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Let G be a minimally n-edge-connected finite simple graph with vertex number \G\ >
2n + 2+ \}/n\ and let n > 3 be odd. It is proved that the number of vertices of degree n in
G is at least ((n - 1 - en)/(2n + 1))|G| + 2 + 2en, where en = (3n + 3)/(2n2 - 3n - 3), and
that for every n = 3 (mod 4) this lower bound is attained by infinitely many minimally
n-edge-connected finite simple graphs.

1. Introduction

Whereas the number \G\n of vertices of degree n that a minimally n-connected graph G
must have, dependent on the number \G\ of vertices of G, is almost exactly known (see
[8]), the corresponding problem for minimally n-edge-connected simple graphs is far from
being settled. It was shown in [4] that every minimally n-edge-connected finite graph has
two vertices of degree n (see also Lemma 13 in [7]), which of course is best possible for
every vertex number. But for simple graphs, i.e., graphs without multiple edges, this was
improved in [5]: every minimally n-edge-connected finite simple graph has at least n + 1
vertices of degree n. In [6] it was proved that, for every n =f= 1, 3 there exists a cn > 0 such
that every minimally n-edge-connected finite simple graph G has at least cn\G\ vertices
of degree n. For n = 1, 3 such a result does not hold, as the example in Figure 1 shows
for n = 3. The value of the constant cn was improved in [1] and [2], and a rather good
estimate for \G\n was given quite recently by Cai Mao-Cheng [3].

Figure 1
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Theorem. ([3]) If G is a minimally n-edge-connected finite simple graph,

The lower bounds in this theorem are much better than the bounds given before, but
they are not best possible. The main result of our paper will be the following best possible
linear bound for n s 3 (mod 4).

If G is a minimally n-edge-connected finite simple graph containing at least 2n + 2+ |_3/nJ
vertices and if n > 3 is odd,

2n + l ' ' ' ' 2n2-3n-3
holds and, for every n = 3 (mod 4), the lower bound is attained by infinitely many simple

graphs G.

First we will clarify our terminology and notation. A graph G = (V(G), E(G)) is always
finite here. It may have multiple edges, but no loops. A simple graph is a graph without
multiple edges. The set of edges joining the vertices x and y in G is denoted by [X,J;]G.

When we consider a special edge between x and y, we write [x, y] for this edge. For vertex
sets or subgraphs Hi, H2 of G, set

[HUH2]G:= \J[x,y]G,
xeHl

yeH2

using x € G instead of x e V(G). For X £ V(G), define dG(X) := \[X, V(G)-X]G\. For
x e G, we define dG(x) := dG{{x}) and NG(x) := {y € V(G) : [x,y]G £ 0}. The order of
an edge [x,y] in G is mm{dG{x),dG{y)} and its multiplicity is |[x,_y]G|. For /I £ F(G),
let G(^) := G - (K(G) - A ) be the subgraph induced by A and let C(x;G) be the
component of G containing x e G. Furthermore, we define Vn(G) := {x e G : ^ G M = «}>
K>n(G) : = { x £ G : rfG(x) > «}, |G|B := |KB(G)| and |G|>n := |K>n(G)|. For disjoint sets A
and B, and a positive integer fe, the graph Kk

AB is determined by V(Kk
AB) := AVJ B and

I [a, b]Kk I := /c for every a s A and ft € B. In the notation of this paragraph, in general,
we write x instead of {x}, and we omit a subscript for the graph considered if it is obvious
from the context which graph is meant.

The edge-connectivity number of a graph G is denoted by k(G). A cut of G is an
S s £(G) with \S\ = A(G), such that G - 5 is disconnected. If X(G) > 0 and S is a cut of
G, then G — S has exactly two components, the components of the cut. A graph G with
A(G) = n, but A(G — e) < n for every e e E(G) is called minimally n-edge-connected. It is
well known that an n-edge-connected graph G is minimally n-edge-connected if and only
if every edge e e E(G) is contained in a cut of G.

In spite of being interested in \G\n for simple graphs G, we admit some multiple edges.
Let J^n denote the class of all minimally n-edge-connected graphs with \G\ > 3 that
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contain a vertex z of degree n such that G — z is simple. By Lick's result [4], \G\n > 2 for
every G G 2Fn and every minimally n-edge-connected graph is in !?'„.

Lemma 1.1. If G e 3Fn. then \G\ > n + 2 or G is isomorphic to the complete graph Kn+\.

