the patient is significantly
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limited by arthrodesis. Further disadvantages are the risk of non fusion as well as the

long rehabilitation time [2-6].

Total ankle replacement (TAR) is an often used alternative procedure in advanced

arthrosis of the ankle. Preoperative and postoperative radiographs of a left arthrotic

ankle treated with the three-component system S.T.A.R.® (Small Bone Innovations,

Donaueschingen/Germany) are shown in Figure 1.

The advantage of TAR is the maintenance of the ankle motion. Therefore, TAR

should reduce the load on the adjacent joints and prevent the development of second-

ary arthrosis [7]. However, the development of TAR is lagged behind that of the hip

and knee [8]. Difficulties are the smaller joint size [9] and the comparatively higher

stresses applied to the ankle joint resulting from higher compression forces [10-14]

and torques [15,16]. Furthermore, patients requiring TAR are generally younger and

therefore more active [1,2].

The clinical results of TAR improved in recent years [17]. Nowadays, there are 82%

of good to very good results with ankle joint prostheses according to AOFAS scores.

With arthrodesis there are 72% of good to very good results achieved with the Mazur

ankle score [18]. One reason for the improvement was the development of the modern

three-component prostheses [17]. The actual TAR systems consist of three compo-

nents [19]: a metallic baseplate fixed to the tibia, a domed or condylar shaped metallic

component that resurfaces the talus, and a mobile bearing inlay, which consists of

ultra-high molecular weight polyethylene (Figure 2).

Figure 1 Radiographs of a left arthrotic ankle joint pre-and postoperative in sagittal and frontal
plane.
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Because of their full congruency without restriction of rotational motion, the modern

three-component designs have mechanical and kinematical advantages compared to

two-component designs. The rotational stresses at the bone-prosthesis interface are

reduced by this development. Independent from the exact design, the 5-year survival

rate of the third generation endoprostheses is up to 90% [20].

However, the results still indicate inferior patient satisfaction, compared to knee and

hip arthroplasty, as mentioned previously. Aseptic loosening is the main reason for

early failure of TAR [21]. It results from stress shielding caused by the implant. The

difference in mechanical properties of the bone tissue and the prosthesis and the chan-

ged bone loading condition due to TAR promote stress shielding. Bone tissue is in a

permanent state of resorption and formation. Bone acts like a technical controller on

Figure 2 S.T.A.R.® system [19].
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load changes [22]. Set point is the elastic deformation, which is regulated by a variation

of the amount of bone tissue. Accordingly, a load increase leads to an increase in the

elastic deformation and to the formation of new bone tissue. Contrarily, a load reduc-

tion leads to bone resorption [23]. The implantation of an artificial joint leads to a

change in biomechanics. This can lead to intense bone resorption around the implant

and can cause the migration or loosening of the implant.

In order to increase long-term stability and to avoid implant loosening, it is impor-

tant to estimate the adaptive bone remodelling prior to implantation in preclinical

studies.

In our previous studies, bone remodelling processes were successfully simulated for

canine [24] and human [25,26] femora after total hip replacement (THR). The influ-

ence of the boundary conditions were also investigated [27]. Furthermore, the signifi-

cance of implant materials [28,29] and implantation techniques [30,31] of the

remodelling processes in the femur were analysed. Recently, bone remodelling in the

acetabulum was simulated as well [32].

In general, bone remodelling was calculated mainly in the femur [24-31,33-38]. To

our knowledge, there exist no simulations of the bone remodelling in the ankle joint.

FE simulations concerning TARs are quite rare. The following section provides an

overview of simulations at the ankle joint found in the literature.

In the middle of the 1980s Falsig et al. [39] employed a 3D finite element stress ana-

lysis to calculate the stresses in the distal tibia. The goal was to reduce the cement-

bone-interface and the stresses in the bone by varying the shape and the material of

the tibial component. Prostheses with metal backing are advantageous compared to PE

components without metal backing. Furthermore, long stems for the implant fixation

proved unfavourable as well.

