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Abstract
Wedefine generalized cluster states based on finite group algebras in analogy to the generalization of
the toric code to theKitaev quantumdoublemodels.We do this by showing a general correspondence
between systemswithCSS structure andfinite group algebras, and applying this to the cluster states to
derive their generalization.We then investigate properties of these states including their projected
entangled pair state representations, global symmetries, and relationship to theKitaev quantumdou-
blemodels.We also discuss possible applications of these states.

1. Introduction

Cluster states (or graph states) [1, 2] are the prototypical resource formeasurement-based quantum
computation (MBQC) [3]. This is broad category of strategies for implementing fault-tolerant quantum
information processing equivalent but in contrast to the quantum circuitmodel, adiabatic quantum
computation, and topological quantum computation.MBQCproceeds by taking a suitable entangledmany-
particle resource state and performing computation by sequential single-particlemeasurements thatmay be
chosen adaptively based on previousmeasurement results.

The cluster states have a particularly simple structure that allows for straightforward analysis of their
properties. They also havemany desirable features for a resource state: for example, they are the output of a
finite-depth quantum circuit, and also the frustration-free ground states of a (gapped) commuting local
Hamiltonian.

Apart from their usefulness for standardMBQC, the cluster states are also related to topologically ordered
systems such as the toric code [4–8] and the colour codes [9, 10]. In fact, this relationship can be leveraged to
define a protocol forMBQC that exploits the natural fault-tolerance properties of topological quantum
computation schemes [11]. The cluster states can also be used to study general stabilizer states, as all stabilizer
states are equivalent to cluster states under local Clifford operations [12]. Additionally, the cluster states have
been used in studies of such diverse topics as the origin of quantum computational power [13] and
contextuality [14].

Since the cluster states are such an important theoretical tool for studying these topics, it is of interest to ask if
their properties can be generalized in any interesting ways. In this paperwe take steps towards answering this
question, in particularmotivated by the relation between cluster states and topologically ordered systems. In so
doing, we provide a general framework for similar generalization programmes.

The toric code is the simplestmember of the family of topologically orderedKitaev quantumdoublemodels
[4]. Thesemodels are defined by afinite groupG (of which the toric code corresponds to2). Thesemodels are
of significant interest for condensedmatter physics, where they are an important testbed for the phenomenology
of topological order, as well as quantum information, where they can be used to implement topological
quantum computation, for example through braiding of quasiparticles [15] or code deformation [16], or can be
used as quantummemories [5]. Though extensions of theKitaev quantumdoublemodels have also been
proposed based on aHopf algebraH [17], or twisted quantumdoubles labelled by finite groupG and three-
cocycleω [18], wewill restrict our consideration to the finite group case here.Most of the important
phenomenology of these generalizations can be captured byfinite groups, and in particular the qualitative
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distinction between abelian and non-abelian topological phases ismanifested inKitaev quantumdoublemodels
for abelian and non-abelian groups respectively. Abelian phases such as the toric code cannot be used for
quantum computation by braiding of quasi-particles, and are not known to be able to implement universal
topological quantum computation via code-deformation (though universal quantum computation can still be
achieved by using non-topological operations such asmagic state distillation [19, 20]).

For these reasons, we define a family of generalized cluster states based on arbitrary finite groupsG, where
the standard qubit cluster state corresponds to the simplest group2. The previously known higher-qudit
cluster states [21, 22] correspond to the cyclic groupsd . In order tomake this generalization process as clear as
possible, we firstmake a general connection between general qubit CSS states and the group2. This allows an
intuitive generalization of any such system,whichmay bemore generally applicable.

We explore the properties of the generalized cluster states defined in this way, such as their global
symmetries and projected entangled pair state (PEPS) representations, in analogy to the qubit case [23, 24].We
also showhow the generalized cluster states retain a relation to the corresponding quantumdoublemodels, and
discuss possible applications of the generalized cluster statesmaking use of this relation.

The paper is organized as follows. In section 2we outline the group structure of CSS states and the general
method of generalizationwewill follow. This is then used in section 3 to define the generalized cluster states for
arbitrary finite groupsG. Section 4 is devoted to exploring some properties of these states. Finally, in section 5we
briefly consider applications for generalized cluster states including preparation of theKitaev quantumdouble
states and a generalization of the topological cluster state computation scheme, before discussing possible
extensions of the kind of generalization scheme proposed here and providing some concluding remarks.

2. FromCSS structure tofinite groups

In this paper, wewill generalize the familiar qubit cluster state to states based onfinite group algebras. In order to
do this, wewillmake use of a general prescription to translate from a systemwithCSS structure [25, 26] to one
based on the group2.

Many interestingmodels defined on spin-½ systems have aCSS structure.While the termCSS has a specific
technicalmeaning as a class of stabilizer codes, wewill use it in itsmore colloquial sense tomean any system
involving interactions that consist either of products of PauliX operators or products of PauliZ operators.

Systemswith a CSS structure have a natural interpretation in terms of the group algebra of2. Recall that2

has two elements (labelled 1 and the identity 0), groupmultiplication is additionmodulo 2 (⊕), and there are
two irreducible representations. The trivial and alternating irreps we label + and− respectively, with
Γ Γ Γ= = =+ + −(0) (1) (0) 1andΓ = −− (1) 1.

We can associate qubit states and operators with objects related to the group2 by considering the
computational basis states of our qubit to be labelled by group elements. That is, we take∣ 〉0 and∣ 〉1 to be
associatedwith the respective group elements 0 and 1. Following this, the PauliX operator can be seen to act as
groupmultiplication by the 1 element. For this reasonwe denote it by ≡X X1 .We can also see that ≡ =X X I0

0

acts as groupmultiplication by the 0 element. Thuswe considerXg to act as groupmultiplication by an element
∈ g 2. We can also interpret theCNOT gate in this context as a controlled groupmultiplication operation.

This can easily be seen by ∣ 〉∣ 〉 = ∣ 〉∣ ⊕ 〉g h g g hCNOT .
The conjugate basis states∣+〉 and∣−〉 can be associatedwith the irreducible representations of2 by

noticing that Γ Γ∣±〉 ∝ ∣ 〉 + ∣ 〉± ±(0) 0 (1) 1 (throughout this paperwewill consider only unitary irreducible
representations over unless otherwise specified).We can similarly consider the powers of the PauliZ operator
to be associatedwith the representations of2 as ≡+Z Z1 and ≡−Z Z 0. Notice then that Γ∣ 〉 = ∣ 〉± ±Z g g g( ) .

The group2 hasmuch structure that is absent for general groups. In particular, there is a natural
isomorphismbetween group elements and irreps, taking 0 to + and 1 to−. In this waywe can interpret the
Hadamard gate as implementing this isomorphism. Although theCPHASE gate has no fundamental
interpretation in terms of objects from the group, it can be brought into this framework by noticing that
CPHASE can be constructed from a circuit ofHadamard andCNOTgates.

This entire structure is summarized in thefirst two columns of table 1. It also gives us an avenue to generalize
many of these concepts to arbitrary groups. In interpreting the structure of the qubit in terms of2, themost
significant property of this group that does not still hold in the general case is the existence of a natural
isomorphism from group elements to irreps. The fact that this is not available for a general groupG is the reason
that the CSS structure is important when generalizing to arbitraryfinite groups, as wewill show.

Now that the properties of the qubit have been related to properties of2, the generalization to an arbitrary
finite groupG is relatively straightforward. Two-dimensional qubits are replaced by∣ ∣G -dimensional qudits.
The analogue of computational basis states for these qudits are labelled by group elements ∈g G (we call this the
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group element basis). It is worthwhile noting that there is a preferred state corresponding to the identity group
element e. Thus the∣ 〉0 state of the qubit corresponds in general to the∣ 〉e state of the group element basis.

The PauliX operator of the qubit generalizes to left and right groupmultiplication operators ←Xg and →Xg

acting as

= =← → −X h gh X h hgand . (1)g g
1

Similarly, the CNOT gate generalizes straightforwardly to a controlled left or right groupmultiplication gate.
The conjugate basis of the qubit was interpreted as representation states, and in the general case we label

these states bymatrix elements of an unitary irreducible representation (or irrep) ofG, and define

∑Γ Γ= Γ

∈

d

G
g g[ ( )] , (2)ij

g G
ij

where [Γ(g)]ij is given by the group element g at amatrix element (i, j) of a representationΓ and dΓ is the
dimension ofΓ.We call this basis the representation basis as compared to the group element basis. Noting that
∑ = ∣ ∣Γ Γd G2 , orthonormality of the representation basis follows directly from the grand orthogonality theorem
of group representations:

∑ Γ Γ δ δ δ=λ σ λσ
λ∈

′ ′
′ ′g g

G

d
( ) ( ) . (3)

g G
ij i j

ii jj
*⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

The transformation from the representation basis to the group element basis can also be found as

∑ Γ Γ=
Γ

Γg
d

G
g[ ( )] . (4)ij

ij

ij

As in the group element basis, there is a preferred state in the representation basis. This corresponds to the
trivial irrep I. The trivial irrep state is given by an equal superposition over all group element states, and reduces
to the∣+〉 state in the case that = G 2.

The generalizations of the PauliZ operators are labelled bymatrix elements of irreps ofG. As in the2 case,
they act on group element basis states by accumulating amplitudes corresponding to the relevantmatrix element
of the group element in the given representation. That is

Γ=ΓZ h h h[ ( )] . (5)ij
ij

These generalizations are summarized in table 1.
TheHadamard gate andCPHASE gate of the qubit have no natural generalization to an arbitrary group in

this way. Similarly, interactions that do not haveCSS structure cannot be generalized for the following reason. If
we consider an operator constructed frommixedX andZ operators on a set of qubits, to generalize this operator
to the groupGwemust associate a group element to theX operator and a representation to theZ operator. There
is no natural way to choose a representation corresponding to each group element, and sowe cannot consistently
generalize amixed operator of this type. This is a direct consequence of the fact that theHadamard operator has
no analogue for arbitrary groups. Given that we can only consider systemswithCSS structure in this framework,
it is clear that theHadamard andCPHASE gates cannot be generalized, as they take CSS systems to non-CSS
systems.

