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ABSTRACT

The discovery and development of methods to cool, trap and manipulate atomic ensembles
have generated a revolution in atomic physics, culminating in the ever expanding research
field of ultra-cold matter through the realization of Bose-Einstein condensates (BECs).
Since the first realization of BEC more than two decades ago, the majority of studies were
concerned with systems displaying short-range contact interaction. Following pioneering
experiments in ultra-cold KRb, systems involving ultra-cold mixtures have rose to consid-
erable interest through their capability to form diatomic polar molecules. The long-range
character of dipolar particle interactions enables the study of a whole new spectrum of
quantum many-body phenomena by giving access to the strongly correlated regime.

In this context, NaK is a splendid candidate to investigate dipolar effects due to its
large electric dipole moment of 2.72 Debye, its chemical stability and the large history of
spectroscopic studies devoted to its ground and excited state manifolds. This thesis reports
on the first ever realization of a dual-species degenerate mixture of 2*Na and 37K. The
experimental apparatus combines two pre-cooled atomic sources into a UHV collection
region, where a two-color magneto-optical trap is operated. After transferring both species
into an optically plugged quadrupole trap, the 2*Na ensemble is cooled by selectively
removing the hottest atoms from the trap through microwave transitions, while 37K is
sympathetically cooled through its thermal contact to 23Na. Following the transfer into an
optical dipole trap, the mixture operation suffers from strong losses as the atomic clouds
approach the high-density regime. Interspecies interactions are identified as the system
parameter that drives the loss mechanism.

In order to realize a quantum degenerate mixture, the dual-species collisional properties
are investigated both theoretically and experimentally. By preparing both optically trapped
ensembles in the spin state |f = 1, m¢ = —1), atom loss spectroscopy is performed in
a magnetic field range from 0 to 1000 G. The observed features include several s-wave
poles and a zero crossing of the interspecies scattering length as well as inelastic two-
body contributions in the M = myj, + mg = —2 submanifold. Different magnetic field
regions are identified for the purposes of sympathetic cooling of 3?K and achieving a
quantum degenerate mixture. Forced evaporation creates two Bose-Einstein condensates
simultaneously at a magnetic field that provides sizable intra- and interspecies scattering
rates needed for fast thermalization. The impact of the differential gravitational sag on the
miscibility criterion for the mixture is discussed.

The experimental setup and measurements are complemented by theoretical calcula-
tions that form a feasibility study of molecular NaK. Starting from ultra-cold Feshbach
molecules, the study demonstrates possible pathways for the creation of ultra-cold polar
NaK molecules in their absolute electronic and rovibrational ground state. In particular, a
multi-channel analysis of the electronic ground and K(4p)+Na(3s) excited state manifold of
NaK is presented. It analyzes the spin character of both the Feshbach molecular state and
the electronically excited intermediate states and discusses possible coherent two-photon
transfer paths from Feshbach molecules to rovibronic ground state molecules.

The experimental results serve as a promising starting point for the magnetoassociation
into quantum degenerate 23Na3?K Feshbach molecules. The theoretical analysis assures
qualitative understanding as well as quantitative statements for the feasibility of the
subsequent ground state conversion. In combination, they fill a critical gap towards the
creation of chemically stable ultra-cold molecular Bose-Einstein condensates of NaK.

Keywords: Dipolar systems, Bose-Einstein condensation, Quantum degenerate
mixtures, Feshbach resonances, Two-photon transitions



ZUSAMMENFASSUNG

Die Entdeckung und Entwicklung von Methoden zum Kiihlen, Fangen und der Manipula-
tion atomarer Ensembles leitete eine Revolution auf dem Gebiet der Atomphysik ein, die in
der Realisierung von Bose-Einstein-Kondensaten (BEKSs) in dem sich stindig erweiternden
Forschungsfeld der ultrakalten Materie gipfelt. Seit der erstmaligen BEK-Realisierung vor
mehr als zwei Jahrzehnten beschéftigt sich ein Grofiteil der experimentell durchgefiihrten
Studien mit kurzreichweitig wechselwirkenden Systemen. Im Zuge zukunftsweisender
Experimente an und mit ultrakaltem KRb ist die Erzeugung ultrakalter Mischungen
von grofiem Interesse, da diese Systeme die Erzeugung diatomarer polarer Molekiile er-
moglichen. Durch den langreichweitigen Charakter der dipolaren Wechselwirkung lasst
sich ein vollkommen neuartiges Spektrum von Quantenvielteilchenphdnomenen unter-
suchen, durch die man sich den experimentellen Zugang zum Regime starker Korrelationen
verspricht.

In diesem Zusammenhang ist NaK ein hervorragender Kandidat fiir die Untersuchung
dipolarer Effekte. Es weist ein grofies elektrisches Dipolmoment von 2.72 Debye auf, ist
chemisch stabil, und seine Molekiilzustande sind durch eine Vielzahl von spektroskopis-
chen Studien gut bekannt. In der vorliegenden Arbeit wurde erstmals eine quantenen-
tartete Mischung aus 23Na und 37K erzeugt. In der experimentellen Apparatur wer-
den in einem Ultrahochvakuum zwei vorgekiihlte Atomquellen in einer dichroitischen
magneto-optischen Falle gesammelt. Nach dem Transfer beider Spezies in eine optisch
verschlossene Quadrupolfalle wird das 23Na-Ensemble durch die selektive Entfernung
seiner heilesten Atome mittels Mikrowellenstrahlung gekiihlt, wahrend 3°K durch seinen
thermischen Kontakt zu 23Na sympathetisch gekiihlt wird. Nach der Uberfiihrung in eine
optische Dipolfalle erfdahrt die Mischung starke Verluste im Regime hoher Dichten. Die
Interspezieswechselwirkung wird als der Systemparameter identifiziert, der den Verlust-
mechanismus mafigeblich treibt.

Um eine quantenentartete Mischung realisieren zu konnen, werden die bindren Kol-
lisionseigenschaften des Systems sowohl theoretisch als auch experimentell untersucht.
Nach Préparation beider optisch gefangener Ensembles im Spin-Zustand |f =1, m¢ = —1)
wird Feshbachspektroskopie in einem Magnetfeldbereich von 0 bis 1000 G durchgefiihrt.
Zu den beobachteten Strukturen gehotren mehrere Pole und ein Nulldurchgang der
Interspezies-Streuldnge sowie inelastische Zweikorperverluste in der Untermannigfaltigkeit
M = mp, + mg = —2. Verschiedene Magnetfeldbereiche werden im Bezug auf ihre Eig-
nung zur sympathischen Kiihlung von 3K und zur Erzielung einer quantenentarteten
Mischung diskutiert. Optisches Verdampfungskiihlen erzeugt zeitgleich zwei Bose-Einstein-
Kondensate bei einem Magnetfeld, in dem sowohl Intra- als auch Interspeziesstreuraten
glinstig sind und fiir eine schnelle Thermalisierung sorgen. Der Einfluss des differentiellen
Gravitationsversatzes auf das mean-field Mischbarkeitskriterium wird diskutiert.

Die experimentelle Apparatur und die dazugehorigen Messungen werden durch theo-
retische Berechnungen erginzt, die eine Machbarkeitsstudie des molekularen NaK darstellen.
Ausgehend von ultrakalten Feshbach-Molekiilen zeigt die Studie mogliche Wege zur Erzeu-
gung ultrakalter polarer NaK-Molekiile in ihrem absoluten elektronischen und rovibronis-
chen Grundzustand auf. HierfA%r wird eine Vielkanalanalyse des elektronischen Grundzu-
standes und der angeregten K(4p)+Na(3s) Mannigfaltigkeit von NaK vorgestellt. Der
Spincharakter sowohl des Feshbach-Molekiilzustands als auch der elektronisch angeregten
Zwischenzustinde werden analysiert sowie mogliche kohdrente Zwei-Photonen-Transfers
zu rovibronischen Grundzustandsmolekiilen diskutiert.

Die experimentellen Ergebnisse dienen als vielversprechender Ausgangspunkt fiir die
Magnetoassoziation in quantenentartete 23Na3?K Feshbachmolekiile. Die theoretische
Analyse sichert sowohl ein qualitatives Verstandnis als auch quantitative Aussagen zur

vi



Machbarkeit des Grundzustandstransfers. Kombiniert man theoretische und experimentelle
Ergebnisse, so fiillen diese eine kritische Liicke zur Bildung von chemisch stabilen, ultra-
kalten NaK-Molekiilen.

Schlagworter: dipolare Systeme, Bose-Einstein Kondensation, quantenentartete
Mischungen, Feshbach-Resonanzen, Zweiphotoneniibergange
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INTRODUCTION

The first experimental realization of Bose-Einstein condensates (BECs) in 1995
[5, 6, 7] paved the way for the research field of ultracold quantum gases, that has
been ever expanding since then. This unique quantum state of matter draws its
appeal through an excellent theoretical understanding of the particle properties on a
microscopic level, paired with a superb experimental degree of control over these
properties. The contact-free modification of both their internal and external degrees
of freedom by optical and magnetic fields, together with the absence of impurities or
thermal excitations render Bose-Einstein condensates nowadays one of the cleanest
environments amongst all physical systems. This makes them ideally suited to be
operated as a quantum emulation platform for problems that are difficult to tackle
in their original context, such as high-temperature superconductivity [8]. The study
of ultracold gases therefore contributes not only to research in fundamental atomic
and molecular physics, it also enriches the understanding of various scientific fields
such as condensed matter physics [9], physical chemistry [10] and metrology [11].

A multitude of the unique and unusual phenomena that can be studied within
a BEC can be attributed to its particle interaction, whose nature and strength is
given by the sign and magnitude of the underlying scattering length. Through the
use of external magnetic fields, these interactions can be freely adjusted, allowing
to set them to arbitrary attractive, repulsive or even vanishing values. Together
with the also widely shapeable interaction of atoms with light, a variety of exotic
quantum phases have been realized in ultracold systems such as the transition from
a molecular BEC to a BCS superfluid [12, 13] or the superfluid-to-Mott-insulator
transition in an optical lattice [14]. However, the amount of engineerable many-
body systems is ultimately limited by the fundamental short-range character of
the particle interaction, as the underlying Van-der-Waals dispersion scales with
7%, where 1 is the interatomic distance of the colliding particles. This strongly
obstructs the achievable quantum phases. As an example, the spin-spin interaction
of short-range systems in optical lattices is governed through second-order effects
such as superexchange interaction, which are inherently small.

These limitations motivated the quest to study long-range interacting quantum
gases, in which neither of these restrictions exist, and where many-body physics
on a whole new level can be expected [15]. In an optical lattice environment with
long-range interactions, a particularly exciting novel many-body quantum phase
can emerge in which the system possesses superfluid properties but the superfluid
order parameter displays a periodic modulation. Such a system exhibits long-range
off-diagonal order like a superfluid, but also long-range diagonal order like a solid
crystal - a supersolid is formed [16]. As such a many-body state defies intuition
(atoms forming a crystal are localized, whereas delocalized frictionless movement
is a key element of superfluidity), initial theoretical studies were cautious to only
speculate about the existence of such seemingly paradoxical and elusive state of
matter [17]. Nowadays, a theoretical understanding has been established (defects
in the solid mediate the superfluid properties), but experimental realization has
remained sparse. After stirring the solid-state community for almost a decade,
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initial claims of supersolid signatures in Helium-4 [18, 19] have been subsequently
disproved [20], with the debate laid to rest by the authors of the initial discovery
themselves [21]. The question of how to realize and thoroughly study supersolid
systems remained - ultracold dipolar gases could be the answer.

1.1 DIPOLAR DREAMS
To the candid reader, studious of the magnetic philosophy:

[...] For after we had, in order to discover the true substance of the earth, seen and examined
very many matters taken out of lofty mountains, or the depths of seas, or deepest caverns,
or hidden mines, we gave much attention for a long time to the study of magnetic forces
- wondrous forces they, surpassing the powers of all other bodies around us, though the
virtues of all things dug out of the earth where to be brought together. Nor did we find this
our labor vain or fruitless, for every day, in our experiments, novel, unheard-of properties
came to light: and our Philosophy became so widened, as a result of diligent research, that
we have attempted to set forth, according to magnetic principles, the inner constitution
of the globe [...] and we have dug them up and demonstrated them with much pains and
sleepless nights and great money expense. Enjoy them you, and, if ye can, employ them for
better purposes.

- William Gilbert, De magnete (1600), translated from latin [22].

A variety of strategies, all equipped with individual benefits and limitations,
are conceivable to introduce long-range interactions in ultracold systems [23, 24,
25], and first signatures of supersolid properties have been shown very recently
in atomic ensembles where the long-range nature of the particle interaction is
mediated by cavities or synthetic gauge fields [26, 27]. A particularly promising
approach is given by using dipolar quantum gases interacting through dipole-dipole
interaction (DDI). For a system of aligned dipoles, the DDI of two particles takes
the form

Cgq 1—3cos?(d
Vaalr) = S8 1236070 (1)

where ¥ is the angle between relative particle position and polarization direction and
Caq is a constant that governs the interaction strength. In addition to their oc 773
long-range character, the anisotropy of their interaction allows for the synthesis of
geometrically non-trivial arrangement of structures and a tunability of sign and
strength similar to the short-range interacting case. The supersolid phase itself
has been predicted to prevail also in dilute systems, where three-body interaction
has been identified as a stabilization mechanism [28]. Therefore, a supersolid can
be realized in a dipolar quantum gas - if the dipole-dipole interaction is strong
enough, and if the quantum degenerate regime can be reached.

The search for a suitable dipolar quantum gas produced a wide variety of
different candidates. To put these different systems into perspective, the dipolar
length scale

Cdd m
~ 12nn2 (1:2)
is defined. This DDI length has to be compared to the typical length scale of the
system, e.g. the short-range interaction strength (typically ~ 100ap with the Bohr

add



1.2 MOLECULAR NIGHTMARES

radius ao) or the optical lattice spacing (typically 532nm = 10%a) to assess its
impact on the physical system.

Magnetic dipole interaction is found in atoms through the non-closed shell
electrons, and therefore the magnetic dipole moment will be on the order of the
Bohr magneton ug. These systems have the great advantage that a handful of them
has already been Bose-Einstein condensed [29, 30, 31], thus dipolar phenomena
can already be investigated on the quantum degenerate level. Seminal experiments
with 92Cr (uc, = 6 ug) demonstrated dipolar effects such as magnetostriction and
d-wave collapse [32, 33], yet the comparatively weak dipolar interaction (agqqcr =
16 ap) could only probe the weakly-interacting regime, as the otherwise dominant
short-range interaction (ac; = 96 ap [34]) had to be artificially reduced.

In addition to the quadratically scaling magnetic moment, the enumerator in
eq. (1.2) also incorporates the mass of the dipole. Current investigations therefore
use heavy lanthanide atoms such as '®3Er and '®*Dy. These possess additional
polarizable electrons through their open f-orbital, giving magnetic dipole moments
of ug = 7up and ppy = 10 up, rendering dysprosium (together with terbium)
the most magnetic atom in the periodic table. Together with their mass, this
results in dipolar lengths comparable to the short-range interaction (agq g = 67 ao,
adqd,py = 133 ap). In these systems, textbook examples of dipolar systems such as
the roton quasiparticle spectrum were observed [35], and the dipolar interaction
was further used to evaporatively cool a Fermi gas to quantum degeneracy, which
is not possible using solely short-range interactions [36]. The generation of quantum
droplets proved to be particularly interesting [37]. This novel quantum state emanates
through careful balance of mean-field and beyond-mean field effects, and its beyond-
mean field nature makes it an attractive quantum many-body state to study. It
was shown that droplets can align in a self-organized "striped" state, indicating
supersolid-like periodic density modulations. However, matter-wave interference
experiments probing their long-range off-diagonal order [38] showed that no
coherent phase links exist between these droplets - up to now, dipolar supersolids
remain uncharted in these systems.

