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1 Introduction

It is by now well established that useful string vacua, in particular those where potentials

that can stabilize the moduli are generated, contain background fluxes. These fluxes come

in several types, in particular standard ones such as NSNS flux, torsion or geometric flux

and RR fluxes, but also non-standard types such as non-geometric fluxes in the NSNS [1]

and RR [2] sectors. The latter can be described with techniques from the differential geome-

try of Lie and Courant algebroids [3–8] which are also used in Hitchin’s generalized complex

geometry [9]. They often appear in (generalized) T- or S-duals of standard geometries [10–

13]. However, in most studies up to now these non-geometric string backgrounds are not

truly new string vacua, even referring to ideal cases where the string equations of motion

are/could be solved. This is so because the very essence of dualities is that the physics

is the same on each side, and thus vacua which are related by dualities are just different
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ways to describe the same physics. This can change only by having at hand vacua which

are genuinely non-geometric, which means there is no duality transformation that can map

the vacuum to a known, geometric one. In this sense, cases known as the Q-background

and the R-background are not truly non-geometric from a string-theoretic point of view.

The main question that we would like to address in this paper is how genuinely non-

geometric models could be described. This is arguably the most essential question in the

study of generalized flux compactifications, which however has been posed and addressed

only fragmentarily. One direction which was followed relies on the construction of ex-

act conformal field theories based on asymmetric orbifolds [14]. Asymmetric orbifolds are

backgrounds where left- and right-moving string coordinates see different geometries; for

this reason such theories are indeed genuinely non-geometric string solutions and they can

contain all types of fluxes [15–19]. Other approaches on the same problem include work on

heterotic string vacua with non-geometric fluxes [20], where it is argued that geometric and

non-geometric compactifications are equally typical, the study of cases where not only the

internal geometry but also the external one is multi-valued and thus non-geometric [21],

as well as a classification of the U-duality orbits of gaugings of (half-)maximal supergravi-

ties [22].

Our approach is different than the above ones and complements previous work in the

string theory literature [3–8]. The starting point is Courant algebroids (CAs), which are

structures introduced in refs. [23, 24] that provide a systematization of the properties of

the Courant bracket introduced in ref. [25]. The authors of [23, 24] construct CAs as Lie

bialgebroids, which is a special case of a more general construction performed in refs. [26, 27]

using the notion of protobialgebroids (PBAs). The latter are structures that incorporate

3-index twists, corresponding to (some of) the NSNS fluxes that appear in string theory.

In this paper we construct a class of PBAs, putting on firmer grounds and generalizing

our previous work [8]. We consider PBAs following the spirit of twisting the generalized

tangent bundle TM⊕T⋆M of a d-torus by 2-form, 2-vector and (1,1)-tensor deformations.

We choose a representative paradigm of (1,1) deformations that leads to nilmanifolds, which

are also termed “twisted tori” in physics; this is a natural way to go beyond the toroidal

case. This approach directly suggests how brackets, morphisms and generalized 3-forms

should be defined in the class of PBAs we study. Given that any PBA gives rise to a CA,

we then proceed in the construction of the latter and discuss an illustrative example of the

class. The twist approach that we follow yields non-standard CAs.

Having constructed the desired structures over twisted tori, it is desirable for physics

to study sigma models that correspond to them. An important mathematical result ([28])

states that given a CA one can construct a topological sigma model of the type introduced

in the seminal work of Alexandrov, Kontsevich, Schwarz and Zaboronsky (AKSZ) [29] (see

ref. [30] for a useful review). Applying this result, we construct in very explicit terms the

sigma model corresponding to the class of CAs with all types of twists. Considering that the

3D topological theory has a 2D boundary, we derive consistency conditions for the action

including all twists and deformations, thus generalizing previous results. Moreover, we show

that in certain limits these conditions reproduce known results, for example integrability

conditions for Dirac structures, such as the ones found in refs. [31–33] and additional ones
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derived in ref. [8]. Additionally, we discuss the corresponding 2D theories, add dynamics,

and discuss in explicit detail a particular example with all types of fluxes.

After presenting models with all kinds of twists and 2-form and 2-vector deformations

that are neither vanishing nor inverse of one another, we discuss whether such cases can be

considered non-geometric in the sense of string theory. In this discussion one has to invoke

T-duality in order to differentiate between two different kinds of 3-vector R flux, the one

obtained by standard differential geometric methods (being a derivation of a non-Poisson

2-vector β, or equivalently the Schouten bracket of β with itself) and the one obtained

by generalized T-duality. As already noticed in ref. [4] the former does not deserve to

be called non-geometric, since it can be associated to a 2D sigma model with a standard

target space. However, it is the second kind of R-flux that appears in string theory after

T-duality. This means that a generalization of the formalism we apply in sections 2 and

3 is necessary in order to account for the R-flux originating in T-duality, and in order to

examine the possibility of genuinely non-geometric backgrounds.

The above discussion leads us to propose an extension of the sigma models with stan-

dard target space to ones with phase space as target. This is also motivated by a similar

approach adopted in ref. [6]. We choose to work with reference to the doubled formalism

of string theory [34, 35], which parallels the first order formalism on phase space and intro-

duces a set of coordinates X̃a in addition to the standard coordinates Xa, corresponding

to the winding modes of closed strings. From a target space viewpoint, this has led to the

development of double field theory (DFT) [36–41], which is currently under close scrutiny

(see refs. [42–44] for reviews and a complete list of references). On the other hand, our

approach has a 3D/2D perspective and does not use any results from DFT.1 Once more

it is assumed that the 3D manifold has a 2D boundary, and the consistency between the

equations of motion and the boundary conditions uncovers an extended set of relations that

have to be satisfied. We comment on their relation to the flux formulation of DFT [50–53]

(see also [54–57]). Finally we write down in very explicit terms a 3D sigma model with

doubled target where (i) all types of fluxes appear, (ii) 2-form and 2-vector deformations

are neither vanishing nor inverse of one another and (iii) the R-flux is not of the type that

can be reduced to a standard 2D sigma model. These properties suggest that this example

is a nontrivial toy model of a genuinely non-geometric background.

2 Courant algebroids as protobialgebroids

In this section we define and construct Courant algebroids that accommodate 3-index twists

of any type, which will be identified with geometric and non-geometric fluxes that appear in

string theory. We call such structures “Courant-Roytenberg” algebroids, since they were

introduced in refs. [26, 27]. Our approach in the presentation is to provide some basic

definitions first, then apply them to construct a class of cases interesting for string theory,

and finally to present in detail an explicit example. This approach will be followed in the

following sections too.

1A new CFT approach of DFT was considered recently in refs. [45, 46]. Previous work along this line

includes refs. [10, 47–49].
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2.1 Definitions of bialgebroids

Let us first define the notion of a protobialgebroid (PBA) and then discuss some particular

limits. Note that PBAs are usually defined using supermanifolds [26, 27], but here we

will use a more conservative, “bosonic” definition, which is more handy for applications in

string theory (see however ref. [58]).

Definition 2.1 Consider two dual vector bundles (L,L⋆) over a manifold M, equipped with

the following data:

• Skew-symmetric brackets [·, ·]L on L and [·, ·]L⋆ on L⋆.

• Bundle morphisms (anchors) ρ : L → TM and ρ⋆ : L
⋆ → TM.

• Generalized 3-forms φ ∈ Γ(∧3L⋆) and ψ ∈ Γ(∧3L).

This structure is a protobialgebroid provided that for X,Y, Z ∈ Γ(L) and η, ξ, ω ∈ Γ(L⋆)

the following properties hold:

1. [X, fY ]L = f [X,Y ]L+(ρ(X)f)Y and [η, fξ]L⋆ = f [η, ξ]L⋆ +(ρ⋆(η)f)ξ , f ∈ C∞(M) ,

2. ρ([X,Y ]L)=[ρ(X), ρ(Y )]Lie+ρ⋆φ(X,Y, ·) and ρ⋆([η, ξ]L⋆)=[ρ⋆(η), ρ⋆(ξ)]Lie+ρψ(η, ξ, ·) ,

3. [[X,Y ]L, Z]L+c.p. = dL⋆φ(X,Y, Z)+φ(dL⋆X,Y, Z)+φ(X, dL⋆Y, Z)+φ(X,Y, dL⋆Z) ,

[[η, ξ]L⋆ , ω]L⋆ + c.p. = dLψ(η, ξ, ω) + ψ(dLη, ξ, ω) + ψ(η, dLξ, ω) + ψ(η, ξ, dLω).

4. dLφ = 0 and dL⋆ψ = 0.

Although this definition does not appear as such in the literature,2 it is just the ap-

propriate generalization of the definition 3.8.3 for a quasi-Lie bialgebroid in [26]. The four

enumerated properties in definition 2.1 are generalizations of the familiar properties of the

tangent bundle. They are lifted to the general vector bundles L and L⋆ with the aid of the

maps ρ and ρ⋆, called anchors. More precisely, the first property is just the Leibniz rule

for each bundle. Recall that the tangent bundle, whose sections are ordinary vector fields,

is equipped with the standard Lie bracket of vector fields that satisfies the Leibniz rule

[X, fY ]Lie = f [X,Y ]Lie + (Xf)Y , (2.1)

when X,Y ∈ Γ(TM). It is then evident that property 1 for each bundle is the direct

generalization of this rule. The second property is a twisted version of ρ and ρ⋆ being

homomorphisms; ρ is a φ-homomorphism and ρ⋆ a ψ-homomorphism. The third property

is a twisted version of the Jacobi identity. Finally, the fourth property states that the

3-objects φ and ψ are closed with respect to the corresponding derivations on each vector

bundle. These derivations are in turn the direct generalizations of the standard exterior

derivative on the tangent bundle, which acts on p-forms raising their degree by one. In

2It is briefly mentioned in ref. [59] though.