Table 1. Summary of the correspondence between group algebras and states or operators on quantum systems.

2 Qubit Qudit G

Elements{0, 1} ∣ 〉 ∣ 〉0 , 1 ∣ 〉g = ∣ ∣d G( ) Elements ∈g G

Multiplication⊕g ∣ 〉 = ∣ ⊕ 〉X h g hg
∣ 〉 = ∣ 〉

∣ 〉 = ∣ 〉

←

→ −

X h gh

X h hg

g

g
1

Multiplication

Irreps Γ Γ+ −{ , } Γ Γ∣±〉 = ∣ 〉 + ∣ 〉± ±( (0) 0 (1) 1 )1

2
Γ Γ∣ 〉 = ∑ ∣ 〉

∣ ∣
Γ g g[ ( )]ij d

G g ij IrrepsΓ ∈ GRep( )

Irrep actionΓ(g) Γ∣ 〉 = ∣ 〉ΓZ h h h( ) Γ∣ 〉 = ∣ 〉ΓZ h h h[ ( )]ijij Irrep action [Γ(g)]ij

≅ Rep( )2 2 Hadamard gate — —

ControlledNot ∣ 〉∣ 〉 = ∣ 〉∣ ⊕ 〉g h g g hCNOT ∣ 〉∣ 〉 = ∣ 〉∣ 〉
∣ 〉∣ 〉 = ∣ 〉∣ 〉

←

→ −

g h g gh

g h g hg

CMULT

CMULT 1
Controlledmultiplication
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Oneway to interpret table 1 is as a prescription to design quantum systemswith algebraic properties
inherited from an arbitrary finite group. In general, the structure of these algebraic properties will be closely
related to the quantumdouble of the group under consideration, as is the case for example in theKitaev
quantumdoublemodels, which can be interpreted in this framework.One could also consider generalizing this
correspondence from groups tomore general objects such asHopf algebras (as has been done for theKitaev
quantumdoublemodels). This will briefly be discussed in section 5.2, as well as speculation on further possible
generalizations.

Of course, themachinery introduced here simplifies significantly ifG is chosen to be a cyclic groupd . In
this case, the representations are all one-dimensional (1D) dth roots of unity. The basis change between the
group element and representation bases for these groups is simply the discrete Fourier transform. Significantly,
there also exists a natural isomorphism from the space of irreps ofd to the space of elements. This allows us to
generalize theHadamard gate and removes the necessity of considering only systemswithCSS structure. The
cluster states corresponding to the cyclic groups have been previously defined and studied [21, 22].

3.Generalized cluster states

Wecan use the generalmachinery established in the previous section to generalize the cluster state. This will give
a family of states labelled by decorated graphs and a groupG. As a prelude to the introduction of these general
states, let usfirst review the definition of the qubit cluster state. Since the standard definition does not haveCSS
structure, wewill need to consider a slightlymodified definition of the cluster state that ismore amenable to
generalization.

3.1.Qubit cluster states
Aqubit cluster state [1, 2] is uniquely specified by an underlying graphΛ. One convenient way to define these
states is as the output of a certain constant depth quantum circuit. Equivalently, they can be described as the
common+1 eigenstate of a set of commuting stabilizer operators.Wewill describe the qubit cluster state in both
of these languages, as these two descriptions showcase different desirable features of the cluster state. In the first
case, the cluster state can be prepared in constant time by an appropriate parallel quantum circuit, while in the
latter case the cluster state can be seen as the unique gapped ground state of a localHamiltonian, namely that
formed by the (negative) sumof the relevant stabilizer operators.

The cluster state is given by

 ∏= ⨂ +Λ
Λ< > ∈

m nCPHASE( , ) (6)
m n v

v

,

with〈 〉m n, running over all edges and v running over all vertices ofΛ. TheCPHASE gate is given by

∣ 〉 ∣ 〉 = − ∣ 〉 ∣ 〉m n a b a bCPHASE( , ) ( 1)m n
ab

m n for ∈ a b, 2. As a circuit, we place qubits in the∣+〉 state at each site
ofΛ and then performCPHASE gates between the qubits connected by an edge. Since theCPHASE gates
commute, this is always a constant-depth circuit (assuming bounded degree ofΛ).

It is straightforward to derive the stabilizers of this state by considering the circuit of equation (6) in the
Heisenberg representation. The qubit cluster state is thus the common+1 eigenstate of the stabilizer operators

∏=
∼

S v X v Z w( ) ( ) ( ) (7)
w v

for every site v, wherew∼ v runs over neighbours of v. Clearly, this state does not have theCSS structure
discussed in section 2. This can be seen in twoways: firstly the stabilizers (7) involve bothX andZ operators in
the same stabilizer, and secondly the circuit (6) involvedCPHASE operators. The toolkit introduced in section 2
cannot be used to generalize states of this form.

We can, howevermodify the definition of the cluster state to endow it with CSS structure. In order to do this,
wemust restrict to bipartite graphsΛ. On these graphs, we can partition the sites ofΛ into an odd setΛo and an
even setΛe such that all edges ofΛ involve one vertex fromΛo and one vertex fromΛe. Given this structure, we
can define theCSS cluster state as

 ∏≡Λ
Λ

Λ
∈

H v( ) , (8)
v

CSS

e

4
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whereH is theHadamard operator. This allows us to rewrite the circuit constructing theCSS cluster state as

 ∏= ⨂ + ⨂Λ

Λ Λ
Λ Λ< >

∈ ∈
∈ ∈

m nCNOT( , ) 0 , (9)
m n

m n
w

w
v

v
CSS

,
,o e

o e

where here theCNOT gates act with the odd qubitm as control and even qubit n as target.Wewill generally use
the notation that a controlled gate takes two site labels as arguments and acts on the first as the control. The
bipartite property ofΛ guarantees that eachCNOTgate acts on one odd and one even qubit. Even thoughCNOT
gates do not commute in general, twoCNOTgates with common targets or common controls will commute.
This gives us the fact that the circuit specified by (9) is again always constant-depth as expected.

The stabilizers of the CSS cluster state are given by

∏=
∼

S v Z v Z w( ) ( ) ( ), and (10)e

w v

∏=
∼

S w X w X v( ) ( ) ( ) (11)o

v w

for v andw even and odd sites respectively. This demonstrates the claimedCSS structure of these states. This can
also be seen by noting that the circuit (9) consists only of operators that preserve CSS structure (i.e. CNOT
gates). Although it can only be defined on bipartite graphs, when it exists theCSS cluster state is locally equivalent
to the corresponding standard cluster state and so has all the same fundamental properties, notably including the
ability to performuniversalMBQC.

3.2. Finite group cluster states
Given the toolkit of section 2 and the definition of theCSS cluster state given above, wewill nowdescribe the
generalization of the cluster state to arbitrary finite groupsG. These cluster states will inheritmany of the
algebraic properties of the group that defines them.

As compared to the qubit cluster states where an undirected graph completely specifies the state, for an
arbitrary groupG this is insufficient to uniquely determine a generalized cluster state. This is similar to the
generalization of the toric code to the quantumdoublemodels, where the former is completely specified by an
undirected graph, while the latter requires directed edges to specify themodel. In particular, to describe a
generalized cluster state we require a directed bipartite graphΛ, together with an ordering #v(w) of the
neighboursw of each even vertex v. An example of such a structure is shown infigure 1. The roles that are played
by the additional direction and ordering parameters will become clear during the construction of the generalized
cluster states.

Given such a graphΛ and ordering #, together with afinite groupG, the generalized cluster state is a state on a
systemof∣ ∣G -dimensional qudits at each site ofΛ. It ismost convenient to generalize the qubit cluster state by
considering the circuit that defines it according to equation (9). The elements in this circuit are CNOTgates,∣+〉
states and∣ 〉0 states, each of which has a natural analogue in table 1.

3.2.1. Circuit representation
The qubit∣+〉 state is interpreted as a special case of the trivial irrep state∣ 〉 = ∑ ∣ 〉∣ ∣I g

G g
1

. Similarly the∣ 〉0 state

corresponds to the identity group element state∣ 〉e in general. Finally, the last ingredient in theCSS cluster state

Figure 1.Adirected bipartite graph augmentedwith an ordering of edges incident to each even vertex. Even vertices are shown as solid
circles, while odd vertices are represented by open circles. This data is sufficient to specify a generalized cluster state.
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preparation circuit is the CNOTgate, which generalizes to either the left or right controlledmultiplication gates
⇆CMULT .

Loosely speaking then, we define the generalized cluster state as

 ∏∼ ⨂ ⨂Λ

Λ Λ
Λ Λ< >

∈ ∈
∈ ∈

m n I eCMULT( , ) . (12)G
m n

m n
w

w
v

v,#,
CSS

,
,o e

o e

There are twoways inwhich (12) does not yet constitute a full specification of the state ∣ 〉Λ G,#,
CSS . Thefirst is

that there is an ambiguity regardingwhether CMULT gates should act as left or rightmultiplication. The second
is that we have not specified an order inwhich to apply theCMULT gates, which in general do not commute on
their targets. Resolving these ambiguities requires the additional structure we have specified in the # orderings
and in the directions of the edges ofΛ. Note that since theCMULT gates commute on their controls, we need not
be concerned about the relative order of gate application on odd qudits, and so need not specify a global order of
CMULT application. It suffices to specify the ordering separately at each even vertex.

We can complete the specification of equation (12) byfirstly choosing the ordering of theCMULT gates at a
given even site v according to #v. Secondly, we choose theCMULT(m, n) gate to act as leftmultiplication if the
edge (m, n) runs from n tom, and as rightmultiplication otherwise. This convention can be remembered by
placing the control (odd) qudit on the left of the target (even) qudit. Themultiplication sense is then given
directly by the direction of the edge connecting the qudits.We denote these conventions in the followingway:

 ∏≡ ⨂ ⨂Λ

Λ Λ
Λ Λ< >

∈ ∈

⇆

∈ ∈
m n I eCMULT ( , ) , (13)G

m n
m n

w
w

v
v,#,

CSS #

,
,o e

o e

where ⇆ m nCMULT ( , ) acts as →CMULT ( ←CMULT ) for an edge directed fromm to n (n tom). This is now a
complete specification of the generalized cluster state ∣ 〉Λ G,#,

CSS . Note that since theCMULToperators commute
on their controls, the circuit (13) is always constant-depth as in the qubit case (again assumingΛhas bounded
degree).

