
On the Complexity of Team Logic and Its
Two-Variable Fragment
Martin Lück
Institut für Theoretische Informatik, Leibniz Universität Hannover
Appelstraße 4, 30167 Hannover, Germany
lueck@thi.uni-hannover.de

Abstract
We study the logic FO(∼), the extension of first-order logic with team semantics by unrestricted
Boolean negation. It was recently shown to be axiomatizable, but otherwise has not yet received
much attention in questions of computational complexity. In this paper, we consider its two-
variable fragment FO2(∼) and prove that its satisfiability problem is decidable, and in fact
complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify
the complexity of model checking of FO(∼) with respect to the number of variables and the
quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-complete
fragments. For the lower bounds, we propose a translation from modal team logic MTL to FO2(∼)
that extends the well-known standard translation from modal logic ML to FO2. For the upper
bounds, we translate FO(∼) to fragments of second-order logic with PSPACE-complete and
ATIME-ALT(exp, poly)-complete model checking, respectively.

2012 ACM Subject Classification Theory of computation→ Complexity theory and logic, The-
ory of computation → Logic

Keywords and phrases team logic, two-variable logic, complexity, satisfiability, model checking

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.27

Related Version A full version of the paper can be found at [30], https://arxiv.org/abs/1804.
04968.

Acknowledgements I wish to thank Juha Kontinen, Heribert Vollmer and the anonymous refer-
ees for many helpful comments.

1 Introduction

In the past decades, the work of logicians has unearthed a plethora of decidable fragments of
first-order logic FO. Many decidability results are rooted in a finite model property: if there
exists a (computable) upper bound on the size of minimal models with respect to a class of
formulas, and if the logic admits sufficiently feasible model checking, then the question of
satisfiability can be settled by exhaustively searching all structures of suitable size. Prominent
examples meeting the above criteria are logics with restricted quantifier prefixes, such as the
BSR-fragment which contains only ∃∗∀∗-sentences [34]. Others include the monadic class [27],
the guarded fragment GF [2], the recently introduced separated fragment SF [36, 37], or the
two-variable fragment FO2 [31, 35, 19], which all are decidable. See also the excellent book
by Börger et al. [6] for a comprehensive classification.

The above fragments all have been subject to intensive research with the purpose of
further pushing the boundary of decidability. One example is the guarded fixpoint logic, µGF,
which extends GF and is 2-EXPTIME-complete [18, 3]. Another is FOC2, the extension FO2

© Martin Lück;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 27; pp. 27:1–27:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lueck@thi.uni-hannover.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.27
https://arxiv.org/abs/1804.04968
https://arxiv.org/abs/1804.04968
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 On the Complexity of Team Logic and Its Two-Variable Fragment

with counting quantifiers. Due to an exponential model property, satisfiability is NEXPTIME-
complete for both FO2 and FOC2 [16, 33].

Another novel and very actively studied formalism is team semantics, introduced by
Hodges [22]. At its core, it refers to the simultaneous evaluation of formulas on whole sets
of assignments, called teams. This extension is conservative in the sense that the evaluation
of singleton teams, which consist of a single assignment, coincides with classical Tarski
semantics. Logics with team semantics offer many applications in areas such as statistics,
database theory, physics, cryptography and social choice theory (see also Abramsky et al. [1]).

As a prototypical logic with team semantics, Väänänen [38] introduced dependence logic
D. It extends FO by dependence atoms =(x1, . . . , xn, y), which intuitively state that the value
of y in the team functionally depends on the values of x1, . . . , xn. With respect to expressive
power, D coincides with existential second-order logic. Nonetheless, its two-variable fragment
D2 was recently proved by Kontinen et al. [23] to have a NEXPTIME-complete satisfiability
problem due to a satisfiability-preserving translation to FOC2. However, D is not closed
under Boolean negation, and the validity problem of D2 is in fact undecidable [24], and non-
arithmetical for full D [38]. By adding a negation operator ∼ to D, Väänänen [38] introduced
team logic TL, which is equivalent to full second-order logic SO [25].

As a generalization of TL, we study the logic FO(∼,D) introduced by Galliani [13, 12]. It
extends FO under team semantics by a Boolean negation ∼ and a setD of so-called generalized
dependence atoms (cf. [26]). We focus on FO-definable atoms, which covers the dependence
atom and many other important atoms such as the independence ⊥ [17] or inclusion atom
⊆ [10]. We abbreviate FO(∼, ∅) as FO(∼). While FO(∼) and D have incomparable expressive
power, in terms of complexity, FO(∼) is much weaker than D. In particular, unlike D it
is axiomatizable [29] and its validity problem is complete for the class Σ0

1 of recursively
enumerable sets, as with ordinary FO.

As a new result, we prove in Section 4 that its two-variable fragment FO2(∼) is decidable.
More precisely, we show that satisfiability and validity of FO2(∼) are complete for the
recently introduced non-elementary complexity class TOWER(poly) [28]. This pushes the
“decidability frontier” away from FO2 into a new direction, and creates the curious situation
that the satisfiability problem for FO2(∼) is strictly harder than for D2, while for validity
the exact opposite is the case (cf. Table 1).

On the path to decidability, we also investigate the model checking problem of FO(∼,D).
In the first-order setting, model checking in team semantics has received only little attention
so far, unlike the well-understood propositional [21] and modal [9, 32, 39] variants of team
logic and dependence logic. In Section 3 and 6, we fill this gap and show that model checking
for FO(∼,D) (for “well-behaved” D) is complete for the class ATIME-ALT(exp,poly), i.e.,
for exponential runtime with polynomially many alternations. This complements the result
of Grädel [14] that model checking for D is NEXPTIME-complete.

Finally, we also consider fragments FOn
k (∼,D) which have only n variables and quantifier

rank k, and relate them to certain “sparse” fragments of SO which we call SO[p]. We prove that
model checking of SO[p] and FOn

k (∼,D) is only PSPACE-complete, as opposed to unrestricted
SO and FOω

ω(∼,D).

Due to space constraints, some proofs are moved to the appendix and marked with (?),
and can also be found in the full version of this paper [30].

M. Lück 27:3

Table 1 Complexity of logics with team semantics. Completeness unless stated otherwise. D is
a set of generalized dependency atoms, the superscript refers to the number of variables, and the
subscript to the quantifier rank.

Logic Satisfiability Validity References

FO2 NEXPTIME co-NEXPTIME [19]
D2 NEXPTIME Σ0

1-hard [24]
FO2(∼) TOWER(poly) TOWER(poly) Theorem 6.6
TL2

2 Π0
1-hard Σ0

1-hard Theorem 6.7

Model Checking

FOk,FOn ∈ PTIME see, e.g., [15]
FO PSPACE see, e.g., [15]

FOk(∼,D),FOn(∼,D) PSPACE Theorem 6.4
FO(∼,D) ATIME-ALT(exp, poly) Theorem 6.4

2 Preliminaries

The domain of a function f is dom f . For f : X → Y and Z ⊆ X, f�Z is the restriction of f
to the domain Z. The power set of X is P(X). The cardinality of the natural numbers is ω.
The class of recursively enumerable sets (resp. their complements) is Σ0

1 (resp. Π0
1).

Given a logic L, the sets of all satisfiable and valid formulas of L are written SAT(L)
and VAL(L), respectively. Likewise, the model checking problem MC(L) contains the tuples
(A,ϕ) such that ϕ is an L-formula and A is a model of ϕ.

We assume the reader to be familiar with basic complexity theory and alternating Turing
machines [7]. When stating that a problem is hard or complete for a complexity class C, we
refer to logspace-computable reductions. In this paper, we require Turing machines that are
restricted in both their runtime and their alternation depth, as introduced by Berman [4],
where the alternation depth is the maximal number of alternations between existential and
universal non-determinism that a given machine performs on any computation path.

In what follows, we use the tetration function expk, defined by exp0(n) := n and
expk+1(n) := 2expk(n). We write exp(n) instead of exp1(n).

I Definition 2.1. For k ≥ 0, ATIME-ALT(expk,poly) is the class of problems decided by an
alternating Turing machine with at most p(n) alternations and runtime at most expk(p(n)),
for a polynomial p.

I Definition 2.2. TOWER(poly) is the class of problems that are decided by a deterministic
Turing machine in time expp(n)(1) for some polynomial p.

The reader may verify that both ATIME-ALT(expk,poly) and TOWER(poly) are closed
under all Boolean operations and under polynomial time resp. logspace computable reduc-
tions.

First-order Team Logic
A vocabulary τ is a set of function symbols f and predicate symbols P , with their respective
arity denoted by arity(f) and arity(P). τ is called relational if it contains no function symbols.
We explicitly state = ∈ τ if we permit equality as part of the syntax. For obvious reasons,
we require that a vocabulary always contains at least one predicate or =.

MFCS 2018

27:4 On the Complexity of Team Logic and Its Two-Variable Fragment

We fix a set Var = {x1, x2, . . .} of first-order variables. If ~t is a tuple of τ -terms, Var(~t) is
the set of variables appearing in ~t. Formulas are interpreted in τ -structures, denoted as pairs
A = (A, τA), with the domain A of A also written domA. We sometimes identify A and
domA if the meaning is clear. If s : X → A, t is a τ -term, and dom s ⊇ Var(t), then t〈s〉 ∈ A
is the evaluation of t in A under s. Likewise, if ~t = (t1, . . . , tn), then ~t〈s〉 := (t1〈s〉, . . . , tn〈s〉).

A team T (in A) is a set of assignments s : X → A, where X is called domain of T . If
X ⊇ Var(~t) and ~t is a tuple of terms, then ~t〈T 〉 := {~t〈s〉 | s ∈ T}. If T is a team with domain
X ⊇ Y , then its restriction to Y is T �Y := {s�Y | s ∈ T}. In slight abuse of notation, we
sometimes identify a tuple ~x with its underlying set, e.g., write T �~x for T �{x1, . . . , xn}.

If s : X → A and x ∈ Var, then sxa : X ∪ {x} → A is the assignment that maps x to a
and y ∈ X \ {x} to s(y). If T is a team in A with domain X, then f : T → P(A) \ {∅} is
called a supplementing function of T . It extends (or modifies) T to the supplementing team
T xf := { sxa | s ∈ T, a ∈ f(s) }. If f(s) = A is constant, we write T xA for T xf .

In this paper, we consider generalized dependencies in team semantics (cf. [26, 12]), but
restrict ourselves to the special case of FO-definable dependencies. For this reason, in our
setting, the definition boils down to the following.