Proof. By the definition of ^n, there is a z G Vn{G) such that G — z is simple. Let us
assume \G\ < n + 1. Then [X,Z]Q j= 0 for every x G G — z, since G — z is simple. If there
were an x G V>n(G), this would imply the existence of a y e N(x) with [y,z]G = 0, since
d(x) > d{z) and G — z is simple. This contradiction shows that V>n(G) = 0. Consider
x € G - z and let m := |[x,z]G|; then 1 < m < n, since Vn(G) = V(G) and |G| > 3. For
each y G N(x) — {z} we have | |> ,Z]G| = 1, because |[>,z]G| > 2 would imply d(z) > n,
since G — z is simple. Since N(x) — {z} ^ 0, we see that m = 1; hence \G\ = n + 1 and G
is complete. D

For the rest of the paper we assume n > 3 to be odd. We now show that in certain cases
we can construct from G e J* n a new member of ^n with one more vertex, but with the
same number of vertices of degree n.

Procedure I. (PRI) Suppose G € #"„ and let z e Vn(G) be such that G — z is simple.
We assume that for all x S G, |[z,x]c| < 2 holds. Then we can find Z\, Zi ^ N(z) with
Zi U Z2 = N(z) and \Z\\ = (n + l)/2 = |Z2| + 1 such that x G Z\ n Z2 if and only if
|[Z,X]G| = 2. 77ien Gi mcry be obtained from G — z by adding vertices z\ ^ zi, an edge
between z,- and each x G Z,, for i = 1, 2, and (n + l)/2 edges between zi and z2 fsee
Figure 2).

It is easily seen that d G ^ n also and that | d | n = |G|n.

Procedure II. (PRII) Suppose G e ^n and let z G Vn(G) be such that G — z is simple. We
assume that there is an x G N(z) such that \[Z,X]G\ = (n + l)/2, but that \[z,x']c\ = 1 for
all x' e N(z) — {x}. Then G2 may be obtained from G by deleting (n— l)/2 of the edges
[Z,X]G and adding a vertex z' together with (n — l)/2 edges between z' and x and (n + l)/2
edges between z' and z (see Figure 2).

Again, G2 G $Fn and |G2|n = \G\n hold.
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Figure 3
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Starting from a simple graph G G SFn, we can first apply PRI to get G\ G J%,, and then
apply PRII to G\ to obtain G2 G !Fn with |C?2|n = \G\n. For w > 5 we cannot continue in
this way, as neither PRI nor PRII can be applied to G2. For n = 3, however, we can apply
PRI to G2, and so on. (For n = 3, if PRII is applicable to a graph, so is PRI, and they
give the same result.) In this way, we can construct graphs in ^ 3 of every order (> 4)
with exactly 4 vertices of degree 3 (in a similar way to Figure 1). For instance, starting
from K4 and applying PRI six times, we get the graph in Figure 3. This explains why the
case n = 3 is exceptional.

Since we are seeking an estimate of the form \G\n > f{\G\) for G G #"„, the above
considerations suggest that we have to reduce the vertex number for those G G 8Fn that
are producible by PRI or PRII.

Definition 1. For G G J%, we define S(G) G {0,1,2} as follows. If there is a z G G with
N(z) = {xux2} such that |[z,xi]G| = ( n - l ) / 2 a n d |[z,x2]G| =(« + l)/2, then S(G) := 2.
If no such z exists, but there is an edge of multiplicity exceeding n/2, then <5(G) := 1.
Otherwise <5(G) := 0.

For odd n > 3 we define
3n+3

" • 2n2-3n-3'
It is easily seen that the sequence (en) is strictly decreasing; the first few values are
displayed in Table 1.

We now give constructions for G e J*n having a small number of vertices of degree
n. Let us start from the complete bipartite graph H := Knfl+\ G %Fn. Obviously \H\n =
((n - 1 - en)/(2n + 1))|//| +2 + en. Applying PRI and PRII successively to H, we get an
H' G J% with d(H') = 2 and \H'\n = ((n - 1 - en)/(2n + \)){\H'\-5{H'))+2+en. Consider
a Go G &n with 5(G0) = 2 and \G0\n = ((« - l-en)/{2n + 1))(|GO| - S(GQ)) + 2 + en.
By means of Go, we now construct a graph G G 8Fn with \G\ = ((n — l)/2)|Go| + 1 and
\G\n = ((/i — 1 - en)/(2n + 1))|G| + 2 + en.