– 4 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
2

particular, they are simply defined as maps dL : Γ(∧pL⋆) → Γ(∧p+1L⋆) and dL⋆ : Γ(∧pL) →
Γ(∧p+1L), acting as follows [60]:

dLω(X1, . . . , Xp+1) =

p+1
∑

i=1

(−1)i+1ρ(Xi)ω(X1, . . . , X̂i, . . . , Xp+1) +

+
∑

i<j

(−1)i+jω([Xi, Xj ]L, X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1) , (2.2)

dL⋆Ω(η1, . . . , ηp+1) =

p+1
∑

i=1

(−1)i+1ρ⋆(ηi)Ω(η1, . . . , η̂i, . . . , ηp+1) +

+
∑

i<j

(−1)i+jΩ([ηi, ηj ]L⋆ , η1, . . . , η̂i, . . . , η̂j , . . . , ηp+1) , (2.3)

for arbitrary generalized p-forms ω ∈ Γ(∧pL⋆) and Ω ∈ Γ(∧pL). The property 4 is essen-

tially the set of Bianchi identities for the structure.

Given the general structure of a PBA, there are few special cases, depending on the

presence or absence of the generalized 3-forms φ and ψ. They are collected in the following

table:

φ ψ Structure

6= 0 6= 0 Protobialgebroid

6= 0 = 0 Quasi-Lie bialgebroid

= 0 6= 0 Lie quasibialgebroid

= 0 = 0 Lie bialgebroid

It is known from refs. [23, 24] that a Lie bialgebroid (LBA) gives rise to a Courant

algebroid (CA) with vector bundle E = L⊕L⋆, which will be defined below. More generally

any PBA gives rise to a CA, as shown in refs. [26, 27].

2.2 Protobialgebroids made explicit

Let us construct a class of PBAs, based on nilmanifolds of step 2. Such manifolds are called

“twisted tori” in the physics literature and they can be described as fibrations of toroidal

fibers over toroidal bases, whose tangent bundle can be obtained from the tangent bundle

of standard tori by an appropriate deformation of degree (1, 1). Additionally we consider

deformations by elements of degree (0, 2) and (2, 0), as explained below. This structure

was already partially constructed in ref. [8], where it was called “a QLBA with anchor on

L instead of TM”. The issue of anchors that did not project the vector bundles on TM will

here be corrected using the more general protobialgebroid structure. Another difference is

that in ref. [8] one had to invoke the Courant bracket as the bracket on the CA to do the

computations, while now we are going to extract the consistent form of the bracket just

from the deformation data, without a priori reference to the resulting CA. In particular,

since the CA is not the standard one, the bracket on it is not simply the Courant bracket,
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but a more involved one, as explained in refs. [23, 24]. Finally, the associated CA was not

constructed explicitly in ref. [8], and we will complete this construction later in this section.

2.2.1 Protobialgebroids over twisted tori

Consider M to be any d-dimensional step 2 nilmanifold with tangent and cotangent bundles

spanned by

θi = eai (x)∂a , (2.4)

ei = eia(x)dx
a, , (2.5)

where early indices a, b, . . . are curved (world indices) and late indices i, j, . . . are flat

(freely falling frame indices), and the frame components eia(x) are such that the Maurer-

Cartan equations hold. We choose to work on a (generally curved) nilmanifold because

it is a direct but nontrivial generalization of a flat torus. In particular, the tangent and

cotangent bundles of any nilmanifold can be obtained from the toroidal ones by means of

a (1, 1) deformation h(x) = 1
2h

b
a(x)dx

a ∧ ∂b:

TM = eh(x)TT d . (2.6)

In the case of step 2 nilmanifolds the deformation can always be written as

h(x) = f c
abx

adxb ∧ ∂c , (2.7)

for appropriate parameters f c
ab corresponding to the structure constants of the associated

nilpotent Lie algebra. One can simply jump to the toroidal case by setting f ’s to zero.

Moreover, the choice of step 2, which amounts to the structure constant relation

f c
abf

b
de = 0 , no summation in b , (2.8)

is made for simplicity, but the general step case can also be addressed with the same meth-

ods. In the general case the deformation h(x) is a more involved polynomial expression,

and higher order relations among the structure constants hold (see ref. [61] for details).

The basis 1-vectors and 1-forms are dual,

θi(e
j) = δji , (2.9)

reflecting the duality of TM and T⋆M as vector bundles. Additionally, the 1-forms satisfy

the usual Maurer-Cartan equations.

Let us endow the twisted torus with a (not necessarily closed) 2-form and a (not

necessarily Poisson) 2-vector:

B =
1

2
Bije

i ∧ ej , (2.10)

β =
1

2
βijθi ∧ θj . (2.11)

– 6 –
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Using B and β as deformations the tangent and cotangent bundles can be twisted accord-

ingly:3

LB := eBTM = span({θi +Bije
j}) , (2.12)

L⋆
β := eβT⋆M = span({ei + βijθj}) . (2.13)

Note that unlike TM and T⋆M, which are dual due to the pairing (2.9), LB and L⋆
β

are not mutually dual.4 In ref. [8] we performed an independent change of basis on each

bundle, such that duality is achieved. This is actually equivalent to performing an overall

eBeβ twist5 on TM⊕ T⋆M. We simply get

LBβ = eBeβTM = span({Θi = θi +Bije
j}) , (2.14)

L⋆
Bβ = eBeβT⋆M = span({Ei = ei + βikBkje

j + βijθj}) . (2.15)

We will never assume any constraining relation for Bβ; unlike what is usually assumed in

the literature, here this combination is in general neither vanishing nor unity. The pair

that appears in the definition of the protobialgebroids that we consider is then (L,L⋆) =

(LBβ, L
⋆
Bβ).

According to the definition, we should specify elements φ ∈ Γ(∧3L⋆
Bβ) and ψ ∈

Γ(∧3LBβ). In the spirit of twisting the tangent and cotangent bundle data, we consider

arbitrary elements H ∈ Γ(∧3T⋆M) and R ∈ Γ(∧3TM) and twist them to give

φ =
1

6
φijkE

i ∧ Ej ∧ Ek

=
1

6

(

(1 + βB)iρ(1 + βB)jσ(1 + βB)kτφijke
ρ ∧ eσ ∧ eτ

+3(1 + βB)iρ(1 + βB)jσβ
klφijke

ρ ∧ eσ ∧ θl

+3(1 + βB)iρβ
jlβkmφijke

ρ ∧ θl ∧ θm

+βilβjmβknφijkθl ∧ θm ∧ θn
)

, (2.16)

ψ =
1

6
ψijkΘi ∧Θj ∧Θk

=
1

6

(

ψijkθi ∧ θj ∧ θk

+3Bknψ
ijkθi ∧ θj ∧ en

+3BjmBknψ
ijkθi ∧ em ∧ en

+BilBjmBknψ
ijkel ∧ em ∧ en

)

. (2.17)

Eqs. (2.16) and (2.17) exhibit that in the presence of the twists (φ and ψ) and the de-

formations (B and β) there are all types of fluxes turned on, as they were identified e.g.

in ref. [8] in a less systematic way. Note that in some particular cases H and R can be

3These twisted bundles can equivalently be understood as graphs of B and β respectively, namely

LB = {X +B(X, ·);X ∈ TM} and L⋆
β = {η + β(η, ·); η ∈ T⋆M}.

4Because the twist is not an element of O(d, d).
5The order of the twists, first with β and then with B, counts. A twist of the form eβeB would lead to

another path, which is however equivalent for our purposes.
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identified with the derivations of B and β respectively. However, it will not always be the

case in this paper that these identifications are made. This will be explicitly stated when

assumed.

Next we consider the bundle morphisms

ρ : LBβ → TM , ρ(X) = e−βe−BX , (2.18)

ρ⋆ : L
⋆
Bβ → TM , ρ⋆(η) = β(e−βe−Bη, ·) . (2.19)

Here and in the following we use the symbol β also for the map β : T⋆M → TM (often

denoted as β♯ in the literature). These are the candidates for anchors, being the twisted

versions of the corresponding anchors on TM (unit map) and T⋆M (β-morphism).

Now we have to define skew-symmetric closed brackets on each of the two vector

bundles. Our strategy is once more to consider the corresponding brackets on TM and T⋆M

and twist them appropriately. Let us use the notation X,Y ∈ Γ(LBβ) and η, ξ ∈ Γ(L⋆
Bβ).

Elements of TM are written as X̃ := e−βe−BX, and elements of T⋆M as η̃ := e−βe−Bη.

The bracket on TM is the standard Lie bracket of vector fields, while the bracket on T⋆M is

[η̃, ξ̃]K = Lβ(η̃,·)ξ̃ − Lβ(ξ̃,·)η̃ − d
(

β(η̃, ξ̃)
)

, η̃, ξ̃ ∈ T⋆M , (2.20)

d being the standard de Rham differential. In the Poisson case this is the standard Koszul

bracket of 1-forms. Then we consider the eBeβ twist of those brackets and write the

Ansätze:

[X,Y ]LBβ
= eBeβ [e−βe−BX, e−βe−BY ]Lie + V , (2.21)

[η, ξ]L⋆
Bβ

= eBeβ [e−βe−Bη, e−βe−Bξ]K +W , (2.22)

where V ∈ LBβ and W ∈ L⋆
Bβ are associated to the twists and they should be determined

by consistency with the definition 2.1. In particular, for the bracket (2.21), the second

requirement of the definition, combined with the anchors defined above, gives

ρ([X,Y ]LBβ
) = [ρ(X), ρ(Y )]Lie + ρ⋆φ(X,Y, ·)

⇔ ρ(eBeβ [e−βe−BX, e−βe−BY ]Lie) + ρ(V ) = [e−βe−BX, e−βe−BY ]Lie + ρ⋆φ(X,Y, ·)
⇔ [e−βe−BX, e−βe−BY ]Lie + ρ(V ) = [e−βe−BX, e−βe−BY ]Lie + ρ⋆φ(X,Y, ·)
⇔ ρ(V ) = ρ⋆φ(X,Y, ·)
⇔ V = eBeββ(e−βe−B(φ(X,Y, ·)), ·) . (2.23)

For the bracket (2.22) the analogous requirement is

ρ⋆([η, ξ]L⋆
Bβ

) = [ρ⋆(η), ρ⋆(ξ)]Lie + ρψ(η, ξ, ·) . (2.24)

A similar computation leads to the result

ρ⋆(W ) = β(e−βe−BW, ·) = e−βe−Bψ(η, ξ, ·)− 1

2
[β, β]S(e

−βe−Bη, e−βe−Bξ, ·) , (2.25)

where [·, ·]S is the Schouten bracket. This equation should be solved for W in order to fully

determine the bracket on L⋆
Bβ. Unlike the previous case this is not straightforward, since

– 8 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
2

it depends on the invertibility of ρ⋆ (while ρ is always invertible in our approach). For

invertible β, it is easy to solve for W and plug it in the Ansatz (2.22). However, the case

of non-invertible β is more interesting for our purposes. A way to solve (2.25) is to assume

that the right hand side is zero, namely

ψ(η, ξ, ·) = 1

2
eBeβ [β, β]S(e

−βe−Bη, e−βe−Bξ, ·) , (2.26)

and that β3φ = 0. Then we set

W = φ
(

eBeββ(e−βe−Bη, ·), eBeββ(e−βe−Bξ, ·), ·
)

. (2.27)

We will see later that these conditions are mild enough to assure that nontrivial cases indeed

exist. According to the above, the brackets on the two vector bundles are determined to be6

[X,Y ]LBβ
=eBeβ

(

[e−βe−BX, e−βe−BY ]Lie + β(e−βe−B(φ(X,Y, ·)), ·)
)

, (2.28)

[η, ξ]L⋆
Bβ

=eBeβ [e−βe−Bη, e−βe−Bξ]K+φ
(

eBeββ(e−βe−Bη, ·), eBeββ(e−βe−Bξ, ·), ·
)

.(2.29)

The skew-symmetry of the brackets (2.28) and (2.29) follows from the skew-symmetry of

the Lie and Koszul brackets and the antisymmetry of φ. Closedness is also rather obvious.