1.2 MOLECULAR NIGHTMARES

A diatomic molecule is one atom too many!
- Arthur Schawlow [39]

The range of accessible dipolar interaction can be hugely enhanced by using
heteronuclear molecular systems. Their large electric dipole moment is given by the
spatial charge separation, which is on the order of the cgs-unit Debye. Compared
with magnetic interaction, the ratio of the corresponding coupling constants

Cdd, lec. Debyezaf]
oo — 5~ 12100 (1.3)
dd,mag HE Ho

is clearly in favor of the molecular systems. This is shown in fig. 1 by comparing
the dipolar length in ay for magnetic dipoles together with a variety of diatomic
molecules. Even the homonuclear molecule Er;, that features twice the magnetic
moment and mass, is inferior to the weakest diatomic alkali combinations LiNa and
KRb. As the electric dipole moment has to be induced through an externally applied
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electric field with a given polarization direction, the dipolar strength and sign in a
2D dipolar system can be freely adjusted, giving a tunability comparable to that
found in short-range systems through Feshbach resonances. Dipolar molecules
are therefore the ideal candidate for studying strongly-interacting, long-range
systems. Yet the system also has to be sufficiently dense, as otherwise the typical

interaction parameter ,/ naﬁ 4 in a gas, where n is the density, would be too low
for a significant contribution on reasonable time scales. It is therefore desirable
to use systems in which Bose-Einstein condensates with sufficiently large particle
numbers can be realized. This is where diatomic molecules face challenges. In
contrast to the hyperfine structure of simple atomic systems, their internal states
also include vibration and rotation. This makes established methods to reach the
ultracold regime, such as laser cooling and evaporative cooling, extremely difficult,
and their realization requires sophisticated models and resourceful implementation.
Significant progress has been made in recent years, most notably in diatomic
systems with one valence electron such as CaF or SrF, in which highly diagonal
Franck-Condon factors suppress excessive vibrational branching. After the first
successful realization of molecular laser cooling [42] and magneto-optical trapping
[43], recent demonstrations include sub-Doppler cooling [44] and optical trapping
[45]. Furthermore, the sources are constantly improved, and techniques such as
molecular Zeeman slowing were shown in atomic testbeds with molecular analogue
level structure [46]. Nevertheless, state-of-the-art phase space densities of direct
cooled sources are on the order of 10712 [44] - the quantum degenerate realm is
still far, far away.

This experiment therefore uses a "best of both worlds" approach, by selecting two
atomic species for which the pathway to quantum degeneracy has been already
demonstrated, and using established cooling methods to achieve Bose-Einstein
condensation for both species.” Subsequently, the atomic samples can be converted
into weakly bound molecules using magnetoassociation by Feshbach resonances
[47], and the Feshbach molecule can be transformed into a ground state molecule

1 The list of all species that have been Bose-Einstein condensed so far: all stable alkali metals; calcium
and strontium; chromium; ytterbium, erbium, dysprosium; hydrogen; metastable helium.

g
bi-alkali ® LiCs
Krb )
molecules Lil\ia . NaKRbCS
o BaF
laser-coolable OH B GF
molecules D Er, . CaF
Er o % BeF
magnetic Rb Cr *
atoms o *
10° 10' 10° 10° 10 10°

DDI Length [a,]

Figure 1: DDI length for magnetic atoms (gray stars), bi-alkali molecules (blue dots) and
laser-coolable molecules (orange squares). The electric dipoles are assumed to be
fully polarized through an external electric field [40, 41].
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by a two-photon STIRAP process [48]. Due to the fully coherent nature of both
processes, the phase space density of the initial atomic ensembles is being preserved,
resulting in a dense ultracold molecular sample close to quantum degeneracy. This
indirect approach is a detour in comparison with direct cooling methods and
requires the design and characterization of a quite complex apparatus. Yet since
each of the required steps has already been tested many times in atomic systems, a
successful experimental realization up to the stage of ground state molecules can
be guaranteed, and only technical challenges have to be overcome.

As soon as one enters the world of ultracold molecules, complexing mechanisms
can be encountered, and not all of them are fully understood yet. This is shown
schematically in fig. 2. While the collision of two condensed neutral atoms is well
studied theoretically and experimentally, the collision process of two diatomic
molecules can already lead to many different phenomena, since, strictly speaking,
this is already a four-body process that takes place on a highly nontrivial poten-
tial energy surface. In addition to the usual s-wave scattering, which constitutes
the short-range interaction, ultracold chemical reactions can occur in which the
heteronuclear dimers are converted into homonuclear ones.? Such a process was
observed, for example, in the pioneering KRb experiment at JILA [50]. In this
species combination, the corresponding chemical reaction is exothermic, which
leads to high losses and severely limits the achievable densities.

This is only one loss category, and more are perceivable through the large
ro-vibrational density of states that is present in a molecular collision. From a
theoretical point of view, these processes are very difficult to model, since many
effects play a role here whose interplay is not exactly known. Thus, a recent
approach is to describe the underlying dynamics that drive scattering by statistical
arguments in order to extract the scattering observables. An essential result of such
an analysis is the prediction of extremely long lifetimes of the tetramer produced in
a diatomic collision [51, 52], a process that was nicknamed "sticky" collisions and
which is sketched as a third result path in fig. 2. However, the entire model is based
on the assumption that molecular collisions are ergodic, so that the trajectories

The fact that chemical reactions can happen at all in an ultracold environment is quite remarkable
due to the lack of activation energy. As it is induced by quantum-mechanical threshold effects [49],
the corresponding research field has been coined quantum chemistry.

\ / s-wave collisions
— Q6€
/ \ chemical reactions
Q) interaction zone @

,sticky” collisions

Figure 2: Schematic of the molecular scattering process, with three thinkable outcomes.
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of the classical analogue system follow chaotic motion. In the end, it can only be
shown experimentally whether and to which extent this assumption holds. For this
purpose, two molecules could be loaded into an optical lattice, and their number
monitored using high-resolution imaging methods. If tetramers would associate
and subsequently dissociate on the predicted millisecond scale, this would lead
to a decay and revival of the corresponding diatomic signal. However, this opens
up further questions, regarding the dynamic polarizability of such a tetramer in
an optical trapping environment et cetera. Most of these questions can only be
answered experimentally. The incredibly complex field of ultracold molecules is
therefore of interest not only for dipolar systems, but also for addressing and
resolving fundamental problems of cold collision physics, and can make significant
contributions to both nodes.

Initial experiments were concentrating on KRb combinations, which is a conve-
nient choice for tandem operation due to the similar D2 transition lines of both
atomic species. In this system, first signatures of optical lattice many-body dy-
namics could be traced by probing dipolar spin-exchange interactions [53, 54]. As
outlined above, the dipole moment of KRb is rather small compared to other avail-
able diatomic combinations, and its chemical reactivity constrains the achievable

densities. Both together restrict again the gas parameter |/na3,, and therefore
other species combinations were pursued. However, all of the fundamental meth-
ods, including the association [55], coherent state transfer [56] and hyperfine state
control of the ground state molecules [57] were demonstrated in the KRb system
at JILA. KRb therefore plays the same role for electric dipolar systems that 52Cr
plays for magnetic ones - as a pathbreaking first-generation experiment, in which
the basic methodology was introduced, fundamental first questions were answered
and typical obstacles unveiled.

Nowadays, a wide variety of combinations is currently under investigation.
All above considerations of diatomic molecular properties can be summarized
as follows: It is strongly advisable to use a system for which both constituents
can be cooled to quantum degeneracy (either individually or using sympathetic
cooling), where chemical reactions are endothermic and where both the atomic as
well as the molecular system has been investigated as good as possible. Under these
conditions, both species have to be alkali-metal atoms, for which cold chemical
reactivity calculations are available [58]. These calculations show that chemical
stability can only be obtained for five species combinations: NaK, NaRb, NaCs, KCs
and RbCs. To screen also further chemical effects, recent proposals showed that a
dipolar shielding mechanism can be installed in all five combinations, in which
the DDI can be used to adjust the ratio of elastic to inelastic collisions [59]. All
five combinations are actively pursued in experiments today [60, 61, 62, 63, 64, 65],
which allows cross-species comparison of dipolar phenomena.

1.3 THE TASK OF THIS THESIS

In this experiment, a combination of 2*Na and 37K was chosen. NaK is a promising
candidate with a large dipole moment of 2.72 Debye, that has been extensively
studied by molecular spectroscopy for almost a century [66]. A large number of
experimental data and spectroscopic constants are available in the literature, leading
to the potential energy curves of the involved electronic states [67, 68, 69, 70, 71], and
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are supplemented by sophisticated theoretical studies of molecular properties like
radiative lifetimes, dipole moments or static polarizabilities [72, 73]. Furthermore,
the natural potassium isotopes 374041K provide the unique possibility to switch
between the study of fermionic and bosonic systems. In recent, seminal experiments
at the MIT, dual quantum degenerate samples using 23Na and the fermionic 4°K
have been created, associated into molecules and prepared in their absolute ground
states [74, 75]. Both bosonic combinations, 23Na3’K and 23Na*'K, have been left
unexplored in the ultracold regime up to now.

The Hannover NaK experiment has been explicitly designed for the study of NaK
ground state molecules and is equipped with state-of-the-art technology that will
make this possible. Upon the realization of ground state molecules, an electrode
configuration using an Indium tin oxide structure coated directly onto the chamber
windows will enable versatile electric manipulation of the dipoles [3]. In the optical
lattice environment, a custom microscope objective allows single-site resolution as
demonstrated on a testbed environment using gold nanoparticles [76].

Yet the path to ground state molecules was only known on a qualitative level,
with many questions on the way. At the time the experiment was planned, the
MIT results had not been published and it was not clear whether the methods
demonstrated at JILA, namely the magnetoassociation by Feshbach resonances
followed by a coherent two-photon transfer, would also be feasible for other species
combinations. While both 23Na and 3K had been individually Bose-Einstein
condensed, nothing was known regarding their mixture properties in the ultracold
regime. While single-species quantum degenerate experiments are nowadays an
established routine for alkali-metals, dual-species Bose-Einstein condensates are
still not as commonly found.

For this reason, the first objectives of the experiment were the production of a
quantum-degenerate 23Na + 37K mixture, the identification of suitable Feshbach
resonances, and the precise theoretical understanding of the underlying molecular
potentials to propose feasible two-photon pathways. All these objectives were
achieved by the time this work was completed. They are presented in this thesis as
follows:

* The central phenomena, namely Feshbach resonances in molecular spectra
and Bose-Einstein condensates in atomic systems, are presented in Chapter 2.
This provides a clear introduction to the underlying theories and concepts. It
further motivates the route that was traversed theoretically and experimentally
in order to realize and study these phenomena.

x The individual stages of the experimental setup are described in Chapter
3-6. It starts with a description of the laser systems and culminates in the
realization of single-species quantum degenerate matter. The fundamentals
have been layed out and the most relevant measurements are presented,
sometimes in a more rigorous or elaborate fashion. This provides future PhD
students, regardless whether they work at this apparatus or try to build or fix
their own one, with a reference text that tries to be concise yet complete.

% Chapter 7 is devoted to the measurements of the previously unknown Fesh-
bach spectrum of 23Na + 37K in order to achieve the first ever dual-species
Bose-Einstein condensate of this species combination. The here presented
results are the basis for publication [4].
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» Chapter 8 presents the framework of theoretical calculations, in which a
detailed analysis of possible two-photon pathways for preparing ultracold
NaK in its absolute ground state was performed. The presented results were
the basis for publication [1].

* The thesis closes with an outlook in Chapter 9. It is shown that the achieved
experimental progress offers a broad spectrum of further investigations in the
direction of quantum degenerate mixtures, Feshbach spectra and molecular
gases.
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All following chapters are equipped with the theoretical tools to understand the
concepts at work, and the corresponding equations are introduced or derived when
they are needed or applied. This chapter provides an additional background of the
main phenomena encountered and treated in this thesis, namely Feshbach resonances
and Bose-Einstein condensates. The description featured here follows is not meant
as a complete review’. It rather tries to string together the thoughts which lead to
the conceptual design, theoretical treatment and experimental realization of the
individual pieces that form this thesis.

The first section is devoted to the interaction between particles, and therefore
introduces fundamental aspects of scattering theory with a focus on resonant
scattering. This section further gives an introduction to the typical experimental
and theoretical techniques that are used to obtain and improve molecular potential
energy curves. The second section describes the quantum statistics of Bosons and
the implications in the ultra-cold limit, which leads to the emergence of Bose-
Einstein condensates (BECs). It further introduces 23*Na and 37K as the building
blocks of quantum degenerate matter in this thesis. A survey of their optical,
magnetic and scattering interaction properties motivates the role allocation that
23Na will be used as a coolant for the 3K cloud throughout most stages of the
experiment. The chapter finishes by presenting the route in phase space that has to
be traversed in order to realize BECs experimentally, which motivates and links the
subsequent chapters of this thesis.

2.1 A MAGNETIC CONTROL KNOB: FESHBACH RESONANCES

Interactions make life interesting [83], motivating the endeavour to achieve absolute
control over them. In an ultra-cold setting, this becomes possible by utilizing the
unique properties of scattering interaction of bound and continuum states. This
section sheds some light on the origin and meaning of the individual scattering
observables. Despite the simple appearance, the scattering aspects of a diatomic
collision will remain quite complex. A simple yet effective toy model first explains
the appearance of poles in the scattering length when the interaction potential is
varied. Adding multiple channels then naturally leads to the description of Feshbach
resonances as a tool to freely tune the scattering interaction and to enable molecular
binding. The section closes with a brief review of the available experimental and
theoretical methods to obtain high-quality molecular potential energy curves and
to predict the corresponding scattering properties.

To this end, a mix of textbook examples [77, 78, 79, 80] and extensive review articles [81, 82] is
recommended, whose combined reasoning is followed here.
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Radial Schroedinger equation

Consider scattering of an incident plane wave with wavevector k on a spherical tar-
get, e.g. the atomic interaction potential V(7). The time-independent Schroedinger
equation for the relative motion reads

52

<p + V(r)) W(r) = E¥(r) (2.1)
2u

with the reduced mass p. The scattering problem is typically approached by
inspecting the scattering solution at a distance far beyond the potential range. In this
case, the outgoing scattered wave can be described as a spherical wave, direction-
modulated by a scattering amplitude f(9, ¢) that carries all the information of the
process. Together with the incoming plane wave this gives:

. eikr

W(r, 9, 0) = et A9, )

T—00 T

(2.2)

All scattering problems discussed here are radially symmetric (V(r) = V(r)) and
their solutions can therefore be decomposed into partial waves characterized by
the spherical harmonics Yy, (9, ¢). Through the azimuthal symmetry of plane
wave and interaction potential, the angular dependence simplifies to the Legendre

polynomials Py (cos(d)), where the relation Y9 = 4/ %Pz (cos(®)) holds.
Upon expanding the scattering wave function into partial waves

wir) = Y Py fcos(o)), )
=0
the functions ¢ (r) satisfy the radial Schroedinger equation
—h? d% (1) h20(L+1) B
S T v+ B et = Bl (24

For larger angular momenta, the centrifugal barrier term o {2 keeps the particles
apart from each other, hence their scattering contribution will decrease with increas-
ing {. In the low-temperature limit (k — 0), the impact parameter needed to gain an
angular momentum of h is so large that the interaction potential is essentially zero
in the sampled region, and therefore no phase shift can be accumulated.> Hence
only { = 0, so called s-wave scattering, will give a noteworthy contribution to the
system.3. In what follows, all higher partial waves are dropped and P1—o(r) = P (1)
is used. The radial Schroedinger equation describing low-energy scattering then
simplifies to

—n? dy(r)
S @z TV =B =0 (2.5)

In a semi-classical description, the non-quantized angular momentum is related by (¢?) = (b - hk)?
to the impact parameter b. For a collision energy of a 1 uK, the de-Broglie wavelength of 2*Na is on
the order of T um. Hence, the required impact parameter is 160 nm = 70 1o, where 1¢ is the typical
Van-der-Waals length scale associated with the Na, potential.

