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Abstract: A novel nonlocal operator theory based on the variational principle is proposed 
for the solution of partial differential equations. Common differential operators as well as 
the variational forms are defined within the context of nonlocal operators. The present 
nonlocal formulation allows the assembling of the tangent stiffness matrix with ease and 
simplicity, which is necessary for the eigenvalue analysis such as the waveguide problem. 
The present formulation is applied to solve the differential electromagnetic vector wave 
equations based on electric fields. The governing equations are converted into nonlocal 
integral form. An hourglass energy functional is introduced for the elimination of zero-
energy modes. Finally, the proposed method is validated by testing three classical 
benchmark problems. 
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1 Introduction 
For the analysis of complex structures in engineering, mesh generation remains a 
laborious and time-consuming process, which often requires human interaction with 
meshing program and corrections for local mesh. To alleviate the mesh entanglement, so-
called meshless or meshfree methods have been proposed during the 1990s [Viana and 
Mesquita (1999); Xuan, Zeng, Shanker et al. (2004); Razmjoo, Movahhedi and Hakimi 
(2011); Nicomedes, Bathe, Moreira et al. (2017)]. Meshless methods have been 
afterwards developed, enriched and applied to analyze a wide variety of problems in 
engineering including electromagnetic problems. For example, Viana and Mesquita 
applied the meshless Moving Least Square Reproducing kernel Method to solve two-
dimensional static electromagnetic problems. Liu et al. [Liu, Yang, Chen et al. (2004)] 
proposed an improved formulation of the element-free Galerkin method for 
electromagnetic field computations and studied the selection of the weight function, the 
treatment of imposing boundary conditions and interface conditions. The present original 
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nonlocal operator method (NOM) proposed by the authors can be used to solve the partial 
differential equations by replacing the local operators in PDEs with newly defined 
nonlocal operators. The nonlocal operator is defined in the integral form based on the 
nonlocal interaction but converges to the local operator in the continuous limit. The 
nonlocal operator method is consistent with the variational principle and the weighted 
residual method, based on which the tangent stiffness matrix can be obtained with ease. 
The nonlocal operator method can be viewed as a generalization of dual-horizon 
peridynamics [Ren, Zhuang, Cai et al. (2016); Ren, Zhuang and Rabczuk (2017)] or 
peridynamics [Silling (2000); Silling, Epton, Weckner et al. (2007)]. In this paper, we 
develop and apply the nonlocal operator method to electromagnetic problem. 
Electromagnetic analysis has been an indispensable part of many engineering and 
scientific study since Maxwell established a unified electromagnetic field theory-the 
Maxwell equations-in the 19th century. The Maxwell equations describing 
electromagnetic waves have numerous applications including radar, remote sensing, 
bioelectromagnetics, wireless communication and optics, just to name a few. Several 
computational methods have been developed for the solution of the Maxwell equations 
including the method of moments [Gibson (2007)], finite element method [Jin (2015)], 
time domain finite difference method [Taflove and Hagness (2005)], ray theory 
[Deschamps (1972)], meshless/meshfree methods [Ho, Yang, Machado et al. (2001)], 
asymptotic-expansion methods [Bouche, Molinet and Mittra (2012)] and eigen expansion 
method [Chew, Jin, Lu et al. (1997)]. The finite element method and time domain finite 
difference method can capture complex shapes and inhomogeneous materials while the 
moment method is well known for its high precision and efficiency for mainly linear 
problems and simple geometries [Jin (2015)]. The Finite-Difference Time-Domain 
(FDTD) method [Yee (1966)] is a method for directly solving the Maxwell equation in 
the time domain. The FDTD method has merits such as the explicit time integration, high 
efficiency in storage and natural parallelization. The method of moments (MoM) or 
boundary element method (BEM) is a numerical computational method of solving linear 
partial differential equations which have been formulated as integral equations (i.e., in 
boundary integral form) [Harrington (1993)]. This method possesses high accuracy but 
requires artificial intervention to handle the integral equations. In addition, this method is 
only applicable for regular shapes and homogenous materials. The multi-layer fast 
multipole technology based on the moment method is often employed for the purpose of 
computational efficiency. The accuracy of the finite element and FDTD is lower than the 
moment method since both finite element and time domain finite difference have 
numerical dispersion errors, which does not occur for the moment method. 
The purpose of this paper is to develop a framework of nonlocal operator method 
exploiting variational principles and to reformulate the electromagnetic governing 
equations. Therefore, the local differential equation is converted into nonlocal integral 
form. The content of the paper is outlined as follows: The governing equations for 
electromagnetic fields in the time domain and frequency domain are described in Section 
2. The concept of nonlocal operator method including definitions of the nonlocal curl and 
gradient operators are introduced in Section 3. Furthermore, the nonlocal formulation 
based on the variation of nonlocal operators in discrete form are presented in details to 
finally obtain the consistent tangent stiffness. In Section 4, we convert the differential 
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equation into the nonlocal form. In Section 5, the hourglass energy functional to remove 
zero-energy modes is proposed, which are inherited from particle-based formulations 
based on nodal integration. The residual and tangent stiffness matrix of the hourglass 
functional is also derived. The nonlocal integral form of the electromagnetic equations in 
the time-domain is derived in Section 6. Three benchmark problems are solved in Section 
7 to verify the method. Finally, we conclude our manuscript in Section 8. 

