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ABSTRACT

We present a numerical approach for the accurate simulation of the complex propagation dynamics of ultrashort
optical pulses in nonlinear waveguides, especially valid for few-cycle pulses. The propagation models are derived
for the analytical signal, which includes the real optical field, exempt from the commonly adopted slowly varying
envelope approximation. As technical basis for the representation of the medium dispersion we use rational Padé
approximants instead of commonly employed high-order polynomial expansions. The implementation of the
propagation equation is based on the Runge-Kutta in the interaction picture method. In addition, our modular
approach easily allows to incorporate a Raman response and dispersion in the nonlinear term. As exemplary
use-cases we illustrate our numerical approach for the simulation of a few-cycle pulse at various center frequencies
for an exemplary photonic crystal fiber and demonstrate the collision of a soliton and two different dispersive
waves mediated by their group-velocity event horizon.

Keywords: Unidirectional field propagation, analytic signal, solitons, barrier scattering

1. INTRODUCTION

In this contribution we illustrate a numerical approach for the accurate simulation of the complex propagation
dynamics of ultrashort optical pulses in nonlinear waveguides, especially valid for few-cycle pulses. The underlying
propagation models are derived in terms of the analytical signal (AS) for the real optical field.1, 2 They are exempt
from the commonly adopted slowly varying envelope approximation but feature as prominent limiting case the
envelope-based generalized nonlinear Schrödinger equation (GNLSE) with all usual effects.3 In addition, it is
easy to amend the discussed propagation model to also feature a delayed Raman response.4 Subsequently we
will particularly focus on the simplified forward model for the analytic signal (sFMAS), i.e. an unidirectional
propagation equation that holds dispersion also in the nonlinear term. Among other applications, the considered
propagation models have been used to illustrate a two-pulse collision scheme for the generation of supercontinuum
(SC) spectra based on pulse reshaping at an intensity induced refractive index barrier,4 and revealing a soliton
implosion phenomenon only observable in terms of a few cycle description5 for which the AS approach is especially
suited.

As discussed in some detail below, the technical basis for the representation of the material dispersion is
given by rational Padé approximants6 instead of the commonly employed high-order polynomial expansions,
and the implementation of the propagation equation is based on an integrating factor solver7 adapted to the
sFMAS. Both design choices assist to ameliorate the stiffness of the linear part of the model equation and allow
for adequate evolution of the field up to large propagation distances.

As exemplary use-cases we consider: (i) the propagation of a few-cycle pulse including the Kerr effect and
a delayed Raman response at various center frequencies for the refractive index profile of an “endlessly single
mode”8, 9 (ESM) photonic crystal fiber (PCF), and, (ii) the subsequent encounter of a soliton and two weak
dispersive waves, i.e. demonstrating a scattering process involving three different center frequencies. In the latter
setup, the collision process is mediated by a group velocity event horizon that forms through the nonlinear Kerr
effect that accompanies the propagating light pulses and allows them to engage in an interaction.10–12 In such
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a setting, the nonlinear reflection of a comparatively weak probe pulse on a soliton pulse triggered a sequence
of studies that aimed at providing a means of light control based on the concept of the optical group velocity
horizon.4, 13–16

The article is organized as follows: section 2 illustrates the propagation model and specifies the sFMAS,
section 3 discusses the construction of the discrete AS, and section 4 summarizes the use-cases utilizing the ESM
PCF. Finally, section 5 concludes with a summary.

2. THE SIMPLIFIED FORWARD MODEL FOR THE ANALYTIC SIGNAL

More than half a century ago the analytic signal was formally introduced by Gábor as a mathematical tool to
analyze the information content of signals with application to communication engineering and, in particular,
acoustics.17 While Gábor noted “. . . in physical acoustics a new formal approach to old problems cannot be
expected to reveal much that is not already known . . .”,18 the introduction of the AS to time-frequency signal
analysis,19 and, as discussed here, to the field of computational photonics bears great potential. Subsequently
we illustrate a set of models for ultrashort pulse propagation via first-order propagation equations derived in
terms of the AS E(z, t) for the real optical field E(z, t). In this regard it is most instructive to approach the
problem in the spectral domain where the Fourier-transform Ê(z, ω) = F [E ](z, ω) of the AS is related to the
Fourier-transform Ê(z, ω) = F [E](z, ω) of the real optical field through1, 15

Ê(z, ω) = [1 + sgn(ω)] Ê(z, ω). (1)