The big brackets in eq. (2.28) contain an element of TM. Then this element is acted upon

with eBeβ , yielding elements of LBβ, as required. Similarly, both terms in eq. (2.29) are

elements of L⋆
Bβ. The brackets can be computed explicitly for the basis elements Θi and

Ei; they yield the results

[Θi,Θj ]LBβ
= (fk

ij − βkmφmij)Θk , (2.30)

[Ei, Ej ]L⋆
Bβ

= (θkβ
ij − 2βilf j

lk + βilβjmφklm)Ek . (2.31)

With the above elements φ and ψ, the brackets and the anchors, we have now collected

all the input ingredients of a protobialgebroid, as required from the definition 2.1. In the

appendix we collect the proofs of the properties 1-4 in this definition.

2.2.2 Explicit example

In order to exhibit that nontrivial cases with nonvanishing B and β and with Bβ 6= 1

indeed exist, let us consider as an example the 3D nilmanifold based on the Heisenberg

algebra with single structure constant f3
12 = 1. The full basis is

θ1 = ∂1 , θ2 = ∂2 + x1∂3 , θ3 = ∂3 , (2.32)

e1 = dx1 , e2 = dx2 , e3 = dx3 − x1dx2 . (2.33)

6Note that these brackets seem to contain only φ and not ψ explicitly. However, as it is clear from

eq. (2.26), ψ is not zero and this is essential for the ψ-homomorphism equation (2.24) to hold, as it should

for a protobialgebroid. However, ψ will appear explicitly when we construct the bracket of the corresponding

Courant algebroid, where the two twisted homomorphism conditions are replaced by a single homomorphism

condition for the anchor of the Courant algebroid.
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It can be checked that the manifold has a Poisson structure [62], given by the 2-vector

θP = µθ1 ∧ θ3 + νθ2 ∧ θ3 . (2.34)

Therefore, any non-Poisson 2-vector will necessarily include θ1 ∧ θ2. Here we consider such

a 2-vector,

β =
√
cθ1 ∧ θ2 , (2.35)

where c is a real constant. Its Schouten bracket gives:

[β, β]S = 2R = 2cθ1 ∧ θ2 ∧ θ3 , (2.36)

where for this example we identified the Schouten bracket with R (and dB with H below),

which is not always the case. Notably, β being constant in the basis θi is enough to produce

a nonvanishing 3-vector. Additionally we consider a 2-form proportional to the symplectic

leaves of the manifold, which are e1 ∧ e3 and e2 ∧ e3. To be precise, we restrict the 2-form

only on one leaf and take

B = Nx1e2 ∧ e3 . (2.37)

This 2-form is not closed, giving

dB = H = Ne1 ∧ e2 ∧ e3 . (2.38)

The twisted bases are given as

LBβ = span({Θi} = {θ1, θ2 +Nx1e3, θ3 −Nx1e2}) , (2.39)

L⋆
Bβ = span({Ei} = {e1 +√

cNx1e3 +
√
cθ2, e

2 −√
cθ1, e

3}) . (2.40)

The closed brackets among the basis elements {Θi, E
i} are found via eqs. (2.28)

and (2.29). They are

[Θ1,Θ2]LBβ
= Θ3 , [Θ1,Θ3]LBβ

= −√
cNΘ1 , [Θ2,Θ3]LBβ

= −√
cNΘ2 , (2.41)

[E1, E2]L⋆
Bβ

= cNE3 , [E1, E3]L⋆
Bβ

=
√
cE1 , [E2, E3]L⋆

Bβ
=

√
cE2 . (2.42)

Note that these are different from the ones in ref. [8], because the brackets have changed.

We specify the anchors from eqs. (2.18) and (2.19):

ρ(Θi) = θi , (2.43)

ρ⋆(E
i) = βijθj . (2.44)

Note that unlike ref. [8], the anchors are morphisms to the TM, as required.

Finally, the 3-elements are:

φ = Ne1 ∧ e2 ∧ e3 +
√
cN(e2 ∧ e3 ∧ θ2 + e1 ∧ e3 ∧ θ1) + cNe3 ∧ θ1 ∧ θ2 , (2.45)

ψ = cθ1 ∧ θ2 ∧ θ3 + cNx1(θ3 ∧ θ1 ∧ e3 + θ2 ∧ θ1 ∧ e2) + c(Nx1)2θ1 ∧ e2 ∧ e3 . (2.46)

It is simple to check that they satisfy the Bianchi identities dLBβ
φ = 0 and dL⋆

Bβ
ψ = 0

respectively (see appendix).
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2.3 The induced Courant algebroid

We recall the definition of a Courant algebroid according to refs. [23, 24].

Definition 2.2 A Courant algebroid is a quadruplet (E, [·, ·]E , 〈·, ·〉E , a) of the following

data:

• a vector bundle E over M,

• a skew-symmetric bracket on Γ(E),

• a non-degenerate symmetric bilinear form on E,

• and an anchor map a : E → TM,

such that for Xi ∈ Γ(E):

1. [[X1,X2]E ,X3]E + c.p. = DN (X1,X2,X3) , 3N = 〈[X1,X2]E ,X3〉E + c.p. ,

2. a([X1,X2]E) = [a(X1), a(X2)]Lie ,

3. [X1, fX2]E = f [X1,X2]E + (a(X1)f)X2 − 〈X1,X2〉EDf , f ∈ C∞(M) ,

4. 〈Df,Dg〉E = 0 , f, g ∈ C∞(M) ,

5. a(X)〈X1,X2〉E = 〈[X,X1]E +D〈X,X1〉E ,X2〉E + 〈X1, [X,X2]E +D〈X,X2〉E〉E ,

where D : C∞(M) → Γ(E) is a map such that 〈Df,X〉E = 1
2a(X)f .

According to Roytenberg there is a CA associated to any PBA [26, 27]. Its construction

is rather simple. Recall that according to Liu-Weinstein-Xu the general bracket of a CA is

not just the Courant bracket, but a more general expression [23, 24]. The Courant bracket

only arises in the case where the CA is standard, i.e. E = TM ⊕ T⋆M and the bracket

on the cotangent bundle is taken to be zero (providing a trivial extension of the tangent

bundle). In the case at hand the cotangent bundle is equipped with a non-trivial bracket,

and the CA is non-standard. Therefore the correct bracket on the CA should be the LBβ

bracket plus the L⋆
Bβ bracket with appropriate additional terms and twists.

According to these, the vector bundle we consider is E = LBβ⊕L⋆
Bβ, with the bracket:

[X + η, Y + ξ]E = [X,Y ]LBβ
+ LXξ − LY η − 1

2
dLBβ

(X(ξ)− Y (η))

+[η, ξ]L⋆
Bβ

+ LηY − LξX +
1

2
dL⋆

Bβ
(X(ξ)− Y (η))

−φ(X,Y, ·)− ψ(η, ξ, ·) , (2.47)

where the Lie derivatives are defined as

LX = dLBβ
ιX + ιXdLBβ

and Lη = dL⋆
Bβ

ιη + ιηdL⋆
Bβ

. (2.48)

The anchor is just the sum of the two anchors,

a(X + η) = ρ(X) + ρ⋆(η) = e−βe−BX + β(e−βe−Bη) . (2.49)
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The symmetric bilinear is the standard one,

〈X + η, Y + ξ〉E =
1

2
(X(ξ) + Y (η)) . (2.50)

These are the data of the CA that corresponds to the PBA structure of the previous

sections. Note also that

D = dLBβ
+ dL⋆

Bβ
. (2.51)

It can be directly checked that the requirements 1-5 are satisfied. Notably, the anchor a

of the CA is a homomorphism due to property 2 in the definition 2.2. Recall also that the

maps ρ and ρ⋆ are not exact homomorphisms, as dictated by property 2 in the definition 2.1.

This works as follows. Consider elements of E which lie entirely in LBβ, i.e. X = X and

η = 0. The bracket of E between such elements is

[X,Y ]E = [X,Y ]LBβ
− φ(X,Y, ·) . (2.52)

Then we compute

a([X,Y ]E) = ρ([X,Y ]LBβ
)− ρ⋆φ(X,Y, ·)

=
(

[ρ(X), ρ(Y )]Lie + ρ⋆φ(X,Y, ·)
)

− ρ⋆φ(X,Y, ·)
= [a(X), a(Y )]Lie , (2.53)

as required. A similar computation holds for the dual case.

Although in this section we used only index-free notation, it is useful to introduce CA

indices I, J, . . . , ranging from 1 to 2d. An arbitrary generalized vector is written as

X = (XI) = (Xi,Xi) ∈ Γ(E) , (2.54)

namely the index I splits into upper and lower indices according to X = X
iΘi + XiE

i.

