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Abstract

The Hermitian Yang–Mills equations on certain vector bundles over Calabi–Yau cones can be reduced 
to a set of matrix equations; in fact, these are Nahm-type equations. The latter can be analysed further by 
generalising arguments of Donaldson and Kronheimer used in the study of the original Nahm equations. 
Starting from certain equivariant connections, we show that the full set of instanton equations reduce, with 
a unique gauge transformation, to the holomorphicity condition alone.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Instantons have proven to be interesting both for mathematicians and physicists. Starting 
from the seminal work [1] by Donaldson, anti-self-dual Yang–Mills connections provided a new 
topological invariant for four-manifolds. However, the moduli spaces of higher-dimensional in-
stantons are still not fully understood.

From a physics perspective, instantons describe non-perturbative Yang–Mills configurations 
in various settings [2–4]. Focusing, for example, on heterotic string theory and compactifications 
thereof, the notion of instantons appears naturally in the so-called BPS-equations. In the sim-
plest case, it is necessary to specify a 6-dimensional Calabi–Yau manifold as well as a Hermitian 
Yang–Mills (HYM) instanton on a gauge bundle over that manifold [5]. However, due to the ap-
pearance of phenomenologically problematic moduli, it is physically desirable to relax the strict 
Calabi–Yau condition to one of more general SU(3)-manifolds (SU(3)-structures with intrinsic 
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torsion), for which the instanton notion needs to be adjusted. Examples of those are nearly Käh-
ler and half-flat manifolds. For further details on so-called flux compactifications see for instance 
[6,7].

Recently, the study of Sasaki–Einstein manifolds [8–12] has led to infinitely many explicit 
metrics on (non-compact) Calabi–Yau cones. Since there are no explicit Ricci-flat metrics known 
on compact Calabi–Yau manifolds, metric cones over Sasaki–Einstein spaces provide a testing 
ground for Calabi–Yau compactifications.

Previously, instantons have been discussed on certain cone constructions starting from a 
G-manifold, i.e. a manifold that admits a G-structure [13–21]. There on the instanton equations 
have been reduced to a set of matrix equations.1 The aim of this paper is to discuss the resulting 
matrix equations on Calabi–Yau cones over a generic Sasaki–Einstein manifold M2n+1, which 
carries an SU(n)-structure. In particular, the HINP matrix equations conceptually comprise three 
types of equations: (i) the so-called equivariance condition, (ii) the holomorphicity condition, 
and (iii) a stability-like condition. Starting form solutions to (i), i.e. decomposing the matrices 
into irreducible representations of su(n), we show that it suffices to solve (ii) for certain boundary 
conditions, because (iii) then follows by a unique gauge transformation. The arguments presented 
are a generalisation of [22–24].

Instantons on Calabi–Yau cones and their resolutions have also been studied in [25,26] and, for 
the particular orbifolds Cn/Zn, in [27]. However, their setting and ansatz are different: on the one 
hand, [25,26] considered instantons on the tangent bundle of a (2n+2)-dimensional Calabi–Yau 
cone whose structure was largely determined by the 2n-dimensional Einstein–Kähler manifold 
underlying the Sasaki–Einstein manifold in between. The ansatz for the connection was adapted 
to the isometry of the Calabi–Yau cone, and the “seed” was the spin connection in the Einstein–
Kähler space, which is an instanton. On the other hand, certain gauge backgrounds for heterotic 
compactifications were constructed in [27] by extending a flat connection on CP n−1 to U(1) and 
U(n − 1)-valued instanton connections on the orbifolds. In contrast, the approach of [19], which 
is further discussed here, can conceptually take any instanton on the Sasaki–Einstein manifold 
as a starting point, and the bundle does not need to be the tangent bundle anymore.

This paper is organised as follows: the relevant details on Sasaki–Einstein manifolds and the 
Calabi–Yau cone over it are briefly summarised in Section 2. In addition, the notion of Hermi-
tian Yang–Mills instantons is recalled. The main body is Section 3 where we firstly recapitulate 
the ansatz for the connection that reduces the HYM equations to matrix equations. The subse-
quent paragraphs consider the geometry, symmetries and solutions to these equations. Section 4
concludes.

2. Preliminaries

2.1. Sasaki–Einstein manifolds

Sasakian geometry can be understood as odd-dimensional analogue of Kähler geometry; in 
particular, an odd-dimensional manifold M2n+1 with a Sasakian structure is naturally sand-
wiched between two different types of Kähler geometry in the neighbouring dimensions 2n and 
2n+2.

1 These matrix equations were first introduced in [19] as a generalisation of the results in [18]. We will refer to these 
equations as Harland–Ivanova–Nölle–Popov (HINP) matrix equations.
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Following [28], a Sasakian manifold M2n+1 carries a Sasakian structure comprised of the 
quadruplet S = (ξ, η, �, g), wherein ξ is the Reeb vector field, η the dual contact form, � ∈
End(T M2n+1) a tensor, and g a Riemannian metric. The defining property for (M2n+1, S) to 
be Sasakian is that the metric cone (C(M2n+1), ̂g) = (R+ × M2n+1, dr2 + r2g) is Kähler, i.e. 
the holonomy group of the Levi-Civita connection on the cone is U(n+1). The (compatible) 
complex structure Jc on the cone acts via Jc(r∂r ) = ξ and Jc(X) = �(X) − η(X)r∂r for any 
vector field X on M2n+1. The corresponding Kähler 2-form is 1

2d(r2η).
Moreover, considering the contact subbundle D = ker(η) ⊂ T M2n+1 one has a complex struc-

ture defined by restriction Jt = �|D and a symplectic structure dη. Hence, (D, Jt , dη) defines 
the transverse Kähler structure [28].

A Sasaki–Einstein manifold is Sasakian and Einstein simultaneously; thus, the defining prop-
erty is that the metric cone is Calabi–Yau, i.e. the holonomy group on the cone is reduced to 
SU(n+1).

For the purposes of this paper, it is convenient to understand a Sasaki–Einstein manifold 
M2n+1 in terms of an SU(n)-structure. For this, one has the 1-form η and the 2-form ω, which 
are related via dη = −2ω. One can always choose a co-frame {eμ} = (ea, e2n+1), with μ =
1, 2, . . . , 2n + 1 and a = 1, 2, . . . , 2n, such that these forms are locally given by

η = e2n+1 and ω = e1 ∧ e2 + e3 ∧ e4 + . . . + e2n−1 ∧ e2n ≡ 1

2
ωabe

ab (2.1)

and that the metric is

g = δμνe
μ ⊗ eν = δabe

a ⊗ eb + η ⊗ η . (2.2)

Moreover, there exists a canonical connection 	P on T M2n+1 which is metric compatible, is 
an instanton with respect to the SU(n)-structure, and has non-vanishing torsion.2 The torsion 
components are given by [18]

T 2n+1
a b = −2ωab and T b

a 2n+1 = n + 1

n
ωab . (2.3)

2.2. Calabi–Yau metric cone

First of all, recall the basic properties of a Calabi–Yau manifold M2n+2: as a Calabi–Yau 
space is Kähler, one has the Kähler form, which is an exact (1, 1)-form on M2n+2. In ad-
dition, the Calabi–Yau condition enforces the canonical bundle to be trivial, i.e. KM2n+2 =

(n+1,0)T ∗M2n+2 ∼= C × M2n+2. Thus, there exists a nowhere vanishing section in KM2n+2

which translates into a (n+1, 0)-form on M2n+2.
The metric on the metric cone (C(M2n+1), ̂g) is defined as

ĝ = dr2 + r2g = e2t
(

dt2 + δμνe
μ ⊗ eν

)
= e2t g̃ , (2.4)

where the last equality employs a conformal rescaling r = et from the metric cone with cone 
coordinate r ∈ R

+ to the cylinder (Cyl(M2n+1), ̃g) = (R × M2n+1, dt2 + g) with coordinate 
t ∈ R. Also, we identify dt = e2n+2 and extend the index range μ̂ = 1, 2, . . . , 2n +1, 2n +2. The 
Kähler form ω̂ on the cone is

2 The torsion components can be related to the components of the 3-form P = η ∧ ω; hence, the name 	P . However, 
the torsion is not completely antisymmetric itself.
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ω̂ = r2ω + rη ∧ dr = e2t (ω + η ∧ dt) = e2t ω̃ , (2.5)

which is again related to the Kähler form ω̃ on the cylinder. Next, we introduce a complexified 
basis on the cotangent bundle of Cyl(M2n+1) as follows

θj = ie2j−1 + e2j and θ̄ j = −ie2j−1 + e2j for j = 1,2, . . . , n + 1 , (2.6)

such that the metric and Kähler form read

g̃ = 1

2

n+1∑
j=1

(
θj ⊗ θ̄ j + θ̄ j ⊗ θj

)
and ω̃ = − i

2

n+1∑
j=1

θj ∧ θ̄ j . (2.7)

The compatible complex structure J acts via Jθj = iθj and J θ̄j = −iθ̄ j , such that the compati-
bility relation is ω̃(·, ·) = g̃(·, J ·).