The stresses and wear of the PE inlay of TARs was examined by FEA from the

research group of McIff [40,41]. In the first study a two component design (AGI-

LITY™) and a three component design (S.T.A.R.®) were compared. For the AGI-

LITY™ system the loss of congruency between the PE inlay and the talar component

resulted in high contact and internal stresses due to point and line contact. In a second

study the design of the inlay and of the talar component was varied. Apparent insignif-

icant geometrical specifications had an important influence on the contact mechanism.

A recent study of Espinosa et al. [42] confirmed the result of the first examination of

McIff et al. [40]. The research group around Galik [43] examined the PE wear and var-

ied the thickness of the PE inlay.

More complex models were established by Reggiani et al [44] and Anderson et al.

[45]. Reggiani calculated the contact pressure on the components. They computed

average values of 6.4 MPa for the tibial component and 10.3 MPa for the talar compo-

nent [44].

Anderson et al. [45] developed a complex FE model for the simulation of the contact

pressure distribution in the healthy ankle joint. Recently, Anderson et al. [46] per-

formed a FEA with a new implant for defect resurfacing of the talus according clinical

feasibility.

The aim of this study is to calculate the strain-adaptive bone remodelling after TAR

by means of the finite element method (FEM).
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Methods
Geometry modelling

First, FE models of the tibia and the talus should be built. Therefore, models of the

intact bone and the bone provided with the implant are required. In order to obtain

geometrical data, a left ankle joint from Sawbones (Malmö/Sweden) was optically mea-

sured with the 3D coordinate measurement system ATOS II (GOM mbH, Braunsch-

weig/Germany). The bones from Sawbones were used to obtain a standard geometry

model of the ankle joint and to eliminate patient-individual anatomical characteristics.

The digitalised STL data of the tibia and the talus were reconstructed by means of the

3D software Mimics (Materialise, Leuven/Belgium). CT scans (Philips Brilliance CT 64)

of 20 cadaver ankle joints were performed to define the density distribution throughout

the bone on the basis of the gray values. Accordingly, the tibial bone model was divided

into three different density areas: cortical bone in the outer layer (1.7 g/cm3), cancellous

bone in the inner layer (0.5 g/cm3) and an interface layer between cortical and cancel-

lous bone (1.0 g/cm3). The talus was divided into only two different density areas namely

cortical bone (1.7 g/cm3) and cancellous bone (0.5 g/cm3). An interface layer has not

been observed on the CT scans.

The bone tissue was modelled with homogeneous elastic properties. On the basis of

the density values the Young’s modulus was determined according to Equation 1 [47].

E = 3790 · ρ3 (1)

In order to build the FE models of the bone-implant assembly, the prosthesis was

integrated into the previously described bone models via the pre-processor software

HyperMesh (Altair Engineering GmbH, Böblingen/Germany). The cementless three

component S.T.A.R.® system was used, which is the most-implanted ankle joint system

in Europe [7] (Figure 2).

The alignment of the implant was defined based on surgical experience.

After the virtual implantation of the tibial and the talar component in the bone models,

they were meshed using four-noded tetrahedral elements via the pre-processor HyperMesh.

The FE solid model of the whole ankle joint with the endoprosthesis is shown in Figure 3.

For an optimal force transmission from the implant to the bone and for the model-

ling of the cementless fixation of the implant, a consistent meshing method has been

used to realise these requirements. In addition, the models of the tibia and talus in the

physiological state without implant already provide the implant geometry. Errors

resulting from density transmission inaccuracies are excluded a priori.

The prosthesis is made of a cobalt-chromium-molybdenium alloy with titanium

plasma spray coating. In the FE modelling a homogeneous, isotropic material law was

used for the prosthesis (E = 210,000 N/mm2, ν = 0.3). The coating was considered

using proper friction coefficients between the bone and the implant surface.

Loads and boundary conditions

Subsequent to modelling, both loads and boundary conditions were defined. The tibia

was constrained at the proximal plateau as illustrated in Figure 4. Fixed bearings were

used. The load was applied distally. Contrarily, the talus was constrained distally on

the subtalar joints by the use of fixed bearings and the force was applied proximally

(Figure 4).
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The load was taken from the study of Stauffer et al. [10], in which a load of 5.2 times

the body weight had been calculated for the normal ankle joint during the stance phase

of gait. A person of 100 kg weight was assumed. Consequently, a static force F of 5,200

N was applied to the tibia and the talus by spreading it equally on ten nodes.