2 Brief review of Maxwell equations 
The general differential form of the Maxwell equations [Jin (2015)] are given by 

(Faraday s law)

(Maxwell-Ampere law)

(Gauss s law)
0 (Gauss s law-magnetic)

, (equation of continuity)

t

t

t
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DH J

D
B

J
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with 
E  =electric field intensity (volts/meter), 
D  =electric flux density (coulombs/meter2), 
H  =magnetic field intensity (amperes/meter), 
B  =magnetic flux density (webers/meter2), 
J  =electric current density (amperes/meter2), 
ρ  =electric charge density (coulombs/meter2). 
The divergence-free requirement in Eq. (1d) can be imposed for example with the penalty 
method [Rahman and Davies (1984)], vector finite elements [Whitney (2012); Nédélec 
(1980); Hano (1984)] or specially designed shape functions as presented in [Evans and 
Hughes (2013)]. The constitutive relations can be written as 

,
µ
σ

=
=
=

D E
B H
J E


   (2) 

where the constitutive parameters  , µ  and σ  denote, respectively, the permittivity 
(farady/meter), permeability (henrys/meter), and conductivity (siemens/meter) of the 
medium. For the time-harmonic fields with a single frequency, the time dependent parts 
of Maxwell’s equations can be written in simplified form as 
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,
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E B
H D J

J
   (3) 

where j  is the imaginary unit and ω  is the angular frequency. The vector wave 
equations for E  can be obtained by eliminating H  from Eq. (3b) and considering the 
constitutive relations Eq. (2) to replace H , 

21 .( ) jω ω
µ

∇× ∇× − = −E E J    (4) 

The boundary conditions for equations based on E  are 

1

2

 on 
1 ( )  on .

rµ

× = Γ

× ∇× = Γ

n E P

n E U
   (5) 

3 Basic concepts in nonlocal operator method 

 
(a)                                                               (b) 

Figure 1: (a) The electric field and notations. (b) Schematic diagram for support and dual 
-support, all circles above are support. 1 2 4 6 1 2 3 4{ , , , }, { , , , }′= =x x

x x x x x x x x    

Consider a domain as shown in Fig. 1(a), Let x be the spatial coordinates in the domain
Ω ; : ′= −r x x  is the spatial vector, the relative distance vector between x  and ′x ; 

: ( , )t=F F x  and : ( , )t′ ′=F F x  are the electric field vectors for x  and ′x , respectively; 
: ′= −rF F F  is the relative electric vector for vector r . 

The vector wave equations can also be formulated by using only H . In this paper, we 
will employ the vector wave equations based on electric fields. 
Support x  is the domain where the nonlocal operator is defined, and any spatial point 
′x  in support forms spatial vector r . Support x  is usually presented by a spherical 
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domain with a radius of hx . A point interacts with other points which fall inside the 
support of that point through nonlocal interactions. 
In order to define the nonlocal operator, the shape tensor is defined as 

( ) ,w dV ′= ⊗∫
x

x xK r r r


   (6) 

which is symmetric. The prerequisites of shape tensor are that it shall be invertible, which 
can be satisfied usually when enough particles fall inside the support. Numerical example 
shows that the minimal number of neighbors in support is 2 and 3 for two-dimensional 
and three-dimensional problems, respectively. 
Dual-support is defined as the union of points whose supports include x , denoted by 

{ | }′ ′′= ∈ xx
x x     (7) 

Any point ′x  in ′x
  forms a dual-vector ( )′ = −r r  . On the other hand, ′r  is the spatial 

vector formed in ′x . One example to illustrate the support and dual-support is shown in 
Fig. 1(b). 

3.1 Nonlocal operators and definitions based on the support 
In nonlocal operator method, key operators include the nonlocal operators for divergence, 
curl and gradient since they can be used to replace the local operators in the partial 
differential equations. We use ∇  to denote the nonlocal operator, while the local operator 
is ∇  . The nonlocal gradient of field F  for point x  in support x  is defined as 

1( ) ,w dV −
′∇ = ⊗ ⋅∫

x
x r x xF r F r K


   (8) 

with ′= −r x xF F F  . 