This readily demonstrates the characteristic property of the AS: it has a one-sided spectral definition, implying
Ê = 0 for ω < 0. For a detailed discussion of the subtleties involved in obtaining the AS in the time domain or
the discrete case, where the latter is important when it comes to devising a numerical algorithm, see section 3
below. For the scalar second order nonlinear wave equation for the real electric field the AS naturally facilitates
a separation of forward and backward propagating waves in the spectral domain, allowing to derive a set of first
order nonlinear propagation equations that all match the pattern1

i∂zÊ = −cL(ω)Ê − cN (ω)N(E). (2)

By adjusting the nonlinear function N(E) as well as the coefficient functions cL(ω) and cN (ω) for the linear and
nonlinear parts, Eq. (2) allows to simulate pulse propagation at a desired level of complexity. Subsequently we
consider the simplified forward model for the analytic signal including the Raman effect (sFMAS-RA), specified
by letting15

cL(ω) = [β(ω)− ω/v0],

cN(ω) = n2ω/c0,

N(E) = F [(1− fR)|E|2E + fRE ĥ|E|2]ω>0.


 sFMAS-RA (3)

Therein, cL(ω) signifies a modified propagation profile at reference velocity v0, c0 is the speed of light, and n2

refers to the index of nonlinear refraction. The propagation profile is related to the medium refractive index
n(ω) via β(ω) = ω Re[n(ω)]/c0. Further, fR denotes the fractional contribution of delayed Raman response,

and ĥ signifies convolution with a suitable Raman response function. Here, for our numerical experiments we
consider an elaborate response function implementing the intermediate broadening model.20 For other choices
and the level of complexity they entail, see appendix A. From a point of view of scientific software development,
there are additional design choices that must be made in order to devise a numerical procedure for the above
model system. These address the representation of the medium dispersion by a proper data structure and the
propagation routine used to advance the AS.

2.1 Modeling the medium refractive index

For our numerical experiments we opt for an implementation of the medium refractive index via a Padé-
approximant of order m = 4 and n = 4, given by

n(ω) =

∑4
n=0 pnω

n

1 +
∑4

m=1 qmωm
, (4)
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Figure 1. Illustration of (a) the group velocity vG(ω) ≡ β−1
1 (ω), and (b) the group velocity dispersion β2(ω) of the ESM

PCF used for our numerical experiments. In both subplots the shaded area indicates the region of normal dispersion ΩND

(white background color indicates the region of anomalous dispersion ΩAD).

with numerator and denominator coefficient sequences p = (16.9, 0.0,−319.1, 0.0, 34.8, 0.0,−0.99, 0.0, 0.001) and
q = (1.0, 0.0,−702.7, 0.0, 78.3, 0.0,−2.34, 0.0, 0.006), respectively, wherein the coefficients of order n have dimen-
sion fsn. The above refractive index models the ESM9 nonlinear photonic crystal fiber (PCF) and features a zero
dispersion frequency at ωZDW ≈ 1.741 rad/fs, separating the regimes of anomalous dispersion (for ω < ωZDW;
referred to as ΩAD) and normal dispersion (for ω > ωZDW; referred to as ΩND). Such a rational approximation
of the medium refractive index allows to consider multiple pulses at different well separated center frequencies
in a straight forward manner, see, e.g., section 4.2 below, and results in a more adequate approximation over a
broad range of frequencies.6 It thus assists in overcoming the limitations of usual envelope-models that rely on
a simple polynomial expansion of n(ω) in the vicinity of a chosen reference frequency21 and comprises a crucial
ingredient to general propagation equations.

2.2 Evolving the analytic signal

For the propagation of an initial AS E0(t) ≡ E(t, z = 0) we employ an integrating factor method7 that extends the
idea underlying the popular GNLSE native “Runge-Kutta in the interaction picture method”22 to the propagation
equation Eq. (2). The implementation of the above numerical scheme follows a pseudospectral approach, wherein
only the evaluation of the nonlinear functionN(E) is performed in the time domain. We further employ dealiasing
to prevent numerical artifacts. Specific initial conditions studied for the ESM profile are detailed in section 4
below. During our numerical experiments we monitored conservation laws given by the period averaged energy
and photon flux

E(z) =
∑
ω>0

c0n(ω)
ε0|Ê(z, ω)|2

2
, and (5)

N(z) =
∑
ω>0

c0n(ω)

ω

ε0|Ê(z, ω)|2
2

, (6)

respectively.

