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In this article we address the numeric inversion of optoacoustic signals to initial stress profiles. Therefore we
study a Volterra integral equation of the second kind that describes the shape transformation of propagating
stress waves in the paraxial approximation of the underlying wave-equation. Expanding the optoacoustic con-
volution kernel in terms of a Fourier-series, a best fit to a pair of observed near-field and far-field signals allows
to obtain a sequence of expansion coefficients that describe a given “apparative” setup. The resulting effective

kernel is used to solve the optoacoustic source reconstruction problem using a Picard-Lindelof correction
scheme. We verify the validity of the proposed inversion protocol for synthetic input signals and explore the
feasibility of our approach to also account for the shape transformation of signals beyond the paraxial ap-
proximation including the inversion of experimental data stemming from measurements on melanin doped PVA

hydrogel tissue phantoms.

1. Introduction

The inverse optoacoustic (OA) problem is concerned with the re-
construction of “internal” medium properties from “external” mea-
surements of acoustic pressure signals. In contrast to the direct OA
problem, referring to the calculation of a diffraction-transformed
pressure signal at a desired field point for a given initial stress profile
[1-7], one can distinguish two inverse OA problems: (I.1) the source
reconstruction problem, where the aim is to invert measured OA signals
to initial stress profiles upon knowledge of the mathematical model that
mediates the underlying diffraction transformation [8,6,9-11], and,
(1.2) a kernel reconstruction problem, where the task is to find a con-
volution kernel that accounts for the apparent diffraction transforma-
tion shown by the OA signal. The latter arises quite naturally in a
paraxial approximation wherein both signals can be related via a Vol-
terra integral equation of the second kind [12]. Note that while problem
1.1 is well established in the field of optoacoustics, we here make a first
attempt at solving problem 1.2, i.e. the kernel reconstruction problem,
and demonstrate how it can be utilized for the reconstruction of initial
stress profiles from observed OA signals.

Owing to its immediate relevance for medical applications [13-19],
current progress in the field of inverse optoacoustics is spearheaded by
OA tomography (OAT) and imaging applications in line with (I.1)
[20-25], problem (I.2) has not yet received much attention. However,
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quite similar kernel reconstruction problems are well studied in the
context of inverse-scattering problems in quantum mechanics [26-29],
and, from a more general point of view, are also studied in applied
mathematics [30-32]. Note that analytic inversion formulae in OAT,
aiming at reconstructing the full electromagnetic absorption distribu-
tion within the medium (see, e.g., Refs. [23-25]), assume that OA sig-
nals are detected from a full view, or, as in case of deconvolution re-
construction [33], still from a limited view of the object under scrutiny.
If it is unfeasible to employ OAT techniques and one needs to resort to
the inversion of data measured at a single point of the region of interest,
due to either the inaccessibility of OAT inversion input or by other
boundary conditions, kernel reconstruction in terms of (I.2) might
provide an opportunity for OA inversion. However, note that the pro-
posed approach does not evade the issue that reconstruction of data
obtained from point detectors is, in general, not exact.

As a remedy, we here describe a numeric inversion scheme for
problem (I.2), applicable to OA signals observed at a single field point,
allowing to solve for a 1D absorption depth profile. Our aim is not to
propose a competitive image reconstruction method for OAT applica-
tions that would require the reconstruction of full 3D domains from OA
signals recorded at numerous detection angles. More precisely, in the
presented article, we focus on the kernel reconstruction problem in the
paraxial approximation to the optoacoustic wave-equation, where we
suggest a Fourier-expansion approach to construct an approximate
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optoacoustic convolution kernel. We show that once (I.2) is solved for a
given “apparative” setup, this then allows to subsequently solve (I.1) for
different signals obtained using an identical apparative setup. A central
and reasonable assumption of our approach is that the influence of the
stress wave propagator on the shape change of the OA signal is negli-
gible above a certain cut-off distance. After developing and testing the
numerical procedure in the paraxial approximation, we assess how well
the inversion protocol carries over to more prevalent optoacoustic
problem instances, featuring the reconstruction for: (i) the full OA
wave-equation, (ii) non Gaussian irradiation source profiles, and, (iii)
measured signals exhibiting noise.

