Physics Letters B 784 (2018) 137-141

Contents lists available at ScienceDirect

PHYSICS LETTERS B

Physics Letters B

www.elsevier.com/locate/physletb

L))

Check for
updates

N-extended supersymmetric Calogero models

Sergey Krivonos*”, Olaf Lechtenfeld “*, Anton Sutulin?

@ Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia
b St Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 27 Fontanka, St. Petersburg, Russia
¢ Institut fiir Theoretische Physik and Riemann Center for Geometry and Physics, Leibniz Universitidt Hannover, Appelstrasse 2, D-30167 Hannover, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 17 May 2018

Received in revised form 4 July 2018
Accepted 20 July 2018

We propose a new A -extended supersymmetric su(n) spin-Calogero model. Employing a generalized
Hamiltonian reduction adopted to the supersymmetric case, we explicitly construct a novel rational
n-particle Calogero model with an arbitrary even number of supersymmetries. It features N'n® rather
than N'n fermionic coordinates and increasingly high fermionic powers in the supercharges and the
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1. Introduction

The original rational Calogero model of n interacting identical
particles on a line [1], pertaining to the roots of A1 & A;,—1 and
given by the classical Hamiltonian

1¢ 1
H=3) pitg) —
i—1 iz (xi=x])
has often been the subject of “supersymmetrization”. In this en-
deavor, extended supersymmetry has turned out to be surprisingly
rich. After the straightforward formulation of A'=2 supersymmet-
ric Calogero models by Freedman and Mende [2], a barrier was
encountered at A" =4 [3]. An important step forward then was
the explicit construction of the supercharges and the Hamiltonian
for the N'=4 supersymmetric three-particle Calogero model [4,5],
which introduced a second prepotential F besides the familiar
prepotential U. However, it was found that quantum corrections
modify the potential in (1.1), and that F is subject to intricate
nonlinear differential equations, the WDVV equations, beyond the
three-particle case. These results were then confirmed and eluci-
dated in a superspace description [6]. Finally, extending the system
by a single harmonic degree of freedom (su(2) spin variables [7])
it was possible to write down a unique osp(4|2) symmetric four-
particle Calogero model [8].! A detailed discussion concerning the
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supersymmetrization of the Calogero models can be found in the
review [9].

It seems that a guiding principle was missing for the construc-
tion of extended supersymmetric Calogero models. Indeed, while
for n < 3 translation and (super-)conformal symmetry almost com-
pletely defines the system, the n > 4 cases admit a lot of freedom
which cannot a priori be fixed. In the bosonic case, such a guiding
principle exists [10]. The Calogero model as well as its different
extensions (see, e.g. [11-13]) are closely related with matrix mod-
els and can be obtained from them by a reduction procedure (see
[14] for first results and [15] for a review). If we want to employ
this principle also for finding extended supersymmetric Calogero
models, then the two main steps are

e supersymmetrization of a matrix model
e supersymmetrization of the reduction procedure or proper
gauge fixing.

This idea is not new. It has successfully been employed in [16-19].
The resulting supersymmetric systems feature

e a large number of fermions - far more than the 4n fermions
expected in an A'=4 n-particle system within the standard
(but unsuccessful!) approach

e a rather complicated structure of the supercharges and the
Hamiltonian, with fermionic polynomials of maximal degree

e a variety of bosonic potentials, including su(2) spin-Calogero
interactions
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but they do not contain a genuine N'=4 supersymmetric Calogero
model, i.e. one with a mere pairwise inverse-square no-spin
bosonic potential.

Here we use the same guiding principle and start with the
bosonic su(n) spin-Calogero model in the Hamiltonian approach.
We then provide an N -extended supersymmetrization of this sys-
tem. It is important that we do not a priori fix a realization for the
su(n) generators. Finally we generalize the reduction procedure to
the A/-extended system and find the first A/-extended supersym-
metric Calogero model, for any even number of supersymmetries.