Let us compare the choice (2.6) with the “canonical choice” θj
can = e2j−1 + ie2j and the canon-

ical complex structure Jcanθ
j
can = iθj

can. The conventions used here correspond to J = −Jcan
such that the (1, 0) and (0, 1)-forms are interchanged, which implies that ω̃(·, ·) = g̃(Jcan·, ·) =
−g̃(·, Jcan·) = g̃(·, J ·) is consistent with the above. The reasons for this choice are that we desire 
a resemblance to the treatment of [22–24], while at the same time we treat dt as the (2n+2)th 
basis 1-form instead of the 0th.

2.3. Hermitian Yang–Mills instantons

For the later analysis, the geometric properties of the space of connections and the HYM 
instanton moduli space over a Kähler manifold are recalled. This brief account is inspired 
from [29,30].

2.3.1. Space of connections
Let M2n be a (closed) Kähler manifold of dimC(M) = n and G a compact matrix Lie group. 

Let P(M2n, G) be a G-principal bundle over M2n, A a connection 1-form and FA = dA +A ∧A
the curvature.

Let Int(P ) := P ×G G be the group bundle (where G acts via the internal automorphism 
h 	→ ghg−1), let Ad(P ) := P ×G g be the Lie algebra bundle (where G acts on g via the adjoint 
action), and E := P ×G F be an associated vector bundle (where the vector space F , the typical 
fibre, carries a G-representation).

Denote the space of all connections on P by A(P ) and note that all associated bundles E
inherit their space of connections A(E) from P . On A(P ) there is a natural action of the gauge 
group Ĝ, i.e. the set of automorphisms on P which are trivial on the base. With

Ĝ = 	(M2n, Int(P )) (2.8)

one has an identification with the space of global sections of the group bundle. The action is 
realised via

A →Ag = Ad(g−1)A+ g−1dg for g ∈ 	(M2n, Int(P )) . (2.9)

The Lie algebra of the gauge group is then given as

ĝ = 	(M2n,Ad(P )) , (2.10)

and the infinitesimal gauge transformations are given by
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A 	→ δA= dAχ := dχ + [
A, χ

]
for χ ∈ 	(M2n,Ad(P )) . (2.11)

Since A(P ) is an affine space, the tangent space TAA for any A ∈ A(P ) is canonically iden-
tified with 
1(M2n, Ad(P )). Further, assuming G ↪→ U(N) for some N ∈ N, implies that the 
trace is an Ad-invariant inner product. Hence, a metric on A(P ) is defined via

g|A(X1,X2) :=
∫

M2n

tr (X1 ∧ �X2) for X1,X2 ∈ TAA , (2.12)

with � the Hodge-dual on M2n. Moreover, the space A(P ) allows for a symplectic structure

ω|A(X1,X2) :=
∫

M2n

tr (X1 ∧ X2) ∧ ωn−1

(n − 1)! for X1,X2 ∈ TAA . (2.13a)

Since ω is completely base-point independent (on A), ω is in fact a symplectic form. In addition, 
one can check that X ∧ ωn−1

(n−1)! = �J (X) holds for any X ∈ TAA, where J , the (canonical) com-

plex structure of M2n, acts only the 1-form part of X. This allows to reformulate the symplectic 
structure as

ω|A(X1,X2) =
∫

M2n

tr (X1 ∧ �J (X2)) for X1,X2 ∈ TAA . (2.13b)

Moreover, it implies that ω is non-degenerate as ω|A(X1, X2) = g|A(X1, J (X2)) holds for any 
X1, X2 and any A. Consequently, (A, g, ω) is an infinite-dimensional Riemannian, symplectic 
manifold, which is equipped with compatible Ĝ-action.

2.3.2. Holomorphic structure
Next, consider the restriction to connections on E �F−−→ M which satisfy the so-called holo-

morphicity condition

F2,0
A = 0 and F0,2

A = 0 . (2.14)

It is well-known that this condition is equivalent to the existence of a holomorphic structure 
on E, i.e. a Cauchy–Riemann operator ∂̄E := ∂̄ + A0,1 that satisfies the Leibniz-rule as well as 
∂̄E ◦ ∂̄E = 0. Thus, having a G-bundle with a holomorphic connection induces a holomorphic 
GC-bundle. If M2n is also Calabi–Yau, then the condition (2.14) is equivalent to 
 ∧ FA = 0, 
where 
 is a holomorphic (n, 0)-form.

Define the subspace of holomorphic connections as

A
1,1 =

{
A ∈A(E) : F0,2

A = −
(
F2,0
A

)† = 0

}
⊂A(E) . (2.15)

This definition employs the underlying complex structure on M2n. Moreover, one can show that 
A

1,1 is an infinite-dimensional Kähler space, i.e. g is a Hermitian metric and the symplectic 
form ω is Kähler. We note that these objects descend from A to A1,1 simply by restriction. The 
compatible complex structure J (with ω(·, ·) = g(J ·, ·)) can be read off from (2.12) and (2.13)
to be

J |A(X) = −J (X) for X ∈ TAA , (2.16)

i.e. it is base point independent.
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2.3.3. Moment map
The space A1,1 inherits the Ĝ-action from A and since it has a symplectic form, i.e. the Kähler 

form, one can introduce a moment map

μ : A1,1 → ĝ ∗ ∼= 
2n(M2n,Ad(P ))

A 	→FA ∧ ωn−1

(n − 1)! . (2.17)

We see that μ is Ĝ-equivariant by construction. Nonetheless, for this to be a moment map of the 
Ĝ-action, one needs to verify the defining property

(φ,Dμ|A)(ψ) = ιφ�ω|A(ψ) , (2.18)

where φ ∈ 	(M2n, Ad(P )) an element of the gauge Lie algebra, φ� be the corresponding 
vector field on A1,1 and ψ ∈ 
1(M2n, Ad(P )) a tangent vector at the base point A. More-
over, the duality pairing (·, ·) of ĝ and its dual is defined via the integral over M2n and the 
invariant product on g. Generalising the arguments from [29], one can prove that μ is in-
deed a moment map for the Ĝ-action on A1,1. Firstly, in the definition of μ only FA is base 
point dependent, and a standard computation gives FA+t ψ = FA + t dAψ + 1

2 t2 ψ ∧ ψ so 
that DF|A(ψ) = ( d

dt
FA+t ψ

)
|t=0 = dAψ . Thus the left-hand side of (2.18) is (φ, Dμ|A)(ψ) =∫

M
tr
(
(dAψ) ∧ φ

) ∧ ωn−1

(n−1)! . Secondly, the vector field φ� can be read off from (2.11) to be 

φ
�

|A = dAφ ∈ 
1(M, Ad(P )). Hence the right-hand side is ιφ�ω|A(ψ) = ∫
M

tr
(
(dAφ) ∧ ψ

) ∧
ωn−1

(n−1)! . But from 
∫
M

d 
(

tr (ψ ∧ φ) ∧ ωn−1

(n−1)!
)

= 0 by Stokes’ theorem3 and dω = 0 one has ∫
M

tr
(
(dAψ) ∧ φ

) ∧ ωn−1

(n−1)! = − 
∫
M

tr
(
ψ ∧ (dAφ)

) ∧ ωn−1

(n−1)! , and therefore the relation (2.18)

holds, i.e. μ is a moment map of the Ĝ-action on A1,1.
However, one can equally well use the dual map defined by

μ∗ : A1,1 → ĝ = 
0(M2n,Ad(P ))

A 	→ ω�FA , (2.19)

which is equivalent to μ of (2.17) due to

FA ∧ ωn−1 = 1

n
(ω�FA)ωn . (2.20)

Thus, we will no longer explicitly distinguish between μ and μ∗.
For � ∈ Centre( ̂g ), we know μ−1(�) ⊂ A

1,1 defines a sub-manifold which allows for a 
Ĝ-action. The quotient

A
1,1//Ĝ ≡ μ−1(�)/Ĝ (2.21)

is well-defined and, moreover, is a Kähler manifold, as the Kähler form and the complex structure 
descend from A1,1.

We recognise the zero-level set as the Hermitian Yang–Mills moduli space. In other words, 
the HYM equations consist of the holomorphicity conditions (2.14) together with the so-called 
stability condition

3 For the non-compact Calabi–Yau cone of this paper, the boundary term arising by Stokes’ theorem will be cancelled 
be restriction to framed gauge transformations. See Section 3.3.
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μ(FA) =FA ∧ ωn−1

(n − 1)! = 0 = μ∗(FA) = ω�FA . (2.22)

By well-known theorems [31–33], a holomorphic vector bundle admits a solution to the HYM 
equations if and only if these bundles are (poly-)stable in the algebraic geometry sense.

2.3.4. Complex group action
As the Ĝ-action on A1,1 preserves the Kähler structure, one can extend to an ĜC-action on 

A
1,1. In other words, the holomorphicity conditions F0,2

A = 0 are invariant under the action of 
the complex gauge group

ĜC = Ĝ ⊗C . (2.23)

Let A ∈ A
1,1, then the orbit ĜC

A of the ĜC-action is

ĜC

A =
{
A′ ∈A

1,1
∣∣∃q ∈ ĜC : A′ =Aq

}
. (2.24)

A point A ∈A
1,1 is called stable if ĜC

A ∩ μ−1(�) �= ∅, and we denote by A1,1
st (�) ⊂ A

1,1 the set 
of all stable points (for a given �). Then, a well-known result (see for example [34]) is

A
1,1//Ĝ ≡ μ−1(�)/Ĝ ∼=A

1,1
st (�)/ĜC . (2.25)

2.3.5. Remark
A peculiarity arises for holomorphic bundles E over a compact Kähler manifold M2n with 

non-empty boundary [35]. Due to the prescription of boundary conditions, the stability condition 
is automatically satisfied for a unitary connection whose curvature is of type (1, 1). Hence, all 
points in A1,1 are stable in this case.