The nonlocal curl of field F  for point x  is defined as  
1( )( ) .w dV−

′∇× = ⋅ ×∫
x

x x r xF r K r F


   (9) 

The nonlocal divergence of field F  for point x  is defined as  
1( ) ( ) .w dV−

′∇ ⋅ = ⋅ ⋅∫
x

x r x xF r F K r


   (10) 

The field value near a point ′x  can be approximated by Taylor series expansion by 
neglecting higher order terms as 

,  or .′ = +∇ ⋅ = ∇ ⋅x x x r xF F F r F F r    (11) 

Inserting Eq. (11) into the RHS of Eqs. (8), (9), (10) and integrating in support x , it can 
be shown that the nonlocal operators are identical to the local operators. For example, 
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   (12) 

When ′x  is close enough to x  or when support x  is small enough, the nonlocal operator 
can be considered as the linearization of the nonlinear field. The nonlocal operator 
converges to the local operator in the continuous limit. On the other hand, the nonlocal 
operator defined by integral form, still holds in the case where strong discontinuity exists 
and the local operator cannot be defined. The local operator can be viewed as a special 
case of the nonlocal operator. 

3.2 Variation of nonlocal operators 
The nonlocal operators defined above are in vector or tensor form. The variation of the 
nonlocal operators leads to a higher-order tensor form, which is not convenient for 
implementation. We need to express the high-order tensor into to vector or matrix form.  
Before we derive the variation of nonlocal operator, some notations to denote the 
variation and how the variations are related to the first- and second-order derivatives is to 
be discussed. Assuming a functional ( , )u v  , where : ( ), : ( )u u v v= =x x  are unknown 
functions in unknown vector [ , ]u v , the first and second variation can be expressed as 

[ ]
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u v u v

uu uv vu vv

uu uv
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u v u v
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v u v v

u u u v u
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δ δ δ

δ
δ δ δ δ δ δ δ δ δ

δ δ δ δ
δ δ δ δ

δ δ δ δ δ
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δ δ δ δ δ

 
= ∂ + ∂ = ∂ ∂  

 
= ∂ + ∂ + ∂ + ∂

∂ ∂   
=    ∂ ∂   
   
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   

    

   

 
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  (13) 

It can be seen that the second variation 2 ( , )u vδ   is the double inner product of the 
Hessian matrix and the tensor formed by the variation of the unknowns, while the first 
variation ( , )u vδ  is inner product of the gradient vector and the variation of the 
unknowns. The gradient vector and the Hessian matrix represent the residual vector and 
tangent stiffness matrix of the functional, respectively, with unknown functions ,u v  
being the independent variables, 
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The inner product or double inner product indicates that the location of an element in the 
residual or the tangent stiffness matrix corresponds to the location of the variation of the 
unknowns.  

In this paper, we use a special variation δ   

2
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  (15) 

where uδ  denotes the index of u∂   in residual vector by the index of u  in the 

unknown vector. For example, the term v vδ∂   represents v∂   be in the second 

location of the residual vector since v  is in the second position of [ , ]u v  . The term 

uv u vδ δ∂   denotes that the location of uv∂   is (1,2), while the term vu v uδ δ∂   
denotes that the location of vu∂   is (2,1). 

Obviously 
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  (16) 

The special first-order and second-order variation of a functional lead to the residual and 
tangent stiffness matrix directly. The traditional variation can be recovered by the inner 
product of the special variation and the variation of the unknown vector.  
The variation of ∇⋅ xF  is given by 

1( )( ) ( ) ,w dVδ δ δ−
′ ′∇ ⋅ = ⋅ −∫

x
x x x x xF r K r F F


  (17) 

The number of dimensions of δ∇ ⋅ xF  is infinite, and discretization is required. 

After discretization of the domain by particles, the whole domain is represented by 

1

Nnode

i
i

V
=

Ω = ∆∑    (18) 

where i  is the global index of volume iV∆  , Nnode is the number of particles inΩ . 

Particles in i  are represented by  
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1{ , ,.., ,.., }
ii k nN i j j j=    (19) 

where 1,.., ,..,
ik nj j j  are the global indices of neighbors of particle i  .  

The discrete form of iδ∇ ⋅ F  can be written as 
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k k i
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w Vδ δ δ δ δ−

∈
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  (20) 

where   denotes discretization, 
iNδF  is all the variations of the unknowns in support i  , 

1
( , ,.., ,.., ),

i k niN i j j jδ δ δ δ δ=F F F F F    (21) 

iδ∇ ⋅ F  is the coefficient vector with a length of 3( 1)in +  in 3D case, 
1( ) ( ) ( ).

k k

k i

i j i j i
j
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  (22) 

Based on the indices of 
kj

δ F  in
iNδF  , iδ∇ ⋅ F  can be obtained by 

1 1

1
[3 ,3 1,3 2] ( ) , [0,1, 2] ( ) ,

i

k k

n

i j i i j i
k

k k k w V w Vδ δ− −

=

∇ ⋅ + + = ∆ ∇⋅ = − ∆∑F r K r F r K r   (23) 

where k  is the index of particle kj  in iN  . The process to obtain iδ∇ ⋅ F  on nodal level 
is sometimes called the nodal assembly. 
In the following section, we mainly discuss the special variation of the nonlocal operator 
and functional, while the actual variation can be recovered with ease. 
The variation of i∇×F  in discrete form reads 