Strictly speaking, the orderings # containmore information than is necessary to specify the state ∣ 〉Λ G,#,
CSS .

Since leftmultiplication commutes with rightmultiplication, we could rearrange the order of CMULT
applicationwithout affecting the state ∣ 〉Λ G,#,

CSS as long aswe do not change the relative order of CMULT gates
acting on edges directed outwards and the relative order of gates acting on edges directed inwards from a given
even vertex. For notational simplicity wewill continue to use the redundant description # of the ordering at each
even vertex.

The circuit (13) is a perfectly adequate definition of the generalized cluster states. However, the stabilizer
formalismhas proved to be an extremely powerful tool in the analysis of cluster states and similar qubit systems.
For this reasonwewill compute the stabilizer representation of the generalized cluster states.

3.2.2. Stabilizer representation
The term ‘stabilizer’has slightly differentmeanings in different contexts. Often it is used tomean a subgroup of
the n-qubit Pauli group that does not contain−1. The relevant stabilizer states are then the common+1
eigenstates of the stabilizer group. This is the sense inwhich the qubit cluster state and theCSS cluster state we
discussed in section 3.1 are stabilizer states of their relative stabilizer groups.

More generally, stabilizer states can be thought of as the +1 eigenstates of an arbitrary set of operators.
Varying degrees of structure can be introduced tomake the setmore amenable to study, for example requiring
that the stabilizer operators aremonomialmatrices as in themonomial stabilizer formalism [27]. Aswith the
stabilizers of the Kitaev quantumdoublemodels, the generalized cluster states can be cast in themonomial
stabilizer formalism.Wemay abuse the language slightly by referring to a set of stabilizers in the generalized
sense as a group, even if we do not present them in a form that has the algebraic structure of a group.

One of themost attractive features of the Pauli stabilizer formalism is the ability to efficiently simulate
operations thatmap stabilizer states to stabilizer states (through theGottesman–Knill theorem). This ability
carries directly over to stabilizer formalisms based on abelian group algebras [28–30]. Such strong simulability
properties seem to requiremore structure than is available for general stabilizer states. However, some notions
of classical simulability remain in certain cases. For example, for sufficiently structured states such as theKitaev
quantumdoublemodels, themonomial stabilizer formalism allows the efficient evaluation of expectation values
for local observables [27].We expect analogous simulability results to apply to ourmodels as they are based on
the same algebraic structure.

Apart from themotivation of classical simulation, the existence of a local stabilizer description guarantees
the existence of a local, commuting, gapped parentHamiltonian for these states. It can also be a useful way of
illustrating phenomena that would bemore difficult to describe in the Schrödinger representation, for example

6
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as is the case in theKitaev quantumdoublemodels where stabilizer operators correspond directly to quantities
of interest such as charges orWilson loops.

In order to explicitly determine a set of stabilizer operators for the generalized cluster states, we examine the
action of the circuit implied by equation (13) in theHeisenberg representation. This circuit begins with a
product state of ∣ 〉I on odd vertices and ∣ 〉e on even vertices.

Now, notice that the state∣ 〉 = ∑ ∣ 〉
∣ ∣

I g
G g
1

is stabilized by all groupmultiplication operators. That is

=⇆X I I (14)g

for all g, and eithermultiplication sense⇆. Similarly, we can define a set of stabilizers for∣ 〉e , noting that

=ΓZ e e (15)ii

for allΓ, i.
Although this is a perfectly legitimate stabilizer description of the state∣ 〉e , for the purposes of calculating the

stabilizers of the state ∣ 〉Λ G,#,
CSS it will bemore convenient to use an alternative representation. Defining the

projectors to group element basis states ≡ ∣ 〉〈 ∣T g gg , it is clear that∣ 〉e is stabilized byTe. Amore roundaboutway
to see this is towrite theTg operators in terms of the ΓZ ij operators as

∑ ∑ Γ=
Γ

Γ ΓT
G

d g Z
1

[ ( )] (16)g

i j
ij

,

* ij

andfind

∑ ∑ Γ=
Γ

Γ ΓT e
G

d e Z e
1

[ ( )] (17)e

i j
ij

,

* ij

∑=
Γ

Γ
G

d e
1

(18)2

= e (19)

as expected.
We thus have that prior to the application of anyCMULT gates in equation (13) there are stabilizers for the

system given by

=S v T v˜ ( ) ( ), and (20)e
e

= ⇆S w X w˜ ( ) ( ) (21)g
o

g

for every even site v and odd sitew, and all ∈g G. In order to determine the stabilizers of the generalized cluster
state then, we simply need to study the evolution of these operators under the action of controlledmultiplication
gates. This can be computed straightforwardly, and found to give

∑

∑

∑

∑

∑

∑

⊗ → ⊗

⊗ → ⊗

⊗ → ⊗

⊗ → ⊗
⊗ → ⊗

⊗ → ⊗

⊗ → ⊗

⊗ → ⊗

⊗ → ⊗

⊗ → ⊗

⊗ → ⊗

⊗ → ⊗

← →

← ← ←

→ → ←

← ←

→ →

← ← →

→ → →

← ←

→ ←

− −

−

− −

−

−

X I X X

X I X T X

I X T X

I X I X

T I T I

I T T T

X I X X

X I X T X

I X I X

I X T X

T I T I

I T T T

CMULT CMULT

g g g

g

h

g h hg h

g

h

h hgh

g g

g g

g

h

h hg

g g g

g

h

g h hg h

g g

g

h

h hgh

g g

g

h

h gh

1 1

1

1 1

1

1

where thefirst tensor factor is the control qudit and the second the target.
To construct the stabilizers of the generalized cluster states, we nowbuild the state oneCMULT gate at a time

according to equation (13).Wewillfirst develop the stabilizers for the even sites of the lattice, and then return
and compute the stabilizers corresponding to odd sites.

At each even site v of the lattice, prior to the application of anyCMULT gates the state is stabilized by
=S v T i˜ ( ) ( )e

e . This site will be the target of anyCMULT gates applied to it. For each edge directed outwards
from v, a ←CMULT gate will be applied, and similarly a →CMULT gate will be applied for each inwards directed
edge. In order to describe the evolution ofS v˜ ( )e , it will be convenient to define ←nw

v and →nu
v as the neighbours of

v corresponding to thewth outward directed edge or uth inward directed edge respectively (where the ordering is
given by #v).
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Recalling that ←CMULT gates commute on common targets with →CMULT gates, wewill consider first
performing the ←CMULT gates on site v. Aswe apply theCMULT gates on outward directed edges sequentially
in the order specified by #v, the stabilizer for this site becomes

∑→ ←( )S v T v T n˜ ( ) ( ) (22)e

g

g g
v

1

1

1 1

∑→

⋮

← ←( ) ( )T v T n T n( )

(23)

g g

g g g
v

g
v

,

1 2

1 2

2 1 1 2

∑ ∏→ ∏

∀ ←
″

″
←

′ ′ ″ ( )( )T v T n( ) , (24)
g

w v

g

w

g w
v

w
w w w

where in the final expressionw runs over all outward directed neighbours of v and∏ = ⋯g g g gw w 3 2 1 (we also
suppress the range of product and summation indices when they are clear from context).We can then similarly
apply the gates on the inward directed edges of v (again in the appropriate order) and obtain

∑ ∑ ∏ ∏→ ≡∏ ∏

∀ → ∀ ←
″

″
→

″
″

←

′ ′ ′ ′
−

″ ″( ) ( )( )( )S v T v T n T n S v˜ ( ) ( ) ( ). (25)e

h

u v

g

w v

g h
u

h u
v

w

g w
v e

u w
w w u u

u w
1

Since it nowhas support on sites other than v, onemight nowworry that wewill also need to calculate how
S v˜ ( )e transforms under the other CMULT gates acting on the neighbours of v. However, since these CMULT
operations all commutewith each other (they share a common control, not target), this is not a concern. Thus
(37) is the stabilizer corresponding to each odd site of our cluster state, acting only on the given site and its
nearest neighbours.

We can also derive the stabilizers corresponding to odd sites ofΛ in a similar fashion. In this case, the
stabilizers of an odd sitew prior to the application of anyCMULT gates are given by

= ⇆S w X w˜ ( ) ( ) (26)g
o

g

for all g. Although both the left and rightmultiplication operators form valid stabilizers for an odd site, only one
set is needed to specify the state completely. For simplicity wewill choose to study the leftmultiplication
stabilizers though the analysis for the rightmultiplication operators would proceed in an analogousway.With
this inmind, we restrict to the case

= ←S w X w˜ ( ) ( ). (27)g
o

g

The sitewwill act as the control for theCMULT gates applied to it. As such, it does notmatter inwhich order
theCMULT gates are applied at sitew. However, in contrast to the even sites, the odd site stabilizers will be
affected by the order of CMULT gates applied to the neighbouring (even) vertices.

TheCMULT gate corresponding to an outward directed edge fromwwill act as →CMULT and inward
directed edges correspond to ←CMULT . Applying aCMULT gate on an inward directed edge to neighbour v, we
findS w˜ ( )g

o
becomes

→ ← ←S w X w X v˜ ( ) ( ) ( ). (28)g
o

g g

Now this operator has support on v as well asw. Thismeans thatwemust consider the effects of theCMULT
gates acting not only betweenw and its neighbours, but also between v and its neighbours. In doing so, wewill
only need to consider the effects of those gates applied tow after that corresponding to the edge ←w v( ). In
addition, we need only consider edges with the same direction from v (i.e. outwards from v in this case).