The article is organized as follows: in Section 2 we recap the theo-
retical framework of OA signal generation in the paraxial approxima-
tion, in Section 3 we discuss our approach to the OA kernel re-
construction problem, in Section 4 we illustrate the subsequent solution
of the source reconstruction problem via the obtained approximate
convolution kernel, and allude to the challenging problem of OA signal
inversion beyond the paraxial approximation in Section 5. In Section 6,
we conclude with a summary.

2. The direct OA problem in the paraxial approximation

The dominant microscopic mechanism contributing to the genera-
tion of acoustic stress waves is expansion due to photothermal heating
[34]. In the remainder we assume a pulsed photothermal source with
pulse duration short enough to ensure thermal and stress confinement
[8]. Then, in case of a purely absorbing material exposed to an irra-
diation source profile with beam axis along the z-direction of an asso-
ciated coordinate system, a Gaussian profile in the transverse co-
ordinates 7, and nonzero depth dependent absorption coefficient p1,(2),
limited to z = 0 and varying only along the z-direction, the initial
acoustic stress response to photothermal heating takes the form

(7)) = Fﬁ)/xa(z)exp{—lﬁ)lz/aé - Azﬂa(z') dz'}. )

Therein I, fo and ap signify the Griineisen parameter, the intensity of
the irradiation source along the beam axis and the 1/e-width of the
beam profile orthogonal to the beam axis, respectively. Given the above
initial instantaneous acoustic stress field p, (7), the scalar excess
pressure field p(7, t) at time t and field point 7 can be obtained by
solving the inhomogeneous OA wave equation [4,8]

[67 — ¢2A] p(F, 1) = py(¥) 8,8(2), @

with ¢ denoting the sonic speed in homogeneous media. Putting the
dispersion relation w? = kP of a harmonic wave solution
p(7, 1) = Aexpli(wt — ?7)} with frequency w and wave vector
¥ = (ky, ky, k;) (satisfying the homogeneous wave equation) under
scrutiny [35], it is possible to identify frequencies that correspond to
solutions p+(7, 1) and p (7, t) that travel in positive and negative z-
direction, respectively. This allows to derive a more simple propagation
equation than Eq. (2) that forms an adequate approximation to p.,
only. Le., employing a first order expansion of the dispersion relation in
the transverse parameter ¢ = (k7 + k;)V/ 21K yields a rational approx-
imation ] — ckyw, — ¢2(k? + k})/2 = 0 that corresponds to a para-
bolic approximation of Eq. (2). Introducing time-retarded coordinates
t— 7 =t + 2p/c the equivalent partial differential equation takes the
form [4,12,35]

[8:3, = (¢/2)(3% + 3 1p(¥, 1) = 0. 3

Along propagation directions close to e, a solution p(7, f) to Eq. (3)
yields a reasonable approximation to p+(7, t). In this paraxial ap-
proximation, the OA signal p,(7) = p(7h, t) at a fixed field point
= (0, 0, zp) along the beam axis can be related to the initial (t = 0)
on-axis stress profile po(z) via a Volterra integral equation of the 2nd
kind [12]
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Fig. 1. Illustration of OA signals obtained in the acoustic near-field (D = 0.22;
red dashed curve) and far-field (D = 6.67; blue dash-dotted curve). The signals
are obtained by solving the Volterra integral equation of the second kind, Eq.
(4), that mediates the shape transformation of the initial acoustic stress profile
(black solid curve) in the paraxial approximation. For the preparation of the
initial stress profile it is assumed that g, = 5mm~! in the range [cr_,
cr,] =[0, 0.3]mm and zero elsewhere. The convolution kernel reflects a
Gaussian irradiation source profile with 1/e-width ag = 0.3 mm.

Po@ =py@ = [ K@= )py(e)dr. @

Therein the Volterra operator features a convolution kernel K
(r — ) = wpexp{ — wp(zr — 7)}, mediating the diffraction transfor-
mation of the propagating stress waves [12]. A derivation of the ex-
ponential convolution kernel in terms of the transfer function method
working in the spectral domain is detailed in Ref. [4]. The characteristic
OA frequency wp = 2clzpl/aj effectively combines the defining para-
meters of the apparative setup psys = (c, ag, zp). The acoustic near and
far-field might be distinguished by means of the diffraction parameter
D = 2Izpl/(u, a3), where near and far-field are characterized by D < 1
and D > 1, respectively. Subsequently we focus on OA signal detection
in backward mode, i.e. zp < 0.

