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Energy cost of entanglement extraction in complex
quantum systems
Cédric Bény1, Christopher T. Chubb 2, Terry Farrelly3 & Tobias J. Osborne3

What is the energy cost of extracting entanglement from complex quantum systems?

Operationally, we may wish to actually extract entanglement. Conceptually, we may wish

to physically understand the entanglement distribution as a function of energy. This is

important, especially for quantum field theory vacua, which are extremely entangled. Here we

build a theory to understand the energy cost of entanglement extraction. First, we consider

a toy model, and then we define the entanglement temperature, relating energy cost to

extracted entanglement. Next, we give a physical argument quantifying the energy cost

of entanglement extraction in some quantum field vacua. There the energy cost depends

on the spatial dimension: in one dimension, for example, it grows exponentially with

extracted entanglement. Next, we provide approaches to bound the energy cost of extracting

entanglement more generally. Finally, we look at spin chain models numerically to calculate

the entanglement temperature using matrix product states.
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Entanglement is a key resource in quantum information, with
a vast array of practical uses1. In physics more generally,
understanding the entanglement structure in physical sys-

tems is highly illuminating, e.g., in condensed matter theory
where quantum phase transitions are signalled by long-range
entanglement2–6. In high energy physics, quantifying the entan-
glement of states of a quantum field has applications to a variety
of problems7,8, from the AdS/CFT correspondence9, through to
detecting spacetime curvature by probing vacuum entangle-
ment10 or harvesting this entanglement by locally coupling small
systems to the field11–18.

Quantifying entanglement in states of quantum fields is a
nontrivial task due to the UV dependence of quantum entan-
glement near a boundary, leading to naive divergences19–21.
Many ad hoc approaches have been developed to deal with these
divergences, usually relying on subtracting the UV divergent
piece19. Of course, operationally, there are no such divergences
in the entanglement we can measure because any apparatus we
can build to extract entanglement from the field vacuum would
only use a finite amount of energy.

Surprisingly little work has been done in the quantum infor-
mation literature on the problem of quantifying accessible
entanglement subject to an energy constraint, or, similarly,
quantifying how much energy it costs to extract entanglement
from a quantum system. There are some very interesting related
ideas in the literature: in ref. 22, general quantum operations
costing zero energy are studied. Also, the energy cost of creating
entanglement in specific many-body systems was calculated in
ref. 23. Similarly, in the setting of quantum thermodynamics, the
energy/work cost of creating correlations in quantum systems was
studied in refs. 24–26. These give useful strategies for creating
correlations between finite dimensional systems or a pair of
bosons or fermions using energy-conserving (global) unitary
operations in the presence of heat baths. In ref. 27, entanglement
distillation is considered (also in the presence of a heat bath) with
an energy constraint: asymptotically many entangled pairs are
distilled into EPR pairs, with the constraint that the energy
before and after is equal. In ref. 28, using a specific local entan-
glement harvesting protocol (called entanglement farming), the
energy cost in the low energy regime was calculated. In contrast,
one may be interested in how the optimal energy cost scales with
the number of EPR pairs extracted and in the overall entangle-
ment structure of states, which is a rather different question.

Here we introduce a theory for the energy cost of entanglement
extraction via local operations and classical communication
(LOCC), focussing mostly on ground states. We use the term
extraction rather than one-shot distillation29, as we want to
emphasize that we are not necessarily distiling all the entangle-
ment from a state. In contrast, we wish to quantify the optimal
energy cost per EPR pair extracted. While individual protocols for
entanglement extraction are interesting, we are primarily con-
cerned with the protocol that minimises the energy cost. So one
of the benefits of our results is that we focus on protocol-
independent lower bounds on the energy cost of actually
extracting useful entanglement from complex systems. Another
benefit is that this elucidates the entanglement structure of
complex systems from an operational perspective: we gain an
understanding of how useful (meaning extractable or distillable)
entanglement is distributed in many-body or field systems as a
function of the energy cost of actually accessing it. Furthermore,
this is timely, as recent insights in high energy physics and gravity
have connected spacetime structure to entanglement30,31. We first
study the energy cost of entanglement extraction using a
toy model, which is chosen to share many of the features of the
vacuum state of a quantum field. Next, we introduce the entan-
glement temperature, which relates the amount of entanglement

extracted to the energy cost. Then, we look at the energy cost of
entanglement extraction in quantum field theories using physical
arguments. We also discuss some general methods for quantifying
the energy cost of entanglement extraction. Finally, we use matrix
product states to numerically calculate the energy cost of entan-
glement extraction for some condensed matter systems.

Results
Our setting. First, we focus on a simplified setup (see Fig. 1)
exemplifying the core features of our problem: Alice and Bob
have access to a bipartition of a common system with Hilbert
space HAB. This system, which we refer to as the physical system,
has a Hamiltonian HAB, which neither Alice nor Bob can modify.
Alice and Bob also have access to local ancillary degrees of
freedom A′B′, which they can use to store the entanglement they
extract from the physical system. Thus, the total Hilbert space for
the system is given by

HAA′BB′ � HAB �HA′B′ : ð1Þ

We assume that Alice and Bob can carry out any local operation
they like on the ancillary degrees of freedom with no energy cost.
Thus we associate to the total system+ ancilla system the
Hamiltonian H = HAB⊗1A′B′.

We assume that Alice and Bob can only perform local
operations and classical communication (LOCC)32, which is
natural, as this includes all operations distant parties can do in
practice, and prevents them from cheating by, e.g., simply creating
entanglement. We also suppose that Alice and Bob are working in
the one-shot regime, which is natural if, for example, we are
thinking of understanding the entanglement structure of vacuum
states in quantum field theory where there is only one copy of the
system available. In contrast, in the asymptotic many-copy regime
we could use entanglement distillation protocols1. We will also
comment on the energy cost in the asymptotic regime.

