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Abstract
Anatural way to generalize tensor network variational classes to quantum field systems is via a
continuous tensor contraction. This approach isfirst illustrated for the class of quantum field states
known as continuousmatrix-product states (cMPS). As a simple example of the path-integral
representationwe show that the state of a dynamically evolving quantum field admits a natural
representation as a cMPS. A completeness argument is also provided that shows that all states in Fock
space admit a cMPS representationwhen the number of variational parameters tends to infinity.
Beyond this, we obtain awell-behaved field limit of projected entangled-pair states (PEPS) in two
dimensions that provide an abstract class of quantum field states with natural symmetries.We
demonstrate how symmetries of the physicalfield state are encodedwithin the dynamics of an
auxiliaryfield systemof one dimension less. In particular, the imposition of Euclidean symmetries on
the physical system requires that the auxiliary system involved in the class’ definitionmust be Lorentz-
invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are
fully described by the dissipative dynamics of a lower dimensional virtual field system.Our results lie
at the intersectionmany-body physics, quantum field theory and quantum information theory, and
facilitate future exchanges of ideas and insights between these disciplines.

1. Introduction

The quantum states that we observe in nature are highly atypical as compared to a state randomly chosen from
the full configurationHilbert space  [24]. Indeed, observable states comprise only a tiny submanifold of —

the physical corner of Hilbert space—whose points exhibit highly nongeneric features such as nontrivial clustering
of correlations and entropy areas laws [7, 16]. It is extremely desirable to develop an efficient parametrization of
thismanifold as this would considerably ameliorate the computational costs of solving physicalmodels and
provide new analytical tools for the study of quantum field systems. Indeed, even a partial parametrization of the
physical corner provides a powerful tool as it supplies a variational class useful for the description of low-energy
physics.

The canonical example of such a class of quantum states appears in the setting of one-dimensional lattices.
There the class ofmatrix product states (MPS) [8] has enjoyed remarkable success, not simply for the calculation
of physical properties of strongly interacting lattices, but also for such things as the classification of quantum
phases, providing a natural foliation of states in terms of entanglement, and the construction of exactly solvable
models [32, 34, 39]. It is alsowell-established thatMPS satisfy two important criteria. Firstly they constitute a
complete class of quantum states, in the sense that by increasing a ‘bond dimension’D one can capture any pure
quantum state of the system. Secondly the class is efficient in the sense that the computational cost of calculating
expectation values scales polynomially in the number of variational parameters.

TheMPS class has provided a fruitful basis for generalizations: by understanding the structure of quantum
entanglement in such states they have inspired several powerful extensions to higher dimensions and different
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geometries. The twomost prominent examples for higher-dimensional lattice systems are the projected
entangled-pair states (PEPS) [31] and themultiscale entanglement renormalization ansatz (MERA) [35, 36]. Both
of these variational classes have proved invaluable in the investigation of strongly correlated physics. So far,
however, all of these results have been restricted to the lattice setting; the study of continuous quantum systems
using these classes (more generally referred to as tensor networks) has traditionally proceeded byfirst discretizing
the systemon the lattice and then employing them as a variational ansatz.

Continuum systems bring considerable difficulties when it comes to variational computations because
optimizations can be dominated byUVphysics at the expense of infra-red physics which ruins the estimation of
observables of physical interest [9]. Remarkably, both of these difficulties have been overcomewith the
introduction of special continuumversions of theMPS andMERA classes [13, 14, 22, 33]. The continuous
matrix-product states (cMPS) class is remarkable in that it requires (in the translation-invariant case) only a
finite number of variational parameters to specify, but is expected, by analogywith the discrete case, to be both
efficient and complete in the sense already described. Further studies have also established that cMPS and
cMERA are not disrupted by the presence ofUVdivergences [13, 14].Herewe argue that themost natural
systematic way to achieve this is to replace the tensor contractionwith a path integral over some now continuous
auxiliary degrees of freedom.

We should emphasize that the goal of this work is not a new formulation of quantum fields, but instead the
construction of amanifold of quantum field states that possess natural properties. In particular, wewish to
extend results obtained in one spatial dimensions to higher dimensions, and develop a novel toolkit (analytical
and computational) for the study of strongly interacting, and highly correlated two and three dimensional
quantum systems.

Inwhat follows, we construct a field limit of both 1-d and 2-d tensor networks, showhow tensor-
contractions naturally pass over into path integral over virtual degrees of freedom, and then develop the field
limit of a lattice PEPS. This generalization takes the same functional form as the one-dimensional cMPS and
manifestly exhibits spatial (e.g. rotational) symmetries. The derivation via a sequence of lattice PEPSmeans that
the resultant class offield states automatically obey entropy area laws. Furthermore, the imposition of spatial
symmetries on the physical field state is obtained by encoding the symmetry into the dynamics of an auxiliary
boundary systemwith the novel result that the dynamics of the boundary system is given by the imaginary time
evolution of a Lorentz invariant systemof one lower spatial dimension.

2. Background:MPS, tensor networks, and coherent state path integrals

Herewe review theMPS class and sketch some of its properties. Our intent is tomake this paper accessible to
thosewith a diversity of backgrounds, sowe provide all the necessary prerequisitematerial and references
needed to follow our argument here. Readers with a familiarity withMPS and theDMRGare invited to skim this
section lightly tofix notation.

We begin by recalling that any bipartite pure quantum state ψ∣ 〉 admits a Schmidt decomposition

k k
k k∑ψ λ∣ 〉 = ∣ 〉 ⊗ ∣ 〉   for some set of local bases of  and . For pure states ψ∣ 〉of one-dimensional

quantum spin systems n1 2⋯   with local dimension d, wemay perform a Schmidt decomposition
iteratively on the bipartitions [ , ]1 1′  , [( ), ( ) ],1 2 1 2 ′ ⋯    [ , ]n n′  (whereX′ is the complement ofX
and X Y[ , ]denotes the particular bipartite split) to obtain theMPS representation [37]

A A A j j j . (1)
j j

d

L
j j j

R n
, , 0

1

1 2

n

n

1

1 2∑ψ ω ω= ⋯ ⋯
… =

−

Here Ajk, j d0, 1, , 1k = … − , is a collection of dmatrices of size D Dk k1 ×− , Lω〈 ∣ is a row vector of dimension
D0, and Rω∣ 〉 is a column vector of dimensionDn. The dimensionsDk are called the bond dimensions of theMPS
and characterize the degree of entanglement entropy across a cut at site k. This construction shows thatMPS are
an expressive class,meaning that any statemay be represented as anMPSwith a sufficiently large choice of the
Dks (the argument applies to any pure state). However, inmost implementations we simply assume that the
bond dimension is constant and truncate it at some value D Dk = , which acts as a refinement parameter for this
class.

Matrix product state representations (1) possess several remarkable properties. Thefirst, andmost
important, is that they provide an efficient parametrization of naturally occurring states [15, 21, 27, 28];MPS
very efficiently represent both the ground states ofmodels with a spectral gap and also the non-equilibrium
dynamics of any quantum spin chain. The second property is that they possess an entropy area law [7],meaning
that the vonNeumann entropy of any contiguous block of spins is bounded above by a constant, i.e., the size of
the boundary. Another important property ofMPS is a gauge degree of freedom, so they supply an over-
complete parametrization.
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Amatrix product state (1) is an example of a quantum state known as a tensor network state (TNS). To define
a TNS onefirst associates a finite graph G V E( , )= with the quantum systemwhere the physical degrees of
freedom,which are of dimension d, live on the verticesV, and the edges E encode auxiliary degrees of freedom.
To each vertex vwe associate a tensor A j

e e edv

v
1 2α α α⋯ with d 1v + indices, where dv is the degree of the vertex v. Each

index eα is associatedwith a corresponding edge e E∈ incident with the vertex v and takes values D1, 2, , e… ;
these are the auxiliary bond indices. The index jv is the physical index and takes values d0, 1, , 1… − . The TNS
corresponding to this arrangement of tensors is then given by

( )A A A j j j , (2)
j j j

j j j
v v v

, , ,v v v V

v v v V
V

1 2

1 2
1 2

∑ψ = ⋯ ⋯
⋯



where  denotes the contraction of all the auxiliary indices, i.e., each pair of tensor indices associatedwith each
edge are separately summed. Such TNSsmay be represented pictorially wherewe draw a ‘leg’ for each index of
each tensor and join contracted indices with lines. Physical indices are drawn as unpaired arrows. For example,
the simple tensor network resulting from themultiplication of twomatrices A B∑β αβ βγ , is represented by:

In the case of anMPSwe associate with each tuple ofmatrices Aj
k, regarded as a three-index tensor A[ ]jk

k k1α α− ,
the diagram according to

In the pictorial representation the coefficient of j j jn1 2∣ ⋯ 〉 for anMPS is depicted as

The contraction involved in the definition of a TNSmay also be expressed in terms of a path integral. To do
this we define the following discrete ‘action’

( )( )S j j A( , , ); , , i log , (3)E V
v V

j
1 2 1 e e edv

v
1 2

⎡⎣ ⎤⎦ ∑α α α… … ≡ − α α α
∈

⋯

With this definition, the TNS is given by

j je , (4)jSi [ , ]∫ αψ = α 

where j∫ α  anticipates the continuum, and denotes here a discrete sum over all paths ( , , , )E1 2α α α α= … ∣ ∣
and j j( , , )V1 … ∣ ∣ with D{1, , }kα ∈ … and j d{1, 2, , }k ∈ … .We note that this perspective on the discreteMPS

alsofinds connections with other discrete path integral representations for unitary operators coming from
measurement-based quantum computation [6] (moreover it would also be of interest to see if traditional
perturbative techniques of path integrals could find application inwholly discrete contexts).

In the next sectionwe are facedwith taking the continuum limit of these discrete structures. Intuitively
speaking, theway inwhichwe obtain the continuum limit of a TNS is to choose the tensorsA j so that as the
spacing between the sites goes to zero the density of particles/excitations in the system remains constant.More
concretely, let usfirst imagine a classical setting, and a state 00 0110 0∣ ⋯ ⋯ 〉 that encodes the location of particles
along a discrete one-dimensional system in terms of a length-N string ‘00 0110 0⋯ ⋯ ’. Here ‘1’ can be viewed as
denoting that a single particle is present at a single location, while ‘0’ represents that no particle is present.
Moreover, one can imagine that the presence or absence of a particle occurs with some fixed probability p so that
any particular string occurs (classically) with a binomial distribution. By coarse-graining this string into cells of
finite lengthwe can count the number of particles n(x) in a particular cell x and therefore define an expected
particle density n x( )〈 〉 for the cell. Crucially, the passage to the continuum involves taking N → ∞while
simultaneously sending p 0→ at the same rate so as to keep n x( )〈 〉finite.

Essentially the same idea is employed for the fully quantumnon-commuting case, with the demand that
particles appear in the state at such a rate (quantified by the label j 0, 1, 2 ...= on theMPS operators A{ }j ) as to
ensurefinite expectation value for localHermitian observables in the continuum limit. For the one-dimensional
case this is achieved [22, 33] by choosing
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A Q

A R

A
R

A
R

k

( )

2!