1( ) ( ),
k k

k i

i j i j i
j

w Vδ δ δ−

∈

∇× ∆ ⋅ × −∑F r K r F F 


  (24) 

where 
kj

V∆  is the volume for particle kj  . For the 3D case, iδ∇× F  is a 3 3( 1)in× +  

matrix, where in  is the number of neighbors in i  , iN  is given by Eq. (19). For each 

particle k ij N∈  calculating 1( )
k kj j iR w V −= ∆r K r  , we obtain 
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(25) 

where k  is the index of particle k ij N∈ . The minus sign denotes the reaction from the 
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dual-support, which guarantees the regularity of the stiffness matrix in the absence of 
external constraints. The nodal assembly for the variation of the vector cross product can 
be finally obtained by 

0 1 2 0 1 2 2 1 1 2 0 2 2 0 1 0 0 1{ , , } { , , } { , , }R R R F F F F R F R F R F R F R F R× = × = − − −F   (26) 

while the gradient of ×F  on 0 1 2{ , , }F F F  is given by 

0 0 0

0 1 2
2 1

1 1 1
2 0

0 1 2
1 0

2 2 2

0 1 2

0
0 .
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F F F

R R
F F F R R
F F F

R R
F F F
F F F

× × ×

× × ×

× × ×
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 ∂ ∂ ∂  −  ∂ ∂ ∂  = −   ∂ ∂ ∂   −  ∂ ∂ ∂ 
∂ ∂ ∂  

  (27) 

The indices of R  correspond to the locations in ×F . 
Similarly, the variation of i∇F  in the discrete form reads 

1( )( ) ( )
k k
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i j i i j
j

w Vδ δ δ −
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where 
kj

V∆  is the volume for particle kj  . In 3D, iδ∇ F  is a 9 3( 1)in× +  matrix, where 

in  is the number of neighbors in i  , iN  is given by Eq. (19). For each particle in the 

neighbor list with 1( )
k kj j iR w V −= ∆r K r  , the terms in 

kj
R  can be added to the iδ∇ F  as  

[0,3 ] [0], [3,3 ] [1], [6,3 ] [2],

[1,3 1] [0], [4,3 1] [1], [7,3 1] [2],

[2,3 2] [0], [5,3 2] [1], [8,3 2] [2],

[0,0]

k k k

k k k

k k k

k

i j i j i j

i j i j i j

i j i j i j

i j
k

k R k R k R

k R k R k R

k R k R k R

R

δ δ δ

δ δ δ

δ δ δ

δ
=

∇ = ∇ = ∇ =

∇ + = ∇ + = ∇ + =

∇ + = ∇ + = ∇ + =

∇ = −

F F F

F F F

F F F

F

  

  

  


1 1 1

1 1 1

1 1

[0], [3,0] [1], [6,0] [2],

[1,1] [0], [4,1] [1], [7,1] [2],

[2, 2] [0], [5, 2] [1], [8, 2]

i i i

k k

i i i

k k k

i i

k k k

n n n

i j i j
k k

n n n

i j i j i j
k k k

n n

i j i j i j
k k k

R R

R R R

R R R

δ δ

δ δ δ

δ δ δ

= =

= = =

= = =

∇ = − ∇ = −

∇ = − ∇ = − ∇ = −

∇ = − ∇ = − ∇ = −

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

F F

F F F

F F F

 

  

  
1

[2],
in

∑

  (29) 

where k  is the index of particle k ij N∈  . The sub-index of δ∇ xF  can be obtained by the 
way similar to Eq. (27). 
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4 Waveguide 
A waveguide is a structure that guides waves, such as electromagnetic waves or sound, 
with minimal loss of energy by restricting expansions to one or two dimensions. The 
study of waveguide requires the eigenmode of the wave propagation which in turn 
requires the tangent stiffness matrix of the field. In this section, we derive the tangent 
stiffness matrix in the framework of variational principle using nonlocal operator method. 
The partial differential equation with boundary conditions for the waveguide problem can 
be expressed as  

2
0

1

2

1 0,  in ,

0,  in ,
0 on ,

0,  on ,

r
r

k
µ

∇× ∇× − = Ω

∇⋅ = Ω
× = Γ
×∇× = Γ

E E

E
n E
n E



   (30) 

where 1Γ  is the electric boundary condition and 2Γ  is the magnetic boundary condition; 

0( / )r =    and 0( / )rµ µ µ=  denote the relative permittivity and relative permeability, 

respectively while 0 0 0( )k ω µ=   is the wavenumber in free space, 0 0 0( / )Z µ=   is 

the intrinsic impedance of free space and 12
0 ( 8.854 10−= × farad/meter) and 

7
0 ( 4 10µ π −= ×  henry/meter) are the permittivity and permeability of the free space, 

respectively. 
Consider the inner product of Eq. (30a) with arbitrary variation δE  and integrate over 
the domain 

2
0

1( ( ) ) 0.r
r

k dVδ
µΩ

∇× ∇× − ⋅ =∫ E E E    (31) 

Applying the same procedure to Eq. (30d) leads to 

2

1 ( ) 0.
r

dδ
µ Γ

− × ∇× ⋅ Γ =∫ n E E    (32) 