3 The associated AKSZ sigma model

3.1 Topological sigma model, boundary terms and dynamics

Every Courant algebroid has an associated (topological) sigma model of the type described

by Alexandrov, Kontsevich, Schwarz and Zaboronsky (AKSZ) in ref. [29]. This can be

inferred e.g. by the discussion of Roytenberg in the paper [28]. A physicists-friendly review

is [30] (see also the paper [63]). The master action contains fields with ghost number 0, 1,

2 and 3. Let us focus on the 0-ghost sector of the action:

SΣ3
[X,A, F ] =

∫

Σ3

(

Fa∧dXa+
1

2
ηIJA

I ∧dAJ−P a
I A

I ∧Fa+
1

6
TIJKAI ∧AJ ∧AK

)

. (3.1)

The explanation for the ingredients of this action is the following. This is a membrane

topological action in 3D. The indices I, J are Courant algebroid indices, while the index a

is a curved index, as before. Xa are the world volume scalars on the membrane, or in other

words the components of the map X : Σ3 → M, M being the target spacetime. AI is valued
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in Ω1(Σ3, X
⋆E), where X⋆ denotes the pull back with respect to the world volume scalar

fields. Additionally, Fa is a world volume 2-form in Ω2(Σ3, X
⋆T⋆M). In the membrane

model it plays the role of an auxiliary field that will be integrated out in the reduced string

model. Moreover, η is the O(d, d) invariant metric, namely

ηIJ =

(

0 1d

1d 0

)

, (3.2)

and P a
I is the anchor matrix defined through the relation

a(XI) = P a
I (X)∂a , (3.3)

where a : E → TM is the anchor of the CA. Finally, T ∈ Ω3(Σ3, X
⋆E) is a generalized

3-form.

We assume that the manifold Σ3 has a boundary, say ∂Σ3 := Σ2, since this is the

relevant case for physical applications. The above action can be decorated with a general

topological boundary term as in ref. [4] (see also [6, 30]):

S∂Σ3,top =

∫

Σ2

1

2
BIJ(X)AI ∧AJ . (3.4)

More explicitly, with the splitting AI = (qi, pi),

1

2
BIJ(X)AI ∧AJ =

1

2
Bij(X)qi ∧ qj +

1

2
Bij(X)pi ∧ pj +

1

2
Bi
j(X)qj ∧ pi . (3.5)

In the class of CAs we examine, all terms will play a role.

Additionally, in order to make contact with physics, dynamics should be added to the

topological theory (thus breaking its topological nature). In this section our approach will

be to study the 3D topological theory, then reduce it to the corresponding 2D field theory

on the boundary and add dynamics at the level of this 2D theory. This is either done by

simply adding a standard kinetic term

∫

Σ2

1

2
gije

i ∧ ⋆ej , (3.6)

or in certain cases a kinetic term formed with the inverse metric
∫

Σ2

1

2
gijpi ∧ ⋆pj , (3.7)

as in ref. [4]. The corresponding 2D theories are related to the dynamical sigma models

discussed in refs. [64, 65].

A final comment has to do with the functional dependence of the quantities that

appear in the above actions. In this section we assume that the various background field

components BIJ , the anchor matrix P a
I and the twist T solely depend on the scalar fields

Xa. These assumptions will be lifted in section 4, where in the spirit of the first order

formalism we will allow everything to depend both on Xa and the corresponding momenta.

– 13 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
2

3.2 The AKSZ model for the Courant algebroid E = LBβ ⊕ L⋆
Bβ

Let us now specialize to the class of Courant algebroids that we discuss in this paper. The

ingredients of the topological membrane action (3.1) can be further specified. We hereby

use the splitting AI = (qi, pi) referring to the basis (ei, θi). According to eqs. (2.18)–(2.19),

or more particularly eqs. (2.43)–(2.44), we immediately obtain the components P a
I of the

anchor matrix:

P a
i = µeai (X) , (3.8)

P ai = νβij(X)eaj (X) . (3.9)

Note that we used the freedom to introduce parameters µ, ν ∈ {0, 1}, since the CA structure

is rigid against trivialization of the anchors. These parameters are relevant in taking

interesting limits, as will become clear later in this section.

Given the above ingredients the bulk action is

S
(φ,ψ)
Σ3

=

∫

Σ3

(

Fa∧dXa+kqi∧dpi+k′pi∧dqi−(µeai q
i+νβijeajpi)∧Fa+f−φ−ψ

)

, (3.10)

with f being the geometric flux

f =
1

2
fk
ijq

i ∧ qj ∧ pk , (3.11)

while, recalling that we work in the (ei, θi) basis, φ and ψ are the twists given by the

expansions

φ =
1

6

(

(1 + βB)iρ(1 + βB)jσ(1 + βB)kτφijkq
ρ ∧ qσ ∧ qτ

+3(1 + βB)iρ(1 + βB)jσβ
klφijkq

ρ ∧ qσ ∧ pl

+3(1 + βB)iρβ
jlβkmφijkq

ρ ∧ pl ∧ pm

+βilβjmβknφijkpl ∧ pm ∧ pn
)

, (3.12)

and

ψ =
1

6

(

ψijkpi ∧ pj ∧ pk

+3Bknψ
ijkpi ∧ pj ∧ qn

+3BjmBknψ
ijkpi ∧ qm ∧ qn

+BilBjmBknψ
ijkql ∧ qm ∧ qn

)

. (3.13)

We used the fact that we are free to introduce two additional parameters k and k′. Ac-

cording to the general action (3.1) they have to satisfy

k + k′ = 1 . (3.14)

The most symmetric choice is k = k′ = 1
2 , and in absence of boundary one can always

perform an integration by parts to change it to an arbitrary choice satisfying the condi-

tion (3.14). In the presence of a 2D boundary these parameters are used for interpolation

between different limits.

– 14 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
2

Now let us specify the boundary action. This contains all possible terms incorporating

B, β and h deformations.7 Accordingly, the boundary action is given by eqs. (3.4) and (3.5),

with each set of components given as

Bij = Bij , Bij = βij , Bj
i = hji . (3.15)

The full action that we consider is then

S = S
(φ,ψ)
Σ3

+ S
(B,β,h)
∂Σ3,top

. (3.16)

This action comes with a set of consistency conditions. First, the boundary conditions

should match with the equations of motion on the boundary. This implies that we have

to vary the action with respect to Xa, qi and pi, set the variations to zero and determine

appropriate boundary conditions. Performing this task we obtain

δXaS|Σ2
= Fa +

1

2
∂aBjkq

j ∧ qk +
1

2
∂aβ

jkpj ∧ pk +
1

2
∂ah

k
j q

j ∧ pk = 0 ,

δqiS|Σ2
= −(k′pi +Bijq

j +
1

2
hjipj) = 0 ,

δpiS|Σ2
= −(kqi + βijpj −

1

2
hijq

j) = 0 . (3.17)

These conditions are generalizations of the ones that appear e.g. in [30] and [33] and they

can be solved in many ways, as we will explore below. The second consistency condition

that has to be satisfied reads as

(µeai (X)qi + νβijeajpi) ∧ Fa = f − φ− ψ on Σ2 . (3.18)

Normally this condition follows from the classical master equation [30]. Alternatively it

can be viewed as vanishing of the sector of the bulk action that does not reduce to the

boundary via the field equations.

Let us now explore some boundary conditions. First, we consider

Fa|Σ2
= −1

2
∂aBjkq

j ∧ qk − 1

2
∂aβ

jkpj ∧ pk −
1

2
∂ah

k
j q

j ∧ pk ,

δqi|Σ2
= 0 ,

(kqi + βijpj −
1

2
hijq

j)|Σ2
= 0 . (3.19)

Notably, the mild condition hikh
k
j = 0 allows us (for k 6= 0) to write

qi = −1

k
χi
kβ

kjpj , (3.20)

where we introduced shorthand notation χ = 1 + 1
2kh. A medium long calculation shows

that (3.18) reduces to the bulk/boundary consistency condition

Rijk − 1

k
Q[ij

n βpk]χn
p +

1

k2
F [i
mnβ

pjβqk]χm
p χn

q − 1

k3
Hlmnβ

piβqjβrkχl
pχ

m
q χn

r = 0 , (3.21)

7Although when we discuss specific examples we never add excess geometric flux on the twisted torus,

in the general discussion such a possibility is retained.
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where we defined

Rijk = ψijk − 3νβ[ilθlβ
jk] + βliβmjβnkφlmn ,

Qij
k = −3µθkβ

ij + 3νβ[ilθlh
j]
k + 3Blkψ

ijl + 3(1 + βB)lkβ
miβnjφlmn ,

F i
jk = −3µθ[jh

i
k] − 3f i

jk − 3νβilθlBjk + 3BljBmkψ
lmi + 3(1 + βB)lj(1 + βB)mk βniφlmn ,

Hijk = (1 + βB)li(1 + βB)mj (1 + βB)nkφlmn − 3µθ[iBjk] +BliBmjBnkψ
lmn . (3.22)

This long expression reveals the rich structure of the type of models we consider. In certain

limits the condition (3.21) simplifies drastically and reduces to known results, as we will

discuss in the next section.

Second, consider the alternative boundary conditions

Fa|Σ2
= −1

2
∂aBjkq

j ∧ qk − 1

2
∂aβ

jkpj ∧ pk −
1

2
∂ah

k
j q

j ∧ pk ,

(k′pi +Bijq
j +

1

2
hjipj)|Σ2

= 0 ,

δpi|Σ2
= 0 . (3.23)

As before, for k′ 6= 0 and defining χ′ = 1− 1
2k′h we can write

pi = − 1

k′
χ′k
i Bkjq

j , (3.24)

which will now yield a consistency condition different from the previous case. The new

calculation leads to

Hijk −
1

k′
Fn
[ijBpk]χ

′p
n +

1

k′2
Qmn

[i BpjBqk]χ
′p
mχ′q

n − 1

k′3
RlmnBpiBqjBrkχ

′p
l χ

′q
mχ′r

n = 0 , (3.25)

with the same definitions (3.22).

Finally, let us comment on the possibility of using the boundary conditions

Fa|Σ2
= −1

2
∂aBjkq

j ∧ qk − 1

2
∂aβ

jkpj ∧ pk −
1

2
∂ah

k
j q

j ∧ pk ,

(k′pi +Bijq
j +

1

2
hjipj)|Σ2

= 0 ,

(kqi + βijpj −
1

2
hijq

j)|Σ2
= 0 . (3.26)

Now we obtain that both (3.20) and (3.24) should hold. This leads to the equations

(1− 1

kk′
χ′Bχβ)jipj = 0 ,

(1− 1

kk′
χβχ′B)ijq

j = 0 (3.27)

which in general force pi = qi = 0, which is way too restrictive.