We quantify the energy cost as follows. Suppose we have a
completely positive trace-preserving map (also called a quantum
channel) E : EðHÞ ! SðHÞ acting on the space SðHÞ of density
operators on a Hilbert space H. These are the most general
operations one can do in quantum theory, and include
measurements as well as applying unitaries to systems32. Suppose
we also have a Hamiltonian H 2 BðHÞ. Given a state ρ 2 SðHÞ,

A

⎥0〉A ′

⎥Ω〉AB ⎥�〉AB

⎥0〉B ′

⎥Φ+⊗m〉A ′B ′

Alice Bob

LOCC

Alice Bob

B A B

A′ B′A′ B′

Fig. 1 Energy cost of entanglement extraction: Alice and Bob have access
to two parts of a quantum system in an entangled state |Ω〉AB with
Hamiltonian HAB. Using local operations and classical communication
(LOCC), they extract m EPR pairs into their ancillary systems A′ and B′,
leaving the physical system in the final state |ψ〉AB. Dropping subscripts, the
energy cost is then ΔE= 〈ψ|H|ψ〉− 〈Ω|H|Ω〉. Of primary interest to us is
the minimal energy cost, where Alice and Bob perform such an extraction
protocol outputting m EPR pairs with the lowest value for ΔE
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the operation E induces an energy change

ΔðE; ρÞ ¼ trðEðρÞHÞ � trðρHÞ ð2Þ

when acting on ρ (this can be negative). This is the energy cost
when we apply the channel E to the state ρ. As an aside, we may
also define the energy cost for the channel E, defined by the
largest possible change in energy after application of E:

ΔðEÞ ¼ sup

ρ 2 SðHÞ trðEðρÞHÞ � trðρHÞ
¼ H� E�ðHÞk k1:

ð3Þ

where �k k1 is the operator norm and E� is the dual of E in the
Heisenberg picture.

Extracting entanglement subject to an energy constraint. Here
we propose a definition for the entanglement accessible to Alice
and Bob when they have access only to operations costing less
than ΔE.

We imagine that the system AB starts in a state σABA′B′ ¼
Ωj iABΩ� 00j iA′B′00 where |0〉 is a convenient fiducial state of the
ancilla and |Ω〉AB is the initial state of the physical system. Alice
and Bob are now allowed to carry out LOCC operations costing
less than ΔE in total to maximise the quantum entanglement
between A′ and B′. This is the extraction step. Alice and Bob take
some entanglement from the AB system and convert it into some
number of maximally entangled EPR pairs, e.g., m copies of the
state Φþj i ¼ 1ffiffi

2
p 00j i þ 11j ið Þ, which is a maximally entangled

state of two qubits.
Suppose that E is a LOCC quantum channel and define

ρABA′B′ ¼ E σABA′B′ð Þ. We define the energy cost of extracting m
EPR pairs to be

ΔE ¼ minΔ E; σABA′B′ð Þ; ð4Þ

where the minimum is over all LOCC channels satisfying
ρA′B′ ¼ Φþ�mj iA′B′ Φþ�mh j.

From a different point of view, one can also define the
entanglement accessible with energy ΔE to be

EntΔE ΩABj ið Þ � sup

ΔðE; σABA′B′Þ � ΔE
EntðρA′B′Þ; ð5Þ

where again E is a LOCC channel and Ent is some convenient
entanglement measure. For pure states, one usually takes the
entanglement entropy, but for mixed states the entanglement
entropy is not a sensible entanglement measure, and one must
choose one of several different measures quantifying mixed-state
entanglement1. Here we usually deal with pure states, so we will
indeed use the entanglement entropy, which is defined by
EntðρABÞ ¼ SðρBÞ ¼ �tr½ρBlog2ðρBÞ�, where ρB= trA[ρAB].

It is conceivable that after extracting entanglement, the
energy of the system can go down, i.e., as well as extracting
entanglement, Alice and Bob may extract some energy. This
depends on the state |ΩAB〉, i.e., whether it is an excited state or
ground state. Since the emphasis in this paper is on ground states,
we assume henceforth that |ΩAB〉 is the ground state of HAB.

One can generalize the scenario above to give a more
comprehensive account of the energy cost. Consider the following
situation: the total system comprises (i) the physical system plus
Alice and Bob’s ancillas (now with nontrivial Hamiltonians HA′
and HB′ respectively), (ii) batteries which allow us to account for
any energy that Alice and Bob use to perform their operations
with Hamiltonian Hbatt, and (iii) the environment which has
Hamiltonian Hen. We can model whatever operations Alice and
Bob do on the total system by a unitary or quantum channel with

the sole demand that it conserves the total energy. (Any energy
they need to actually extract entanglement comes from the
battery system.) Then we have that the total Hamiltonian is
H=HAB+HA′+HB′+Hbatt+Hen, and energy conservation
implies that tr[ρIH]= tr[ρFH], where ρI and ρF are the initial
and final states of the whole system, respectively. As the energy
cost from the perspective of the experimentalists (Alice and
Bob) is ΔE= tr[(ρI− ρF)Hbatt], we get

ΔE ¼ tr½ðρF � ρIÞðHAB þHA′ þHB′ þHenÞ�: ð6Þ

Now, we assume that tr[(ρF− ρI)Hen] ≥ 0, otherwise they are
getting energy from the environment, which should be accounted
for by the battery. Then we get

ΔE 	 tr ρF � ρI
� �

HAB þHA′ þHB′ð Þ� �
: ð7Þ

Now for the setting we are interested in, we assume Alice and
Bob’s ancillas are well understood systems, which can be finely
controlled (after all, they may want to use the entanglement they
extract for some useful task, such as teleportation). Because of this,
one should expect to be able to easily calculate tr[(ρF−ρI)(HA′
+ HB′)], as the initial and final states of their ancillas are known:
they prepare the ancillas in some initial state and then they extract
some number of EPR pairs. (It is also perfectly reasonable to
assume that the ancillas are initially in their ground states.)
Therefore, the interesting calculation is finding tr[(ρF− ρI)HAB].
So it is reasonable to focus on bounding this term below, as this
is independent of the setup of Alice and Bob’s ancillas, which,
even if nontrivial, would be simple in any reasonable protocol
(e.g., some qubits where the ith qubit has Hamiltonian Hi∝ σz).