FE simulation of the bone remodelling

As a next step the simulation was carried out using the FE solver MSC.MARC (MSC.

SOFTWARE Corp.). This was done for the talus and the tibia, separately. The same

force and force application points were used in both simulations. Furthermore, the

bone adaptation law of Bouguecha et al. [32] was applied (Figure 5).

The bone formation rate ρ̇ changes in dependency of the bone remodelling stimulus

ξ. The stimulus is defined by the ratio of the actual strain energy per unit of mass in

the periprosthetic bone Spro to that in the physiological bone Sref (Equation 2).

ξ =
Spro
Sref

(2)

The strain energy density per unit of mass is calculated according to Equation 3.

S =
D
ρ

=

1
2
· σ T · ε
ρ

(3)

Herein, ε represents the strain vector and sT the transposed stress vector.

The used bone adaptation law is a modification of the law of Huiskes [34]. A limita-

tion of the bone formation rate has been introduced. It is assumed, that severe over-

loading causes lyses of bone tissue and no unlimited bone formation.

Figure 3 FE solid model of the prosthetic ankle joint.
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On the basis of a constant element volume, the density values of each element were

recalculated in every increment. The apparent bone density evolution rate ρ̇ was cal-

culated depending on the stimulus for the bone remodelling. After the convergence of

the calculation at a constant density value, a balance is adjusted between resorption

and forming of bone tissue. The remodelling of bone tissue can be indicated according

to the density distribution in the tibia and the talus at the end of the simulation.

Results
Bone remodelling in the tibia

According to the numerical calculations, a total bone mass loss of 2% in the whole

prosthetic tibia can be expected. The progress of the mass loss in the tibia is presented

in Figure 6. The initial state in the simulation (computation step 1) corresponds to the

medical situation directly after TAR, while the stationary final state (computation step

35) corresponds to the clinical long-term situation.

Bone remodelling processes in the prosthetic tibia only occur in the distal epiphysis,

where the implant is embedded. A change in density distribution is not calculated

within the proximal tibia. Subsequently, the post-convergence distribution of the bone

density for the distal tibia is shown in Figure 7.

Figure 4 Boundary conditions for the tibia and the talus.
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To the left image of Figure 7, the density distribution in the physiological state with-

out implant is shown, whereas on the two right images, the density distribution of the

prosthetic ankle is represented.

An increase in density is to be expected above both anchoring bolts, while a decrease

in density is calculated centrally above the tibial plate and in the medial malleolus.

Figure 5 Bone adaptation law of Bouguecha et al. [32]used in the simulation. In this figure, the
apparent bone density evolution rate ṗ in dependency of the bone remodelling stimulus ξ is illustrated.
Bone resorption occurs in an underloading condition when the bone formation rate is negative. Formation
of new bone tissue occurs in an overloading condition and a positive bone formation rate. Within a dead
zone z, a change of the bone remodelling stimulus does neither lead to formation nor to resorption of
bone tissue. After exceeding a certain stimulus y, bone tissue is overloaded to such an extent, that lysis of
bone tissue occurs.

Figure 6 Bone mass change in the tibia over the computation steps. In this figure, the bone mass
loss in dependency of the computation steps is shown. At the beginning of the calculation there is a
great decline in the bone mass. After convergence of the bone mass after a certain computation step, the
calculation is finished.
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Bone remodelling in the talus

A total bone mass loss of 13% has been estimated for the talus. In Figure 8 the pro-

gress of the mass loss in the talus is presented.

The high bone mass loss is expected due to the small size of the bone and the

dimensions of the implant. Bone remodelling processes occur in large regions all over

the talus. The density distribution in the whole talus in frontal and sagittal plane is

illustrated in Figure 9. The upper images illustrate the initial state and the lower

images the final state after convergence of the calculation.

The bone mass loss is observed in the regions beneath the implant. A considerable

increase in density is expected according to the FE analysis beneath the central fin of

the component.