( )

!
(5)

k
k

0

1

2
2

ϵ
ϵ
ϵ

ϵ

= +
=

=

⋮

=

⋮



whereQ andR are arbitraryD×Dmatrices and ϵ is the lattice spacing. In particular A x( )0 should be interpreted
as ‘no particle created at x’, while A x( )1 should be interpreted as ‘a single particle created at x’.We’ll see in the
next section that with this choice ofA js the path integral (4) reduces in the limit 0ϵ → to a standard path
integral, and the particular scaling in ϵ ensures finite expectation values of local observables.We shall show that a
similar recipeworks for any sufficiently regular lattice.

3. Path integrals and cMPS

cMPS are a variational class of states for one-dimensional quantumfields.We focus on the bosonic case with
field annihilation and creation operators x( )ψ and x( )†ψ such that x y x y[ ( ), ( )] ( )† ψ ψ δ= −  . A cMPS is
then defined in terms of the quantumfield  and an auxiliaryD-level quantum system  by

K s R s s R s s sexp i ( ) i ( ) ( ) i ( ) ( ) d , (6)L

l

R
0

† †
⎡
⎣⎢

⎤
⎦⎥ ∫χ ω ψ ψ ω Ω= − ⊗ + ⊗ − ⊗   

whereK is aD ×D hermitianmatrix andR isD×D complexmatrix, L R,ω∣ 〉 areD-dimensional states of the
auxiliary system , s( )ψ is a bosonicfield operator on the physical system , Ω∣ 〉 is the Fock vacuum, and 
denotes path ordering.

The above form (6) can be derived directly from the discreteMPS data provided in (5) and constructing the
MPS state onN sites as in (1). One thenmakes use of the particular formofmatrices, togetherwith the product
expansion formula for time-ordered exponentials

sF sexp d ( ) lim e e e , (7)
a

b
F s F s F s

0

( ) ( ) ( )N N 1 1
⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦∫ = ⋯
ϵ

ϵ ϵ ϵ
→

−

with s bN = and s a1 = and L Nϵ = for some fixed length L. The continuum contributions can be extracted by
expanding exponentials and grouping terms that are linear in ϵ. Finally the 0ϵ → limit yields expression (6)
with the relation betweenQ andK given by K Q R Ri 1

2
†= + .

3.1. A path integral for the auxiliary system
Wecan reformulate the cMPS state (6) so that expectation values for the auxiliary system are recast as path-
integral expressions, using standard techniques. Themotivation for this is two-fold: firstly, to facilitate the
passage to higher-dimensional cMPS states; and secondly, tomakemanifest the symmetries of the physical state
in terms of symmetries of an action for the auxiliary system.Our discussion is centred on the case of a single
bosonicfield in (1+1) dimensions; the generalization to spinor and vector fields follows easily, andwe only
comment on themodifications required.

Write a basis for theHilbert space  of  as j j D{ 0, 1, , 1}∣ 〉 ∣ = … − .We enlarge this space via second

quantization, and introduce bosonic annihilation and creation operators bj and b j
† according to the canonical

commutation relations b b j D[ , ] , 0, 1, , 1j k j k
†

,δ= = … − , with all other commutators vanishing, or
fermionic annihilation and creation operators cj and c j

† according to the canonical anticommutation relations
c c j D{ , } , 0, 1, , 1j k j k

†
,δ= = … − , with all other anticommutators vanishing. TheHilbert space for our

enlarged auxiliary system is that of the Fock space ( )±F  , where the± subscript indicates either bosonic or
fermionic Fock space.

The connection between  and our enlarged Fock space ( )±F  ismade, in the bosonic case, by

identifying  with the single-particle sector via j b j
† Ω∣ 〉 ≡ ∣ 〉 , or, in the fermionic case, j c j

† Ω∣ 〉 ≡ ∣ 〉 ,
where Ω∣ 〉 is the Fock vacuum.We identify, whenever clear from the context, states ω∣ 〉 ∈  with their
single-particle counterparts in ( )±F  .
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Using this embedding, a cMPS (6) is equivalent, in the bosonic case, to

U l F s s( , 0) exp i ( )d , (8)L R L

l

R
0

⎡
⎣⎢

⎤
⎦⎥∫χ ω ω Ω ω ω Ω= = − 

where F is a one-parameter set offield operators on , generated byU l( , 0) and given is by

F s K s b b R s b b s R s b b s( ) ( ) i ( ) ( ) i * ( ) ( ),
j k

D
jk

j k
jk

j k
kj

j k

, 1

† † † † ∑ ψ ψ= ⊗ + ⊗ − ⊗
=

 

This equivalence of definitions follows from the fact that F(s) is particle-number conserving on system  (i.e. its
action on  is through terms of the form b bj k

† only), and sowe remain in the single-particle sector throughout.
The fermionic version is identical except that bj operators are replacedwith cjs.

The parameter s can be regarded as a time coordinate for the auxiliary system.We then obtain a path integral
by dividing l[0, ] into small intervals s s s s l0, , ,... N0 1 2= = with uniform spacing s sk k1 ϵ− =+ , so that
U l U l l U l l U( , 0) ( , ) ( , 2 ) ( , 0)ϵ ϵ ϵ ϵ= − − − ⋯ , and then inserting resolutions of the identity between each
term.Our choice of resolution is, in the bosonic case, in terms of coherent states of the auxiliary system, defined
as b bexp[ ]k k k k k

† *ϕ ϕ ϕ Ω∣ 〉 = − ∣ 〉 :

1
d , (9)

N
k

k k k k k
2∫ ∏

π
ϕ ϕ ϕ= ⊗ ⊗

where N l ϵ= . In the fermionic casewe exploit fermion coherent states of the form
c cexp[ ]k k k k k

† *ϕ ϕ ϕ Ω∣ 〉 = − ∣ 〉 , where kϕ are nowGrassmann-valued. Apart from the use of anticommuting
Grassmann numbers the fermionic calculationmirrors the bosonic case in essentially all other respects; we thus
focus on the details of the bosonic calculation andwrite out the fermionic case at the end.

After the resolution (9) has been placed between each termwe end upwith a product of transition
amplitudes of the form s U s s s( ) ( , ) ( )k k k kϕ ϵ ϵ ϕ〈 ⊗ + ∣ + ∣ ⊗ 〉′ ′ ≈ s F s s( ) i ( ) ( )k k k kϕ ϵ ϵ ϕ〈 ⊗ + ∣ − ∣ ⊗ 〉′ ′ .
We thenmake use of the expression

s s s s s s( ) ( ) exp
1

2
( ) ( ) 2 ( ) ( ) , (10)k k k k

k

D

k k k
1

2 2 *
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ϕ ϵ ϕ ϕ ϵ ϕ ϕ ϵ ϕ⊗ + ⊗ = − + + − +′ ′

=

and the assumption that only smooth variations of s( )kϕ contribute, which allows us to expand the terms in the
exponential and obtain, in the continuum limit 0ϵ → ,

( )Sexp i , , (11)
k

k k k
2 *⎡⎣ ⎤⎦∫ ∏χ ϕ ϕ ϕ Ω=   

where the path integral is overD complex fields and S is an operator-valued action given by

( )S s K R Rd i i( ) i( ) , (12)s
† † † † † †  ∫ ϕ ϕ ϕ ϕ ϕ ϕ ψ ϕ ϕ ψ= ∂ − − + 

wherewe abbreviate { }kϕ as a vectorϕ. However, since the field operator s( )†ψ commutes with s( )ψ ′ and

s( )†ψ ′ at all other points s′ the ordering over the auxiliary time variable is trivial andwe can simplywrite the path
integral as

Sexp i ( , ) , (13)2 †⎡⎣ ⎤⎦∫χ ϕ ϕ ϕ Φ= 
where Φ∣ 〉 is a physical field coherent state

s s s s sexp ( ) ( ) *( ) ( ) d , (14)†⎡
⎣⎢

⎤
⎦⎥ ∫Φ Φ ψ Φ ψ Ω≡ −  

s R( ) †Φ ϕ ϕ= , and the complex action S is given by

( )S s K( , ) d i . (15)s
† † †∫ϕ ϕ ϕ ϕ ϕ ϕ= ∂ −

This formulation (13) of the one-dimensional cMPS state as a path integral is a natural guiding expression for
the generalization to higher-dimensional scenarioswhichwe describe later (The fermionic case is identical,
except thatϕ is now a vector of Grassmannfields. Of course, both the bosonic and fermionic cases yield exactly
the same physical state χ∣ 〉, since they coincide on the 1-particle sector). Notice that we’ve dropped the limits
from the integrals; the expression (13)makes equal sense for quantum systems on l[0, ]as for the infinite case
( , )−∞ ∞ .

While the use of the auxiliary Fock space and its 1-particle sector to encode the virtual processmight seem
initially excessive in the one-dimensional scenario, it turns out to bemuchmore flexible in the higher
dimensional generalizations. There the auxiliaryfield systemhas genuine spatial extent, and permits

5
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generalizations that are not simply 1-particle sector restrictions. The degree towhich extending off the 1-particle
sector in thesemodels brings newphysics and deviates from the discrete tensor network description is at present
unclear, and demands further investigation.

3.2. Interpretation of the cMPSpath integral
The expression (6) admits a simple, yet useful interpretation. A cMPS is a superposition of coherent states Φ∣ 〉
with someweighting eiS determined by the virtual dynamics. The standard intuition concerning coherent states
is that they are the ‘most classical’ states of a quantum systemdue to their saturation of theHeisenberg
uncertainty relation. Thus, (13) tells us that a cMPS is a superposition of ‘classical’field states centred around
classical field configurations :Φ →  in phase space. Thesefield configurationsΦ themselves are scalar
functions of a vector of auxiliary classical fields :ϕ → . By interpreting that spatial variable s as a temporal
variable one can understand the action S for these auxiliary fields as that of a (0 1)+ -dimensional quantumfield,
i.e., ordinary quantummechanics.

One therefore has the picture of an auxiliary systemundergoing a classical trajectory of its discrete variables,
however to gain information (bymeasurement) about a dynamically evolving quantum systemwe inevitably
disturb it because of the back-action of the quantummeasurement. The closest representation of the dynamics
in this quantum setting is to continuouslymonitor the evolving auxiliary systemwith a sequence of infinitesimally
weakmeasurements [5]. By exploiting vonNeumannʼs prescription for quantummeasurement this process is
then understood as entangling the auxiliary system and an infinite collection ofmeter systems. The combined
auxiliary system+meter collection undergoes completely positive dynamics. In the continuum limit themeter
systems constitute a quantumfieldwith one extra spatial dimension, the reduced state of themeters alone is a
quantum state. The cMPS coherent field state is then an imprint of the discrete trajectory, and is as classical a
record as possible. The stength andmanner of this imprint is entirely contained in the particular couplingR(t).
Each trajectory for the auxiliary system contributes a coherent field state, and the cMPS is simply a superposition
of ‘classical’ trajectories with the accordingweighting by the action S (see figure 1).

3.3. Completeness of the cMPS class
In this sectionwe show that the cMPS is a complete class: an arbitrary quantum field state can be approximated
with arbitrary accuracy, by allowing the bond dimensionD to become arbitrarily large. The argument we present
here is for the case of bosonic Fock space L l( ([0, ]))2

−F on afinite interval l[0, ]—one expects this to hold in the
case of the interval ( , )−∞ ∞ .