When dipolar interaction is introduced into the system, this changes dramatically as all { states are
coupled through the dipolar anisotropy. As an example, consider the strongly magnetic system of
Erbium. Multi-channel analyses of the measured resonance density in this system indicate that the
Hilbert space has to be extended up to { = 50(!) to account for all relevant couplings and reproduce
the correct number of resonances [84]
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Figure 3: Scattering wave function as a function of internuclear distance for an interact-
ing (solid blue) and interaction-free (dashed gray) system. At low energies, the
de-Broglie wavelength is typically much larger than the range of the underly-
ing interaction potential (indicated by boxed region). At large distances, the
interaction manifests itself into a scattering phase shift ¢.

Low-energy scattering

As a starting point, consider equation (2.5) in absence of an interaction potential.
The well known solutions are P (1) = cos(kr) and P _ (r) = sin(kr), the subscript
denoting their parity, where the latter solution fulfills the boundary condition
P_(0) = 0. Next, one adds a short-range interaction potential, and examines the
scattering wave function Yy, (1) at internuclear distances on the order of the de-
Broglie wavelength Age Broglie = 27t/k . With V(1) = 0 at this distance, the scattering
solution will acquire the same functional form as the interactionless case. Therefore
the distortion of the wave function due to the interaction potential will effectively
only give rise to a phase shift ¢, as seen in fig. 3.
In the long-range limit, the scattering solution can be thus written as

Upot. (1) = sin(kr+ o(k)), (2.6)
where the phase shift describes the delay or advance of the spherical wave in
comparison to the non-interacting case. The phase shift will also depend on the
amount of kinetic energy in the collision, which is accounted for by expressing it
as a function ¢ (k) of the matter wave vector k. In the low-energy limit, the s-wave
scattering length is then defined by

. 1

lim ke cot (@(k)) = ——. (2.7)
Therefore the whole effect of the interaction potential can be described by one
parameter, namely the scattering length a that is obtained out of of the scattering
phase shift (in-text written in italics). This implies that for low-energy scattering,

the exact shape of the interaction potential is not important as long as it leads
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to the same phase shift. This justifies pseudo-potential approaches which will be
encountered later in the description of Bose-Einstein condensates.

Using the small-angle approximation in eq. (2.7) gives tan(¢(k)) =~ ¢(k) = —ka,
and inserting this into eq. (2.6) gives rise to the simple form

Ppot. = sin(kr —ka) ~ k(r—a) (2.8)

for the low-energy scattering wave function in the region where the interatomic
potential is zero. By drawing a tangent to this linear part, the intersection with
the x-axis gives the scattering length. At first glance, this might not appear as
a particularly useful task. By employing a toy model and adiabatically working
through some examples, it will turn out to be a helpful feature to understand
resonance characteristics later on.

2.1.1  Toy model

Since the exact shape of the potential is not necessarily needed, a minimalistic
model mimicking hard sphere scattering is employed. The description starts with
a box potential of infinite height (V) = c0) and an extent rp0. Both potential and
scattering wave function are graphically presented in fig. 4 (1). With eq. (2.8), the
scattering solution becomes very intuitive: It has to be zero inside the box, and
linear outside. Therefore the x-axis intersection is at the box radius that defines its
boundary conditions, so the scattering length is a = 10x. In this picture, low-energy
scattering can be seen as billard ball like collisions*, where each billard ball has a
radius given by the scattering length a.

In the next step, the potential height is reduced from infinite to some finite value
Vo > k that reflects the repulsive interaction strength. Due to its finite probability
amplitude in the box, the scattering wave function acquires a concave shape, being
linear outside of the box and exponentially decreasing inside. Most notably, its
x-axis intersection and hence the scattering length will be at a point 1 < T« ((2) in
tig. 4). Keeping in mind the less repulsive barrier, the magnitude of the scattering
length therefore reflects the strength of the scattering interaction. If the box extent is
kept at 1p0x and its potential height subsequently decreases, so will the intersection
with the x-axis and hence the scattering length because of the smaller exponential
decay constant in the classically forbidden box region. At vanishing potential, the
intersection point is the origin - this is just the small-angle approximation for the
sine wave, and the interactionless result 2 = 0 is recovered.

Tuning the interaction strength to attractive is done by setting Vy < 0, which
realizes a square well. First, Vj is chosen small enough that the well does not
accomodate any bound state solutions. Because of the attractive nature of the
square well interaction, the scattering wave function becomes convex through the
increased probability amplitude inside of the well. The scattering wave function
solution inside the well will be given by sin(kr), with a wavevector k% = (2uV,)/h?.
Plotting a tangent to it then leads to a negative intersection, ergo a < 0, which
is in line with the attractive interaction of the potential. By increasing the well
depth, the tangent becomes parallel to the x-axis. This way the negative value of
the scattering length can be increased up to a — —oo. At this critical potential

However, the low-energy quantum billard balls exhibit a larger scattering cross section, oy = 47a?.
For indistinguishable bosons, oy = 8ma? as a result of their symmetrization.
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Figure 4: Scattering wave function for a variety of toy model potentials. For repulsive box
(blue shaded) potentials, the scattering length is positive (1) and decrases with the
box height V, (2). For attractive interaction Vp < 0 in a square well (red shaded),
the scattering length is negative (3). # — —oo is associated with a virtual state
just above threshold (4). As this enters as a shallow bound state into the system,
the scattering length becomes resonant and turns to the positive side (5). The
scattering length then depends on the position of the last bound state, and every
new appearing bound state leads to resonant behaviour (6).

depth Vi, the wave function acquires a total phase of /2 inside the well, which
is equivalent to the statement that the well can accomodate a (shallow) bound state.
Increasing the well depth a bit further (Vo < V4it), the wave function will curve
faster inside the well and the intersection becomes positive! See fig. 4 (5). Thus,
most remarkably, despite the purely attractive nature of the potential, its depth
can give rise to exceedingly large repulsive interactions when inspected at long
distances. With the emergence of a bound state, 2 — oo. For such a shallow bound
state, the low-energy scattering wave function inside the well is mostly identical to
the bound state solution. This links the binding energy AE of the weakly bound
state to the scattering length such as

h2k? h?

E S
A 2u 2ua?

(2.9)
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Through this inverse relationship, every bound state can be seen as a catalyst
that resonantly amplifies the scattering length. This also satisfies our intuitive
picture of resonant scattering: Being resonant with the bound state, the scattering
solution can oscillate many times back and forth in the square well, when it will
accomodate much larger phase shifts>. This toy-model approach can readily be
carried over to more complex-shaped, short-range potentials (it however fails for
Coulomb interaction). Regardless of the exact potential form, the general idea is the
same: Further increase of the well depth gives a universal behaviour whenever an
additional bound state enters the system, leading to a pole in the scattering length.
As the newly bound state immerses deeper into the potential, the scattering length
value reduces (it therefore can be even zero, turning an interacting system into
an effectively non-interacting one at ultra-low energies). A large positive/negative
scattering length can therefore be associated with a bound/virtual state situated
just below /above threshold.

2.1.2  Two-channel Feshbach resonances

The interaction potentials sensed by the scattering atoms follow a Lennard-Jones
form, whose exact shape is determined by the equilibration of repulsive Pauli and
attractive dispersion forces. This in turn fixes the number and location of the bound
states. At first glance, it therefore appears as if the scattering length would be a
system constant for the considered diatomic collision through the position of its last
bound state. It will now emerge that this is not the case. The Hilbert space of the
diatomic collision usually comprises a lot of different state combinations. During
the collision, only the total magnetic quantum number is conserved because of the
cylindrical symmetry along the collision axis, and the overall effective potential is
usually not diagonal in the atomic pair basis. Therefore coupling matrix elements
between the state combinations exist, which enables transitions between these states,
even though these might be small. Now, each interaction potential can be globally
shifted through the state’s energy dependence on magnetic fields because of their
magnetic moment. When different states display different magnetic moments, they
can be shifted with respect to each other. Thereby it is certainly possible to shift a
bound state to resonance with a free entrance state using external magnetic fields,
such that already a weak coupling can have a drastic effect because of the vanishing
energy difference.

The toy model under consideration is now slightly upgraded. Instead of a
square well, two realistic Lennard-Jones like potentials energy curves (PECs) are
considered, which are both depicted in fig. 5. It is further assumed that there exists
a coupling with coupling strength () between them, as otherwise their treatment
would be completely separable. Taking the coupling into account, it is possible that
a probability density current entering through one particular state is fragmented
into multiple state outcomes during the collision. A channel is then defined as a set
of stable fragments that can enter or leave a collision. The system is assumed to
be prepared in a certain atomic state, defining the entrance channel of the system.
The red and the blue curve can then be assigned asymptotically to two different
hyperfine state combinations, e.g. [Wred) = (I1)Na + [1)kx) and WPpjue) = (12)Nna + 11)x)
with [f); denoting the total angular momentum quantum number of species i. In

5 The concept at work is hence similar to the way light resonates in a Fabry-Perot cavity on resonance.
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Figure 5: Two-channel model schematic of a Feshbach resonance. The molecular potential
curves correspond to the open (red) and the closed (blue) channel, respectively.
Tuning E jpsed (B) to zero with the help of magnetic fields gives rise to a Feshbach
resonance that resonantly amplifies the scattering length of the incident channel
(right inset). The Feshbach resonance features an avoided crossing of free atomic
and bound molecular state (left inset). An adiabatic sweep of the magnetic field
transforms one into the other.

this case, their coupling will be given by the hyperfine spin-orbit interaction. In
general, their different spin composition leads to different magnetic moments and
therefore to a differential Zeeman energy shift. As before, the considered diatomic
collision takes place in the ultra-cold limit (k — 0). Even though its kinetic energy
Eyin is practically zero, the scattering wave function (red curve) is not bound by the
molecular PEC, therefore the red PEC represents an energetically open channel. The
second, blue PEC is chosen such that its dissociation energy is larger than the sum
of Eyin and the entrance channel dissociation energy. So from the perspective of
the entrance channel, the blue PEC represents a closed channel of the system. It
further features a molecular bound state at an energy E josed(B) that is close to the
zero energy of the entrance channel, and that is magnetically tunable with respect
to the entrance channel. On the basis of the extensive discussion using square
wells, the concept of a Feshbach resonance can now be easily understood as follows:
By magnetically tuning Egjoseq(B) to zero (and, similarly, Ey;, — 0), the scattering
solution becomes resonant with the molecular bound state. Its finite coupling
Q then mediates Landau-Zener like transitions between free atomic and bound
molecular state, and the scattering length gets resonantly amplified in presence
of the bound state. Therefore Feshbach resonances can be seen as the natural
multi-channel extension of the single-channel zero-energy resonances discussed in
the previous toy model.

The insets of fig. 5 further sketches the two powerful features that render Feshbach
resonances a standard tool in cold atomic and molecular experiments:

15
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1. If there was no coupling between red and blue curve, the scattering length
would be purely determined by the potential depth and shape of the red
entrance channel. This is denoted as the background scattering length ay,s. In
the vicinity of a Feshbach resonance, it can be written as

a(B) = apg (1 — BéBBO> , (2.10)

emphasizing its magnetic tunability. Here, By marks the magnetic field lo-
cation at which the Feshbach resonance occurs. AB is the resonance width
that is proportional to the coupling strength Q. The shape of the scattering
length pole depends on the energetic direction from which the molecular
bound state enters. This is schematically shown in the right inset of fig. 5 for
a state entering "from above". Knowledge of the exact location of Feshbach
resonances gives thus nearly absolute control over the interaction strength
by magnetic fields, as sign and magnitude of the scattering length are freely
choosable.

2. As can be seen from the energy level diagram in the left inset of fig. 5, the
free diatomic scattering state and the molecular bound state show an avoided
crossing at the position of the Feshbach resonance, with an energy gap that is
given by the resonance width AB. Starting with free atoms, a slow sweep of
the magnetic field across the resonance is equivalent to an adiabatic passage
into the bound molecular state, enabling quantum control of the molecular
binding process. Therefore, Feshbach resonances can be seen as a portal into
the molecular realm.

2.1.3 Potential energy curves

This last part gives a description of the correct form of the interaction potentials and
outlines how they can be approached experimentally and theoretically. Accurate
knowledge about them is imperative, as they keep the secret of the resonance
locations. Their description here features the Born-Oppenheimer approximation,
which separates the electronic from the nuclear motion as the latter takes place on
comparably large time-scales, such that the electron cloud can adapt to each relative
movement of the nuclei. This allows to calculate and adiabatically connect the
electronic eigenenergies for each internuclear distance. The result is a characteristic
curve that follows a Lennard-Jones form as shown in fig. 6.

The description of diatomic potential energy curves can be dissected into three
parts (short-range, chemical and long-range region), which are smoothly connected.
The short-range part is strongly repulsive because of the Coulomb interaction of
the overlapping electron clouds, and can be modeled with the help of an inverse
power law giving a sufficiently steep slope. At internuclear distances larger than
the LeRoy radius

TLeRoy = 2 {\/@—1— \/@} , (2.11)

the atoms of the dimer can be considered detached and the long-range description
takes over. Here, (r;)? is the expectation value of the squared radius of the outer-
most electron on atom i. Beyond this region, the atoms charge distributions are
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Figure 6: Exemplary potential energy curve, details see text.

separated from each other, and their interaction can be described by Van-der-Waals
dispersion forces. The corresponding potential is then given by an inverse power
series

C
VLong—mnge (1) = EDiss. — Z T.: (2.12)

n

involving the individual dispersion coefficients C,, and the dissociation energy
Episs.. The leading term is given by the properties of the colliding particles, e.g.
r = 6 for neutral particle collisions such as those discussed here, r = 4 for atom-ion
interaction ef cetera. In the fully detached limit (r — o), all properties reduce to the
atomic ones. As an example, one recovers the hyperfine splitting of the atomic levels
(inset in fig. 6). At large internuclear distances, the convenient state representation
is therefore given by the individual atomic quantum numbers in an atomic basis
set (Hund’s case (e)).

In between the short- and long-range regimes, the chemical region is the part in
which covalent bonding gives rise to a steep potential minimum and accomodates a
number of bound ro-vibrational states. In this region, the correct state nomenclature
is given by the "molecular basis" (Hund’s case (a)) with 25+1 /\é symmetry. Here,
A and Q are the projections of the electron orbital and total angular momentum
along the internuclear axis.