Furthermore, of course, one would also be interested in very
precise energy accounting for practical purposes, but the energy
cost of changing the state of the physical system due to extracting
entanglement will always be present and is independent of the
setup and therefore fundamental.

Weak vs strong interactions. A key ingredient in any entangle-
ment extraction protocol is the strength of the interaction
between Alice’s and Bob’s systems. If we write HAB=HA⊗1B+
1A⊗HB+VAB, then the limitations on how much entanglement
Alice and Bob can extract using LOCC are determined by VAB.
Indeed, if VAB= 0, the ground state |Ω〉 will have no entangle-
ment between Alice’s and Bob’s systems.

There is a useful naive protocol for entanglement extraction:
Alice and Bob first swap the states of their primed and non-
primed systems. Then they can prepare a state of the physical AB
system (using LOCC) with minimal local energy, meaning Alice/
Bob prepares |ψA/B〉, such that 〈ψA/B|HA/B|ψA/B〉 is minimised.
The total energy change is, with |ψ〉 = |ψA〉|ψB〉,

ψh jH ψj i � Ωh jH Ωj i
� hψjVABjψi � Ωh jVAB Ωj i � 2 VABk k1:

ð8Þ

Therefore, when the coupling is sufficiently weak, Alice and
Bob can safely extract all the entanglement whilst only incurring a
small energy cost.

In contrast, for strong couplings the situation is entirely
different, which is exactly the case for quantum field theories,
where extracting all the entanglement costs a divergent amount of
energy. For an example of a free fermion field, we see in the
Methods section that all product states |ψ〉 satisfy 〈ψ|H|ψ〉 ≥ 1/a,
where a is the regulator (the lattice spacing in this case). Thus, the
energy diverges as a→ 0 for any product state, meaning that
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extracting all the entanglement costs a diverging amount of
energy. In general, the energy cost for extracting all the
entanglement will diverge in quantum field theory. Again using
a lattice regulator, the energy contained in the interaction terms
between a region A and the rest scales like (∂A/ad), where ∂A is
the boundary of A, which is also shown in the Methods section.

A toy model. In this section we discuss an idealised model, which
exemplifies many of the features of the quantum field vacuum. It
has high entanglement and a high energy cost for extracting all
this entanglement, as we will see.

Suppose that the system AB is actually composed of 2n qubits,
with n qubits in A and n qubits in B. We call the qubits Aj and Bj,
respectively, for j= 1,2,…,n. We suppose that HAB is given by

HAB ¼
Xn
j¼1

1� PAjBj

� �
; ð9Þ

where PAjBj
is the projector onto the maximally entangled state

Φþj i ¼ 1ffiffi
2

p ðj00i þ j11iÞ of qubits Aj and Bj. The ground state

|ΩAB〉 of HAB is thus a product of maximally entangled pairs, i.e.
it is a maximally entangled state between A and B.

If Alice and Bob could do arbitrary LOCC, then they could
easily extract n EPR pairs. However, if they are only allowed an
energy cost of ΔE, then naively they should only be able to extract
O(ΔE) EPR pairs.

In the most extreme case, Alice and Bob fully extract all the
EPR pairs. Then, in order that this entanglement is between
ancilla degrees of freedom in A′ and B′, it must be that A and B
are in a separable state σAB. Since the energy depends linearly on
σAB, we may as well suppose that σAB is an extreme point of the
convex set of separable states, namely, a product state |ϕ〉A|ψ〉B.
The energy of our initial state |Ω〉AB was zero, so the energy cost
of any entanglement extraction procedure must be greater than

inf

ϕj iA ψj iB
Xn
j¼1

1� ϕA
	 

 ψB

	 

PAjBj
ϕA


 �

ψB



 �� �
: ð10Þ

This infimum is achieved by finding the supremum:

sup
jϕiAjψiB

ϕA
	 

 ψB

	 

PAjBj
ϕA


 �

ψB



 �
; ð11Þ

which is equal to 1/2. (e.g. setting each pair to 00j iAiBi
will do the

job.) Thus, the energy cost is given by

ΔE 	 1
2

Xn
j¼1

1 ¼ n=2: ð12Þ

More generally, suppose Alice and Bob extract fewer EPR pairs
(say m), one option is to use the following simple protocol. They
swap the states of the first m EPR pairs of the physical system into
their ancilla systems, which they can do using local operations. The
first m pairs of qubits of the physical system are now in a product
pure state. Then they can apply local unitaries mapping each of these
qubit pairs to the state 00j iAiBi

, getting the final energy cost

ΔE ¼ 1
2

Xm
j¼1

1 ¼ m=2: ð13Þ

Thus, the total energy cost is 1/2 per EPR pair extracted.
Of course, there may be a protocol extracting the same amount

of entanglement but costing less energy. In the Methods section,

we argue that the simple protocol given above is, in fact, optimal.
The argument relies on a combination of numerics and the
majorization criteria, which determine when pure state transfor-
mations using LOCC are possible. To introduce majorization,
we use the Schmidt decomposition: for any pure state |ϕ〉AB, there
exist orthonormal bases of A and B, denoted |ai〉 and |bi〉
respectively, such that ϕj iAB¼

P2n

i¼1 αi aij i bij i, where αi are called
Schmidt values and are positive real numbers decreasingly
ordered32. For it to be possible to transform this state into the
new state |ψ〉AB, with Schmidt values βi, the majorization
condition32 must be satisfied:

8K 	 1
XK
i¼1

αij j2�
XK
i¼1

βi


 

2: ð14Þ

For this to be possible, the Schmidt rank of the resulting state
(the number of non zero βi) must be smaller than that of the
initial state. The LOCC protocol implementing such transforma-
tions can be found in ref. 32.