In the following we will consider the HYM equations (2.14) and (2.22) on the non-compact 
Calabi–Yau cones. For these, the holomorphicity conditions still imply the existence of a holo-
morphic structure; while the notion of stability is not applicable anymore. Nonetheless, we will 
continue referring to ω�FA = 0 as stability-like condition.

3. Equivariant instantons

The main focus of this paper lies on the description of the instantons on certain vector 
bundles E. However, instead of generic connections the set-up will be restricted to connec-
tions that arise from an instanton on the Sasaki–Einstein space M2n+1 by an extension X ∈

1(Cyl(M2n+1); End(E)). This extension has to satisfy a certain invariance condition.

The arguments presented in what follows are a generalisation of [22–24]: i.e. we gener-
alise from spherically symmetric instantons on vector bundles over C(S3) ∼= R

4\{0} with an 
SU(2)-structure to SU(n+1)-equivariant instantons on vector bundles over C(M2n+1) with an 
SU(n+1)-structure, where M2n+1 is an arbitrary Sasaki–Einstein manifold. Analogous to Don-
aldson and Kronheimer, it will be necessary to consider boundary conditions for the components 
of the connection 1-form, i.e. for the Yang–Mills fields.

3.1. Ansatz

Let us recall the ansatz presented in [19] and explicitly discussed in [21]. Start from any 
Sasaki–Einstein manifold M2n+1, i.e. the manifold carries an SU(n)-structure together with a 
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canonical connection 	P on the tangent bundle. The metric cone is Calabi–Yau with holonomy 
SU(n+1), i.e. an integrable SU(n+1)-structure. By conformal equivalence one can consider 
Cyl(M2n+1).

Consider a complex vector bundle E → Cyl(M2n+1) of rank p which has structure group 
SU(n+1); in particular, that is a Hermitian vector bundle where F† = −F and tr(F) = 0 hold 
for the curvature F of a compatible connection. (In the compact case, one would have a vanishing 
first Chern class.) For example, the (holomorphic) tangent bundle of the Calabi–Yau cone is such 
a bundle, but one does not have to restrict to this case.

We recall that the connection 1-forms are su(n+1)-valued 1-forms on Cyl(M2n+1) for any 
connection A on E. The ansatz for a connection is

A = 	̂P + X (3.1a)

where 	̂P is the lifted su(n)-valued connection on E obtained from 	P , i.e. one essentially 
has to change the representation on the fibres. Moreover, on a patch U ⊂ Cyl(M2n+1) with the 
co-frame {eμ̂} we employ the local description

X|U = Xμ ⊗ eμ + X2n+2 ⊗ e2n+2 , (3.1b)

where Xμ̂|x ∈ End(Cp) for x ∈ U . Usually X2n+2 is eliminated by a suitable gauge transforma-
tion, but there is no harm in not doing so.

The ansatz (3.1) is a generic connection in the sense that the Xμ̂ are base-point dependent, 
skew-Hermitian, traceless matrices with nontrivial transformation behaviour under change of 
trivialisation. Hence, any connection A on E can be reached starting from ̂	P .

Since SU(n) is a closed subgroup of SU(n + 1), one can choose an SU(n)-invariant decom-
position

su(n + 1) = su(n) ⊕m with su(n + 1) = span
{
IA

∣∣A = 1, . . . , (n + 1)2 − 1
}

,

su(n) = span
{
Iα

∣∣α = 2n + 2, . . . , (n + 1)2
}

,

m = span
{
Iμ

∣∣μ = 1, . . . ,2n + 1
}

, (3.2)

and denote by ÎA the generators in a representation on the fibres Ex
∼= Cp . By the invariant 

splitting, one has the following commutation relations:[
Îα, Îβ

]= f
γ

αβ Îγ ,
[
Îα, Îμ

]= f ν
αμ Îν ,

[
Îμ, Îν

]= f α
μν Îα + f σ

μν Îσ , (3.3)

for α, β, γ = 2n + 2, . . . , (n + 1)2 and μ, ν, σ = 1, . . . , 2n + 1. A suitable choice of these struc-
ture constants can be found in [18–21].

Next, we simplify the ansatz by demanding Xμ̂ = Xμ̂(t); i.e. not all connections A on E can 
be reached anymore. Moreover, this demand is only valid in any trivialisation if the following 
conditions hold (see [21] for further details)[

Îα,Xμ

]= f ν
αμXν and

[
Îα,X2n+2

]= 0 for μ,ν = 1, . . . ,2n + 1 . (3.4)

The (f ν
αμ ) can be interpreted as the matrix elements (ρ∗(Iα)) ν

μ of a (suitably chosen) represen-
tation ρ of SU(n) on the typical fibre of T M2n+1. The representation theoretic content of (3.4)
is that the matrix-valued functions Xμ̂ have to transform in a representation of su(n).

Computing the curvature FA for the ansatz (3.1) together with the equivariance condi-
tion (3.4) then yields
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FA =F	̂P + 1

2

(
[Xa,Xb] + T 2n+1

a b X2n+1

)
ea ∧ eb

+
([

Xa,X2n+1
]+ T b

a 2n+1Xb

)
ea ∧ e2n+1

+
([

Xa,X2n+2
]− d

dt
Xa

)
ea ∧ e2n+2

+
([

X2n+1,X2n+2
]− d

dt
X2n+1

)
e2n+1 ∧ e2n+2 , (3.5)

with F	̂P is the curvature of 	̂P , and a, b = 1, . . . , 2n. The HYM instanton equations (2.14)
and (2.22) reduce for the ansatz to a set of matrix equations for the Xμ̂, which are given in [19]
(note that X2n+2 = 0 for this case). Moreover, F	̂P already satisfies the HYM equations, as the 
	̂P is the lift of an SU(n)-instanton and the corresponding SU(n)-principal bundle is a subbundle 
in the SU(n + 1)-principal bundle associated to E.

3.1.1. Matrix equations: real basis
For completeness, the resulting matrix HINP-equations in the real basis {eμ̂} are the holomor-

phicity conditions[
X2j−1,X2k−1

]− [
X2j ,X2k

]= 0 , (3.6a)[
X2j−1,X2k

]+ [
X2j ,X2k−1

]= 0 , (3.6b)[
X2j−1,X2n+2

]+ [
X2j ,X2n+1

]= d
dt

X2j−1 + n+1
n

X2j−1 , (3.6c)[
X2j ,X2n+2

]− [
X2j−1,X2n+1

]= d
dt

X2j + n+1
n

X2j , (3.6d)

for j, k = 1, . . . , n and the stability-like condition

d
dt

X2n+1 + 2nX2n+1 =
n+1∑
k=1

[
X2k−1,X2k

]
. (3.6e)

3.1.2. Matrix equations: complex basis
For the intents and purposes here, it is more convenient to switch to the complex basis {θj, θ̄ j }

defined in (2.6) and introduce

Yj := 1

2

(
X2j − iX2j−1

)
and Yj̄ := 1

2

(
X2j + iX2j−1

)
for j = 1,2, . . . , n + 1 . (3.7)

Hence, Yj̄ = −(Yj )
† since Xμ̂(t) ∈ su(n + 1) for all t ∈ R. For the Yj : R → End(Cp) one finds 

the holomorphicity conditions

d
dt

Yj + n+1
n

Yj = 2
[
Yj ,Yn+1

]
and

[
Yj ,Yk

]= 0 for j, k = 1, . . . , n , (3.8a)

and the adjoint equations thereof. The stability-like condition reads

d
dt

(
Yn+1 + Y

†
n+1

)
+ 2n

(
Yn+1 + Y

†
n+1

)
+ 2

n+1∑
j=1

[
Yj ,Y

†
j

]
= 0 . (3.8b)

The equivariance conditions for the complex matrices are[
Îα, Yj

]= −if 2j
Yj and

[
Îα, Yn+1

]= 0 , (3.9)
α2j−1
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for j, = 1, . . . , n. For these calculations we have used the choice of structure constants f ν
αμ = 0

if μ or ν = 2n + 1 and f b
αa ∝ ωab , see for instance [19–21].

3.1.3. Change of trivialisation
The remaining nontrivial effects of a change of trivialisation of the bundle E over Cyl(M2n+1)

are given by the set of functions {g(t)| g : R → SU(p)} that act as

Xμ 	→ Ad(g)Xμ

for μ = 1, . . . ,2n + 1 and X2n+2 	→ Ad(g)X2n+2 −
(

d
dt

g
)

g−1 , (3.10)

which follows from A 	→ Ag = Ad(g)A − (dg)g−1 and g = g(t).4 Due to their adjoint trans-
formation behaviour, the Xμ are sometimes called Higgs fields, for example in quiver gauge 
theories. The inhomogeneous transformation of X2n+2 is crucial to be able to “gauge away” this 
connection component. Furthermore, these gauge transformations (and their complexification) 
will be used to study the solutions of the matrix equations.