Experimental methods

Experimental efforts to survey potential energy curves can be divided into two type
of experiments. In molecular spectroscopy, a hot molecular sample is prepared in an
atomic beam or a heatpipe, and optically excited using lasers with a large tuning
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range (e.g. dye lasers). As there is no selection rule for vibrational levels, the excited
molecule decay will branch into the plethora of ground state vibrational levels.
Using Fourier-transform spectroscopy (or equivalent methods), the fluorescence
spectrum of such a molecule can be recorded and the position of ro-vibrational
levels can be determined out of the corresponding transition energies. Given the
thermal Boltzmann distribution, this spectroscopic method usually starts at the
absolute ground state and allows for an extensive probing of the chemical region,
resulting in a map of spectroscopied and assigned vibrational and rotational levels.
The long-range region is usually less well explored through the unfavorable Franck-
Condon overlap which makes the highest vibrationally excited states difficult to
access.

In Feshbach spectroscopy, an ultra-cold sample is prepared in a well-defined quan-
tum state. Feshbach resonances are then located by tuning an external magnetic
field, equivalent to the two-channel model description employed earlier. The reso-
nantly amplified interaction strength will give rise to typical features, e.g. losses
in the atomic population, which makes them traceable as a function of the ap-
plied field. Locating resonances for a single specific spin state combination allows
predictions for the other ones as they share the same underlying potentials with
different admixtures. Predictions can be even made for other isotopic combinations,
e.g. 2Na —*° K resonances can be used to predict collisions in 2*Na —3Y K and
23Na —4T K. As the initial state is given by unbound particles, this method naturally
samples the long-range part of the underlying potential and interacts with the
least bound states of the potential - therefore molecular and Feshbach spectroscopy
can be seen as complementary measurements, which if combined yield the true
potential description.

Theoretical methods

The theoretical framework can be roughly divided into the acquisition of bound
and scattering solutions, respectively. Bound state solutions are needed if one wants
to navigate through molecular spectra, e.g. by searching for an optimal optical
transition from one molecular state to the other. The scattering problem has to be
solved if one is interested in scattering properties such as the scattering length or
the location of Feshbach resonances. In both cases, the simple two-channel approach
that was shown for the explanation of Feshbach resonances has to be expanded to
the multi-channel system of the diatomic collision.

Because of the cylindrical symmetry, the individual angular momenta are not
conserved during the collisions, but the total magnetic quantum number M is.
Therefore, for a given M, the number of channels is given by the number of possible
projections of the individual angular momenta onto the space fixed axis that equate
to this value M. As a simple example, consider the atomic state labels (f, m¢) A with
the total angular momentum f and its projection my for species A, and further set
{ = 0. Then, the state combinations

We) =11,0)+11,-1) (2.13)
Wp2) =1,—-1)+11,0) (2.14)
‘II)3> = “/1) + |2/ _2> (2’15)
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all share the same total magnetic quantum number, M = —1. When the atomic
pair corresponding to ) is prepared in the experiment, the coupling to ;)
and [3) (and all other channels equating to M = —1 with nonvanishing coupling
matrix element to [1)) has to be accounted for in the theoretical description of
the scattering process. In matrix form, the N channels are comprised in a single
column vector

P (1)
v(r) = : (2.16)
P (r)

The N internal states are then coupled through the matrix elements of the Hamil-
tonian H of this collisional vector space. The resulting set of coupled differential
equations

—h? d2w ()
2u  dr?

+(W(r)—E-I)¥(r) =0, (2.17)

where I is the identity matrix, are the multi-channel extension of the simple
single-channel radial Schroedinger equation (2.5) set up in the beginning of this
section. The coupling matrix elements W;(r) comprise terms such as the hyperfine,
magnetic spin-spin and Zeeman interaction as well as the potential energy curves
for the electronic levels. They can be implemented using ab-initio calculated values,
and sometimes have been acquired experimentally. Represented in an atomic basic
set and in the long range limit v — oo, they correspond to the atomic description,
e.g. the hyperfine operator will be diagonal and reduces to the hyperfine splitting
with a splitting constant o.

The numerical treatment of this problem is straightforward (which should not be
confused with easy). Bound state solutions are obtained through diagonalization
of a matrix to obtain the eigenenergies and bound state eigenfunctions after the
system has been put on a radial grid. Even for a vast Hilbert space and enormous
amount of coupling coefficients, fast and efficient spectral methods such as the
split-operator [85] or Fourier grid method [86] exist. The treatment of scattering
solutions is significantly more demanding. In a typical coupled-channel calculation,
the N-channel wave function ¥(r) is propagated numerically and matched to
asymptotic functions, similar to the simple sine wave comparison showed at the
beginning of the section. In the multi-channel case, the solutions are matched to
Bessel functions [87], resulting in the scattering matrix S(E) that comprises all phase
shifts ¢ for a given energy:

N
S(E) =) e*™rin)(n|. (2.18)

Repeating this simulation for a variety of magnetic fields and collision energies
unveils the location of resonant structures. This method is straightforward yet
computationally expensive, with the computation time scaling as N* where N
is the number of involved channels [88]. It can therefore reach its limits when a
calculation has to be performed on a fine grid of collisional energies and magnetic
fields or has to incorporate a large number of rotational angular momenta. This
motivated the development of alternative calculational strategies that try to generate
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computational shortcuts using approximations. Multi-channel quantum defect
theory (MQDT) is used to obtain a matrix &(E, B), that encapsulates all short-
range dynamics and is rather insensitive towards changes in the collision energy
E or magnetic field B. Therefore, this matrix has to be obtained only once, which
significantly shortens the number of operations over time [88]. Another, even cruder
approximation is done in the asymptotic-bound state (ABM) model. As the location
of a bound state near threshold is a core element for the appearance of resonant
scattering signatures, the ABM model replaces the kinetic and interatomic part
directly by their bound-state energies. The main appeal of this model is that it gets
rid of all scattering states. Because only bound states have to be considered, the
problem simplifies again to the diagonalization of a matrix, therefore neither the
amount of written code nor the computational costs will be obstacles.

These three methods (coupled-channel, MQDT, ABM) strongly vary in com-
plexity, which also defines their application area. If one is interested in a coarse
prediction of Feshbach resonance locations and can extract the scattering properties
experimentally, the fast and simple yet effective ABM model constitutes an appeal-
ing approximative approach to the problem. Therefore it is often employed as a
tirst navigational guide in cold atom labs, after which the experiment itself can be
used to pinpoint the resonance location. The appeal of MQDT is that it provides
scattering observables such as the scattering length (which the ABM does not) and
yet is computationally lighter than a full coupled-channel approach. Nevertheless,
the coupled-channel calculation remains the most exact approach as it involves no
approximations with the exception of basis truncation. It therefore will give the
highest accuracy, which was confirmed by a recent, detailed comparative study
employing all three models together and comparing them to experimental data

[89]-
Putting it together

On the one hand, both of the presented experimental methods, molecular and Fesh-
bach spectroscopy, demand high-quality theoretical models through the assignment
of the fluorescence data as well as the prediction and assignment of resonance
channels. On the other hand, the accuracy of the theoretical predictions are strongly
dependent on the quality of the experimental data. The diatomic researcher is faced
with the experimental task to acquire spectroscopic data and the theoretical task to
reconstruct the corresponding PECs. Upon reviewing these together with ab-initio
calculations, further improvements can be proposed. In ultra-cold experiments,
scattering calculations have to be performed that give access to the collisional
properties of the system. Recasting these into experimentally observable quantities,
these calculations give the parameter region in which typical scattering signatures
can be discovered and further help in interpreting such signatures correctly. In the
framework of molecular potentials, the interplay between theory and experiment
can thereby be seen as a continuous feedback loop, with collaboration leading to
fruitful advances for both nodes.



2.2 THE COLD PLAYGROUND: BOSE-EINSTEIN CONDENSATES

2.2 THE COLD PLAYGROUND: BOSE-EINSTEIN CONDENSATES

The previous section focused exclusively on the interaction between two particles.
Even though the scattering problem was decomposed using the formalism of wave
mechanics, the resulting scattering observables can still be assigned to classical
trajectories of particles. For non-resonant repulsive interactions, the billard ball
analogy perfectly holds.

The following section treats the complementary situation: The particle interac-
tions are neglected, but their quantum nature is emphasized and their number
is drastically increased. The latter statement means that methods from statistical
mechanics can be applied. These describe the thermodynamic properties of an
ensemble that occupies a certain region in the phase space spanned by the conjugate
variables position (x,y,z) and momentum (py, py, pz). Defining a box with volume
given by the Planck constant h,

AAyA AL Ap Ay, =15, (2.19)

and asking how many particles are in the box, the answer will be equal to the phase
space density (PSD) of the ensemble.

An increase in the quantum nature implies that the thermal de Broglie wavelength
A, i.e. the ensemble average of all single particle matter wavelengths A = %,

[ 2mth?
A = kT’ (2.20)

is significantly large. Here h = 5+, kg is the Boltzmann constant and T the ensemble
temperature. Combining eq. (2.19) and (2.20) while denoting the density of the
sample as n, the PSD can be written as

PSD = nA3. (2.21)

When A reaches the typical interparticle distance of the ensemble (A3 ~ 1/n), the
wavepackets will start to overlap. What then happens is determined by the quantum
statistics of the ensemble, and is quite spectacular for the bosonic case treated here.

2.2.1 Bose-Einstein statistics

In the following, a quantum gas of indistinguishable, non-interacting bosonic
particles is discussed. Because of the lack of interactions, a good choice for the
N-particle state [V) describing the system is given by the direct product of the single-
particle states s, that are each fully described by a set of quantum numbers s;.
Due to their indistinguishable nature, the state has to be additionally symmetrized
by summing over all possible permutations P of the (1,..., N)-tuple:

W) =N (+1DPP (s,) s,) - - sy ;) bey)) (2.:22)
P

with a normalization factor N, and where the plus sign was explicitly written
to emphasize the proper symmetric solution needed for describing bosons (a
negative sign would appear for fermions that populate the vector space spanned
by antisymmetric states).
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only chunk of
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universe, unless
it is in a lab in
some other solar
system.”

- E. Cornell [90]
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In the Fock basis [N;...n;...), the N-particle state V) is fully determined by
the occupation numbers ni(=0,1,2,...) that indicate how many particles are in a
given state [\s,). The mean occupation number can be expressed by a distribution
function (ni) = n(eyi) that depends on the single-particle energy ¢; of a particle in
state [i). For a particle in free space as considered here, ¢(p) = p2/2m, hence ¢ =0
for the ground state energy of the system. Under the constraint N = ) ; n(ey),
the occupation distribution can be evaluated via the Landau grand potential [78],
which yields the Bose-Einstein distribution

1

) = e — 1

(2.23)
with B = (kgT)~'. The chemical potential i has to satisfy —co < p < 0 as it will
lead to negative occupation or divergence otherwise.

For high temperatures (3 — 0), this expression converges to the classical Boltz-
mann distribution. In the low-temperature case (3 — 00), something remarkable
happens. To highlight this, it is used that in statistical mechanics the number of
particles usually can be written in the density of state formalism that turns energy
dependent sums into integrals over the energy,

N = Zn(ei) = Jde D(e) n(e), (2.24)

with the three-dimensional density of states D o V T%2,/¢ where constants have
been omitted for lucidity. Note that in the thermodynamic limit, one has N — oo,
V — oo, but N/V = const. Hence

N (o)
— = const. = T3/2J de — Ve (2.25)
0 e

\% e—u) 1"
For T — 0, the value of the integral has to increase, and this compensation can only
be done by adjusting its denominator through p — 0. As the absolute value of p is
bounded from below, this formalism will break down at some critical temperature T.
Setting 1 = 0, the integral at T, can be evaluated using the geometric series, giving

Joo de ve ro deve ) e M=) % Joo de Ve e € =T(3/2) ¢(3/2) (2.26)
n=1 \/ﬁ

et —1
0 0 o 0

where the integral has been recast into a product of Gamma and Riemann Zeta
functions:

F(3/2) =vn/2; ¢(3/2) =2.612 (2.27)

Beyond this point, the formalism above has to be re-evaluated. Note that as p — 0,
the relative population of the ground state should increase massively according to
eq. (2.23). On the other hand, the density of states scales as /¢, so the ground state
has a relative weight of zero. This apparent contradiction is resolved by applying
the density of states formalism starting from the first excited state and treating the
ground state population Ny separately:

7 = v No(T) + N (M) = S0 T 202, (2.28)

VoV
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where the integral (2.26) has been evaluated for the excited state part and the
temperature dependence of A is explicitly written. As N/V is the density, the
phase-space density can be identified in the equation. It can be shown that the
selective treatment of the ground state is not necessary for the first or further
excited states [78], which makes sense since the energy difference between ground
and first excited state already forms a huge gap as the temperature goes to zero.
At temperatures T < T., A(T) increases and the excited states can accomodate less
particles, which in turn will start to condense in the ground state. It then follows
that

3 NA3 (T, 3/2
New(T) _ (3/2) _ (NA(Te)) (T (2.20)
\% A3(T) A3(T) Te
and the ground state population can be expressed as
No(T T\%?
(])\E ) =1- <T> . (2.30)

Therefore at T, a phase transition occurs, characterized by a macroscopic popula-
tion of the ground state. This is the process of Bose-Einstein condensation. It is a
truly remarkable result if one takes into account that bosons do not have to evade
each other (therefore their occupation numbers are not restricted, which is the case
for fermions), and no direct interaction has been imposed between them.

The treatment up to here involved a free bosonic part and the thermodynamic
limit. In a real experiment, the bosons are usually confined in a trap and their atom
number is large, but finite (N ~ 10°). The treatment for a 3D harmonic trap with
trap frequencies wy y . is analogous to the one above and only involves a slightly
different density of states. The result of eq. (2.30) is the same up to a different
exponent, i.e.

No(T) (TN
< N >harm._1_<TC) (2.31)

The critical temperature T. can then be expressed by the experimental parameters
through

kpTe =~ 0.94h (wywyw, N)/3 . (2.32)

Through finite size effects, this number will be slightly shifted. As an example, for
an atom number N = 1000, the real transition temperature is lowered by about 7%

[91].
2.2.2  Gross-Pitaevskii equation

In this part, the quantum mechanical framework of the condensed bosonic cloud
is presented. By using some well-tested approximations, the problem reduces to a
non-linear Schroedinger equation. Starting from there, the experimentally relevant
density distribution is discussed in combination with the sign and magnitude of
the interaction strength.

In light of the large densities prevailing in a condensed gas compared to a
thermal cloud, interactions can no longer be neglected. Writing the single-particle
Hamiltonian as

hZ

_
Ho = sz +V(r,t), (2.33)
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the Hamilton operator in second quantization is given by
o R L I 3.0 AT (T (! AN
H=1dr b Hop+ o 1 dor | dr ) (1) Vine(r —r7) b(r)b(r), (2.34)

where () are the corresponding bosonic annihilation (creation) operators. The
time dependence for the field operators is obtained in the Heisenberg picture

~

ihat{b(r/t) = [ (r/t)/H] = {HO(t) +strl lI)T(I',t) Vint(r_r/) I]t)(l',t)} P(r, t).

(2.35)

This equation can be simplified using some approximations. First and foremost, the
extensive discussion of the last section on ultra-cold scattering showed that the exact
interaction potential is not important as long as it gives rise to the same scattering
length. Therefore, the true interaction potential is replaced by a pseudo-potential

47th?