The argument is rather simple and relies on three facts. Thefirst is that an arbitrary quantum field coherent
state

s s s s sexp ( ) ( ) *( ) ( ) d , (16)
l

0

†
⎡
⎣⎢

⎤
⎦⎥ ∫Φ Φ ψ Φ ψ Ω≡ −  

is exactly representible as a cMPS ( )χ Φ∣ 〉with bond dimensionD=1. This follows upon takingK andR to be the
one-dimensionalmatrices K s( ) 0= and R s s( ) ( )Φ= . The boundary vectors Lω∣ 〉 and Rω∣ 〉 are simply taken to
be equal to 1. The next fact we require is that the span of allfield coherent states is dense in Fock space,meaning
that an arbitrary field state L l( ([0, ]))2Ψ∣ 〉 ∈ −F may be approximated arbitrarily well by an increasing linear
combination offield coherent states:

c . (17)
l

N

j j
N

0

∑ Φ Ψ⟶
=

→∞

This property follows from the over-completeness of coherent states in spanning theHilbert space [11]. The
final fact we need is that a linear combination c c1 1 2 2χ χ χ∣ 〉 = ∣ 〉 + ∣ 〉of two cMPS 1χ∣ 〉 and 2χ∣ 〉with bond
dimensionsD1 andD2, respectively, is again a cMPSwith bond dimension D D D1 2= + and parameters
K K K1 2= ⊕ , R R R1 2= ⊕ , c c( )L L L1 ,1 2 ,2ω ω ω〈 ∣ = 〈 ∣ ⊕ 〈 ∣ , and R R R,1 ,2ω ω ω∣ 〉 = ∣ 〉 ⊕ ∣ 〉.

Putting these facts together allows us to deduce that c{ }N l

N
j j N0

∑χ Φ∣ 〉 ≡ ∣ 〉
=

is a sequence of cMPSwith

bond dimensions D NN = that tend, in the limit, to an arbitrary state Ψ∣ 〉 in Fock space. Thuswe have
confirmed the completeness or expressiveness property of the cMPS variational class in one dimension. It is worth
noting that the argumentwe present here is by nomeans themost economical: there are, exploiting gauge
invariance, almost certainlymore efficient sequences of representations tending to the state Ψ∣ 〉using lower
bond dimensions. Indeed, as we argue in the next section, amore economical representation of a physical field
state is strongly suggested by the path integral representation.

It is worth noting that in the previous subsectionwe showed that an arbitrary cMPS is a superposition offield
coherent states. Herewe’ve shown the converse: an arbitrary superposition of field coherent states is also
a cMPS.
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4. A toy example: cMPS representation of thefinal states of physicalfield dynamics

Wecan simply illustrate the previous components through the example of efficiently representing elementary
field dynamics via cMPS. Intuitively, we simply exchange the role of space and time and contract the
(continuum) tensor network for the state of a dynamically evolving field along the spatial axisfirst, regarding it
as a temporal axis. Beyond being a simple illustration of the present discussion, this construction also related to
recent analysis of spin-systems [25, 40]. The generic situationwe consider is therefore that of a bosonicfield

x( )ψ in  obeying the canonical commutation relations x y x y[ ( ), ( )] ( ),† ψ ψ δ= − with all other
commutators vanishing.

We can simply consider a second quantized hamiltonianwith kinetic+potential energy split
H T V W  = + + , where

T
x

x

x

x
x V V x x x x

d ( )

d

d ( )

d
d , ( ) ( ) ( ) d , (18)

†
†    ∫ ∫ψ ψ

ψ ψ= =

andwith an interaction potential

W W x y y x x y x y( ) ( ) ( ) ( ) ( ) d d . (19)† †    ∫ ψ ψ ψ ψ= −

For the sake of illustration, it suffices to concentrate on pointlike interactions, i.e.W x y w x y( ) ( )δ− = − , with
w a constant.We then consider a field system, initialized in the physical state (0)φ∣ 〉 ∈  and allow it to evolve

under the full hamiltonian H for a timeT, until it reaches the state T( ) e (0)THi φ φ∣ 〉 = ∣ 〉− . Our task here is to
illustrate how thefinal state T( )φ∣ 〉 can be described in terms of the cMPS path integral representation, which
can be interpreted instead as a (virtual) process inwhich some additional auxiliary system  undergoes
dissipative dynamics that couple it to the physical field system and on completion generates T( )φ∣ 〉. To avoid
confusion, in the case of the physical evolution of thefield system  we use x for the spatial coordinate, and t for
the physical time coordinate, while for the virtual process inwhich the auxiliary system  couples to the
physical field  we use s for the virtual time coordinate of  and label subsystems of  with the parameter β.
The construction that followswill roughly amount to reinterpreting the field variables (x, t) as s( , )β within a
quite physically distinct setting.

Thefirstmove is to reformulate the physical field evolution in terms of a path integral expression over
coherent states. The construction proceeds, through a Trotter-discretization of the time interval T[0, ] into n
pieces of length T nϵ = andwriting

( )T( ) e (0) . (20)H
n

i φ φ= ϵ−

We suppose, for simplicity, that the initial state (0)φ∣ 〉 is a coherent state.
As in the construction of the auxiliary action, we insert a resolution of the identity, in terms of 1-d field

coherent states t x x t x x t x( ) exp[ d ( , ) ( ) * ( , ) ( )]† ∫Φ Φ ψ Φ ψ Ω∣ 〉 ≔ − ∣ 〉, between each application of e Hi ϵ− .
Expanding up tofirst order, and using the overlap equation (10)we have that an infinitesimal advance for the
physical system is described by

( )t t( ) e ( ) e , (21)* * *H x t x t x t x t x t x t xi ( , ) ( , ) ( , ) ( , ) i ( , ), ( , ) dt t2
 ∫Φ Φ ϵ− ≈ϵ Φ Φ Φ Φ ϵ Φ Φ− − ∂ −∂ −ϵ 

with a hamiltonian density x t( , ) given by

( )x t x t x t V x x t w x t*( , ), ( , ) ( , ) ( ) ( , ) ( , ) (22)x
2 2 4Φ Φ Φ Φ Φ= ∂ + +

Summing over each time interval yields

( )T T( ) *e ( ) , (23)*Si ,∫φ Φ Φ Φ= Φ Φ 
being a superposition of physical coherent states described by x T( , )Φ at time t=T, andwith the action

( ) ( )S x t x t x t x t x t, * i *( , ) ( , ) *( , ), ( , ) d d . (24)
T

t
0

∫ ∫Φ Φ Φ Φ Φ Φ= ∂ −
−∞

∞ 
The lower limit of this path integral is x x( , 0) ( , 0)Φ φ= while the upper limit is unconstrained.

The path integral formof T( )φ∣ 〉 is suggestive of how an auxiliary system should couple to the physical
system in order to generate T( )φ∣ 〉under (virtual) dissipative dynamics. Sincewewish the auxilary system 
to sweep over the length of the physical field the time parameter for the process s, should correspond to the
physical spatial variable x.

To capture this ideawe can subdivide the auxiliary system  into harmonic oscillator subsystems as
= ⊗β β  , labelled by some variable β, however since t is a continuous variable we effectively take the limit

7

New J. Phys. 17 (2015) 063039 D Jennings et al



inwhich  is an auxiliary complex fieldwhere β is its spatial coordinate and the auxiliary systemhas spatial
extent from 0β = to Tβ = . The key point is that spatial couplings (along β) within the hamiltonian of the
auxiliary system can be used to simulate the physical dynamics that generates T( )φ∣ 〉, as the auxiliary system
sweeps out over the physical field, and couples to it through a natural interaction term.

For the auxiliary variables we use z s( , )0 β and z s( , )1 β , whichwe can combine into a single complex field as
z z zi0 1  = + . The hamiltonian of the auxiliary system is taken to be

(

)

K s p s p s V z s z s w z s

z s z s z s z s z s

( ) d
1

4
( , )

1

4
( , ) ( ( , ) ( , ) ) ( , )

( , ) i( ( , ) i ( , )) ( ( , ) i ( , )) , (25)

T

0
0

2
1

2
0

2
1

2
0

2

1
2 2

0 1 0 1

⎡
⎣⎢

⎤
⎦⎥

  

    

  ∫ β β β β β β

β β β β β

= − − + + +

+ − − ∂ +β

with p0
 and p1

 themomenta conjugate to z0 and z1 .
The formof (23) suggests that the interaction term coupling the auxiliary and physical systems be taken to be

the continuousmeasurement interaction inwhich the physical system  is interpreted as continuously
measuring the ‘observable’ z z zi0 1  = + . This is obtained as the continuum limit of the coupling

H s s j z s T z s T( ) i ( ) ( , ) ( , ) , (26)
j

j jint
† †⎡

⎣⎢
⎤
⎦⎥   ∑ϵ δ ϵ β ψ β ψ= − = ⊗ − = ⊗

∈
 



in otherwords, the physical systemonly couples to the extreme edge of the auxiliary system at the (auxiliary)

spatial point Tβ = . Here ,j

a jψ ≡
ϵ
 and a j is the operatorwhich annihilates a bosonwithwavefunction

x( )j j
1

[( 1) , )χ
ϵ ϵ ϵ− for the physical system.

It is now a case of checking that the composite system ⊗  , evolving under the full hamiltonian

H K Htot int
 = + for auxiliary time from s = −∞ to s = + ∞will indeed generate the desired field state T( )φ∣ 〉

as expressed in the path integral form (23). The calculation proceeds in a similarmanner to the earlier cMPS
path integral calculation evolving under the composite hamiltonian Htot

 , however for our resolution of the
identity at auxiliary time sweuse the complete set of states z s{ ( ) }∣ 〉 given by

z s z s z s z s T z s z s z s T( ) ( , 0), ( , ), ( , ); ( , ), ( , 2 ), ( , ) , (27)0 0 0 1 1 1ϵ ϵ ϵ= ⋯ ⋯

whichwe express in the discretized settingwith oscillators located at T0, , 2 ,...,β ϵ ϵ= . A straightfoward
calculation gives that

z s p s S p p z ze ( , ) ( , ) exp i ( , , , ) (28)L
H s s

R
i ( )d 2 2

0 1 0 1
tot ⎡⎣ ⎤⎦ ∫∫ω ω Ω β β Ω= ′−   

wherewe have the action

( )S s p z p z K p z z s T z s Td d ˙ ˙ ( , ) i ( , ) i *( , ) . (29)
T

0
0 0 1 1

† ∫ ∫ β β ψ β ψ′ = + − − = + =
−∞

∞

 

Consequently, by integrating out p0 and p1, and identifying z s T( , )β = with x T( , )Φ we see that the evolved
physical state T( )φ∣ 〉 can be represented by a cMPSwith free hamiltonianK given by (25) and interaction given
by (26).We should emphasize that it is the final state for whichwe are providing an efficient description, and not
the dynamics. The dynamics that generated the state is easily calculated, and acts to ensure that such a description
exists, however the representation via virtual dissipative dynamics can go beyond such cases and can provide
novel tools for non-trivial quantum states, such as the ground state of strongly interacting systems.