I Definition 2.3 (Dependencies). If P is a predicate and τP = {P,=}, then a τP -FO-formula
δ is called dependency. Furthermore, if arity(P) = k, then δ is also called k-ary dependency.

Let D = {δ1, δ2, . . .} be a (possibly infinite) set of dependencies. Then we consider special
atoms Ai~t, called generalized dependency atoms, to represent the dependencies δi in the
syntax. The logic τ -FO(∼,D) extends τ -FO as follows:

ϕ ::= α | Ai~t | ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ,

where α is any τ -FO-formula, δi ∈ D is a k-ary dependency, ~t is a k-tuple of τ -terms, and
x ∈ Var. For easier distinction, we usually call classical FO-formulas α, β, γ, . . . and reserve
ϕ,ψ, ϑ, . . . for FO(∼,D)-formulas. If ~t = (t1, . . . , tn) and ~u = (u1, . . . , un) are tuples of
τ -terms, then we use the shorthand ~t = ~u for

∧n
i=1 ti = ui.

From now on, we usually omit τ . The ∼-free fragment of FO(∼,D) is FO(D), and we
abbreviate FO(∼, ∅) as FO(∼).

I Example 2.4. Let dep := {dep1, dep2, . . .} be defined by

depn(R) := ∀x1 · · · ∀xn−1∀y∀z(Rx1 · · ·xn−1y ∧Rx1 · · ·xn−1z → y = z).

Then dep is set of dependencies, and the corresponding atom An~t is called n-ary dependence
atom and is also written =(t1, . . . , tn). It holds (A, T) � =(t1, . . . , tn) if and only if for all
s, s′ ∈ T we have that t1〈s〉 = t1〈s′〉, . . . , tn−1〈s〉 = tn−1〈s′〉 implies tn〈s〉 = tn〈s′〉. Likewise,
for the case n = 1, the atom =(t) means that t is constant, i.e., t〈s〉 = t〈s′〉 for all s, s′ ∈ T .

In this notation, Väänänen’s dependence logic D is FO(dep), and team logic TL is
FO(∼, dep) [38]. Many other important atoms are FO-definable, such as independence [17],
inclusion and exclusion [10] (see also Durand et al. [8]).

If ϕ is a formula, Fr(ϕ) and Var(ϕ) denote the set of free resp. of all variables in ϕ, with
Fr(Ai~t) := Var(Ai~t) := Var(~t). If Fr(ϕ) = ∅, then ϕ is called sentence. We write ϕ(x1, . . . , xn)
to indicate that x1, . . . , xn are free in ϕ. The width w(ϕ) of ϕ is |Var(ϕ)|.

The quantifier rank qr(ϕ) of ϕ is 0 if ϕ is atomic, and otherwise defined recursively as
qr(∼ϕ) := qr(¬ϕ) := qr(ϕ), qr(ϕ ∧ ψ) := qr(ϕ ∨ ψ) := max{qr(ϕ), qr(ψ)}, and qr(∃xϕ) :=
qr(∀xϕ) := qr(ϕ) + 1, respectively. The fragment of FO with formulas of width at most n

M. Lück 27:5

and quantifier rank at most k is FOn
k . The corresponding fragments Dnk , TLnk , FOn

k (∼,D),
FOn

k (∼) and FOn
k (D) are defined analogously.

We evaluate τ -FO(∼,D)-formulas ϕ on pairs (A, T) as follows, where A is a τ -structure
and T a team in A with domain X ⊇ Fr(ϕ):

(A, T) � ϕ ⇔ ∀s ∈ T : (A, s) � ϕ (in Tarski semantics), for ϕ ∈ FO,
(A, T) � Ai~t ⇔ A � δi(~t〈T 〉), where δi ∈ D,
(A, T) � ∼ψ ⇔ (A, T) 2 ψ,
(A, T) � ψ ∧ θ ⇔ (A, T) � ψ and (A, T) � θ,
(A, T) � ψ ∨ θ ⇔ ∃S,U ⊆ T such that T = S ∪ U , (A, S) � ψ, and (A, U) � θ,
(A, T) � ∃xϕ ⇔ (A, T xf) � ϕ for some f : T → P(domA) \ {∅},
(A, T) � ∀xϕ ⇔ (A, T xdomA) � ϕ.

A τ -formula ϕ is satisfiable if there exists a τ -structure A and team T with domain
X ⊇ Fr(ϕ) in A such that (A, T) � ϕ. Likewise, ϕ is valid if (A, T) � ϕ for all such
τ -structures A and teams T .

The so-called locality property ensures that the truth of a formula, as in classical semantics,
depends only on the assignments to variables that occur free in it.

I Proposition 2.5 (Locality). Let ϕ ∈ FO(∼,D) and X ⊇ Fr(ϕ). If T is a team in A with
domain Y ⊇ X, then (A, T) � ϕ if and only if (A, T �X) � ϕ.

Proof. Proof by induction on ϕ. The base case of FO-formulas and the inductive step for
∧, ∨, ∃ and ∀ work similarly to Galliani’s proof for inclusion/exclusion logic [10, Theorem
4.22], to which the ∼-case can be added in the obvious manner. It remains to consider the
dependence atoms Ai~t. As X ⊇ Fr(Ai~t) = Var(~t), clearly ~t〈s〉 = ~t〈s�X〉 for any s ∈ T , and
consequently, ~t〈T 〉 = ~t〈T �X〉. Hence, A � δi(~t〈T 〉) iff A � δi(~t〈T �X〉). J

Second-Order Logic
Second-order logic τ -SO (or simply SO) extends τ -FO by second-order quantifiers ∃f , ∀f , ∃P
and ∀P for function and predicate variables. For an SO-formula α, the sets Var(α) and Fr(α)
refer to all resp. all free variables in α (first-order or second-order). SO is evaluated on pairs
(A,J), where A is a structure and J maps first-order variables x to elements J (x) ∈ A,
function variables f to functions J (f) : Aarity(f) → A, and predicate variables P to relations
J (P) ⊆ Aarity(P). The notation JXY for a (first-order or second-order) variable X and an
element resp. function resp. relation Y is defined as in the first-order setting. Instead of
(A,J) � α(X1, . . . , Xn) and J (X1) = X1, . . . ,J (Xn) = Xn, we also write A � α(X1, . . . ,Xn).

Second-order model checking, MC(SO), is decidable using a straightforward algorithm:
Given a formula α and a finite input structure A, evaluate α in recursive top-down manner,
using non-deterministic guesses for the quantified elements, functions and relations, which
are of exponential size with respect to |domA|.

I Proposition 2.6 (?). MC(SO) is decidable on input (A,J , α) in time 2nO(1) and with |α|
alternations.

If the arity of quantified functions and relations is bounded by c, then each quantified
function and relation has at most |domA|c elements and hence takes only polynomial space:

I Corollary 2.7. Let c-SO be the fragment of SO where all quantified functions and relations
have arity at most c. Then MC(c-SO) is PSPACE-complete.

MFCS 2018

27:6 On the Complexity of Team Logic and Its Two-Variable Fragment

3 From FO(∼) to SO: Upper bounds for model checking

In this section, we present upper bounds for the model checking problem of FO(∼,D). On that
account, we assume all first-order structures A and teams T to be finite and to have a suitable
encoding. Instead of deciding MC(FO(∼,D)) directly, we reduce it to the corresponding
problem of second-order logic, MC(SO). For this purpose, we build on top of a result of
Väänänen [38], which roughly speaking states that TL-formulas can efficiently be translated
to SO.

However, in Väänänen’s original translation [38, Theorem 8.12, p. 159] from TL to SO it
is assumed that the truth in a team is preserved when taking subteams (which is not the case
if ∼ is available), and that all variables in a formula are quantified at most once. However,
in fragments FOn(∼,D) of finite width n, re-quantification of variables cannot be avoided in
general. In what follows, we adapt the translation accordingly. Furthermore, we extend it to
include generalized dependency atoms.

Suppose ~x = (x1, . . . , xn) is a tuple of variables. In order to avoid repetitions of variables,
we define the notation ~x;y as follows: ~x;y := ~x if y ∈ ~x, and ~x;y := (x1, . . . , xn, y) if y /∈ ~x.
Let now ϕ ∈ FO(∼,D) such that Fr(ϕ) ⊆ ~x, and R be a n-ary predicate. Then we inductively
define the SO-formula η~xϕ(R) as shown below.

If ϕ is a classical first-order formula, then η~xϕ(R) := ∀~x(R~x→ ϕ).
If ϕ = Ai(~t) and δi ∈ D is k-ary, then let ~z = (z1, . . . , zk) be pairwise distinct variables
disjoint from ~x and η~xϕ(R) := ∃S ∀~z (S~z ↔ (∃~xR~x ∧~t = ~z)) ∧ δi(S).1

If ϕ = ∼ψ, then η~xϕ(R) := ¬η~xψ(R).
If ϕ = ψ ∧ θ, then η~xϕ(R) := η~xψ(R) ∧ η~xθ (R).
If ϕ = ψ ∨ θ, then η~xϕ(R) := ∃S ∃U ∀~x(R~x↔ (S~x ∨ U~x)) ∧ η~xψ(S) ∧ η~xθ (U).

If ϕ = ∃y ψ , then η~xϕ(R) := ∃S ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ η~x;y
ψ (S).

If ϕ = ∀y ψ, then η~xϕ(R) := ∃S ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ η~x;y
ψ (S) ∧ ∀~x(R~x→ ∀y S~x;y).

By an inductive proof, the formulas ϕ and η~xϕ(R) can be shown equivalent, provided that
the team T is represented as a relation R := ~x〈T 〉:

I Theorem 3.1 (?). Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a
team in A with domain Y ⊇ ~x. Then (A, T) � ϕ if and only if A � η~xϕ(~x〈T 〉).

I Definition 3.2. We call a set D = {δ1, δ2, . . .} of dependencies p-uniform if there is a
polynomial time algorithm that for all i, when given Ai~t, computes δi.

I Corollary 3.3. Let D be a p-uniform set of dependencies. Then MC(FO(∼,D)) is decidable
on input (A, T, ϕ) in time 2nO(1) and with |ϕ|O(1) alternations.