Vint(r—1') — ad(r—1')=gd(r—r’), (2.36)

where the interaction strength ¢ was introduced. The field operator is expressed by
the system’s single-particle eigenfunctions and their corresponding annihilation
and creation operators

B(r) =) dinai = @oMao+ ) dilr)ay, (237)
i i#£0

where the ground state has been explicitly separated. The creation and annihilation

operators satisfy the bosonic commutation relations

adf] = oy [aua] = [alal] =o. (238)

As T — 0, more and more particles assemble in the ground state. For a macroscopic
occupation Ny, adding or removing one particle should not change the physical
picture significantly. This justifies the replacement of the ground state operators by
complex numbers through

ﬁ;r) ~ Gy ~ v/Nop, (2.39)

which is refered to as a part of the Bogoliubov approximation. The complete
Bogoliubov approximation also neglects additional anharmonic terms involving
multiple creation and annihilation operators. These are on the order of N — Ny and
neglecting them is reasonable for No ~ N. In such a mean-field description of the
sytem, the condensed part is described by a single complex number 1o(r) that is
called the condensate wave function. The total field operator (2.37) then acquires
the form

$(r) = Yolr) + & . (2.40)

—— —~
condensate  fluctuations
Neglecting the excited state fluctuations &)y and using the pseudo-potential ap-
proach realizes the Gross-Pitaevskii equation (GPE)
hZ

iR duolr, ) — {—vaz Vel ) + gwo(r,tnz} bolr 1), (2.41)

which is a nonlinear Schroedinger equation that features an interaction induced
nonlinearity glpo(r, t) 2.
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BEC density distribution

It is now shown how the condensate interactions modify the density distribution of
the ensemble. For this, the confinement is assumed to be harmonic and separable
in all directions, which reflects the commonly used trapping environment in cold
atoms experiments:

3
1
V(r) = Z Emwizxiz, i=xy,z). (2.42)
i

By integrating the phase space density distribution over all momentum coordinates,
the density profile in configuration space is obtained (the momentum distribution
can be obtained analogously). Remember that in the high-temperature limit, the
Bose-Einstein distribution converges to the Maxwell-Boltzmann distribution, so its
density profile will reduce to the well-known Gaussian:

2
NThermal (T) = exp [_Z . ] ’ (243)

with the characteristic spatial extent 0; = w; '\/kgT/m and the peak density
normalized to one. When the temperature and therefore the PSD approaches
its critical value, the Bose-Einstein distribution has to be used. Using (2.23), this
becomes

3 2
1 X
n r)=—— exp |— L , 2.
Bose( ) 93/2(])93/2 { P [ ; 20_12] } ( 44)
with the polylogarithmic function
o0 Zn
932(2) =} 5550 932(1) =((3/2) =2612 (2.45)

n=1

that leads to a Bose-enhanced Gaussian distribution. It is noted that the higher order
terms in this series vanish quickly not only for increasing temperature, but also for
a large distance to the clouds peak density. This motivates the often used approach
to analyze primarily the wings of the non-condensed distribution, when (2.44)
again reduces to (2.43). It is now shown that the density profile of a condensed
cloud has a significantly different functional form than both of the two descriptions
above.

Using the ansatz g (r, t) ot (t)po(r), the GPE can be written in its stationary
form

2m

2
K o(r) = {—hvz V£ + 9|1P0(1‘)|2} olx). (2.46)

The chemical potential p = (E(n) — E(n —1))/h describes the energy of a particle
in presence of all the other ones, and therefore can be seen as a manifestation of the
mean-field approximation used earlier. Through the interaction term, the density
distribution appears in the description of the problem (because [\¢ (r)]? = no(r))
and will affect the energy of the system according to the sign of g. As shown
in the last section discussing scattering theory, the sign of the scattering length
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dictates whether the interacting particles experience effective repulsion (a > 0) or
attraction (a < 0). An attractive interaction will contract the cloud and increase
the density, which in turn increases the strength of this attraction. Through this
mutually reinforcing mechanism, the cloud becomes mechanically instable and
collapses into a high-density region before it is scattered all over the place (Bosenova
[92]). Therefore, only tiny condensates on the order of a thousand atoms can be
maintained with attractive interaction, when their collapse is counteracted by the
kinetic energy of the trapped system [93]. Being interested in stable condensates
with large atom numbers, only repulsive interactions are considered.

With g > 0, the interaction energy minimizes if the wave function is spread as
uniformly as possible, which then depends on the trapping environment. When
the product of particle number and scattering length is large compared to the
typical trapping length scale (e.g. the oscillator length a; = /h/mw;), the kinetic
term is outmatched by the interaction term and can be neglected (Thomas-Fermi
approximation). The stationary GPE in this case simplifies to

Ko (r) = { Vex(r) + ghbo(r)[* } bol(r) (2.47)

which is analytically solvable:

p—V(r)
u=> V(r)
o (1)]* = 9 (2.48)
0 else

Therefore the density profile acquires the inverted form of the trapping potential
and can be seen to fill up the trap in a similar fashion in which a liquid starts filling
a container. The chemical potential can be written in terms of the experimentally
accessible parameters atom number and trap frequencies as

152/5 N a?/°
H= > @ hwxwy wz)]/3 (2.49)

For the harmonic trap, the density profile is given by an inverted parabole in every
direction that fills the interior of an ellipsoid:

> 2 3 2
ngec(r) = <1 — Z Rlz> 0 (1 —Z RE) (2.50)
n(x)
A
(pure) BEC Bose-enhanced Thermal
T <T/" T~T. T>>T. X

Figure 7: Density profiles for a condensed, Bose-enhanced and thermal cloud.
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with the Heaviside theta 6 and where the peak density is again normalized to one.
Its radial extent in one of the directions x; is called the Thomas-Fermi radius

R; =

ZHZ. (2.51)
mws

The onset of Bose-Einstein condensation is therefore directly observable through
analysis of the ensemble’s density distribution. All three density profiles are shown
next to each other in fig. 7. The notion "T < T." that is featured there has to be
used with care - as a BEC does not follow a Maxwell-Boltzmann distribution, a
temperature in the thermodynamic sense cannot be assigned to it. In the following,
it will always be assumed that a residual non-condensed ("thermal") part is still
present in the trap, for which temperature is a well-defined quantity, and that both
condensed and thermal part are in thermal equilibrium with each other.

Mixture phases in the two-component GPE

Quantum gas mixtures are realized by encoding different components either in the
spin degree of freedom (spinor BECs) or by using different atomic species. The
generalization of the GPE framework to a multiple-component version is rather
straightforward [94]. In the case of a two-component mixture, both components are
represented through their own condensate wave function, and an additional non-
linear term ~ g1, describes their interspecies interaction. The following discussion
of possible mixture quantum phases follows [95] and [96]. In the stationary case,
the system is described by the coupled two-component GPE:

.2

(1) = { VA0 guhnn 02 + guai2 (0 fn(r), (252
)

2bal) = { VIO 922b20P + guain (0 fa(r), (2)

where the chemical potentials ; for component i are given by the normalization

condition [ drp;(r)? L N;i. Because g11 < 0 or g2 < 0 leads already to collapse
of the single-component wave function, both intraspecies interactions are assumed
to be positive. Then, depending on the sign and magnitude of the interspecies
interaction strength, the clouds will try to coalesce or evade each other, realizing a
set of different mean-field quantum phases. In the simplest case of a homogeneous
environment, the energy of a fully phase separated and the energy of a miscible
system is given by

g11NT  g22N3
Eeep = )
sep = 5/ 5y, (2.54)

g1iNZ  g2oN2  g1aNgN;
Emic = . .

Note that the subscript of the volumes is different, i.e. V = V7 4V, is the total
volume occupied of both species together. The two separated phases in Esep can be

linked through the mechanical equilibrium criterion dv, Esep E OV, Esep, when the
energy of the separated system can be rewritten in terms of the total volume as

o g1iN? n 922N3 Jr\/9119221\111\12
P v 2V Vv

(2.56)
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Comparing equations (2.55) and (2.56), the question which of these two state
configurations minimize the energy of the system is answered by the interplay of
intra- and interspecies interaction through the miscibility criterion 912 < /911922,
which gives Esep > Emis and therefore miscibility. A similar analysis can be
performed for negative values of g1, and asking when energetic instabilities will
make the system collapse in a similar way to the Bosenova phenomenon outlined
earlier. The general result is:

miscible: [g12] < /911922 (2.57)
immiscible: [gq12] > +/g11922 and g2 >0 (2.58)
collapse: [g12] > /911922 andgi2 <0 (2.59)

As all three interactions parameters g11, g12, g22 are dependent on the respective
scattering lengths, they are magnetically tunable and phase transitions can be
studied [97, 98, 62].

Recent theoretical and experimental studies have focused on the region in which
attractive interspecies interaction is balanced out by the repulsive intraspecies
interaction [96, 99]. It is perceivable that when the mean-field effects cancel each
other, beyond-mean-field effects can start to play a role. For a single-component
gas, the next higher-order quantum corrections to the mean-field description can
be written as

\—E/ = %g n? [1 + 1;3%\/71&] , (2.60)
i.e. the energy density functional is supplemented by an additional, perturbative
term called the Lee-Huang-Yang correction [100]. This term is usually much smaller
than the mean-field term. Following the seminal work of Petrov [96], the main
implication for competing interactions is quickly repeated here in a simplified
form. For this, the system is assumed to be composed of equal densities and equal
individual intraspecies interactions:

g11=922=9>0, (2.61)
ny =ny =2, (2.62)

while the interspecies interaction is negative and a little bit larger than the in-
traspecies interaction:

d8g=g12+g<0 (2.63)

It is important to note that while 6g will be small, g can be quite sizable. As outlined
above, for 6g < 0, the system will be mean-field instable and should collapse. The
corresponding chemical potential p can be written as

Hoxdgn+gnvn ad. (2.64)

Where the first term accounts for the residual mean field shift through the coun-
teracting interaction strengths depending on 6g, and the second term denotes the
Lee-Huang-Yang correction. Quite importantly, this second term depends on g, not
dg!. If g is sufficiently small, these two terms can therefore become comparable.
Moreover, the density dependence of both terms follow a different power. When
the system now becomes mean-field instable, the beyond-mean-field term grows
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faster with the density, which leads to an equilibration of the two terms at a certain
critical density ng. This quantum stabilization mechanism leads to the formation of a
quantum droplet in the system. This novel quantum state of matter combines some
unique characteristics, and their experimental study is currently of high interest

[101, 99, 37, 102].
2.3 THE BUILDING BLOCKS: SODIUM AND POTASSIUM

This section outlines the most relevant properties of the chosen atomic species. An
extensive selection of atomic properties for the used atoms can be found for sodium
in [103] and for potassium in [104].

Strictly speaking, the only species selection criterion for studying Bose-Einstein
condensates is that it should be a boson. Yet the process of condensation demands
phase space densities on the order of one, and not all species are equally suited
for this task. In order to achieve efficient phase space compression, three atomic
properties are of importance:

1. The atom should possess a sizable magnetic moment in order to be trappable
by magnetic fields.

2. The internal energy structure should comprise isolated optical transitions for
efficient laser cooling, and different g-factors in order to be able to achieve
magneto-optical trapping.

3. The scattering properties should ensure good thermalization properties for
evaporative cooling. Ideally, Feshbach resonances at accessible magnetic field
windows should be available.

Alkali atoms excel in all three of these aspects. Their magnetic moment is
reasonably large through the unpaired electron. As all other electrons occupy
closed-shells, alkali spectra are quite simple, and strong optical transitions are
found at convenient wavelengths in the visible-to-infrared-region. At good last,
scattering properties can be expressed through the long-range Van-der-Waals
dispersion of the atomic pair. The leading term there is the C¢ coefficient, that
can be approximately written as Cg ~ %(AE)*‘, where AE is the D line for Alkali
systems [105]. As these are in the visible to infra-red regime, the corresponding
C coefficient are larger than 103, when evaporative cooling can become feasible
through the achievable thermalization rates. The alkalis are therefore a splendid
choice for the realization of ultra-cold matter. Still, each species exhibits its own
pecularities.

The only stable isotope configuration for sodium is 23Na. Together with 8”Rb, it
is considered as one of the workhorses for bosonic systems, as they share strongly
favorable properties for laser cooling and evaporation [106], and it can be condensed
by following a "Ketterle-approved" recipe [82]. Potassium possesses three stable®
isotopes, 39K,*9K and 'K, with a natural abundance of 93.26%, 0.01% and 6.73%,
respectively. Along the alkalis, it provides the unique feature that both bosonic
(3?K,*TK) as well as fermionic (*°K) isotopic combinations can be studied, a feature
otherwise only shared by Lithium.

strictly speaking, 40K is a radioactive B~ emitter, and its decay channel into argon is used for
radiometric dating. Its half-life of 1.28 x 107 years renders it quasi-stable for all ultra-cold purposes.
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the relevant internal states utilized throughout this thesis.

Figure 8: Energy diagrams and ultra-cold collisional properties of both 23Na and 37K for
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Owing to their same nuclear spin of i = 3/2, the atomic level structure of both
atoms is qualitatively identical, with the same quantum numbers and projections
and the same linear Zeeman shifts.”. Quantitatively, 3?K has some distinct atomic
and spectral features, rendering the route towards Bose-Einstein condensation
more challenging. These can be found in fig. 8, in which the D2 line energy
diagram and the magnetic-field dependent scattering interaction (for collisions
in the spin channel |1,—1) 4|1, —1)) is depicted for both species. Due to its small
nuclear magnetic moment [107], the hyperfine splitting of 3?K is much smaller
compared to 23Na. In fact, the hyperfine spacing of the excited state manifold
does not outweigh the linewidth of the individual lines, Ik = 27 x 6.035 MHz.
Hence, it becomes difficult to isolate cooling transitions from each other, when
the notion of a “cyclic’ transition will be less pronounced than for 2*Na. If one
employs conventional laser cooling by red-detuning a few linewidths (indicated
in fig. 8 by arrows representing cooling and repumping beams, respectively), the
whole multiplet will be excited instead. This induces interference effects between
the sublevels, ultimatively affecting the laser-cooling forces [108]. Therefore, every
optical manipulation involves nontrivial optical pumping effects as well as trade-
offs between cooling and heating forces, which have to be accounted for if one
wants to either estimate the number of trapped atoms or cool them below the
Doppler temperature. In a nutshell, compared with the trailblazing bosonic systems
23Na and 87Rb, large cold samples of 37K are harder to achieve.

The collisional properties of both species are given by its respective singlet
and triplet scattering length. In a cold atom system, one is typically interested
in the scattering length of a specific spin state instead, which can be obtained
by angular momentum recoupling. In this thesis, the spin state combination of
interest is |1, —1)+|1,—1), for which 23Na features no resonant structures below
1000G, and displays a feasible scattering length of an, = 52 ap, where ag is the
bohr radius. The situation for 37K is again unfavorable. By constructing the full
two-atom Hamiltonian out of the singlet and triplet potential curves, Bohn and co-
workers estimated all Zeeman combinations to exhibit a negative scattering length
[109]. The drawbacks of negative scattering are twofold: For negative scattering
lengths, the k-dependent s-wave scattering cross section is known to display a steep
minimum as k is decreased before it reaches its k — 0 limit value of o = 4ma?.
This basically disables rethermalization at a given temperature, in this case around
~ 320pK, hence single-species evaporation will not be efficient. Moreover, once a
condensate is formed, its attractive self-interaction renders it mean-field instable.
These points make 39K a less desirable choice for cooling as well as condensing,
yet solutions to the presented challenges exist and have been succesfully met. In
this thesis, 37K is cooled sympathetically, using 23>Na as an evaporative refrigerant.
Once a condensate is about to form, mean-field stability can be ensured by the
presence of an external magnetic field that tunes the scattering properties to a
desired value, using one of the three Feshbach resonances that have been tabulated
in the literature for this spin state [110].