3. GENERATION OF THE DISCRETE-TIME ANALYTIC SIGNAL

As pointed out above, the AS signifies an advantageous tool that allows for a consistent description of ultra-
short pulse propagation. While the application of the AS in a continuous setting is rather intuitive, its proper
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application to a discretized setting in terms of a numerical method requires some care. To illustrate this, we
start by reviewing the key properties of the AS in the continuous case and subsequently allude to the problem
of obtaining a discrete AS.

3.1 Properties of the continuous analytic signal

Consider a real valued electric field E(t), t ∈ R, and its continuous-time Fourier-transform Ê(ω), ω ∈ R, both
related by the transform pair E(t) = F−1[Ê](t) and Ê(ω) = F [E](ω), wherein F [·] and F−1[·] denote the forward
and inverse Fourier transforms, respectively. If E(t) exhibits special properties, Ê(ω) reflects this. E.g., since E(t)
is unbounded with respect to t, Ê(ω) is continuous. Further, since E(t) is real valued, Ê(ω) is complex conjugate
symmetric, i.e. Ê(−ω) = Ê∗(ω). In the time-domain, the continuous-time analytic signal E(t) corresponding to
E(t) is defined by the composition19

E(t) = E(t) + iH[E](t), (7)

wherein H[E](t) signifies the Hilbert transform

H[E](t) = − 1

π
lim
ε→0

∫ ∞

ε

E(t+ τ)− E(t− τ)

τ
dτ. (8)

Being of complex type, the AS might also be expressed as E(t) = |E(t)| exp{iφ(t)}, wherein |E(t)| and φ(t) denote
the envelope and the instantaneous phase of the AS, respectively. The significance of the Hilbert transform must
not be underestimated: it serves the generation of the AS and its action under Fourier transform23

F [H[E]](ω) = −i sgn(ω)F [E](ω) (9)

allows the AS in the frequency domain to assume a much more appealing form. I.e., in effect the action of
the Hilbert transform consists in multiplying the Fourier-transform of its argument by the multiplier −i sgn(ω),
corresponding to a phase shift of −π/2 for positive frequencies and π/2 for negative frequencies. Likewise, the
term iH[E](t) leaves the positive frequency components unaltered and shifts the negative ones by π. Hence,
it does not come as a surprise that the Fourier-transform Ê(ω) of the AS can be cast into the form of Eq. (1),
demonstrating that the spectrum of the AS is related to the spectrum of the real electric field alone. In contrast,
the construction of the time-domain AS requires an additional integration according to Eq. (7).17 In particular,
Eq. (1) displays that in case of a continuous-time real signal one can give a simple two-step recipe to obtain
the frequency domain representation of the AS: “Suppress the amplitudes belonging to negative frequencies, and
multiply the amplitudes of positive frequencies by two.” as Gábor summarized.17

A related problem, important from a point of view of devising reliable algorithms for the generation of
the AS, is to test whether a function f(t) indeed represents an AS. Therefore, Eqs. (7) and (1) imply two
distinct properties of the AS that are ideally suited as unit-tests for appropriate software components: (i) if f(t)
represents the analytic signal corresponding to a real-valued function g(t), then g(t) = Re[f(t)], and, (ii) due to
the orthogonality between the real and imaginary parts of f(t) imposed by the action of the Hilbert transform
underlying the definition of Im[f(t)], we are led to expect that

∫∞
−∞ Re[f(t)] Im[f(t)] dt = 0.

3.2 Obtaining a proper discrete analytic signal

In the preceding subsection, a general recipe for obtaining a continuous-time frequency-domain AS was discussed.
While this is fine in the realm of a continuous mathematical model, it fails in case of a discrete and bounded
computational domain that accompanies any practical numerical solution procedure.24 As a consequence, in
a discretized setting the amplitudes of the AS frequency components need to be altered slightly. To specify
how, consider a discrete real signal E(n) = E(tn), sampled at, say, equidistant mesh points tn = t0 + n∆t
with n = 0, . . . , N − 1 on a 1D grid, and its discrete-time Fourier transform (DTFT) Ê(m) = Ê(ωm), with
ωm = 2πm/(N∆t). Then, a proper discrete AS in the frequency domain is obtained by setting

