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Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in
particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is
prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise
restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and
experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in
the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve
the clock sensitivity of 10000 atoms by 2.05þ0:34

−0:37 dB. The SQL poses a significant limitation for today’s
microwave fountain clocks, which serve as the main time reference. We evaluate the major technical
limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed
vacuum.
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Precision measurements allow us to probe the bounda-
ries of our understanding of physics. Prominent recent
examples include the discovery of gravitational waves with
optical interferometers [1] and the improving bounds on the
drift of fundamental constants with atomic interferometers
[2,3]. The current generation of atomic and optical inter-
ferometers is, however, fundamentally limited by vacuum
noise, the so-called standard quantum limit (SQL).
Squeezing the vacuum entering one port of an optical
gravitational wave detector was proposed in the 1980s [4]
to surpass the SQL when measuring the length difference
between two optical paths. Can squeezed vacuum be useful
to improve the measurement of time? Up to now, the
concept of vacuum squeezing has not been transferred to
atomic clocks or atom interferometry in general.
In this Letter, we design and implement an atom

interferometer in clock configuration which exploits the
atomic squeezed vacuum. The clock is operated by com-
bining N ¼ 104 atoms in one input state with a quadrature-
squeezed vacuum with an average of 0.75 atoms in the
second input state. The squeezed vacuum is generated by
spin-changing collisions in a Bose-Einstein condensate of
neutral 87Rb atoms—in direct analogy to optical parametric
down-conversion [5–7]. In contrast to existing methods
[8–17] to increase the sensitivity of atomic clocks beyond
the SQL in large ensembles, our concept disentangles the
challenge of increasing the number of atoms (in the main
input state) from the creation of squeezing (in the vacuum
state). In particular, the vacuum state remains weakly
populated during its preparation, making it immune to
losses. These central advantages are also exploited in

squeezed-vacuum optical interferometers for the detection
of gravitational waves, as demonstrated in GEO600 [18]
and LIGO [19], where coherent states of > 10 W are
combined with a low-power squeezed vacuum state to
achieve sub-SQL measurement uncertainty.
Our atomic clock consists of a four-mode linear Ramsey

interferometer when described in terms of the Zeeman
states j�1i¼ jF¼1;mF¼�1i, j0i ¼ jF ¼ 1; mF ¼ 0i,
and jei ¼ jF ¼ 2; mF ¼ 0i (see Fig. 1). It can be reduced
to a standard two-level Ramsey sequence in terms of the
magnetically insensitive clock states jgi¼ðjþ1iþj−1iÞ=
ffiffiffi

2
p

and jei (see Fig. 1 and Ref. [20]). The atoms are
prepared in a balanced superposition of j0i and j � 1i by a
radio-frequency (rf) π=2 pulse, which couples the states j0i
and jgi [pulse I in Fig. 1(a)]. A subsequent microwave
(mw) π pulse transfers the atoms from j0i to jei (II). In this
superposition state, the atoms sense the evolution of time
by acquiring a phase shift θ ¼ 2πτδ, which depends on
the detuning δ of the employed microwave oscillator and
the phase evolution time τ ¼ τR þ τmw, where τR is the
Ramsey interrogation time and τmw is the microwave pulse
duration. A second mw π pulse transfers atoms back in j0i
(III). Finally, a second rf pulse (IV) closes the interferom-
eter. The phase is estimated from the fraction f ¼ Ng=
N≈ Ng=ðNg þ N0Þ ≈ ðNþ1 þ N−1Þ=N of atoms in the
output state jgi, which can be obtained directly from an
absorption image of all three Zeeman components. These
Zeeman components are spatially separated by a magnetic
gradient during free fall. Subsequently, absorption imaging
is performed on the closed transition F ¼ 2 → F0 ¼ 3 on
the Rb D2 line with a resonant laser beam derived from an
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external-cavity diode laser. Atoms in F ¼ 1 are pumped to
the cycling transition by an independent repumping laser
beam on the transition F ¼ 1 → F0 ¼ 2. The detection
noise of 16 atoms (7 dB below the projection noise level) is
dominated by the photoelectron shot noise on the
CCD camera and does not limit the experimental results.
Figure 2(a) presents the Ramsey fringes for the classical
case, when the hyperfine level jgi is initially empty. The
average fraction f̄ is shown as a function of the microwave
detuning δ for two Ramsey times τR and is well reproduced
by a single-atom model [20]. The slightly reduced contrast
for larger τR stems mainly from the influence of a small
radio-frequency detuning as well as magnetic field noise. In
addition, the model accounts for the fixed pulse length τmw
for all detunings, leading to a small amount of atoms
remaining in the F ¼ 2 manifold (< 2.5% for τR ¼ 250
and < 8% for τR ¼ 1000 μs for up to 2 kHz detuning). In
the limit of weak magnetic field gradients, these atoms
experience the same spatial separation as the atoms in
F ¼ 1 and thus cannot be discriminated by our absorption
imaging. In the following, the pulse length is adjusted such
that no atoms remain in the F ¼ 2 manifold. For small τR
the data are in good agreement with the noiseless pre-
diction f̄ ¼ sin2πδτ.
The clock performance is evaluated for a vanishing time