As a final remark, it should be clear that the above sets of boundary conditions are

just two illustrative cases and they do not exhaust the range of possibilities, since one

can impose mixed boundary conditions too. We will encounter interesting cases of mixed

boundary conditions later.
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Twisted Dirac structure Bracket [·, ·]T Condition

LB [·, ·]H dB = H

L∗

β [·, ·]R 1
2 [β, β] = R

LB [·, ·]R (dB)ijk − 1
3BilBjmBknR

lmn = 0

L∗

β [·, ·]H ([β, β])ijk − 2
3β

ilβjmβknHlmn = 0

LB [·, ·]HR dB = H and BilBjmBknR
lmn = 0

L∗

β [·, ·]HR
1
2 [β, β] = R and βilβjmβknHlmn = 0

Table 1. Integrability conditions for the almost Dirac structures LB and L⋆
β with H or/and R

twists.

3.3 Bulk/boundary versus integrability conditions for Dirac structures

Let us explore some limits of the bulk/boundary consistency conditions (3.21) and (3.25)

and show that they reduce to previously obtained results. In particular we show that

they are equivalent to the integrability conditions for twisted almost Dirac structures.

Recall that a Dirac structure L is a subbundle of a CA E which satisfies the following two

conditions:

〈L,L〉E = 0 , (3.28)

[L,L]E ∈ L , (3.29)

namely it is maximally isotropic and involutive with respect to the CA bracket [25]. An al-

most Dirac structure is just a maximal isotropic subbundle, i.e. the bundle before the second

condition is imposed. Imposing the closure condition yields an integrability condition for L.

In ref. [8], the study of twisted almost Dirac structures led us to the results summarized

in table 1 for the vector bundles LB = eBTM and L⋆
β = eβT⋆M with various choices of the

CA bracket.8

The brackets that appear on the table are the Courant bracket twisted by H, R or

both.9 With the choice of bracket [·, ·]T , the integrability condition of the third column

must hold. The conditions in the first and second row are of course standard. Additionally,

the condition in the fourth row is also standard and it corresponds to the H-twisted Poisson

sigma model [31, 32, 66]. This table can also be obtained in the context of the AKSZ sigma

models and we now show how (see also [30, 33] for related discussions).

8Slight differences to [8] in factors and signs are due to change of conventions on one hand and different

way of presentation on the other hand.
9One should be cautious about the differences with the twists φ and ψ. In ref. [8] it was assumed that

the bracket twists are exactly H = dB and R = 1

2
[β, β]S, while in the present setting the twists φ and ψ

are more general. We clarify this further below.
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Case 1: Dirac structure LB. In this case we set β = 0 and h = 0, and we keep only

a nonvanishing B. Additionally, we make the following choice of parameters:

k = 0 , k′ = 1 , µ = 1 , ν = {0, 1} . (3.30)

The relation (3.24) simply becomes

pi = −Bijq
j . (3.31)

Then eq. (3.22) gives

Rijk = ψijk ,

Qij
k = 3Blkψ

ijl ,

F i
jk = −3f i

jk + 3BljBmkψ
lmi ,

Hijk = φijk − 3θ[iBjk] +BliBmjBnkψ
lmn . (3.32)

The bulk/boundary consistency condition (3.25) reduces to the significantly simpler ex-

pression

φijk − 3θ[iBjk] − 3f l
[ijBk]l = 0 , (3.33)

or equivalently

φ− dB = 0 (3.34)

in index-free notation. In order to compare this condition with the ones given in table 1,

we recall that these results were obtained by twisting the bracket on LB with a 3-vector

R and/or a 3-form H. Therefore it is useful to write the fluxes φ and ψ reduced to the

boundary as

φ+ ψ =
1

6
(φijk +BliBmjBnkψ

lmn)qi ∧ qj ∧ qk +
1

6
ψijkpi ∧ pj ∧ pk . (3.35)

The first line in table 1 corresponds to the case of φijk = Hijk and ψijk = Rijk = 0, whence

the integrability condition (3.34) gives dB = H. Similarly, the third line corresponds to

φijk = BilBjmBknψ
lmn and ψijk = Rijk, leading to the integrability condition (dB)ijk =

1
3BilBjmBknR

lmn. Finally, for the fifth line we have φijk = Hijk and ψijk = Rijk thus

giving dB = H and BilBjmBknR
lmn = 0.

Case 2: Dirac structure L⋆
β. In this case we set B = 0 and h = 0, and we keep only

a nonvanishing β. We choose the parameters

k = 1 , k′ = 0 , µ = 1 , ν = 0 . (3.36)

The relation (3.20) becomes

qi = −βijpj , (3.37)

and the definitions (3.22)

Rijk = ψijk + βliβmjβnkφlmn ,
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Qij
k = −3θkβ

ij + 3βliβmjφklm ,

F i
jk = −3f i

jk + 3βliφjkl ,

Hijk = φijk . (3.38)

Then the bulk/boundary consistency condition (3.21) reduces to

ψijk − 3β[ilθlβ
jk] − 3f i

mnβ
mjβnk = 0 , (3.39)

or equivalently

ψ − 1

2
[β, β]S = 0 . (3.40)

As before, this expression directly yields the integrability conditions for the almost Dirac

structure L⋆
β appearing in the second, fourth and sixth rows of table 1. To make this

explicit we write the fluxes φ and ψ reduced to the boundary as

φ+ ψ =
1

6
φijkq

i ∧ qj ∧ qk +
1

6
(ψijk + βliβmjβnkφlmn)pi ∧ pj ∧ pk , (3.41)

Then the second row in table 1 corresponds to φijk = 0 and ψijk = Rijk, thus reduc-

ing (3.40) to R = 1
2 [β, β]S. Similarly, the fourth line in the table is obtained when φijk =

Hijk and ψijk = −βliβmjβnkφlmn, resulting in the integrability condition βilβjmβknHlmn =
3
2([β, β]S)

ijk. For the sixth line φijk = Hijk and ψijk = Rijk and the integrability condi-

tion (3.40) reduces to R = 1
2 [β, β]S and βliβmjβnkHlmn = 0.

The pattern is already obvious. The choice of bracket corresponds to the choice of

twist in the membrane action. The choice of Dirac structure deformation corresponds

to the choice of boundary condition on the boundary string. The integrability condition

corresponds to consistency of the boundary conditions with the bulk action. This dictionary

is summarized as:

Courant algebroid Sigma model

Bracket twist [·, ·]T Bulk term −
∫

Σ3
T

Dirac structure deformation LB Boundary term
∫

∂Σ3
B

Integrability condition for Dirac structure Bulk/boundary consistency condition

3.4 2D sigma models with dynamics

Up to now we discussed the 3D topological field theory. For physical applications, notably

for string theory, it is necessary to look at the corresponding 2D theory on the boundary

and add dynamics to it. Let us first revisit the two cases of section 3.3 from this perspective.

For the first case of LB, the Fa equation of motion yields

qi = eiadX
a = ei . (3.42)

Using this to integrate out the auxiliary field and adding dynamics in the standard way,

we obtain the familiar 2D field theory with Wess-Zumino term

S =

∫

Σ2

(

1

2
gije

i ∧ ⋆ej +
1

2
Bije

i ∧ ej
)

−
∫

Σ3

1

6
φijke

i ∧ ej ∧ ek . (3.43)
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In the second case of L⋆
β , the Fa equation again gives (3.42), and integrating out the

auxiliary 2-form produces the action

S =

∫

Σ2

(

1

2
g̃ijpi ∧ ⋆pj + pi ∧ ei +

1

2
βijpi ∧ pj

)

−
∫

Σ3

1

6
ψijkpi ∧ pj ∧ pk , (3.44)

where in the spirit of the first order formalism we added dynamics with the inverse metric10

g̃ij , exactly as in ref. [4]. Some remarks regarding the action (3.44) are in order. First,

when the bracket is twisted only with a 3-form H, one has ψijk = −βliβmjβnkHlmn and

this is precisely the H-twisted Poisson sigma model [66] on a nilmanifold. In that case one

can write the standard kinetic term. Furthermore, if β is invertible and its inverse is equal

to B, then the action (3.44) with g = −Bg̃−1B is equivalent to (3.43).

3.5 Explicit sigma model with both B and β, and Bβ /∈ {0, 1}

In section 3.3 we showed that the general formulae of section 3.2 reproduce known results

in the limits B = 0 and β = 0 respectively. However, in general none of B and β is zero,

and moreover they do not have to satisfy any relation of the sort Bβ = 1, as is sometimes

assumed. The results of section 3.2 reflect such general cases. In the present section we

want to show that these results are not empty, in the sense that there indeed exist nontrivial

cases where the consistency conditions of the AKSZ sigma model can be satisfied.