Proof. First, we compute ~x := Fr(ϕ), the formula η~xϕ and the relation ~x〈T 〉 from ϕ and
T in polynomial time. When translating the atoms Ai~t, we apply the p-uniformity of D.
Afterwards, we accept if and only if A � η~xϕ(~x〈T 〉). By Proposition 2.6, the latter can be
checked by an algorithm with |η~xϕ| alternations and time exponential in (A, ~x〈T 〉, η~xϕ). In
total, this leads to |ϕ|O(1) alternations and runtime exponential in the size of (A, T, ϕ). J

1 Note that the “obvious” translation η~x
ϕ(R) := δi(R) does not work in general if Ai(~t) contains proper

terms. For instance, any team T satisfies =(c) for any constant term c, but R represents only ~x〈T 〉,
which might or might not satisfy δi. To properly reflect such atoms, we quantify ~t〈T 〉 in the relation S;
in our example, S = {(c)}) for T 6= ∅.

M. Lück 27:7

Sparse second-order logic

The complexity of the model checking problem of FO(∼,D) significantly drops if either the
number of variables or the quantifier rank is bounded by an arbitrary constant. To prove this,
we introduce a fragment of SO that corresponds to these restricted fragments of FO(∼,D).
We call this fragment sparse second-order logic, based on sparse quantifiers ∃p and ∀p:

(A,J) � ∃pP ψ ⇔ there exists R ⊆ Aarity(P) such that |R| ≤ p(|A|) and (A,J PR) � ψ,

(A,J) � ∀pP ψ ⇔ for all R ⊆ Aarity(P) such that |R| ≤ p(|A|) it holds (A,J PR) � ψ,

where p : N→ N and |A| := |domA|+
∑
X∈τ |XA|. In other words, all quantified relations

have bounded cardinality relative to the underlying structure. For obvious reasons, there are
no sparse function quantifiers.

The logic SO[p] is now defined as SO, but with only ∃p and ∀p as permitted second-order
quantifiers. Consider the case where p is bounded by a polynomial. The interpretation of each
quantified relation then contains at most |A|O(1) tuples. Consequently, on SO[p]-formulas,
the recursive model checking algorithm from Proposition 2.6 then runs in polynomial time:

I Corollary 3.4. If p is bounded by a polynomial, then MC(SO[p]) is decidable on input
(A,J , α) in polynomial time and with |α| alternations.

It remains to show that the translation from team logic with bounded width or quantifier
rank takes place in this fragment of SO. This can be seen as follows. Intuitively, every
quantified relation in η~xϕ represents either a subteam of an existing team (for the ∨-case), or
it is a supplementing team (for the ∃-case and ∀-case). For this reason, the cardinality of the
quantified relations grows at most by a factor of |domA| for every occurrence of ∨, ∃ or ∀.

Now, for p : N → N, define the SO[p]-formula ζ~x,pϕ like η~xϕ, but with all second-order
quantifiers replaced by ∃p. The next theorem states that ζ~x,pϕ is an appropriate translation
of ϕ, similarly to η~xϕ, if ϕ has sufficiently small width or quantifier rank:

I Theorem 3.5 (?). Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a
team in A with domain Y ⊇ ~x. If p(n) ≥ |T | · nqr(ϕ) or p(n) ≥ nw(ϕ), then (A, T) � ϕ if and
only if A � ζ~x,pϕ (~x〈T 〉).

Proof. By a careful analysis, it can be shown that all second-order quantifiers ∃S in η~xϕ can
be replaced by ∃pS. See the appendix for details. As then η~xϕ and ζ~x,pϕ agree on (A, T), the
claim follows by Theorem 3.1. J

I Corollary 3.6. Let D be a p-uniform set of dependencies and m < ω. MC(FOm
ω (∼,D))

and MC(FOω
m(∼,D)) are then decidable on input (A, T, ϕ) in polynomial time with |ϕ|O(1)

alternations.

Proof. Let p(n) := nm+1. Analogously to Corollary 3.3, we reduce both MC(FOm
ω (∼,D)) and

MC(FOω
m(∼,D)) to MC(SO[p]). Assume that (A, T, ϕ) is the input, and that either w(ϕ) ≤ m

or qr(ϕ) ≤ m. Then the input is mapped to (A, ~x〈T 〉, ζp,~xϕ), where ~x = Fr(ϕ).
If w(ϕ) ≤ m, then (A, T) � ϕ if and only if A � ζp,~xϕ (~x〈T 〉) by Theorem 3.5.
If qr(ϕ) ≤ m, then w.l.o.g. |T | ≤ |A| (if necessary, pad A with a dummy predicate in
polynomial time). Then |T | · |A|m ≤ p(|A|), and we can again apply Theorem 3.5. J

MFCS 2018

27:8 On the Complexity of Team Logic and Its Two-Variable Fragment

4 From FO2(∼) to FO2: Upper bounds for satisfiability

In this section, we turn to the satisfiability problem of FO2(∼) and prove that it is complete
for TOWER(poly) (cf. Definition 2.2). Our approach is to establish a finite model property for
FO2(∼). However, instead of constructing a finite model directly, we reduce FO2(∼)-formulas
to FO2-formulas, and use the exponential model property of FO2 [19]. As a first step, we
expand FO2(∼)-formulas into a specific “disjunctive normal form” over ∧ and ∼. Recall that
∨ is not the Boolean disjunction, which we instead define via ϕ 6 ψ := ∼(∼ϕ ∧ ∼ψ). We
also use the abbreviation Eβ := ∼¬β (“at least one assignment in the team satisfies β”).

I Lemma 4.1 (?). Every τ -FOn
k (∼)-formula ϕ is equivalent to a formula of the form

ψ :=
n

6
i=1

αi ∧ mi∧
j=1

Eβi,j


such that {α1, . . . , αn, β1,1, . . . , βn,mn} ⊆ τ -FOn

k and |ψ| ≤ expO(|ϕ|)(1).

Proof. The proof is by induction on ϕ, and consists of repeatedly applying the following
distributive laws. Here, ϕ ≡ ψ means that ϕ and ψ are logically equivalent. See the appendix
for details.

α ∧
n∧
i=1

Eβi ≡
n∨
i=1

(α ∧ Eβi)
n∨
i=1

(αi ∧ Eβi) ≡
(n∨
i=1

αi

)
∧

n∧
i=1

E(αi ∧ βi)

(ϑ1 6 ϑ2) ∨ ϑ3 ≡ (ϑ1 ∨ ϑ3) 6 (ϑ2 ∨ ϑ3) ϑ1 ∨ (ϑ2 6 ϑ3) ≡ (ϑ1 ∨ ϑ2) 6 (ϑ1 ∨ ϑ3)
(ϑ1 6 ϑ2) ∧ ϑ3 ≡ (ϑ1 ∧ ϑ3) 6 (ϑ2 ∧ ϑ3) ϑ1 ∧ (ϑ2 6 ϑ3) ≡ (ϑ1 ∧ ϑ2) 6 (ϑ1 ∧ ϑ3)
∃v (ϑ1 6 ϑ2) ≡ (∃v ϑ1) 6 (∃xϑ2) ∃v (ϑ1 ∨ ϑ2) ≡ (∃v ϑ1) ∨ (∃v ϑ2)
∃v (α ∧ Eβ) ≡ (∃v α) ∧ E ∃v (α ∧ β) ∀v (ϑ1 ∧ ϑ2) ≡ (∀v ϑ1) ∧ (∀v ϑ2)
∀v∼ϑ ≡ ∼∀v ϑ J

I Theorem 4.2. If τ is a relational vocabulary, then every satisfiable ϕ ∈ τ -FO2(∼) has a
model of size expO(|ϕ|)(1).

Proof. Let ϕ ∈ τ -FO2(∼) be satisfiable. ϕ is equivalent to a disjunction of size expO(|ϕ|)(1)
as stated in Lemma 4.1. Clearly, this disjunction must have at least one satisfiable disjunct,
which is of the form

ψ = α ∧
m∧
i=1

Eβi,

for {α, β1, . . . , βm} ⊆ τ -FO2 and w.l.o.g. Var(ψ) ⊆ {x, y}. Let (A, T) be a model of ψ. For
every i, as ψ implies E(α ∧ βi), there exists s ∈ T such that (A, s) � α ∧ βi. But then A also
satisfies – in Tarski semantics – the classical FO2-sentence

γ :=
m∧
i=1
∃x∃y α ∧ βi,

as s(x) and s(y) are witnesses for ∃x and ∃y. However, by the exponential model property
of FO2 [19], there exists a model B of size 2O(|γ|) for γ. As for every i there is ŝi : {x, y} → B
such that (B, ŝi) � α∧ βi, we conclude (B, {ŝ1, . . . , ŝm}) � ψ by definition of team semantics.
Clearly, this shows that ψ and hence ϕ has a model of size expO(|ϕ|)(1). J

M. Lück 27:9

I Corollary 4.3. If τ is a relational vocabulary, then SAT(τ -FO2(∼)) and VAL(τ -FO2(∼))
are in TOWER(poly).

Proof. By Corollary 3.6, model checking for FO2(∼) is possible in alternating polyno-
mial time, and hence in deterministic exponential time. The following is a TOWER(poly)-
algorithm for SAT(τ -FO2(∼)). Given a formula ϕ, iterate over all interpretations (A, T) of
size expO(|ϕ|)(1) and accept if (A, T) � ϕ. The algorithm for VAL(τ -FO2(∼)) is similar. J

5 From MTL to FO2(∼): A team-semantical standard translation

In order to prove the lower bounds for FO2(∼) and FOn
k (∼), we reduce from the corresponding

satisfiability, validity and model checking problems of so-called modal team logic MTL. This
logic was introduced by Müller [32], and extends classical modal logic ML by ∼ in the same
fashion as FO(∼) extends FO.

We fix a countably infinite set Φ of propositions. MTL is defined as follows, where ϕ
denotes an MTL-formula, α an ML-formula, and p a proposition.

ϕ ::= ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | α α ::= ¬α | α ∧ α | α ∨ α | �α | ♦α | p

The modal depth md(ϕ) of ϕ is defined recursively, i.e.,md(p) := 0,md(∼ϕ) := md(¬ϕ) :=
md(ϕ),md(ϕ∧ψ) := md(ϕ∨ψ) := max{md(ϕ),md(ψ)}, and md(�ϕ) := md(♦ϕ) := md(ϕ)+1.
MTLk is the fragment of MTL with modal depth at most k. The set of propositional variables
occurring in ϕ ∈ MTL is written Prop(ϕ).