Discussion
The number of TARs is constantly increasing [7]. Thomas and Daniels [48] pointed

out, that beside good clinical results with modern three-component systems, no state-

ments can be made about the long-term stability of the implants.

This makes it even more important to simulate the bone remodelling in order to

estimate the clinical performance of the endoprostheses prior to implantation.

In this work, a 3D FE simulation of the bone remodelling processes in the tibia and

the talus was performed. The bone adaptation law used in the study has been cali-

brated for the hip joint via DEXA investigations in recent studies [26]. The calculated

bone mass loss was in good agreement to the conclusions of the DEXA analysis. The

application of the adaptation law to the ankle joint is considered to be adequate.

Nevertheless, every FE simulation has to be validated in order to proof the accuracy

of the calculation result. Therefore, further DEXA investigations of the ankle joint

after TAR are still required.

The simulation was done using homogeneous elastic properties for the bones,

although bone tissue consists of cortical and cancellous bone with complex trabecular

architecture. This simplification was made due to the observation on the CT scans,

Figure 7 Density distribution in the distal tibia. The density distribution in frontal section for the
physiological (left image) and periprosthetic states of the tibia (middle and right image) is shown. Density
values range from 0.00 up to 1.70 g/cm3. Comparing the final and the initial states of the periprosthetic
tibia bone remodelling areas can be determined according to the density changes which are exemplarily
marked for bone formation in the right image.
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where the patterns of the cancellous bone were not clearly visible. A nearly homoge-

neous density distribution for the cancellous and cortical bone in the talus has been

observed. For the tibia, a third density area was added between cortical and cancellous

bone to reflect the observations on the CT scans.

Finally, first results of the 3D FE simulation concerning the strain-adaptive bone

remodelling processes in the whole ankle joint were presented in this study.

Good agreement was achieved between the simulation result in the tibia and the

changes in density distribution after TAR described in the literature. An increase in

density has been observed above the anchoring bolts of the implant and a density

decrease was observed centrally above the tibial plate [2]. This confirms the previously

described areas of strain-adaptive bone remodelling. The fixation of the tibial compo-

nent is achieved with two anchoring bolts. This results in force transmission from the

Figure 8 Bone mass change in the talus over the computation steps.

Figure 9 Density distribution in the talus in frontal and sagittal plane.
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two bars into the bone. This may lead to stress shielding between the anchoring bolts

and above the tibial plate which has also been observed from Hintermann [2].

In the simulated model the fibula was disregarded because there is no direct fixation

of an implant at the fibula. Furthermore, it does not contribute to the load distribution

from the tibia to the talus. The fibula is irrelevant for bone remodelling processes in

the ankle joint and hence neglecting its role is justified. Other researchers who exam-

ined the ankle joint by FEM [42-48] disregarded the fibula as well.

Another simplification was the use of only one static load case. In reality more com-

plex loading conditions can be expected. Moreover, the muscle forces acting on the

ankle joint were disregarded due to the lack of experimental study. For future investi-

gations, force patterns, derived from multibody simulations, should be incorporated

into the FE calculation to consider the whole gait cycle and in order to examine the

influence of the muscle forces. Furthermore migration processes of the implants can

be calculated by coupling the multibody simulation and the FE calculation.

Further investigations are planned regarding the previously described limitations.

Conclusions
To our knowledge the first finite element simulation of strain-adaptive bone remodel-

ling of the ankle joint is presented in this study. High agreement between the simula-

tion and the clinical results were shown in a qualitative comparison between the

calculated bone remodelling in the distal tibia and the reported radiographic changes

in literature [2]. On the basis of the calculated density distributions, the design of total

ankle prostheses can be evaluated and optimised.

Acknowledgements
This study was supported by the Leibniz Universität Hannover in the project “Experimental and numerical
investigations for the optimisation of total ankle endoprostheses”. We wish to thank the Leibniz Universität Hannover
for the financial support. Furthermore, we thank the Small Animal Clinic of the University of Veterinary Medicine
Hannover for carrying out the CT scans. We would also like to thank Small Bone Innovations (Donaueschingen/
Germany) for providing the implants and technical drawings.