Let Gi, ..., Gk be k := (n — l)/2 disjoint copies of Go- Since <5(G,) = 2, there is a vertex
z; G G,- with N(z,-) = {xi,yt} such that |[z,-,x,-]G,| = (n + l)/2 and |[z,-,>>,]G/| = ( n - l)/2
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Figure 4

hold for each i = 1, . . . , k. Choose a further vertex z0 and define a graph G as follows (see
Figure 4 for the case n = 1):

k

V(G) := | J V(Gt) U {z0}

and

U£(G) := j j £(G,- - 2/) U £

U { [ x 2 l - - i , x 2 ( ] : « = l , . . . ,

where, for k odd, e := [zo.Xfc], and for k even, e is a further edge (not contained in
£(Kz

2
ojZi Z4j)) between z0 and zi. (Note that, for n = 3, this construction provides the

same graph as application of PRI.)
It is easily checked that G £ 2Fn and that

\G\n =

n - 1 - en

2n+l
\G\+2 + en,
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Figure 5

since en was determined from the equation

^ - ( 1 + * „ ) = «
n - 1 — e „

2 n + l ' (1)

For k even, we cannot apply PRI to G, since |[ZO,ZI]G| = 3, but for k odd, we can
apply PRI, PRII and the above construction successively, and so on. For k odd, we get
in this way graphs G e J% of arbitrarily large order with 8(G) = 0 for n > 3 and
with \G\n = ((n — 1 — en)/(2n + 1))|G| + 2 + en. Hence for n = 3 (mod 4), the inequality
\G\n > ((n - 1 - en)/(2/i + 1))(|G| -<5(G)) + 2 + en for G € ^ n would be best possible. The
aim of this paper is to prove this inequality for all odd n > 3.

Theorem 1.1. For odd n>3 and G e #„ ,

|GU>"2n
1

+1
f"(|G|-^(G))+2- (2)

s. For euery n = 3 (mod 4), there are G e #"„ of arbitrarily large order for which
equality holds in (2).

The graphs constructed to give equality in (2) have edges of multiplicity two. But how
sharp is the above estimate for simple G 6 #"„? For n = 3 (mod 4), let us consider a
G €S?n with \G\n = ((n - 1 - en)/(2n + 1))|G| + 2+en provided by the above construction.
Thus z0 is a vertex of degree n in G with |[zo, z,] c | = 2 for i = 1, ..., k and |[zo,xt]c| = 1-
Take a disjoint copy G' of G, where the vertices z'o, z\,..., z'k, x'k correspond to ZQ, Z\, ...,
Zk, Xk, respectively. The simple graph G is now denned as follows (see Figure 5 for the
case k = 3): V(G) := V(G) U K(G') and

E(G) := E(G - z0) U E(G' - z0) U E U {[z0, xk], [z0, xĵ ], [z0, z0]}.
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It is easy to see that G e f n and that \G\n = 2(|G|n - 1) = ((n - 1 - en)/(2n + 1))|G| +
2 + 2en. So we have shown that in the case n = 3 (mod 4) of the following theorem, the
lower bound is attained by infinitely many simple graphs.

Theorem 1.2. For n > 3 odd and simple G € J% with \G\ > In + 2 + \3/n\,

\G\n>"~1~6"\G\ + 2 + 2en. (3)
An •+• i

For every n = 3 (mod 4), there are simple graphs G € 2Pn of arbitrarily large order for
which equality holds in (3).

For n = 3, the above inequality |G|3 > 6 for simple G € !FT, with \G\ > 9 was proved
on p. 403 of [6].

For the proof of Theorems 1.1 and 1.2, a result of Cai Mao-Cheng from [3] is essential,
but before stating it, we need some further definitions.

Let A c V(G) be non-empty and take a £ G — A. We define the contraction G/A by the
following equations: V(G/A) := (V(G) - A) I) {a}, E{G/A - {a}) := E(G - A), and for
every x € G — A, [O,X]G/A '•= [A,X]G. We say that G/A arises from G by contracting A to
a. For a non-empty subgraph H £ G, we set G/H := G/V(H).