Let X ⊆ Φ be finite. Then, a Kripke structure (over X) is a tuple K = (W,R, V), where
W is a set of worlds or points, (W,R) is a directed graph, and V : X → P(W). If w ∈ W ,
then (K, w) is called pointed Kripke structure.

ML is evaluated on pointed Kripke structures in the classical Kripke semantics, whereas
MTL is evaluated on pairs (K, T), where K is a Kripke structure and – analogously to the
first-order case – T ⊆W is called team (in K). The team RT := {v ∈W | ∃w ∈ T : Rwv} is
the image of T , and we write Rw instead of R{w} for brevity. A successor team of T is a
team S such that every w ∈ T has at least one successor in S, and every v ∈ S has at least
one predecessor in T . The semantics of MTL is now defined as follows:

(K, T) � ϕ ⇔ ∀w ∈ T : (K, w) � ϕ (in Kripke semantics) for ϕ ∈ ML,
(K, T) � ∼ψ ⇔ (K, T) 2 ψ,
(K, T) � ψ ∧ θ ⇔ (K, T) � ψ and (K, T) � θ,
(K, T) � ψ ∨ θ ⇔ ∃S,U ⊆ T such that T = S ∪ U , (K, S) � ψ, and (K, U) � θ,
(K, T) � ♦ψ ⇔ ∃S such that S is a successor team of T and (K, S) � ψ,
(K, T) � �ψ ⇔ (K, RT) � ψ.

A formula ϕ ∈ MTL is satisfiable if (K, T) � ϕ for some Kripke structure K over X ⊇ Prop(ϕ)
and team T in K. Likewise, ϕ is valid if it is true in every such pair.

The modality-free fragment MTL0 syntactically coincides with propositional team logic
PTL [20, 21, 40]. The usual interpretations of the latter, i.e., via sets of Boolean assignments,
can easily be simulated by teams in Kripke structures. For this reason, we identify PTL and
MTL0 in this paper.

The following lower bounds due to Hannula et al. [21] are logspace reductions.

I Theorem 5.1 ([21]). MC(PTL) is PSPACE-complete.

MFCS 2018

27:10 On the Complexity of Team Logic and Its Two-Variable Fragment

I Theorem 5.2 ([21]). SAT(PTL) and VAL(PTL) are ATIME-ALT(exp,poly)-complete.

For each increment in modal depth, the complexity of the satisfiability problem increases
by an exponential, reaching the non-elementary class TOWER(poly) in the unbounded case:

I Theorem 5.3 ([28]). SAT(MTL) and VAL(MTL) are TOWER(poly)-complete. SAT(MTLk)
and VAL(MTLk) are ATIME-ALT(expk+1,poly)-complete for every k < ω.

Next, let us demonstrate how MTL can be embedded into FO2(∼). More precisely, we
present an extension of the well-known standard translation that embeds modal logic ML into
FO2. The underlying relational vocabulary usually is τst = (R,P1, P2, . . .), where arity(R) = 2
and arity(Pi) = 1 for all i. The translation of an ML-formula α is denoted by stx(α) resp.
sty(α), and is defined by mutual recursion:

stx(pi) := Pix for pi ∈ PS stx(¬α) := ¬stx(α)
stx(�α) := ∀y Rxy → sty(α) stx(α ∧ β) := stx(α) ∧ stx(β)
stx(♦α) := ∃y Rxy ∧ sty(α) stx(α ∨ β) := stx(α) ∨ stx(β),

with sty(α) defined symmetrically via stx(α). The corresponding first-order interpretation
of a Kripke structure K = (W,R′, V) is the τst-structure A(K) defined by domA(K) = W ,
RA(K) = R′ and PA(K)

i = V (pi). For a world w, let wx : {x} →W be defined by wx(x) = w.

I Theorem 5.4 (see, e.g., Blackburn et al. [5]). Let (K, w) be a pointed Kripke structure and
α ∈ ML. Then (K, w) � α if and only if (A(K), wx) � stx(α).

Let us now turn to team semantics. On the model side, the first-order interpretation of
a team T in a Kripke structure is straightforwardly T x := { wx | w ∈ T }. For the syntax,
we require the additional operator ↪→. It was introduced by Galliani [12] and Kontinen and
Nurmi [25] in the first-order setting, but was also adapted to the modal setting [28]. For
α ∈ ML and ϕ ∈ MTL, define α ↪→ ϕ := ¬α ∨ (α ∧ ϕ). If (K, T) is a Kripke structure with
team, let Tα := { w ∈ T | (K, w) � α }.

I Proposition 5.5. (A, T) � α ↪→ ϕ if and only if (A, Tα) � ϕ.

Proof. Straightforward. See also Galliani [12, Lemma 16]. J

We extend the above translation by an ∼-case, and in the �-case replace → by ↪→.2 The
standard translation for MTL, denoted by st∗x resp. st∗y, then becomes:

st∗x(α) := stx(α) for α ∈ ML st∗x(∼ϕ) := ∼st∗x(ϕ)
st∗x(�ϕ) := ∀y Rxy ↪→ st∗y(ϕ) st∗x(ϕ ∧ ψ) := st∗x(ϕ) ∧ st∗x(ψ)
st∗x(♦ϕ) := ∃y Rxy ∧ st∗y(ϕ) st∗x(ϕ ∨ ψ) := st∗x(ϕ) ∨ st∗x(ψ),

with st∗y(ϕ) again defined symmetrically.

I Theorem 5.6. For every Kripke structure K, team T in K and ϕ ∈ MTL it holds (K, T) � ϕ
if and only if (A(K), T x) � st∗x(ϕ).

Proof. Proof by induction on ϕ. We omit K and A(K) and simply write, e.g., T � ϕ.

2 It is not hard to show that the “classical” translation of �ϕ to ∀y Rxy → st∗
y(ϕ) = ∀y (¬Rxy ∨ st∗

y(ϕ))
is unsound under team semantics.

M. Lück 27:11

ϕ ∈ ML: We have T � ϕ iff ∀w ∈ T : w � ϕ by definition of the semantics of MTL, which
by Theorem 5.4 is equivalent to ∀wx ∈ T x : wx � stx(ϕ). However, as stx(ϕ) ∈ FO, the
latter is equivalent to T x � stx(ϕ) by the semantics of FO(∼), and hence T x � st∗x(ϕ).
ϕ = ψ ∧ ϑ and ϕ = ∼ψ are clear.
ϕ = ψ ∨ θ: Suppose T � ψ ∨ θ. Then T = S ∪U such that S � ψ and U � θ. By induction
hypothesis, Sx � st∗x(ψ) and Ux � st∗x(θ). As S ∪ U = T , clearly Sx ∪ Ux = T x. As a
consequence, T x � st∗x(ψ) ∨ st∗x(θ) = st∗x(ψ ∨ θ).

For the other direction, suppose T x � st∗x(ψ ∨ θ) = st∗x(ψ) ∨ st∗x(θ) by the means of some
subteams S′ ∪ U ′ = T x such that S′ � st∗x(ψ) and U ′ � st∗x(θ). As T x has domain {x},
there are unique S,U ⊆ T such that S′ = Sx and U ′ = Ux. By induction hypothesis,
S � ψ and U � θ. In order to prove T � ψ ∨ θ, it remains to show T ⊆ S ∪ U . For this
purpose, let w ∈ T . As then wx ∈ T x, as least one of wx ∈ S′ or wx ∈ U ′ holds. But then
w ∈ S or w ∈ U .
ϕ = �ψ: We define subteams S and U of the duplicating team (T x)yW as follows: S
contains all “outgoing edges”: S := {s ∈ (T x)yW | s(y) ∈ Rs(x)}. On the other hand, U
contains all “non-edges”: U := {s ∈ (T x)yW | s(y) /∈ Rs(x)}. Then clearly (T x)yW = S∪U ,
S � Rxy and U � ¬Rxy. Moreover, the above division of (T x)yW into S and U is the only
possible splitting of (T x)yW such that S � Rxy and U � ¬Rxy.
By induction hypothesis, clearly T � �ψ ⇔ (RT)y � st∗y(ψ). Moreover, by the above
argument, T x � st∗x(�ψ)⇔ S � st∗y(ψ). Consequently, it suffices to show that (RT)y and
S agree on st∗y(ψ). This follows from Proposition 2.5, since

(RT)y = {s : {y} →W | ∃w ∈ T : s(y) ∈ Rw}
= {s�y | s ∈ (T x)yW and s(y) ∈ Rs(x)} = S�y.

ϕ = ♦ψ: Suppose T � ♦ψ, i.e., S � ψ for some successor team S of T . By induction
hypothesis, Sy � st∗y(ψ). In order to prove T x � ∃y Rxy∧st∗y(ψ), we define a supplementing
function f : T x → P(W) \ {∅} such that (T x)yf � Rxy ∧ st∗y(ψ).
Let f(wx) := Rw ∩ S. Then f(wx) is non-empty for each w, as S is a successor team.
Moreover, (T x)yf � Rxy. It remains to show that (T x)yf � st∗y(ψ) follows from Sy � st∗y(ψ).
Here, we combine Proposition A.1 and 2.5, since

y〈Sy〉 = S =
⋃
w∈T

Rw ∩ S =
⋃

wx∈Tx

f(wx) = {s(y) | s ∈ (T x)yf} = y〈(T x)yf 〉.

For the other direction, suppose T x � ∃y Rxy ∧ st∗y(ψ) by the means of a supplementing
function f : T x → P(W) \ {∅} such that (T x)yf � Rxy ∧ st∗y(ψ).
We define S :=

⋃
w∈T f(wx), and first prove that it is a successor team of T , i.e., that

every v ∈ S has a predecessor in T and that every w ∈ T has a successor in S.
Let v ∈ S. Then there exists w ∈ T such that v ∈ f(wx). As a consequence, the assignment
s given by s(x) = w and s(y) = v is in (T x)yf , and hence satisfies Rxy. In other words, v
has a predecessor in T . Conversely, if w ∈ T , then f(wx) is non-empty, i.e., contains an
element v. As before, v is a successor of w. Since v ∈ f(wx), v ∈ S, so w has a successor
in S. By a similar argument as above, y〈(T x)yf 〉 = S = y〈Sy〉, hence Sy � st∗y(ψ), and
consequently S � ψ by induction hypothesis. J

MFCS 2018

27:12 On the Complexity of Team Logic and Its Two-Variable Fragment

6 Lower bounds

As a first application of the extended standard translation from the previous section, we
prove several complexity theoretic lower bounds.

