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Abstract. Pitch bearings of wind turbines are large, grease-lubricated rolling bearings that 

connect the rotor blades with the rotor hub. Rolling bearings are the standard bearing type for 

this application. Most blade bearings are four-point bearings with one or two rows. Three-row 

roller bearings with two axial rows and one radial row have higher costs, but are an increasingly 

used alternative. Both rotor blade and rotor hub have a varying stiffness along the circumference 

of the bearing rings. This results in rotationally non-symmetric load sharing (load distributions) 

of the bearing rollers. The load distribution depends on the pitch angle, the load magnitude and 

the load angle. In this paper, we evaluate the load sharing of such a three-row bearing for a 

reference wind turbine of the 3 MW-class, taking account of the stiffness of the interface parts 

hub and rotor blade. A set of finite-element simulations with varying loads, load angles and pitch 

angles has been executed to determine the influence of the named parameters on the loads of the 

individual rollers. Curve fits of these discrete load points allow the determination of roller loads 

for any given parameter combination. One application of the results is the determination of the 

overall bearing load which is a key input for fatigue lifetime calculations.  

1.  Introduction 

Pitch bearings (also called blade bearings) are subject to unfavorable operating conditions as they have 

to accommodate high bending moments while standing still or executing oscillating movements at very 

low speeds. The connecting parts, especially the rotor blade, provide limited stiffness. Usually, four-

point contact ball bearings are used for this application, as they are highly resistant to standstill 

conditions and large bending moments [1, 2].  

With growing rotor diameters, the blade root diameters and blade bearing diameters increase as well. 

It is not efficient to increase the dimensions of the bearing section accordingly both from a technical and 

an economical perspective. As such, blade bearings with 5 m diameter do not have twice the height of 

bearings with 2.5 m diameter, nor do they have twice the ring section width. Thus, larger bearings have 

a lower relative geometrical stiffness of the bearing section. As a result, four-point bearings are prone 

to ring ovalization due to loads [3], and the negative results of this effect are increased with lower relative 

geometrical stiffness. For this reason, three-row roller bearings with two axial rows and one radial row, 

which have a higher stiffness and constant contact angles, become an attractive alternative solution 

despite their higher costs. 

Pitch bearings connect the rotor hub and the rotor blade. Both interface parts do not have a 

rotationally symmetrical stiffness. The rotor blade is usually made of a combination of fiber-reinforced 

plastic (FRP) and wood or foam. Spar caps and shear webs take most of the load introduced by the effect 

of the wind on the aerodynamic profiles, which results in an asymmetrical load distribution (see Figure 

http://creativecommons.org/licenses/by/3.0
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1). The spar caps usually consist of several layers of unidirectional laminate, the shear webs are made 

of a combination of +/- 45° laminate and wood and/or foam. The blade root is made of quasi-isotropic 

laminate. Figure 1 displays the aforementioned components of the rotor blade and an exemplary load 

distribution at the blade root. The load is a pure flap-wise bending moment. The colored area indicates 

the real load distribution, while the grey area is the load distribution that would result from an ideally 

stiff tube of the same size.  

 

 
 

Figure 1. Rotor blade: Load transmitting 

elements and load distribution at the blade 

root. 

 

It is quite obvious that the load magnitude of the rollers depends on the outer load magnitude. 

However, due to the varying stiffness along the circumference, both roller load magnitude and relative 

load distribution of all rollers depend on the outer load angle as well. The outer load angle mostly 

depends on the current position of the blade, as the blade’s weight is contributing to the overall bending 

moment. The bending moment usually is expressed as a resulting moment 𝑀𝑟𝑒𝑠𝐵 of both 𝑀𝑦𝐵and 𝑀𝑥𝐵. 

We used 𝑀𝑟𝑒𝑠𝐵  for the simulations as it allows a convenient control of the overall load magnitude. With 

𝑀𝑟𝑒𝑠𝐵, the information about the axis of the bending moment is not maintained and must be given in 

another value, which is the outer load angle. A pure 𝑀𝑦𝐵 has a load angle of 0°, a combination of 𝑀𝑦𝐵 

and 𝑀𝑥𝐵 of the same magnitude has a load angle of 45°. 

Additionally, and for the same reasons as just mentioned, the load sharing does depend on the current 

pitch angle of the blade. Figure 2 shows the definition of the blade coordinate system and pitch angle 

used in the present paper. Depending on the controller layout, pitch angles vary from -10 to 90° (the 

latter results in idling of the turbine).  