Ê(m) =



Ê(m), for m = 0, N/2

2Ê(m), for 1 ≤ m ≤ N/2− 1

0, for N/2 + 1 ≤ m ≤ N − 1

(10)
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Figure 2. Evolution of the AS for a τ = 7 fs soliton pulse of order N = 8 at a central frequency ω = 1.7 rad/fs in ΩAD.
(a) from top to bottom: normalized squared modulus of the AS at the propagation distance z = 0.12m and evolution of
the AS in the time domain. (b) from top to bottom: normalized squared modulus spectrum of the AS at z = 0.12m and
its evolution. (c) cross-correlation XFROG-traces of signals at selected propagation distances z.

and its time domain representation can be found from the inverse DTFT. As evident from Eq. (10), the frequencies
at m = 0 and N/2 assume a distinguished role. This can be attributed to the requirement of the DTFT of Im[E ]
to be a periodic and odd function.24 While it is straightforward to see that the above prescription suppresses
negative frequency components, it is not immediately obvious that it yields a proper AS. As a remedy, the
unit-tests pointed out earlier can be used to verify Eq. (10). They further spot the inadequacy of the continuous
recipe Eq. (1) if erroneously applied to the discrete setting.

Note that Python’s25 Scipy26 library offers a mapping of the above discrete AS recipe to a software imple-
mentation, employing the above frequency-domain approach. In the Scipy ecosystem, the respective function is
located in the submodule signal and is available as scipy.signal.hilbert∗

4. EXEMPLARY APPLICATIONS

Subsequently, so as to illustrate an application of the propagation models based on evolving the AS, we present
two use-cases that accentuate different challenges for any propagation approach. In subsection 4.1 we illustrate
the propagation of a short, few-cycle pulse over an extended z-range, and, in subsection 4.2 we demonstrate the
propagation of an initial condition that involves several pulses at different center frequencies.

4.1 Propagation of an intense few-cycle pulse

As first use-case we consider an initial condition consisting of a single soliton with duration τ = 7 fs (≈ 3.8
cycles) and soliton order Ns = 8, prepared at the three different center frequencies ω = 1.7, 1.741, and, 2.5 rad/fs

∗Albeit the function is referred to as hilbert it allows to obtain the discrete analytic signal for a real-valued discrete
input array.

Proc. of SPIE Vol. 10694  106940M-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/10/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1 11
0.0 0.2 0.4

Time t (ps)

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

pa
ga

tio
n

di
st

an
ce

z
(m

)

|E|2

1 2 3

Frequency
ω (rad/fs)

|Eω|2
0.0

0.5

1.0

(a)

|E|2

10−5
10−3
10−1

(b)

|Eω|2

1

2

3

z = 0.12m

(c)

0 1 2 3

Delay τ (ps)

1

2

3

A
ng

ul
ar

fr
eq

ue
nc

y
ω

(r
a
d
/
fs
)

z = 0.00m

IXFROG

ΩAD

ΩND

ωZDW

10−5

10−3

10−1

Figure 3. Evolution of the AS for a τ = 7 fs soliton pulse of order N = 8 at the zero-dispersion frequency ωZDW ≈
1.741 rad/fs. (a) from top to bottom: normalized squared modulus of the AS at the propagation distance z = 0.12m and
evolution of the AS in the time domain. (b) from top to bottom: normalized squared modulus spectrum of the AS at
z = 0.12m and its evolution. (c) cross-correlation XFROG-traces of signals at selected propagation distances z.

with a dynamics governed by the propagation profile of the ESM PCF discussed above. The evolution of the
corresponding initial condition is monitored in a co-moving frame of reference at speed v0 = vG(ω). As initial
electric field we use

E(z = 0, t) = Re
[
Ψ0 sech(t/τ)e

−iωt
]
, (11)

with Ψ0 determined by the condition Ψ2
0 = N2

s c0n2|β2(ω)|/(τ2ω). To facilitate a propagation using the sFMAS-
RA, we obtain the AS for the above initial condition following Eq. (10). The computational domain is restricted
to the interval |t| < 4 ps using Nt = 214 equidistant mesh points. In all simulations reported below we set
n2 = 3 · 10−8 µm2/W and fR = 0.18, i.e. the values for fused silica fibers.21

The propagation of the AS for the above three parameter settings are summarized in Figs. 2-4. So as to
assist in disentangling the time-frequency relationships of the propagating analytic signal, we complement its
temporal and spectral evolution via cross-correlation XFROG traces, see appendix B. The evolution of the AS
for ω = 1.7 rad/fs, i.e. in the region of anomalous dispersion, is illustrated in Fig. 2. As can be seen from the
figure, the close proximity of the central frequency to the onset of the region of normal dispersion causes much
of the available energy to convert to radiation. As a consequence, only a single soliton emerges from the initial
condition upon propagation. This behavior is distinct from the usual soliton fission process, where, depending
on the input soliton order Ns, the initial pulse breaks up into several fundamental solitons that subsequently
experience self-frequency shifts that are characteristic for their individual temporal duration and propagation in
presence of Raman scattering. Also note the interaction of the continuously decelerating soliton with dispersive
waves in the frequency range ω = 2.5-3.2 rad/fs in ΩND.