2. N -extended supersymmetric Calogero model
2.1. Bosonic Calogero model from hermitian matrices

It is well known that the rational n-particle Calogero model [1]
can be obtained by Hamiltonian reduction from the hermitian ma-
trix model [10,14]. Adapted to our purposes, the procedure reads
as follows. One starts from the su(n) spin generalization [12] of
the standard Calogero model, as given by

n

1< 1 Liilii
H=2) pi+o) — .

The particles are described by their coordinates x' and momenta
pi together with their internal degrees of freedom encoded in the
angular momenta (E,'j)Jr = ¢j; with }_;¢; = 0. The non-vanishing
Poisson brackets are

1)

{€ij, tom } =1 (8im L — Sxjlim) -

The Hamiltonian (2.1) follows directly from the free hermitian ma-
trix model (for details see [15]).

To get the standard Calogero Hamiltonian (1.1) from (2.1) one
has to reduce the angular sector of the latter, in two steps. Firstly,
one (weakly) imposes the constraints

{¥.pj}=¢; and (2.2)

lii~lyp~... "y ~0. (2.3)

They commute with the Hamiltonian (2.1) and with each other,
hence are of first class. To resolve them one introduces auxiliary
complex variables v; and v; = (v;) obeying the Poisson brackets

{vi.vj} =—i8; (2.4)
and realizes the su(n) generators ¢;; as

1 n
bij=—vivj+ 8 ) iV (2.5)

k

Secondly, passing to polar variables r; and ¢; defined as

. _ . 1
vi=rie¥ and ¥ =re % = {ri.oj} = ?SU ,
i
(2.6)
the constraints (2.3) are resolved by putting

~ ~

MARMR...RTy. (2.7)

Plugging this solution into the Hamiltonian (2.1) one may addition-
ally fix n—1 angles ¢;, say
Prp~. ..

N n—1~0. (2.8)

At this stage the 2n variables {rj, ¢;} are reduced to the two vari-
ables r, and ¢,. However, the reduced Hamiltonian does not de-
pend on ¢, and has the form

1< 1
HredZEZpiz"'iZ ; n.z' (2.9)
i=1 i£] (x1—xJ)
Therefore
{Hred,tn}~0 and  r2~const=:g, (2.10)

and the reduced Hamiltonian H.q coincides with the standard
n-particle rational Calogero Hamiltonian. We note that in the
bosonic case most reduction steps are not needed, because the
Hamiltonian (2.1) does not depend on the angles ¢; at all. How-
ever, in the supersymmetric case all reduction steps will be impor-
tant.

In what follows we will construct an N -extended supersym-
metric generalization of the Hamiltonian (2.1) and perform the
supersymmetric version of the reduction just discussed, finishing
with an A -extended supersymmetric Calogero model, for A/ =2M
and M =1,2,3,....

2.2. N -extended supersymmetric su(n) spin-Calogero model

On the outset we have to clarify what is the minimal number
of fermionic variables necessary to realize an N'=2M supersym-
metric extension of the su(n) spin-Calogero model (2.1). Clearly,
as partners to the bosonic coordinates x' one needs N'n fermions
¥{ and ;. with a=1,2,... M. However, this is not enough to
construct A" supercharges Q¢ and Q, which must generate the
N =2M superalgebra
{Q.Qp}=—2iH and {Q%Q"}={Q. Qs}=0.

(211)
The reason is simple: to generate the potential term Z',-; j %
Xt —x.
in the Hamiltonian, the supercharges Q¢ and Q; must contain the
terms

n

£ii po Ml

. j .

i E il and —i E ”'Ol]f] ,
— xt—xl] — xt—xJ
i#] i#]

(2.12)

respectively, where pfj and pjj, are some additional fermionic
variables. These fermions cannot be constructed from ¥{ or Via.
Hence, we are forced to introduce N'n(n—1) further independent
fermions plf’j and pijj, subject to ,O,qi = piiq = 0 for each value of
the index i. In total, we thus utilize A'n? fermions of type ¥ or p,
which we demand to obey the following Poisson brackets,