3.1.4. Yang–Mills with torsion
The instanton equations (on the cone and the cylinder) are equivalently given by

�FA = − ωn−1

(n − 1)! ∧FA , (3.11)

where ω is the corresponding (1, 1)-form (dω = 0 on the cone, but dω �= 0 on the cylinder). 
An immediate consequence is that the instanton equation for the integrable SU(n + 1)-structure 
implies the Yang–Mills equations, while this is not true for the SU(n + 1)-structure with torsion. 
In detail

cone: (3.11) ⇒ dA �FA = 0 Yang–Mills , (3.12a)

cylinder: (3.11) ⇒ dA �FA + ωn−2

(n − 2)! ∧ dω ∧FA = 0 Yang–Mills with torsion .

(3.12b)

These torsionful Yang–Mills equations (3.12b), which arise in the context of non-integrable 
G-structures (with intrinsic torsion), have been studied in the literature before [13–15,36–38]. 
In particular, the torsion term does not automatically vanish on instantons because dω contains 
(2, 1) and (1, 2)-forms. This is, for instance, in contrast to the nearly Kähler case discussed 
in [39], in which nearly Kähler instantons were found to satisfy the ordinary Yang–Mills equa-
tions.

It is known that the appropriate functional for the torsionful Yang–Mills equations comprises 
the ordinary Yang–Mills functional plus an additional Chern–Simons term

SYM+T(A) =
∫

Cyl(M2n+1)

tr (FA ∧ �FA) + ωn−1

(n − 1)! ∧ tr (FA ∧FA) , (3.13)

which is a gauge-invariant functional. The properties of SYM+T are the following: firstly and most 
importantly, instanton connections satisfying (3.11) have SYM+T(A) = 0, i.e. the action is finite. 

4 We have simply replaced g in (2.9) by g−1.
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Secondly, the stationary points of (3.13) are the vanishing locus of the torsionful Yang–Mills 
equations (up to boundary terms). For this, we use FA+z� = FA + zdA� + 1

2z2� ∧ � for any 
� ∈ TAA(E) and compute the variation

δSYM+T(A) := d

dz
SYM(A+ z�)

∣∣∣
z=0

=
∫

Cyl(M2n+1)

2 tr (dA� ∧ �FA) + 2
ωn−1

(n − 1)! ∧ tr (FA ∧ dA�)

= 2
∫

Cyl(M2n+1)

tr

(
� ∧

(
dA �FA + ωn−2

(n − 2)! ∧ dω ∧FA

))

+ 2
∫

Cyl(M2n+1)

d tr

(
� ∧

(
�FA + ωn−1

(n − 1)! ∧FA

))
. (3.14)

The boundary term would vanish for closed manifolds. In our case, if one assumes M2n+1 to be 
closed, the vanishing of the boundary term requires certain assumptions on the fall-off rate of 
FA for t → ±∞. Moreover, it is interesting to observe that the boundary term in (3.14) vanishes 
for instanton configurations.

3.2. Rewriting the instanton equations

3.2.1. Real equations
Returning to the instanton equations for the X-matrices (3.6), the linear terms can be elimi-

nated via a change of coordinates:

X2j−1 =: e
−n+1

n
tX2j−1 , X2j =: e−n+1

n
tX2j for j = 1, . . . , n , (3.15a)

X2n+1 =: e−2ntX2n+1 , X2n+2 =: e−2ntX2n+2 , (3.15b)

s = − 1

2n
e−2nt ∈R

− , λn(s) :=
(−1

2ns

)2−n+1
n2

. (3.15c)

Note that the exponent 2 − n+1
n2 vanishes for n = 1 and is strictly positive for any n > 1. The 

matrix HINP equations (3.6) read now as follows:[
X2j−1,X2k−1

]− [
X2j ,X2k

]= 0 and[
X2j−1,X2k

]+ [
X2j ,X2k−1

]= 0 , (3.16a)[
X2j−1,X2n+2

]+ [
X2j ,X2n+1

]= d
ds
X2j−1 and[

X2j ,X2n+2
]− [

X2j−1,X2n+1
]= d

ds
X2j , (3.16b)

for j, k = 1, . . . , n and

d
ds
X2n+1 = λn(s)

n∑
k=1

[
X2k−1,X2k

]+ [
X2n+1,X2n+2

]
. (3.16c)
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3.2.2. Complex equations
Completely analogous, the change of coordinates for the complex equations is performed via

Yj =: e−n+1
n

tYj for j = 1, . . . , n and Yn+1 =: e−2ntZ . (3.17)

We will refer to this set of matrices simply by (Y, Z). In summary, the instanton equations are 
now comprised by the “complex equations”[

Yj ,Yk

]= 0 and d
ds
Yj = 2

[
Yj ,Z

]
for j, k = 1, . . . , n , (3.18a)

and the “real equation”

d
ds

(
Z +Z†

)
+ 2

[
Z,Z†

]
+ 2λn(s)

n∑
j=1

[
Yj ,Y†

j

]
= 0 . (3.18b)

These equations are reminiscent to the considerations of the instantons on R4\{0} of [22–24], 
and, in fact, they reduce to the same system for n = 1, but in general one a Calabi–Yau 2-fold 
C

2/	. To see this, we recall [28] that all 3-dimensional Sasaki–Einstein spaces are given by S3/

	, where 	 is a finite subgroup of SU(2) (and commutes with U(1) ⊂ SU(2)) which acts freely 
and isometrically from the left on S3 ∼= SU(2).

3.2.3. Remarks
The equivariance conditions for the rescaled matrices {Xμ̂} or ({Yj }, Z) are exactly the same 

as (3.4) or (3.9), respectively.
Moreover, the rescaling has another salient feature: the matrices {Xμ̂} or ({Yj }, Z) (as well 

as their derivatives) are bounded (see for instance [23]); in contrast, the original connection 
components will develop a pole at the origin r = 0. This will become apparent once the boundary 
conditions are specified. For further details, see Appendix A.1.

In addition, we observe that the exponents on the rescaling (3.15) reflect the torsion com-
ponents (2.3). The choice of a flat “starting point” 	 = 0 would lead to Nahm-type equations 
straight away, but solutions to the resulting matrix equations would not interpolate between any 
(non-trivial) lifted instanton from M2n+1 and instantons on the Calabi–Yau space C(M2n+1), 
cf. [14,19].

3.2.4. Real gauge group
The full set of instanton equations (3.18) is invariant under the action of the gauge group

Ĝ := {
g(s)|g : R− → U(p)

}
, (3.19)

wherein the action is defined via

Yj 	→ Yg
j := Ad(g)Yj for j = 1, . . . , n , (3.20a)

Z 	→Zg := Ad(g)Z − 1

2

(
d

ds
g

)
g−1 . (3.20b)

Note that only the real equation (3.18b) requires g−1 = g† for it to be gauge invariant. More-
over, one can always find a gauge transformation g ∈ Ĝ such that Zg = (Zg)† (Hermitian) or, 
equivalently, Xg

2n+2 = 0.
In summary, these properties follow from (3.10) as the X-matrices are extensions to a 

connection. However, the gauge group (3.19) still contains a nontrivial centre {g(s)|g(s) =
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φ(s)1p×p with φ : R− → U(1)}, such that (3.10) corresponds to the quotient of Ĝ by its cen-
tre.

3.2.5. Complex gauge group
Moreover, the complex equations (3.18a) allow for an action of the complexified gauge group

ĜC ≡ {
g(s)

∣∣g : R− → GL(p,C)
}

, (3.21)

given by

Yk 	→ Ad(g)Yk , Yk̄ 	→ Ad((g−1)†)Yk̄ , for k = 1, . . . , n ,

(3.22a)

Z 	→ Ad(g)Z − 1
2

(
d
ds

g
)

g−1 , Z̄ 	→ Ad((g−1)†)Z̄ + 1
2 (g−1)†

(
d
ds

g†
)

. (3.22b)

The extension to ĜC-invariance for the holomorphicity conditions exemplifies the generic situa-
tion discussed in Section 2.3.

3.2.6. Equivariance condition
Actually, one needs to be a bit more careful in considering these equations and their sym-

metries. Recall that we restrict ourselves to the matrices Xμ̂ which satisfy the equivariance 
conditions (3.4). However, if the equivariance conditions are not invariant under the gauge trans-
formations (3.20), then a solution obtained by gauge transformation might not be equivariant 
anymore.

The real gauge transformations can be interpreted as change of basis on the fibres Ex
∼= C

p

or, more appropriately, change of trivialisation. Since the Îα are representations of the generators 
Iα on these fibres, the same transformation acts on them as well. In order to preserve the Lie 
algebra (3.3), all generators have to transform as

ÎA 	→ Ad(g)ÎA for g ∈ Ĝ and A = 1, . . . (n + 1)2 − 1 . (3.23)

The same transformation behaviour is adopted when passing to the complexified gauge 
group. This renders [Îα, Xμ] = f ν

αμXν into a gauge invariant condition for both Ĝ and 
ĜC-transformations; the ĜC-invariance follows as (3.9) does not intertwine {Yk} and {Yk̄} for 
any k = 1, . . . , n + 1. Unfortunately, [Îα, X2n+2] = 0 is not gauge invariant, due the inhomo-
geneous transformation behaviour (3.10) of X2n+2. However, the way out is that we will only 
impose this last condition at the very end, i.e. once we have chosen a gauge transformation g
such that Xg

2n+2 = 0, the last equivariance condition follows trivially.