The sum of Eq. (31) and Eq. (32) is 

2

2
0

1 1( ( ) ) ( ) 0.r
r r

k dV dδ δ
µ µΩ Γ

∇× ∇× − ⋅ − × ∇× ⋅ Γ =∫ ∫E E E n E E   (33) 

Applying second vector Green's theorem in Eq. (34) 

2

( ) ( ) ( ) ( ) ,( )u u dV u d
Ω Γ

∇× ⋅ ∇× − ⋅ ∇× ∇× = ×∇× ⋅ Γ∫ ∫a b a b a b n   (34) 

to Eq. (33) results in 
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2
0

1( ) ( ) 0.( )r
r

k dVδ δ
µΩ

∇× ⋅ ∇× − ⋅ =∫ E E E E   (35) 

Eq.35 is equivalent to the variation of the functional ( )E  , 

2
0

1 1( ) ( ) ( ) .
2

( )r
r

k dV
µΩ

= ∇× ⋅ ∇× − ⋅∫E E E E E    (36) 

The divergence-free condition is enforced by the penalty method, so the functional 
becomes 

2 2
0

1 1( ) ( ) ( ) ( ) ,
2

( )r
r r

p k dV
µ µΩ

= ∇× ⋅ ∇× + ∇⋅ − ⋅∫E E E E E E    (37) 

where p is the penalty parameter which is set to 1 in our examples as suggested in 
Rahman et al. [Rahman and Davies (1984)]. Finally, the eigenvalue problem of the 
waveguide problem reads 

1

2

( ) 0,
0 on ,
0 on .

δ =
× = Γ
⋅ = Γ

E
n E
n E


   (38) 

Eq. (38b) is the electric wall and Eq. (38c) is the magnetic wall, which is enforced for the 
sake of better accuracy and the elimination of some spurious solutions. For rectangular 
waveguide, the normal direction is parallel to a certain axis, for example 

(1,0,0), 0 ( 0, 0)y zE E= × = ⇔ = =n n E  

0, 0y zE E= =  can be applied the same as Dirichlet boundary conditions. 

( )E  on point x  is 

2
0

1 1 1( ) ( ) ( ) .
2 2 r

r

k
µ

= ∇× ⋅ ∇× − ⋅x x x x xE E E E E    (39) 

and its first variation is written as 

2
0

1( ) ( ) ( ) ( ) ( ) .r
r r

p kδ δ δ δ
µ µ

= ∇× ⋅ ∇× + ∇⋅ ⋅ ∇ ⋅ − ⋅x x x x x x xE E E E E E E    (40) 

Consider the first variation of all particles, and let 
1( )

rµ
= ∇×x xS E  , we have 
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  (41) 

The relation ( ) ( ) ( )⋅ × = ⋅ × = ⋅ ×a b c c a b b c a  is used in the third step. In the third and 
fourth steps of above derivation, the dual-support has been employed, i.e., in the third 
step, the term δ ′xF  is the vector from x 's support, but is added to particle ′x ; since
′∈ xx  , x  belongs to the dual-support ′′x  of ′x . In the fourth step, all the terms with 

δ xF  are collected from other particles whose supports contain x  and therefore form the 

dual-support of x  . For any δ xF , the first order variation ( ) 0δ =E  leads to the 
nonlocal form of the governing equation of the waveguide problem: 

1 1 2
0( ) ( ) ( ) ( ( )) 0.rw V w V k− −

′ ′ ′ ′
′ ′ ′∈ ∈

− ∆ × + − ∆ × − − =∑ ∑
x x

x x x x x x x
x x

r S K r r S K r E
 

   (42) 

When the particle's volume 0V ′∆ →x  , the continuous form is  
1 1 2

0( ) ( ) ( ) ( ) 0.rw dV w dV k− −
′ ′ ′ ′′

− × + − × − − =∫ ∫
x x

x x x x x x xr S K r r S K r E
 

   (43) 

Eq. (43) is the nonlocal governing equation of the waveguide on the electric field. 
For the eigenvalue problem, the stiffness matrix is required. 
The special second variation of ( )xE  leads to the tangent stiffness matrix, 

2

2
0

2
1 2 0

( ) ( )
1( ) ( ) ( ) ( )

( ) ( ) ( ),

r
r r

p k

k

δ

δ δ δ δ δ δ
µ µ

=

= ∇× ⋅ ∇× + ∇⋅ ⋅ ∇ ⋅ − ⋅

= + −

x x

x x x x x x

x x x

K E E

E E E E E E

K E K E M E

   



   (44) 

where  
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1

2

1( ) ( ) ( ),

( ) ( ) ( ),

( ) .

r

r

r

p

δ δ
µ

δ δ
µ

δ δ

= ∇× ⋅ ∇×

= ∇⋅ ⋅ ∇ ⋅

= ⋅

x x x

x x x

x x x

K E E E

K E E E

M E E E

 

 



   (45) 

It should be noted that the latter term 2
0rk δ δ⋅x xE E  takes the local value at the particle 

and can be obtained easily, while the nonlocal term δ∇× xE  can be evaluated by Eq. 
(25). Assembling the stiffness matrix of all particles, one gets the global stiffness matrix 
and global “mass” matrix.  