If a component C of a cut in a minimally n-edge-connected G is contracted, then G/C
is also minimally n-edge-connected, as is well known (see, for example, Lemma 2 of [7]).
We now state the previously mentioned result of Cai Mao-Cheng (see Theorem 3 and
Corollary 2 of [3])

Lemma 1.2. ([3]) Let G be a minimally n-edge-connected graph. Then there is a tree T and
a surjection f: V(G) —> V{T) with the following properties:

(a) for every [x,y] G E(T), C(x,y) := \f-l(V(C{x; T-[x,y])))J-l(V(C{y; T-[x,y])))]c
is a cut in G;

(b) for every e S E(G) of order exceeding n, there is an edge [x,y] of T with e G C(x,y);
(c) for every [x,y] S E(T), C(x,y) contains an edge of order exceeding n which is not

contained in any C(x',y') with [x',y'] € E(T — [x,y]).

Property (b) implies immediately that for every x € T, V>n(G) n / - 1 ( x ) is independent
in G. On the other hand, (c) implies that V>n(G) D f~l(x) ± 0 for every x e T if |T | > 1.
For then we can choose an edge [x,y] e E(T), and by (c) there is an edge [u, v] e C(x,y)
of order exceeding n not contained in any other cut C(x', y'). Let us consider the path P
joining /(«) and f(v) in T and an edge [x',yf] € E(P). Then it follows that [u,v] e C(x ' , / ) ,
and hence by the choice of [u,v], E(P) = {[x,y]} = { [ / M f(v)]} and f~l(x) n {u,v} + 0.
So we get the following corollary.

Corollary 1.2. ([3])

(1) For every xeT, V>n(G) C\f~\x) is independent in G.
(2) If\T\ > 1, then V>n(G) n / " ' (x) + § for every xeT.
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2. Proofs of Theorems 1.1 and 1.2

We now proceed to the proof of our theorems. First we will show that Theorems 1.1
and 1.2 are true if G e #"„ has no edge of order exceeding n. For this we need the
following (probably known) lemma.

Lemma 2.1. Let G be a graph of minimum degree m > 1 with no edge of order exceeding
m. Then

and

hold.

Proof. Obviously, (m + l)(|G|-|G|m) ={m+l)\G\>m < dG(V>m{G)) < m\G\m holds, which
implies the first inequality and 2m\G\m >m|G| + |G|>m, implying the second. •

Lemma 2.2. Assume G e J*"n has no edge of order exceeding n. Then

holds and if \G\ >2n + 2+ |_3/nJ, we even have

\G\n>
n~l~e"\G\-+2 + 2en. (5)

In + 1

Proof. Let us first prove (4). Since ((n+ l)/(2n + 1))|G| is not less than the right-
hand side of (4) for \G\ > 2n + 1, by Lemma 2.1, we can assume \G\ < 2n. Then
((n — 1 — en)/(2n + 1))|G| + 2 + en < n+l holds, so we may assume \G\n < n. By the
definition of $?„, there is a z e Vn(G) such that G — z is simple. Since \G\n < n, we
get \G\ > n + 2, and hence |G|>n > 2 from Lemma 1.1. Choose any x G V>n(G). Then
N(x) £ Vn(G), since there is no edge of order exceeding n, and hence |[X,Z]G| > 2,
since \G\n < n. But |[x,z]G| > 2 for all x e V>n{G) implies |G|>n < ( n - l ) / 2 , hence
n > 5 and \G\ = \G\n + \G\>n < n + (n- l)/2 < 2n - 3. If |G|>B = (n - l)/2, then
there is an x e V>n{G) with |[x,z]G| < 2, which implies \G\n > \N(x)\ > n. But then
\G\n = n > ((n — 1 — en)/(2n + 1))|G| + 2 + en, because we have \G\ <2n — 3 and because
4(n — 1 — en)/(2n + 1) > 1 for n > 5. So we can assume |G|>n < (n — 3)/2, which implies
n > 7 and |G|n > n + 2 - (n - 3)/2 = (n - 3)/2 + 5 > |G|>n + 5. Hence we get \G\n >
\G\/2 + 5/2 > ((n - 1 - en)/(2n + 1))|G| + 2 + <?„, because we have en < 1/2 for n > 1.

Let us now turn to (5). Consider G € J5",, with |G| > 2M + 2; then we may write \G\ =
2n+\+k with/c> 1. By Lemma 2.1, |G|n > ((n + l)/(2n+ 1))|G| > n +1 + k/2 and hence
|G|n > n + 2 + [fe/2J. So it suffices to show that 1 + [k/2\ > ((n - 1 - en)/(2n + l))/c + en.
This is obviously true for n > 7, since then en < 1/2, for n = 5 and k even, since e$ < 1,
and for n = 3 and fe > 2. So it only remains (for the reader) to check that it is true for
n = 5 and k = 1. •
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Remark. One could conjecture that \G\n > n + 1 for G e J5",,, but this is not true, as
shown by the following example. Consider a positive integer k with k2 < n and choose
Kk £ Kn+i. Define G by adding a vertex z to Kn+i — E(Ku) and at least k edges from z
to each vertex of Kk to give z degree n. Then G e ^ n , but |G|n = n + 2 — k.