The cMPS representation that we have constructed involves an infinite dimensional auxiliary systemwhere
integration over β corresponds to a continuum summation over the auxiliary indices; this is not unexpected
since the auxiliary system faithfully simulates the entire dynamical history of the physical field.However, the
local character of the interaction term implies that we can obtain T( )φ∣ 〉 equally well from the coupling of a
single auxiliary oscillator to the physical field, with the composite systemnowundergoing amore general
completely-positivemap (instead of a unitary interaction). Specifically, the above calculation has shown that

T U( ) L Rφ ω ω Ω∣ 〉 = 〈 ∣ ∣ 〉∣ 〉, ormore generally T T U U( ) ( ) Tr [ ( ) ]aux
†φ φ ω Ω Ω∣ 〉〈 ∣ = ⊗ ∣ 〉〈 ∣ for some operator

U on the joint system and auxiliary stateω, but which can nowbewritten as
U UTr [ Tr [ ( ) ]] Tr [ ( )]T T T

†ω Ω Ω ω Ω Ω⊗ ∣ 〉〈 ∣ = ⊗ ∣ 〉〈 ∣β β β β= ≠ =  for some completely-positivemap 
defined on the physical field and oscillator at Tβ = . By truncation of the oscillatorHilbert space, and
simulation of the evolution  wemay thus obtain an efficient cMPS description of T( )φ∣ 〉 in terms of a purely
discrete auxiliary quantum system.
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5. Beyond one-dimension: the continuum limit of a PEPS class

Wehave seen the one can represent a general cMPS via the path integral over an auxiliary (0 1)+ -dimensionalD
component complex fieldϕwhere the path integral is a coherent-state path integral over all configurations of the
D-dimensional complex vectorϕ, andwhere the auxiliary system is subject to an action

( )S s K( , ) d i s
† † †∫ϕ ϕ ϕ ϕ ϕ ϕ= ∂ − .

Such a representation of χ∣ 〉naturally suggests a higher dimensional generalization, namely, we should
simply have that

Sexp ( , ) , (30)2 †⎡⎣ ⎤⎦∫χ ϕ ϕ ϕ Φ= −

where the path integral is nowover an auxiliary d[( 1) 1]− + -dimensional field tz( , )ϕ withD components,
Φ∣ 〉 is now a higher-dimensional field coherent state

x x x x xexp ( ) ( ) *( ) ( ) d , (31)†⎡
⎣⎢

⎤
⎦⎥ ∫Φ Φ ψ Φ ψ Ω≡ −  

where Rx x x( ) ( ) ( )†Φ ϕ ϕ= ,R is aD×Dmatrix, and S is a local complex action for aD component auxiliary
boundaryfieldϕ living on an auxiliary boundary space of one lower dimension. Note the notation x( )ϕ denotes
ϕ at tz( , ) via regarding thefirst d 1− components of x as spatial coordinates and the dth component as a
temporal coordinate, i.e., zj= xj, j d0, 1, , 2= … − , and t xd 1= − . Also note that we adopt a euclideanised
action, a point whichwill later prove advantageouswhen imposing symmetries on the physical state.

While taking the continuum limit of the one-dimensionalMPS class is comparatively straightforward, the
two-dimensional equivalent posesmore problems. It is true that we can simply posit the formof a two-
dimensional (or higher-dimensional) cMPS as being generated by the continuousmeasurement process of a
lower-dimensional auxiliary boundary field [22], however this is unsatisfactory for at least two reasons. Firstly,
in such a setting it is not clear, a priori, howonemight impose certain desirable symmetries, such as rotational
symmetry, on the physical quantum state. Any variational class intended for the efficient description of real-
world physics should be capable ofmanifestly exhibiting such symmetries. Secondly, for discrete systems
higher-dimensional generalizations ofMPS already exist, such as the PEPS class, which have been powerful tools
in understanding the physics of local hamiltonians. As such it is also of theoretical importance that we arrive at a
continuum limit of PEPS thatmirrors the one-dimensional cMPS class.

In previous sections we obtained a path integral representation for the one-dimensional cMPS class from the
traditional discreteMPS class by taking awell-behaved continuum limit, andwhichwe can use as our guide for
constructing higher-dimensional classes withmanifest symmetries; infield theory, path integral formulations
are ideally suited for the imposition of symmetries that would not bemanifest according to, e.g., canonical
quantization of the field. Our strategy is then to develop a continuum limit as a superposition offield coherent
states with amplitudes given by a path integral over an auxiliary system and such that desirable symmetries are
manifest.

5.1. The basic tensor network setting beyond 1-d systems
Anatural higher-dimensional generalization ofMPS are the PEPS, which are examples ofTensorNetworks
[19, 31, 34]. The original formulation of PEPS rested on distributingmaximally entangled pairs ofD-
dimensional quantum systems between neighbouring sites on a graph, and then locallymapping the systems at
each point into a single d-dimensional Hilbert space. The PEPS construction for arbitraryD can describe any
quantum state, and is naturally suited to systems displaying area laws. A generic PEPS has an expansion in terms
of a product basis with expansion coefficients given by a contraction of tensors A i k

r
( )⋯ with respect to a

particular graph V E( , )Γ :

A A A r r , (32)i k
r

i k
r

N( ) ( ) 1N N

N

1 1

1⎡⎣ ⎤⎦χ = ⋯ ⋯ ⋯⋯ ⋯

where  denotes a complete contraction of the auxiliary indices i k( )⋯ according to the graph edge structureE,
and r r,... N1 label the (product) configurations of a the discrete physical systems located at each vertex of the
graph.

An initial instinct would be to beginwith a two-dimensional square lattice, and embed the discrete system
into the one-particle sector of a systemof bosonic or fermionic auxiliary fields, as was done previously for the
1-D cMPS path integral. If one directly follows this path, passing from the discrete PEPS to a continuumpath
integral, onefinds that the underlying square lattice structure persists in the field, and one does not obtain a
rotation invariant physical state (see appendix). Herewe adopt a slightlymore involved strategy to handle this
unwanted feature.
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Webeginwith a graph ofN2 points x y n m n m{( , ) ( , ): , integers}ϵ ϵ= , with a physical spacing ϵ.We view
the y spatial direction as an auxiliary time t. Aswritten (32) involves a contraction overN2 auxiliary subsystems
distributed over the graph, with independent couplings to the physical degrees of freedomat each site. Sincewe
wish to view the y direction as an auxiliary time dimensionwe regard the contraction over theN2 subsystems as
the sumover configurations ofN auxiliary subsystems subject to a sequence ofN dynamic transformations. The
upshot is to replace the contraction along the y directionwith a product ofN squarematrices of dimensionDN.
This is well-known as a transfer operator approach, i.e., we simply view the contraction fromone value of y to the
next asmultiplication by a particular transfer operator. The state (32) can then bewritten as

U t l t( , 0) , (33)L Rχ ω ω Ω= = =  

whereU is an operator on  given by the (time-ordered) product of transfer operators local with respect to
the graph sites and Ω∣ 〉 is some initial product state of . Specifically,

U M t M l M l M l M[ ( )] ( ) ( ) ( 2 ) (0)
t

l

0
     ∏ ϵ ϵ= ≡ − − ⋯

=
, where the transfer operator M t( ) generates an

elementary time-step of size ϵ and is built from local operators on  and .We then follow the idea used for the
1-dimensional case and regard each the auxiliary system at lattice site of  as the single-particle space of the Fock
space built from D .

The contraction of indices depends on the particular graph structure being used.However, our goal is to
construct cMPS states with symmetries andwe follow the key principle that the symmetries of the physical state are
encoded in the dynamics of the auxiliary system. For example, a natural symmetry to demand is that of rotation
invariance in the spatial coordinates of the physical field state. Assuming a state of the form (30) implies that the
auxiliary action S is invariant under the induced SO (2) rotation group (assuming themeasure is also invariant).
By demanding that the auxiliary system is a physical systemwe deduce that S should be an action describing the
completely positive dynamics auxiliary system (after we trace out ). However, encoding the symmetry into the
dynamics of the auxiliary systemmeans imposing invariance under SO (2). This implies that the dynamics
should be viewed as the imaginary-time evolution of a Lorentz-invariant system (which is still a completely
positivemap of the quantum state). It is also useful to emphasize that technical subtleties arise when taking the
limit of lattice systems. Specifically, wemight consider a family of graphs { }kΛ indexed by some variable
k 0, 1, 2 ,...= , that converges to some dense subset of a compact spatial regionA. To each point x kΛ∈ we have
an associatedHilbert space x( ) , which could be a space offinite or countably infinite dimension. The total
Hilbert space for the full graph system is then given by x( )k x k= ⊗ Λ∈  , and in the thermodynamic limit
k → ∞, the resultant spacewill have an uncountable dimension.One insteadworkswith amuch smaller,
separable Fock space ( )F  constructed to ensure that every state in ( )F  hasfinite particle expectation value,
and splits up into a sum ( ) n

n( )= ⊕F   of particle sectors n( ) with finite particle numbers. Central to the
formation of thisHilbert space is the identification of a vacuum state, fromwhich the different n-particle spaces

n( ) are obtained through the action of creation operators obeying the desired statistics. It is well-known that the
Stone-vonNeumann theorem fails for these systems, andmany unitarily inequivalent Fock spacesmay be
constructed through the choice of different vacua and creation/annihilation operators. For our analysis of the
discrete to continuum limit, we specify the localHilbert spaces at each point on the graph, but ultimately we
make use of a Fock space construction for the state ( )χ∣ 〉 ∈ F  , andworkwith a particular choice of creation/
annihilation operators for both  and , with the auxiliary system  carrying bosonic or fermionic statistics.

Our strategy is then tofirst construct a Lorentz-invariant auxiliary action from the continuum limit of a
sequence of discrete PEPS.We then construct an analytic continuation to the Euclidean setting and obtain a one-
parameter family of discrete PEPS states giving a rotation invariant Euclidean action as 0ϵ → . There are clearly
different possible choices for a Lorentz-invariant action;motivated by the first-order action (15), and certain
convenient properties of coherent field states, we derive aDirac-like action from a specific sequence of PEPS.
Onemight questionwhywe bother going via a Lorentz-invariant setting. The reason is that if we beginwith
SO(2) symmetry as our target thenwe do not have ready access to the intuition that the physical field state is
generated by the virtual dynamics of a lower dimensional system.

Thefirst task is to arrive at a Lorentz-invariant situation, a problem forwhich physical intuition is readily
available. Sincewe are looking for an auxiliary (1 1)+ -dimensional lattice systemwith locally defined dynamics
we assume that each site (x, t) has contraction links to future sites x t x t( , ), ( , )ϵ ϵ ϵ+ − + and x t( , )ϵ ϵ+ +
and also to past sites x t x t( , ), ( , )ϵ ϵ ϵ− − − and x t( , )ϵ ϵ+ − . The simplest such choice is to build the
operator M out of quadratic terms involving creation and annihilation operators; to arrive at states with
rotational symmetries, we can alsomake use of spinorial expressions. To generate the spinorial structure we
assume that at each site x, in addition to the ‘flavour’ indices i j k, , ,..., we have access to two internal degrees of
freedom,with annihilation operators ak x, and bk x, at each spacetime point.We also note that the bosonic and
fermionic cases can be treated simultaneously by being careful with the ordering of terms. Thuswe have
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a a a a[ , ] [ , ] 0,j x k y j x k y, , ,
†

,
†= =± ± a a[ , ]j x k y jk x y, ,

†
,δ δ=± , with similar expressions for b, where ± labels the choice

of bosonic or fermionic auxiliary system.