27 The propagation dynamics right at the zero-dispersion
frequency is shown in Fig. 3. Therein, the characteristics of the underlying refractive index profile in the vicinity
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Figure 4. Evolution of the AS for a τ = 7 fs soliton pulse of order N = 8 at a central frequency ω = 2.5 rad/fs deep in ΩND.
(a) from top to bottom: normalized squared modulus of the AS at the propagation distance z = 0.017m and evolution
of the AS in the time domain. (b) from top to bottom: normalized squared modulus spectrum of the AS at z = 0.017m
and its evolution. (c) cross-correlation XFROG-traces of signals at selected propagation distances z.

of ωZDW and the large spectral width of the 7 fs pulse cause the strong distortion of the profile at positive time
delays. Finally, Fig. 4 summarizes the evolution of the initial condition deep in the region of normal dispersion
at ω = 2.5 fs. As evident from the propagation of the squared magnitude of the AS in the time domain and
the XFROG traces, a steep shock front in the leading part of the pulse is formed. However, note that due to
the subtleties of the underlying refractive index profile and the distance of the center frequency to the onset of
anomalous dispersion, no soliton is ignited.

4.2 Collision of a soliton with two dispersive waves

As second use-case we consider the collision of a soliton (S) and two dispersive waves (DW1 and DW2) at two
different center-frequencies in the collinear setup DW2-DW1-S. Initially, S has center frequency ωS = 1.5 rad/fs
and duration τS = 20 fs, and is initially at rest in a co-moving frame of reference at speed v0 = vG(ωS) =
0.20427µm/fs. The dispersive waves are characterized by ωDW1 = 2.06 rad/fs, injected with a time advance of
∆t1 = 500 fs, and, ωDW2 = 2.05 rad/fs, injected with a time advance of ∆t1 = 1000 fs. Both DWs have duration
τ = 60 fs and amplitude ratio 0.3 relative to S. As initial electric field we thus use

E(z = 0, t) = Re

[
ΨS sech

(
t

τS

)
e−iωSt +ΨDW1 sech

(
t+∆t1
τDW1

)
e−iωDW1t +ΨDW2 sech

(
t+∆t2
τDW2

)
e−iωDW2t

]
,

(12)

with ΨS and ΨDW1 = ΨDW2 = 0.3ΨS determined by the condition Ψ2
S = c0n2|β2(ωS)|/(τ2SωS) for a fundamental

soliton. Again, we obtain the initial AS by using Eq. (10). The computational domain is restricted to the interval
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Figure 5. Scattering process of a soliton (S) and two dispersive waves (DWs) in the collinear setup DW2-DW1-S. The
soliton initially propagates with a center frequency ωS = 1.5 rad/fs and has an initial duration of τS = 20 fs. The dispersive
waves are characterized by ωDW1 = 2.06 rad/fs, injected with a time advance of ∆t1 = 500 fs, and, ωDW2 = 2.05 rad/fs,
injected with a time advance of ∆t1 = 1000 fs. Both DWs have duration τ = 60 fs and amplitude ratio 0.3 relative to S.
(a) squared modulus of the analytic signal in the time domain, (b) squared modulus spectrum of the analytic signal, and,
(c) cross-correlation XFROG-traces of signals at selected propagation distances z.

|t| < 8 ps using Nt = 215 equidistant mesh points. For our numerical experiment we used n2 = 3 · 10−8 µm2/W
and neglected the Raman effect.

Note that under the propagation profile of the ESM, a dispersive wave is initially group velocity matched
to S at ω′ ≈ 2.019 rad/fs, see Fig. 1(a). A dispersive wave prepared at a center frequency ωDW > ω′ is
initially slower than S. Hence, the ESM exhibits a convex group velocity profile, a central feature required for the
creation of a group velocity event horizon supporting the above collision process.14 Also note that the underlying
propagation equation does not rely on the introduction of a specific carrier frequency. Especially in a setting
comprising several pulses at different center frequencies, introduction of such a carrier frequency represents a
severe constraint restricting the applicability of naive propagation models.