We now prove Theorem 1.1 by induction on \G\.

Proof of Theorem 1.1. Consider G e f „ and z € G such that G — z is simple. We
suppose that (2) has been proved for all G e &n with \G'\ < \G\. By Lemma 2.2, we
can assume that there is an edge in G of order exceeding n. We choose a tree T and a
surjection / : V(G) -* V(T) as described in Lemma 1.2. Since there is an edge in G of
order exceeding n, we have |T | > 2. Let t0 := /(z) and let Co := /"'(to)- Since z e Co, and
since Co n F>n(G) ^ 0, by Corollary 1.2 (2), we have \C0\ > 2, and, by Corollary 1.2 (1),
Co n K>M(G) is independent in G. Set Nr(fo) = {h,---,td}, where d = dr(to) > 1, and
Q :== f-l{V(C(tr, T - [to,ti]))) for i = 1, . . . , d. Since [CitG- Q]G = C(to,t() is a cut for
i = 1, ...,d, and since C, n F>n(G) ^ 0, by Corollary 1.2 (2), we have |C,| > 2 for each
i = l,...,d.

For i = l d, the graph G, may arise from G by contracting G — C, to z,. Since
ICb| > 2, we have |G,| < |G| for i = 1, . . . , d. Since \Q\ > 2 and [Q,G- Q]c is a cut, we
have d e >̂ "n for i = 1, . . . , d, because z € Co, so Gj — Zj is simple. The graph Go may arise
from G by contracting C, to c, e C, for i = 1, . . . , d. Then Go is also minimally n-edge-
connected, because each G{C{) (i = 1, . . . , d) is a component of a cut of G, but in general
Go i 3Fn. Let <5, := <$(G,-) for i = 1, . . . , d, and let (5 := 5(G). Without loss of generality,
we may assume that the sequence (<5,) is decreasing. Let m := \Vn(G) D Col = |Go|n — d,
and let k := \V>n(G) n Co| = |C0| - m. We have seen that m > 1 and k > 1.

By the induction hypothesis, we have

\Gi\n >
 n~^+*"(\Gi\ - h) + 2 + e"

for (' = 1 , . . . , d. Adding these inequalities, we get

d 1

We will have finished when we have shown that the last expression is at least

((« - 1 - en)/{2n + 1))(|G| - 5) + 2 + en.

But this is equivalent to the inequality

> n ~^~ *" (|Co| + d - s ) + 2 - ( d - l)en (6)

where s denotes 2d + 5 — Y?>=\ <5;. By definition 1, 0 < s < 2d + 5.
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On the other side, we can apply Lemma 2.1 to Go and get |Go|n > (l/2)|Go| + 1/2. If
even |Go|« > (l/2)|Go| + 2, then (6) is met. So we assume

•v - 2'
say,

m + d= x(|C0| +d) +r with r € {-, 1, - } . (7)

Inserting |Co| = m + fc, we get

\Go\n=m + d = k + 2r. (8)

If s > 4 - 2r, then by (7), m + d = (1/2)(|CO| + <2 + 2 r - 4 ) + 2 > (1/2)(|CO| + d - s) + 2,
which implies (6). Hence we may assume

s < 3 - 2r. (9)

In particular, s < 2, and since (<>,) is decreasing we get

81=82 = ••• = Sd-2 = 2, and

for d > 2, ^_! + <5d > 1 + 2r + 8, (10)

for d = 1, <5, > 2r - 1 + (5.

Using (7), (6) turns out to be equivalent to the inequality

Let us suppose that s = 3 — 2r. Then, by eliminating r, (11) can be transformed into

From the equation (1) for en, we can easily deduce

2(2n + 1) 3

This equation (12) shows that the last inequality will hold if we have |Co| + d — s > n/3
and d > n/6 + 1/2. So we can assume:

If s = 3 - 2r, then |C0| + d - s < J or d < % + \. (13)
3 6 2

Now suppose that d - 1 > ((n/3) - 1)(2 - r). Using (7), we have that |C0| + d =
2m + 2d-2 r > 2 m - 2 + (2n/3)(2-r) > (2n/3)(2-r) and then (12) shows that (11) holds.
So we may assume

d<^(2-r) + r-l. (14)