5.2. Generation of a kinetic term andflavor doubling
Wenow construct a transfer operator M Htot

 ϵ= +ϵ  from terms quadratic in a and b, and generate a PEPS via

M l M l M l M( ) ( ) ( 2 ) (0) , (34)L R   χ ω ϵ ϵ ω Ω= − − ⋯ϵ ϵ ϵ ϵ ϵ  

in such amanner that the continuum limit has the desired Lorentz symmetry. It should perhaps be emphasized
that the generators that we construct relate entirely to the auxiliary system , which only forms an abstract
device to describe the physical state χ∣ 〉ϵ , and does not commit us to any particular realization for the two-
dimensional physical field system . However, by treating the auxiliary system as physical we canmake use of
natural intuitions of particle interactions whenwe construct the abstract PEPS class through Htot

 . Certain
assumptions are natural to impose on the terms appearing in Htot

 , such as left–right symmetry, symmetry
between a-particles and b-particles and conservation of total particle number, however the key term in the
construction is the a nearest neighbour ‘hopping’ term,whichwe take to be

( )H t J t a b a b a b( )
1

( ) h. c. , (35)
x

jk
j x k x j x k x j x k xh ,
†

, ,
†

, ,
†

,∑
ϵ

= + + +ϵ ϵ− +

where x runs overN spatial points, and J t( )jk measures the strength of the spatial hopping, which for simplicity
we take as constant along the spatial direction.

To analyse this, we perform a discrete Fourier transform in the spatial direction to obtain

( )H J t p a b b a
1

( )(1 2 cos ) ˜ ˜ ˜ ˜ , (36)h

p j k

jk
j p k p j p k p

, ,

,
†

, ,
†

,∑
ϵ

ϵ= + +

where a a˜ ej p N x
px

j x,
1 i

,∑= − is the Fourier-transformed annihilation operator (similarly for b̃ j p, ), and

p n N2π ϵ= runs overN points in the reciprocal lattice, for n an integer.
Our concern is the continuum limit, 0ϵ → , where the dominant contributions ofHhwill come from the

‘low-energy regime’ ofmomenta p near to the zeroes of p(1 2 cos )ϵ+ . These occur at the points
q ( 1) (2 3 )π ϵ= −μ

μ , for 0, 1μ = . The contributions from the two points give rise to twoflavors in a similar

manner to fermionic doubling on the lattice, however itmust be noted that this doubling only occurs for the
auxiliary system, and so the physical system (whether bosonic or fermionic ) is unaffected. Overall, in the
continuum limitHh splits into H H Hh h h,0 ,1= + with the contributions from the two decoupled flavors given
by

( )H t J t a b p
a

b
( ) 3 ( 1) ( ) ˜ ˜

˜

˜ . (37)h

p

jk
j q p j q p x

j q p

j q p
,

1

,
†

,
†

,

,

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ σ= −μ

ϵ

μ

≪
+ +

+

+
μ μ

μ

μ

Wecan redefine J J 3jk jk→ and relabel themode operators as a a˜ ˜j p j q p( , ); ,≡μ +μ
and also b b˜ ˜

j p j q p( , ); ,≡μ +μ
to

obtain

( )H t J t a b p
a

b
( ) ( ) ˜ ˜

˜

˜ . (38)h

p

jk
j p j p z x z

j p

j p1 ; 0,1

( , ),
†

( , ),
† ( , ),

( , ),

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ σ σ σ=

ϵ μ
μ μ

μ μ μ

μ≪ =

This term alonewould produce D2 massless Lorentz-invariant flavors labeled by the compound index j( , )μ , in
which the j( , 0)-field is related to the j( , 1)-field through the discrete parity transformation , given in 1+1
dimensions as z

0γ σ= = , which inverts chirality. This is consistent with theNielsen–Ninomiya theorem [20],
which requires doubling in order to achieve a translationally invariant spinor actionwith chiral symmetry in the
continuum limit of a latticemodel.

5.3. Coupling anddecoupling of the twoflavors
The previous analysis shows that the two contributions toHh from the points q0 and q1 inmomentum space
decouple. In position space this tells us that a j x, splits up in the low-energy regime as

a a{ e ˜ }ej x p
px

q p
q x

, 1
i i

0
0= ∑ ϵ∣ ∣≪ + a{ e ˜ }ep

px
q p

q x
1

i i
1

1+ ∑ ϵ∣ ∣≪ + .Wewrite this instead as a a ej x j x
q x

, ( ,0),
i 0= +

a ej x
q x

( ,1),
i 1 , inwhich the operators a j x( , ),μ are given by the expressions in the curly brackets of the preceding

equation.
In the continuum limit we then have that a j x

1 2
( , ),ϵ μ

− tends to a smooth field x( )j( , )Ψ μ , arising from envelopes
of planewaves around the point qμ. This real-space description has been useful recently to generate non-trivial

field potentials from latticemodels [1]. For example, onemight perturbHh through the addition of an on-site
potential such as f x a a( )x

jk
j x k x,
†

,ϵ∑ . This termwill behave as f x a a( )ex
jk q q x

j x k x, ,
i( )

( , ),
†

( , ),ϵ∑μ ν μ ν
− −μ ν , however, if
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the function f x( )jk does not vary rapidly from site to site, the presence of the highly oscillatory term e q q xi( )− −μ ν

will ensure that only μ ν= will contribute in the continuum limit, and so the twoflavors will decouple. At the
other extreme, one can consider functions on the lattice that vary sufficiently rapidly, as say
f x g x q q( ) ( ( ))0 1= − , which can be used to produce non-trivial couplings of the flavors [1, 17], however here
we do not consider such scenarios.

5.4. Generation of the full transfer operator
It is straightforward to produce amass term in the continuum limit, simply by adding the term

m a a b b( )x j x j x j x j x,
†

, ,
†

,∑ − , which then generates the usual dispersion relation E p m2 2 2= + as 0ϵ → .

However, we canmore generally use functions m x t{ ( , )}jk
0 that do not vary too rapidly over the lattice, and

perturbHh by the on-site potential term H t m x t a a b b( ) ( , )( )m x
jk

j x k x j x k x0 ,
†

, ,
†

,= ∑ − . This can bewritten as

( )( )H t m x t a a b b( ) ( , ) e (flavor coupling terms)m

x j k

jk
j x k x j x k x

q q x

, , ,

0 ( , ),
†

( , ), ( , ),
†

( , ),
i( )0 1∑= − +

μ
μ μ μ μ

± −

where theflavor coupling terms do not contribute in the continuum limit, as explained in the previous section.
In addition to the termsHh andHm for the auxiliary systemwe add a coupling termbetween the auxiliary and
physical systems, whichwill generate the state χ∣ 〉ϵ . For this, wemirror the local coupling used for the
1-dimensional system and define the interaction term contribution is easily calculated

( )H t R x t a a b b x y t( ) ( , ) ( , ) , (39)
x

jk
j x k x j x k xint ,
†

, ,
†

,
†⎡⎣ ⎤⎦ ∑ ψ= + ⊗ =

where again, for simplicity, we assume the functions R x t{ ( , )}jk vary sufficiently slowly over the lattice so that
the 0, 1μ = flavors decouple oncemore.

Thefinal transfer operator that generates the PEPS state isfinally given by

M H H H( ), (40)m h int ϵ= + + +ϵ 

where the operator hat serves to specify the non-trivial action on the physical field system. The basic tensor
structure of M t( )ϵ is shown infigure 2, where there is also an implicit physical index at each site, coupling to the
physical field , whichwe omit in the diagram for the sake of clarity.

In the next sectionwe analyse the continuum limit, and derive the desired path integral representation from
the smoothfields a j x

1 2
( , ),ϵ μ

− and b j x
1 2

( , ),ϵ μ
− . On the assumption thatm0

jk andR jk slowly vary on the lattice, the

expressions forHm and Hint
 in terms of these smooth fields are obtained by the doubling offlavor index

j j( , )μ→ . The same happens for the indices of the kinetic termHh, but with added feature of a parityflip

x z x zσ σ σ σ↔ relating the twoflavors. As we shall see later, since this discrete symmetry is itself a Lorentz
symmetry the totalfield state that arises will possess the full symmetry group that we require.

5.5. Construction of the path integral representation
In this, and the subsequent, subsectionwe construct the path integral for the continuum limit of the sequence
χ∣ 〉ϵ , 0ϵ → .We follow the one-dimensional prescription, and insert coherent-state resolutions of the identity

into the product M t[ ( )]
t

l

0
∏ ϵ=

. This isfirst computed for a simple elementary timestep ϵ and the continuum

Figure 1. Interpretation of a continuous tensor network. An illustration of the coherent-state path integral representation for a cMPS
state χ∣ 〉: here a sample classical trajectory for the (in this case, three) auxiliaryfields is depicted above. These classical trajectories are
then combined via x R x( ) ( )†ϕ ϕ into a single complex scalar trajectory x( )Φ . Thefield coherent state is then represented via the ket
with the purple smeared trajectory, where a field coherent state is effectively a smeared-out classical configuration centred on

x( ) Im( (x))φ Φ∝ . The formula for the resulting cMPS is then a superposition of such coherent states weighted by the virtual action
S.
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limit taken in the spatial direction. Finally the continuum limit is taken in the timelike direction, to obtain the
final path integral representation of the cMPS state.

For clarity we shall write jμ to denote the compound index j( , )μ with j D1 ,...,0 = and j D1 ,...,1 = for the

twoflavor sectors. This notation is useful since the actual PEPS parametersmjk
0 andR jk, that we can control do

not have any μ dependence, and so the μ label simply doubles up the auxiliary fields, without playing an
independent variational role. Inwhat followswill use coherent-state resolutions of the identity which, in both
the fermionic and bosonic cases, are given by

{ }x t x t D x t( , ) ( , ) ( , ) , (41)j x s j s j s, , , ,
⎜ ⎟⎛
⎝

⎞
⎠ϕ ϕ ϕ Ω≡ ⊗ ≔

μ μ μ 

wherewe have the usual coherent state displacement operator, given for a singlemodewith annihilation

operator c as D c c( ) exp[ *]†α α α= − , the label s a b,= labels the particle type, and in the fermionic case
x t( , )j s,ϕ

μ
areGrassmann numbers.We also use bold-faced x t{ ( , )}j s,ϕ ϕ≔

μ
to suppress indices when the

contractions are clear. The identity contribution is easily calculated via the overlap formulae for coherent states
and gives x t x t x t x t x t x t( , ) ( , ) exp[ ( ( , ) ( , ) ( , ) ( , ))]x t t2

† †ϕ ϕ ϕ ϕ ϕ ϕϵ〈 + ∣ ′ 〉 = − ∑ ∂ − ∂ϵ , however theHh and
Hm terms requiremore attention.

It is simplest towork inmomentum space, for which

( )H H a b
m p p t

N
J t p p p

a

b
˜ ˜ ˜ ( , )

( ) ( )
˜

˜ ,h m

p p j k

j p j p

jk

z
jk

z x z

k p

k p, , ,

,
†

,
† 0

,

,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ σ δ σ σ σ+ =

− ′
+ − ′ ′ μ μ

′

′

′
μ μ

μ μ

μ

μ

where m p t m x t˜ ( , ) e ( , )jk
N x

px jk
0

1 i
0∑= − and the indices onm0

jk and J jk are explicitly independent of μ.