We canmake this effect explicit by finding the effect of these CMULT gates on an ←Xg operator acting on site

v. As each successive ←CMULT is applied to edges connecting v to sites …w w˜ , ˜ ,1 2 that followw in the #v order,
this operator transforms as

∑→← ←
− ( )X v X v T w( ) ( ) ˜ (29)g

h
h gh h 1

1

1 1
1 1

∑→

⋮

←
− ( ) ( )X v T w T w( ) ˜ ˜

(30)

h h
h h g h h h h

,
( ) ( ) 1 2

1 2

2 1 2 1
1 1 2
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∑ ∏→ ‴
∏ ∏

‴
∀ ← >

←

′ ′ ″ ″
− ‴ ( )( ) ( )

X v T w( ) ˜ , (31)
h

w v w w

h g h
w

h

˜ , ˜
˜w w w w w

w

˜ ˜ ˜ ˜ ˜
1 ˜

where >w w˜ restricts to those w̃ that come afterw in #v.
This operator still acts asmultiplication on site v, but by a group element conjugated by terms taking into

account states of the neighbours of v. It will be convenient to define this operator for any site vneighbouringw:

∑ ∏≡ ‴
∏ ∏

←

∀ ← >

←

‴′ ′ ″ ″
− ‴( ) ( )( ) ( )

X v X v T w˜ ( ) ˜ . (32)g w
h

w v w w

h g h
w

h

˜ , ˜
˜w w w w w

w

˜ ˜ ˜ ˜ ˜
1 ˜

Nowhaving considered all the effects of site v and its neighbours on the stabilizer for sitew, we have the
stabilizer

→ ← ←( )S w X w X v˜ ( ) ( ) ˜ . (33)g
o

g g w

Aswe apply this procedure to each of the edges directed inwards tow, the stabilizer transforms to

∏→ ←

→

←( )S w X w X v˜ ( ) ( ) ˜ . (34)g
o

g

v w

g w

In a similar way, we can also consider the effects of CMULT gates on outwards directed edges fromw. If we
apply aCMULT gate corresponding to an outward directed edge connecting sitew and u, the ←X w( )operator
will be transformed by each gate as

→← ← →X w X w X u( ) ( ) ( ). (35)

Following an analogous prescription to that used for the analysis of the inward directed edges, we are led to
define the operator

∑ ∏≡ ‴
∏ ∏

‴

→

∀ → >

→

′ ′ ″ ″
− ‴( ) ( )( ) ( )

X u X u T w˜ ( ) ˜ . (36)g w
h

w u w w

h g h
w

h

˜ , ˜
˜w w w w w

w

˜ ˜ ˜ ˜ ˜
1

This allows us to compute the stabilizers corresponding to each odd sitew of a generalized cluster state as

∏ ∏→ ≡←

→

←

←

→( ) ( )S w X w X v X u S w˜ ( ) ( ) ˜ ˜ ( ). (37)g
o

g

v w

g w
u w

g w g
o

In contrast to the qubit cluster state, whose stabilizers only act on a site and its nearest neighbours, in general
the operators (37) act on a site, its nearest neighbours, and also its next-nearest neighbours.

Together, the even site stabilizers Se (25) and the odd site stabilizers So (37) completely specify a generalized
cluster state. The odd site stabilizers aremonomialmatrices in their current form,while the even site stabilizers
are projectors and so can bemademonomials by considering the alternative operators 2Se−1. Thismeans that
the generalized cluster states can be studied in the framework ofmonomial stabilizer groups [27] as claimed.

4. Properties of generalized cluster states

Wewill now explore some salient features of the generalized cluster states defined in the previous section. It is
not our intention to provide a comprehensive specification of the properties of the states, butmerely to
comment on some features of the qubit cluster states and how they survive in the general case.

One of themost important features of the qubit cluster state is that (on a suitable graph) it is a resource for
universalMBQC [2]. Since the qubit cluster state already has this universality property, considering generalized
cluster states as resources for standardMBQCwill not give any qualitative advantage in this sense.However, it is
possible that generalized cluster statesmay yield advantages in terms of practical application, for example by
findingmore efficient implementations of non-Clifford gates or by having desirable spectral properties (when
considered as ground states ofHamiltonians).Wewill not directly address these issues of practical advantage
here, though some of the general properties we discussmay be relevant to any such study.

4.1.Measurements
The results ofmeasurements in the standard qubit cluster states can easily be determined using the stabilizer
formalism. The properties of the resulting states are largely insensitive to themeasurement outcomes obtained.
By comparison,measurements on generalized cluster states give rise to some qualitatively newphenomena that
do not appear in the qubit cluster state, such as significant dependence of the output state onmeasurement
outcomes.
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Ideally, wewould like to understand the effect ofmeasurements in the group element basis and the
representation basis (the analogues ofZ andXPaulimeasurements) on an arbitrary generalized cluster state.
However, sincewe can no longer use the simple Pauli stabilizer formalism to compute these effects, this general
specification is outside the scope of this work. For this reasonwewill not exhaustively describe the results of
measurement procedures on general cluster states. Instead, wewill illustrate the kinds of newphenomena that
can appear in a simple example. For this purpose, it is sufficient to consider three qudits on a line as infigure 2(a)
or (b).

For a groupG, these states are stabilized by the operators

∑= ⊗ ⊗ = ⊗ ⊗
∈

← ←S T T I S X X I(oeo, 1) , (oeo, 1) , (38)
g G

g g g g g

∑= ⊗ ⊗ = ⊗ ⊗← ← ←

∈

−S X X X S T T T(oeo, 2) , (oeo, 2) (39)g g g g

g h G

g gh h

,

1

∑= ⊗ ⊗ = ⊗ ⊗
∈

→ →S I T T S I X X(oeo, 3) , and (oeo, 3) , (40)
g G

g g g g g

where eoe or oeo represent the even–odd–even and odd–even–odd cluster states offigures 2(a) and (b)
respectively.

Explicitly then, these states can bewritten as analogues of theGHZ state in different bases:

 ∑= ⊗ ⊗
∈G

g g g
1

(41)
g G

eoe

 ∑= ⊗ ⊗
∈

−
G

g gh h
1

. (42)
g h G

oeo

,

1

The states ∣ 〉eoe are clearly identical for any different choices of groupGwith the same order. For a general
graph of course this is not true (as with ∣ 〉oeo ), but nonetheless wewill see group structure arise in the analysis of
measurement outcomes on ∣ 〉eoe . This is because the naturalmeasurements to consider are analogues of PauliX
andZ operators in the qubit case, and these operators also inherit structure of the groupG.

The twomeasurements we consider here are those in the group element basis ∣ 〉g{ } (corresponding to Pauli

Z) and in the representation basis Γ∣ 〉{ }ij (corresponding to PauliX). If wemeasure the central qubit of our
cluster in these bases, wewillfind that some phenomena arise which have no counterpart in the qubit cluster
state.

Let usfirst recall what happens in theCSS qubit case (i.e. = G 2). Since the eoe and oeo qubit cluster states
can be transformed into one another byHadamard gates on each qubit, we need only consider one of these states
(the behaviour of the other can be determined by exchangingX andZ). If wemeasure the central qubit of the eoe
cluster in theZ basis andfind outcome ∈ mz 2, the state on the remaining qubits becomes a product state
∣ 〉 ⊗ ∣ 〉m mz z . Alternatively, if wemeasure in theX basis withmeasurement outcome ∈ ±m { }X , wefind a
maximally entangled state∣ 〉 ⊗ ∣ 〉 + ∣ 〉 ⊗ ∣ 〉m0 0 1 1x .

For a general groupG, the group element basismeasurement proceeds inmuch the same fashion. For a
outcome ∈m Gg of thismeasurement on an eoe cluster state, the resulting state is given by the product state

∣ 〉 ⊗ ∣ 〉m mg g . Similarly, the oeo cluster state is transformed to themaximally entangled state

∑ ∣ 〉 ⊗ ∣ 〉∈
−h h mh G g

1 . In contrast, when performing ameasurement in the representation basis, wefind a
qualitative departure from the qubit case. Such ameasurement yields a triple ofmeasurement outcomes (mΓ,mi,
mj) representing amatrix element of an irrep ofG. Beginningwith the eoe cluster state, we note that it can be
rewritten as

 ∑∑ Γ Γ=
Γ

Γd

G
g g g[ ( )] . (43)

g
ij

ij
eoe *

ij

Figure 2.Two different three qudit cluster states. Solid (open) circles represent even (odd) vertices. The simple structure of these
graphsmeans that a vertex ordering is not required to specify the relevant cluster state. (a) An even–odd–even three qudit cluster state.
(b) An odd–even–odd three qudit cluster state.
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Thus if wemeasure the central qudit in the representation basis, the resulting state is given as

∑ Γ
Γd

G
m g g g( ) . (44)

g

m

m m

*

i j

⎡⎣ ⎤⎦

For any abelian group, this will give amaximally entangled state as in the qubit case. However for a general
group, the state (44) will be some less-than-maximally entangled state for any representationmΓwith dimension
greater than 1.We can see this by calculating the reduced densitymatrix of the first qudit as

ρ = ∑ ∣ ∣ ∣ 〉〈 ∣Γ∣ ∣
Γ m g g g[ ( )]g

d

G m m
(1) 2m

i jeoe
which is not, in general, equal to∑ ∣ 〉〈 ∣∣ ∣ g gg G

1 . Of course, for any abelian

group all = = ∣ ∣ΓΓd m g1 [ ( )]m m m
2

i j
, andwe recover themaximally entangled state as claimed.

The analogousmeasurement on an oeo cluster state produces a similar phenomenon. The resulting state
aftermeasurement is given by

 ∑→ Γ
−Γ ( )

d

G
m gh g h (45)

g h

m

m m
oeo

,

1 *

i j

⎡⎣ ⎤⎦

∑ ∑= Γ Γ
∈ =

−
Γ

Γ ( )
d

G
m g m h g h( ) (46)

g h G k

d
m

m k km
, 1

* 1 *
m

i j

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∑ ∑= Γ Γ
∈ =

Γ
Γd

G
m g m h g h( ) ( ) (47)

g h G k

d
m

km m k
, 1

m

i j

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

∑= Γ Γ
=

Γ

Γd
m m

1
(48)

k

d

m

km m k

1

m

i j

for Γm the conjugate representation tomΓ (recall that we consider only unitary irreducible representations over
). This leaves uswith amaximally entangled state of dimension Γdm . For abelian groupswith only 1D irreps,
this gives the product state as in the qubit case. However, for general groups the behaviour is non-trivial.