As an exemplary application, Fig. (1) illustrates the solution of the
direct OA problem, i.e. the forward calculation of OA signals via Eq. (4)
for a problem setup that resembles the experimental setup reported in
Ref. [36]. For a comparison of the prediction of OA signals in terms of
the effectively 1D approach provided by Eq. (4) as opposed to the full
3D wave equation please refer to appendix B of Ref. [7].

3. Reconstruction of the OA convolution kernel

Note that the solution of the direct problem and inverse problem
(I.1) in terms of Eq. (4) is feasible using standard numerical schemes
based on, e.g., a trapezoidal approximation of the Volterra operator for
a generic kernel [37], or highly efficient inversion schemes for the
particular form of the above convolution kernel [11]. As pointed out
earlier, considering inverse problem (I.2), we here suggest a Fourier-
expansion of the convolution kernel involving a sequence of N expan-
sion coefficients a = {a,}o<, < v and a cut-off distance R above which
the resulting effective kernel is assumed to be zero, i.e.

N-1
K(x;a,R) = E askes(x; R)O(R — x).
£=0 %)

The expansion functions k,(x; R) are given by

1, ife =0
€+1x .
ky(x; R) = cos(27r Tﬁ)’ if ¢ odd
sin(27r g%) if¢ even ©)

and O(") signifies the Heavyside step-function. Then, for a suitable se-
quence a, the Fourier approximation to the Volterra integral equation,
Eq. (4), reads
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N-1
(®) =py (@) — a; O, (z; R),
Pp 2 ggo o Py o

with auxiliary functions
@@ R = [ k(= DOR — (r = ))p, () dr". ®

Now, consider a given set of input data (po, pp) for known apparative
parameters Pgys, both in a discretized setting with constant mesh in-
terval A, mesh points {¢;}o<i<yy Where to = 0, t; = t;_; + A, and ty, large
enough to ensure a reasonable measurement depth. Then, bearing in
mind that 7; = t; + 2p/c, the optimal expansion coefficient sequence a*
can be obtained by minimizing the sum of the squared residuals (SSR)

2

M N-1
s@ R =) [ (@ —ppy@) — ), ard(w R | .
‘=0 ©)

In the above optimization formulation of inverse problem (I.2), we con-
sidered a trapezoidal rule to numerically evaluate the integrals that enter via
the functions ®,(z;;R). In an attempt to construct an effective Volterra
convolution kernel K(x;a, R) for a controlled setup with a priori known
parameters pgys, one might use the high-precision “Gaussian-beam” esti-
mator a, = (2wp/R) j(')R ko(x; R)exp{—wpx}dx to obtain an initial se-
quence a, of expansion coefficients by means of which a least-squares
routine for the minimization of Eq. (9) might be started. In a situation
where, say, ag is only known approximately or the assumption of a Gaussian
beam profile is violated, one has to rely on a rather low-precision coefficient
estimate obtained by roughly estimating the apparative parameters and
resorting on the above “Gaussian-beam” estimate.

An exemplary kernel reconstruction procedure is shown in Fig. 2,
where the OA signal pp at psy = (1cm/s, 0.1cm, — 0.5cm), i.e.
D = 3.75, is first obtained by solving the direct OA problem for Eq. (4)
for an absorbing layer with y, = 24 cm ™! in the range z = 0 —0.1 cm,
see black (po) and blue (pp) curves in Fig. 2 (a). The set (po, pp) is then
used as inversion input to compute the effective Volterra kernel for
various sets of reconstruction parameters pec = (N, R). In particular,
considering N = 51, the minimal value of s(a*, R*) = 1.47 is attained
at R* = 0.06 cm, see the inset of Fig. 2 (b). As evident from the main
plot of Fig. 2 (b), the effective Volterra kernel for p... = (51, R*) fol-
lows the exact stress wave propagator for almost two orders of mag-
nitude up to cAr = 0.05 cm. Beyond that limit, the noticeable deviation
between both does not seem to affect the overall SSR s(a, R) too much.
In this regard, note that the kernel approximated for the (non optimal)
choice prec = (51, 0.04 cm) exhibits a worse SSR.