Note that throughout this thesis, small letters are used to denote quantum numbers corresponding to
an atom, whereas capital letters are used to describe coupled diatomic quantum numbers such as
F=1fna + Tk

31






LASER SYSTEMS

The creation of cold atoms demands a variety of laser sources for the purpose of
cooling, trapping, internal state manipulation and detection of the atomic ensembles.
With the exception of the repulsive blue plug barrier and the optical dipole trap (see
section 5.3 and chapter 6), all of these are nearly resonant with the individual D2
line of the corresponding atomic species. Most characteristics of the laser systems
will therefore have their roots in the two different fundamental frequencies that
have to be provided.

With a wavelength of 767 nm, the D2 transition of 39K lies in the near-infrared
region where laser diodes are the laser source of choice. By assembling them in
an external-cavity diode laser (ECDL) configuration, the target wavelength can be
realized with a small laser linewidth in a simple and reliable setup. Their straight
conversion of electric to optical power, the low number of needed components and
the moderate costs highlight them as a popular choice in laser laboratories working
with ultra-cold atoms.

In the case of 23Na, the D2 transition at 589 nm has posed an experimental
challenge in the past, as laser diodes cannot operate in this spectral region. Optical
frequencies in the yellow and orange spectral range had to be generated using dye
lasers that suffer quick chemical degradation and employ dyes which are poisonous
or even carcinogenic. Salvation was brought in 2009 by the astronomers community,
in which 2*Na fluorescence is utilized to form laser guide stars at an altitude of
100 km. The development of high-power narrowband fiber lasers at 589 nm [111]
made this experimental task significantly easier, rendering >*Na nowadays as a
highly fashionable laser cooling atom source. The following chapter describes the
generation and alteration of the light sources for both atomic species. Both systems
are set up and boxed in on an optical table adjacent to the main experimental table.
Together with a set of curtains, this separation avoids unwanted stray light in the
experiment chamber. An optical fiber distribution network connects the individual
laser light ports to the main experiment.

23'Na LASER SYSTEM

3.1
The #*Na laser system was designed and set up in this thesis. A simplified sketch of
it involving the most notable optical components is depicted in figure 9. At its heart
lies a Visible Raman Fiber Amplifier (VRFA-P-1800-589-SE, MPB communications),
that amplifies and frequency-doubles an infrared laser seed source, giving 1.8 W of
589.158 nm single-mode light at a fundamental frequency wp.

A variety of seed sources have been built and tested regarding single-mode
stability and long-term reliability." In the end, the most reliable performance was

Most notable, these included a range of custom Littrow laser designs starring a batch of Innolume
laser diodes (GC-1178-TO-200). After testing multiple grating lengths, transversal mode suppressions
and longitudinal mode restriction methods for different batch items without completely satisfying
results, and after communication with the group of G. Ferrari at the INO-CNR (Trento, Italy) revealing
similar experiences, the author strongly advises against using the aforementioned laser diode model.
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Figure o: Simplified illustration of the 23Na laser system. Blue (red) color coding of the
AOMs illustrate positive (negative) frequency shifts with respect to the incident
beam.

achieved by a laser system using a Toptica DFB laser diode (LD-1178-0030-DFB-1).
It can emit up to 30mW in a wavelength window of 1177.5 —1179.5nm that is
coarsely tunable via the operating temperature with a tuning coefficient of 0.09
nm/K. By stabilizing the diode housing temperature to 38 °C, the DFB diode emits
at a central wavelength of 1178 nm which is fine-tuned by the applied laser diode
current. Feeding > 10 mW into the VRFA via an optical fiber, this gets amplified
to up to T0W of infrared power at 1178 nm by fiber laser amplifiers pumped at
1120 nm. Gradual degrading of the fiber amplifier’s pump diodes made it necessary
to steadily increase the amount of seed light over the years, with the current status
being 20 mW, which is also the nominal injection maximum specified by the VRFA
distributor.

Upon exiting the VRFA, the fundamental beam is branched into multiple paths
using A/2 waveplates and polarizing beam-splitters (PBS), spectrally modified
using acusto- and electro-optic modulators (AOMs, EOMs), and finally coupled
into optical fibers so it can be sent to the main table. Every branch element contains
a PBS in front of the fiber as well as an externally controllable blade shutter, both
not depicted in Fig. 9.

A spectroscopy branch is devoted to the stabilization of the 1178 nm seed source.
Its frequency-doubled laser frequency wy is locked to the doppler-free crossover
signal of the 23Na D2 line. The spectroscopy part exhibits an aluminum container
that comprises a 75mm long sodium vapor cell. The capton covered surface of
the container is wound with a high-resistance wire (10 (/m Konstantan), where
counterpropagated double-winding avoids unwanted solenoid effects. Applying
26V (current TA) to the wire heats the cell up to 170°C, corresponding to a
vapor pressure of 3.6 x 107> mbar. A spectroscopy laser beam passes through the
cell, serving as a pump beam causing saturated absorption. It then gets reflected
at a zero degree mirror and passes the cell a second time, where it acts as the
probe beam. The doppler-free absorption spectroscopy signal is then obtained by
collecting the passed probe beam on a photodiode. Using the frequency modulation
spectroscopy technique [112] via an EOM, this is transformed into an error signal
that is fed forward to the DFB diode current control of the infrared laser seed.
An AOM situated upstream of the cell in double-pass configuration allows to



3.1 23'Na LASER SYSTEM

freely shift the fundamental frequency w( with respect to the crossover transition,
wo —2 - AprOM = WCrossover-

The locking point of wy is set about 200 MHz blue-detuned with respect to the
cyclic [f =2, m¢ = 2) — |[f = 3, m¢ = 3) transition frequency on the D2 line. The
value of wy is continuously coarsely monitored by a wavelength meter (HighFinesse
WS/6, absolute accuracy 100 MHz) and exactly deduced by performing absorption
imaging of a cold atomic cloud (see also sec. 4.3). A frequency scan of the detection
beam AOM gives rise to a Lorentzian line shape of the detected atom number, which
is shown in Fig. 10 (a). A fit gives the locking point wg = 207.5 MHz. The extracted
full width half maximum (FWHM) I'/27t = 10.2(+0.4) MHz slightly overestimates
the natural linewidth I'y,/27 = 9.795 MHz by about 4%, possibly due to saturation
effects.

All other needed frequencies are generated by individual modulators from laser
beams operating at the locking point wy. The choice of optical components as well
as their implementation reflects the amount of spectral versatility needed for each
port. For example, the MOT cooling beam has to be adjusted to the capture velocity
in the MOT, and high tunability is an experimental relief for the simultaneous
optimization of the Zeeman coil, MOT coil and laser detuning parameters. It
further has to be independently tunable for the optical molasses stage. Its spectral
tunability is therefore realized in a cat-eye double-pass configuration [113], where
downstream of the AOM a lens with focal length f and a 0° mirror are inserted at
distances f and 2f, respectively. This greatly amplifies the frequency range that is
efficiently injected into the optical fiber compared to an ordinary AOM double-pass
in absence of this lens (see Fig. 10 (b)).
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Figure 10: Assorted details regarding the 2>Na laser system. (a): Absorption imaging
signal of cold atoms as a function of imaging frequency. The locking point wg
is obtained by shifting the imaging frequency to resonance, where the signal
is largest. A Lorentz function fit (solid line) is used to extract the width and
maximum position. The vertical axis assumes the on-resonance scattering cross
section for each detuning and therefore corresponds to the real atom number
only on resonance. (b): Relative fiber coupling efficiency as a function of the
AOM frequency shift for an AOM situated upstream of the fiber in double-
pass configuration. A cat-eye configuration (blue curve) strongly enhances the
bandwidth compared to a double-pass using only a 0° mirror (red curve).
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A counterexample demanding no spectral versatility is given by the Zeeman
repumping beam. It has to bridge exactly 1.7133 GHz compared to the Zeeman
cooling beam, and is therefore implemented by generating sidebands via an EOM
on the Zeeman cooling before the latter is itself shifted using an AOM. Table 1
gives an overview of the individual ports including their purpose, detuning A to
the relevant transition and the amount of power available on the main table, while
Fig. 11 shows the system in operation.

Purpose If) = [f') AinMHz /inT Power in mW
Zeeman slowing 12) = 13) -400 / -40.8 80 (combined)
Zeeman repumping |1) —[2) -g00 / -40.8

MOT cooling 12) = 13) -18.5/-1.9 120

MOT repumping 1) —12) o 12

F = 2 imaging 2) =13) o 0.2

F = 1 imaging 1) —=11) o 0.2

Spin polarizing 1) —11) o 0.05

Table 1: Overview of the used laser ports. The detuning A is given with respect to the
corresponding relevant transition. The power refers to the fiber output power on
the main table.

Figure 11: Sodium laser system in operation.
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3K LASER SYSTEM

3.2
The 37K laser system used in this experiment was designed and built in a previous
PhD thesis [76] and subsequently upgraded. A detailed description of the used
lasers including explosion drawings and an assembly tutorial is given in [114],
whereas the used electronics are described in [76]. Its main features are briefly
repeated and all modifications are mentioned.

Compared with the 2*Na laser system, the main difference is governed by the
number of individual lasers employed in the setup. With only one Raman fiber
amplifier, the 23Na system provides exactly one fundamental frequency, and the
spectral flexibility is ultimately limited by the bandwidth of the components used
for modulation. Due to the low costs of ECDLs, the 37K system instead provides
the possibility to manufacture a set of individual lasers with different fundamental
frequencies, which are then stabilized onto each other via offset locks. In particular,
a total of three different fundamental frequencies are in operation: A master laser
that is stabilized onto the crossover transition of the potassium D2 line provides
the atomic reference frequency, whereas two slave lasers provide the fundamental
frequencies for cooling and repumping. The advantage of a master-slave setup
manifests itself in almost freely selectable set frequencies only limited by the offset
lock electronics. As an example, fermionic and bosonic potassium MOTs demand
quite different cooling strategies and therefore drastically different sets of detunings.
The versatility regarding the laser locks allows to switch between operating a
fermionic or bosonic MOT by simply changing the offset lock parameters and
adapting the intensities in the beams. This has been demonstrated in our setup [76].
The additional use of AOMs allows for fast switching of the individual ports.
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Figure 12: Simplified illustration of the 3K laser system. Blue (red) color coding of the
AOMs illustrate positive (negative) frequency shifts.

Figure 12 shows a brief sketch of the laser system employed in this thesis. The
system can be briefly divided in three subregions, which are used for locking, laser
power amplification and frequency modulation respectively. Both master and slave
lasers are built using interference filters as frequency-selective elements, based on
the so-called Paris design [115]. The lasing wavelength is coarsely set by the incident
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angle of the interference filter and the laser diode temperature, whereas fast and
fine spectral variations are achievable via a Piezoelectric transducer as well as the
applied diode current. The master laser locking region is inherently identical to the
one of the 23Na setup, using a potassium vapor cell heated to 70 °C. The locking
point (205 MHz blue-detuned with respect to the cyclic transition) is determined
using absorption imaging similar to Fig. 10 (a), which is cross-checked by probing
the velocity distribution of a 3?K atom beam in a neighbouring lab. The master
beam is further split into two beams being sent to two separate photodiodes, where
they interfere with the individual slave laser beams. The resulting beat frequencies
are used for the offset lock as described in [76].

The major part (> 40mW each) of both slave lasers is sent to the amplifying
region, where both beams are individually amplified using Tapered Amplifiers
(TA), providing ~ 1TW (cooling path) and ~ 750 mW (repumping path) at 2 A
TA current. In the frequency modulation region, each beam is split up twice and
sent to a unique AOM port, where they receive additional frequency shifts. In
the initial setup of [76], where only Doppler cooling was demonstrated, the AOM
ports were set up in a conventional double-pass configuration using just a 0°
mirror. This proved to be limiting the performance of the system when sub-Doppler
cooling strategies were implemented. The laser system was then modified [116] to
provide a higher frequency tunability by using cat-eye configurations, enhancing
the frequency tunability similar to the one shown in the 23Na setup (see Fig. 10).
The frequency shifted beams are then sent via optical fibers to the experiment
table. The used frequencies and intensities of the individual experimental ports are
summarized in table 2.

Purpose If) = [f') AinMHz /inT Power in mW
2D MOT cooling 12) = 13) -8.7/-14 60

2D MOT repumping |[1) — [1) -20.4 / -3.4 35

2D Pusher 2) = 13) o 0.1

3D MOT cooling 12) = 13) -41/-6.8 135

3D MOT repumping |[1) — [2) -22/-3.6 105

F = 2 imaging 12) = 13) o 0.2

F = 1 imaging 1) —12) o 0.2

Table 2: Overview of the used laser ports. The detuning A is given with respect to the
corresponding relevant transition. The power refers to the fiber output power on
the main table.



THE TWO-COLOR 3D MOT

The following chapter introduces the main vacuum chamber in which all ex-
periments performed in this thesis - from the first MOT fluorescence up to the
demonstration of quantum degenerate matter - have been conducted. It further fea-
tures the cornerstone of each cold atomic system, the magneto-optical trap (MOT).
After a quick introduction to the concept of laser cooling, all the needed ingredients
are layed out and piecewise discussed. Once all constituents are gathered, the
system parameters have to be adjusted for optimal performance and orchestrated
into one experimental sequence, whose description closes this chapter.

MOT operating principle

In this thesis, the most popular type-I MOT" is used, whose operating principle
demands the atomic structure to fulfill f" = f + 1. Therefore the natural type-I MOT
habitat for 2*Na and 37K is governed by their D2 lines involving the hyperfine
transition |f = 2) — |[f' = 3).

A MOT utilizes the mechanical effects of light on atoms in order to restrict
their trajectories simultaneously in configuration space (which traps them) as
well as in momentum space (which cools them). For every dimension, this is
achieved by using two counter-propagating, red-detuned and o-polarized light
sources together with a quadrupole magnetic field. Then both laser detunings, and
hence the differential force that acts on the atoms, acquire spatial and momentum
dependence through the Zeeman and Doppler effect, respectively. After numerous
cycles of absorption and spontaneous emission, the resulting restoring force pushes
the atoms to the origin given be the magnetic field zero. A friction force leads to
dissipation of energy (i.e. cooling), and the omnidirectional spontaneous emission is
time-averaged out. The cooling is eventually equilibrated by diffusive heating linked
to fluctuations in the atomic momentum that appear in the spontaneous emission
process. By equating both contributions, the steady-state Doppler temperature
hl'
m/
with the Boltzmann and reduced Planck constant kg and h, and the respective
natural linewidth T, is defined as the natural temperature limit that appears in
a MOT. It can be undercut by pure optical post-cooling mechanisms such as
polarization-gradient cooling [118]. In atomic systems that continuously interact
with laser light characterized by a wavenumber ki, the fundamental optical cooling
limit is the recoil temperature at which the atomic momentum equals the photon
momentum of its interacting light field:

hke.
= ks
where m is the respective atomic mass.

TD = TD,Na =235 H.K, TD,K =145 LLK (41)

TR TR,Na =240 },I.K, TR,K =042 p,K, (42)

Other MOT types are possible, with the type-II MOT being of special interest for studies devoted to
direct laser cooling of molecules, as they avoid rotational branching [117].
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4.1 EXPERIMENTAL SETUP

The magneto-optical trapping zone is provided by a set of six laser beams and a
magnetic field coil pair in anti-Helmholtz configuration that realize a quadrupole
field

B(x,y,z) = B'\/x2/4 +y2/4 + 22 (4.3)

The beams drive the cyclic transition |f =2, m¢ = 2) — |[f = 3, m¢ = 3), yet residual
coupling to f’ = 2 and subsequent decay into the f = 1 manifold gives rise to
a loss channel for the cooling cycle. This is counteracted by installing a second,
repumping frequency that continuously drives the |[f = 1) — |[f’ = 2) transition.
Apart from this, the ingredients needed to realize a MOT can be summarized as
follows:

1. Connections to two atomic reservoirs delivering a high flux of preferably
pre-cooled atoms.

2. An ultra-high vacuum (UHV) environment in order to minimize collisions
with hot background atoms, maximizing the ensemble lifetime.