I Lemma 6.1. MC(τ -FO1
0(∼)) is PSPACE-hard if τ contains infinitely many predicates.

Proof. We reduce from MC(PTL), which is PSPACE-hard by Theorem 5.1. The reduction
maps (K, T, ϕ) to (A(K), T x, st∗x(ϕ)). W.l.o.g. τ contains unary predicates P0, P1, . . .; other-
wise they are easily simulated by predicates of higher arity. It is now easy to see that st∗x(ϕ)
is quantifier-free and contains only the variable x. Moreover, by Theorem 5.6, (K, T) � ϕ if
and only if (A(K), T x) � st∗x(ϕ). J

I Lemma 6.2. MC(τ -FOω
ω(∼)) is ATIME-ALT(exp,poly)-hard for all vocabularies τ , even

on sentences and for a fixed τ -structure A with domain {0, 1} and a fixed team {∅}.

Proof. Here, we reduce from SAT(PTL), which is ATIME-ALT(exp,poly)-hard by Theo-
rem 5.2. Given ϕ ∈ PTL, suppose Prop(ϕ) = {p1, . . . , pn}. The idea is that a team of worlds
(and their Boolean assignments to p1, . . . , pn), are simulated by a team of first-order assign-
ments s : X → B, where X = {z, x1, . . . , xn} and B := {0, 1}. Here, the variable z acts as
the constant 1, while xi simulates pi. For each b ∈ B, define the team Vb := ({∅}z{b})

x1
B · · ·

xn

B .
In other words, Vb is the n-fold supplemented team of {∅}z{b} = {{z 7→ b}}.

In the remaining proof, we distinguish two cases based on τ . By definition of a vocabulary,
either = ∈ τ , or τ contains a predicate. First, we consider the case = ∈ τ . We reduce
via the mapping ϕ 7→ (A, {∅}, ψ), where A is a fixed τ -structure with domA = B, ψ :=
∃z ∀x1 · · · ∀xn> ∨ ϕ∗, and ϕ∗ is obtained from ϕ by replacing each pi by xi = z. We prove
that the reduction is correct, and begin with the following equivalence:

∃U ⊆ V1 : (A, U) � ϕ∗ iff (A, V1) � > ∨ ϕ∗ iff (A, {∅}) � ψ. (1)

Here, “⇒” follows from the semantics of ∨ and the definition of ψ. For “⇐”, suppose (A, {∅}) �
ψ. Then, again by definition of ψ, we have (A, U) � ϕ∗ for some U ⊆ V0 ∪ V1. In particular,
the variable z can take the values 0, 1 or both in U . However, for all s ∈ U ∩ V0, we can
simply flip the ones and zeroes of s. This leaves the truth of any atomic formula xi = z

unchanged, and by induction preserves the semantics of ϕ∗.
Next, we proceed with the correctness of the reduction. Assume that ϕ is satisfiable,

i.e., has a model (K, T). For each world w ∈ T , define sw : X → B by sw(z) = 1 and
sw(xi) = 1 ⇔ (K, w) � pi. Then (K, w) � pi if and only if (A, sw) � xi = z. By induction
on the syntax of ϕ, we obtain (A, U) � ϕ∗, where U := {sw | w ∈ T}. As U ⊆ V1, the
equivalence (1) yields (A, {∅}) � ψ. The other direction is similar.

Next, consider the case where = /∈ τ ; then τ contains a predicate P . We define A as
above, but let PA := {(1, . . . , 1)}. Furthermore, ψ := ∀x1 · · · ∀xn> ∨ ϕ∗, and ϕ∗ is now as
ϕ, with pi replaced by P (xi, . . . , xi). The remaining proof is similar to the previous one. J

Clearly, the standard translation of satisfiable formulas is itself satisfiable. A converse
result holds as well. Loosely speaking, from a first-order structure (and team) for st∗x(ϕ) we
can reconstruct a Kripke model (and team) for ϕ.

I Lemma 6.3. If ϕ ∈ MTL, then ϕ is satisfiable if and only if st∗x(ϕ) is satisfiable.

Proof. As Theorem 5.6 implies “⇒”, we show “⇐”. Suppose (B, S) � st∗x(ϕ). Then B
interprets the binary predicate R and unary predicates P1, P2, By Proposition 2.5, w.l.o.g.
S has domain {x}, i.e., S = (x〈S〉)x. Define now the Kripke structure K = (domB, RB, V)
such that V (pi) := PBi . Then clearly A(K) = B. By Theorem 5.6, (K, x〈S〉) � ϕ. J

M. Lück 27:13

Finally, with the above lower bounds, let us gather the completeness results for the
satisfiability, validity and model checking problems.

I Theorem 6.4. Let D be any p-uniform set of dependencies and τ any vocabulary.
MC(τ -FOω

ω(∼,D)) is ATIME-ALT(exp,poly)-complete, with hardness already on sen-
tences and for a fixed τ -structure A with domain {0, 1} and a fixed team {∅}.
If τ contains infinitely many relations and at least one of k ≥ 0, n ≥ 1 is finite, then
MC(τ -FOn

k (∼,D)) is PSPACE-complete.

Proof. The upper bounds are due to Corollary 3.3 and 3.6, since alternating polynomial
time coincides with PSPACE [7]. The lower bounds are due to Lemma 6.1 and 6.2. J

I Corollary 6.5. MC(τ -SO) is ATIME-ALT(exp,poly)-complete for all vocabularies τ , with
hardness already on sentences and with a fixed τ -interpretation A with domA = {0, 1}.

Proof. The upper bound is by Proposition 2.6. The lower bound is by the previous theorem
and reduction from MC(τ -FO(∼)). Let R be a nullary predicate variable. In the spirit of
Corollary 3.3, we map (A, {∅}, ϕ) to (A, ∅,∃R η∅ϕ(R)∧R), where ϕ w.l.o.g. is a sentence. J

The next theorem settles the complexity of the satisfiability and validity problem of
FO2(∼), and provides lower bounds for FO1

0(∼) and FO2
k(∼).

I Theorem 6.6. Let τ contain at least one binary predicate, infinitely many unary predicates,
and no functions. Then the problems SAT(τ -FOn

k (∼)) and VAL(τ -FOn
k (∼)) are

TOWER(poly)-complete for n = 2 and k = ω,
ATIME-ALT(expk+1,poly)-hard for n = 2 and 0 ≤ k < ω,
ATIME-ALT(exp,poly)-hard for n = 1 and 0 ≤ k < ω.

Proof. The upper bound for τ -FO2(∼) is by Corollary 4.3. For the lower bounds, the map-
ping ϕ 7→ st∗x(ϕ) is a reduction from SAT(MTL) resp. SAT(MTLk) (see Theorem 5.3 and
Lemma 6.3). Finally, the validity cases follow since the logic is closed under negation. J

Let us contrast the above decidable cases with the following negative result, where a
single unary dependence atom is added to the logic (cf. p. 4).

I Theorem 6.7. There is a vocabulary τ such that SAT(L) is Π0
1-hard and VAL(L) is Σ0

1-hard,
where L = τ -FO2

2(∼, {dep1}).

Proof. Kontinen et al. [24] showed that VAL(D2
2) is Σ0

1-hard, and their reduction in fact uses
only unary and binary dependence atoms. Moreover, the binary dependence atom =(x, y)
can equivalently be rewritten as ∼(> ∨ (=(x) ∧ ∼=(y))), where > is an arbitrary tautology.
Intuitively, this formula stipulates that every subteam constant in x is also constant in y.
This concludes the reduction to VAL(τ -FO2

2(∼, {dep1})). Again, the proof for the satisfiability
problem is analogous. J

7 Conclusion

In this paper, we proved that the logic FO2(∼) is complete for the class TOWER(poly) and
hence decidable. In particular, it has the finite model property, but exhibits non-elementary
succinctness compared to classical FO2, which enjoys an exponential model property [19].

For FOn
k (∼,D), where n ≥ 1 and k ≥ 0, we proved a dichotomy regarding its model

checking complexity: It is ATIME-ALT(exp,poly)-complete if n = k = ω, and otherwise
PSPACE-complete. This only requires that D is a p-uniformly FO-definable set of generalized

MFCS 2018

27:14 On the Complexity of Team Logic and Its Two-Variable Fragment

dependency atoms (cf. Definition 3.2), which covers first-order team logic TL as well as
independence [17] and inclusion logic [10] augmented with Boolean negation.

We conclude with some open questions:
Can the translation from FOn

k (∼,D) to SO[p] be inverted, i.e., can we translate every SO[p]-
formula to FOn

k (∼,D) for suitable n and k? This would be an interesting generalization
of the translation from SO to TL given by Kontinen and Nurmi [25].
What is the exact complexity of SAT(FO2

k(∼))? In the modal setting, every satisfiable
MTLk-formula has a (k + 1)-fold exponential model. It would be interesting to learn
whether the same holds for FO2

k(∼). Due to Corollary 3.6, a positive answer would
immediately yield a tight ATIME-ALT(expk+1,poly) upper bound.
It is a well-known fact that the standard translation of an ML-formula is in the two-
variable guarded fragment GF2. It is conceivable to consider a similar fragment GF2(∼)
for the standard translation of MTL. Studying the corresponding fragments GF2

k(∼) of
bounded quantifier rank could also be a first step towards finding the complexity of
FO2

k(∼).

References
1 Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer, editors. Depen-

dence Logic, Theory and Applications. Springer, 2016. doi:10.1007/978-3-319-31803-5.
2 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded

fragments of predicate logic. J. Philosophical Logic, 27(3):217–274, 1998. doi:10.1023/A:
1004275029985.

3 Vince Bárány and Mikołaj Bojańczyk. Finite satisfiability for guarded fixpoint logic. Inf.
Process. Lett., 112(10):371–375, 2012. doi:10.1016/j.ipl.2012.02.005.

4 Leonard Berman. The complexitiy of logical theories. Theor. Comput. Sci., 11:71–77, 1980.
doi:10.1016/0304-3975(80)90037-7.

5 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge University
Press, New York, NY, USA, 2001.

6 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer, 1997.

7 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981. doi:10.1145/322234.322243.

8 Arnaud Durand, Juha Kontinen, and Heribert Vollmer. Expressivity and Complexity of
Dependence Logic. In Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert
Vollmer, editors, Dependence Logic, pages 5–32. Springer International Publishing, 2016.
doi:10.1007/978-3-319-31803-5_2.