In order to be very explicit, let us consider the toy example of section 2.2.2, where the

nonvanishing components of B and β are B23 = NX1 and β12 =
√
c. Therefore

Bβ =









0 0 0

0 0 0
√
cNX1 0 0









, (3.45)

which is neither vanishing nor unity. In very explicit terms, the sigma model is

S =

∫

Σ3

(

Fa ∧ dXa +
1

2
qi ∧ dpi +

1

2
pi ∧ dqi − (q1 −√

cp2) ∧ F1 − (q2 +
√
cp1) ∧ F2

−(q3 +X1q2 +
√
cX1p1) ∧ F3 + q1 ∧ q2 ∧ p3 −Nq1 ∧ q2 ∧ q3

−√
cN(q2 ∧ q3 ∧ p2 + q1 ∧ q3 ∧ p1)− cNq3 ∧ p1 ∧ p2 − cp1 ∧ p2 ∧ p3

−cNX1(p3 ∧ p1 ∧ q3 + p2 ∧ p1 ∧ q2)− c(NX1)2p1 ∧ q2 ∧ q3
)

+

∫

Σ2

(

NX1q2 ∧ q3 +
√
cp1 ∧ p2

)

, (3.46)

where the indices a and i run from 1 to 3, and we have made the choices k = k′ = 1
2 and

µ = ν = 1. Proceeding with the variations, the δXa ones directly lead to the boundary

condition

F1 = −Nq2 ∧ q3 , F2 = F3 = 0 . (3.47)

10More precisely this is not an inverse metric but the standard metric on the dual algebroid structure.
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The variations δpi and δqi lead to the following set of relations:

(
1

2
q1 +

√
cp2)δp1 = 0 , (

1

2
q2 −√

cp1)δp2 = 0 , (
1

2
q3)δp3 = 0 ,

(
1

2
p1)δq

1 = 0 , (
1

2
p2 +NX1q3)δq2 = 0 , (

1

2
p3 −NX1q2)δq3 = 0 . (3.48)

Additionally, taking into account (3.47), the bulk/boundary consistency condition is

N(q1 −√
cp2) ∧ q2 ∧ q3 + q1 ∧ q2 ∧ p3 −Nq1 ∧ q2 ∧ q3

−√
cN(q2 ∧ q3 ∧ p2 + q1 ∧ q3 ∧ p1)− cNq3 ∧ p1 ∧ p2 − cp1 ∧ p2 ∧ p3

−cNX1(p3 ∧ p1 ∧ q3 + p2 ∧ p1 ∧ q2)− c(NX1)2p1 ∧ q2 ∧ q3 = 0 . (3.49)

Now we have to choose appropriate boundary conditions, consistent with eqs. (3.48)

and (3.49). The choice corresponding to (3.23) is

δpi = 0 , p1 = 0 , p2 = −2NX1q3 , p3 = 2NX1q2 . (3.50)

It is observed that eq. (3.13) gives ψ = 0. This is a legitimate possibility but it is not

so interesting because it makes one of the twists vanish. On the other hand, the choice

δqi = 0 of (3.19) is not consistent with (3.49) for c 6= 0. This indicates that mixed boundary

conditions are appropriate in order to keep both φ and ψ nonvanishing. We can find such

conditions by first noting that

• δq1 6= 0 ⇒ p1 = 0 ⇒ ψ = 0 ,

• δp3 6= 0 ⇒ q3 = 0 ⇒ φ = 0 ,

•
(

δp1 6= 0 and δq2 6= 0
)

⇒
(

p2 ∝ q3 and q1 ∝ q3
)

⇒ φ = 0 ,

•
(

δp2 6= 0 and δq3 6= 0
)

⇒
(

p3 ∝ p1 and q2 ∝ p1
)

⇒ ψ = 0 .

This leads to the necessary requirements

δq1 = 0 , δp3 = 0 ,
(

δp1 = 0 or δq2 = 0
)

,
(

δp2 = 0 or δq3 = 0
)

. (3.51)

Let us choose δq2 = δp2 = 0 for the last two requirements. The remaining boundary

conditions from (3.48) are

q1 = −2
√
cp2 , p3 = 2NX1q2 , on Σ2 . (3.52)

In order to be able to solve the bulk/boundary consistency condition we choose additionally

q3 +
1

2

√
cX1p1 = 0 on Σ2 . (3.53)

Then we find that on the boundary

φ =
1

2
cNX1q2 ∧ p1 ∧ p2 , (3.54)

ψ = 2
√
cNq2 ∧ q3 ∧ p2 , (3.55)
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and it is checked that the condition (3.49) is satisfied. This shows that the boundary

conditions that were chosen are consistent with the AKSZ action, while both twists φ and

ψ and both deformations B and β are nonvanishing. Focusing on 2D, the corresponding

action can be brought to the form

∫

Σ2

(

1

2
gije

i ∧ ⋆ej +
1

2
pi ∧ ei +NX1e2 ∧ e3 +

√
cp1 ∧ p2 −

√
cNX1p1 ∧ e3

)

. (3.56)

This is a nontrivial case from the general class of 2D field theories called Dirac sigma

models, introduced and studied in refs. [64, 65].

4 Toward a sigma model description of double field theory

We would like to examine to what extend the approach we adopted up to now can be carried

on to account for genuinely non-geometric cases. As mentioned in the introduction, non-

geometric situations are better understood in the doubled formalism, where non-geometry

is triggered by the presence of dual coordinates. In the doubled field theory these where im-

plemented in an effective field theory on some doubled spacetime. Here we do not work in a

target space field theory framework, but instead we formulate the appropriate sigma model.

This is close in spirit to the inspiring attempt of ref. [6] to describe non-geometric back-

grounds in the context of AKSZ sigma models. The authors used this approach to discuss

quantization of non-geometric backgrounds and limited their description to the single pres-

ence of R flux. This case is however known to be T-dual to standard H flux backgrounds

and as such it is not a genuinely non-geometric background. In the following we will extend

and generalize the scope of AKSZ inspired sigma models to account for more general cases.

4.1 Sigma models with doubled target space

Let us recall a key point in the analysis of ref. [6]. Consider the sigma model (3.1) associated

to the standard CA on a torus. Moreover let T = R be the only generalized 3-form with

R a constant 3-vector. This means that the 3D action is11

SR[X,A, F ] =

∫

Σ3

(

Fa ∧ dXa + qa ∧ dpa − qa ∧ Fa +
1

6
Rabcpa ∧ pb ∧ pc

)

, (4.1)

where we used only early Latin indices because for the moment we refer to the flat torus.

Integrating out the 2-form Fa one obtains

SR[X,A, F ] =

∫

Σ2

pa ∧ dXa +

∫

Σ3

1

6
Rabcpa ∧ pb ∧ pc , (4.2)

with Xa-independent Rabc by assumption. The equation of motion for Xa is simply

dpa = 0 . (4.3)

11As mentioned in ref. [6] a 2D kinetic term should be included for consistency with the equations of

motion. We do not explicitly write it here because it will not play a crucial role in the argument.
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This means that the 1-form pa may be written locally as

pa = dX̃a , (4.4)

where X̃a ∈ C∞(Σ3, X
⋆T⋆M). These X̃a are similar to the dual coordinates of DFT, which

is the reason for our choice of notation. As suggested in ref. [6], in the sigma model they

essentially correspond to an augmented embedding of the 2-dimensional boundary theory

on Σ2 in the full cotangent bundle of the target manifold M. In other words there are gener-

alized (or doubled) target space coordinates (XI) = (Xa, X̃a) which correspond to the map

X = (XI) : Σ3 → T⋆M. Note that the appearance of the dual coordinates is very natural

in this context, since they were suggested by the equations of motion of the sigma model.

An alternative way to think about the above doubling is in the spirit of the topological

approach to T-duality [67, 68], which was explained via Courant algebroids in refs. [69–71].

In this approach there is a product manifold M × M̃ of original and dual spaces and T-

duality corresponds to an isomorphism of twisted K-theories [67, 68]. In [70] it was shown

that this can be extended to an isomorphism between the corresponding CAs. Here we

associate X
I to the product manifold M × M̃. Presumably, the AKSZ sigma models for

CAs over this extended target space correspond to the ones we will consider below. We

plan to study this correspondence carefully in future work.

Once one considers the possibility of such generalized embeddings, it is natural to allow

all the fields that appear in the model to depend both on Xa and X̃a. In that case insisting

on the formulation (3.1) for the sigma model is rather restrictive. From the viewpoint of

physics, eq. (3.1) does not contain dX̃a at all, which should not be the case in general.

Thus, returning to the general case, our proposal here is twofold. First, allow B, β, h, a

and T to depend on both Xa and X̃a. Second, introduce a second world volume 2-form

F̃ a ∈ Ω2(Σ3,X
⋆TM); note that this is again an auxiliary world volume 2-form like Fa, with

the difference of having a vector index instead. Then we write the 3-dimensional action

SΣ3
=

∫

Σ3

(

Fa∧dXa+F̃ a∧dX̃a+
1

2
ηIJA

I∧dAJ−P a
I A

I∧Fa−P̃aIA
I∧F̃ a+

1

6
TIJKAI∧AJ∧AK

)

.

(4.5)

In more compact notation, writing P J
I =(P a

I , P̃aI) and F I=(Fa, F̃
a) for F I ∈Ω2(Σ3,X

⋆E),

we get

SΣ3
=

∫

Σ3

(

δIJF
I ∧ dXJ +

1

2
ηIJA

I ∧ dAJ − δJKP J
I A

I ∧ FK +
1

6
TIJKAI ∧AJ ∧AK

)

.

(4.6)

The boundary action is the same as before, namely

SΣ2
=

∫

Σ2

1

2
BIJA

I ∧AJ , (4.7)

with the difference that B = B(X, X̃). An important remark regards the object P̃aI , which

was absent before. These are the components of a map P̃ : E → T⋆M that maps elements

of the Courant algebroid to the cotangent bundle. Examples of such a map is the unit map

on 1-forms and the map B♯ : TM → T⋆M that acts simply as B♯(Xi) = Bijη
j .
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Our purpose now is to consider the analog of the construction we did for the CA LBβ⊕
L⋆
Bβ, bearing in mind that a complete mathematical characterization of the construction

is due. The ingredients are similar to the standard case. We consider the twists φ and ψ,

as given in eqs. (3.12) and (3.13), as well as the geometric twist f of the nilmanifold that

appears in eq. (3.11). Then the action reads as

S =

∫

Σ3

(

Fa ∧ dXa + F̃ a ∧ dX̃a + kqi ∧ dpi + k′pi ∧ dqi

−(µeai q
i + νβijeajpi) ∧ Fa − (µ′eiapi + ν ′Bije

j
aq

i) ∧ F̃ a + f − φ− ψ

)

+

∫

Σ2

(

1

2
Bijq

i ∧ qj +
1

2
βijpi ∧ pj +

1

2
hji q

i ∧ pj

)

. (4.8)

For the map P̃ we took

P̃ i
a = µ′eia and P̃ai = ν ′Bije

j
a , (4.9)

which is the natural choice. As before, the parameters µ, ν, µ′, ν ′ are valued in {0, 1}, which
reflects the flexibility of trivializing the corresponding map or not. Once more, k and k′

should satisfy k + k′ = 1.

Next we determine the equations of motion on the boundary by varying with respect

to Xa, X̃a, q
i and pi. The only new equation is

δX̃a
S|Σ2

= F̃ a +
1

2
∂̃aBjkq

j ∧ qk +
1

2
∂̃aβjkpj ∧ pk +

1

2
∂̃ahkj q

j ∧ pk = 0 , (4.10)

where ∂̃a = ∂/∂X̃a. The other three equations are exactly as in (3.17). Additionally, the

bulk/boundary condition that should hold reads as

(µeai q
i + νβijeajpi) ∧ Fa + (µ′eiapi + ν ′Bije

j
aq

i) ∧ F̃ a = f − φ− ψ on Σ2 . (4.11)

This has to be consistent with the choice of boundary conditions that guarantee the equa-

tions of motion on the boundary.