Instead of expanding in terms of fermionic/bosonic coherent states of a j x,μ
and b j x,μ

we expand in terms of

fermionic/bosonic coherent states of ã j p,μ
and b̃ j p,μ

. Insertion of the above H Hh m+ into

p t H H p t˜( , ) ˜( , )h mϕ ϕ〈 ∣ + ∣ ′ 〉 gives, to O ( )ϵ ,

)

(
( )

N m p p t p t p t p t p t

N p p J p p t p t p t p t

N m p p t p t p t N p p J t p t p p t

m x t x t x t J t x t x t

˜ ( , ) ˜* ( , ) ˜ ( , ) ˜ ( , ) ˜ ( , )

( ) ˜ ( , ) ˜ ( , ) ˜ ( , ) ˜ ( , )

˜ ( , ) ˜ ( , ) ˜ ( , ) ( ) ( ) ˜ ( , ) ˜ ( , )

( , ) ( , ) ( , ) ( ) ( , )i ( , ),

(42)

p p j k

jk
j a k a j b k b

jk
j a k b j b k a

p p j k

jk
j z k

jk
j x k

x j k

jk
j z k

jk
j x z x z k

1 2

, , ,

0 , , ,
*

,

,
*

, ,
*

,

1 2

, , ,

0
† †

, ,

0
† †

⎡
⎣⎢

⎤
⎦⎥

∑

∑

∑

ϕ ϕ ϕ ϕ

δ ϕ ϕ ϕ ϕ

Ψ σ Ψ δ Ψ σ Ψ

Ψ σ Ψ Ψ σ σ σ Ψ

− ′ ′ − ′

+ − ′ ′ ′ + ′

= − ′ ′ + − ′ ′ ′

= + ∂ μ μ

−

′

−

′

μ μ

μ μ μ μ

μ μ μ μ

μ μ

μ μ μ μ

μ μ

μ μ μ μ

where ( )x t x t x t( , ) ( , ), ( , )j j a j b, ,Ψ ϕ ϕ=
μ μ μ

is a two-component auxiliary fieldwithflavour index jμ, andwhere

j D1, 2, ,= …μ for each of the two separate 0, 1μ = sectors.

The interaction term can be evaluated in the sameway, andwe obtain

( )x t H x t R x t x t x t x y t( , ) ( , ) ( , ) ( , ) ( , ) ( , ),
x j k

jk
j kint

, ,

† † ∑ϕ ϕϵ Ψ Ψ Ψ+ ′ = =
μ μ

μ μ 

where the hat on
†Ψ is again to emphasize that the term is an operator on the physical system, as opposed to

x t( , )jΨ
μ

which is an auxiliary two component (Grassmann) spinor, withflavor index jμ.

Figure 2.Tensor network structure for the transfer operator generating one temporal layer of the PEPS sequence: here ab denotes
the tensor product a b⊗  for the internal degrees of freedomof the auxiliary system .
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The total sum in the spatial direction can nowbe evaluated, and becomes an integral over x, which provides
us the single time-step amplitude coming from M t( )ϵ . Once donewe can then sumover the time direction to
obtain the final expression for thefield state. However the process requires care, and in particular a field rescaling
to preserve finiteness, and sowe discuss this in the next section.

5.6. Field rescaling and the continuum limit
For the graph used in the previous section, and also the square-latticemodel in the appendix, the two-
dimensional contraction across the graph requires a passage to the continuum in two independent directions,
and somust be handled carefully. In this sectionwe briefly spell out the technical details showing that we obtain a
well-defined two-dimensional action, andwe temporarily suppress the flavor-doubling label μ to reduce our
index load.

Recall the basic formof the 2DPEPS state:

A A r r

[ ] , (43)

i k
r

i k
r

M( ) ( ) 1M M

M

1 1

1⎡⎣ ⎤⎦


χ

Ω

= ⋯ ⋯ ⋯ ⋯

= ⋯

⋯ ⋯
 

where i k( )M M⋯ are a set of contraction indices dependent on the particular graph structure of the state, and
rM∣ 〉 is basis state at lattice siteM. Aswe have already explained, the contraction can be rewritten as a dynamical
process involving the product of transfer operators generating infinitesimal steps

M l M l M M[ ] ( ) ( ) ( ) (0) . (44)L R
    ω ϵ ϵ ω⋯ = − ⋯ϵ ϵ ϵ ϵ

For clarity, we restrict to afinite set of points x t{( , )}where x runs overNx points, separated by a distance xϵ and
t runs overNt points, in timesteps of ϵ, andwemake explicit all indices.

Oncewe have introduced coherent state resolutions of the identity at each graph point we have at each value
of t a total of 4DNx complex-valued functions to integrate over, coming from

x t x t x t
1

d ( , ) ( , ) ( , ) . (45)
DN

k s x
k s k s x k s k s x k s8

, ,

2
, , , , , , ,

x
∫ ∏

π
ϕ ϕ ϕ⊗ ⊗ = 

Inserting N 1t + such resolutions into (44) gives

( )

x t M t x t

x l x

[ ] d ( , ) ˆ ( ) ( , )

, ( , 0) , (46)

t

l

k s x k s t k s x k s t

L k s l k s R

0

, , , , , ,

, , 0

t t t t t t t t t t

l l 0 0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

 ∫ ∏μ ϕ ϵ ϕ

ω ϕ ϵ ϕ ω

⋯ = ⊗ + ⊗

× +

ϵ

ϵ

ϵ

=

+

+

+

ϵ ϵ ϵ ϵ ϵ

ϵ ϵ

+ + + + +

+ +



with themeasure for the integral given by

x td
1

d ( , ) . (47)
DN N

t

l

k s x
k s t8 ( 1)

0 , ,

2
,

x t

t t t

t t

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∏ ∏μ

π
ϕ=

ϵ

+
=

+

The amplitudes in the integrand of (46) have been calculated in the low-energy sector and in this regimewe
obtain the expression

( ) ( )d e ,
* *x t x t x t x t x t J i m x t R x t x t x y t( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

x t k s t k s k s t k s j
jk

z x z x
jk

z k
jk

j k,
1
2 , , , ,

†
0

† †⎡
⎣⎢

⎤
⎦⎥∫ μ ∑ ϵ ϕ ϕ ϕ ϕ Ψ σ σ σ σ Ψ Ψ Ψ ψ− ∂ − ∂ + ∂ + + ⊗ =μ μ



for the tensor contraction [ ] ⋯ , where thematricesm0 andR are allowed to vary smoothly in both x and t.
We now take the spatial 0xϵ → limit followed by the temporal 0ϵ → limit. However, to keep thingswell-

behaved, wemustfirst rescale the integration variables

x t x t( , )
1

( , ). (48)k s
x

k s, ,ϕ
ϵ

ϕ→
μ μ

Indeed, this rescalingwas to be expected since in order to respect the correct commutation/anti-commutation
relations: in 1 + 1 dimensions we have ak k xΨ ϵ∼μ μ , while in 2+ 1 dimensions we should instead have

ak k x yΨ ϵ ϵ∼μ μ , where xϵ and yϵ are the two spatial lattice scales.

Once this rescaling is performed, wefind in the , 0xϵ ϵ → continuum limit that the resultant cMPS field
state becomes

( )( )e ,k k
x t x t x t x t J m x t R x t x t x y t† d d ( , ) ( , ) ( , ) i ( , ) ( , ) ( , ) ( , )k t k j

jk
z x z x

jk
z k

jk
j k

† †
0

† †⎜ ⎟⎛
⎝

⎞
⎠∫ ∫χ Ψ Ψ Ω= Ψ Ψ Ψ σ σ σ σ Ψ Ψ Ψ ψ− ∂ + ∂ + + =

μ μ
μ μ μ

μ μ
μ μ μ  

andwe obtain awell-defined two-dimensional action.
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5.7. The two-dimensional variational class offield states
Once the rescaling has been performedwemay directly integrate by parts, to obtain the class of two-dimensional
field states

( )( )J m R( , , ) e , (49)k k
x t x t J t m x t x t

0
† d d ( , ) ( ) i ( , ) ( , )j

jk
t

jk
z x z x

jk
z k

†
0∫ ∫χ Ψ Ψ Φ= Ψ δ σ σ σ σ Ψ− ∂ + ∂ +

μ μ
μ

μ μ
μ 

wherewe have introduced the coherent field state
x y x t x t x y t x t x y t( , ) exp[ d d ( ( , ) ( , ) ( , ) ( , ))]† ∫Φ Φ ψ Φ ψ Ω∣ 〉 = = − = ∣ 〉   with

x t R x t x t x t( , ) ( , ) ( , ) ( , )jk
j k
†Φ Ψ Ψ=
μ μ , and there is an implicit sumover μ, j and k.

We have obtained this state through the continuum limit of a PEPS contraction, and so (49) describes a class
offield states that inherits the desirable properties of PEPS, such as entropy/area laws. The general action given
above is not necessarily invariant under SO (1, 1). However, Lorentz symmetry for the field can be achieved for a
subclass of states inwhich J t( ) ijk jkδ= . This allows themomentum terms to respect the desired symmetry and
we obtain

( ( )m R x y t( , ) ¯ e ( , ) , (50)k k
x t m x t x ti d d ¯ i ( , ) ( , )j

jk jk
k∫ ∫χ Ψ Ψ Φ= =Ψ δ Ψ∂−

μ μ
μ μ 

wherewe have also let m mijk jk
0 = − . For the situationwherem is diagonal and constant over the auxiliary

spacetime, the coherent field amplitudes are then recognized asGrassmann/complex number path integrals for
a set of D2 uncoupled Lorentz invariant spinor fields. The spinors have the associated gammamatrices z

0γ σ=
and i y

1γ σ= obeying theClifford algebra relations { , } 2γ γ η=μ ν μν with diag(1, 1)η = −μν . Also for 1μ =
flavor sectorwe also perform a parity transformation on k k

0
1 1

Ψ γ Ψ→ , which is given by z
0γ σ= for the 1 + 1

dimensional case.
Note that, in obtaining this symmetrical state, wewere forced to take bothm0 and J to be purely imaginary,

whichmeans the term H Hh m+ corresponds to a generator of a unitary transformation on the auxiliary system.

In particularU l H l H l( , 0) ( i ( ))( i ( ))ϵ ϵ ϵ= − − − ⋯=  H texp[ i ( )]
l

0
∫− generates the cMPS state, where

H(t) is built out of second-order and fourth-order combinations of creation and annihilation operators for the
auxiliary and systemfields. Furthermore, the distinctively two-dimensional term is the contribution from J(t),
which couples the two spinor degrees of freedom. By setting J t( ) 0= we reduce to a diagonal scenario, of the
same form as obtained for the one-dimensional cMPS.

Of course j ψ̄γ ψ=μ μ is a conserved current for the freeDiracfield, and in particular †Ψ Ψ is its charge
density. Thus, in the case where the auxiliary state hasmanifest Lorentz symmetry, andwhere the different
flavors decouple, we have the appealing interpretation that thematrixR, which is allowed to vary in both x and t,
couples the densities of the different flavors and dynamically generates the physical field state.