3.2.7. Boundary conditions
We observe that a trivial solution of (3.16) is

X2n+2(s) = 0 and Xμ(s) = Tμ

with [Tμ,Tν] = 0 for μ,ν = 1, . . . ,2n + 1 , (3.24)

where the (constant) Tμ are elements in the Cartan subalgebra of su(p); i.e. the (real) (p −
1)-dimensional space spanned by the diagonal, traceless matrices with purely imaginary values. 
From the rescaling (3.15) of the Xμ̂, it is apparent that these matrices become singular as r → 0
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(t → −∞ or s → −∞). Following [23,40], it is appropriate to choose the boundary conditions 
for Xμ to be5

s → 0 : Xμ(s) → 0 for μ = 1, . . . ,2n + 1 and (3.25a)

s → −∞ : ∃g0 ∈ U(p) such that Xμ(s) → Ad(g0)Tμ for μ = 1, . . . ,2n + 1 .

(3.25b)

One can show [23] that this implies the existence of the limit of Xμ for s → 0. Hence, the solu-
tions extend to the interval (−∞, 0], see also Appendix A.1. Thus, we are led to consider (3.16)
for matrices Xμ(s) over (−∞, 0] with one remaining boundary condition:

∃g0 ∈ U(p) such that ∀μ = 1, . . . ,2n + 1 : lim
s→−∞Xμ(s) = Ad(g0)Tμ . (3.26)

Moreover, since one has first order differential equations it suffices to impose this one boundary 
condition, here at s = −∞. Thus, the values of Yk at s = 0 are completely determined by the 
solution. Following [23], we observe that (3.18a) implies that Yk(s) lies entirely in a single 
adjoint orbit O(k) of the complex group ĜC, for each k = 1, . . . , n. Next, assuming that Tk =
1
2 (T2k − iT2k−1) for k = 1, . . . , n is a regular tuple in the Cartan subalgebra of ̂gC in the sense 
of [23] (that is the joint stabiliser of the Tμ in SU(p) is the maximal torus), one obtains that 
Yk(s=0) ∈ O(k), i.e. the values at s = 0 are in a conjugacy class of Tk . Moreover, only the 
conjugacy class has a gauge-invariant meaning.

Nonetheless, the boundary conditions (3.26) clearly show that the original connection (3.1)
develops the following poles at the origin r = 0 of the Calabi–Yau cone:

lim
r→0

r
n+1
n Xa = Ad(g0)Ta for a = 1, . . . ,2n and

lim
r→0

r2nX2n+1 = Ad(g0)T2n+1 . (3.27)

Note that the case n = 1 is reminiscent to the instantons with poles considered in [23].

3.3. Geometric structure

3.3.1. Space of connections under consideration
Consider the space of su(n + 1)-valued connections A(E) in which any element can be pa-

rameterised as in (3.1). Due to the ansatz of Section 3.1, we restrict ourselves to the subspace 
Aequi(E) ⊂ A(E) of connections which satisfy (3.4). Specialising the considerations of Sec-
tion 2.3, we will now establish certain (formal) geometric structures.

3.3.2. Kähler structure
The first step is to establish a Kähler structure on Aequi(E). Since Aequi(E) descends from 

the space of all connection A(E), one can simply obtain the geometric structures by restriction. 
A tangent vector

y =
n+1∑
j=1

(
yj θ

j + y j̄ θ̄
j
)

(3.28)

5 One does not need to worry about X2n+2, as it can always be gauged away.
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at a point A ∈ Aequi(E) is defined by the linearisation of (3.8) for paths yj : R → su(p). Their 
gauge transformations are

yj → y
g
j := Ad(g)yj for j = 1, . . . , n + 1 . (3.29)

Taking the generic expressions for the metric (2.12) and the symplectic structure (2.13), we can 
specialise to the case at hand by transition to the cylinder and neglecting the volume integral of 
M2n+1. Thus, for a metric on Aequi we obtain

g|A(y(1),y(2)) ≡ 2
∫
R

dt e2nt tr

⎧⎨⎩
n+1∑
j=1

(
y

(1)†
j y

(2)
j + y

(1)
j y

(2)†
j

)⎫⎬⎭ . (3.30)

Similarly, the symplectic form reads as

ω|A(y(1),y(2)) ≡ −2i
∫
R

dt e2nt tr

⎧⎨⎩
n+1∑
j=1

(
y

(1)†
j y

(2)
j − y

(1)
j y

(2)†
j

)⎫⎬⎭ . (3.31)

Moreover, a complex structure J on A(E)equiv has been given in (2.16). Keeping in mind 
that (2.6) implies J = −Jcan, we obtain

J |A(y) = J (y) = i
n+1∑
j=1

(
yj θ

j − y j̄ θ̄
j
)

(3.32)

As before, the symplectic form ω and the metric g are compatible, i.e. g(J ·, ·) = ω(·, ·). We note 
that both structures are gauge-invariant by construction.

3.3.3. Moment map
The subspace of holomorphic connections A1,1

equi(E) ⊂ Aequi(E) is defined by the condi-
tion (3.18a). This condition only restricts the allowed endmorphism-valued 1-forms, because 
	̂P is already a (1, 1)-type connection, since it is an HYM-instanton. Again, the metric g and 
Kähler form ω descend to A1,1

equi(E) from the corresponding objects on Aequi(E). Moreover, on 

the Kähler space A1,1
equi(E), one defines a moment map

μ : A
1,1
equi(E) → ĝ0 = Lie(Ĝ0)

(Y,Z) 	→ i

(
d

ds

(
Z +Z†

)
+ 2

[
Z,Z†

]
+ 2 λn(s)

n∑
k=1

[
Yk,Y†

k

])
, (3.33)

where Ĝ0 is the corresponding framed gauge group. That is

Ĝ0 :=
{
g(s)|g : R− → U(p) , lim

s→0
g(s) = lim

s→−∞g(s) = 1

}
. (3.34)

It is an important realisation that on the non-compact Calabi–Yau cone (and the conformally 
equivalent cylinder) one has to compensate the appearing boundary terms in Stokes’ theorem by 
the transition to the framed gauge transformations. The details of the proof that (3.33) satisfies 
conditions (2.18) are given in the Appendix A.2. Here, we just note that the map (3.33) maps the 
matrices (Y,Z) into the correct space: the factor of i renders the expression anti-hermitian; while 
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the boundary conditions (3.25) together with the gauge choice Z = −Z† yield the vanishing of 
μ (Y,Z) at s → 0 and s → −∞.

The part of instanton moduli space that is connected with the lift 	̂P (in the sense of our 
ansatz (3.1)) is then readily obtained by the Kähler quotient

M	P = μ−1(0)/Ĝ0 . (3.35)

3.3.4. Stable points
Alternatively, one can describe this part of the moduli space via the stable points

A
1,1
st (E) ≡

{
	̂P + X ∈A

1,1(E)
∣∣ (ĜC

0 )(Y,Z) ∩ μ−1(0) �= ∅
}

, (3.36)

where the tuple (Y, Z) is obtained from X via complex linear combinations and rescaling as 
before. The moduli space arises then by taking the ĜC

0 -quotient

A
1,1
st (E)/ĜC

0
∼=M	P . (3.37)

We argue in the next couple of paragraphs that it suffices to solve the complex equations (3.18a), 
because the solution to the real equation (3.18b) follows from a framed complex gauge transfor-
mation. More precisely: for every point in A1,1

equi(E) there exists a unique point in the complex 

gauge orbit such that the real equation is satisfied. In other words, every point in A1,1
equi(E) is 

stable.

3.4. Solutions to matrix equations

3.4.1. Solutions to complex equation
In the spirit of [22], one can also understand the complex equations as being locally trivial. 

That is, take (3.22) and demand the gauge transformed Z to be zero

Zg = Ad(g)Z − 1
2

(
d
ds

g
)

g−1 != 0 ⇒ Z = 1
2g−1 d

ds
g . (3.38)

From the holomorphicity equations (3.18a) one obtains

d
ds
Yg

k = 0 and Yg
k = Ad(g0)Tk with

[
Tj ,Tk

]= 0 , (3.39)

for j, k = 1, . . . , n and g0 is a constant gauge transformation.6 Consequently, the general local 
solution of the complex equations (3.18a) is

Yk = Ad(g−1)Tk with
[
Tj ,Tk

]= 0 and Z = 1

2
g−1 d

ds
g , (3.40)

for any g ∈ ĜC. A solution to the commutator constraint is choosing Tk for k = 1, . . . , n as 
elements of the Cartan subalgebra of the Lie algebra gl(p, C), which are all diagonal (complex) 
p × p matrices.