9 Johannes Ebbing, Lauri Hella, Arne Meier, Julian-Steffen Müller, Jonni Virtema, and
Heribert Vollmer. Extended modal dependence logic. In Logic, Language, Information,
and Computation - 20th International Workshop, WoLLIC 2013., pages 126–137, 2013.
doi:10.1007/978-3-642-39992-3_13.

10 Pietro Galliani. Inclusion and exclusion dependencies in team semantics - on some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012. doi:10.1016/j.apal.
2011.08.005.

11 Pietro Galliani. General Models and Entailment Semantics for Independence Logic. Notre
Dame Journal of Formal Logic, 54(2):253–275, 2013. doi:10.1215/00294527-1960506.

12 Pietro Galliani. Upwards closed dependencies in team semantics. Inf. Comput., 245:124–
135, 2015. doi:10.1016/j.ic.2015.06.008.

13 Pietro Galliani. On strongly first-order dependencies. In Dependence Logic, Theory and
Applications, pages 53–71. Springer, 2016. doi:10.1007/978-3-319-31803-5_4.

http://dx.doi.org/10.1007/978-3-319-31803-5
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1016/j.ipl.2012.02.005
http://dx.doi.org/10.1016/0304-3975(80)90037-7
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1007/978-3-319-31803-5_2
http://dx.doi.org/10.1007/978-3-642-39992-3_13
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1215/00294527-1960506
http://dx.doi.org/10.1016/j.ic.2015.06.008
http://dx.doi.org/10.1007/978-3-319-31803-5_4

M. Lück 27:15

14 Erich Grädel. Model-checking games for logics of imperfect information. Theor. Comput.
Sci., 493:2–14, 2013. doi:10.1016/j.tcs.2012.10.033.

15 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2007. doi:10.1007/
3-540-68804-8.

16 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable.
In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, 1997, pages
306–317, 1997. doi:10.1109/LICS.1997.614957.

17 Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013. doi:10.1007/s11225-013-9479-2.

18 Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In 14th Annual IEEE
Symposium on Logic in Computer Science, pages 45–54, 1999. doi:10.1109/LICS.1999.
782585.

19 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997. doi:10.2307/
421196.

20 Miika Hannula, Juha Kontinen, Martin Lück, and Jonni Virtema. On quantified proposi-
tional logics and the exponential time hierarchy. In Proceedings of the Seventh International
Symposium on Games, Automata, Logics and Formal Verification, GandALF 2016., pages
198–212, 2016. doi:10.4204/EPTCS.226.14.

21 Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. Complexity of Propo-
sitional Logics in Team Semantic. ACM Transactions on Computational Logic, 19(1):1–14,
jan 2018. doi:10.1145/3157054.

22 Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic
Journal of IGPL, 5(4):539–563, 1997. doi:10.1093/jigpal/5.4.539.

23 Juha Kontinen, Antti Kuusisto, Peter Lohmann, and Jonni Virtema. Complexity of two-
variable dependence logic and IF-logic. Information and Computation, 239:237–253, 2014.
doi:10.1016/j.ic.2014.08.004.

24 Juha Kontinen, Antti Kuusisto, and Jonni Virtema. Decidability of Predicate Logics with
Team Semantics. In 41st International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 60:1–60:14, 2016. doi:10.4230/LIPIcs.MFCS.2016.60.

25 Juha Kontinen and Ville Nurmi. Team logic and second-order logic. Fundam. Inform.,
106(2-4):259–272, 2011. doi:10.3233/FI-2011-386.

26 Antti Kuusisto. A Double Team Semantics for Generalized Quantifiers. Journal of Logic,
Language and Information, 24(2):149–191, 2015. doi:10.1007/s10849-015-9217-4.

27 Leopold Löwenheim. Über möglichkeiten im relativkalkül. Mathematische Annalen, 76:447–
470, 1915. URL: http://eudml.org/doc/158703.

28 Martin Lück. Canonical Models and the Complexity of Modal Team Logic. Computer
Science Logic (CSL) 2018. To appear.

29 Martin Lück. Axiomatizations of team logics. Annals of Pure and Applied Logic, 169(9):928–
969, 2018. doi:10.1016/j.apal.2018.04.010.

30 Martin Lück. On the Complexity of Team Logic and its Two-Variable Fragment. CoRR,
abs/1804.04968, 2018. URL: https://arxiv.org/abs/1804.04968.

31 Michael Mortimer. On languages with two variables. Math. Log. Q., 21(1):135–140, 1975.
doi:10.1002/malq.19750210118.

32 Julian-Steffen Müller. Satisfiability and model checking in team based logics. PhD thesis,
University of Hanover, 2014. URL: http://d-nb.info/1054741921.

MFCS 2018

http://dx.doi.org/10.1016/j.tcs.2012.10.033
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1109/LICS.1997.614957
http://dx.doi.org/10.1007/s11225-013-9479-2
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.2307/421196
http://dx.doi.org/10.2307/421196
http://dx.doi.org/10.4204/EPTCS.226.14
http://dx.doi.org/10.1145/3157054
http://dx.doi.org/10.1093/jigpal/5.4.539
http://dx.doi.org/10.1016/j.ic.2014.08.004
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.60
http://dx.doi.org/10.3233/FI-2011-386
http://dx.doi.org/10.1007/s10849-015-9217-4
http://eudml.org/doc/158703
http://dx.doi.org/10.1016/j.apal.2018.04.010
https://arxiv.org/abs/1804.04968
http://dx.doi.org/10.1002/malq.19750210118
http://d-nb.info/1054741921

27:16 On the Complexity of Team Logic and Its Two-Variable Fragment

33 Ian Pratt-Hartmann. The two-variable fragment with counting revisited. In Logic, Lan-
guage, Information and Computation, 17th International Workshop, WoLLIC 2010., pages
42–54, 2010. doi:10.1007/978-3-642-13824-9_4.

34 Frank P. Ramsey. On a Problem of Formal Logic, pages 1–24. Birkhäuser Boston, Boston,
MA, 1987. doi:10.1007/978-0-8176-4842-8_1.

35 Dana Scott. A decision method for validity of sentences in two variables. Journal of
Symbolic Logic, 27(4):477, 1962.

36 Thomas Sturm, Marco Voigt, and Christoph Weidenbach. Deciding first-order satisfiability
when universal and existential variables are separated. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, pages 86–95, 2016.
doi:10.1145/2933575.2934532.

37 Marco Voigt. A fine-grained hierarchy of hard problems in the separated fragment. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages
1–12, 2017. doi:10.1109/LICS.2017.8005094.

38 Jouko Väänänen. Dependence logic: A New Approach to Independence Friendly Logic. Num-
ber 70 in London Mathematical Society student texts. Cambridge University Press, Cam-
bridge ; New York, 2007.

39 Fan Yang. On extensions and variants of dependence logic. PhD thesis, Univer-
sity of Helsinki, 2014. URL: http://www.math.helsinki.fi/logic/people/fan.yang/
dissertation_fyang.pdf.

40 Fan Yang and Jouko Väänänen. Propositional team logics. Ann. Pure Appl. Logic,
168(7):1406–1441, 2017. doi:10.1016/j.apal.2017.01.007.

http://dx.doi.org/10.1007/978-3-642-13824-9_4
http://dx.doi.org/10.1007/978-0-8176-4842-8_1
http://dx.doi.org/10.1145/2933575.2934532
http://dx.doi.org/10.1109/LICS.2017.8005094
http://www.math.helsinki.fi/logic/people/fan.yang/dissertation_fyang.pdf
http://www.math.helsinki.fi/logic/people/fan.yang/dissertation_fyang.pdf
http://dx.doi.org/10.1016/j.apal.2017.01.007

M. Lück 27:17

Algorithm 1: Decision procedure for MC(SO).

Algorithm: check(α,A,J) for α ∈ τ -SO in negation normal form, a τ -structure A,
and a second-order interpretation J of Fr(α).

1 if α is an atomic formula or the negation of an atomic formula then
2 return true if (A,J) � α and false otherwise;
3 else if α = γ1 ∨ γ2 then existentially choose i ∈ {1, 2} and let α := γi
4 else if α = γ1 ∧ γ2 then universally choose i ∈ {1, 2} and let α := γi
5 else if α = aXγ for a ∈ {∃,∀} and X ∈ Var(α) then
6 α := γ

7 if X ∈ Fr(γ) then
8 if a = ∃ then switch to existential branching else switch to universal

branching
9 if X is a first-order variable then

10 non-deterministically choose a ∈ A and let J (X) := a

11 else if X is a function variable then
12 non-deterministically choose F : Aarity(X) → A and let J (X) := F

13 else if X is a relation variable then
14 non-deterministically choose R ⊆ Aarity(X) and let J (X) := R

15 return check(α,A,J �Fr(α))

A Appendix

Proof of Proposition 2.6
I Proposition 2.6. MC(SO) is decidable on input (A,J , α) in time 2nO(1) and with |α|
alternations.

Proof. W.l.o.g., ¬ appears in α only in front of atomic formulas, and domJ = Fr(α). Let
A := domA. We abbreviate

|J | :=
∑

X∈domJ
X second-order

|J (X)|,

i.e., the sum of the cardinalities of functions and relations in J . Since for any second-order
variable X it holds |J (X)| ≤ |A|arity(X) ≤ |A||α|, and furthermore |domJ | = |Fr(α)| ≤ |α|,
the sum |J | is at most |α| · |A||α|.

Now we run Algorithm 1. It performs at most |α| recursive calls, and clearly at most
|α| alternations. Furthermore, the i-th recursive call is of the form check(αi,A,Ji) with
|αi| ≤ |α| and, by the same argument as before, |Ji| ≤ |α| · |A||α|. For this reason, it is easy
to see that the overall runtime is polynomial in |J | and |A||α|, and consequently exponential
in the input size. J

Proofs of Theorem 3.1 and 3.5
We require the next propositions in order to prove Theorem 3.1 and 3.5.

MFCS 2018

27:18 Appendix

I Proposition A.1. Let A be a structure, ~t a tuple of terms, and X ⊇ Fr(~t). For i ∈ {1, 2},
let Ti be a team in A with domain Xi ⊇ X. Then T1�X = T2�X implies ~t〈T1〉 = ~t〈T2〉.
Furthermore, for any tuple ~x ⊆ X of variables, ~x〈T1〉 = ~x〈T2〉 iff T1�~x = T2�~x.