On the other hand, in the asymptotic entanglement distillation
setting, the energy cost above for the toy model is not optimal. In
that case, one can distil entanglement at a lower energy cost,
which we show in the Methods section. In practice, however, we
only have access to one copy of a quantum field or condensed
matter system, so it is crucial to consider the one-shot setting.
Furthermore, entanglement distillation protocols rely on project-
ing onto typical subspaces defined by the Schmidt vectors of the
initial state32, which for extremely complex systems would be
practically impossible.

The entanglement temperature. In the previous section, the total
energy cost was 1/2 per EPR pair extracted. To relate the change
in entanglement entropy ΔS to the energy cost ΔE, we define the
entanglement temperature Tent by

ΔE ¼ TentΔS: ð15Þ

(The name entanglement temperature is chosen in analogy
with thermodynamics, although it is important to emphasize that
there is generally no connection with thermodynamic tempera-
ture.) So Tent is a property of the ground state of a system. For the
toy model, we see that Tent= 1/2 since ΔS ¼ m log2ð2Þ ¼ m. In
this case Tent is constant because there is a linear relationship
between the entanglement extracted and the energy cost. For
general systems, we would not expect ΔE∝ ΔS for the entire
range of ΔS. Instead, we should think of the entanglement
temperature as a function of the extracted entanglement. (This is
also true in thermodynamics, where thermodynamic temperature
can often be thought of as a function of other state functions,
such as entropy or pressure.)

In the following sections, we give some physical and numerical
arguments to find ΔE as a function of ΔS and hence find the
entanglement temperature for some physical systems.

The energy cost in quantum field theory. For some quantum
field theories, we can give a physical argument for the energy cost
of entanglement extraction. Using known formulas for the
entropy of ground states of lattice models33, we have an expres-
sion for the entropy of certain QFTs regulated on a lattice with
lattice spacing a. By estimating the energy cost of extracting all
the entanglement from this regulated vacuum state, we get an
expression for the energy cost as a function of the lattice spacing.
Combining these formulae, we find an estimate for the energy
cost of extracting a given amount of entanglement.
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For example, for one dimensional lattice systems, the
entanglement entropy in the ground state of models close to
the critical point is20,33

SðρIÞ ¼
c
6
log2ðξ=aÞ; ð16Þ

where ξ 
 a is the correlation length, c is a constant and ρI is the
state corresponding to the infinite half-line (−∞, 0]. This is
equivalent to a massive relativistic QFT with 1/ξ equal to the
mass, e.g., for free bosons we have c= 1.

As argued in the section “Weak vs strong interactions”, the
energy cost for extracting all of this entanglement is ΔE=O(1/a).
(In some cases, exactly half of this entanglement is one-
shot distillable34.) Supposing we wished to extract m EPR
pairs, then we need to probe an energy scale such that
SðρIÞ ¼ c

6 log2ðξ=aÞ 	 m, which corresponds to an energy cost
of at least 1/a where a= ξ/2−6m/c. Therefore, we have the energy
cost ΔE∝ exp(Km), where K= 6ln(2)/c. This means that the
energy cost of entanglement extraction increases exponentially:
there is infinite entanglement in the quantum field vacuum, but
the cost of extraction grows quickly. (Note that in practice
Alice and Bob would only have access to finite regions of space, so
this actually gives a lower bound on the energy cost in such
scenarios.) For gapless (i.e. critical) models, the same argument
goes through if Alice has access to a finite region and Bob has
access to the rest. In contrast, if Alice’s system is a half-line, there
is infinite entanglement at any energy scale. One can see this
using the formula for the entanglement entropy at criticality
between the state of the lattice system ρI on an interval I of length
l and the rest, given by SðρIÞ ¼ c

3 log2ðl=aÞ þ c′, where c and c′ are
constants33.

The scaling is different for quantum fields in higher
dimensional spaces. In many cases, e.g. free massive quantum
fields20, the entanglement entropy of the ground state is known to
obey an area law35. Then in a region A with area ∂A, the leading
contribution to the entropy is S(ρA)∝ ∂A/ad−120. However, the
energy cost of extracting all the entanglement scales like ΔE∝ ∂A/
ad (This is justified in the Methods section). Thus we arrive at an
estimate for the energy cost of entanglement extraction: ΔE∝
ΔSd/(d−1). And the entanglement temperature is then Tent∝ 1/
a∝ ΔE1/d. The energy costs of entanglement extraction in QFTs
are plotted in Fig. 2.

These arguments work for quantum field theories where the
entanglement entropy of the ground state of the model (regulated
on a lattice) can be calculated. This works well for free field
theories, though it is believed that entanglement area laws hold
more generally, so the ideas should extend further.

For more general systems, there is no clear way to proceed.
Here we outline some potential methods to approach the problem
(including optimization via Lagrange multipliers in the Methods
section), and we consider the trade-off between entanglement
change and energy cost numerically.