6 This g0 can also be gauge away to 1.
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3.4.2. Solution to the real equation
In any case, one can in principle solve the complex equations; now, the real equation (3.18b)

needs to be solved as well. Following the ideas of [22], the considerations are split in two steps: 
(i) a variational description and (ii) a differential inequality. We provide the details of (i) in 
this paragraph, while we postpone the details of (ii) to the Appendix A.4. Let us recall that the 
complete set of instanton equations is gauge-invariant under Ĝ. Thus, define for each g ∈ ĜC the 
map

h = h(g) = g†g : R− → GL(p,C)/U(p) . (3.41)

The quotient GL(p, C)/U(p) can be identified with the set of positive, self-adjoint p × p matri-
ces. Then, fix a tuple (Y, Z) and define the functional Lε[g] for g

Lε[g] = 1
2

−ε∫
− 1

ε

ds tr

(∣∣∣Zg + (Z†)g
∣∣∣2 + 2λn(s)

n∑
k=1

∣∣Yg
k

∣∣2) for 0 < ε < 1 , (3.42)

where (Yg, Zg) denotes the gauge-transformed tuple. For the variation of (3.42) it suffices to 
consider variations with δg = δg† around g = 1, but of course δg �= 0. Then the gauge transfor-
mations (3.22) imply

δZ = [
δg,Z

]− 1
2

d

ds
δg and δYk = [

δg,Yk

]
for k = 1, . . . , n . (3.43)

The variation then leads to

δgLε = −i

−ε∫
− 1

ε

ds tr {μ(Y,Z) δg} , (3.44)

i.e. critical points of (3.42) are precisely the zero-level set of the moment map. Next, we take the 
solution (3.40) and insert it as a starting point for Lε . Thus, one obtains a functional for h

Lε[h] = 1
2

−ε∫
− 1

ε

ds

{
1
4 tr

(
h−1 dh

ds

)2

+ 2λn(s)

n∑
k=1

tr
(
hTkh

−1T †
k

)}

= 1
2

−ε∫
− 1

ε

ds

{
1
4 tr

(
h−1 dh

ds

)2

+ V

}
. (3.45)

Following [22], the potential V (h) = 2λn(s) 
∑n

k=1 tr
(
hTkh

−1T †
k

)
is positive,7 implying that for 

any boundary values h−, h+ ∈ GL(p, C)/U(p) there exists a continuous path8

h :
[
− 1

ε
,−ε

]
→ GL(p,C)/U(p) with h(− 1

ε
) = h− and h(−ε) = h+ , (3.46)

7 Note that λn(s) is strictly positive and smooth on 
(
− 1

ε ,−ε
)

for any 0 < ε < 1.
8 See for instance the note under [22, Corollary 2.13]: One knows that GL(p, C)/U(p) satisfies all necessary conditions 

for the existence of a unique stationary path between any two points.
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which is smooth in Iε =
(
− 1

ε
,−ε

)
and minimising the functional. Hence, for any choice of 

gauge transformation g such that g†g = h one has that ({Tk}k=1,...,n, 0)g = ({Ad(g)Tk}k=1,...,n,

− 1
2 ( d

ds
g)g−1) satisfies the real equation in Iε for any 0 < ε < 1. From now on, we restrict the 

attention to h+ = h− = 1, i.e. h is framed.
The uniqueness of the solution h on each interval Iε and the existence of the limit h∞ for 

ε → 0 follows from the aforementioned differential inequality similar to [22] and the discussion 
of [23, Lemma 3.17]. The details are presented in Appendix A.4. The relevant (framed) gauge 
transformation is then simply given by g = √

h∞.9

However, we need to emphasise two crucial points. Firstly, the construction of a solution for 
the limit ε → 0 relies manifestly on the use of the boundary conditions (3.26), and the fact that 
these give rise to a (constant) solution of both the complex equations and the real equation. 
Secondly, the corresponding complex gauge transformation g = g(h∞) is only determined up 
to unitary gauge transformations, i.e. it is not unique. This ambiguity in the choice of g can be 
removed, when we recall that a Ĝ gauge transformation suffices to eliminate X2n+2. Hence, one 
can demand that the gauge-transformed system (Yg, Zg) of a solution (Y, Z) satisfies Zg =
(Zg)†. This fixes g = g(h) uniquely, see also Appendix A.4.4 for further details.

3.4.3. Result
In summary, it is sufficient to search for solutions (Y ′, Z ′) of the complex equations (3.18a)

on the interval (−∞, 0] such that the boundary conditions (3.26) are satisfied. Then one has the 
existence of a unique complex gauge transformation g such that

(i) (Y, Z) = (Y ′, Z ′)g satisfies (3.18b),
(ii) Z is Hermitian (i.e. X2n+2 = 0) and

(iii) g is bounded and framed.

In other words, it suffices to solve the complex equations subject to some boundary conditions 
and the real equation will be satisfied automatically.

Moreover, the above indicates that any point in A1,1
equi is stable, which we recall to be exactly 

the condition that every complex gauge orbit intersects μ−1(0). We believe that this circumstance 
holds because we restricted ourselves to the space of equivariant connections. The benefit is then, 
that one, in principle, only has to show the solvability of the holomorphicity conditions in order 
to solve the instanton (matrix) equations. Nevertheless, one still has to find an ansatz that satisfies 
the equivariance conditions (3.4).

3.5. Further directions

Before concluding we can further exploit the results collected so far as well as illustrate an-
other viewpoint of the HINP matrix equations.

9 We use the unique principal root of the positive Hermitian matrix h, which is a continuous operation. Consequently, 
the framing of h implies the framing of g.
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3.5.1. Relation to coadjoint orbits
Let us denote by Mn(E) the moduli space of solutions to the complex and real equations 

satisfying the boundary conditions (3.26) together with the equivariance condition. From the 
considerations above, we can establish the following map10

Mn(E) →OT1 × · · · ×OTn

(Y,Z) 	→ (Y1(0), . . . ,Yn(0)) (3.47)

where OTk
denotes the adjoint orbit of Tk in gl(p, C). Analogous to [23], this map is a bijection 

due to the construction of the local solution (3.40) and the uniqueness of the corresponding solu-
tion of the real and complex equations. Moreover, one knows that the orbit of an element Tk of the 
Cartan subalgebra is of the form GL(p, C)/Stab(Tk). The product of coadjoint orbits in (3.47) is 
a complex symplectic manifold of complex dimension n dim(GL(p, C)) −∑n

j=1 dim(Stab(Tj )). 
Each orbit is equipped with the so-called Kirillov–Kostant–Souriau symplectic form and the 
product thereof gives the symplectic structure on the total space. In addition, the bijection above 
preserves the holomorphic symplectic structure.

3.5.2. Relation to quiver representations
The HINP matrix equations can be seen to define quiver representations, depending on the 

chosen SU(n+1)-representation on the typical fibre Cp. Then, by the employed ansatz, we de-
compose this representation with respect to SU(n) into

C
p
∣∣∣
SU(n)

=
⊕
w∈J

C
nw , (3.48)

where Cnw carries a nw-dimensional irreducible SU(n)-representation. More explicitly, w should 
be understood as pair of labels: let φ label the irreducible SU(n)-representations and recall that 
the centraliser of SU(n) inside SU(n+1) is a U(1). Then each representation space Cnw car-
ries also a U(1)-representation characterised by a “charge” q . Therefore, the decomposition is 
labelled by pairs w = (φ, q).

As a consequence, the equivariance condition (3.4) dictates the decomposition of the 
Xμ-matrices into homomorphisms

Xμ =
⊕

w,w′∈J

(Xμ)w,w′ with (Xμ)w,w′ ∈ Hom
(
C

nw ,Cnw′ ) . (3.49)

The quiver representation then arises as follows: the set Q0 of vertices is the set {Cnw |w ∈ J }
of vector spaces and the set Q1 of arrows is given by the non-vanishing homomorphisms 
{(Xμ)w,w′ |w, w′ ∈ J , μ = 1, . . . , 2n + 1}.

The instanton equations (or HINP equations) then lead to relations on the quiver representa-
tion. Examples for the arising quiver diagrams as well as their relations for the case n = 1 and 
M3 = S3 can be found in [41] and for n = 2 and M5 = S5 in [42]. To study the representations 
of a quiver one would rather use the constructions of [41,42], instead of the ansatz employed 
here. Because once the bundle E and the action of SU(n+1) on the fibres is chosen, there is no 
freedom to change the quiver representation anymore.

10 I thank Richard Szabo for pointing this out to me.
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4. Conclusions

It is known that the instanton moduli space over a Kähler manifold is a Kähler space. There-
fore, also the moduli space of certain invariant connections should inherit this property. The 
overall situation remains unknown.

In the ansatz presented here, we restricted ourselves to a subset of all possible connections 
by, firstly, imposing an equivariance condition and simplifying to t -dependence only and by, 
secondly, fixing an instanton 	P as a starting point. Hence, by this construction one can only 
reach a particular part of the full instanton moduli space by the solutions of the HINP matrix 
equations.

The arguments presented in this paper show that the reduced HINP matrix equations can 
be treated similarly to the Nahm-equations of SU(2) monopoles. As a consequence, one gains 
local solvability of the holomorphicity conditions together with the fact that any solution can be 
uniquely gauge-transformed into a solution of the stability-like condition. Moreover, the structure 
of the (framed) moduli space shares, at least locally, all features of a Kähler space due to the 
Kähler quotient construction or the GIT quotient.

It is of interest to extend the ansatz presented here from cones to their smooth resolutions as 
in [19,26], and to consider quiver gauge theories which can be associated to Calabi–Yau cones 
along the lines of [41,42].
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Appendix A. Details

In this appendix, we provide the proofs of the statements made in Sections 3.2–3.4. Although 
the steps are similar to those performed in [22–24], we believe that these are necessary because 
the HINP equations are generalisations of the Nahm equations.