Author details
1Institute of Metal Forming and Metal-Forming Machines, Leibniz Universität Hannover, An der Universität 2, 30823
Garbsen, Germany. 2Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Straße 1-7,
30625 Hanover, Germany.

Authors’ contributions
AB designed the study, developed the numerical computation method of the bone remodelling and corrected the
manuscript. NW constructed the finite element models, performed the calculations and prepared the manuscript. BAB
and CSC designed the study concept from a technical and medical perspective. HW designed the study from the
medical perspective and also prepared the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 11 April 2011 Accepted: 5 July 2011 Published: 5 July 2011

References
1. Rao S, Ellis SJ, Deland JT, Hillstrom H: Nonmedicinal therapy in the management of ankle arthritis. Current Opinion in

Rheumatology 2010, 22:223-228.
2. Hintermann B: Endoprothetik des Sprunggelenks. Historischer Überblick, aktuelle Therapiekonzepte und Entwicklungen Wien

New York, Springer Verlag; 2005.
3. Bauer G, Eberhardt O, Rosenbaum D, Claes L: Total ankle replacement. Review and critical analysis of the current

status. Foot and Ankle Surgery 1996, 2:119-126.
4. Doets HC, van Middelkoop M, Houdijk H, Nelissen RGHH, Veeger HEJD: Gait analysis after successful mobile bearing

total ankle replacement. Foot and Ankle International 2007, 28:313-322.
5. Kofoed H, Stürup J: Comparison of ankle arthroplasty and arthrodesis. A prospective series with long-term follow-

up. The Foot 1994, 4:6-9.

Bouguecha et al. BioMedical Engineering OnLine 2011, 10:58
http://www.biomedical-engineering-online.com/content/10/1/58

Page 11 of 13

http://www.ncbi.nlm.nih.gov/pubmed/20019616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17371655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17371655?dopt=Abstract


6. McGuire MR, Kyle RF, Gustilo RB, Premer RF: Comparative analysis of ankle arthroplasty versus ankle arthrodesis.
Clinical Orthopaedics and Related Research 1988, 226:174-181.

7. Gougoulias NE, Khanna A, Maffulli N: History and evolution in total ankle arthroplasty. British Medical Bulletin 2009,
89:111-151.

8. Vickerstaff JA, Miles AW, Cunningham JL: A brief history of total ankle replacement and a review of the current
status. Medical Engineering and Physics 2007, 29:1056-1064.

9. Leardini A, O’Connor JJ, Catani F, Giannini S: A geometric model of the human ankle joint. Journal of Biomechanics
1999, 32:585-591.

10. Stauffer RN, Chao EYS, Brewster RC: Force and motion analysis of the normal, diseased, and prosthetic ankle joint.
Orthopaedics and Related Research 1977, 127:189-196.

11. Burdett RG: Forces predicted at the ankle during running. Medicine and Science in Sports and Exercise 1982,
14:308-316.

12. Procter P, Paul JP: Ankle joint biomechanics. Journal of Biomechanics 1982, 15:627-634.
13. Röhrle H, Scholten R, Sigolotto C, Sollbach W, Kellner H: Joint forces in the human pelvis-leg skeleton during

walking. Journal of Biomechanics 1984, 17:409-424.
14. Seireg A, Arvikar RJ: The prediction of muscular load sharing and joint forces in the lower extremities during

walking. Journal of Biomechanics 1975, 8:89-102.
15. Benedetti MG, Catani F, Leardini A, Pignotti E, Giannini S: Data management in gait analysis for clinical applications.

Clinical Biomechanics 1998, 13:204-215.
16. Leardini A: Geometry and mechanics of the human ankle complex and ankle prosthesis design. Clinical

Biomechanics 2001, 16:706-709.
17. Gougoulias N, Khanna A, Maffulli N: How successful are current ankle replacements? A systematic review. Clinical

Orthopaedics and Related Research 2010, 468:199-208.
18. Haddad SL, Coetzee JC, Estok R, Fahrbach K, Banel D, Nalysnyk L: Intermediate and long-term outcomes of total

ankle arthroplasty and ankle arthrodesis. A systematic review of the literature. Journal of Bone and Joint Surgery Am
2007, 89:1899-1905.