Lower bound for gapped systems. One option is to maximise the
overlap of the final state of the physical system (after the
entanglement has been extracted) with its ground state. For
Hamiltonians of the form HAB=−|Ω〉〈Ω|, we get an exact
answer for the optimal energy cost. Also, one can use this method
to get a lower bound on the energy cost for a Hamiltonian with a
gap Δ and a non-degenerate ground state as follows. Suppose the
final state is |ψ〉, then the energy cost is 〈ψ|HAB|ψ〉, assuming the
ground state energy is zero, without loss of generality. Then we
get

ψh jHAB ψj i ¼ ψh jHAB 1� Ωj i Ωh jð Þ ψj i
	 Δ ψh j 1� Ωj i Ωh jð Þ ψj i
¼ Δ 1� j Ωjψh ij2� �

:

ð17Þ

As an example, take Ωj i ¼ 1=
ffiffiffi
d

p� �Pd
i¼1 ij iA ij iB, where d= 2n.

Suppose that Alice and Bob extract m EPR pairs using LOCC,
leaving a pure state |ψ〉 in the physical system. Using the
majorization criterion, this can be any state with Schmidt rank up
to K= 2n−m. To minimise the energy cost, we need to find such a
state having maximal overlap with |Ω〉.

We may write the optimal |ψ〉 in its Schmidt basis asPK
i¼1 αi aij iA bij iB. Next notice that

Xd
i¼1

ih jA ih jB
 !

aj




 E
A
bj




 E
B
� 1: ð18Þ

Then we have

Ωjψh i � 1ffiffiffi
d

p
XK
i¼1

αi �
ffiffiffiffi
K
d

r
¼ 2�m=2: ð19Þ

Therefore, if the Hamiltonian for this system has gap Δ, we see
that the energy cost for extracting m EPR pairs is at least Δ(1–2−m).
(Applying this method to our earlier toy model actually gives a tight
lower bound when one EPR pair is extracted.)

Numerics. Another option is to consider the trade-off between
entanglement and energy numerically. For a given Hamiltonian
H, we consider a procedure in which the system starts in the
ground state |Ω〉, some entanglement is extracted, and the
system is left in a final state |ψ〉. The energy cost of this procedure
is 〈ψ|H|ψ〉− 〈Ω|H|Ω〉, and the extracted entropy is upper
bounded by Ent(|Ω〉)− Ent(|ψ〉). In the asymptotic many-copy
case, this is exactly the extracted entanglement entropy. We
denote the entanglement temperature in that case by TA

ent.
We have that

TA
ent �

ψ Hj jψh i � Ω Hj jΩh i
EntðΩÞ � EntðψÞ : ð20Þ

Note that for a given amount of extracted entanglement ΔS, the
one-shot entanglement temperature is lower bounded by the
asymptotic-setting entanglement temperature TA

ent � Tent.
A given state does not necessarily give a tight bound on TA

ent.
For this we need to study the optimal trade-off between

ΔS

ΔE
1D

2D

3D

Fig. 2 Energy cost of entanglement extraction from quantum field vacua:
this depends heavily on the spatial dimension. Here we sketch the
behaviour in dimensions d= 1, 2, 3. When d= 1, ΔE∝ exp(KΔS), where K is
a constant, and for d > 1, ΔE∝ΔSd/(d−1)
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entanglement and energy, which is given by a Pareto front. By
randomly generating states with low energy and low entangle-
ment, we can numerically evaluate the above upper bound, and
use this to compute the Pareto front. We describe a tensor
network method for generating such samples in the Methods
section. In Fig. 3 we present numerical results for two 1D spin
models.

It is interesting to note that the entanglement temperature for a
fixed change in entropy (amount of entanglement extracted)
actually decreases with increasing system size for the critical
models studied in Fig. 3. There is a physical reason for this. At
criticality, the ground state is scale-invariant, so there is
entanglement at all length scales, so Alice and Bob might as
well focus on just the low energy (large length-scale) modes. And
for bigger and bigger systems the gap closes, so that Alice and Bob
can extract a lot of entanglement out of the low energy modes
with very little energy cost.

Furthermore, the apparent divergence of the entanglement
temperatures in Fig. 3 is a finite-size effect. The total amount of
extractable entanglement grows with the system size, while the
energy cost of extracting all entanglement is bounded above (by
the strength of the interaction between Alice and Bob’s systems).
Therefore, the maximum entanglement temperature for any
system size is bounded (since Tent= ΔE/ΔS).

Discussion
We introduced a framework to understand and quantify the
energy cost of extracting entanglement from complex quantum
systems. After looking at a toy model, which illustrated the key
concepts, we defined the entanglement temperature. Then we
analysed the energy cost of entanglement extraction in quantum
field theories, and we saw that the energy cost of extracting
entanglement depends on the spatial dimension. Finally, we
looked at some general methods to approach the problem,
including numerical methods for lattice models.

Quantifying how much energy extracting m EPR pairs costs in
physical systems illuminates the entanglement structure of states,
particularly ground states of, e.g. quantum fields. But it can also
upper bound how efficient protocols such as entanglement har-
vesting can be. For general systems, the optimal strategy for
entanglement extraction may be hard to find. Still, it is heartening

that, at least for quantum field theories, there is a relatively simple
formula for the energy cost.

It would be interesting to combine the ideas here with those in
ref. 36, where transformations between entangled states are con-
sidered using an additional resource: an entanglement battery.
This is a reservoir from which entanglement may be taken or
deposited to facilitate state transformations, which may be
impossible otherwise. One may then ask how this theory changes
when there is also an energy cost associated with using the
entanglement in the battery.