1 2( ) ( ) ,

( )

( )g

g

V

V
∈Ω

∈Ω

= ∆ +

= ∆

∑
∑

x x x
x

x x
x

K K E K E

M M E
   (46) 

leading to the generalized eigenvalue problem 
2
0( ) 0.g gk− =K M E    (47) 

Note that the nodal integration of the above integrals results in hourglass modes which 
can be removed by introducing so-called hourglass energy, which will be addressed in the 
next section. 

5 Hourglass energy functional 
In order to remove the hourglass or zero-energy modes, a penalty term is added to 
achieve the linear completeness of the electric field, in which the penalty is proportional 
to the difference between the current value of a point and the value predicted by the field 
gradient. 
The electric field in the neighborhood of a particle is required to be linear. Therefore, it 
has to be exactly described by the gradient of the electric field, and the hourglass modes 
are identified as that part of the electric field, which is not described by the electric 
gradient. The difference between the current vector rE  and the predicted vector by the 

field gradient ( := ∇F E  in Eq. (8) is ( )− rFr E . We formulate the hourglass energy based 

on the difference in the support as follows: Let / (2 )hgp mα µ= K  be a coefficient for 

the hourglass energy, where tr( )m =K K  , µ  is the magnetic coefficient, hgp  is the 
penalty which can be set to 1. Then, the functional for zero-energy mode is  
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




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




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  (48) 

The above definition of the hourglass energy is similar to the variance in probability 
theory and statistics. In the above derivation, we have used the relations, 

: : ( ), : , : tr( )T T T= = ⊗ =F F K F FK a Mb M a b A B AB , where the capital letter 
denotes the matrix and small letter the column vector. The purpose of mK  is to make the 
energy functional independent of the support since the shape tensor K  is involved in 

:TF F K  . 
It should be noted that the zero-energy functional is valid in any dimensions and there is 
no limitation on the shape of the support. 
Consider the variation of the zero-energy functional 

( )( ) ( ) : .( )
hg

hg hg Tp w dV
m

δ δ δ δ
µ

′ ′= = − − −∫
K

R r E E E E F K F


   (49) 

The residual of the hourglass mode is required in the explicit time integration method. In 
this paper, we only discuss the implicit analysis. 
The electric flux of the hourglass mode for one vector r  is given by 

( ) .( )
hg

hg hg p w
mµ

= ∂ = −r E r r
K

T r E Fr     (50) 

Eq. (50) is an explicit formula for the hourglass flux. The term on δE  is the hourglass 
term from its support, while the terms on δ ′E  are the hourglass terms for the dual 
support ′′x

  of point ′x . 

2 ( )( ) ( ) : .( )
hg

hg hg Tp w dV
m

δ δ δ δ δ δ δ
µ

′ ′= = − − −∫
K

K r E E E E F K F


   (51) 

The second variation of the zero-energy functional is its stiffness matrix on one point. 
The global tangent stiffness matrix for hourglass energy functional can be assembled by 

hg hg
g V

∈Ω

= ∆∑ x x
x

K K    (52) 
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The above equations indicate, when the electric field is consistent with the field gradient, 
then the hourglass energy residual is zero. 
Once the hourglass mode is eliminated, the residual of the hourglass mode is zero. The 
stiffness matrix of the hourglass mode overcomes the rank deficiency of the matrix 
system when nodal integration is used. The generalized eigenvalue problem becomes 

2
0( ) 0,hg

g g gk+ − =K K M E    (53) 

where E  is the eigenvector for all unknowns. 

6 Nonlocal operator method for electromagnetic in the time domain 
Consider a volume Ω  bounded by the surface S . The electromagnetic field generated 
by an electric current density xJ  satisfies the Maxwell equations. Eliminating the 
magnetic field with the aid of the constitutive relations, the curl-curl equation for the 
electric field E  is obtained by Jin [Jin (2015)]: 

.. . .1( ) .σ
µ

∇× ∇× + + = −x x xxE E E J    (54) 

In order to obtain the equivalent nonlocal form of Eq. (54), let us consider Eq. (40) from 
the previous section. From the variational derivation of the waveguide problem, 

1( )
µ

∇× ∇× xE  is equivalent to the functional 

1 1( ) ( ) ( ).
2 rµ

= ∇× ⋅ ∇×x x xE E E    (55) 

Based on Eq. (43), one can get the nonlocal form of 
1( )
µ

∇× ∇× xE  

.. . .
1 1( ) ( ) ( ) ( ) ,w dV w dV σ− −

′ ′ ′ ′′
× − − × − + + = −∫ ∫

x x
x x xx x x x x xr S K r r S K r E E J

 
   (56) 

where 
( ) 1 .