 

 

 

Figure 2. Pitch bearing coordinate system 

(fixed to the hub) 

 

 

Spar caps 

Shear webs 
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The rotor hub is usually made of cast iron. The asymmetrical stiffness distribution results from the 

complex geometry of the component [4]. Figure 3 shows a basic rotor hub design and the z-deformation 

of the blade bearing flange caused by a uniformly distributed force in z-direction (𝐹𝑧𝐵).  

 

 

 

Figure 3. Basic rotor hub design of the 

IWT7.5-164 reference wind turbine [5], 

displaying the same coordinate system as in 

Figure 2 and the deformation along the blade 

baring flange as a reaction to a uniformly 

distributed force in z-direction  

 

 

Pitch bearings are bolted to the rotor blade and the rotor hub. To prevent ovalization of the rings, a 

stiffener plate is commonly used, which is connected to the blade side of the inner ring of the bearing. 

Due to the high number of rollers in the bearing, global FE-models normally represent the rolling bodies 

as nonlinear springs connected to the raceways. These simulations do not reproduce the tensions in the 

raceway correctly, but they do give correct output for the forces, and, in the case of four-point bearings, 

the contact angles of all rolling elements [3, 6–9]. Sub models with one or few rolling bodies then 

produce the results for raceway tension and frictional work in the contact [10, 11].  

QIU, YAN et al. [12] calculated the influence of negative clearance in a global slewing bearing model. 

This model contained the balls as solid bodies. They reduced computational time by using a quarter 

model of a bearing and did not take the interface components into account. 

SMOLNICKI and RUSIŃSKI [8] created a global FE-model of a slewing bearing with nonlinear springs 

representing the rollers and calculated this bearing which is here mounted into a construction crane and 

reasoned that the interface stiffness distribution cannot be neglected for such calculations.   

GAO et al. [9] and AGUIRREBEITIA et al. [6] devised a global FE-model of a slewing bearing with 

nonlinear springs representing the rollers and used this model to validate theoretical calculations of static 

capacity.  

DAIDIÉ, CHAIB and GHOSN [3] set up a similar FE-model as in [6] and [8] and calculated the load 

distribution of a model mounted into a crane top. They reasoned in a similar way as SMOLNICKI and 

RUSIŃSKI that the interface stiffness distribution is of importance for the internal load distribution.  

CHEN and WEN evaluated the influence of the rotor hub and a stiffener plate interface on the load 

distribution within a wind turbine blade bearing [7]. They showed that the hub has significant influence 

on the load distribution. However, they did not take account of the blade structure but used rotationally 

symmetric blade root models to apply the loads.  

In this paper, we advance the thesis that pitch angle, load angle and load magnitude have an influence 

on the load distribution of the bearing. The load distribution is the information about the individual load 

of all rollers in the bearing. We use the results of simulations of a rotor star to derive curve fits of the 

roller loads. A rotor star consists of a rotor hub, three blade bearings, three stiffener plates and three 

blades. These results can be used for fatigue lifetime calculations, wear probability estimations and 

friction torque simulations.  

Section 2 of this paper describes the methods of analysis, in particular the FE-model of the bearing 

and assembly and the settings for the simulation runs. Section 3 presents the results in form of load 

distribution examples, curve fits for the loads of single elements and a function for 𝑃𝐸𝐴 depending on 

load magnitude and angle as well as the pitch angle. Section 4 concludes the paper.  
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2.  Methods of analysis 

 

2.1.  FE-model of the bearing 

 

In order to easily and automatically analyze and compare the results, a control of nodes and elements 

and their locations is essential. Consequently, a method connecting predefined nodes subsequently with 

elements to generate the geometry has been preferred over meshing a solid model in CAD format. 

Manual creation of each node is time-consuming. Therefore, we created a script to create all elements 

of the bearing. The readability of ANSYS scripts is limited and implementation of different geometry 

input data is difficult, thus a MATLAB-routine creates an ANSYS input script for the entire bearing 

model including bolts and stiffener plate. Within MATLAB, geometrical parameters and roller 

properties are set. Structurally non-relevant details like sealing grooves were not implemented in the 

model. 