Another interesting possibility is to go beyond ground states,
considering perhaps excited or thermal states of the physical
system. While the entanglement properties of such states are less
well understood, they are also quite interesting: excited states are
generally expected to have more entanglement than ground
states, though thermal states are easier to prepare in practice.

Methods
Cost of extracting all correlations in lattice QFT. Consider free massless fer-
mions in (1+ 1) dimensions with lattice cutoff a. To avoid worrying about fermion
doubling, take staggered fermions37, with Hamiltonian

H ¼
XN�1

n¼0

i ψy
nψnþ1 � ψy

nþ1ψn

� �
2a

þ 1
a

2
4

3
5; ð21Þ

where ψn are fermion annihilation operators, satisfying ψn;ψ
y
m

� 
 ¼ δn;m and {ψn,
ψm}= 0. We have chosen the 1/a term on the right so that, as a→ 0, the
Hamiltonian is positive definite with ground state energy independent of a (which
we verify at the end of the section). This normalisation also has the advantage that
each term in the sum is positive definite:

i ψy
nψnþ1 � ψy

nþ1ψn

� �
þ 2 ¼ ψy

n � iψy
nþ1

� ��
ψn þ iψnþ1

�
þ ψnψ

y
n þ ψnþ1ψ

y
nþ1:

ð22Þ

Now suppose Alice’s system is one half of the chain (sites 0 to N/2− 1), and
Bob’s system is the other half. If they extract the entanglement by swapping the
state of the physical system into an ancilla, then the final state of the chain (which
can be chosen to be pure because the energy can always be minimised by a pure
state) is

ψj i ¼ αψy
N=2�1A

y
1 þ βAy

2

� �
γψy

N=2B
y
1 þ δBy

2

� �
0j i; ð23Þ

where |0〉 is the state satisfying ψn|0〉= 0 for all n; A1, A2 are products of
annihilation operators on Alice’s system, while B1, B2 are products of annihilation
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Fig. 3 Asymptotic-case entanglement temperature for two critical spin models. TA
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� �
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Heisenberg anti-ferromagnet (a) and the critical transverse-field Ising model (b), for multiple system sizes. Notice that near the ground state TA
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which we prove is generic in the Methods section. The one-shot entanglement temperature Tent is lower bounded by the asymptotic temperature TA
ent

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06153-w

6 NATURE COMMUNICATIONS |  (2018) 9:3792 | DOI: 10.1038/s41467-018-06153-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


operators on Bob’s system; and α, β, γ, and δ are complex numbers. Because of
superselection rules, if A1 is a product of an odd number of annihilation operators,
then A2 is even, or vice versa. The same holds for B1 and B2. Then one can easily
verify that

ψh j
i ψy

nψnþ1 � ψy
nþ1ψn

� �
2a

þ 1
a

2
4

3
5 ψj i 	 1

a
: ð24Þ

So the energy of this state diverges as a→ 0.
Finally, we need to verify that we normalised the Hamiltonian suitably and that

the ground state energy of the staggered-fermion Hamiltonian is independent of a.
Thus, we need to diagonalise

H ¼
XN�1

n¼0

i ψy
nψnþ1 � ψy

nþ1ψn

� �
2a

þ 1
a

2
4

3
5: ð25Þ

To do this, we switch to momentum space, with

ψn ¼ 1ffiffiffiffi
N

p
XN�1

k¼0

e�2πikn=Nψk: ð26Þ

Then we have

H ¼
XN�1

k¼0

� sinð2πk=NÞ
a

ψy
kψk þ

1
a

� �
: ð27Þ

This has minimum energy

E0 ¼
N
a
� N
2a

2
N

XN=2�1

k¼0

sinð2πk=NÞ
" #

; ð28Þ

where we have assumed that N is even. We next define the Riemann sum over [0,1]
to be

RM ½f ðxÞ� ¼
1
M

XM
m¼1

f
m� 1=2

M

� �
: ð29Þ

and we may use the following formula for convergence of a Riemann sum38

RM ½f ðxÞ� �
Z 1

0
dx f ðxÞ










 � Tðf ′Þ

8M2
; ð30Þ

which holds when f is differentiable everywhere on [0, 1] with bounded derivative
and total variation Tðf ′Þ ¼ R 10dx f ′ðxÞj j. To apply this to E0, we write M=N/2.
Then

1
M

PM�1

k¼0
sinðπk=MÞ ¼ 1

M

PM
k¼1

sinðπðk� 1Þ=MÞ

¼ cos π
2M

� �
RM ½sinðπxÞ� � sin π

2M

� �
RM ½cosðπxÞ�

¼ ð1þ OðM�2ÞÞRM ½sinðπxÞ� � OðM�1ÞRM ½cosðπxÞ�
¼ RM ½sinðπxÞ� þ OðM�2Þ
¼ 2þ OðM�2Þ:

ð31Þ

To get the second line, we used that sin(A+ B)= sin(A)cos(B)+ cos(A)sin(B)
and Eq. (29). In the third line, we used cos(x)= 1+O(x2) and sin(x)=O(x) for
sufficiently small x. To get the fourth line, we used Eq. (30) to get RM[cos(πx)]= 0
+O(M−2). And we used Eq. (30) again to get the last line.

Therefore, the ground state energy is

E0 ¼
N
a
� N
2a

2þ OðN�2Þ� � ¼ O
1
Na

� �
; ð32Þ

and since 1/Na= 1/L is a constant, E0 is essentially independent of the lattice
spacing.