A.1. Boundedness of rescaled matrices

Recall the boundary conditions (3.26) for the original matrices

t → +∞ : Xμ → 0 , (A.1a)

t → −∞ : e
n+1
n

t
Xa → Ad(g0)Ta and e2ntX2n+1 → Ad(g0)T2n+1 . (A.1b)

Evaluating the asymptotic behaviour for t → +∞ of (3.6), one finds the leading behaviour of 
(the real and imaginary part) of each matrix element to be

d

dt
(Xa)AB + n + 1

n
(Xa)AB � 0 → (Xa)AB ∼ e

−n+1
n

t as t → ∞ , (A.2a)

d

dt
(X2n+1)AB + 2n(X2n+1)AB � 0 → (X2n+1)AB ∼ e−2nt as t → ∞ , (A.2b)

because the commutator terms vanish faster than linear order. These results imply the following:
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(i) The rescaled matrices Xμ of (3.15) are bounded for s → 0.

(ii) The commutators e
n+1
n

t [Xa, X2n+1] are integrable over (0, ∞).

(iii) The derivatives d
dt

(
e

n+1
n

t
Xa

)
and d

dt

(
e2ntX2n+1

)
are integrable, which follows by the use 

of the equations (3.6).

In conclusion, the Xμ̂ as well as their derivatives are bounded.

A.2. Well-defined moment map

We need to prove (2.18) for μ defined in (3.33); recall that μ(A) := FA ∧ ω̂n−1

(n−1)! and we 
identified μ∗ with μ. Moreover, it is crucial to use the closed Kähler 2-form from the cone, i.e. 
ω̂ = e2t ω̃ on the cylinder. We will work with the original connection components Yk defined 
in (3.7).

For the left-hand-side we proceed as follows: Let φ ∈ ĝ0 and � = �kθ
k − �

†
k θ̄ k be a tangent 

vector at A. The duality pairing of Lie- and dual Lie-algebra is realised by the integration over 
the cylinder and the subsequent invariant product on u(p).

(φ,Dμ|A)� =
∫

Cyl(M2n+1)

tr

{
φ

d

dz
FA+z�

∣∣
z=0

}
∧ ω̂n

n! (A.3a)

=
∫
R

dt e2nt tr

{
φ · i

[
d

dt
(�n+1 + �

†
n+1) + 2n(�n+1 + �

†
n+1)

+ 2
n+1∑
k=1

([
�k,Y

†
k

]
+
[
Yk,�

†
k

])]}
·
∫

M2n+1

vol . (A.3b)

Hence, for the dual moment map one can neglect the volume integral over M2n+1 and the dual 
pairing is defined via the first integral over t .

The compute the right-hand-side of (2.18) we need to take a step back and derive the sym-
plectic form on A from (2.13) as follows

ω|A(�,�) = −
∫

Cyl(M2n+1)

tr (� ∧ �) ∧ ω̂n

n! (A.4a)

= −2i
∫
R

dt e2nt tr
n+1∑
k=1

{
�

†
k�k − �k�

†
k

}
·
∫

M2n+1

vol . (A.4b)

Again, we can drop the volume of the Sasaki–Einstein space. Next, we need the infinitesimal 
gauge transformation generated by an (framed) Lie-algebra element φ. From (3.20) we obtain

φ# = d

dz
Y

g=exp(zφ)

j

∣∣∣∣
z=0

=
{[

φ,Yj

]
, j = 1, . . . , n[

φ,Yn+1
]− 1

2
d
dt

φ, j = n + 1 ,
(A.5)

which then brings us to
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ιφ#ω|A(�) = −2i
∫
R

dt e2nt tr

{
n∑

k=1

{
[φ,Yk]† �k − [φ,Yk]�†

k

}

+
([

φ,Yn+1
]− 1

2

d

dt
φ

)†

�n+1 −
([

φ,Yn+1
]− 1

2

d

dt
φ

)
�

†
n+1

}
(A.6a)

=
∫
R

dt e2nt tr

{
φ · i

[
d

dt
(�n+1 + �

†
n+1) + 2n(�n+1 + �

†
n+1)

+ 2
n+1∑
k=1

([
�k,Y

†
k

]
+
[
Yk,�

†
k

])]}
− i

∫
R

d

dt

{
e2nt trφ(�n+1 + �

†
n+1)

}
.

(A.6b)

A close inspection of the boundary term reveals that∫
R

d

dt

{
e2nt tr

(
φ(�n+1 + �

†
n+1)

)}
= e2nt tr

(
φ(�n+1 + �

†
n+1)

) ∣∣∣∣∣
t→+∞

t→−∞
(A.7)

vanishes provided limt→±∞ φ(t) = 0 i.e. the map defined in (3.33) is a moment map for the 
action of the framed gauge group Ĝ0 = {g(t)|g :R → U(p), s.t. limt→±∞ g(t) = 1}.

A.3. Notation

We need to introduce some notation, which is relevant for the proofs later.

A.3.1. ∂ ,∂̄-operators
Following [22], we define the following ∂ , ∂̄-operators on Cp-valued functions f on R−

dZf = 1

2

d

ds
f +Zf , d̄Zf = 1

2

d

ds
f −Z†f , (A.8a)

dj f = Yj f , d̄j f = −Y†
j f , (A.8b)

and on matrix-valued functions γ on R−

dZγ = 1

2

d

ds
γ + [

Z, γ
]

, d̄Zγ = 1

2

d

ds
γ −

[
Z†, γ

]
, (A.8c)

dj γ = [
Yj , γ

]
, d̄j γ = −

[
Y†

j , γ
]

. (A.8d)

These operators will give rise to the ∂̄-operators associated to the connection A. For that we take 
the covariant derivative dA = d + 	̂P + Yj θ

j + Yj̄ θ̄
j and define ∂̄A = ∂̄ + (	̂P )(0,1) + Yj̄ θ̄

j . 
Hence, the above definitions are understood as components of ∂̄A. However, our notation and 
conventions differ slightly from [22] in the sense that we work with the equivalent ∂A-operator. 
In detail, the cone direction s in [22] is considered as 0th coordinate such that the canonical
complex structure is defined via the choice of (1, 0)-forms ds+ ie1 and e2 + ie3 ({ep, p = 1, 2, 3}
a co-frame on R3). In contrast, we designated the cone coordinate as e2n+2 and choose the 
(1, 0)-forms as in (2.6) in order to avoid unnecessary factors of i. With respect to the canonical 
choice e2j−1 + ie2j our complex structure is simply J = −Jcan, implying that we interchanged 
(1, 0) and (0, 1)-forms. Consequently, we consider the ∂A-operator.
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A.3.2. Gauge transformations
For the ∂-operators the action of the complex automorphisms is defined via

dg
j := g ◦ dj ◦ g−1 and dg

Z := g ◦ dZ ◦ g−1 . (A.9)

From these definitions, we obtain

g−1dg

Zg = dZ , g−1d̄g

Zg = d̄Z + h−1d̄Zh , (A.10a)

g−1dg
j g = dj , g−1d̄g

j g = d̄j + h−1d̄j h , (A.10b)

for h := g†g.

A.3.3. Complex equations
The complex equations it holds[

dj ,dk

]= 0 ⇔ [
Yj ,Yk

]= 0 , (A.11a)[
dZ ,dj

]= 0 ⇔ 1

2

d

ds
Yj = [

Yj ,Z
]

, (A.11b)

where the right-hand-side is understood as acting on Cp- or matrix-valued functions.
For the integrability of ∂A, i.e. ∂2

A = 0, we need besides (A.11) also ∂2
	̂P = 0 and (3.9) to hold. 

Fortunately, ̂	P is an HYM-instantons and, thus, defines an integrable ∂-operator. Moreover, by 
construction we restricted to matrix-valued functions Yj and Z that satisfy the equivariance. In 
summary, the complex equations are the integrability conditions for ∂A.

A.3.4. Real equation
Recall the definition (3.33) of the moment map μ(Y, Z). The expression is identical to the 

action of the operator11

ϒ(Y,Z) := 2

⎛⎝[d̄Z ,dZ
]+ λn(s)

n∑
j=1

[
d̄j ,dj

]⎞⎠ (A.12)

in the usual sense. This operator behaves under complex gauge transformations as follows

g−1 (ϒ(Yg,Zg)
)
g = ϒ(Y,Z) − 2

⎛⎝dZ (h−1d̄Zh) + λn(s)

n∑
j=1

dj (h
−1d̄jh)

⎞⎠ . (A.13)

A.4. Adaptation of proofs

A.4.1. Differential inequality
Let {κi}i=1,...,p be the positive eigenvalues (still functions of s) of h on Iε . Define

�(h) := ln

(
max

i=1,...,p
κi

)
, (A.14)

which is well-defined. The claim is that the inequalities

11 This object is analogous to F̂ of [22, eq. (1.10)].
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d2

ds2
�(h) ≥ −2

(‖ϒ(Y,Z)‖ + ‖ϒ(Yg,Zg)‖) , (A.15a)

d2

ds2
�(h−1) ≥ −2

(‖ϒ(Y,Z)‖ + ‖ϒ(Yg,Zg)‖) (A.15b)

hold in a weak sense.