In particular, these phenomenamean that the property ofmaximal connectedness (i.e. any two qudits in the
state can be brought into amaximally entangled state with certainty bymeasurement) is not always present for a
generalized cluster state as it is for the qubit cluster state.

In order to develop a standardMBQCprotocolmaking use of the generalized cluster states, compensating
for the subtle interplay betweenmeasurement outcomes and remaining entanglementwould require tools
outside the scope of standard cluster state computationmethods. Itmay be possible to develop such a scheme
explicitly bymaking use of techniques in [31], combinedwith the PEPS representation of the generalized cluster
states as found in section 4.3. However, wewill not consider this question further in this work, instead focussing
on the relationship between the generalized cluster states and theKitaev quantumdoublemodels as discussed in
sections 4.4 and 5.1. For this relationship, that the remaining entanglement in the state depends on prior
measurement outcomes is crucial in reproducing the phenomenology of non-abelian topological orders.

4.2. Global symmetries
The 1D cluster state is well known to have a global × 2 2 symmetry that has a significant effect on its
properties [23, 32]. This allows it to be placed in the framework of symmetry-protected topological order
(SPTO) [33–35]. The symmetry group can also be shown to be related to the power and robustness of the cluster
state as ameasurement-based resource in both 1 and higher dimensions [36, 37].

The relevant global symmetry group of the infinite 1DCSS cluster state is represented by the operators

∏=U X s( ), and (49)o

s odd

∏=U Z s( ). (50)e

s even

SinceUo andUe clearly commute and are self-inverse, these operators generate a representation of × 2 2.
Considering the analogous property of a generalized cluster state for arbitrary finite groupsG, for simplicity

wewill restrict to the specific infinite 1D graph as shown infigure 3.
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Explicitly, the cluster state corresponding to this graph can bewritten as

 ∑= ⋯ ⋯+
−

+ + +
−

+ + +
−

+ + +
−g g g g g g g g g g g . (51)

g
i i i i i i i i i i iline 1

1
1 1 2

1
2 2 3

1
3 3 4

1

i

It is clear by inspection that the global symmetries of this state can bewritten as

∏= →U X s( ), (52)g
o

s

g

odd

∏ ∑=Γ
Γ

Γ −U
d

Z s
1

( ) (53)e

s ieven s

i s i s2

as can be directly verified. As in the qubit case theUg
o and ΓU e commute trivially. TheUg

omultiply as elements of
G, and the ΓU e transform as representations ofG (i.e. =Γ Γ Γ Γ⨂U U Ue e e

1 2 1 2
and + =Γ Γ Γ Γ⊕U U Ue e e

1 2 1 2
). Thuswe deduce

that the symmetry algebra of the generalized cluster state is given by the product of the group algebra and the
dual (representation) algebra. For abelian groups such as2, the representation algebra is isomorphic to that of
the group itself, which recovers the familiar result for the qubit cluster state.

Although the framework of SPTO typically deals with states that have a group symmetry, we anticipate that
many of the tools and results of SPTOmay be extended to thismore general setting.

4.3. PEPS representations
The qubit cluster state has an exact tensor network representation as a PEPS [24]. The PEPS ansatz [38–43] is
extremely useful for both analytical and numerical analysis of states. In particular, the description of the cluster
state as a PEPS allows a reinterpretation ofMBQC as a teleportation-based computation scheme [24] or in the
correlation space picture [31]. Furthermore, it has also enabled an approximate two-body parentHamiltonian
to be derived for an arbitrary cluster state [44–46].Herewe showhow the PEPS representation of a cluster state
generalizes for an arbitrary finite groupG.

A PEPS is defined by an interaction graphΛ and a set of ‘projection’mapss associatedwith each site ofΛ.
The state represented by the PEPS can be constructed by beginningwith a set ofD-dimensionalmaximally
entangled ‘virtual’ pairs Φ∑ ∣ 〉 ∣ 〉 ≡ ∣ 〉= i ii

D
mn nm D m n1 ( , ) along each edge (m, n) ofΛ, with one qudit of each of these

pairs associatedwith each of the vertices forming the edge (i.e. the qudit labelledmn is associatedwith vertexm
and vice versa). At each site Λ∈s , the projectionmaps is then applied to the qudits at each site, taking the
combinedDk-dimensional virtualHilbert space (for a site of valency k) to a d-dimensional ‘physical’Hilbert
space. These physical qudits at each site ofΛ then typically correspond to the individual qudits of the state being
represented. That is, the PEPS state is given by

ψ Φ≡ ⨂ ⨂
Λ Λ∈ ∈

v( ) . (54)
v m n

D m nPEPS
( , )

( , )

For theCSS qubit cluster state, the interaction graphΛ is simply the (bipartite) graph specifying the cluster
state.D= d= 2 and the projectionmaps are defined on odd and even sites ofΛ as [24]

 = … + …0 0, , 0 1 1, , 1 , (55)o

 = + + … + + − − … −, , , , . (56)e

For generalized cluster states, the PEPS interaction graph is again given by the cluster state graph.
= = ∣ ∣D d G asmight be expected, and the projectionmaps are given (up to normalization) by

 ∑= …g g g, , , (57)o

g

 ∑ ∏ ∏= … …
… …

−

+
+

g h g g h h, , , , , , (58)e

g g h h i
i

j

j k k l

, , , , ,

1

1 1

k k l1 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Figure 3.An infinite 1D generalized cluster state graph.
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where the gi represent the states of qudits corresponding to edges leaving the relevant even vertex, and the hj
correspond to the edges entering the vertex. The products∏ gi i and∏ hj j are taken in the appropriate order

specified by #.
In order to demonstrate that equations (57)–(58) define a PEPS for the generalized cluster states as claimed,

it is useful to note that the effect of applying controlledmultiplication gates on the physical level with target∣ 〉e
can be reproduced by application of corresponding gates on the virtual level.Wewill distinguish typographically
betweenCMULT gate acting on a physical target qudit and cmult gates acting on the virtual qudits.

Consider CMULT gates acting on virtual control qudits and a commonphysical target qudit:

∏

∏ ∏

… …

= … …

=

⇆
+

+

−

i s g g h h e

g g h h g h

CMULT ( , ) , , , , ,

, , , , , , (59)

i

l

k k l s

k k l

i
i

j

j

s

#

1
1 1

1 1

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where the i index runs over the qudits grouped in the first ket. Compare this toCMULT gates acting on virtual
control and target qudits, before projecting the target qudits into a single physical qudit space:




⊗ ∏ … … ⊗ …

= ⊗ … … ⊗ … …

←
+

+ +

I g g h h e e e

I g g h h g g h h

cmult , , , , , , , ,

, , , , , , , , , , (60)

s
e

k k l s

s
e

k k l k k l
s

1 1

1 1 1 1

∏ ∏= … … ⊗+

−

g g h h g h, , , , , (61)k k l

i
i

j

j

s

1 1

1⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∏= … …
=

⇆
+i s g g h h eCMULT ( , ) , , , , , , (62)

i

l

k k l s
#

1
1 1

where here only oneCMULT gate acts on each (virtual) control and each (virtual) target qudit.We can use this
equivalence to give us the result that

 ψ Φ= ⨂ ′ ⨂ ′ ⨂
Λ Λ Λ′∈ ′∈ ∈

w v( ) ( ) (63)
w

o

v

e

w v
G

wvPEPS
( , )o e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

  ∏= ⨂ ′ ⨂ ′ ⨂ … ⨂ …
Λ Λ

Λ Λ
Λ Λ′∈ ′∈ < >

∈ ∈

←

∈ ∈
w v m n I I e e( ) ( ) cmult ( , ) , , , , (64)

w

o

v

e

m n
m n

w
w

v
v

,
,

o e
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as claimed, where on the penultimate linewe used the facts that s
o commutes withCMULTon the control

qudit, and ∣ 〉 ∝ ∣ … 〉I I I, ,s s
o

s.

4.4. Generalized cluster states andKitaev quantumdouble states
The qubit cluster state is related to the topologically ordered toric code in several ways. One important way is that
the toric code can be defined by preparing a suitable cluster state and projecting (ormeasuring) a subset of the
qubits into suitable states [6]. Herewe show that this relationship also extends between the generalized cluster
states and theKitaev quantumdoublemodels based on the same group. This relationshipmay also have practical
application, for example in preparing certain quantumdouble states or in generalizing the topological cluster
state computation protocol, as wewill discuss in section 5.1.

Recall that a Kitaev quantumdoublemodel is defined on a directed lattice. For simplicity, wemake a
convenient canonical choice of edge direction (such that the edges around each plaquette either run clockwise or
anticlockwise, as shown infigure 4(a)) and note that all alternative choicesmay be reached by local basis change.
Quantumdouble states on these lattices have stabilizers [4]
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with sU, sL, sD, sR and pU, pL, pD, pR the neighbouring links located up, left, right, and down from the star s or
plaquette punder consideration, where CWorACWdenotes whether the edges around the plaquette p run
clockwise or anticlockwise, andwhere h or v denotewhether the horizontal or vertical edges point into the star s.
TheAg(s) andBe(p) commute pairwise, and theKitaev quantumdouble ground state is defined as the common
+1 eigenspace of allAg(s) andBe(p) operators.

In order to produce such a quantumdouble ground state, we beginwith a generalized cluster state on a
square lattice with half the lattice spacing of the quantumdouble lattice, as shown infigure 4(b). The even qudits
of the generalized cluster state (shown as coloured circles) will be projected into suitable states, while the odd
sublattice qudits will form the space onwhich the quantumdouble state is defined. The red odd qudits
correspond to plaquettes of the quantumdouble state, and as such can be labelled as either clockwise or anti-
clockwise, depending on the direction of the links around the plaquette. Blue (odd) cluster state qudits
correspond to vertices of the quantumdoublemodel, and can be labelled as horizontal or vertical depending on
whether the horizontal or vertical incident links run into the vertex. An equivalent procedure can be found to
project the odd qudits and retain the even qudits, but for simplicity wewill treat only one case.