( ) rµ
∂ ∇×

= = ∇×
∂ ∇×

x
x x

x

ES E
E


   (57) 

The Dirichlet boundary conditions are 

1, ,S× = ∈x xn E P x    (58) 

where xP  is the specified electric wall on point x  . 

The Neumann boundary condition on 2S  can be written as 

2
1( ) ( , ), .t S
µ

× ∇× = ∈xn E U x x    (59) 
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Finally, the central difference scheme can be used for the time integration yielding 
1 1

2 1 1

2 2

,
2

2 .
( )

n n

n n n

d
dt t
d
dt t

δ

δ

+ −

+ −

−
≈

− +
≈

u u u

u u u u
   (60) 

7 Numerical examples 
7.1 The Schrödinger equation in 1D 
In this section, we test the accuracy of the eigenvalue. The Schrödinger equation written 
in adimensional units for a one-dimensional harmonic oscillator is 

2
2 2

2

1 1( ) ( ) ( ), ( )
2 2

[ ]V x x x V x x
x

φ λφ ω∂
− + = =

∂
  (61) 

For simplicity, we use 1ω = . The particles are distributed with constant/variable spacing 
x∆  on the region [-10,10]. 

The exact wave functions and eigenvalues can be expressed as 
2 1( ) ( ) exp( ),

2 2n n n
xx H x nφ λ= ± = +    (62) 

where n  is a non-negative integer. ( )nH x  is the n -order Hermite polynomial. 

The Schrödinger equation in 1D is reformulated in variational form as 
10 2 2

10

1( ) ( ) ( ) ( )
2
( )V x x x dx

x x
φ φφ φ λφ

−

∂ ∂
= + −

∂ ∂∫   (63) 

The tangent stiffness matrix is obtained as 

2

[ 10,10]
( ) ( ( ) ) ( ) ( )( )

x
x V x x x

x x
δφ δφδ φ λ δφ δφ

∈ −

∂ ∂
= ∆ + − ⋅

∂ ∂∑   (64) 

where 
x
δφ∂
∂

 is the nonlocal operator in 1D. The hourglass energy functional in 1D can be 

obtained with the procedure similar to that in Section 5.  
We calculate the lowest eigenvalue and compare the numerical result with 0 0.5λ = . The 
convergence plot of the error with different weight function and discretizations is shown 
in Fig. 2. It can be seen that the convergence rate is around 2. The weight function and 
inhomogeneous discretization have limited effect on the convergence. Good agreement is 
observed between the numerical result and the exact solution. 
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Figure 2: Convergence of the lowest eigenvalue for a one-dimensional harmonic 
oscillator; 31/ r  is the weight function; support is selected as h n x= ∆ ; dual-form with 
weight function 1/r3 uses an inhomogenous discretization in Fig. 3; the particle spacing in 
dual-form is selected as the minimal particle spacing in the discretization 

The discretization of the dual-form is given in Fig. 3. The first three wave functions are 
given in Fig. 4. 

 
Figure 3: The discretization of the dual form based on inhomogeneous discretization



 
 

48   Copyright © 2019 Tech Science Press                   CMC, vol.59, no.1, pp.31-55, 2019 

 
Figure 4: The first three wave functions 

7.2 Electrostatic field problems 
When there is no electricity in the domain, Maxwell’s equations can be simplified into 
the Poisson equation with boundary conditions as 

2 ( ) ,
,

, qq

φ

φ ρ
φ φ
φ

∇ = ∀ ∈Ω
= ∀ ∈Γ

∂
= ∀ ∈Γ

∂

x x
x

x
n

   (65) 

where φ  denotes potential, ρ  is the charge density of the domain, n  is outward normal 
direction of the boundary, Ω  is the solution domain, and its boundary qφ∂Ω = Γ ∪Γ  , 

φ  is the specified potential value at the boundary φΓ , q  is the potential derivative value 

given on the boundary qΓ . 

In the simulation, the boundary conditions are applied with the penalty method. The 
equivalent energy functional is 

2 2( ) ( ) ( ) ( ) ( ) ,
q

dV d q d
φ

φφ φ φ α φ φ α
Ω Γ Γ

∂
= ∇ ⋅∇ + − Γ + − Γ

∂∫ ∫ ∫x x xx x
n

   (66) 

where 61 10α = ×  is the penalty coefficient. The stiffness matrix can be obtained the 
similar way in Section 5. 
In order to validate the accuracy of nonlocal operator formulation on the electrostatic 
field problem, we calculate the electrostatic field of a rectangular plate, which is a 
benchmark problem with the analytical solution given in Eq. (67). In this example, the 
potential on the upper and lower sides is 0, and the right side is 0( , )a y Uφ =  , the 
horizontal electric field strength on the left side is 0, as shown in Fig. 5. In the simulation, 
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the parameters are 1a =  m, 1b =  m, 0 1.0U =  V. 