τR ¼ 0 between the two detuned microwave pulses (II and
III) to minimize technical noise. For a microwave pulse
length of 2τmw ¼ 90.4 μs and a detuning of δ ¼ −5.5 kHz

we reach the midfringe position θ ¼ 2πτmwδ ¼ π=2, where
the slope ∂f̄=∂θ has its maximum value 1=2. Here, τmw is
chosen such that all atoms return to the state j0i. On
midfringe position, the full interferometer sequence can be
described as a single, symmetric beam splitter between j0i
and jgi. Because of the large number of atoms in the state
j0i, which act as a local oscillator with a defined phase φ in
the quantum optics sense, the interferometer sequence
presents a standard homodyne measurement of the quad-
ratures in state jgi. Therefore, the fluctuations of the
interferometer output reflect the quadrature fluctuations:
ðΔfÞ2 ¼ ðΔXÞ2=ð2NÞ [20]. Here, X ¼ 1=

ffiffiffi

2
p ðe−iφgþ

eiφg†Þ and P ¼ 1=i
ffiffiffi

2
p ðe−iφg − eiφg†Þ are quadrature oper-

ators of the symmetric state jgi, defined in terms of the
creation and annihilation operators g† and g, respectively,
and φ is the local oscillator phase. With an initially empty
state jgi, the quadrature fluctuation is ðΔXÞ2 ¼ 1=2. This
limits the ideal phase estimation uncertainty to ðΔθÞ2 ¼
ðΔfÞ2=ð∂f̄=∂θÞ2 ¼ 1=N. In our experiments, we record a
value of ðΔfÞ2 ¼ 1.48=N, which is 1.69 dB above the
vacuum limit due to technical noise mainly caused by
magnetic field fluctuations [20].
The sensitivity of our interferometer can surpass the SQL

when quadrature fluctuations are squeezed below the
vacuum limit, ðΔXÞ2 < 1=2. We create a squeezed vacuum
state by initiating spin dynamics in the Bose-Einstein
condensate prior to the interferometer sequence. Spin
dynamics can be precisely controlled by switching the
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FIG. 1. The three-mode interferometer. (a) Hyperfine ground states of 87Rb. (I) A Bose-Einstein condensate in the state j0i ¼
jF ¼ 1; mF ¼ 0i is coupled to the states j1;�1i by a resonant radio-frequency pulse. The second-order Zeeman shift is compensated by
a detuned microwave dressing to the state j2;−2i. (II) A microwave pulse with detuning δ couples the states j0i ¼ j1; 0i and
jei ¼ j2; 0i. The radio-frequency and microwave pulses form an effective π=2 pulse between j1;�1i and jei. (III) After a Ramsey
evolution time τR, a second detuned microwave pulse is applied. (IV) A final radio-frequency pulse coupling j0i and j1;�1i closes the
interferometer. (b) The interferometer corresponds to two three-mode beam splitters and a phase shift in between. The total number of
atoms N enters the central state j0i. A measurement of all three components N−1;0;1 after the interferometer allows for an estimation of
the phase shift θ. (c) The interferometer can be simplified by introducing the symmetric state jgi and the antisymmetric state jhi. The
three-mode beam splitters only couple to the symmetric state, thus yielding an effective two-mode interferometer with an unchanged
antisymmetric state.
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microwave dressing of the state j − 1i to the resonance
condition [7,29]. In direct analogy to optical parametric
down-conversion, spin dynamics creates pairs of atoms
according to the two-mode squeezing Hamiltonian H ¼
ℏΩða†þ1a

†
−1 þ aþ1a−1Þ [5,20,30], where a†�1 and a�1 are

the creation and annihilation operators for atoms in j � 1i,
and Ω ¼ 2π × 3.9 s−1 is the spin dynamics rate. Using the
operators g ¼ ðaþ1 þ a−1Þ=

ffiffiffi

2
p

and h ¼ ðaþ1 − a−1Þ=
ffiffiffi

2
p

,
this Hamiltonian simplifies to H ¼ Hg −Hh, with Hg ¼
ℏΩ=2ðg†g† þ ggÞ and the analogous definition forHh. Spin
dynamics e−iHt=ℏ ¼ e−irðg†g†þggÞ=2 ⊗ eirðh†h†þhhÞ=2, equiva-
lent to a two-axis countertwisting dynamics [31,32] (see
Ref. [20]), can thus be written in terms of the product of
usual single-mode quadrature-squeezing operators [33],
where r ¼ Ωt. We notice that Hg and Hh rewrite as
two-axis countertwisting Hamiltonians [31,32] for oppor-
tune spin operators; see Ref. [20]. We apply spin dynamics
for 32 ms, which creates a mean number sinh2 r ¼ 0.75 of

atoms in each of the two states. This number is extremely
small compared to the total of N ≈ 104 atoms, such that the
influence of the antisymmetric state to the interferometer
signal is negligible and we can approximate f ¼
ðNþ1 þ N−1Þ=N ¼ ðNg þ NhÞ=N ≈ Ng=N. Even though
the symmetric state jgi is only weakly populated, it has
a strong influence on the interferometric sensitivity. The
squeezing allows for reduced quadrature fluctuations of
ðΔXÞ2 ¼ ð1=2Þe−2r < ð1=2Þ for r > 0 at an optimal local
oscillator phase φ ¼ π=4. Experimentally, the phase φ is
adjusted by applying a controlled energy shift with the
microwave dressing field for a variable duration t prior to
the interferometer sequence.
Figure 2(b) shows the variance of the population

imbalance ðΔfÞ2 as a function of the adjusted phase
relation. At an optimum value of t ¼ 300 μs, a minimal
variance of −2.12þ0:70