The edge directions and vertex orderings of the cluster state lattice will have a significant effect on thefinal
state. In particular, if wewish to recover a quantumdouble state on the lattice with edge directions as in
figure 4(a), one suitable choice of edge directions is shown infigure 4(b). Explicitly, the edges of the cluster state
drawn in black infigure 4(b) (i.e. those thatwill form the quantumdouble lattice) should run in the opposite
direction to the corresponding quantumdouble links. All grey edges run away from (odd) red sites. For each red
site corresponding to an anticlockwise quantumdouble plaquette, the vertex ordering should be taken
anticlockwise beginning from the topmost edge, while for each red site corresponding to a clockwise quantum
double plaquette, the vertex ordering should be taken clockwise beginning from the topmost edge. The ordering
of the edges around the blue sites is not particularly important, for simplicity we choose them anticlockwise
beginning from the topmost edge. The origin of these convention choicesmay not appear particularly clear at
this stage, but it will become apparent how theyfigure aswe proceed in the analysis.

The stabilizers for this generalized cluster state are given for red, blue, and odd sites respectively as

∑ ∑=
=

( ) ( ) ( ) ( )S p T p T p T p T p T p( ) ( ) , (73)r

h

h

g g g g h

g U g L g D g R
,CW

1 2 3 4

4 1 2 3

Figure 4. (a) A choice of link directions for a quantumdoublemodel and (b) a set of corresponding cluster state link directions. The
qudits in the odd sublattice are shown as open circles, while the even sublattice is shown as coloured circles. Qudits on the quantum
double lattice reside on links. Red qudits in the cluster state are associatedwith plaquettes of the quantumdouble, while blue qudits are
associatedwith stars.
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,

where, as in the definition of the quantumdoublemodels, CWandACWrefer to the type of plaquette
corresponding to the red site, v and h denote the type of star corresponding to the blue site, stabilizers associated
to even sites have a u, d, l, r designation according to the direction of the corresponding quantumdouble link,
and vertices of the cluster state have neighbours denoted byU,D, L, andR subscripts.

To produce theKitaev quantumdouble ground state from the generalized cluster statewe have just
described, we project the red even qudits (corresponding to plaquettes of the quantumdoublemodel) onto the
∣ 〉e state, and the blue even qudits (corresponding to vertices) into the∣ 〉I state. In the case of the qubit cluster
state, this corresponds to projections to the∣ 〉0 or∣+〉 states, respectively.

Projecting even sites into∣ 〉I effectively removes them from the cluster state (indeed, we could alternatively
have begunwith a cluster state on a lattice lacking the blue sites). After performing just these blue site
projections, the red site stabilizers are unchanged, the blue site stabilizers vanish and the odd site stabilizers are
transformed to

→ ← ← →( ) ( )S l X l X l X l( ) ( ) ˜ ˜ , (81)g
o u

g g D l g U l
,

→ ← → ←( ) ( )S l X l X l X l( ) ( ) ˜ ˜ , (82)g
o d

g g D l g U l
,

→ ← ← →( ) ( )S l X l X l X l( ) ( ) ˜ ˜ , (83)g
o l

g g L l g R l
,

→ ← → ←( ) ( )S l X l X l X l( ) ( ) ˜ ˜ , (84)g
o r

g g L l g R l
,

where the X̃ operators are nowdefinedwith respect to the lattice where the blue sites have been removed.
If we then proceedwith the projection of the red sites, the red plaquette stabilizers can easily be seen to evolve

to

∑→
=
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It is less obvious, but products of the odd site stabilizers around each former blue site s can be rearranged to
form the following stabilizers after red site projection:

= → ← → ←S s X s X s X s X s( ) ( ) ( ) ( ) ( ), (87)g
h

g U g L g D g R

= ← → ← →S s X s X s X s X s( ) ( ) ( ) ( ) ( ). (88)g
v

g U g L g D g R

This canmost easily be seen by considering an explicit example of a cluster state in the neighbourhood of a
single (removed) h-type blue site:

ð89Þ
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This state is not stabilized by the appropriate operator (87). However, if we then project the red sites into∣ 〉e , we
find:

∑ δ δ δ δ= = = =

g

g g

g

(90)
g g g g

g g e g g e g g e g g e

, , ,

4

1 3

2
1 2 3 4

2 1 3 2 3 4 4 1

which is indeed stabilized by Shg as claimed.Note that if we had chosen a projection such that, for example,
g3g2 = h for some ≠h e, then this would no longer be true. If instead, we projected into∑ ∣ 〉∈ hh C for some
conjugacy classC, Shg would again stabilize the state. In the language of the quantumdouble anyons, this is due to
the fact that only uniform superpositions over conjugacy classes correspond to puremagnetic type excitations.

The stabilizers we just derived (85)–(88) are precisely theAg(s) andBe(p) stabilizers of the quantumdouble
(67)–(68). Thuswe have a procedure to define the topologically orderedKitaev quantumdouble states by a
sequence of projections on the generalized cluster states.

Onemight hope that that for any schemewhich builds some interesting state bymeasurement ofZ andX on
a (bipartite) qubit cluster state, we could define a generalizedmodel for afinite groupG built by performing
suitable projections on the generalized cluster state as we have done here. Thesemodelsmay ormay not be able
to be actually constructed from a cluster state in general bymeasurement (their interesting propertiesmay or
may not survive the complications of non-idealmeasurement outcomes, as will bementioned in section 5.1.1),
but simply being able to define suchmodelsmay be of independent interest. An example of amodel that can be
defined in such away is a non-abelian generalization of the colour codes, presented in [47].One should also note
the generality (and hence complexity) of using the projection procedure in this way.We are able to definemany
generalizationswithin this same framework by choosing different even and odd sublattices, different link
directions, and different link orderings at vertices. Furthermore, alternative projections can be chosen to
generalize themeasurement of theZ orX operators, as is done in [47]. In general, the properties of the resulting
state will be significantly affected by the choices of these parameters.

5.Discussion

5.1. Applications
5.1.1. Producing the quantumdouble states
In practice, onemay be interested in using the relationship between the generalized cluster states and quantum
doublemodels discussed in section 4.4 as a resource to prepare quantumdouble states in the laboratory, by
replacing the projections by suitablemeasurements. In the case of the toric code, replacing∣ 〉0 and∣+〉
projectionswithmeasurements in theZ andX bases respectively does not significantly affect the properties of
the resulting state. However, in general the effects outlined in section 4.1mean that the situation is not so simple.

To illustrate some of the resulting phenomena, consider replacing the∣ 〉e projections at each red site in
figure 4(b) bymeasurements in the group element basis. After projection of the blue sites of the cluster state
shown infigure 4(b) into the∣ 〉I state (equivalently, removal of the blue sites), the stabilizers of the state
corresponding to the red sites are given as in equations (73)–(74), while the remaining odd site stabilizers are as
in (81)–(84). The effect on the red site stabilizers ofmeasuring these sites in the group element basis is clear: with
measurement outcomes m{ }p , the stabilizers transform to

∑=
=

( ) ( ) ( ) ( )S p T p T p T p T p( ) , (91)
g g g g m

g U g L g D g R
CW

p1 2 3 4

4 1 2 3

∑=
=

( ) ( ) ( ) ( )S p T p T p T p T p( ) . (92)
g g g g m

g U g L g D g R
ACW

p3 2 1 4

4 1 2 3

The effect on the odd site stabilizers is less obvious. As in the previous sectionwhere red sites were projected
into∣ 〉e , there will be a stabilizer corresponding to each star of the lattice. These can also be straightforwardly
calculated by considering a single isolated vertex and its four neighbouring plaquettes.

We can interpret the state aftermeasurement of the blue sites as a superposition of excited states of quantum
double anyons. Explicitly, anyons in the quantumdoublemodels can be created and transported by so-called
ribbon operators ρF h g( , ) corresponding to pairs of group elements (h, g) and fattened paths (ribbons) ρ on the
lattice [4, 48]. The ends of ribbons, ‘sites’, are composed of a neighbouring vertex-star pair. Ribbon operators
create anyonic charges at each end of the ribbon ρ. In particular, the operator ρF m e( , )p ending on an appropriate
site will transform a stabilizer of the form (85) or (86) into (91) or (92) respectively. Similarly, the star-type
stabilizers can be obtained by transforming the naive stabilizers (87) and (88) under ρF m e( , )p on suitable ribbons.
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Further, if we replaced all blue site projections withmeasurements in the representation basis, we could interpret
the remaining state in a similar way.

In some senses, this is a trivial statement, as all states on the lattice (up to boundary conditions) are
superpositions of some excited states of the quantumdoublemodel. However, using this interpretationmay be
fruitful for example in a detailed analysis of the topological cluster state computation protocol sketched in the
following section.

5.1.2. Adiabatic topological cluster state quantum computation (TCSQC)
Apart from standardMBQC, the qubit cluster state can also be used to implement TCSQC [11]. This is a
computation scheme that combines practical advantages ofMBQCwith some natural robustness to noise from
topological computation schemes. It is based on the relationship between the cluster states and the toric code
discussed and generalized in section 4.4.

In the TCSQCprotocol,measurements are performed on a cubic lattice cluster state. By interpreting one
direction of the lattice as a ‘simulated time’ direction, the resulting procedure can be interpreted as the evolution
of punctures in the surface of the toric code in simulated time. Theworld-lines of the punctures are determined
by the chosenmeasurement settings, while themeasurement outcomesmay be interpreted as specifyingworld-
lines of toric code anyons, which can then be compensated for by classical post-processing. Though this scheme
enjoys the native robustness that accompanies topological computation, the gates that can be performed in this
way are insufficient for universal quantum computation, and somust be supplementedwith non-topological
operationswhose fault-tolerance is guaranteed separately.