19. S.T.A.R.® Ankle Implants and Instruments Guide, Small Bone Innovations. 2011 [http://www.totalsmallbone.com/us/
pdfs/MKT16011RevE.pdf].

20. Fevang BTS, Lie SA, Havelin LI, Skredderstuen A, Brun JG, Furnes O: 257 ankle arthroplasties performed in Norway
between 1994 to 2005. Acta Orthopaedica 2007, 78:575-83.

21. Henricson A, Skoog A, Carlsson A: The Swedish ankle arthroplasty register: An analysis of 531 arthroplasties
between 1993 and 2005. Acta Orthopaedica 2007, 78:569-574.

22. Kummer B: Biomechanik. Form und Funktion des Bewegungsapparates Köln, Deutscher Ärzte-Verlag; 2005.
23. Wolff J: Das Gesetz der Transformation der Knochen Berlin, Hirschwald; 1892.
24. Bouguecha A: Numerische und experimentelle Untersuchungen zum beanspruchungsadaptiven Knochenumbau

im periprothetischen caninen Femur. Leibniz Universität Hannover, Institut für Umformtechnik und
Umformmaschinen; 2007, PhD thesis.

25. Behrens B-A, Bouguecha A: Femorale Belastungsabschirmung nach einer Hüftarthroplastik. 57. Jahrestagung der
Norddeutschen Orthopädenvereinigung, 12.-14.06. Hamburg 2008.

26. Behrens B-A, Wirth CJ, Windhagen H, Nolte I, Meyer-Lindenberg A, Bouguecha A: Numerical investigations of stress
shielding in total hip prostheses. Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in
Medicine 2008, 222:593-600.

27. Behrens B-A, Nolte I, Wefstaedt P, Stukenborg-Colsman C, Bouguecha A: Numerical investigations on the strain-
adaptive bone remodelling in the periprosthetic femur: Influence of the boundary conditions. BioMedical
Engineering OnLine 2009, 8:1-9.

28. Behrens B-A, Bouguecha A, Stukenborg-Colsman C, Pressel T, Wefstaedt P, Nolte I: Numerische Untersuchungen zum
Einfluss des Implantatwerkstoffs auf den postoperativen Knochenumbau im Femur. Jahrestagung der Deutschen
Gesellschaft für Biomaterialien (DGBM), 22.-24.11. Hannover 2007.

29. Bouguecha A, Behrens B-A, Meyer-Lindenberg A, Wefstaedt P, Stukenborg-Colsman C, Nolte I: Strain-adaptive bone
modelling: Influence of the implant material. 16th Congress of the European Society of Biomechanics, 06.-09.07. Luzern,
Schweiz 2008.

30. Behrens B-A, Bouguecha A, Nolte I, Stukenborg-Colsman C, Pressel T: Strain adaptive bone remodelling: Influence of
the implantation technique. BIOMECH Medicine meets Engineering, 13.-15.06. Regensburg 2007.

31. Pressel T, Bouguecha A, Rittmann P, Wirth CJ, Nolte I, Meyer-Lindenberg A, Behrens B-A: Einfluss der
Implantationstechnik auf die femorale Belastungsverteilung. Gemeinsamer Kongress der Orthopädie und der
Unfallchirurgie, Berlin 2006.

32. Bouguecha A, Elgaly I, Stukenborg-Colsman C, Lerch M, Nolte I, Wefstaedt P, Matthias T, Behrens B-A: Numerical
investigations of the strain-adaptive bone remodelling in the prosthetic pelvis. IFMBE Proceedings 2010, 29:562-565.

33. Ebbecke B: Theoretische und algorithmische Konzepte zur Beschreibung des beanspruchungsadaptiven
Knochenwachstums. PhD thesis Leibniz Universität Hannover, Institut für Baumechanik und Numerische Mechanik;
2006.

34. Huiskes R, van Rietbergen B: Preclinical testing of total hip stems. The effects of coating placement. Clinical
Orthopaedics and Related Research 1995, 319:64-76.