Proof. Following [22], it is sufficient to consider the case where all eigenvalues of h are 
distinct for each s. Further, by a unitary gauge transformation one finds in each GL(p, C)/

U(p)-equivalence class an element g (which corresponds to a given h) such that

g = diag(et1, . . . , etp ) with t1(s) > t2(s) > . . . > tp(s) ∀s ∈ Iε . (A.16)

Hence, one obtains h = diag(e2t1 , . . . , e2tp ) and h−1 = diag(e−2t1 , . . . , e−2tp ) such that �(h) =
2t1 and �(h−1) = −2tp . Next, we compute

d̄Zh = diag(e2tj d
ds

tj ) −
[
Z†, h

]
, (A.17a)

h−1d̄Zh = diag( d
ds

tj ) +Z† − h−1Z†h , (A.17b)

dZ (h−1d̄Zh) = diag

(
1

2

d2

ds2
tj

)
+
[
Z,diag(

d

ds
tj )

]
+ 1

2

d

ds

(
Z† − h−1Z†h

)
+
[
Z,Z† − h−1Z†h

]
. (A.17c)

Now, we consider the diagonal elements(
dZ (h−1d̄Zh)

)
(a,a)

= 1

2

d2

ds2
ta +

∑
b �=a

|Zab|2
{(

1 − e2(ta−tb)
)

−
(

1 − e−2(ta−tb)
)}

, (A.18)

where we used([
Z,diag(

d

ds
tj )

])
(a,a)

= 0 and
(
Z† − h−1Z†h

)
(a,a)

= 0 . (A.19)

Similarly, one derives(
dj (h

−1d̄jh)
)

(a,a)
=
∑
b �=a

|(Yj )ab|2
{(

1 − e2(ta−tb)
)

−
(

1 − e−2(ta−tb)
)}

. (A.20)

Then, one proceeds(
ϒ(Y,Z) − ϒ(Yg,Zg)

)
(a,a)

=
(
ϒ(Y,Z) − g−1 (ϒ(Yg,Zg)

)
g
)

(a,a)

= 2

⎛⎝dZ (h−1d̄Zh) + λn(s)

n∑
j=1

dj (h
−1d̄jh)

⎞⎠
(a,a)

= d2

ds2
ta + 2

∑⎛⎝|Zab|2 + λn(s)

n∑
|(Yj )ab|2

⎞⎠

b �=a j=1
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×
{(

1 − e2(ta−tb)
)

−
(

1 − e−2(ta−tb)
)}

(A.21)

To get the estimate for �(h) = 2t1 take a = 1 and use 
{(

1 − e2(t1−tb)
)− (

1 − e−2(t1−tb)
)}

< 0 as 
t1 > tb for all b > 1. Then

d2

ds2
t1 ≥ − (ϒ(Yg,Zg) − ϒ(Y,Z)

)
(1,1)

≥ − (|ϒ(Yg,Zg)(1,1)| + |ϒ(Y,Z)(1,1)|
)

≥ − (‖ϒ(Yg,Zg)‖ + ‖ϒ(Y,Z)‖)
⇒ d2

ds2
�(h) ≥ −2

(‖ϒ(Yg,Zg)‖ + ‖ϒ(Y,Z)‖) (A.22)

Similarly, the estimate for �(h−1) is obtained by taking a = p and {(1 − e2(tp−tb)) − (1 −
e−2(tp−tb))} > 0 for all b < p. Then

(
ϒ(Y,Z) − ϒ(Yg,Zg)

)
(p,p)

≥ d2

ds2
tp ⇒

d2

ds2
�(h−1) ≥ −2

(‖ϒ(Yg,Zg)‖ + ‖ϒ(Y,Z)‖) (A.23)

Thus, the claim (A.15) holds. �
A.4.2. Uniqueness

Suppose that (Y, Z) is a solution to the complex equations on Iε . Let us assume that we have 
two complex gauge transformations g1 and g2 such that

(i) μ(Yg1, Zg1) = 0 and μ(Yg2, Zg2) = 0 in Iε

(ii) h1 = g
†
1g1 and h2 = g

†
2g2 satisfying h1|∂Iε = h2|∂Iε .

Then h1 = h2 in Iε .

Proof. We can suppose g2 = 1 such that h2 = 1 in Iε and ∂Iε . Hence, g ≡ g1 and h|∂Iε = 1. 
Since ϒ(Y, Z) = 0 and ϒ(Yg, Zg) = 0, we have

d2

ds2
�(h) = 2

d2

ds2
t1 ≥ 0 in Iε , t1|∂Iε = 0 and

d2

ds2
�(h−1) = −2

d2

ds2
tp ≥ 0 in Iε , tp|∂Iε = 0 . (A.24)

By (weak) convexity, it follows t1 ≤ 0 in Iε and tp ≥ 0 in Iε , but we now arrive at 0 ≥ t1 > t2 >

. . . > tp ≥ 0. Hence, tj = 0 in Iε and h = 1 in Iε (modulo unitary transformations). �
A.4.3. Boundedness

Next, we need to show the boundedness of μ(Y, Z). The only critical term is λn(s), which 
diverges for s → 0. However, it is straight forward to derive the pole structure of the gauge 
transformed operator ϒ to be

g−1 (ϒ(Yg,Zg)
)
g

∣∣∣
pole

= ϒ(Y,Z)

∣∣∣
pole

− 2λn

n∑
dj

(
h−1d̄jh

)

j=1
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= 2λn

n∑
j=1

[
Yj , h

−1Y†
j h
]
s→0

. (A.25)

But recall that we will consider framed gauge transformation, i.e. h = 1 at the boundaries, 
and Y(s = 0) are elements of a Cartan subalgebra. Hence, the potential pole vanishes for any 
gauge transformation once the correct boundary conditions (3.26) are imposed. Thus, μ(Y, Z)

is bounded.

A.4.4. Limit ε → 0
Finally, we need to show that the limit ε → 0 exists, for which we follow [23,24]. Let (Y, Z)

be any solution of the complex equation, then for each ε > 0 there exists a unique complex gauge 
transformation gε such that (Ygε , Zgε ) satisfies the real equation in Iε . Associate hε = g†

ε gε .
We start by constructing a solution (Ŷ, Ẑ) of the complex equations with the properties

(Ŷj , Ẑ)(s) =
{

(τj ,0) for s = −ε

(Tj ,Tn+1) for − 1
ε

< s < −1
(A.26)

where (Tj , Tn+1) correspond to the complex linear combinations of the Tμ of the boundary 
condition (3.26), i.e. they lie in a Cartan subalgebra of su(n + 1). The τj are arbitrary points 
in the complex orbits O(Tj ), because we know that the boundary values at s → 0 are in gauge 
orbits of the Tj .

The existence of such a solution follows from the local triviality of the complex equations. 
Note that this solution is constant in (− 1

ε
, −1) and μ(Ŷ, Ẑ) = 0 for − 1

ε
< s < −1.

The claim then is: Starting from (Ŷ, Ẑ) as above, for each ε > 0 there exists a unique gauge 
transformation gε such that

(i) (Ŷgε , Ẑgε ) satisfies the real equation everywhere in Iε ,
(ii) (Ŷgε , Ẑgε ) has the correct boundary conditions (3.26),

(iii) g = 1 at the boundaries and Ẑgε is Hermitian,
(iv) �(hε), �(h−1

ε ) are uniformly bounded.

Thus, by the uniform bound, one has the existence a C∞ limit h∞ := limε→0 hε such that g∞ :=√
h∞ has all desired properties on the negative half-line.

Proof. The existence and the uniqueness of such a gε follows from the above. Using the differ-
ential inequalities (A.15) and the boundedness of μ we derive at

d2

ds2
�(hε) ≥

{−2‖ϒ(Ŷ, Ẑ)‖ ≥ −2C for − 1 < s < −ε

0 for − 1
ε

< s < −1.
(A.27)

Moreover, since hε = 1 at ∂Iε , the eigenvalues have to vanish, which implies �(hε) = 0 =
�(h−1

ε ) at ∂Iε . Consider the bounded, continuous, non-negative function

fε(s) =
{−C(s + 1)(s + ε) for − 1 < s < −ε

0 for − 1
ε

< s < −1
(A.28)

with
d2

ds2
fε =

{−2C for − 1 < s < −ε

0 for − 1
ε

< s < −1
(A.29)

in a weak sense. But then, we obtain
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d2

ds2 (�(hε) − fε) ≥ 0 in Iε and �(hε) − fε = 0 at ∂Iε . (A.30)

By convexity, �(hε) − fε ≤ 0 in Iε , which then implies

�(hε) = 2t1 ≤
{−C(s + 1)(s + ε) ≤ −Cs(s + 1) for − 1 < s < −ε

0 for − 1
ε

< s < −1.
(A.31)

Applying the very same reasoning to �(h−1
ε ), we obtain �(h−1) − fε ≤ 0 in Iε and thus

−�(h−1
ε ) = 2tp ≥

{
Cs(s + 1) for − 1 < s < −ε

0 for − 1
ε

< s < −1.
(A.32)

In conclusion, the eigenvalues of hε are uniformly bounded

1

2
f ≥ t1 > . . . > tp ≥ −1

2
f for f (s) =

{−Cs(s + 1) for − 1 < s < −ε

0 for − 1
ε

< s < −1
(A.33)

independent of ε. This uniform bound leads to the existence of the limit ε → 0 of hε . �
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