Of course, we could nowweaken the conditions and allowmore general J x t( , ) and m x t( , ) to obtain a
Dirac action on a 1+ 1 dimensional spacetimewith non-trivialmetric. To do so in general would additionally
require themodification of the identity term  to include awell-behaved functionT x t( , ). Looking back at the
analysis, the key feature involved in the derivation is that the auxiliary particles have two degrees of internal
freedomand are allowed to hop left or right with some amplitude or remain stationarywhileflipping an internal
(spin) freedom. This is reminiscent of Feynman’s ‘checkerboard derivation’ [10, 29] of theDirac propagator in 1
+ 1 dimensions froma discrete latticemodel. There, an electronmoves along infinitesimal lightlike trajectories,
while jointly flipping direction and spin under a Poisson process with an imaginary rate m1 i . In light of this, it is
not so surprising that we have obtained aDirac-like action in our continuum limit, although for us a key
component is that an expansion in terms of coherent states in the auxiliary time direction either side of an
operator M Htot

 ϵ= +ϵ  generates a Legendre transformation of aHamiltonian H [ , ]tot
 π ϕ . For a coherent

state-expansion, we obtain a Berry-phase term i t
†ϕ ϕ∂ from the coherent state overlapswhich can be taken as

tπ ϕ∂ where i †π ϕ= is themomentum conjugate toϕ.
Another point perhapsworth emphasizing is the physical interpretation of the auxiliary degrees of freedom

that emerge in the preceding analysis. Thismight seem reminiscent of statisticalmechanical settings involving
interacting latticemodels, where the computation of the partition function is often facilitated by the
introduction of auxiliary degrees of freedoms that reduce the computation to non-interacting systems. The
partition function can often be computed through some formof approximation, such as amean-field
assumption ormethod of steepest decent. Such auxiliary fields typically have the interpretation of an effective
local externalfield, or order parameter, which captures the essential local physics of the system.Here, in
contrast, the auxiliary degrees of freedom should not be viewed in the sameway.Weneed not specify the
physical interactions present in order to define the auxiliary system, but instead the auxiliary system acts as an
‘entanglement regulator’, and through the virtual dynamics that sweeps over thewhole system, ensures that the
physical field state automatically obeys entanglement area laws.
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5.8. Analytic continuation to the Euclidean sector
Wenowhave amanifestly Lorentz-invariant auxiliary action, however the resultant physical state for will
have non-trivial entanglement structure in general. As suchwewould like to analytically continue to the
Euclidean sector and arrive at a rotation invariant auxiliary action. For second-order actions we can achieve this
analytic continuation simply via t it→ , but for spinors subtleties arise. This coordinate transformation, when
carried over to the Lorentz transformation, does provide the correct rotation group, butwhen acting on the
spinors themselves results in ψ̄ψ no longer transforming as a scalar. A direct euclideanizing of fermion fields
results in a number of problems, such as a loss of hermiticity within the Euclidean propagator. However, these
difficulties were overcome byOsterwalder and Schrader [23] bymaking use of a construction that involves
fermion doublingwhere the number of degrees of freedom are doubled so that the spinor and conjugate
spinor are independent of each other and transform appropriately under the Lorentz group.However, there
exist alternative approaches to euclideanizing the field that do not require this. Instead of analytically continuing
the coordinates it is possible to analytically continue themetric itself ( )η η θ→μν μν so that it forms a one-
complex-parameter family ofmetrics interpolating between theMinkowski and the Euclidean one [18]. Amore
abstract formulation can be achieved by using vielbeins, but for our purposewework directly with the spacetime
metric.

The appropriatemetric is ( ) (cos 2 cos 2 , 1)η θ θ θ= ∣ ∣ −μν defined for 0 2θ π⩽ ⩽ except for the

singularity at 4θ π= , which can be circumvented via extending θ to be complex. To carry the symmetry group
over we also demand that theClifford Algebra relation { ( ), ( )} 2 ( )γ θ γ θ η θ=μ ν μν  holds for all θ, and introduce
the ( )5γ θ matrix obeying ( ) ( )5

†
5γ θ γ θ= , { ( ), ( )} 05γ θ γ θ =μ and ( )5

2γ θ = . A particular parameterized set of

gamma-matrices [18] that allow the continuation are then given by

( )

( )

i

i

( )

( )
1

cos 2
cos sin

( )
1

cos 2
cos sin , (51)

1 1

0 1 2 0 5

5 1 2 5 0

γ θ γ

γ θ
θ

γ θ γ θ

γ θ
θ

γ θ γ θ

=

= +

= −

where x5γ σ= for our 1+ 1 dimensional case.
This family of gammamatrices obeys the correct anti-commutation relations, andmore importantly,

generates an interpolation from the SO (1, 1)Lorentz transformations to the SO(2) rotations via

( ; ) exp[ ( )]Λ ω θ ω Σ θ= μν
μν , whereω parametrizes the group and ( ) [ ( ), ( )]1

4
Σ θ γ θ γ θ=μν μ ν are its generators.

The intuition behind this choice of parameterization is that to construct scalars under the Lorentz symmetry
SO (1, 1), fermions in the (0, )1

2
representation are contractedwith ones in ( , 0)1

2
, whereas for SO(2)we form

contractionswithin the same representation [30]. Since 5γ is reducible over the different helicities, while 0γ is not,
the intuition is to rotate 0 5γ γ↔ to pass from SO (1, 1) to SO(2).

A one-parameter family of actions, symmetric under this group action, can then be constructed, where
0θ = is the Lorentz-invariant Dirac action and 2θ π= is the desired rotation-invariant Euclidean action. It is

found to take the form

S x m[ , ¯ ; ] d det( ( )) i ( ) ( ) . (52)2 †
0
⎡⎣ ⎤⎦∫ψ ψ θ η θ ψ γ η θ γ θ ψ= − ∂ −μν

μ ν

By inspection, we can see that this action could be obtained as the continuum limit of a one-parameter
family of discrete tensor networks described by M tˆ ( ; )θϵ of the form

M t H H H( ; )
cos

cos 2

sin

cos 2

cos 2

cos 2
( ). (53)y m h int θ θ

θ
σ θ

θ
θ
θ

= − + + +ϵ 

The parametrization of themetric has been transferred to the tensor contraction across the discrete graph,
andwe can smoothly transform from 0θ = to 2θ π= to obtain, in the continuum limit, the rotation-invariant
Euclidean action, and the cMPS class

m R S( , ) exp[ [ , ]] , (54)E
† †∫χ ψ ψ ψ ψ Φ= − 

where S x md (i )(i )E
E E2 †

5∫ ψ γ ψ= ∂ − is the rotation-invariant actionwith iE
5 0γ γ= − , and the flavor indices are

implicit, and are the same as in equation (50).
The above analysis works independent of whetherwe have used bosonicfields or fermionic fields, however

in the latter case it is possible to adopt a related approach that does not require themodification of the gamma
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matrices. Instead theGrassmann spinor x( )ψ and its conjugate x¯ ( )ψ are taken independent of each other, and
instead of workingwith the fullmetric ημν one can analytically continue vielbeins e e ( ) em m miθ δ→ =μ μ

θ
μ and use

these to construct aDirac action in theway onewould for curved spacetimes [38].

5.9. Area lawproperties
The two-dimensional field state χ∣ 〉given by (54) naturally inherits local properties from the discrete state. In
particular, the resultant state is necessarily local in its entanglement structure and obeys an area law. For
example, we could consider afinite regionA of points on the graph described above. For this regionwe can
define its boundary A∂ as the set of points inAwithin a distance ϵ of points not inA, and A∣∂ ∣as the number of
points in this set. For any pure quantum state ABψ∣ 〉 there exists a uniquemeasure of entanglement, namely the
vonNeumann entropy of entanglement, or simply the entanglement entropy, defined as S Tr[ log ]A A Aρ ρ= −
where Aρ is the reduced state on systemA.

For discrete states the dimensionD of the tensor labels within the contraction places an upper bound on the
rank of the reduced state onA. The local definition of the statemeans that only systems in A∂ are entangledwith
the regionB and so the entanglement entropy is upper bounded as S c AA ⩽ ∣∂ ∣where c is a constant dependent
onD. For the continuum limit we need only impose that the regionA is of fixed areawith boundary offixed
length A∣∂ ∣. Since the number of points in A∂ will scale linearly in 1 ϵ, we then deduce that S c AA ϵ⩽ ∣∂ ∣ and so
it is clear that the resultantfield state also obeys an area law.

6.Discussion and conclusions

In this paper we have constructed an abstract class of physically natural quantumfield statesmotivated by
techniques coming from the discrete regime. Central to the construction is a path-integral representation that
wefirst introduce for one-dimensional cMPS states, before extending to higher dimensions. The class was
shown to be complete, in the sense of being able to capture any field state, and efficient in terms of the number of
variational parameters.

The representation allowed us to construct a continuum limit of the PEPS class in two dimensions, and then
impose natural, rotational symmetries through the adjustment of the auxiliary action that defines the field state.
The desired symmetries of the physical states are encoded in the auxiliary dynamics, and to obtain rotation-
invariant states we consider the (imaginary time) evolution of a Lorentz-invariant auxiliary field theory in
(1 1)+ dimensions. To obtain this from first principles we beganwith a discrete PEPS on a particular graph, and
demonstrated that the low-energy sector gave rise to a class of states whichmanifestly included rotation-
invariant states. The continuum limit of the lattice state was shown to produce a doubling offlavors for which
the two sectors can bemade to simply decouple for PEPS data that varies sufficiently slowlywith respect to the
scale of the network. Significantly, this doubling only occurs for the auxiliary degrees of freedomwhile the
physical fields are left unaltered. The rotational invariance of the resultantfield state arises from the symmetries
of an auxiliary spinor action realized as the analytic continuation of a Lorentz-invariant action to imaginary
time. Since PEPS states automatically obey area laws, we immediately deduce that so too do the constructed
quantumfield states.

The one-dimensional cMPS states had been derived in previouswork, and sowe should askwhat is gained by
reformulating it as a path integral. Firstly, we gain conceptual insight into the structure and interpretation of the
continuum states, in particular we have a natural dynamical description for the virtual/auxiliary degrees of
freedom. Secondly, the path integral formulationwas useful in the construction of continuum tensor networks
beyond one spatial dimension. Finally the formulation of an action for the auxiliaryfield systemhas allowed us
to impose symmetries in a natural way. Such constructions aremuch less obvious starting from the alternative
representations for 1-d cMPS.

Beyond the utility in constructing higher dimensional field states, and imposing symmetry, we can question
whether the path integral formulation benefits the computation of physical expectation values. Here the
question is still open, andmorework is required on the topic. Generically PEPS are known to be
computationally intractable, and sowe do not expect that the continuumversionswill be any better. However
approximate techniques are known to exist in the discrete regime, togetherwith classes of efficiently contractible
states. One futuremethodwould involve amodification of the general PEPS construction to one that scales in
nicer ways. For example, one could imagine building up the two or three dimensional PEPS through local
sequential applications of unitaries [3, 26]. It is known that for suchmodels that the computation of local
observables is efficiently contractible. From this the ground-state of an interacting two-dimensional field system
withHamiltonianH could be estimated by first constructing a class of continuumPEPS states thatmanifest
appropriate symmetries, butwith each trial wavefunction constructed solely by local sequential unitaries. To
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determine the ground-state estimate onewould then efficiently compute andminimize H〈 〉over the variational
parameters introduced. The path integral formulation could also benefit from the connectionwith perturbative
methods infield theory. This directionwould involve the perturbative expansion of the auxiliary action in terms
of its interaction terms, andwhichwould in turn lead to variational parameter regions that increase with the
order of perturbation.

LatticeQCDmakes use ofMonte Carlo sampling ofWilson’s Euclidean lattice version of gauge theories, and
has been a remarkably successfulmethod in the computation of the physics of non-perturbative regimes.
Despite this, latticeMonte Carlo sampling has downsides. Firstly there is the infamous sign problem that hinders
application to states with large fermionic densities, and secondly it faces challenges in describing dynamical
scenarios of non-equilibrium systems. Sincewe have constructed a variational class offield states with no
restrictions on the particular statistics of the physical fields, and since variationalmethods evade the sign
problem afflictingMonte Carlo techniques, it would be of interest to see how the cMPS variational class
performs infinite fermion density scenarios. Already there is work [2, 4, 12] on the extension of discreteMPS
states to gauge invariant systems, and therefore it would be of value to connect the present workwith these
discrete constructions.
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Appendix. Continuum limit of the square lattice PEPS

It is useful to spell out what exactly happenswhenwe try to proceed directly from the square lattice PEPS to the
continuum, and show that the resultant state is not rotationally symmetric, but retains features of the underlying
lattice.