For general lattice regularizations of quantum field theory, the energy contained
in the interactions between a region A and the rest of the lattice scales like (∂A/
ad−1) × 1/a, where ∂A is the boundary of A. To see this, note that the region A has
approximately ∂A/ad−1 interaction terms with the rest, and the strength of each
interaction is proportional to 1/a. Dimensional analysis is often enough to argue
this, but one can check for, e.g. massless scalar field theory in d dimensions. In that

case, the interaction term between lattice sites comes from the discrete derivative:

ð∇aϕÞ2ðnÞ ¼
Xd
i¼1

ϕðnþ aeiÞ � ϕðnÞ
a

� �2

; ð33Þ

where ei are lattice basis vectors. The Hamiltonian is given by

H ¼
X
n

ad

2
π2ðnÞ þ ð∇aϕÞ2ðnÞ
� �

; ð34Þ

where π(n) is the operator canonically conjugate to ϕ(n). Because ϕ(n) has
dimensions of (length)(1−d)/2, we see that the interaction terms between sites have
strength O(1/a). One can also show that the energy density of a product state in
quantum field theory is infinite39.

Optimality of the single-shot toy model protocol. After applying their
operations, Alice and Bob have m Bell states in the ancilla Φþ�mj iA′B′ and
some pure state in the physical system |ψ〉AB. Here we can use the majorization
criterion. Writing |Ω〉AB in its Schmidt basis (orthonormal bases of A and B,
denoted |ai〉 and |bi〉 respectively), we have Ωj iAB¼

P2n

i¼1 αi aij i bij i, where αi
are positive real numbers decreasingly ordered32. The initial state |Ω〉AB|00〉A′B′
then has the same Schmidt rank as |Ω〉AB, which is 2n in this case. For it to be
possible to transform this state into the new state ψj iAB Φþ�mj iA′B′ , the Schmidt
rank of ψj iAB Φþ�mj iA′B′ must be smaller than that of |Ω〉AB|00〉A′B′. This
implies that the Schmidt rank of the new state of the physical system |ψ〉AB can
be at most 2n−m.

Figure 4 shows numerics from a DMRG calculation of the minimum
increase in energy as the Schmidt rank of the state of the physical system
decreases. Based on these numerical results, we see that the minimum increase in
energy when the Schmidt rank decreases by a factor of 2m is 0.5 m. This can be
achieved by the simple protocol of the previous section, indicating that this
protocol is optimal. Actually, this whole argument also goes through even if
Alice and Bob have some additional shared entanglement that can be used as a
catalyst, as in ref. 40.

Optimization via Lagrange multipliers. One way to find the energy cost of
extracting some entanglement is by finding the state (or set of states) of the
physical system that has a given value of entanglement entropy with minimal
energy. The idea is that, after Alice and Bob have extracted some entanglement,
the lowest energy cost corresponds to leaving the system in such a state. For
simplicity, we focus on finding a pure state |ψ〉AB with this property. (It is
possible that a protocol giving a mixed state on the physical system may be more
efficient. In this case, we may use a superadditive entanglement measure, like the
squashed entanglement41, to upper bound the entanglement left in the physical
system.)

Alice and Bob have the initial state Ωj iAB 00j iA′B′ , and then they apply some
LOCC protocol to extract m EPR pairs into the ancilla A′B′. Because they are using

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

ΔS0

ΔE

Toy model (n = 5)

Fig. 4 Minimum energy cost of extracting entanglement for the toy model.
More precisely, the figure shows the minimum change in energy ΔE when
there is a decrease in zero entropy ΔS0 (with S0 equal to log2 of the
Schmidt rank) of the state of the physical system. When ΔS0 is an integer
m (which corresponds to extracting m EPR pairs from the system), then the
plot shows ΔE= 0.5m. The calculation was performed using DMRG by
restricting the bond dimension between Alice and Bob’s systems
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LOCC, the overall entanglement can only decrease:

Ent ψj iAB Φj iþ�m
A′B′

� � � Ent Ωj iAB 00j iA′B′
� �

¼ Sinitial;
ð35Þ

where Sinitial is the initial entanglement entropy in the state |Ω〉AB and Ent is an
entanglement measure, which we take to be the entanglement entropy, since the
states are all pure. Then we have that the entanglement entropy in the final state of
the physical system is Ent(|ψ〉AB) ≤ Sinitial−m.

So we wish to minimise the energy, given that the entanglement entropy of the
physical system is fixed. We can do this using Lagrange multipliers (analogously to
how one derives the thermal state by maximising the entropy at fixed energy; see
also ref. 42 for a similar calculation). Thus, we have the Lagrangian

L ρAB
� � ¼ tr ρABH

� �� μ1S ρB
� �þ μ2tr ρAB

� �
; ð36Þ

where μi are Lagrange multipliers, and we minimise this by setting ∂XL ρAB
� � ¼ 0,

where

∂Xf σð Þ ¼ lim
ε!0

f σ þ εXð Þ � f σð Þ
ε

: ð37Þ

To compute the derivative of S(ρB), we use

∂Xf trA½σ�ð Þ ¼ ∂trA ½X�f trA½σ�ð Þ: ð38Þ

We also use the following formula from ref. 43

∂XlogðσÞ ¼
Z 1

0
du

1
σ þ u1

X
1

σ þ u1
; ð39Þ

where σ is a density operator. This implies that

tr σ ∂Xlog σð Þ½ � ¼ tr½X�: ð40Þ

The result is that we need to find a state ρAB satisfying

tr X H� μ11A � log ρB
� �� μ1 þ μ2

� �� � ¼ 0 ð41Þ

but not for any X because we want to ensure that we only consider pure states.
Writing ρAB= |ψ〉〈ψ|, let