This means that d < (n + 3)/6 for r = 3/2, d < n/3 for r = 1 and d < (n — 3)/2 for
r = 1/2.
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For en, we have the lower bound

3n + 3 _ 3 3
6n> 2ni-2n-4~ 2(n-2)> 2n-V ( '

This and (12) imply
3 + 2en (An - 2 2 x ) + x , n > l

2(2^+1)
for all x > 0. So (11) is true if |C0| + d > ((4n - 2)/3)(2 - r) - 2x and d > x + 1 hold for
any x > 0. This means that (11) is met if |C0| + d > ((An - 2)/3)(2 - r) - 2(d - 1) holds.
So we assume

An — 2
|C0| + d< —^— (2-r)-2(d-l). (16)

Then we have |G0| < (2n - l)/3 for r = 3/2, |G0| < (4n - 2)/3 for r = 1 and |G0| <
2(« - d) for r = 1/2.

We now distinguish the cases r = 3/2, 1, 1/2.

Case r = 3/2. Then by (8), m + d = k + 3; hence |C0| + d = 2k + 3 and, using (16), this
implies

3fe + 6 < « . (17)

From (9) we get s = 0, hence 6d_{ =8d = 2 and .5 = 0. But 3t = 2 implies that |NGj(z,)| = 2
and hence | [x, Q]G\ < 2 for every x € G - (Q U {z}). Therefore for x € F>n(G0) =̂= 0 we
get

n + \<dG{x)<2d + m-\ + \[x,z]G\, (18)

since V>n(Go) is i n d e p e n d e n t . Bu t | [ x , z ] c | < (n— l ) / 2 , s ince 5 = 0 , w h i c h t oge the r
wi th (14) gives

This and (18) imply k + 2 > {n + 3)/3, which contradicts (17).

Case r = 1. Then m + d = k + 2by (8), hence |C0| + d = 2k + 2, and (16) implies

, 2n — 1 , . . .
k < — d. (19)

From (9) and (10) we get s < 1, (5d_i = 2 and bd > 1 + S. From (14) we see that n > 5.
We will now deduce bounds for /co := dco(V>n(Go)). Since V>n(G0) is independent, we

have

K0 > k{n + 1). (20)

As in the case r = 3/2, we have | [x, C,]G0 | < 2 for i = 1, ..., d — 1 and x e Co — {z}. Since
5d > 1 there is a y e Q with \\y,G-Cd]G\ > (« + l)/2, and hence |[Q - {y},C0]G| <
(H — l)/2. Since any edges in G of multiplicity greater than one must be incident to z and
since d(z) = n, we get

K0<k-2(d-l) + k + k(m-l)+r^- + n. (21)
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If 5d = 2 also, we even get

Ko<k-2d + k{m-l) + n. (22)

The inequality (20), together with either (21) or (22), respectively, implies, by using
m = k + 2 — d,

k(n + l-d-k)<^^- (23)

and

k{n-d-k)< n, if 5d = 2. (24)

If there is an edge [z, x] e E(Go) with x ^ V>n(Go), we have strict inequality in (21)
and (22), and hence also in (23) and (24).

We will first show that we cannot have k > 3. For if the inequality 3(n + 1 — d — 3) <
(3n - l ) /2 holds, we have 3d > (3n - l l ) /2 so d > (3n - 9)/6 and hence by (14) we have
(n — 3)/2 < d < (n — l ) /3 . This implies that n < 1 and that if n = 7 then d = 2. This
means that for n > 9 (and d < n/3), (23) is neither true for k = 3 nor for /c = n — 2 — d > 4,
and hence is not true for any k G {3,...,n — 2 — d} by the concavity of the function
/ (x ) = x(n + 1 — d — x). Considering (19), we have shown that for n > 9, only k = 1 and
k = 2 are possible. On the other hand, (19) implies that n > 7 if k :> 3 and even that
n > 9 if k > 4. So it only remains to consider the case k = 3 and n = 7, from which we
had deduced above that d = 2, contradicting (19). So only /c = 1 and /c = 2 are possible.