It is an interesting question as towhether a similarmeasurement-based computation scheme exists that
enjoys universal topological quantum computation. An obvious candidate strategy is to attempt to replace the
simulated toric code punctures with simulated defects in anothermore complicated topologicalmodel, such as
the quantumdoubles. If wewere to construct an analogous procedure using the generalized cluster states for a
non-abelian groupG, appropriately generalizing the qubit TCSQCprotocol would not generally succeed for the
reason that the effect of randommeasurement outcomes could not be efficiently classically processed. Random
measurement outcomeswould be interpreted as (possibly superpositions of) anyons, and their dynamics—and
hence effect on the logical state—is unlikely to be efficiently classically calculable in general (particularly if the
anyon dynamics is BQP complete).

One possible way to salvage such a generalized topological cluster state computation scheme is by removing
themeasurements from the protocol altogether. Adiabatic cluster state computation [49–51]makes use of the
cluster state as amodular prototype for computation by adiabatic deformation of aHamiltonian. A standard
measurement-based cluster state computationmay be translated to the adiabatic setting by simulating the
measurement with the adiabatic application of a strong field in the direction of the desiredmeasurement result.
Thus in this scheme, the analogue ofmeasurement results are not random, and so need not be compensated for
by classical post-processing.

Though the adiabatic cluster state computation approach is typically applied to a standard cluster state
computation, we could equally well apply it to the topological cluster state scheme. In this setting, the choice of
fields would effectively set theworld-lines of punctures and anyons in simulated time, without randomness.
Making use of these techniques, it should be possible to performuniversal topological cluster state computation
with the generalized cluster states by simulating the evolution of punctures (aswith the standardTCSQC
scheme) in a sufficiently complicatedKitaev quantumdoublemodel3. Alternatively, since theworld-lines of
anyonsmay nowbe controlled directly by choosing the adiabaticfields appropriately, and since braiding of
suitable anyons is sufficient to implement universal quantum computation [4, 52, 53], it should also be possible
to compute in a generalized topological cluster state computation scheme by adiabatically simulating the
evolution of a suitable class of anyons. Thesemethods for adiabatic topological cluster state computationmay be
contrastedwith the direct approach of adiabatic topological quantum computation [20].

5.1.3. Universal topologicalMBQC
In the scheme laid out in section 5.1.2 for adiabatic topological quantum computationwith these generalized
cluster states, it was in part because of the infeasibility of classical processing that standardmeasurement-based
computing techniques could not be used. The universality of quasiparticle braiding in the relevant anyonmodel
meant that it was infeasible to calculate the effect of any stray braids caused by undesirablemeasurement
outcomes (themost naive implementation of the schemewould in fact produce superpositions of anyon states

3
Though computation by braiding punctures in non-abelian anyon systems has not been extensively studied, the fact that punctures contain

anyonic charges and the braiding of anyonic charges can be sufficient for universal quantum computing [4, 52, 53] suggests that the braiding
of punctures should also be sufficient for universal quantum computation in general.
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whichwould generally be non-simulable in any case, butwe believe that itmay be possible to circumvent this
with amore sophisticated protocol in some cases).

However, recall that in the qubit topological cluster state computation scheme the computation proceeds
not by simulating anyon braiding, but by simulating the braiding of punctures in the surface of the system. It is
not clear that the computational power of such puncture braiding and the computational power of anyon
braiding in such amodelmust always coincide. In fact, for another type of topological defect known as a twist,
braiding of these objects can be universal for quantum computationwhile the braiding of the relevant anyons
remains classically simulatable [54]. Thus itmay be possible tofind some anyonmodel where braiding of
punctures is universal, while braiding of anyons is classically simulatable. Although the interaction between
topological defects and anyons can be quite complex, this could conceivably lead to a universal topological
MBQC scheme based on an appropriate generalized cluster state (whether as described in this paper or from the
possible extensions noted below).

5.2. Extensions
Although as presented here, the generalized cluster states are based onfinite group algebras, there is little in the
construction that is particularly restricted tofinite groups. Several related or further generalizations of this
construction suggest themselves.

The clearest example is the extension from finite groups to Lie groups. In particular, by considering the
group of real numbers under addition, our construction reproduces the continuous-variable cluster states
[55, 56]. This gives a unified framework for all previously known variants of the cluster state. This will be
presented elsewhere [57].

As this constructionwas inspired by the generalization of the toric code to the quantumdoublemodels based
onfinite groups, it is natural to ask if the later generalizations of the toric code to arbitrary finite-dimensional
HopfC* algebras [17] and the conjectured generalization toweakHopf algebras [17, 58] could also be applied to
generalized cluster states. There is an obstacle in directly extending the construction toHopf algebras, as the
natural generalization of the controlledmultiplication operationwould be according to the coproductΔ of the
Hopf algebra. This is the operation thatmaps fromone system to a tensor product of two systems.

The coproduct of a group algebra is simply Δ = ⊗g g g( ) for ∈g G. In a general Hopf algebra, the

coproduct of an element is given by Δ = ∑ ⊗a a a( ) i
i i

(1)
( )

(2)
( ) . The natural generalization of the controlled

multiplication gate is defined using this structure, e.g. ∣ 〉∣ 〉 = ∑ ∣ 〉∣ 〉a b a a bCMULT i
i i

(1)
( )

(2)
( ) . However, this gate no

longer need commute on control qudits. For this reason, if wewere to use this CMULT gate to construct a cluster
state, the circuit would no longer befinite-depth and the stabilizer operators derived in analogy to those in
section 3would no longer befinite weight in general.

Oneway to define cluster states based onHopf algebras that can be constructed by constant depth circuits
and have local stabilizers would be to restrict the graphs onwhich these states are defined. In particular, consider
a graphΛ that is bipartite and every site v in the even sublatticeΛe is two-valent. Then one edge incident to v
could act as controlled leftmultiplication and the other edge acts as controlled rightmutliplication. Since these
two operations always commute on common targets, this constructionwould yield a state with the desired
properties. Of course choosing graphs of this kind is a very restrictive constraint, and so it would be interesting to
see if an alternativemechanism to retain locality is possible.

Apart fromLie groups andHopf algebras asmotivated by theKitaev quantumdoublemodels, it would also
be interesting to study generalizations of the cluster statesmotivated by the Levin–Wen string netmodels [59].
Instead of a group, thesemodels are specified by a fusion category. The simplest choice gives the toric code as in
the quantumdoublemodels. As in table 1, we could build qudits and associated operator algebras inheriting
features of a given fusion category. It would be interesting to develop cluster states for a given fusion category in
this way.

Finally, we note that in some of these extensions itmay be possible to construct some cluster states that are
related to the standard definition (6) instead of theCSS definition (9). This should be possible when considering
algebraic objects which are self-dual in the relevant sense (as with abelian groups).

5.3. Broader implications
As noted in section 4.2, the generalized cluster states on an infinite chain extend the standard notion of
symmetry protected states with a symmetry group to states that simply have a symmetry algebra. The
consequences of this are not clear, and itmay be of interest to consider the notion of symmetry protected phases
that are labelled bymore general objects than groups.

The Pauli stabilizer formalismhas proved spectacularly successful at describing awide variety of states, and
making them amenable to both analytical and numerical study. Several similar constructions have been
proposed, including themonomial stabilizer formalism [27]mentioned earlier, among others [60, 61]. It is
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known that all Pauli stabilizer states are equivalent (under local Clifford circuits) to a qubit cluster state [12]. It
may be of interest to determinewhether a similar family of states can be defined by local equivalence to a
generalized cluster state for any given groupG. Although these all fall under the umbrella ofmonomial stabilizer
states, itmay be advantageous to define smaller classes that havemore structure than the general case.

Acknowledgments

We thank Stephen Bartlett, AndrewDoherty, Dominic Else, Steve Flammia, andPieterNaaijkens for fruitful
discussions and helpful comments. This work is supported by theARC via theCentre of Excellence in
EngineeredQuantumSystems (EQuS) project number CE110001013, by the ERC grantQFTCMPS, and by the
cluster of excellence EXC201QuantumEngineering and Space-Time Research.We acknowledge support by
Deutsche Forschungsgemeinschaft andOpenAccess Publishing Fund of LeibnizUniversität Hannover.

References

[1] Raussendorf R andBriegel H J 2001A one-way quantum computer Phys. Rev. Lett. 86 5188
[2] Raussendorf R, BrowneDE andBriegel H J 2003Measurement-based quantum computation on cluster statesPhys. Rev.A 68 022312
[3] Briegel H, BrowneD,DürW,Raussendorf R andVan denNestM2009Measurement-based quantum computationNat. Phys. 5 19
[4] Kitaev A 2003 Fault-tolerant quantum computation by anyonsAnn. Phys. 303 2
[5] Dennis E, Kitaev A, Landahl A and Preskill J 2002 Topological quantummemory J.Math. Phys. 43 4452
[6] Raussendorf R, Bravyi S andHarrington J 2005 Long-range quantum entanglement in noisy cluster states Phys. Rev.A 71 062313
[7] HanY-J, Raussendorf R andDuan L-M2007 Scheme for demonstration of fractional statistics of anyons in an exactly solvablemodel

Phys. Rev. Lett. 98 150404
[8] BrownB J, SonW,KrausCV, Fazio R andVedral V 2011Generating topological order from a two-dimensional cluster state using a

dualitymappingNew J. Phys. 13 065010
[9] BombinH andMartin-DelgadoMA2006Topological quantumdistillationPhys. Rev. Lett. 97 180501
[10] BombinH andMartin-DelgadoMA2008 Statisticalmechanicalmodels and topological color codes Phys. Rev.A 77 042322
[11] Raussendorf R,Harrington J andGoyal K 2007Topological fault-tolerance in cluster state quantum computationNew J. Phys. 9 199
[12] Van denNestM,Dehaene J andDeMoor B 2004Graphical description of the action of local Clifford transformations on graph states

Phys. Rev.A 69 022316
[13] Anders J and BrowneDE 2009Computational power of correlationsPhys. Rev. Lett. 102 050502
[14] Raussendorf R 2013Contextuality inmeasurement-based quantum computation Phys. Rev.A 88 022322
[15] NayakC, Simon SH, SternA, FreedmanMandDas Sarma S 2008Non-abelian anyons and topological quantum computationRev.