3. Diagnostics to acquire the relevant parameters atom number and ensemble
temperature.

At first glance, the first two points seem to be antonymous to each other, as UHV
implies a scarce amount of atoms, whereas source reservoirs indicate an ample
amount instead. They are both satisfied by the experimental setup which is shown
in fig. 13, that features an UHV main chamber separated via differential pumping
stages from the individual atomic sources. The following sections outline how these
ingredients have been realized and put together in the experimental apparatus.

4.1.1  Pre-cooled atomic sources

This section gives a brief overview regarding the infrastructure of the used atomic
sources. Their typical operation performance is presented in section 4.4 together
with the 3D-MOT.

Potassium

3K atoms are provided using commercial dispensers (Alvatec Alkali Vacuum
Technologies) as a metal vapour source. These consist of small tubes made from
stainless steel that contain potassium either as an alloy or in chloride form. Resistive
heating of the tube will lead to sublimation of pure potassium. The used dispensers
are artificially enriched, i.e. they contain a °K abundance of 5.5% compared to the
natural abundance of 0.01%. This enables the use of the atomic source for either
fermionic or bosonic operation. The hot potassium is distributed into a custom made
vacuum chamber [76] which is connected to the main chamber through a bellow
and a differential pumping stage pointing along €,. A magneto-optical interaction
zone in this chamber realizes a two-dimensional (2D) MOT that pre-cools the hot
ensemble in the x — z plane. Its magnetic part is given by a horizontal and vertical
coil pair, realizing an Anti-Helmholtz magnetic field in the chamber. All coils are
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Figure 13: Sketch of the experimental setup without optics, showing the atomic sources
and the UHV main chamber. Hot 23Na and 37K are distributed using an oven
and dispensers, as seen by their respective fluorescence (upper left inset). After
pre-cooling utilizing a 23Na Zeeman slower and a 3K 2D MOT respectively,
both species are fed through differential pumping stages (= DP) into the main
chamber. The chamber provides UHV conditions as shown through ensemble
lifetimes on the order of a minute (lower right inset). The region connections can
be interrupted using valves, and each vacuum region is maintained by locally
installed ion getter pumps (opaque rectangles).

individually addressable by current supplies in order to freely move the atoms
along the horizontal (x) and vertical (z) direction. The optical forces are generated by
an array of red-detuned, 0" polarized, counterpropagating vertical and horizontal
beams spanning parallel x — z planes. The two-dimensional confinement creates a
tube of transversally cold atoms, which are longitudinally guided towards the 3D
MOT chamber by a low-intensity "pushing’ beam propagating along y.

The bellow connection to the main chamber gives mechanical flexibility upon
connecting the vacuum components, but can lead to misalignment of the precooled
atomic beams. Hence upon first assembly, the vacuum structure itself has to be
geometrically aligned to the main chamber center. Afterwards, coarse optimization
of the ‘unpushed’ 2D MOT was performed by observing and increasing the fluores-
cence signal directly in the 2D MOT chamber with a camera placed along the axial
direction (therefore removing the pushing beam), as seen in fig. 13. With help of
the camera, the 2D MOT position is aligned with the flange leading to the 3D MOT
using the four coil controlling power supplies. The starting point of the used 2D
MOT frequencies are based on those published in [108]. Fine optimization of the
2D MOT system was then conducted iteratively by using the 3D MOT loading rate
as a figure of merit (see sec. 4.4).
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Sodium

23Na atoms are provided using a reflux oven currently operating at 330°C that
emits gaseous sodium with a mean speed of approx. 750m/s through a nozzle
(@ = 2mm). The consumption of *Na depends on the applied temperature, with
a rule of thumb in this experiment being that for T = 350°C, 10 g are depleted
after about 3000 hours of operation. The main oven region is heated in a constant
time interval from 8 AM to midnight via a time switch. To avoid clogging of the
nozzle, a second heating control keeps the front flange connection constantly above
sodiums melting point of 97.8°.

Upon exiting the nozzle, the collimated atomic beam passes two differential
pumping stages and a waypoint in which a TTL signal driven pneumatic shutter
toggles the atomic flow. Downstream of the shutter, the atoms enter a Tm long
magneto-optical interaction zone known as a Zeeman slower.

Here, the atoms are illuminated by a single, counterpropagating o polarized
laser beam as they are moving through a CF-16 brass pipe. The beam comprises two
fundamental frequencies that are both strongly red-detuned by 400 MHz compared
to the cooling and repumping transition respectively. By applying a magnetic field
created by a coil wound around the pipe, the resulting Zeeman effect together with
the Doppler effect shift these laser beams to resonance with a certain velocity class
of the atomic distribution. Following a cascade of absorption-emission processes
similar to the Doppler cooling mechanism utilized in a MOT, the atoms are then
slowed longitudinally. Furthermore, the Zeeman laser beam is focused onto the oven
nozzle, which creates a cone of slowing light that counteracts the transversal spread
of the atom beam. As the atomic velocity decreases, the lower Doppler shift detunes
the laser beam spatially, which is accounted for by reducing the number of coil
winding layers (starting from 24), generating an inhomogeneous magnetic field that
decreases downstream. As the magnetic field has to be adapted to the Doppler shift,
the current providing optimal trapping conditions for this first decreasing-field
coil is directly linked to the initial chosen oven temperature. A second, increasing-
field coil (up to 6 layers), appended to the first one, realizes a spin-flip Zeeman
slower, where the current set to this coil sets the final velocity of the slowing
process. The initial values of Zeeman beam detuning, power and Zeeman coil
currents were based on calculations performed in [119]. This source also contains
all details regarding its design and construction. Similar to the potassium system,
optimization of coil currents and slowing beam parameters has been performed by
using the 3D MOT loading rate as a figure of merit, see section 4.4.

4.1.2  Science chamber

Both pre-cooled atomic sources are collected in a cylindrical UHV region called the
main chamber. In addition to its connections to the atomic sources and an in-vacuum
microwave antenna, the chamber features optical access through twelve viewports
in the horizontal plane that are occupied by various diagnostic items and the
cooling/trapping beams as labeled in fig. 14. Two video cameras at an inclined
angle of 90° are used for by-eye-surveillance, while two imaging systems and
ANDOR cameras as well as a photodiode detector are used to infer the ensemble
observables such as its atom number. MOT and optical dipole trap use the same
viewports, and their operation is toggled by externally controllable flippable mirrors.
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Figure 14: Viewport overview of the science chamber that houses the two-color 3D MOT.
Each flange connection is labeled by its purpose. Upstream of the red colored
ports, flippable mirrors allow to switch between 3D MOT and ODT operation.

Further optical access is granted along the vertical axis through two vertical CF-200
vacuum windows. These are coated with an indium tin oxide mask that enables
the application of large (~ 10kV /cm), tunable electric fields in order to polarize the
molecules [3]. The cooling and repumping light for both species is distributed via
optical fibers onto the main optical table. There, they are split into five beam paths
whose diameters are expanded to 11 mm each. The optics are mounted either on the
optical table or several breadboards that surround the chamber and are themselves
fixed on marked points to the optical table. These breadboards are made out of
tiber reinforced plastic and liftable by 2 persons. This design gives a significant
advantage if one has to directly access the main chamber for maintenance reasons.
As an example, at some point the magnetic field coils were exchanged due to a
shortcut connection translating into the loss of about a winding in one of the coils.
In this case, most of the optics can be removed and reinstated without severely
changing the beam alignment simply by carrying the breadboards away and back.
A network of dichroic mirrors sends all five beams into the chamber, realizing
four horizontal and one vertical trapping beam whose intensity ratios are freely
adjustable for both species using A/2 waveplates, and whose polarization is set
to circular just before entering the chamber using dichroic A/4 waveplates. The
vertical beams are retroreflected using an externally controllable flipping mirror,
which completes the desired six-beam MOT configuration and allows for vertical
absorption imaging by flipping the mirror out of the beam path. All beams are
quickly switchable and frequency tunable via AOMs on the laser optical table.
Magnetic fields are provided by a coil pair and a compensation cage cube
spanning a volume of approx. 1.73m?3. The coil pair comprises 24 windings each
that realize a quadrupole field with a conversion ratio of B’ = 0.8 (G/cm)/A
between field gradient and applied electric current along the (vertical) symmetry
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axis. Electric current is provided by two power supplies (DELTA SM-30 200) in
master-slave configuration that deliver up to 200 A each. Insulated-gate bipolar
transistors (Mitsubishi CM300DY-24NF) enable fast on/off switching. A water
cooling system in the coil holders allows safe operation at a total current of at
least 300 A. The compensation coils are controlled through six power supplies,
which allows to set magnetic bias fields on the order of a few Gauss in an arbitrary
direction.

4.1.3 UHV conditions

The main chamber grants UHV conditions needed for disturbance-free operation
of the cold atomic system through the use of Ion getter pumps. Contaminations
through outgassing of chamber parts and impurities in the atomic sources® form
a background of gas atoms whose room temperature strongly exceeds the ~ 1K
binding energy of the MOT. Hence every collision of a background atom with a
trapped cold atom causes a loss of the latter from the trap. The resulting "one-body"
atom loss dynamics of the cold cloud

ng = —TogN(t) (4-4)
follow an exponential decay with the loss coefficient I, g, that is usually expressed
by the lifetime T = (Tpq) ' of the sample. Later through the thesis, non-exponential
losses due to higher-order terms (Majorana, two-body and three-body losses) will
be encountered. Even though it will be not the correct solution to the underlying
differential equation, it is still possible to fit a simple exponential decay to these
combined higher-order phenomena and call it an effective 1/e lifetime, which is the
convention followed throughout this thesis.

For a given background gas species, the loss coefficient I,y can be formally
expressed as I,y = n(ov), with the density n and the thermally averaged product
of loss cross section o and velocity v. For large enough trap depths, the loss cross
section can be evaluated classically, giving [120]

P C
Mbg = 6‘8(kBT)3/2 (mb69> (Upmyo) 176 (4.5)
with the partial pressure P and mass my, 4 of the corresponding background gas
species, trap depth Uy and mass mg of the trapped cold atom species and the
van-der-Waals dispersion coefficient C¢ describing the interaction between both.
The contamination of the chamber is mostly given by hydrogen molecules. Using
the corresponding Cg coefficients for Na — H; and K — H; collisions, the loss rate
coefficients are roughly equal, reading

Mg—Na = Tog—x ~ 4 x 10" bar~'s! (4.6)

for a trap depth of 1K. The relation eq. (4.6) implies that the atoms themselves
can be used as an adequate sensor of the vacuum conditions to cross-check the
readout of the installed ion pump controllers. The ion pump controller on the main
chamber displays a current of 4nA, translating into vacuum conditions better than
10~ 1! mbar [76]. Using here a result of the working environment presented in the

2 SAES potassium dispensers are famous for containing non-negligible amounts of rubidium.
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following chapter 5, the lifetime of the atomic ensembles is typically evaluated in
a pure quadrupole trap in absence of trapping light. The inset of fig. 13 shows a
typical measurement, in which the 22Na atom number is measured for variable
holding times. The ensemble temperature is set to a few hundred pK, where non-
linear losses are negligible (see fig. 24 for a discussion of those). The exponential
decay fit gives a lifetime of T = 61.4 + 1.3 s, when (4.6) implies a vacuum quality
better than 10~'2 mbar. Over the course of a few months, increasing pollution (that
mainly stems from the 2D MOT region) can steadily worsen the vacuum conditions.
A titan sublimation pump is installed next to the ion getter pump, and “firing’ titan
restores the conditions to the one of the inset in fig. 13.

4.2 EXPERIMENT CONTROL HIERARCHY

This section describes how each experimental sequence in this thesis was orches-
trated, monitored and evaluated. For the purpose of this section, the experiment
can be treated as a black box that generates a set of output observables f(x) from
a set of input parameters x during an experimental sequence. Such a sequence
consists of a list of input parameter shaping commands, such as close the shutter
or set the AOM frequency to 200 MHz, which are executed with exact relative tim-
ing. The command hierarchy of an experimental sequence is depicted in fig. 15.
A sequence protocol is built and executed using the LabVIEW based graphical
user interface Unicorn. Executing a manual prompt processes the sequence to its
end. Every protocol is represented as a (M + K + 1) x N matrix as depicted in the
top of the figure. The N columns denote consecutive time slots during which the
respective commands are executed, where the dwell time is set in integer multiples
of 10 us. The commands are assigned to M different digital and K different analog
of an ADwin Pro Il board (Jaeger Messtechnik GmbH) constituting the matrix rows.
Furthermore, a virtual interface (VISA) channel is employed, that can be used to
process communication protocols via lines of code with a number of devices such
as tunable frequency generators. The ADwin board distributes the digital (analog)
commands to the experiment black box using TTL (+10 V) signals. This completes
the experimental input. The output observables f(x) are twofold. For once, a set
of diagnostic elements is used to continuously monitor the key components of
the black box (magnetic fields, optical fields, MOT population) during operation,
in order to be able to trace possible irregularities back to their origin. Second, an
array of camera pictures is taken during the course of the sequence. These are
handled and combined by the LabVIEW analysis program Narwhal to infer details
regarding the underlying atomic distribution such as peak density and width using
automated fitting. The protocol file, picture files and atom distribution fit files for
each ran sequence are combined and stored together in a SQLITE database using
the xmladb library.

The experiment is only operated with at least one experimentalist present in the
laboratory. After ~ 1 —2h warming up of the individual system components and
daily maintenance tasks, sensible data is usually acquired starting at 10 AM. In
this experiment, a typical experimental sequence is 30 — 45 s long, with the main
contribution being the evaporation time. Therefore, the amount of accumulated
data over time can be vast. Figure 16 shows a histogram of the number of saved
sequences over the course of a day. A python based data analysis program has
been developed that allows quick initial processing of the data and features a set
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Figure 15: Experiment control hierarchy (details see text).

of customizable fitting routines [121]. Rigorous further analysis of usable data
is handled using a Mathematica notebook library that has been developed in the

group.
4.3 ATOM DETECTION

When near-resonant laser light passes through an atomic cloud, it will be absorbed
and re-emitted. Both processes can be used to count the number of illuminated
atoms and to infer their spatial distribution. In this experiment, fluorescence de-
tection is mainly used to monitor the atom number of rather hot ensembles such
as those found in MOTs, whereas absorption detection is used for optically thick
samples such as BECs. By using both methods independently for the intermedi-
ate regime (~ 100 uK cold ensembles), the resulting atom number measurements
are used to calibrate each other and cross-check for discrepancies. The remaining
systematic uncertainties are estimated to be around 20%.
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Figure 16: Histogram showing the number of saved sequences, binned by the hour in which
they were taken, for 100 consecutive experimental working days.

4.3.1  Fluorescence imaging

Fluorescence detection uses the fact that the total photon scattering rate will be
proportional to the excited state population pe, i.e.