Proof. For the first part of the proposition, assume T1�X = T2�X. Exploiting symmetry,
we only show that ~t〈T1〉 ⊆ ~t〈T2〉. Hence, let ~a ∈ ~t〈T1〉 be arbitrary. Then ~a = ~t〈s〉 for some
s ∈ T1. By assumption, there is s′ ∈ T2 such that s�X = s′�X. Since Fr(~t) ⊆ X, clearly
~t〈s〉 = ~t〈s′〉. Consequently, ~a ∈ ~t〈T2〉.

For the second part, suppose ~x〈T1〉 = ~x〈T2〉 and let s ∈ T1�~x be arbitrary. We show
s ∈ T2�~x, which again suffices due to symmetry. Clearly, s = s′�~x for some s′ ∈ T1. Then
~x〈s〉 = ~x〈s′〉 ∈ ~x〈T1〉 = ~x〈T2〉, and consequently, ~x〈s〉 ∈ ~x〈T2〉. But then ~x〈s〉 = ~x〈s′′〉 for
some s′′ ∈ T2, which implies s = s′′�~x, and hence s ∈ T2�~x. J

I Proposition A.2. Let A be a structure, ~x a tuple of variables, and V := {s : ~x → A}.
Then P(V) is the set of all teams in A with domain ~x, and the mapping r : S 7→ ~x〈S〉 is an
order isomorphism between (P(V),⊆) and (P((domA)|~x|),⊆).

Proof. Let n := |~x|. Clearly, every team with domain ~x is in P(V). It is easy to show
that r is surjective: Given A ⊆ (domA)n, define the team S := {s ∈ V | ~x〈s〉 ∈ A}. Then
r(S) = ~x〈S〉 = {~x〈s〉 | s ∈ V and ~x〈s〉 ∈ A} = A.

Moreover, r preserves⊆ in both directions: Suppose S ⊆ S′ and let ~a = (a1, . . . , an) ∈ r(S)
be arbitrary. We show ~a ∈ r(S′), which proves r(S) ⊆ r(S′). Since ~a ∈ r(S) = ~x〈S〉, there
exists s ∈ S such that ~x〈s〉 = ~a. By assumption, s ∈ S′. Consequently, ~a ∈ ~x〈S′〉 = r(S′).

Conversely, suppose r(S) ⊆ r(S′) and let s ∈ S be arbitrary. As ~x〈s〉 ∈ r(S) ⊆ r(S′) =
~x〈S′〉, there exists an assignment s′ ∈ S′ such that ~x〈s〉 = ~x〈s′〉. However, as dom s =
dom s′ = ~x, necessarily s = s′, i.e., s ∈ S′. As S ⊆ S′ ⇔ r(S) ⊆ r(S′), and r is surjective, we
conclude that r is also injective and hence an order isomorphism. J

As an alternative definition of supplementing functions, Galliani [11] coined the term
x-variations, which are teams that “agree” on all variables but x:

I Proposition A.3. Let T be a team with domain X and S a team with domain X ∪ {x}
(with possibly x ∈ X), and let X ′ := X \ {x}. Then S�X ′ = T �X ′ if and only if there is a
supplementing function f such that S = T xf .

Proof. Let A be the underlying structure.
“⇒”: Suppose S�X ′ = T �X ′. First, we show that for every s′ ∈ S there is s ∈ T such

that s′ = sxa for some a. By assumption, s′�X ′ = s�X ′ for some s ∈ T . But then s′ = sxs′(x).
We define the function f(s) := { a ∈ A | sxa ∈ S }, and prove that it is a supplementing
function of T . Here, it suffices to show that f(s) 6= ∅ for all s ∈ T , i.e., that for every
s ∈ T there exists a ∈ A such that sxa ∈ S. This follows again by S�X ′ = T �X ′. Moreover,
T xf = {sxa | s ∈ T, a ∈ f(s)} = {sxa | s ∈ T, sxa ∈ S}, which equals S by the above argument.

“⇐”: First, we show “⊆”, i.e., that s ∈ T �X ′ for arbitrary s ∈ S�X ′. By definition, for
such s we have s = s′�X ′ for some s′ ∈ S. Since S = T xf , there exists s′′ ∈ T and a ∈ A such
that s′ = (s′′)xa. As x /∈ X ′, we have s = s′�X ′ = s′′�X ′ ∈ T �X ′, as desired.

For the other direction, “⊇”, let s ∈ T �X ′ be arbitrary. Then s = s′�X ′ for some s′ ∈ T .
As S = T xf , there exists some s′′ ∈ S and a ∈ A such that s′′ = (s′)xa. Again we have
s = s′�X ′ = s′′�X ′, i.e., s ∈ S�X ′. J

I Lemma A.4. Let T have domain ~x and S have domain ~x ∪ {y} (with possibly y ∈ X),
and let X ′ := ~x \ {y}. Then T �X ′ = S�X ′ if and only if A � π(~x〈T 〉, ~x;y〈S〉), where
π(T, S) := ∀~x((∃yT~x)↔ (∃yS~x;y)).

M. Lück 27:19

Proof. First, let us consider the case y /∈ X, i.e., X ′ = X. Then:

T �X ′ = S�X ′

⇔ ~x〈T 〉 = ~x〈S〉 (by Proposition A.1)
⇔ ∀~a : (~a ∈ ~x〈T 〉 ⇔ ∃b : (~a, b) ∈ (~x; y)〈S〉) (since T has domain ~x)
⇔ A � π(~x〈T 〉, ~x;y〈S〉) (since ∃yT~x ≡ T~x)

Next, assume y ∈ X and w.l.o.g. y = xn. Then ~x;y = ~x and X ′ = {x1, . . . , xn−1}. Let
~x′ = (x1, . . . , xn−1). Analogously as before, we have:

T �X ′ = S�X ′

⇔ ~x′〈T 〉 = ~x′〈S〉
⇔ ∀~a :

(
(∃b : (~a, b) ∈ ~x〈T 〉)⇔ (∃b : (~a, b) ∈ ~x;y〈S〉)

)
⇔ A � π(~x〈T 〉, ~x;y〈S〉) J

I Theorem 3.1. Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a team
in A with domain Y ⊇ ~x. Then (A, T) � ϕ if and only if A � η~xϕ(~x〈T 〉).

Proof. Note that (A, T) � ϕ ⇔ (A, T �~x) � ϕ by Proposition 2.5, and ~x〈T 〉 = ~x〈T �~x〉. For
this reason, we can assume that T has domain ~x. The proof is now by induction on ϕ.

If ϕ is first-order, clearly (A, T) � ϕ iff A � ϕ(~a) for all ~a ∈ ~x〈T 〉 iff A � η~xϕ(~x〈T 〉).
If ϕ = Ai(~t) and δi ∈ D is a k-ary dependency, then (A, T) � Ai(~t) iff A � δi(~t〈T 〉).
We prove that this is again equivalent to A � ∃S ρ(~x〈T 〉, S) ∧ δi(S), where ρ(R,S) :=
∀~z (S~z ↔ (∃~xR~x ∧~t = ~z)).
It suffices to show that A � ρ(~x〈T 〉, S) if and only if S = ~t〈T 〉. As it is straightforward
that A � ρ(~x〈T 〉,~t〈T 〉) holds, let us focus on the direction from left to right. Recall that
~x ∩ {z1, . . . , zk} = ∅ and that the zi are pairwise distinct. On that account, suppose
A � ρ(~x〈T 〉, S) and ~a = (a1, . . . , ak) ∈ Ak. By definition of the formula, ~a ∈ S iff
A � ∃~xR~x ∧~t = ~a. However, this is the case iff ~t〈s〉 = ~a for some s ∈ T , i.e., ~a ∈ ~t〈T 〉.
The cases ϕ = ∼ψ and ϕ = ψ ∧ θ immediately follow by induction hypothesis.
If ϕ = ψ ∨ θ, then by induction hypothesis, (A, T) � ϕ iff there are S,U ⊆ T such that
T = S ∪ U and A � η~xψ(~x〈S〉) ∧ η~xθ (~x〈U〉). Let R := ~x〈T 〉.
Then due to Proposition A.2, the above is equivalent to the existence of P,Q ⊆ An such
that R = P ∪ Q and A � η~xψ(P) ∧ η~xθ (Q), and consequently to A � ∃S ∃U ∀~x(R~x ↔
(S~x ∨ U~x)) ∧ η~xψ(S) ∧ η~xθ (U).
If ϕ = ∃y ψ, by Proposition A.3, then (A, T) � ϕ iff (A, S) � ψ for some team S with
domain ~x ∪ {y} such that T �X ′ = S�X ′, where X ′ := ~x \ {y}. By Lemma A.4 and by
induction hypothesis, this is the case iff (A, ~x〈T 〉) � ∃S ∀~x((∃yR~x)↔ (∃yS~x; y))∧η~x;y

ψ (S).
The case ϕ = ∀y ψ is proven analogously to ∃. The additional clause (R~x → ∀y S~x;y)
ensures that the supplementing function is constant and f(s) = domA. J

I Theorem 3.5. Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a team
in A with domain Y ⊇ ~x. If p(n) ≥ |T | · nqr(ϕ) or p(n) ≥ nw(ϕ), then (A, T) � ϕ if and only
if A � ζ~x,pϕ (~x〈T 〉).

Proof for p(n) ≥ |T | · nqr(ϕ). Assume A, T as above, let m := qr(ϕ) and p(n) ≥ nm.
The idea is to show that η~xϕ and ζ~x,pϕ agree on (A,J) for all “sufficiently sparse” J (cf.
Theorem 3.1). Formally, let ` ≤ m and let (A,J) be a second-order interpretation such that

MFCS 2018

27:20 Appendix

|J (R)| ≤ |T | · |A|` for all relations R ∈ domJ . Then we prove for all ϕ ∈ FO(∼,D) with
qr(ϕ) ≤ m− ` and ~x ⊇ Fr(ϕ) that (A,J) � η~xϕ if and only if (A,J) � ζ~x,pϕ . For ` = 0, this
yields the theorem, since |~x〈T 〉| ≤ |T | · |A|0.

The proof is by induction on ϕ. We distinguish the following cases.
If ϕ ∈ FO, then there is nothing to prove, as η~xϕ = ζ~x,pϕ .
If ϕ = ∼ψ or ϕ = ψ ∧ θ, then the inductive step is clear.
If ϕ = Ai~t for some k-ary δi ∈ D, then ζ~x,pϕ (R) = ∃pS ρ(R,S) and η~xϕ(R) = ∃S ρ(R,S),
where

ρ(R,S) = ∀~z (S~z ↔ (∃~xR~x ∧~t = ~z)) ∧ δi(S).