Let us examine how the boundary conditions that were considered in section 3.2 are

modified. First we consider the boundary conditions

Fa|Σ2
= −1

2
∂aBjkq

j ∧ qk − 1

2
∂aβ

jkpj ∧ pk −
1

2
∂ah

k
j q

j ∧ pk ,

F̃ a|Σ2
= −1

2
∂̃aBjkq

j ∧ qk − 1

2
∂̃aβjkpj ∧ pk −

1

2
∂̃ahkj q

j ∧ pk ,

δqi|Σ2
= 0 ,

(kqi + βijpj −
1

2
hijq

j)|Σ2
= 0 . (4.12)

The bulk/boundary consistency condition (4.11) becomes formally identical to (3.21),

namely

Rijk − 1

k
Q[ij

n βpk]χn
p +

1

k2
F [i
mnβ

pjβqk]χm
p χn

q − 1

k3
Hlmnβ

piβqjβrkχl
pχ

m
q χn

r = 0 ,
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but with the upgraded definitions

Rijk = ψijk − 3νβ[ilθlβ
jk] + βliβmjβnkφlmn − 3µ′θ̃[iβjk] , (4.13)

Qij
k = −3µθkβ

ij+3νβ[ilθlh
j]
k +3Blkψ

ijl+3(1+βB)lkβ
miβnjφlmn+3µ′θ̃[ih

j]
k −3ν ′Bklθ̃

lβij ,

F i
jk = −3µθ[jh

i
k] − 3f i

jk − 3νβilθlBjk + 3BljBmkψ
lmi + 3(1 + βB)lj(1 + βB)mk βniφlmn

−3µ′θ̃iBjk − 3ν ′B[jlθ̃
lhik] ,

Hijk = (1+βB)li(1+βB)mj (1+βB)nkφlmn−3µθ[iBjk]+BliBmjBnkψ
lmn−3ν ′B[ilθ̃

lBjk] ,

where we defined θ̃i = eia∂̃
a. Similarly, the boundary conditions

Fa|Σ2
=

1

2
∂aBjkq

j ∧ qk +
1

2
∂aβ

jkpj ∧ pk +
1

2
∂ah

k
j q

j ∧ pk ,

F̃ a|Σ2
=

1

2
∂̃aBjkq

j ∧ qk +
1

2
∂̃aβjkpj ∧ pk +

1

2
∂̃ahkj q

j ∧ pk ,

(k′pi −Bijq
j − 1

2
hjipj)|Σ2

= 0 ,

δpi|Σ2
= 0 , (4.14)

lead to the generalization of the alternative condition (3.25), namely

Hijk −
1

k′
Fn
[ijBpk]χ

′p
n +

1

k′2
Qmn

[i BpjBqk]χ
′p
mχ′q

n − 1

k′3
RlmnBpiBqjBrkχ

′p
l χ

′q
mχ′r

n = 0 ,

with the definitions (4.13).

4.2 The pure R flux limit

Let us briefly revisit the pure R flux limit of ref. [6] with the results of section 4.1. Consider

B = h = 0 and β = β(X̃) to be independent of Xa. Additionally, let us turn off the φ

flux and geometric flux f just for the present example, namely f = φ = 0. With these

assumptions, eqs. (4.13) reduce to

Rijk = ψijk − 3∂̃[iβjk] ,

Q = F = H = 0 . (4.15)

We choose the boundary conditions (4.12), in which case the bulk/boundary condi-

tion (3.21) reads as

Rijk = 0 ⇒ ψijk = 3∂̃[iβjk] . (4.16)

In case β is linear in X̃a, e.g. β = ÑǫijkδakX̃api ∧ pj , we can identify ψ with the constant R

flux, e.g. R = Ñ . This is similar to the case considered in [6], where more details may be

found.

4.3 Genuine non-geometry?

The main motivation for the formulation we propose in section 4.1 was to examine the

possibility to construct genuinely non-geometric models, in the sense that was explained in

the Introduction. This is essentially the message of the results in section 4.1, but in order
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to make sure that they are not empty and indeed contain nontrivial cases we construct

here an explicit toy model.

Consider the sigma model on the twisted torus of section 3.5, upgraded to a model of

the type (4.8) with the following background fields instead:

B = NX1q2 ∧ q3 , β = ÑX̃2p1 ∧ p3 . (4.17)

Both B and β are nonvanishing, and they satisfy

βB =









0 −NÑX1X̃2 0

0 0 0

0 0 0









. (4.18)

Moreover, in this case we identify φ and ψ with the corresponding derivations, namely

φ = Nq1 ∧ q2 ∧ q3 , ψ = Ñp1 ∧ p2 ∧ p3 . (4.19)

Making the choices k = k′ = 1
2 and µ = µ′ = ν = ν ′ = 1 , the model is given as

S =

∫

Σ3

(

Fa ∧ dXa + F̃ a ∧ dX̃a +
1

2
pi ∧ dqi +

1

2
qi ∧ dpi

−F1 ∧ (q1 − ÑX̃2p3)− F2 ∧ q2 − F3 ∧ (q3 +X1q2 + ÑX̃2p1)

−F̃ 1 ∧ p1 − F̃ 2 ∧ (p2 −X1p3 −NX1q3 −N(X1)2q2)− F̃ 3 ∧ (p3 +NX1q2)

+q1 ∧ q2 ∧ p3 − φ− ψ

)

+

∫

Σ2

(

NX1q2 ∧ q3 + ÑX̃2p1 ∧ p3

)

, (4.20)

where in the present case we find

φ = Nq1 ∧ q2 ∧ q3+NÑX̃2(q
2 ∧ q3 ∧ p3 + q2 ∧ q1 ∧ p1)+N(ÑX̃2)

2q2 ∧ p3 ∧ p1 ,

ψ = Ñp1 ∧ p2 ∧ p3+NÑX1(p3 ∧ p1 ∧ q3+p2 ∧ p1 ∧ q2)+Ñ(NX1)2p1 ∧ q2 ∧ q3 . (4.21)

The equations of motion for Xa and X̃a lead to the boundary conditions for Fa and F̃ a:

F1 = −Nq2 ∧ q3 , F2 = F3 = 0 ,

F̃ 2 = −Ñp1 ∧ p3 , F̃ 1 = F̃ 3 = 0 . (4.22)

Additionally, the equations of motion for qi and pi lead to:

(
1

2
q1 + ÑX̃2p3)δp1 = 0 , (

1

2
q2)δp2 = 0 , (

1

2
q3 − ÑX̃2)δp3 = 0 , (4.23)

(
1

2
p1)δq

1 = 0 , (
1

2
p2 +NX1q3)δq2 = 0 , (

1

2
p3 −NX1q2)δq3 = 0 .

An analysis similar to section 3.5 dictates the boundary conditions

δq1 = 0 , δp2 = 0 ,
(

δp3 = 0 or δq2 = 0
)

,
(

δp1 = 0 or δq3 = 0
)

. (4.24)
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Out of the last two requirements we make the random choice δp3 = δq3 = 0. The remaining

boundary conditions are

q1 = −2ÑX̃2p3 , p2 = −2NX1q3 . (4.25)

Imposing also that X1p1 − 2X̃2q
2 = 0 , we find that on the boundary

φ = −NÑX̃2p3 ∧ q2 ∧ q3 ,

ψ = NÑX1p1 ∧ p3 ∧ q3 , (4.26)

and that the bulk/boundary consistency condition

F1∧(q1−ÑX̃2p3)+F̃ 2∧(p2−X1p3−NX1q3−N(X1)2q2)+q1∧q2∧p3−φ−ψ = 0 , (4.27)

is satisfied. This means that the model is a nontrivial case where the twists φ and ψ, as well

as the deformations B and β, are nonvanishing. Unlike the model with pure 3-vector flux,

which is well known to be T-dual to standard geometric models, the present case cannot

be T-dualized to a standard geometry. Thus it constitutes a genuine case of non-geometry.

The latter statement is corroborated by attempting to write down the corresponding

2D string model. This is not possible just in terms of Xa; instead X̃a necessarily appear,

similarly to the pure R-flux models considered in refs. [4, 6] but in a significantly more

complicated way. The topological sector of the corresponding model can be written as

∫

Σ3

(

8N2ÑX̃1e
1 ∧ e2 ∧ e3 + 4NÑ2X2X̃2dX̃1 ∧ dX̃2 ∧ dX̃3 +NÑX̃2e

1 ∧ e2 ∧ dX̃1 +

−2NÑ(X̃2e
2 − X̃1e

1) ∧ e3 ∧ dX̃3

)

+

+

∫

Σ2

(

−NX1(1+4NÑX1X̃1)e
2 ∧ e3+Ñ(X̃2+NX2(X1)2+2NÑX2X̃2

2 )dX̃1 ∧ dX̃3 +

+
3

2
NÑX1X̃2e

2 ∧ dX̃1 − 2NÑX1X̃1(e
3 −X2e1) ∧ dX̃3

)

, (4.28)

which supports the above remarks. Notice that for Ñ → 0, namely when the deformation

β is turned off, we obtain
∫

Σ2

−NX1e2 ∧ e3 , (4.29)

while for N → 0 (or B = 0) we obtain
∫

Σ2

ÑX̃2dX̃1 ∧ dX̃3 , (4.30)

as expected.

5 Conclusions

The extended nature of the fundamental degrees of freedom in string theory leads to du-

ality symmetries, whose consequences are unconventional from a traditional field theory
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viewpoint. One of these consequences is our encounter with non-geometric string back-

grounds. A central question in this line of research is whether such backgrounds are always

equivalent (up to duality) to previously known geometric ones or there exist ones that are

truly new. Recent developments, mainly in the context of DFT, suggest that duality orbits

of flux configurations that do not intersect geometric regions indeed exist [22].