(i Wi} =—i838i;,  {0ff, Prmb} = —1858mdji ,
with (0%)"=Gjia and p% = piia=0. (2.13)

The next important ingredient of our construction is the com-
posite object

M
Mjj = Z[(Iﬁf—tﬁf)ﬁua +(Via—Vja) Afj
a=1
(M) =111

(2.14)

n
+ Z(p;}(pkja + ,(_)ikap]?j)] =
k=1
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One may check that, with respect to the brackets (2.13), the IT;;
form an su(n) algebra just like the ¢;;,

{TWij, Min } = (8im T — 4 TTim)
and they Poisson-commute with the our fermions as follows,
{Tij, v} =1 (S—=3j) o »
{TWij, i} = —18im i (V' = v/§) —
{Mij, Yia} =1 (8ik—3jk) Pija -

{ —i8imSjk (Via—Vja) —

(2.15)

8 ke Ot + 18im Py

i‘Sjk;(_)ima + iaimﬁkja .
(2.16)

Tij, Pkma} =

It is a matter of straightforward calculation to check that the su-
percharges

eu + Hu 05
anﬁ +1Z AN L and
7 : ) (217)
- - . Pijb (€ji + Iji
Qp —Zpilﬂib —IZW
i=1 i#]j
obey the N'=2M superalgebra (2.11) with the Hamiltonian
1¢ 1o (€5 + ) (€5 + i
_EZPIZ_FEZ( ] 1])( {12 Jl) i (2.]8)
i=1 i#] (x1 — xJ)
modulo the first-class constraints?
Xii=4i+I;~0 Vi, (2.19)
with
{Q% xi} ~{Qa. xi} ~{H, xi} = {xi, xj} =0 (2.20)

Details of this computation can be found in the Appendix. The su-
percharges Q¢ and Q) in (2.17) and the Hamiltonian H in (2.18)
describe the A'=2M supersymmetric su(n) spin-Calogero model.

For N'=4 it essentially coincides with the osp(4|2) supersym-
metric mechanics constructed in [16,17]. However, there are a few
differences:

e The Hamiltonian (2.18) has no interaction for the center-of-
mass coordinate X = Zixi. Correspondingly, the supercharges
(2.17) do not include certain terms which appeared in [16,17].

e Working at the Hamiltonian level, we may keep the su(n)
generators ¢;; unspecified. Precisely this enables the minimal
realization (2.5) with a minimal number of auxiliary vari-
ables vj, vi. At the Lagrangian level this corresponds to using
(2,4,2) supermultiplets for the auxiliary bosonic superfields
instead of (4, 4, 0) superfields as in [16,17].

Now we are ready to reduce our AN'=2M su(n) spin-Calogero
model to a genuine N'=2M Calogero model.

2.3. N-extended supersymmetric (no-spin) Calogero models

As we can see from the previous subsection, the supersymmet-
ric analogs (2.19) of the purely bosonic constraints (2.3) appear

2 The system with the Hamiltonian (2.18) and with £ij = 0 has been previously
considered in [20].

automatically. These constraints generate n—1 local U(1) transfor-
mations> of the variables {v;, v;, plgj, Dija}. In terms of the 2n polar
variables r; and ¢; defined in (2.6), the constraints (2.19) can be
easily resolved as

re~rE 4 g — My for k=1,...,n—1. (2.21)
After fixing the residual gauge freedom as
G RP1 =0, (2.22)

we obtain the supercharges and Hamiltonian which still obey the
N=2M superalgebra (2.11) and contain only the surviving pair
(rn, ¢n) of the originally 2n “angular” variables. One may check
that the supercharges Q¢ and Qj and the Hamiltonian H, with
the generators ¢;; replaced by é,-j and with the constraints (2.21)
and (2.22) taken into account, perfectly commute with r2 — ITy,.
Thus, the final step of the reduction is to impose the constraint

rg — Iy ~ const=: g (2.23)
and to fix the remaining U(1) gauge symmetry via
¢n~0. (2.24)