The intricate dynamics of the above setup is summarized in Fig. 5. As evident from the time evolution of
the initial condition shown in Fig. 5(a), S catches up with DW1 and engages in an interaction that results in
a partial reflection of DW1 and an acceleration of both pulses.15 Depending on the group velocity mismatch
between both, the center frequency of the reflected part of DW1 experiences a frequency down-conversion,
see Fig. 5(b), accompanied by an increase of its group velocity. As a consequence, the center frequency of S
necessarily increases to obey conservation of the photon flux, in the frequency domain expressed as N(z) =∑

ω>0 c0ε0(2ω)
−1n(ω)|Eω(z)|2 = const.1 In effect, the soliton reacts to the scattering event by adjusting its

center frequency and temporal width to conform to a global energy and momentum conservation constraint.
This above process is repeated upon the mutual encounter of S and DW2. In summary, the center frequency of
S increases from its initial value ωS = 1.5 rad/fs to ω′

S = 1.55 rad/fs above the propagation distance z = 2m.
This corresponds to an increase of its group velocity from v0 = 0.20427µm/fs to vfin = 0.20430µm/fs. Also, its
width decreases from τS = 20 fs to τ ′S = 14.2 fs. Finally, note the appearance of small oscillations in the soliton
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width in both, time and frequency domain. These are a result of the spectral recoil experienced by S whenever
its center frequency comes too close to ωZDW.28

5. SUMMARY

We illustrated a numerical approach for the accurate simulation of the complex propagation dynamics of ultra-
short optical pulses based on the analytic signal for the real optical field. The underlying propagation models
are exempt from the commonly adopted slowly varying envelope approximation and are also valid in cases where
the considered field pulses might consist of few cycles only.

As exemplary use-cases we considered the propagation of a short 7 fs pulse in terms of the simplified forward
model for the analytic signal including the Raman effect and illustrated the propagation characteristics of the
AS for different choices of the pulse center frequency for the propagation profile of an ESM PCF. In addition we
revisited a scattering process involving a soliton and multiple dispersive waves29 in which the intricate collision
dynamics is mediated by a group velocity event horizon that forms through the nonlinear Kerr effect that
accompanies the propagating light pulses.

APPENDIX A. PROPAGATION MODELS FOR THE ANALYTIC SIGNAL

Adjusting the nonlinear function N(E) as well as the coefficient functions cL(ω) and cN (ω) for the linear and
nonlinear part of Eq. (2) allows to specify different propagation models for the AS. E.g. the forward model for
the AS (FMAS), featuring dispersion in the nonlinear part, might be obtained by letting6

cL(ω) = [β(ω)− ω/v0],

cN(ω) = 3ω2χ/(8c20β(ω)),

N(E) = F [|E|2E ]ω>0.


 FMAS (13)

with cL(ω) signifying a modified propagation profile at the reference velocity v0, c0 the speed of light, and χ
indicating the nonlinear susceptibility. A simplified variant of the forward model for the AS, termed sFMAS,
might be obtained by setting15

cL(ω) = [β(ω)− ω/v0],

cN(ω) = n2ω/c0,

N(E) = F [|E|2E ]ω>0,


 sFMAS (14)

wherein n2 refers to the index of nonlinear refraction. Amending N(E) in the definition of the sFMAS above by
a suitable delayed Raman response function yields the propagation model detailed in section 2.

APPENDIX B. CALCULATION OF XFROG TRACES

As a numerical tool allowing to disentangle the time-frequency composition of the analytic signal upon propa-
gation, we employ an XFROG analysis.30 Therefore, a spectrally resolved crosscorrelation of the analytic signal
E(z, t) is computed employing a short time Fourier transform via a Gaussian window function Eref(t), centered
at t and having root mean square width σ. The respective squared magnitude

IXFROG(z, ω, τ) =

∣∣∣∣
∫ ∞

−∞
E(z, t)Eref(t− τ) exp{iωt} dt

∣∣∣∣
2

, (15)

wherein τ refers to the delay of the reference signal Eref relative to the test pulse E , yields the XFROG trace at
a given propagation distance z. In any such analysis, the width σ of the reference pulse needs to be adjusted so
as to yield a reasonable tradeoff between delay-time and frequency resolution. Here, we used the fixed value of
σ = 50 fs in all our analyses.
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