 

The geometry of a triple-row cylindrical roller bearing is piecewise cyclic-symmetric. However, these 

bearings do not have equal numbers of roller elements on the axial and radial raceways nor do they have 

equal numbers of bolt holes in the outer and inner ring. For this reason it is not possible to define one 

common piece for the bearing. Instead, the cross section of the bearing is divided in four different 

sectors, see Figure 4: One for the axial (red) and radial (blue) roller raceways, respectively, and one 

respectively for the inner (green) and outer (yellow) part of the ring containing the bores. 

 

 
Figure 4. Sectors of bearing cross section  

 

 The sectors are connected with bonded contacts. The different number of elements on the location of 

nodes can cause stress singularities at the contact areas. However, these stress singularities at the contact 

areas do not influence the forces transferred by the rollers as they are located far enough from the roller-

raceway contact area. 

In order to increase computational efficiency, the roller-raceway contact is not fully modelled with solid 

rollers and contact elements but substituted by compression-only non-linear springs along the 

rectangular contact area of roller and raceway. Along the rectangular contact area, rigid beams are placed 

of which always two beams of the inner and outer raceway respectively connect at one end of the 

nonlinear spring. Accordingly, one roller element does not consist of one spring but a number of springs 

N with a stiffness of KN = K/N respectively. Figure 5 shows such an arrangement with four nonlinear 

springs (red, COMBIN39 elements) and eight rigid beams (grey, MPC184 elements). The application 

Rollers 

Outer Ring 

Inner Ring 
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of more than one non-linear spring is required due to the modelling technique of the roller-raceway 

contact. One spring stiffens the roller raceway contact, which leads to unrealistic stress singularities 

influencing both deformation behavior and roller forces. On the other hand, many springs lead to an 

unstable system und consequently convergence problems.  

 

 

 

Figure 5. COMBIN39 and MPC184 

elements representing a roller  

 

 

To determine the stiffness of the rollers K, single contact simulations were performed and compared 

against well-known approximation functions for line contacts [13]. The results were transferred into the 

global bearing model.  

 

Besides the bearing itself, the geometrical parameters and properties of the stiffener plate and hub- as 

well as blade-bolts for assembly are defined. Again, to increase computational efficiency the bolts are 

not modelled as solid bodies but as beam elements. They are divided in different sections in order to 

mirror the characteristics of different bolt segments like shank, traction or thread. 

 

Figure 6 shows the mesh of the FE-model (excluding bolts), where black / red lines indicate the 

combination of MPC184 and SPRING39 elements   

 

 

Figure 6. Representation of the bearing FE-model: Mesh and rigid beams and nonlinear spring 

combinations 
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2.2.  Rotor star assembly and simulation sets 

 

The rotor star assembly consists of three bearings, three stiffener plates, three blades and a hub. All parts 

are generic parts of a 3 MW class turbine. The blades have a length of 54 m and a single spar cap on the 

pressure and the suction side. The root diameter is 2.3 m. The blade attaches to the outer ring of the 

bearing. 

The following section contains the results of one of the bearings, called primary bearing. This bearing 

connects to the adjacent parts by a friction contact and pre-tensioned bolts. Although only the results of 

the primary bearing are used for the later evaluation, the other two bearings and blades must be taken 

into account to simulate the correct hub stiffness. These bearings are connected by bonded flange 

contacts without bolts. 

 

 
 

Figure 7. Rotor star assembly of a 3MW-

class turbine used for simulations 

The hub mesh comprises solid elements. The blade mesh is a mixture of solid and shell elements, with 

solid elements forming the root section. A combination of a relatively stiff spring and stiff beam 

elements connects the bearings outer ring and the hub. It simulates the interface between bearing and 

pitch drive and fixes the rotational degree of freedom of the bearings.   

 

To evaluate the thesis of this paper, we did 126 simulation runs with the parameter combinations 

outlined in Table 1. All parameters represent the operating loads below rated speed of a 3 MW-class 

turbine with individual pitch control (IPC). The load angle and pitch angle for the secondary and tertiary 

bearing are constant throughout the simulation set as no significant influence was found. The load 

magnitude on these bearings is set to one third of the load magnitude of the primary bearing.  