Mod. Phys. 80 1083
[16] BombinH andMartin-DelgadoMA2009Quantummeasurements and gates by code deformation J. Phys. A:Math. Theor. 42 095302
[17] BuerschaperO,Mombelli JM, ChristandlM andAguadoM2013Ahierarchy of topological tensor network states J.Math. Phys. 54

012201
[18] HuY,WanY andWuY-S 2013Twisted quantumdoublemodel of topological phases in two dimensions Phys. Rev.B 87 125114
[19] Bravyi S andKitaev A 2005Universal quantum computationwith ideal Clifford gates and noisy ancillas Phys. Rev.A 71 022316
[20] Cesare C, Landahl A J, BaconD, Flammia ST andNeels A 2014Adiabatic topological quantum computing (arXiv:1406.2690)
[21] ZhouDL, Zeng B, XuZ and SunCP 2003Quantum computation based on d-level cluster statePhys. Rev.A 68 062303
[22] HallW2007Cluster state quantum computation formany-level systemsQuantum Inf. Comput. 7 184
[23] SonW,Amico L, Fazio R,HammaA, Pascazio S andVedral V 2011Quantumphase transition between cluster and antiferromagnetic

states Europhys. Lett. 95 50001
[24] Verstraete F andCirac J I 2004Valence-bond states for quantum computation Phys. Rev.A 70 060302
[25] CalderbankAR and Shor PW1996Good quantum error-correcting codes exist Phys. Rev.A 54 1098
[26] Steane AM1996 Error correcting codes in quantum theory Phys. Rev. Lett. 77 793
[27] Van denNestM2011Amonomialmatrix formalism to describe quantummany-body statesNew J. Phys. 13 123004
[28] Van denNestM2013 Efficient classical simulations of quantumFourier transforms and normalizer circuits over abelian groups

Quantum Inf. Comput. 13 1007
[29] Bermejo-Vega J andVan denNestM2014Classical simulations of abelian-group normalizer circuits with intermediatemeasurements

Quantum Inf. Comput. 14 181
[30] Bermejo-Vega J, Lin CY-Y andNestMVd 2014Normalizer circuits and aGottesman–Knill theorem for infinite-dimensional systems

(arXiv:1409.3208)
[31] Gross D, Eisert J, SchuchN and Perez-Garcia D 2007Measurement-based quantum computation beyond the one-waymodel Phys.

Rev.A 76 052315
[32] SonW,Amico L andVedral V 2012Topological order in 1DCluster state protected by symmetryQuantum Inf. Process. 11 1961
[33] GuZ-C andWenX-G2009Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order Phys.

Rev.B 80 155131
[34] ChenX,GuZ-C andWenX-G 2011Classification of gapped symmetric phases in one-dimensional spin systems Phys. Rev.B 83

035107
[35] SchuchN, Perez-Garcia D andCirac I 2011Classifying quantumphases usingmatrix product states and projected entangled pair states

Phys. Rev.B 84 165139
[36] ElseDV, Schwarz I, Bartlett SD andDoherty AC 2012 Symmetry-protected phases formeasurement-based quantum computation

Phys. Rev. Lett. 108 240505
[37] ElseDV, Bartlett SD andDoherty AC 2012 Symmetry protection ofmeasurement-based quantum computation in ground statesNew

J. Phys. 14 113016
[38] Affleck I, Kennedy T, Lieb EH andTasakiH 1988Valence bond ground states in isotropic quantum antiferromagnetsCommun.Math.

Phys. 115 477

19

New J. Phys. 17 (2015) 023029 CGBrell

http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1038/nphys1157
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1103/PhysRevA.71.062313
http://dx.doi.org/10.1103/PhysRevLett.98.150404
http://dx.doi.org/10.1088/1367-2630/13/6/065010
http://dx.doi.org/10.1103/PhysRevLett.97.180501
http://dx.doi.org/10.1103/PhysRevA.77.042322
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevA.69.022316
http://dx.doi.org/10.1103/PhysRevLett.102.050502
http://dx.doi.org/10.1103/PhysRevA.88.022322
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1088/1751-8113/42/9/095302
http://dx.doi.org/10.1063/1.4773316
http://dx.doi.org/10.1063/1.4773316
http://dx.doi.org/10.1103/PhysRevB.87.125114
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://arXiv.org/abs/1406.2690
http://dx.doi.org/10.1103/PhysRevA.68.062303
http://dx.doi.org/10.1209/0295-5075/95/50001
http://dx.doi.org/10.1103/PhysRevA.70.060302
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1088/1367-2630/13/12/123004
http://arXiv.org/abs/1409.3208
http://dx.doi.org/10.1103/PhysRevA.76.052315
http://dx.doi.org/10.1007/s11128-011-0346-7
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/physrevb.84.165139
http://dx.doi.org/10.1103/PhysRevLett.108.240505
http://dx.doi.org/10.1088/1367-2630/14/11/113016
http://dx.doi.org/10.1007/BF01218021


[39] FannesM,Nachtergaele B andWerner R F 1992 Finitely correlated states on quantum spin chainsCommun.Math. Phys. 144 443
[40] HastingsMB2006 Solving gappedHamiltonians locallyPhys. Rev.B 73 085115
[41] Pérez-García D, Verstraete F,WolfMMandCirac J I 2007Matrix product state representationsQuantum Inf. Comput. 7 401
[42] Verstraete F,WolfM, Pérez-García D andCirac J I 2006 Projected entangled states: properties and applications Int. J.Mod. Phys.B

20 5142
[43] Vidal G 2003 Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett. 91 147902
[44] Bartlett SD andRudolph T 2006 Simple nearest-neighbor two-bodyHamiltonian system forwhich the ground state is a universal

resource for quantum computation Phys. Rev.A 74 040302
[45] GriffinT andBartlett SD 2008 Spin lattices with two-bodyHamiltonians forwhich the ground state encodes a cluster statePhys. Rev.A

78 062306
[46] Brell CG, Bartlett SD andDoherty AC 2014 Perturbative 2-body parentHamiltonians for projected entangled pair statesNew J. Phys.

16 123056
[47] Brell CG2014Generalized color codes supporting non-abelian anyons (arXiv:1408.6238)
[48] BombinH andMartin-DelgadoMA2008 Family of non-abelian kitaevmodels on a lattice: topological condensation and confinement

Phys. Rev.B 78 115421
[49] BaconD and Flammia S T 2010Adiabatic cluster-state quantum computingPhys. Rev.A 82 030303
[50] BaconD, Flammia S T andCrosswhite GM2013Adiabatic quantum transistors Phys. Rev.X 3 021015
[51] Antonio B,MarkhamDandAnders J 2013Adiabatic graph-state quantum computationNew J. Phys. 16 113070
[52] MochonC 2003Anyons fromnonsolvable finite groups are sufficient for universal quantum computation Phys. Rev.A 67 022315
[53] MochonC 2004Anyon computers with smaller groups Phys. Rev.A 69 032306
[54] BarkeshliM, JianC-MandQiX-L 2013Twist defects and projective non-abelian braiding statistics Phys. Rev.B 87 045130
[55] Zhang J andBraunstein S L 2006Continuous-variable Gaussian analog of cluster states Phys. Rev.A 73 032318
[56] Menicucci NC, van Loock P, GuM,WeedbrookC, RalphTC andNielsenMA2006Universal quantum computationwith

continuous-variable cluster states Phys. Rev. Lett. 97 110501
[57] Brell CG andMenicucci NC in preparation
[58] BuerschaperO, ChristandlM, Kong L andAguadoM2013 Electric-magnetic duality of lattice systemswith topological orderNucl.

Phys.B 876 619
[59] LevinMA andWenX-G 2005 String-net condensation: a physicalmechanism for topological phasesPhys. Rev.B 71 045110
[60] GottesmanD1999 Fault-tolerant quantum computationwith higher-dimensional systemsQuantumComputing andQuantum

Communications (LectureNotes in Computer Science vol 1509) edCWilliams (Berlin: Springer) pp 302–13
[61] Ni X, BuerschaperO andNestMVd2014Anon-commuting stabilizer formalism (arXiv:1404.5327)

20

New J. Phys. 17 (2015) 023029 CGBrell

http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1103/PhysRevB.73.085115
http://dx.doi.org/10.1142/S021797920603620X
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevA.74.040302
http://dx.doi.org/10.1103/PhysRevA.78.062306
http://dx.doi.org/10.1088/1367-2630/16/12/123056
http://arXiv.org/abs/1408.6238
http://dx.doi.org/10.1103/PhysRevB.78.115421
http://dx.doi.org/10.1103/PhysRevA.82.030303
http://dx.doi.org/10.1103/PhysRevX.3.021015
http://dx.doi.org/10.1088/1367-2630/16/11/113070
http://dx.doi.org/10.1103/PhysRevA.67.022315
http://dx.doi.org/10.1103/PhysRevA.69.032306
http://dx.doi.org/10.1103/PhysRevB.87.045130
http://dx.doi.org/10.1103/PhysRevA.73.032318
http://dx.doi.org/10.1103/PhysRevLett.97.110501
http://dx.doi.org/10.1016/j.nuclphysb.2013.08.014
http://dx.doi.org/10.1103/PhysRevB.71.045110
http://arXiv.org/abs/1404.5327

	1. Introduction
	2. From CSS structure to finite groups
	3. Generalized cluster states
	3.1. Qubit cluster states
	3.2. Finite group cluster states
	3.2.1. Circuit representation
	3.2.2. Stabilizer representation


	4. Properties of generalized cluster states
	4.1. Measurements
	4.2. Global symmetries
	4.3. PEPS representations
	4.4. Generalized cluster states and Kitaev quantum double states

	5. Discussion
	5.1. Applications
	5.1.1. Producing the quantum double states
	5.1.2. Adiabatic topological cluster state quantum computation (TCSQC)
	5.1.3. Universal topological MBQC

	5.2. Extensions
	5.3. Broader implications

	Acknowledgments
	References