The previous two relations are the supersymmetric analogs of
(2.10). We conclude that the full set of the reduction constraints
reads

rP~g+Tl;  and

¢ ~0 for i=1,...,n. (2.25)

With these constraints taken into account, our supercharges Q¢
and Qj and the Hamiltonian H acquire the form

~ (Vg—l—l_[“ g+H]] Hij))oq‘

Q“:an/f, Z e L,
i]

= Piib g—H‘I g+1'[ — I

I e
i#]

-1 5
H = 5 ‘_E Di
Z (VE+ /g + 1 — Ty) (VEF May/g + T — M)

z;é] (xi - Xj)z

(2.26)

It is matter of quite lengthy and tedious calculations to check that
these supercharges and Hamiltonian form an A'=2M superalge-
bra (2.11). The strategy is given in the Appendix. The main compli-
cation arises from the expressions /g + I1;; present in the super-
charges and the Hamiltonian. Due to the nilpotent nature of IT;;,
the series expansion eventually terminates, but even in the two-
particle case with A'=4 supersymmetry we encounter a lengthy
expression,

‘/g+l‘111:«/§(1+21—gl'111—8gz 1]+]6g3 i 128g4n 1)
(2.27)

For n particles the series will end with a term proportional
to (Hii)N(”’l). Clearly, these terms will generate higher-degree
monomials in the fermions, both for the supercharges and for the

3 Due to the relation Zf‘ Xxi =0 we have only n—1 independent constraints.
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Hamiltonian. We can only speculate that the dread of such com-
plexities impeded an earlier discovery of genuine A'=4 Calogero
models.

2.4. Simplest example: N'= 2 supersymmetric two-particle Calogero
model

For N'=2 supersymmetry one has to put M =1 in the expres-
sions (2.26) for the supercharges and Hamiltonian. This somewhat
reduces their complexity compared to the N'=4 case, but the real
simplification occurs for two particles. Indeed, for n=2 we get

[Ty = —TI111 and

= Jg+On/g—-Tn=(g—

Mnj; =0

5 17;)  for g#0.
(2.28)

Moreover, the term H%l is of the maximal possible power in the p
and p fermions and, therefore, disappears from the supercharges.
Thus, we are left with

(g— 1'1 P
Q(2) Zpﬂﬁz - IZ U I and
175]

= - & Pij (g - i)
Q<2>—ZP1%+IZW’

i=1 i#]
which have the standard structure - linear and cubic in the
fermions. The Hamiltonian H ) reduces to

(2.29)

2 2 2
1 g — My, — g (T2 + Ma1) + MMy 02
ZEZP?—F 1 — , (2.30)
i=1 (x1 —x2)
with the explicit expressions
[T11 = p12p21 + P12p21
Mz = W1—v2) p12 + (V1—v2) p12 . (231)

21 = (Y2—v1) p21 + (V2—¥1) p21 -

This N'=2 supersymmetric two-particle Calogero model has
been previously constructed and analyzed in [16] (for details see
the review [9]). This demonstrates that our approach perfectly re-
produces the unique known A'=2 example.

3. Conclusion

We propose a novel N-extended supersymmetric su(n) spin-
Calogero model as a direct supersymmetrization of the bosonic
su(n) model [12]. In the case of N'=4 supersymmetry, our model
resembles the one constructed in [16,17]. However, there are two
main differences:

e the center of mass is free
e the su(n) generators are not specified in a particular realiza-
tion.

Thanks to these features, we were able to generalize the reduction
procedure to the no-spin Calogero model from N'=4 supersym-
metry to any number N'=2M of supersymmetries. This led to the
discovery of a genuine A/'=2M supersymmetric rational Calogero
model for any number of particles.

Our models belong to same class which was proposed in
[16,17]. Its main features are

e a huge number of fermionic coordinates, namely A'n? in num-
ber rather than the A'n to be expected

e the supercharges and the Hamiltonian contain terms which a
fermionic power much larger than three.