We show that A � η~xϕ(R) implies A � ζ~x,p(R), as the other direction is trivial.
On that account, suppose A � ρ(R,S) for some S ⊆ Ak. We prove that necessarily
|S| ≤ |R| by constructing some injective f : S → R. Then A � ∃pS ρ(R,S), as by
assumption, |S| ≤ |R| ≤ |T | · |A|` ≤ |T | · |A|m ≤ p(|A|).
We define f as follows. For every ~a ∈ S, let f(~a) be some ~b ∈ R such that~t〈{~x 7→ ~b}〉 = ~a.
By ρ(R,S), such ~b must exist. Clearly, f is injective.
If ϕ = ψ ∨ θ, then ζ~x,pϕ (R) = ∃pS ∃pU ρ and η~xϕ(R) = ∃S ∃U ρ′, where

ρ(R,S, U) = ∀~x(R~x↔ (S~x ∨ U~x)) ∧ ζ~x,pψ (S) ∧ ζ~x,pθ (U),

ρ′(R,S, U) = ∀~x(R~x↔ (S~x ∨ U~x)) ∧ η~xψ(S) ∧ η~xθ (U).

Suppose |R| ≤ |T | · |A|` and qr(ϕ) ≤ m− `. Clearly qr(ψ), qr(θ) ≤ qr(ϕ).
Let A � η~xϕ(R), i.e., A � ρ′(R,S, U) for some S,U ⊆ A|~x|.
It is easy to see that ρ′ forces |S|, |U | ≤ |R|. Since |R| ≤ |T | · |A|` by assumption, we
can apply the induction hypothesis to η~xψ(S) and η~xθ (U) and derive A � ρ(R,S, U) from
A � ρ′(R,S, U). Since in particular |S|, |U | ≤ p(|A|), we conclude A � ζ~x,pϕ (R). The other
direction is trivial due to the inductivion hypothesis, since ρ(R,S) entails ρ′(R,S).
If ϕ = ∃y ψ, then ζ~x,pϕ (R) = ∃pS ρ(R,S) and η~xϕ(R) = ∃S ρ′(R,S), where

ρ(R,S) = ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ ζ~x;y,p
ψ (S),

ρ′(R,S) = ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ η~x;y
ψ (S).

Suppose |R| ≤ |T | · |A|` and qr(ϕ) ≤ m− `. We show that A � η~xϕ(R) implies A � ζ~x,pϕ (R).
The other direction is then again similar.
Assuming A � η~xϕ(R), there exists S ⊆ A|~x;y| such that A � ρ′(R,S). As a first step, we
erase unnecessary elements from S. Note that S occurs in ρ′ only in atomic formulas
S~x;y, i.e., with a fixed argument tuple ~x;y. Let (v1, . . . , vr) := ~x;y. If now vi = vj for
some 1 ≤ i < j ≤ r, then every tuple (a1, . . . , ar) with ai 6= aj can be safely deleted from
S. Formally, if S∗ := ~x;y〈V 〉 ∩ S, where V = {s : ~x ∪ {y} → A} is the full team with
domain ~x ∪ {y}, then A � ρ′(R,S) if and only if A � ρ′(R,S∗), which can be shown by
straightforward induction.
Note that qr(ψ) = qr(ϕ)−1 ≤ m−(`+1). Consequently, to apply the induction hypothesis,
we prove |S∗| ≤ |R| · |A| ≤ |T | · |A|`+1 by presenting some injective f : S∗ → R×A.
If y /∈ ~x, let f be the identity, as ρ′ ensures that (~a, b) ∈ S∗ implies ~a ∈ R. However,
if y ∈ ~x, then we define f(~a) as follows. By construction, ~a ∈ S∗ equals ~x〈s〉 for some
s : ~x → A. Again by ρ′, there is ŝ : ~x → A such that ~x〈ŝ〉 ∈ R and s = ŝys(y). Let now
f(~a) := (~x〈ŝ〉, s(y)). Then f is injective.

M. Lück 27:21

Hence, by induction hypothesis, we can replace η~xϕ by ζ~x,pϕ and obtain A � ρ(R,S∗). Since
|S∗| ≤ |A|`+1 ≤ p(|A|), we obtain A � ∃pS ρ(R,S).
The case ϕ = ∀y ψ is proven similarly to ϕ = ∃y ψ. J

Proof for p(n) ≥ nw(ϕ). We can apply the same argument as in the ∃-case of the previous
proof. Suppose S is a second-order variable. Then S appears in η~xϕ only in atomic formulas of
the form S~t for a fixed ~t. Accordingly, it suffices to let ∃S range over subsets of ~t〈V 〉, where
~y := Var(~t) and V := {s : ~y → A}.

(We consider terms ~t instead of only variables to account for the translations of depen-
dencies, where S can have terms as arguments.)

Since ~y contains at most w(ϕ) distinct variables, |V | ≤ |A|w(ϕ) ≤ p(|A|). Consequently,
every second-order quantifier ∃S can be replaced by ∃pS, which implies A � η~xϕ(~x〈T 〉) ⇔
A � ζ~x,pϕ (~x〈T 〉). J

Proof of Lemma 4.1
I Lemma A.5. The following laws hold for FO(∼):

α ∧
n∧
i=1

Eβi ≡
n∨
i=1

(α ∧ Eβi) (2)

n∨
i=1

(αi ∧ Eβi) ≡
(n∨
i=1

αi

)
∧

n∧
i=1

E(αi ∧ βi) (3)

(ϑ1 6 ϑ2) ∨ ϑ3 ≡ (ϑ1 ∨ ϑ3) 6 (ϑ2 ∨ ϑ3) (4)
ϑ1 ∨ (ϑ2 6 ϑ3) ≡ (ϑ1 ∨ ϑ2) 6 (ϑ1 ∨ ϑ3) (5)
∃x (ϑ1 6 ϑ2) ≡ (∃xϑ1) 6 (∃xϑ2) (6)
∃x (ϑ1 ∨ ϑ2) ≡ (∃xϑ1) ∨ (∃xϑ2) (7)
∃x (α ∧ Eβ) ≡ (∃xα) ∧ E∃x (α ∧ β) (8)
∀x (ϑ1 ∧ ϑ2) ≡ (∀xϑ1) ∧ (∀xϑ2) (9)
∀x∼ϑ ≡ ∼∀xϑ (10)

Proof. For (2), (3) and (7), see Lück [29, Lemma 4.13, 4.14 and D.1], respectively. For (4)–(6),
see Galliani [13, Proposition 5]. For (9)–(10), see Väänänen [38, Chapter 8].

For (8), the direction “�” is clear, as α ∧ Eβ implies both α and E(α ∧ β). For the
converse direction, suppose (A, T) � ∃xα and (A, ŝ) � ∃x(α ∧ β) for some ŝ ∈ T . Then
there are f : T → P(A) \ {∅} and b ∈ A such that (A, T xf) � α and (A, ŝxb) � α ∧ β. Define
g(ŝ) = f(ŝ) ∪ {b} and g(s) = f(s) for s ∈ T \ {ŝ}. Then T xg = T xf ∪ {sxb }. Consequently,
(A, T xg) � α ∧ Eβ, hence (A, T) � ∃x (α ∧ Eβ). J

I Lemma 4.1. Every τ -FOn
k (∼)-formula ϕ is equivalent to a formula of the form

ψ :=
n

6
i=1

αi ∧ mi∧
j=1

Eβi,j


such that {α1, . . . , αn, β1,1, . . . , βn,mn} ⊆ τ -FOn

k and |ψ| ≤ expO(|ϕ|)(1).

In what follows, disjunctive normal form (DNF) refers to formulas in the above form.

Proof. We construct the formula ψ by induction on ϕ. In each inductive step, it grows at
most exponentially.

MFCS 2018

27:22 Appendix

If ϕ is a Boolean combination of FOn
k -formulas (i.e., over ∼ and ∧), then we obtain a

DNF of size ≤ |ϕ| · 2|ϕ| similarly as for ordinary propositional logic.
If ϕ = ϑ1 ∨ ϑ2 for ϑ1, ϑ2 in DNF, then

ϕ =
n

6
i=1

αi ∧ mi∧
j=1

Eβi,j

 ∨ k

6
i=1

γi ∧ `i∧
j=1

Eδi,j


≡

n

6
i=1

mi∨
j=1

(αi ∧ Eβi,j) ∨
k

6
i=1

`i∨
j=1

(γi ∧ Eδi,j) (Lemma A.5, (2))

≡ 6
1≤i1≤n
1≤i2≤k

mi1∨
j=1

(αi1 ∧ Eβi1,j) ∨
`i2∨
j=1

(γi2 ∧ Eδi2,j) (Lemma A.5, (4) and (5))

≡
n·k

6
i=1

oi∨
j=1

(µi,j ∧ Eνi,j) (for some µi,j , νi,j ∈ FOn
k)

≡
n·k

6
i=1

(oi∨
j=1

µi,j

)
∧

oi∧
j=1

E(µi,j ∧ νi,j), (Lemma A.5, (3))

where the final DNF has size polynomial in |ϑ1|+ |ϑ2| ≤ |ϕ|.
If ϕ = ∃xϑ for ϑ in DNF, then

ϕ ≡ ∃x
n

6
i=1

mi∨
j=1

(αi ∧ Eβi,j) (Lemma A.5, (2))

≡
n

6
i=1

mi∨
j=1
∃x (αi ∧ Eβi,j) (Lemma A.5, (6) and (7))

≡
n

6
i=1

mi∨
j=1

(
(∃xαi) ∧ E∃x (αi ∧ βi,j)

)
(Lemma A.5, (8))

≡
n

6
i=1

(mi∨
j=1
∃xαi

)
∧

mi∧
j=1

E∃x (αi ∧ βi,j)), (Lemma A.5, (3))

which is again a DNF of polynomial size.
Finally, the ∀ case is by repeated application of (9) and (10) of Lemma A.5. J

	Introduction
	Preliminaries
	From FO(~) to SO: Upper bounds for model checking
	From FO^2(~) to FO^2: Upper bounds for satisfiability
	From MTL to FO^2(~): A team-semantical standard translation
	Lower bounds
	Conclusion
	Appendix