X ¼ ϕj i ψh j þ ψj i ϕh j: ð42Þ

Then, writing Q ¼ Qy ¼ H� μ11A � logðρBÞ � μ1 þ μ2, we get

ψh jQ ϕj i þ ϕh jQ ψj i ¼ 0: ð43Þ

But this must be true for any |ϕ〉. Choosing |ϕ〉=Q|ψ〉, we get

ψh jQ2 ψj i þ ψh jQ2 ψj i ¼ 0; ð44Þ

which is possible only if Q|ψ〉= 0. So we have

H� μ11A � log ρB
� �� μ1 þ μ2

� �
ψj i ¼ 0: ð45Þ

Note that trA[|ψ〉〈ψ|]= ρB, so this is unfortunately not linear.
Equation (45) is difficult to solve in general but may be simplified if we know

something about the structure of H. This is the case for the toy model, where H is a
sum of commuting terms acting on different pairs of qubits AiBi. In this case, with
the ansatz ψj iAB¼ ψ1



 �
A1B1

�:::� ψn



 �
AnBn

, we see from Eq. (45) that each ψi



 �
AiBi

should have the same Schmidt vectors as Φþj iAiBi
. One possible solution is to take

all qubit pairs to be in the same state: ψj iAB¼ ϕj iA1B1
�:::� ϕj iAnBn

, where |ϕ〉= α|
00〉+ β|11〉. Then, Sinitial= n, since the initial state consisted of n EPR pairs, so one
need only solve

n�m ¼ �n½α2log2ðα2Þ þ β2log2ðβ2Þ� ð46Þ

for α and β. And the corresponding energy cost is ΔE= n[1−(α + β)2/2].
For example, with m= n/2, one gets ΔE ’ þ0:38m. This is smaller than the

optimal energy cost that we saw earlier: ΔE= 0.5m. However, in that case,
which was the one-shot setting, Alice and Bob cannot prepare the state |ψ〉AB
after extracting m EPR pairs. This is because |ψ〉AB has maximal Schmidt rank,
so the majorization condition cannot be satisfied, so there is no LOCC process
creating |ψ〉AB.

Interestingly, however, we can create the state |ψ〉AB in the asymptotic setting of
infinitely many copies of this system, getting a nontrivial upper bound on the
optimal energy cost of extracting m EPR pairs per copy of the system. This follows

because, in the asymptotic setting, any bipartite entangled pure state can be
transformed into another reversibly using LOCC if their entanglement entropies
are the same (see ref. 32 for details of the protocol). So we see that the energy cost
of distiling m EPR pairs (per copy of the physical system) in the asymptotic setting
will be lower than in the one-shot case. This makes sense: in the asymptotic case,
we could just apply any one-shot protocol many times, so the best asymptotic
strategy must be at least as good as the best one-shot strategy.

Method for sampling low energy and low entanglement states. We now briefly
describe a method for sampling states, which, with respect to a given Hamiltonian
and bipartition, have low energy and low entanglement. The idea is to start in
a random state, and then repeatedly attempt to lower both the energy and
entanglement of this state in turn. We represent the state numerically in the form
of a Matrix Product State (MPS), and utilise tensor network techniques to lower the
energy and entropy.

To lower the energy of the state we perform imaginary time evolution.
Specifically we apply an approximation of e−τH for some τ > 0, and then
renormalise the state, and trim down the bond dimension. We approximate e−τH

by using a Suzuki–Trotter expansion44, in a method similar to that used in time-
evolving block decimation45–48.

To lower the entropy we leverage normal forms of MPS. By performing
successive singular value decompositions, the Schmidt decomposition of a matrix
product state

ψj i ¼
X
α

λα lαj i � rαj i ð47Þ

can be efficiently calculated49. To lower the entropy we want to ‘sharpen’ the
Schmidt spectrum, by raising it to a power

ψ′j i /
X
α

λ1þε
α lαj i � rαj i; ð48Þ

for some constant ε.
By performing the above procedures successively with random parameters on

random states we can sample from states in a manner that is biased towards those
with low energy and low entanglement, allowing us to approximate the Pareto
front of the two variables as in Fig. 3.

The models we chose to look at are the Heisenberg anti-ferromagnet and the
transverse-field Ising model both at criticality:

HHAF ¼
PN�1

n¼1
σxnσ

x
nþ1 þ σynσ

y
nþ1 þ σznσ

z
nþ1

� �
;

HTFI ¼ � PN�1

n¼1
σznσ

z
nþ1 �

PN
n¼1

σxn;

ð49Þ

where σxn, σ
y
n and σzn are the Pauli x, y and z matrices.

Entanglement temperature near ground states of spin chains. In Fig. 3 we see
that TA

ent / ΔS close to the ground state for the Heisenberg anti-ferromagnet and
transverse-field Ising model. This behaviour is in fact generic for quantum spin
systems when sufficiently close to the ground state.

Consider starting with the Schmidt decomposition of the ground state
Γj i ¼Pα λα lαj i � rαj i, and perturbing the highest Schmidt weight

Γ′j i /
X
α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2α þ εδα;0

q
lαj i � rαj i; ð50Þ

for some 0 � ε � λ0. Taking the Taylor expansions, we find that

ΔS ¼ � Sþ logλ20
� �

εþOðε2Þ;
ΔE¼ l0r0 Hj jl0r0h i

4λ20

h i
ε2 þOðε3Þ; ð51Þ

which indeed implies TA
ent / ΔS close to the ground state, as observed.

It is worth mentioning that we are primarily interested in the regime of large
(but finite) ΔS extraction, as opposed to ΔS � 1 where TA

ent / ΔS ’ 0. For larger
ΔS, we expect that generically TA

ent is far from zero. In contrast, the small ΔS regime
is analogous to thermodynamics close to absolute zero where the heat capacity
vanishes.

Code availability. The code used to generate the data is available on request.

Data availability
The data used to generate the plots in Figs. 3 and 4 are available at ref. 50.
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