35. Nackenhorst U: Numerical simulation of stress stimulated bone remodeling. Technische Mechanik 1997, 17:31-40.
36. Prendergast PJ: Review paper. Finite element models in tissue mechanics and orthopaedic implant design. Clinical

Biomechanics 1997, 12:343-366.
37. Van Rietbergen B, Huiskes R, Weinans H, Sumner DR, Turner TM, Galante JO: ESB Research Award 1992. The

mechanism of bone remodeling and resorption around press-fitted THA stems. Journal of Biomechanics 1993,
26:369-382.

38. Weinans H, Huiskes R, van Rietbergen B, Sumner DR, Turner TM, Galante JO: Adaptive bone remodelling around
bonded noncemented total hip arthroplasty: A comparison between animal experiments and computer
simulation. Journal of Orthopaedic Research 1993, 11:500-513.

Bouguecha et al. BioMedical Engineering OnLine 2011, 10:58
http://www.biomedical-engineering-online.com/content/10/1/58

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/3335092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19008282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17300976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17300976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10332622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7132650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7174695?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6480617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6480617?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1150683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1150683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11415789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11535353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19618248?dopt=Abstract
http://www.totalsmallbone.com/us/pdfs/MKT16011RevE.pdf
http://www.totalsmallbone.com/us/pdfs/MKT16011RevE.pdf
http://www.ncbi.nlm.nih.gov/pubmed/17966015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17966015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17966014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17966014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19138401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19138401?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7554651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11415744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8478342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8478342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8340823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8340823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8340823?dopt=Abstract


39. Falsig J, Hvid I, Jensen NC: Finite element stress analysis of some ankle joint prostheses. Clinical Biomechanics 1986,
1:71-76.

40. Mclff TE, Horton GA, Saltzman CL, Brown TD: Finite element modeling of total ankle replacements for constraint and
stress analysis. Proceedings of the Fourth World Congress in Biomechanics, Calgary, Canada 2002.

41. Mclff TE: Design factors affecting the contact stress patterns in a contemporary mobile bearing total ankle
replacement. Proceedings of the Fourth World Congress in Biomechanics, Calgary, Canada 2002.

42. Espinosa N, Walti M, Favre P, Snedeker JG: Misalignment of total ankle components can induce high joint contact
pressures. Journal of Bone and Joint Surgery 2010, 92A:1179-1187.

43. Galik K, Miller MC, Smolinski PJ: Effect of polyethylene thickness on stresses of an ankle joint implant. Proceedings of
the Fourth World Congress in Biomechanics, Calgary, Canada 2002.

44. Reggiani B, Leardini A, Corazza F, Taylor M: Finite element analysis of a total ankle replacement during the stance
phase of gait. Journal of Biomechanics 2006, 39:1435-1443.

45. Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP, Tochigi Y, Marsh JL, Brown TD:
Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element
analysis as a metric of degeneration propensity. Biomechanics and Modeling in Mechanobiology 2006, 5:82-89.

46. Anderson DD, Tochigi Y, Rudert MJ, Vaseenon T, Brown TD, Amendola A: Effect of implantation accuracy on ankle
contact mechanics with a metallic focal resurfacing implant. Journal of Bone and Joint Surgery 2010, 92A:1490-1500.

47. Carter DR, Hayas WC: The compressive behaviour of bone as a twophase porous structure. Journal of Bone and Joint
Surgery 1977, 59A:954-962.

48. Thomas RH, Daniels TR: Ankle arthritis. Journal of Bone and Joint Surgery 2003, 85A:923-936.

doi:10.1186/1475-925X-10-58
Cite this article as: Bouguecha et al.: Numerical simulation of strain-adaptive bone remodelling in the ankle joint.
BioMedical Engineering OnLine 2011 10:58.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Bouguecha et al. BioMedical Engineering OnLine 2011, 10:58
http://www.biomedical-engineering-online.com/content/10/1/58

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/15950979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15950979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16520960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16520960?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Geometry modelling
	Loads and boundary conditions
	FE simulation of the bone remodelling

	Results
	Bone remodelling in the tibia
	Bone remodelling in the talus

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