First let us assume that k = 2. Then we have |Go| = |C0| +d = 2k + 2 = 6 and m+d = 4.
From (23) we get

d > ^ , (25)

which implies n < 15, since d < 3. On the other hand, (19) implies n > 1. It is easily
checked that (6) is true for n = 1 (and \G0\ = 6, k = 2) if s > 1 or d > 2. But if n = 7, we
cannot have s = 0 and d = 1. For if s = 0, it follows that <5<j = 2 and, by applying (24),
we get d > n/2 — 2 and hence d > 2 for n = 7. So we may assume n > 9, and then d > 2
by (25). If Sd = 2, we get

l - 2 < d < l (26)
from (24) and (14); hence n = 9, since d < 3. But n = 9 is inconsistent with (26). So we
must have Sd = 1, and hence s = 1 and 5 = 0. Then (13) is applicable and gives us

d<l + \' (27)
since the first inequality in (13) cannot hold, as n < 15. But (27) implies d < 2, hence
d = 2, and from (25) and (27) we get n = 11. Since <5 = 0, we have |[x,z]G| < (n - l)/2
for every x e G, and hence ATGo(z) ^ ^>n(Go). Then the inequality (23) must be strict, so
2(n - 1 — d) < (3« — 3)/2. But d = 2, so this supplies the contradiction n < 9.

The remaining case is k = 1, say F>n(G0) = {x}. Then |C0| + d = 2fc + 2 = 4 and
|Go|n = m + d = 3 hold. Since n is odd, |Go|n = 3 implies d(x) > n + 2. Suppose
there is a y 6 Vn(G) Pi (Co — {z}). Then d = 1, and since <5i > 1, we have the estimate
(M + 1) + (« - 1) < dG({x,y}) < 2 + (n- l)/2 + n, which implies that n < 3. So we
may assume that m = 1 (hence d = 2). Since <5i = 2 and (52 > 1, we can find y\,
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/ , eC i a n d y 2 e C 2 such that | [y i ,G-Ci] G | = (n + l)/2, | [y ' l s G-Ci] c | = ( n - l ) / 2 and
\[}>2,G — C2]G\ >{n + l)/2. So we have the estimate

u C2) - {x.wHcl + | [W,(Co U C,) - |

n - 1
< — 2 - + n ,

which implies n < 9. Then (13) shows that s = 1 is impossible. So we have s = 0, and
hence <52 = 2 and 5 = 0. But then n + 2 < d(x) < 4 + |[x,z]c| < 4 + ( n - l)/2 implies
n < 3. This contradiction completes the proof for the case r = 1.

Case r = 1/2. Then we have m + d = fc + l b y (8), hence |C0 | + ̂  = 2fc + 1, and from (16)

we get

k<n-d-l. (28)

Furthermore, s < 2 by (9), and if d > 2, 5d-\ +5d>2 + 8 by (10). Inequality (14) implies
n > 5 .

In a similar way to the case r = 1, we deduce bounds for KQ := dGo(V>n(Go))- We again
have

K0 > *(n + 1)- (29)

We first give upper bounds for KX := \[V>n(G0),G — Co]G\, which may be obtained by
similar arguments to those used in the case r = 1:

If Sd-i = 2 or d = 1, then KX < k • 2(d - 1) + n; (30)

If 5d > 1 and d > 2, then Ki < k • 2(d - 1) + 2 ^ — ; (31)

If (5d-i = 2 or d = 1) and (5d > 1, then KX < k(2d - 1) + ^ — . (32)

Since either d = 1 or c5<f_i + ̂  > 2,

Ko<fc-2(d- l ) + n + fc(m-l) + n (33)

follows from (30) and (31).
We can apply (32) to get:

If s < 1, then K0 < k(2d - 1) + ^-^- + k(m - 1) + n. (34)

Considering m = k + 1 — d, the inequality (29), together with (33) or (34) respectively,
implies

k(n + 3-d-k)<2n (35)

andk(n + 2-d-k)< ^-^-, if s< 1 holds. (36)

If there is a vertex x € V>n(Go) with d(x) > n + 2, we have strict inequality in (29), and
hence also in (35) and (36).
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For k = 4 and k = n — d — 1 we get, using (14), k(n + 3 — d — k) = 4(« — d — 1) >
4(n — 1 — (n — 3)/2) > 2n. So we see that (35) (with d < {n — 3)/2) cannot be true for any
k between 4 and n — d — 1, and hence we get k < 3 by (28).

First let us assume that k = 3. Then we have m + d = 4 and hence rf < 3. From (35)
and (14) we get n/3 <d <{n — 3)/2. But these inequalities imply that n = 9 and rf = 3,
but then (13) shows that s < 1 and application of (36) with k = d = 3 supplies the
contradiction n < 8. So k = 3 is impossible.