In this paper we addressed the problem of constructing sigma models that correspond

to genuinely non-geometric backgrounds. This approach is inspired by previous work along

these lines in the string theory literature [4, 6], which we extended and generalized. The

underlying mathematical setting is that of Courant algebroids, which has recently found

applications in the physics of string theory [4–8]. Here we constructed a general class of

CAs with base manifolds being twisted tori. The choice of twisted tori is made for a number

of reasons, in particular (i) they are the simplest nontrivial generalization of flat tori that

retain parallelizability and they can be endowed with all kinds of generalized complex struc-

tures [72],12 (ii) they naturally incorporate geometric fluxes, and (iii) they play a central

role in flux compactifications, notably in Scherk-Schwarz reductions. We followed the ap-

proach of introducing the basic mathematical notions first, then applying them for general

twisted tori of step 2, and finally examining in detail an illustrative example from the class.

In order to reach our main goal of constructing relevant sigma models, we resided on

the result that every CA structure over a manifold M has an associated topological sigma

model with M as target space [28]. For physical applications, it is natural to consider

manifolds with boundary and add general topological boundary terms and also kinetic

terms that break the topological nature of the model. Studying the corresponding mem-

brane sigma models for the class of CAs we constructed, we found general bulk/boundary

consistency conditions appearing in eqs. (3.21) and (3.25). These expressions generalize

on one hand previously known integrability conditions for Dirac structures [31–33], and

on the other hand allow for a systematic characterization of fluxes, extending expressions

found in [4]. In certain limits, our expressions reproduce previous results; on the other

hand we also studied in detail a case where both 2-form and 2-vector deformations coexist

meaningfully without being inverse of one another.

However, in order to really account for cases that appear in string theory via generalized

T-duality, the above sigma models cannot be the end of the story. This was already noticed

in [4], and later in [6], where sigma models of an extended type were first suggested. These

sigma models have the phase space of M as target space, instead of M itself. Inspired

by this approach, we proposed a minimal systematic generalization of the previous sigma

models that incorporates this doubled point of view. Analysing such models we found that

the bulk/boundary consistency conditions take again the form appearing in eqs. (3.21)

and (3.25), albeit with an upgraded set of definitions that characterize the fluxes of the

model. Then we were able to write down an explicit example of a model which combines

the following properties: (i) all types of generalized fluxes are present, (ii) it cannot be

reduced to a 2D theory with standard target space and (iii) it cannot be dualized to a

12For example, several twisted tori admit a symplectic structure and their phase space can be completely

characterized, see [61].
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standard geometric model. This makes this example, and any other constructed similarly,

an excellent toy model for genuinely non-geometric backgrounds.

Finally, it is interesting to compare our results with the expressions for fluxes found in

the context of DFT and its generalized Scherk-Schwarz dimensional reduction on twisted

doubled tori [50–53]. For this comparison, it is not enough to look at eqs. (4.13), which

contain less information than the corresponding ones from DFT. The relevant equations are

instead the full conditions (3.21) and (3.25) with the definitions (4.13). These two equations

give the “H” and “R” flux in the present formulation, which actually contain all terms

appearing in DFT plus additional terms of higher order in the combinations of B and β. For

the other two sets of fluxes the comparison is not yet possible, since we have not determined

general expressions for mixed boundary conditions in this paper. However, we can conclude

that our formulation encompasses results from DFT and it would be interesting to examine

further the relation between DFT (target space theory) and the sigma model we proposed.
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A Proof of protobialgebroid structure on (LBβ, L
⋆
Bβ

)

In this appendix we prove that (LBβ , L
⋆
Bβ) with the ingredients (brackets, anchors and

twists) given in section 2.2.1 is a protobialgebroid, i.e. it satisfies the properties 1 to 4 of

Definition 2.1.

Proof of property 1. For X = XiΘi and Y = Y iΘi we compute:

[X, fY ]LBβ
= eBeβ

(

[e−βe−BX, e−βe−BfY ]Lie + β(e−βe−B(φ(X, fY, ·)), ·)
)

= eBeβ
(

[e−βe−BX, fe−βe−BY ]Lie + fβ(e−βe−B(φ(X,Y, ·)), ·)
)

= eBeβ
(

f [e−βe−BX, e−βe−BY ]Lie + (e−βe−BX(f))e−βe−BY

+fβ(e−βe−B(φ(X,Y, ·)), ·)
)

= f

(

eBeβ
(

[e−βe−BX, e−βe−BY ]Lie + β(e−βe−B(φ(X,Y, ·)), ·)
)

)

+eBeβ(ρ(X)f)e−βe−BY

= f [X,Y ]LBβ
+ (ρ(X)f)Y . (A.1)

Similarly the proof for η = ηiE
i and ξ = ξiE

i.
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Proof of property 2. Essentially this is already covered by construction in the main

text. As a cross check we compute:

ρ([X,Y ]LBβ
) = ρ

(

eBeβ
(

[e−βe−BX, e−βe−BY ]Lie + β(e−βe−B(φ(X,Y, ·)), ·)
)

)

(2.18), (2.19)
= ρ

(

eBeβ
(

[ρ(X), ρ(Y )]Lie + ρ⋆(φ(X,Y, ·))
)

)

(2.18)
= [ρ(X), ρ(Y )]Lie + ρ⋆(φ(X,Y, ·)) (A.2)

and the proof is complete. Similarly for the corresponding property on L⋆
Bβ.

Proof of property 3. We directly apply the general expressions for the derivations on

LBβ and L⋆
Bβ:

dLBβ
ω(X1, . . . , Xp+1) =

p+1
∑

i=1

(−1)i+1ρ(Xi)ω(X1, . . . , X̂i, . . . , Xp+1) +

+
∑

i<j

(−1)i+jω([Xi, Xj ]LBβ
, X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1) .

dL⋆
Bβ

Ω(η1, . . . , ηp+1) =

p+1
∑

i=1

(−1)i+1ρ⋆(ηi)Ω(η1, . . . , η̂i, . . . , ηp+1) +

+
∑

i<j

(−1)i+jΩ([ηi, ηj ]L⋆
Bβ

, η1, . . . , η̂i, . . . , η̂j , . . . , ηp+1) ,

for arbitrary ω ∈ Γ(∧pL⋆
Bβ) and Ω ∈ Γ(∧pLBβ), to compute the derivations of the basis

elements Ei ∈ Γ(∧1L⋆
Bβ) and Θi ∈ Γ(∧1LBβ)

dLBβ
Ei = −1

2
(f i

jk − βilφljk)E
j ∧ Ek , (A.3)

dL⋆
Bβ

Θi = −1

2
(θiβ

jk + 2βjmfk
im + βjlβkmφilm)Θj ∧Θk . (A.4)

Then we compute

[[Θi,Θj ]LBβ
,Θk]LBβ

=
(

θk(β
mnφmij)− f l

ijβ
nmφmlk − fn

lkβ
lmφmij + βlmβnpφmijφpkl

)

Θn ,

(A.5)

and

φ(dL⋆
Bβ

Θi,Θj ,Θk) = −φjkl

(

θiβ
ln − 2f

[l
imβn]m + βlpβnmφipm

)

Θn . (A.6)

Moreover,

dL⋆
Bβ

φ(Θi,Θj ,Θk) = βlmθmφijkΘn . (A.7)

These expressions deliver the result

[[Θi,Θj ]LBβ
,Θk]LBβ

+c.p.−dL⋆
Bβ

φ(Θi,Θj ,Θk)−φ(dL⋆
Bβ

Θi,Θj ,Θk)−φ(Θi, dL⋆
Bβ

Θj ,Θk)

−φ(Θi,Θj , dL⋆
Bβ

Θk) = βml

(

θ[iφjkl] −
3

2
fn
[ijφkl]n +

3

2
βnpφn[ijφkl]p

)

Θm , (A.8)
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which means that the property holds when the condition

θ[iφjkl] −
3

2
φm[ij(f

m
kl] − βnmφnkl]) = 0 (A.9)

is satisfied. A similar computation for the dual property yields the condition

β[lmθmψijk] − 3

2
ψm[jk(θmβli] + βlnf i]

mn + βlsβi]tφmst) = 0 . (A.10)

These two conditions are essentially Bianchi identities as will be clear from property 4.

Proof of property 4. Using the expansions

φ =
1

6
φijkE

i ∧ Ej ∧ Ek ,

ψ =
1

6
ψijkΘi ∧Θj ∧Θk , (A.11)

and the result (A.3) we compute

dLBβ
φ =

1

6
(dLBβ

φijk)E
i ∧ Ej ∧ Ek +

1

2
φijk(dLBβ

Ei) ∧ Ej ∧ Ek

=
1

6

(

θlφijk −
3

2
φmjk(f

m
li − βmnφnli)

)

El ∧ Ei ∧ Ej ∧ Ek , (A.12)

which vanishes when the condition (A.9) is satisfied. This is essentially a Bianchi identity

(and fully agrees with previous results, e.g. [5, 53]). It is simple to check that this Bianchi

identity is satisfied in the example of section 2.2.2. On the other hand, using (A.4) we

compute

dL⋆
Bβ

ψ=
1

6
(dL⋆

Bβ
ψijk)Θi ∧Θj ∧Θk +

1

2
ψijk(dL⋆

Bβ
Θi) ∧Θj ∧Θk (A.13)

=
1

6
(βlmθmψijk − 3

2
ψmjk(θmβli + βlnf i

mn + βlsβitφmst)Θl ∧Θi ∧Θj ∧Θk ,

which vanishes when the Bianchi identity (A.10) is satisfied. This is also true in the example

of section 2.2.2.

Open Access. This article is distributed under the terms of the Creative Commons
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[54] D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for

non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

[55] D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in
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[66] C. Klimč́ık and T. Strobl, WZW-Poisson manifolds, J. Geom. Phys. 43 (2002) 341

[math/0104189] [INSPIRE].

[67] P. Bouwknegt, J. Evslin and V. Mathai, T duality: topology change from H flux,

Commun. Math. Phys. 249 (2004) 383 [hep-th/0306062] [INSPIRE].

[68] P. Bouwknegt, J. Evslin and V. Mathai, On the topology and H flux of T dual manifolds,

Phys. Rev. Lett. 92 (2004) 181601 [hep-th/0312052] [INSPIRE].

[69] H. Bursztyn, G.R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and

generalized complex structures, Adv. Math. 211 (2007) 726 [math/0509640] [INSPIRE].

[70] G.R. Cavalcanti and M. Gualtieri, Generalized complex geometry and T-duality,

arXiv:1106.1747 [INSPIRE].
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