4. The inverse OA problem - source profile reconstruction

Note that the above Fourier-expansion approximation might be inter-
preted as a gauge procedure to adjust an effective Volterra kernel K(x;a*,
R) for an (possibly unknown) apparative setup psys, here indirectly acces-
sible through the diffraction transformation of the OA signal py, relative to
Po- That is, once the kernel reconstruction (I.2) is accomplished for a set of
reference curves (p,, pp )t Under pgy,, the source reconstruction problem
(L.1) might subsequently be tackled also for all other OA signals measured
under psy; by solving the OA Volterra integral equation Eq. (4) in terms of a
Picard-Lindelof “correction” scheme [38]. The latter is based on the con-
tinued refinement of a putative solution, starting off from a properly
guessed “predictor” p{? (¢), improved successively by solving

p}if“) (@) =pp, (@) + ‘/:oo K(r - 7; a*, R)plgz) (z")dr'. 10)

From a practical point of view we terminated the iterative correction
scheme as soon as the max-norm ¢, = [pS*? (v) — p{¥ ()| of two suc-
cessive solutions decreases below ¢, < 10~°. We here refer to the final es-
timate simply as pp;. Note that, attempting a solution of (I.1) in the acoustic
near-field, a high-precision predictor can be obtained by using the initial
guess pég) = pp. This is a reasonable choice since one might expect the
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Fig. 2. Kernel and source reconstruction within the paraxial approximation for
system parameters pgys = (C, ap, 2p) = (1 cm/s, 0.1 cm, — 0.5 cm). (a) Inversion
input po (solid black line) and py, (solid blue line) used to derive effective kernel
for N =5, 11, and 51 Fourier-coefficients and cut-off parameter R = 0.06 cm.
Solution of the respective source reconstruction problems yields the estimates
pr1. (dashed and dash-dotted red curves). (b) The main plot illustrates the ef-
fective kernel K.g(Ar) = K(Ar;a*, R) for two different cut-off distances
R = 0.04 cm, and 0.06 cm. The inset shows the SSR s(R) = s(a*, R) for N = 51
as function of the cut-off distance where the minimum is attained at
R = 0.06 cm. (c) Solution pp;, of the source reconstruction problem for a OA
signal pp (solid blue line) resulting from a two-layer absorbing structure for the
same system parameters as in (a). Source reconstruction is performed using the
effective kernel for p,ec = (51, 0.06 cm) resulting from the gauge procedure.

change of the OA near-field signal due to diffraction to be still quite small.
Further, source reconstruction in the acoustic far-field might be started
using a high-precision predictor obtained by integrating the OA signal pp in
the far-field approximation [11]. In contrast to this, low-precision predictors
for both cases can be obtained by setting p{’ = c,, where, e.g., ¢ = 0.
The solution of the source reconstruction problem for the OA signal
Pp used in the approximation of the Volterra kernel for the above set-
ting psys = (1 cm/s, 0.1cm, — 0.5cm) is shown in Fig. 2 (a). We as-
sessed the scaling of the speed of convergence, measured using the
number of steps ny,x taken by the Picard-Lindelof correction scheme,
with increasing number of expansion coefficients N, finding ny.y o N*-3.
Note, however, that the computational burden of the Picard-Lindel6f
correction scheme is inferior to the minimization of the SSR according
to Eq. (9). The apparent agreement of the data curves ppy, for pec = (51,
R™*) and p, does not come as a surprise since pp was used for the gauge
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procedure in the first place. As a remedy we attempt a source re-
construction for a second independent OA signal, simulated for the
same apparative setting only with two absorbing layers y,; = 24 cm™*
from z = 0 —0.05cm and g, = 12 cm ™! from z = 0.05 — 0.12 cm. As
evident from Fig. 2 (c), inversion using the effective Volterra kernel
from the previous gauge procedure yields a reconstructed stress profile
pp in excellent agreement with the underlying exact initial stress
profile po.

5. Inversion beyond the paraxial approximation

Given the apparent feasibility of the kernel reconstruction routine as
a gauge procedure to model the diffraction transformation of OA signals
in terms of an effective stress wave propagator in the framework of the
OA Volterra integral equation, we next address the inversion of OA
signals to initial stress profiles beyond the paraxial approximation.
Therefore, we first consider a borderline far-field signal for a top-hat
irradiation source