Weworkwith a square lattice of points labeled as (x,y) with the sides of the square of length ϵ. To each
vertex there is associated a tensor A ijkl

r
( ) with r the physical index for the resultant state and the remaining four

indices denoting the two directions entering and leaving the point. The indices i j k l, , , take on discrete values

D1 ,... .
We shall find that it is convenient tomake use of the diagonal coordinates u x y( )1

2
= − and v x y( )1

2
= +

to describe the points in the plane. In these coordinates we have points near (x,y). Note that basic translations in
this coordinate system are of the form ( 2, 2)ϵ ϵ± ± . Here v is the auxiliary time direction, while u is the auxiliary
spatial direction.

The basic formof the cMPS state is

( ) ( )A A r r (A.1)
i j k l
r

i j k l
r

N1
N N N N

N

1 1 1 1

1
⎡
⎣⎢

⎤
⎦⎥χ = ⋯ ⋯

where [ · ] denotes contraction over all indices in accordance with the graph.
We quantize the indices k D s a b{1 ,... } and ( , )∈ = , bymapping them to orthonormal states k s,∣ 〉, and

take these index states as orthogonal one particlemodes of a bosonic system k s a, 1k s k s, ,
† Ω∣ 〉 → ∣ 〉 ≔ ∣ 〉 . For

clarity, we can then view these index states as living in aHilbert space u v u v( , ) ( , )a b⊗  , associated to the
lattice point (u,v).We consider v constant= lines, and define

v u v u v( ) ( , ) ( , ), (A.2)u a baux ≔ ⊗ ⊗∈  

where ultimately wewill identify v( )aux and w( )aux for any two times v andw. Also, for simplicity we
consider afixed array of indices B r u v r p q{ ( , ), , ( , ), }= ⋯ ⋯ defined over the 2D square lattice of points.
Graphically, the contraction term is represented as
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ðA:3Þ
where a contraction cut has beenmade along the v = constant line. Lines with arrows correspond to
uncontracted indices, with right/up-pointing ones corresponding to bra-indices and left/down-pointing ones
corresponding to ket-indices. The state of the auxiliary system at anyfixed timestep is taken along similar
diagonal lines, with boundary states Lω∣ 〉 and Rω∣ 〉 as shown.

A.1. The contraction as an inner product
For any fixed diagonal v v0= we can split the tensor contraction C [ ]⋯ into two parts andwrite the result as an

inner product v v B[ ] ( ) ( ) ( )L R
0 0ω ω⋯ = 〈 ∣ 〉

Where v( )L
0ω〈 ∣denotes a ‘forward pointing’ tensor and v( )R

0ω∣ 〉denotes a ‘backward pointing’ tensor (see
figure A.3). Furthermore, we have that

v v

v v

( ) ( ),

( ) ( ). (A.4)

R

L

0 aux 0

0 aux
* 0

ω
ω

∈
∈




Wecapture the dependence of [ ]⋯ on A ijkl
r

( ) bywriting rv U v v( ) [ ( )] ( )R R
0 0 1ω ω∣ 〉 = ∣ 〉. Herewe have

advanced the cut from v v0= to v v 20 ϵ= + and have the new ‘frontier’ vector v v( ) ( 2)R
1 aux 0ω ϵ∣ 〉 ∈ +

and a transition operator

rU v v v[ ( )]: ( 2) ( ), (A.5)0 aux 0 aux 0ϵ+ → 
being a linear operator that describes the advancing contraction cut (or equivalently the infinitesimal evolution
of the state v( )R

1ω∣ 〉), and r v r v r v( ) ( ( ), ( ) ,...)0 1 0 2 0= denotes a list of physical indices along the v v0= timeslice.

The operator rU v[ ( )]0 is a string of tensor terms built from an operator M (different from the M defined in
the paper). In particular

rU v M r v M r v M r v[ ( )] [ [ ( )] [ ( )] [ ( )] ], (A.6)0 1 0 2 0 3 0  = ⊗ ⊗ ⋯

where crucially, M r v[ ( )]u 0
 is amapping between theHilbert spaces

M r v u v u v u v u v[ ( )]: ( 2, 2) ( 2, 2) ( , ) ( , ),u a b a b0 0 0 0 0 ϵ ϵ ϵ ϵ+ + ⊗ − + → ⊗   
and is given in terms of the PEPS tensors as

M r v A j kl[ ( )] i . (A.7)u ijkl
r v

0 ( )
( )u 0 = +

Wemay iterate this expansion of v( )R
0ω∣ 〉 to obtain the expression

r r r r rv U v U v U v U v U v v[ ] ( ) [ ( )] [ ( )] [ ( )] [ ( )] [ ( )] ( ) ,L
N

R
N0 0 1 2 2ω ω⋯ = ⋯

where v v n 2n 0 ϵ= + .

A.2. Construction of the path integral
Weassume that at each point (u, v) on the square lattice we have the index state space u v u v( , ) ( , )a b⊗  , and
the resolution of the identity operator for this space u v( , ) given by
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u v u v
1

d ( , ) ( , ) , (A.8)u v D
k s

k s k s k s k s k s( , ) 2
,

2
, , , , ,∫ ∏

π
ϕ ϕ ϕ= ⊗ ⊗

where a a Dexp[ ˆ ˆ ] ( )k s k s k s k s k s k s B, , ,
†

,
* , ,ϕ ϕ ϕ Ω ϕ Ω∣ 〉 = − ∣ 〉 = ∣ 〉 .We also have the identity operator for v( )aux as

v u u v( ) ( , )= ⊗  . Here, we do not consider a single tensor product ofHilbert spaces at every point on the lattice,
but instead view things ‘dynamically’ as a tensor product defined along a line v = constant, and so operators like

rU v( ( )) and v are linearmappings from v( )aux to v( 2)aux ϵ+ .
To construct the path integral, we beginwith

r r r r rv U v U v U v U v U v v[ ] ( ) [ ( )] [ ( )] [ ( )] [ ( )] [ ( )] ( )L
N

R
N0 0 1 2 2ω ω⋯ = ⋯

and as before, we insert a resolution of the identity either side ofU r v[ ( )]. That is, we consider
rU v[ ( )]v v( 2) ( )ϵ+  . This provides uswith amplitudes

)u v u v M r v u v u v( , ) ( , ) [ ( )] 2, 2 ( 2, 2) .i i a j j b u k k a l l b, , , ,ϕ ϕ ϕ ϵ ϵ ϕ ϵ ϵ⊗ ⊗ ⊗ ⊗ + + ⊗ − +

The central amplitude is then

u v u v u v u v

A u v u v

u v u v

( , ) ( 2, 2) ( , ) ( 2, 2) .

( , ) 1 ( , ) 1

1 ( 2, 2) 1 ( 2, 2) .

k k a k k a j j b j j b

ik jl
r v

i i a i a j j b j b

k a k a l b l b

, , , ,

( ; )
( )

, , , ,

, , , ,

u

ϕ ϕ ϵ ϵ ϕ ϕ ϵ ϵ

ϕ ϕ

ϕ ϵ ϵ ϕ ϵ ϵ

⊗ ⊗ + + ⊗ ⊗ − +

+ ⊗ ⊗

× ⊗ + + ⊗ − +

From the formula for the overlap of coherent states, the identity term gives the amplitude

( )( )
A u v u v u v u v

exp 4 ( ) ( ) ( ) ( )

( , ) 1 ( , ) 1 1 ( 2, 2) 1 ( 2, 2)

k a u v k a k b u v k b k a u v k a k b u v k b

ik jl
r v

i a i a j b j b k a k a l b l b

, ,
*

, ,
*

,
*

, ,
*

,

( ; )
( )

, , , , , , , ,
u

⎡⎣ ⎤⎦ϵ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϵ ϵ ϕ ϵ ϵ

− ∂ + ∂ + −∂ + ∂ − ∂ + ∂ + −∂ + ∂

+ + + − +

which can be expressedmore compactly by defining ( , )k k a k b, ,Ψ ϕ ϕ≔ , to give

( )
A u v u v u v u v

exp
4

( ) ( ) ( ) ( )

( , ) 1 ( , ) 1 1 ( 2, 2) 1 ( 2, 2)

k z u v k k z u v k

ik jl
r v

i a i a j b j b k a k a l b l b

† * †

( ; )
( )

, , , , , , , ,
u

⎡
⎣⎢

⎤
⎦⎥

ϵ Ψ σ Ψ Ψ σ Ψ

ϕ ϕ ϕ ϵ ϵ ϕ ϵ ϵ

− ∂ + ∂ − ∂ + ∂

+ + + − +

 

Note that transforming to the original coordinates, x u v= + and y v u= − we then have the first term
contributing the amplitude

( )Sexp i , * exp
4

· · , (A.9)k
T

k k k* †⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥δ Ψ Ψ ϵ Ψ Ψ Ψ Ψ≡ − − 

defining an action S in either the (u, v) coordinates or in the original (x, y) coordinate system. It is clear that this
action is not rotationally invariant. This is not particular to PEPS states, but would generically be expected from a
continuumconstruction based on an underlying regular lattice.

The above term is for the identity contribution inU. A particular TNS on the square lattice is described by
A{ }ijkl

r , and so by following the above prescription, we can create the appropriate operators within the one-
particle sector of the Fock space.

A simple and natural candidate is to take M̂ of the form

M Q u v a b Q u v b bˆ ( ( , ) ˆ ˆ ( , ) ˆ ˆ )a
ij

i j b a b
ij

i j2
† †

= + ⊗ + ⊗ϵ
   , where for example a b,j k are single particle

annihilation operators formode-j in a andmode-k in b , and Q u v{ ( , )}ij
i j, ,α α is a set of functions defined over

the lattice points. The interpretation of thisQ-term is that it generates scattering of particles within the internal
bond degrees of freedom,without any scattering in the spatial degrees of freedom.

Then for example, if we assume Q Q u v( , )ij =α we automatically obtain the term

( )Q u v Q u v
2

( , )
2

( , ) , (A.10)
i

a i b i,

2

,

2 †∑ϵ ϕ ϕ ϵ Ψ Ψ+ =

in the auxiliary system action after the above expansion in terms of coherent field states.
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Of course other options exist for the local contractions. For example, we can considermixing the spatial
modeswith a term such as

( )( )( )

M u v R a a

R a b a b

ˆ ( , ) ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ , (A.11)

IJ
I J

i i j j
i i j j

†

( , ) † †a b a b
a b a b

ϵ

ϵ

= +

= + ⊗ ⊗





where R u vˆ ( , )
IJ

can be taken to be a creation operator for particles in the physical field state. Clearly the addition
of such a term generates quartic terms in the action of ( , )a bϕ ϕ .

The above analysis provides uswith an amplitude contribution along a spatial slice, however to then sum
over the auxiliary time and obtain the full amplitude requires a re-scaling of the field. The result of this is to yield
an action

S x y Q x yd d
1

2
( · ( , ) ). (A.12)k k

† †∫ Ψ Ψ Ψ Ψ= −

Wehave shown the explicit details of this rescaling in section (5.6), but there for the case of the rotationally
invariant action.
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