 

 

Table 1. Simulation settings for load magnitude, load angle and pitch angle of the primary bearing 

Parameter Unit Steps 

Resulting bending moment 𝑀𝑟𝑒𝑠𝐵 MNm 6, 8 

Load angle ° -30 to 30 in steps of 5° 

Pitch angle ° -6 to 24 in steps of 6° 

 

  

Hub 

Blades 
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Roller load evaluation 

 

The loads of the individual rollers are the input value for other calculations. In particular it is possible 

to derive:  

 

• Friction torque 

• Rolling contact fatigue lifetime  

• Static load capacity  

 

We presented an evaluation of different friction torque models in a former paper [14]. Rolling contact 

fatigue calculations are part of the ISO 281 [15]. The ISO 281 provides procedures to calculate the 

summarized roller loads 𝑃𝐸𝐴 with the outer loads (radial force 𝐹𝑅, axial force 𝐹𝐴, bending moment 𝑀) 

as input, see Equation 1. 𝑑𝑚 is the pitch diameter of the bearing. These results apply for an ideally stiff 

surrounding. Equation 2 then gives the loads of the individual rollers 𝑄 for the case of pure bending 

moment (see Figure 1). 𝑍 is the overall number of rolling bodies. 

 

 

 𝑃𝐸𝐴 = 0.75𝐹𝑅 + 𝐹𝐴 +
2𝑀

𝑑𝑚
  ( 1 ) 

 

 

 𝑄𝑗 =
2𝑀

𝑑𝑚∙𝑧
∙ 𝑐𝑜𝑠 (

𝑗

𝑍
2𝜋) , 𝑗 = [1; 𝑍] ( 2 ) 

 

 

In case of rotationally non-symmetric stiffness distributions, Equations 1 and 2 do not apply. A suitable 

alternative is to calculate the summarized load by the individual roller loads 𝑄, see Equation 3, taken 

from the ISO 281. Note this equation applies for roller bearings, not ball bearings.  

 

 

 
𝑃𝐸𝐴 = (

1

𝑍
∑ 𝑄𝑗

4𝑍
𝑗=1 )

1
4⁄

𝑍  
( 3 ) 

 

 

The simulation results obtained in this work allow to calculate this more exact bearing load, both for 

the purpose of fatigue life calculations and static capacity evaluations. As mentioned above, fatigue 

calculations are part of the ISO 281. Static load capacity is part of ISO 76 [16], but is not evaluated 

within this work.  

3.  Results and discussion  

 

Figure 8 shows a comparison of roller loads of a bearing with stiff interfaces (according to Equation 

2) and three different pitch angles. These curves are obtained with 8 MNm outer load and a load angle 

of 0°. For If a completely stiff tube is attached to a stiff flange surface and is subject to a bending 

moment, the resulting load distribution has the shape of a sine curve with positive and negative values 

(see also Figure 1). However, the roller loads in a bearing have the same algebraic sign, as the rollers 

only transfer pressure loads. For the following figures, the sign of one of the rows was changed to obtain 

a curve that can be easily compared against the sine shape of a stiff interface. 

For the stiff interface, a change in the pitch angle does not affect the individual roller element forces. 

For a hub/blade interface, this is the case. To illustrate this, the Figure 8  contains changes in 𝑃𝐸𝐴 (see 

Equation 3). The 𝑃𝐸𝐴 of the real interface situation is between 6.2 to 7.4% higher than that of a stiff 
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interface. This results in lower expected fatigue lifetime. The pitch angle changes this value by 1.2% for 

8 MNm and 1.9% for 6 MNm.  

 

 

Figure 8. Load sharing for 8 MNm outer load, a load angle of 0° and different pitch angles 

 

Figure 9 shows the influence of the load angle for a pitch angle of 0° and an outer load of 8 MNm. A 

value of -30° generally corresponds to a blade moving upward, while 30° correspond to a downward 

moving blade. Obviously, the different load angles lead to the loading of different rollers in the bearing. 

At approximately 90°, a dent in the -30° and +30° curves indicate the location of the pitch drive, which 

in this model has a significant influence on the roller loads. This influence is less prominent at 30° load 

angle, however at 30° 𝑃𝐸𝐴 is 17.3% higher than for the stiff interface. This is also significantly different 

from the case with 0° load angle. At 6 MNm, the same behavior is observed as well, where the difference 

between the 0° load angle case and the 30° load angle case is 22.7% of the value obtained with a stiff 

interface.  
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Figure 9. Load sharing for 8 MNm outer load, a pitch angle of 0° and different load 

angles  

 

Table 2 lists 𝑃𝐸𝐴 for selected parameter combinations and 8 MNm load magnitude. The highest value is 

6274.8 kN at -7.5° degree pitch angle and -30° load angle, the lowest value 5743.9 kN at -7.5° pitch 

angle and 0° load angle. The value for a stiff interface is 5408.5 kN. The range of the values for each 

load angle varies from 142.6 kN for -30° to 33 kN for 10°, while a clear tendency cannot be recognized.  
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Table 3 presents the results for 6 MNm load magnitude. The highest value is 3850.8 kN at 30° load 

angle and 7.5° pitch angle, which does not match the parameters for the highest value at 8 MNm.  