−0:83 dB below projection noise is
reached. The variances are obtained from a total number
of 100 repetitions of the experiment per phase adjustment
time t. All error bars indicate 1 standard deviation of the
statistical uncertainty and are obtained by an unbiased
estimation (see Supplements of Ref. [7]). Figure 3(a) shows
the fraction f̄ as a function of the detuning in the vicinity of
the midfringe position, as obtained from 390 experimental
realizations for each microwave detuning δ. The slope is
proportional to the contrast of the interferometer and
depends on the coherence properties of the input state.
A fit (blue solid line) yields a value of 0.48 rad−1, which is
close to the optimal value of 0.5 rad−1. The variances of the
population imbalance and the fitted slope yield the phase
estimation uncertainty ðΔθÞ2 ¼ ðΔfÞ2=ð∂f̄=∂θÞ2 dis-
played in Fig. 3(b). At a detuning of −5.9 kHz, ðΔθÞ2
reaches a minimum value −1.56þ0.41

−0.45 dB below the SQL.
The two-sample variance, which rejects long term technical
drifts and is therefore better suited to estimate the funda-
mental noise, reaches −2.05þ0.34

−0.37 dB below the SQL.
The interferometric measurements also allow for a

reconstruction of the squeezed vacuum state in mode
jgi. The Wigner function in X-P space after the optimal
phase adjustment time of 300 μs is obtained from an
inverse Radon transformation [see Fig. 4(a) and
Ref. [20]]. Its profile is very close to the expected
Gaussian distribution, and is characterized by the squeezed
and antisqueezed widths along the X and P directions,
respectively. While this single-mode picture successfully
describes the physics of our experiments, it can equiv-
alently be described by spin squeezing of the usual
two-mode pseudospin operators, as visualized on the
multiparticle Bloch sphere in Fig. 4(b). It is worth noting,
that these collective pseudospin operators are identical to
the SU(2) subspaces exhibiting spin-nematic squeezing
reported in Ref. [35]. Furthermore, the created squeezed
vacuum state can also be employed for phase sensing
in a nonlinear interferometer scheme of the SU(1,1)
type [36,37].
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FIG. 2. Output of the interferometer. (a) The microwave
detuning δ is varied for different Ramsey times τR ¼ 250 (open
circles) and τR ¼ 1000 μs (open diamonds). The phase shift, set
by the microwave detuning (x axis) and the evolution time
τ ¼ τR þ τmw, results in the Ramsey fringes in the transferred
fraction. The solid lines (dark and light) represent the results of
our model. (b) The phase adjustment time t before the interfer-
ometer sequence is varied and the corresponding variance of the
transferred fraction is recorded with respect to projection noise
(open circles). The data are well reproduced by a sinusoidal fit
(light blue line) and reaches clearly below projection noise (solid
black line). Result of the classical interferometer (shaded dashed
area). The error bars and shaded areas represent the statistical
uncertainty of 100 repetitions.
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In summary, our experiments present the first proof-of-
principle implementation of squeezed vacuum in an atomic
microwave clock. Microwave fountain clocks, providing
the realization of the SI second, are currently limited by the
SQL [38–41]. In combination with the recently developed
sources of Bose-Einstein condensed atoms with small
densities [42,43] and high repetition rates [44], our results
pave the way for the development of a new generation of
atomic microwave clocks operating beyond the SQL [20].
Our method is particularly robust during state preparation.
In contrast to existing proposals, it avoids the generation of
entangled states with a symmetric population of the two
hyperfine levels, which is plagued by two-body losses in
the excited hyperfine state. The limitations of our method
for sub-SQL interferometry have not been reached yet:

besides overcoming technical restrictions, it has been
shown [45] that an optimized version of the present
interferometric scheme can reach the ultimate
Heisenberg limit of phase sensitivity Δθ ¼ 1=N.
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FIG. 4. Reconstructed Wigner function and Bloch sphere
representation. (a) The data presented in Fig. 2(b) are used to
reconstruct the two-dimensional Wigner function in the X-P
space. Here, the Wigner function of the state after the optimal
phase adjustment time of t ¼ 300 μs is shown. (b) The interfer-
ometer is illustrated on the multiparticle Bloch sphere for the
states jgi and jei, in terms of the pseudospin operators
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g†gÞ. The employed squeezed vacuum corresponds to an elliptical
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the phase adjustment time t. An optimal orientation angle, as
shown, allows for a measurement of the transferred fraction
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