Clearly, these features merit a more careful and detailed analysis.
The following further developments come to mind:

e a superspace description of the constructed models, at least for
N=2 and N'=4 supersymmetry, presumably with nonlinear
chiral supermultiplets

e an extension to the Calogero-Sutherland inverse-sine-square
model

e an extension to the Euler-Calogero-Moser system [11] and its
reduction to the goldfish system [13], yielding a supersymmet-
ric goldfish model upon reduction, to be compared with recent
results from [21].
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Appendix A. Details of the calculations

We check that the A/ supercharges Q® and Qj in (2.17) gen-
erate the A'=2M superalgebra (2.11) with the Hamiltonian (2.18)
modulo the first-class constraints (2.19). The best way to perform
this calculation is to introduce the composite object

Lij = £&; + ;5 . (A1)
Like £;; and TI;;, their sums also form an su(n) algebra,

{Lij. Lim} =1 (8imLij — SkjLim)

and they Poisson-commute with the fermions exactly as ITjj
n (2.16),

Lij. vi } =i(3ik—5jk),0,-aj ,

{
{Lijs P} = —18im8c (v —v/f)
{Ly
{

(A2)

— 18k Pim + 18im Py
Lij. Yka} =1 (8ik—8jk) Pija »
Ll] Pkma} = _i5im8jk (ina_l/_’ja) - i‘(Sjklaima + i5im,5kja .

(A.3)

It should be clear now that the closing of the superalgebra (2.11)
for the supercharges

szlﬁa +1i Z Xllj_pﬂ and

i#]

Qb_zp,w,b—lzp”f“l

i#]

does not depend on the number of particles or the number of su-
persymmetries. It is based on the Poisson brackets (A.2) and (A.3)
and the basic brackets (2.2) and (2.13), i.e

(A4)
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X.pj}=8; and  {yf.¥j}=

{P?j, :5kmb} = —i3g5im3jk :

—i80s;; ,
(A.5)

The computation makes repeated use of the all-important identity
1 1 1

- —— - - - + - — =
(X —x) (X —xK) (=X (= xk) (k= X (xk — xT)
for i#j#k. (A.6)
Direct calculation then yields
pz]IO]l
o’ _IZ (xi — xJ)2 (i = Ly).
PijaPjib
{Qa, Qb} = ; o —x0)? (Lii = Ljj) (A7)
— p,]IO]lb
{Q%. Qp} =—2isfH +1Z W —x1)2 (Lii —Ljj),
where
n
LijL;
Z Z‘ et LN (A8)
2 (- x))?
Clearly, imposing the constraints (2.19),
xi=%4i+1I;j=Li;~0 Vi (nosum), (A.9)

closes the superalgebra (A.7). Since ) ;L;j = 0 reduces u(n) to
su(n), the constraints (A.9) cannot be relaxed to Lj; ~ o # 0.
With the same strategy we can check that the supercharges

Q¢ and ‘Q, and the Hamiltonian H in (2.26) form the same su-
peralgebra (2.11). We do not need to go inside the objects IT;; or
/g + ;. Instead, we directly employ the Poisson brackets of the
composites,

{Tij, Tim } = i(8im Ty — 8 TTim)
{13, M} = m@iknkj — 8 k),
Lij, v } = i(8i—3x) i} »

Lij, Ogm | = —18im8jk (Wi =) — 18 k0fy + i8im Ok »
Lij, Yk} =1(8ik—8jk) ija »

Lij, prma} = —18imj(Via—V ja) —

—_—— —— —— —~—

8k Pima + 18imPkja-

{Ve+i yf} =0,
(Ve + i, pf,) = —
{Ve+Tii, ¥ra} =

(Ve + i, Prma} = —

i
——— (8P, — Simpp:) s
N ( ik Pim szk,)

i _ _
PNFET (8ikPima — SimPija)-
(A10)

This drastically simplifies the evaluation and, by using again (A.6),
one may readily convince oneself that indeed

©Qpl=—2i60 and {Q° Q") ={Qu. Qp}=0
(A11)

©)
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