- 1, ifI7n1 < p,
[ = = s :
exp{—(I7 | — py)*/ag}, ifl7|>p, an

recorded at the system parameters psys = (¢, po, ap, 2p) = (1cm/s,
0.1cm, 0.1 cm, — 0.50 cm), and thus D = 2|zp|/(ua(ag + po)) = 1.04,
obtained via an independent forward solver for the full OA wave
equation designed for the solution of the OA Poisson integral for
layered media [8,10]. The inversion results are summarized in Fig. 3
(a), where the kernel reconstruction (inset) and source reconstruction
(main plot) are shown for the parameter set p... = (41, R = 0.1 cm).
The position of the peak of the effective kernel seems due to the finite
extension p, of the employed top-hat beam profile (bear in mind that
originally, the underlying 1D approach assumes a Gaussian beam pro-
file). We find that, the larger the respective top-hat width p, the further
out that peak occurs. Consequently, the cut-off distance R above which
the kernel is assumed to vanish needs to be chosen large enough to still
enclose the peak of the kernel. The excellent agreement of the stress
profiles po and pp;, suggests that the kernel reconstruction routine also
applies to a more general OA setting, based on the full OA wave
equation.

Finally, we consider an OA signal resulting from an actual mea-
surement on PVA hydrogel based tissue phantoms [10]. In this case we
carefully estimated the apparative parameters pg,, = (150000 cm/s,
0.054 cm, 0.081cm/s, — 0.3 cm) as well as p, = 11 cm ! in the range
z=0—0.095cm, i.e. D = 6.73, in order to create a set of synthetic
input data by means of which an appropriate kernel gauge procedure
can be carried out. The result of the procedure using p... = (51, 0.1 cm)
is shown in Fig. 3 (b). So as to perform the source reconstruction for the
experimental signal pg, we considered data within the interval ¢z = [0,
0.15] cm, only. As evident from the figure, the reconstructed stress
profile ppy, fits the signal po used in the gauge procedure remarkably
well.

6. Conclusions

In the presented article we have introduced and discussed the kernel
reconstruction problem in the paraxial approximation of the optoa-
coustic wave equation for both, synthetic input data and experimental
data resulting from controlled measurements on melanin doped PVA
hydrogel tissue phantoms. We suggested a Fourier-expansion approach
to approximate the convolution kernel which takes a central role in the
theoretical framework. The developed approach proved useful as gauge
procedure by means of which the diffraction transformation experi-
enced by OA signals can effectively be modeled, allowing to subse-
quently solve the source reconstruction problem in the underlying ap-
parative setting. From this numerical study we found that the
developed approach extends beyond the framework of the paraxial
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Fig. 3. Inversion of OA signals to initial stress profiles beyond the paraxial
approximation. Both figures illustrate the kernel and source reconstruction
procedures for (a) inversion of an OA signal featuring a top-hat irradiation
source profile (see text). The main plot shows the input (po, pp) to the inversion
procedure (solid black and blue lines, respectively) as well as the reconstructed
initial stress profile pp;, (dashed red line), and, (b) inversion of an OA signal
resulting from an actual measurement [10]. The main plot shows the synthetic
initial stress profile py (solid black line) used during the gauge procedure as well
as the inversion input pg (orange line) for which the reconstructed initial stress
profile pp, (dashed red line) is obtained. In both figures, the inset illustrates the
effective Volterra kernel resulting from the Fourier-approximation.

approximation and also allows for the inversion of OA signals described
by the full OA wave equation in the acoustic far field. It would be
tempting to explore other kernel expansions in terms of generalized
Fourier series and to assess the presented method with regard to dif-
ferent signal-to-noise ratios in the input data. Also, the effects of
acoustic attenuation, the impulse response of the employed transducer
and uncertainty in the system parameters might be studied in detail so
as to probe the limits of the proposed inversion scheme. Such in-
vestigations are currently in progress with the aim to shed some more
light on this intriguing inverse problem in the field of optoacoustics and
to facilitate a complementary approach to conventional OA signal in-
version.

A Python implementation of our research-code for the solution of
inverse problems (I.1) and (I.2), along with all scripts needed to re-
produce the figures is publicly available on one of the authors figshare
profile, see Ref. [39].

Finally, note that here we discussed the problem of optoacoustic
inversion in the limit of unscattered transmission. However, in general,
the propagation of light in biological tissue is goverened by a scattering
coefficient y; with finite value [40]. In the limit y; > p, this renders the
transmission process effectively diffusive. As a consequence, the light
beam may behave as Gaussian only for depths > 1 mm. In this depth
range, optical-resolution photoacoustic microscopy (OR-PAM) [41]
might be of interest.
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