0

1

4 cosh((2 1) / )( , ) sin((2 1) / )
(2 1)cosh((2 1) / )k

U k x bx y k y b
k k a b

πφ π
π π

∞

=

−
= × −

− −∑   (67) 

 
Figure 5: Boundary condition of a rectangular plate 

 
Figure 6: Contour plot of numerical solution of electric potential under mesh 50×50 

 
Figure 7: Contour plot of analytical solution of electric potential 
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Figure 8: Convergence plot of L2 norm of electric potential 

The support radius is selected as 1.2i ixh = ∆  . The hourglass penalty of 1hgp =  is used in 
all simulations. The plate is discretized with different mesh densities to test the convergence. 
The contour plot of the electric potential from the numerical solution and analytical solution 
are shown in Fig. 6 and Fig. 7, respectively. A satisfactory agreement is observed between 
Fig. 6 and Fig. 7. The L2 norm of the electric potential decreases with the refinement of the 
mesh with the convergence rate of 0.8709r = , as shown in Fig. 8. 

7.3 Rectangular Waveguide problem 
A hollow waveguide is a transmission line that looks like an empty metallic pipe. It 
supports the propagation of transverse electric (TE) and transverse magnetic (TM) modes, 
but not transverse electromagnetic (TEM) modes. There is an infinite number of modes 
that can propagate as long as the operating frequency is above the cutoff frequency of the 
mode. The notation TEmn and TMmn are commonly used to denote the type of the wave 
and its mode, where m and n are the mode number in the horizontal and vertical 
directions, respectively. The mode with the lowest cutoff frequency is called the 
fundamental mode or dominant mode. For a hollow rectangular waveguide, the dominant 
mode is TE10. The analytical solution for the E-field in the TE mode is expressed as 

cos( )sin( ) ,

sin( ) cos( ) ,

0.

z

z

jk z
x mn

jk z
y mn

z

n m x n yE A e
b a b
m m x n yE A e
a a b

E

π π π
ε
π π π
ε

−

−

=

=

=

  (68) 

The electromagnetic analysis of a rectangular waveguide is well known [Pozar (2009)]. 
Let us focus on the results used to verify our formulation, i.e., 
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2 2 2 2

,
2

( ) ( ) ,

mn mn

mn mn

c c

c mn c

cf k

m nk k k
a b

π
π π β

=

= + = −
  (69) 

where 
mncf  is the cutoff frequency of mode mn  , 

mnck denotes the wavenumber 

corresponding to mode mn  while a  and b  are the width and height of the waveguide, 
respectively. 
A section of a rectangular waveguide is modeled with the proposed nonlocal operator 
formulation and the first 3 modes are calculated and their field distributions analyzed. 
Since the background is set to a perfect electric conductor (PEC) material, we only need 
to model the vacuum inside the waveguide. The boundary conditions are “electric” in all 
directions, and the model is simulated using an eigenvalue solver in Matlab [Mathworks 
Guide (1998)]. In this model the first 3 modes are calculated. The dimensions of the 
waveguide are set to 22.86a =  mm, 10.16b =  mm and 40l =  mm; the boundaries in 
blue illustrate the electric walls and the red boundary is the magnetic wall, see Fig. 9. The 
domain of waveguide is discretized with two different particle spacings, as shown in Fig. 
10. The support is selected as 2.2h x= ∆  and weight function 2( ) 1/w r r= . 

 
Figure 9: Section of a rectangular waveguide, where a=22.86 mm, b=10.16 mm and l=40 
mm. Blue boundary denotes electric wall and red boundary is magnetic wall 

Table 1: Comparison of 
mncf between simulation and analytical results 

Mode TE10 (GHz) TE20 (GHz) TE01 (GHz) 
Case 1 6.02 (-8.29%) 12.33 (-5.28%) 15.08 (3.13%) 
Case 2 6.20 (-3.96%) 12.67 (-2.67%) 14.91 (1.88%) 
Exact 6.56 13.02 14.63 

The calculated frequencies are given in Tab. 1. The error in the frequency for Case 2 is less 
than 4%. Good agreements are obtained between the numerical results and theoretical results. 
The modes of the E-Field for two cases are shown in Fig. 11 and Fig. 12. 
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(a) Case 1: 11×6×19                                 (b) Case 2: 21×10×36 

Figure 10: The discretizations for two cases 

 
       (a) TE10 

 
(b) TE20 

 
(c) TE01 

Figure 11: The TE modes for case 1 
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(a) TE10 

 
(b) TE20 

 
(c) TE01 

Figure 12: The TE modes for case 2 
8 Conclusion 
In this paper, we proposed a nonlocal operator formulation for electromagnetic problems 
employing variational principles. The formulation is implicit and provides the tangent 
stiffness matrix, which is needed for the solution of the eigenvalue problem. We presented 
a scheme for assembling the global stiffness matrix based on nonlocal operators. The 
nonlocal form of the electromagnetic vector wave equations based on the electric field is 
obtained by means of the variational principles. Three numerical examples, including the 
Schrödinger equation in 1D, electrostatic field problem in 2D and waveguide in 3D are 
tested and show good agreement to available analytical solutions. In the future, we intend to 
solve also the transient problem and study problems involving strong discontinuities which 
are one of the key strength of nonlocal operator method. 
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