Now suppose that k = 2, and say K>n(Go) = {xi,X2}. Then we have m + d = 3 and
|Co| + d = 5. |Go|n = 3 implies that d(x,) > n + 2 for i = 1 or i = 2. Then the inequality
in (35) is strict and implies d > 2, and hence d = 2. Since c5i > 1, there is a y G Ci with
11>, G - Ci]G | > (n + l)/2. By (10), 3i = 2 or 52 > 1. Now if <5i = 2, there is a / e Cx

with | [ / ,G — C\]G\ = (n — l)/2, and we get, as usual,

(n + 2 - 2) + (n + 1 - 2) + ((n + l)/2 - 2)

^ |[{xi,x2},G-{y,/}]c| + |Lv,G-(C1U{x1,x2})]G| <2n.

If S2 > 1, there is a / € C2 with |[y1, G — C2]G\ > ^ and we get, as usual,

< \[{xi,x2},G - {y,y'}]G\ + \\y,G - (CiL) {xux2,y'})]G\ < " + 2 ^ — .

Both inequalities imply that n < 5, which contradicts the relation 2 = d < (n — 3)/2
obtained from (14).

Finally we have the case k = 1 with F>n(Go) = {x}, say. Then we also have m = d=\.
If we had |[z,x]G| < (n—l)/2 then we would have |[z,ci]Go| > (n + l)/2, and hence
I [ci,x]Go I < (n ~ l)/2, so d(x) < n — 1. This contradiction shows that | [z, x]G\ > (n + l)/2,
hence <5 > 1 and, by (10), c5i > 1. Then there is a y e Q with |[y,C0]G| > (n + l)/2. This
implies that | Ly,z]G| > (n — l)/2, and hence 5 = 2. But then we have c5t = 2 by (10), and
there is a / G Cx with | [ / ,C0]G | = (n - l)/2. Since « = d{z) < \[z,y]G\ + |[z,x]G|, we
conclude that \y', CQ]G = [y',x]G, and hence (n — l)/2 = |[y',x]G| < 1. This contradiction
n < 3 completes the proof of Theorem 1.1. •

Let us now turn to Theorem 1.2, whose proof is settled by Lemma 2.2 and the following
lemma.

Lemma 2.3. Let G G J^n be a simple graph with an edge of order exceeding n. Then

\ G \ n > \ G \ + 2 + 2en.In + 1

Proof. There is an edge [zi,Z2] in G of order at least n + l. Since G is minimally n-edge-
connected, there is a cut S of G containing [zi,z2]. Define C, := C(zt;G — S) for i = 1, 2.
The graph G, may arise from G by contracting C, to z, for i = 1, 2. Then G, G #"„ and
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Theorem 1.1 provides

\GiU > " 2n+i" ('G'l " 5 ( G l ) ) +2 + €"

for i = 1, 2. Addition of these inequalities supplies

\G\n = IGiU - 1 + \G2\n - 1 > n^n
l~i

e"(\G\ + 2 - 8(Gi) ~ »(G2)) + 2 + 2en.

So it only remains to show that 5(G\) + <5(<J2) < 2 for n > 5. Suppose, for instance,
that 8{G2) = 2. Then there are vertices x, y & C\ with |[X,Z2]G2| = (n + l) /2 and
|LV,Z2]G2| = (» - l)/2. Since G is simple, this implies that \NG(x)n V{C2)\ = (« + l) /2 and
|JVGWn7(C2)| = (w - l)/2. Then, for every c e C2> |[zi,c]Gl | < 2 holds, that is, 5 ( d ) = 0
for n > 5. D

3. Concluding remarks

The lower bound for \G\ in Theorem 1.2 is best possible, as shown by K35 for n = 3 and
/£„,„+1 for n > 5.

It remains an open question whether Theorems 1.1 and 1.2 are also best possible for
n = 1 (mod 4), but I doubt it, especially given my experience with the even case.

If one proceeds in a similar way for n even as for n odd, one comes to the conjecture
that for even n the slope of a best linear bound for \G\n is (n — 1/2 — en)/{2n + 1) with
en = (3n — 2)/(2n2 + 2n + 4). That is indeed true for n = 2, as shown in [9], but it is false
for n > 4. For n > 4, a best factor must have a value lying strictly between (n — l)/(2n + 1)
and (« — 1/2 —en)/(2n + 1). For n = 4, I have got the exact value 8/23 instead of the
value 8/22 above. At the moment, I have no conjecture for the exact value in the case n
even.
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