 

Table 2. Summarized roller loads 𝑃𝐸𝐴 for selected parameter combinations at 8 MNm load magnitude 

Load magnitude: 8 MNm 

𝑃𝐸𝐴 in kN 
Load angle 

-30° -20° -10° 0° 10° 20° 30° 

P
it

ch
 a

n
g
le

 -7.50° 6274.8 6166.1 5930.1 5743.9 5823.7 6108.7 6350.0 

-3.75° 6239.5 6154.0 5945.0 5756.1 5811.4 6082.6 6357.2 

0.00° 6203.6 6132.5 5957.8 5773.3 5801.0 6055.4 6343.4 

3.75° 6167.2 6110.3 5959.5 5790.6 5790.0 6029.7 6331.4 

7.50° 6132.3 6069.5 5956.4 5809.8 5792.0 6005.1 6316.5 
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Table 3. Summarized roller loads 𝑃𝐸𝐴 for selected parameter combinations at 6 MNm load magnitude 

Load magnitude: 6 MNm 

𝑃𝐸𝐴 in kN 
Load angle 

-30° -20° -10° 0° 10° 20° 30° 

P
it

ch
 a

n
g
le

 -7.50° 3701.3 3425.6 3122.9 2882.6 3057.1 3467.4 3775.8 

-3.75° 3713.2 3406.5 3118.8 2891.4 3043.2 3457.6 3797.8 

0.00° 3683.2 3421.8 3115.3 2897.1 3037.7 3448.6 3819.0 

3.75° 3678.9 3392.2 3108.5 2908.6 3047.8 3439.9 3836.8 

7.50° 3677.7 3392.9 3102.3 2921.0 3025.9 3428.5 3850.8 

 

4.  Conclusions 

In this work, we have presented a comprehensive method to simulate the load distribution in a wind 

turbine blade bearing. We have used a three-row roller bearing as example and have showed the 

influence of pitch angle, load angle and load magnitude on the load sharing of the two axial rows of this 

bearing.  

The influence of the pitch angle was evaluated for a pitch angle range of 15° which covers most 

production states of the turbine. The difference in the resulting summarized roller load 𝑃𝐸𝐴 is within a 

range of a few percent, which is a relatively low value. The characteristic of the load sharing is optically 

similar for all pitch angles. These two findings suggest that it is reasonable to neglect pitch angle 

influence for fatigue lifetime calculations of pitch bearings.  

The load angle has a more dominant influence both on the resulting 𝑃𝐸𝐴 and the load sharing of the 

individual rollers. We evaluated this influence for a range of 60° (+/- 30°) of the load angle. All 

deviations from 0° load angle lead to higher 𝑃𝐸𝐴. Both this and the different load distribution, which 

results in different areas of the raceway being subject to fatigue loads, should be taken into account for 

fatigue and static calculations of blade bearings. The influence of the outer load magnitude on 𝑃𝐸𝐴 is, as 

expected, significant. This influence is significant with any bearing application, independent of the 

specific interface characteristics we evaluated in this work.  

We conclude that the structural behavior of the blade causes most of the changes in load sharing and 

summarized loads. However, the hub should not be neglected as it has been shown in previous 

publications that a certain influence on the load distribution is caused by this part as well. In the 

simulations performed for this work, a significant influence of the pitch gear interface on the bearings 

loads was experienced near the gear interface. While the summarized roller loads where not affected by 

this and the individual roller loads outside of the gear area show reasonable results, it is still doubtful if 

the magnitude if this influence can be found in reality as well. Instead of a combination of stiff springs 

and MPC184 connections, a RBE3 (constraint equation) connection of a section of the bearing ring 

attached to the blade with a master node which rotational degree of freedom is blocked might provide 

more realistic results.  

Future work in this field will adapt the parameter selection according to the achieved results. The 

results will also be used as input values for fatigue lifetime calculations of blade bearings.  
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