Yscatt. = ' Pe (4.7)

with the natural linewidth I' of the excited state. Hence the photons scattered
through constant illumination by the slightly detuned MOT beams can be used to
obtain the atom number while operating the MOT. As the photons are isotropically
scattered, they can be detected by placing a collecting lens at a distance r that cuts
out a fraction of the spherical surface area 47 r? and deflects the corresponding
light onto a switchable gain photodiode detector. Every detected photon carries
an energy hw contributing to the deposited optical power. The latter is converted
into a photodiode current using the respective radiant sensitivity R of the detector
and ultimately read out as a voltage signal U[V] through the switchable gain G. To
account for residual background light scattering, this signal is substracted from a
signal Uy 4[V] that uses the same MOT beam configuration with the magnetic field
coils turned off. The atom number is then determined by

4_7'[ 1
Q (Yscatt.) (haw) (R) (G)

where Q) is the solid angle of the collection lens surface area.

For 23Na, the hyperfine splitting outweighs the linewidth of the individual lines,
and the cooling transition is sufficiently isolated. Therefore only a weak amount
of repumping light (Pna,+/PNac ~ 10%) is needed. In this case, both the cooling
and repumping transition can be treated as two separate two-level systems whose
scattering contributions can be added up. For a two-level system, the steady state
scattering rate acquires the form

NFluo. = (U— - ubg)

(4.8)

y _r i 1 Ii/Isat.,i ( )
et Na = L 2T L Taaei + (261/Ta)2 "
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with total and saturation intensity I; and Ia i and respective detuning 6; for the
individual contributions of cooling (i = 1) and repumping (i = 2) beam.

For 37K, the situation is more complex, rendering it as a special case among
the alkali metal atoms. Due to its comparatively small ground and excited state
hyperfine splitting, the transitions can not be isolated from each other, when the
notion of a “cyclic’ transition will be less pronounced than for 23Na, demanding
Px r ~ Pk,c. Consequently, any description involving the two-level approximation
featured in eq. (4.9) is flawed as it disregards optical pumping effects. Instead one
has to take into account both hyperfine ground and all four excited hyperfine levels
as well as the combined cooling and repumping laser powers, when one arrives
at optical bloch equations for the population dynamics of the full six-level model.
As continous illumination by the MOT beams gives a constant photodiode signal
in the fully loaded MOT, it can be assumed that the steady state population is
reached. The photon scattering rate will again be proportional to the excited state
population and the natural linewidth, and the former can be generally expressed
as a sum over the individual hyperfine components:

3

YK, scatt. = ere = rK Z Pf (4.10)
f'=0

The exact dynamics are by no means trivial, but simplify significantly if one
disregards coherences induced between the levels and instead sets up a rate-
equation model, which for 3”K has first been done by Williamson et al. [122] whose
reasoning is followed here. In particular, denoting I’ ¢+ as the f <» f’ branching ratio
weighted linewidth and &¢ ¢/ as the corresponding absorption oscillator strength,
the individual excitation rates o¢ ¢ are

of 1= Ee e Tegr Lt /ILsat.
/ 2 14 (28¢/Tk)?

(4.11)

where It is the intensity of the beam driving the transition from the corresponding
f ground state. The steady-state solution is then obtained by using the sublevel-
averaged oscillator strengths to calculate the individual absorption and emission
rates, and then equating these, giving

/(Q,/—Fr, /) /
R T (4:12)
£/ eff/

_ one P1+ 02,¢ P2
01,5 + 02,6 +T

P (4.13)

for all f and f’ states. By combining (4.12) and (4.13) the relative ground state
population is

01,¢ +I1,¢ 02,5 +12,¢
f=2) X 02,¢/ : : =Pf=1) X 01,¢/ : : (4.14)
P(f=2) ; 01,5 + 02,0 +T P=1) ; 01,5 + 02,50 +I 414

This expression can be explicitly evaluated by setting pr—; = 1 without loss of
generality. With both pf obtained, all p¢/ can then be acquired out of eq. (4.13).
Together with the normalization condition ) ;p¢+ ) ¢ Py =1, this directly gives
the desired population ratio for each f’ state, which are then summed up, resulting
in pe.
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Fluorescence detection is an appealing method for monitoring the atom number,
as the here presented minimal version employs few and cheap optical elements
that can be implemented at arbitrary spherical angles into the experiment. The
downside is given by the relatively large number of parameters which have to be
accurately known and whose uncertainties add up. Through reflections of scattered
photons by the atomic cloud on the chamber surface, the photodiode might catch a
higher-than-assumed solid angle. The Gaussian beam nature of the MOT beams
further give an inhomogeneous intensity distribution that is spatially averaged in
the description above. These effects can be accounted for by pursuing fluorescence
detection using systems of different size, position and illumination methods, e.g.
by comparing the six-beam generated photodiode signal with a one-beam signal
catched by a CCD camera at a different position in a subsequent experimental run.
For MOT operation, one is mainly interested in the order of magnitude in the atom
number, hence the remaining uncertainties of the hereby used minimal version
are tolerable. When these effects are well controlled and disturbances suppressed,
the method of fluorescence detection particularly excels in systems intending
the study of few-atom systems. Single atom detection has been demonstrated in
optical lattices [123, 124] studying Mott-insulators, while exact particle counting of
mesoscopic ensembles has been demonstrated in bulk systems intending to study
entanglement on the few-atom level [125, 126].

4.3.2 Absorption imaging

Absorption imaging is the most prevalent imaging technique in cold atom systems,
providing high signal to noise while being dependent on only a low number of
parameters. It uses the fact that the absorbed photons were directed, whereas
the emitted fluorescence is omnidirectional, therefore the absorbing effect of an
optically thick cloud can be observed on the illuminating beam itself. By sending
a single, low-intensity resonant light pulse through the cloud and onto a CCD
camera, the thereby casted atomic shadow can be imaged on the camera when
the shadow position and extent unveils the atomic distribution through inversion.
Denoting the beam propagation axis as ey, the undistorted (i.e. in absence of the
cloud) light beam intensity on each (x,z) tuple of the CCD chip is denoted as
Io(x,z). Traversing the atomic cloud modifies this according to the Lambert-Beer
law:

1(x,2) = Io(x,z) e OP %) (4.15)
where the optical column density OD
0D(x,2) = % [dynix,y,2 (4:16)

denotes the thickness of the absorptive medium and is given by the effective ab-
sorption cross section 0* and the column density 7, which is the onefold integrated
density distribution of the atomic cloud. o* is related to the resonant cross section
(00 = hwatoml/21sat.) through

* 0o 1

o= o T+ 1(x,z)/olgat. (4-17)
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where the dimensionless reduction factor o« > 1 incorporates imperfections in the
polarization and different magnetic field orientations, but also accounts for hyper-
fine state peculiarities such as those described earlier for 37K in the fluorescence
section.

In an experimental sequence, the atomic cloud is released from the trap and
the picture containing the atoms, 1A (x,z), is taken after a variable time of flight.
Following a waiting time after which the remaining atoms have dropped out of the
camera’s field of view, the second, reference image Ir(x, z), is taken with the same
exposure time and laser parameters. A third, so-called dark image Ip,k(x,z), is
acquired independently that contains neither light nor atoms but only the camera
background noise. Out of this three pictures, the optical column density is obtained
in the low-intensity limit as:

IA(x,z) — Ipark (X, 2)
Ir(x,z) — Ipark(x, 2)

OD(x,z) =log , (4.18)
which is schematically shown in fig. 17. For large illuminating intensities, saturation
effects are no longer negligible. This gives rise to another, linear term in eq. (4.18)
in addition to the logarithmic one. In this setup, the validity of eq. (4.18) has been
cross-checked using a calibration method similar to the one described in [127], in
which the probe intensity is varied by more than one order of magnitude.

Figure 17: Absorption detection using the horizontal imaging system. Shown are cutouts
of the pictures imaged on the CCD chip during an experimental run, with the
atomic shadow clearly visible on the left picture. Division of the picture with
and without atoms yields the optical density. Beforehand, a “dark’ background
picture is substracted from both pictures. The division process eliminates fringes
and systematic errors in the detection beam intensity.

The detection beams for both species are delivered onto the main table using
single-mode fibers to ensure a clean transverse mode profile. There, they are
expanded to a beam diameter of about 12mm using a telescope and polarized
using a dichroic A/4 waveplate. All beams operate on resonance. For both species,
the pulse durations are typically 60 us. The laser intensities are adjusted so that the
CCD chip is almost saturated, which is fulfilled by intensities considerably below
the respective saturation intensities. For most of the experiments carried out in this
thesis, both atomic species are initially prepared in the |[f = 1, m¢y = —1) state, and a
set of detection beams allows their direct imaging. Alternatively, they are pumped
into the f = 2 manifold by an optical pumping flash. A second set of detection
beams then makes use of the cyclic transition m¢ = 2 = m¢ = 3 that usually gives
a higher contrast. For 37K with its close level spacing, a high-magnetic-field imaging
was set up by dynamically tuning the frequency generator in the master-slave offset
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lock after the MOT phase. Operating in the Paschen-Back regime then allows to
drive [mi, mj)x — |my, m;/)k transitions. These are instrinsically cyclic owing to
the selection rule Am; = 0.

Time of flight measurements

Through eq. (4.16) and (4.18), the atom number can be obtained by integrating the
optical column density over the x-z plane, which is equivalent to summing all pixel
values:

N =

AA
Z* = Z Z OD(x4, zj), (4-19)
J

i

where A A, gives the area which is imaged onto a single pixel. For this, the
magnification of the imaging system has to be determined. A reliable calibration
method is given by releasing a quantum degenerate gas from an optical trap and
observing its free falling trajectory as depicted in 18. A BEC is best suited for this
task because of the large signal-to-noise ratio even at a large time of flight. By fitting
the vertical center of mass displacement (in pixels) to the well known equation
zpec(t) = zgpc(0) + M’ x %got2 with the local gravity go = 9.8126 m/s” [128], one
obtains the fitting parameter M’ that incorporates the magnification as well as the
true pixel size on the chip. In the case of the horizontal imaging readout, which is
shown in fig. 18 (a), the conversion is 14.02 pm/pixel.

As the absorption technique naturally integrates the profile along the beam
propagation direction, two-dimensional column density distributions are obtained.
A combination of vertical and horizontal imaging using two imaging systems and
cameras (Andor iXon3 for horizontal, Andor iXon Ultra 888 for vertical imaging)
grants access to the full three-dimensional density distribution. The horizontal
imaging beams are the ones outlined above. For vertical imaging, frequency and
intensity adapted MOT beams are used whose retroreflection is halted by flipping
away a mirror. Using two cameras further allows to set vastly different magnifi-
cations. The low-magnifying (M = 0.57) horizontal imaging is well-suited for the
analysis of cold and ultra-cold clouds, whereas the high-magnifying (M = 10.33)
vertical imaging allows for fine-tuning of the blue plug or optical dipole trap beams
on the um level (see chapter 5 and 6) and will be capable of resolving intra-trap
structures such as quantum droplets.

To obtain the temperature of the ensemble, the cloud is again released from the
trap and its expansion dynamics is monitored. Assuming a harmonic confinement
in all directions, the equation of motion is separable in all three dimensions. For
each dimension, the initial density distribution will be Gaussian, characterized by
a width o(t = 0) = 0. After release, the cloud will keep its Gaussian functional
form, but expand according to its momentum distribution which will imprint itself
on the width through

o(t) =4/05+ ?tz, (4.20)

with the species mass m and the expansion time t. Therefore the temperature
can be obtained by letting the atoms expand for a set of TOF times and perform
Gaussian fit routines to their integrated column density, which gives their width.
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Such a measurement is shown in fig. 18 (b) for both species at the end of the
optical molasses phase. A fit of (4.20) to the measurement gives (53 £+ 0.4) pK for
the sodium and (106 & 4.0) pK for the potassium cloud, respectively.

4.4 3D MOT CHARACTERIZATION AND COOLING SEQUENCE

To operate the 3D MOT, all geometrical, optical, thermal and magnetic parameters
have to synergize. This implies heavy sampling of the large parameter space in
order to maximize the atomic signal in the MOT. Moreover, the two-color MOT
houses two species whose parameter spaces are not separable. As an example, they
experience the same magnetic field gradient but might favor different values, when
trade-off solutions for a set of joint parameters seem unavoidable. Yet this already
poses the main question regarding the MOT sequence assembly: what is a suitable
figure of merit in a coupled two-species experiment that defines the "optimal"
parameter configuration?

The experimental sequence described in this section is based on the following
reasoning: In subsequent stages of the experiment, 23Na will be used as a coolant
for 37K, which is a very costly process in terms of the sodium atom number.
Therefore the complete experimental sequence was first arranged and optimized
for the operation of a single-species sodium MOT, defining an operating point Py
in parameter space in terms of MOT beam alignment, molasses timing et cetera.
This parameter space point was subsequently fine-tuned using a figure of merit
obtained in later stages of the experiment, most notably the phase space density of
an almost condensed cloud. Moreover, the joint parameters of both species, such as
the molasses time, were varied. By observing the atom number of a just condensed
cloud, information regarding the sensitivity to these parameters was obtained. This
gave a good understanding which parameters are largely fixed and which can be
adjusted if they turn out to be unfavorable for 37K.

In the initial MOT realization procedure, the horizontal MOT beams were first
aligned to the geometric center of the chamber using marked flange caps and irises
that reduce the beam diameters to a few mm. The retroreflected vertical beam was

(a) magnification calibration (b) temperature determination
1000

© measurement
— free fall fit

vertical position [pixel]
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Figure 18: (a) Camera calibration measurement using the vertical center of mass for a free
falling BEC after release from an optical trap. A quadratic fit gives the conversion
ratio between pixel size and spatial extent.

(b) Temperature determination by using time of flight measurements for both
atomic species. A fit of eq. (4.20) to the expanded width gives the temperature
of each cloud, in this case after the molasses phase.
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aligned onto these by realizing and maintaining a MOT while the iris apertures
were subsequently reduced to their minimum. The power in each beam was first set
roughly equal. The repump beam was superimposed with the cooling beam using
two mirrors and a beam splitter, and their superposition ensured by observing their
far-field intensity patterns at the end of the room using a periscope technique. The
Zeeman light beam was focused and aligned directly onto the oven nozzle, using
the fluorescence in the oven region. The starting parameters of the Zeeman slower
(coil values, frequencies, intensity) were chosen according to the ones calculated in
its design study [119].

23Na

Once a MOT is formed, all MOT parameters are scanned and their ratios varied in an
iterative fashion in order to localize beneficial parameter regions. Being a nowadays
standard element invariably featured in cold neutral atom experiments, the whole
MOT characterization strategy follows an established process [129, 106, 130, 131].

(a) ®Na MOT loading curves
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Figure 19: Selected curves of the 23Na MOT characterization. (a) Exemplary loading curve
set acquired in the optimization process, in this case for a scan of the increasing-
coil field value. (b) MOT loading rate as a function of applied Zeeman coil
current and an oven temperature of 333° C, once for a scan of the decreasing-
field (blue dots) and increasing-field coil (green diamonds). (c) Saturated MOT
atom number as a function of applied magnetic field gradient. The mutual
dependence of the parameter set is exemplarily shown by mistuning a single
parameter (repumping frequency, orange triangles). This already gives a dis-
tinctively different functional form and a shifted maximum compared to the
optimized scenario (gray dots).
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The only parameters that are not externally addressable are the laser beam intensity
ratios and their alignment. Note that bad power balancing in a MOT can be canceled
out by geometric misalignment. This can be fine for a MOT but is detrimental for the
optical molasses stage that is about to follow. To prevent beam-walking in the wrong
direction, the quality of power balancing is monitored by strongly reducing the
magnetic field gradient to a few G/cm and observing the 3D expansion behaviour
of the cloud using surveillance cameras from two axes. The more isotropic, the
better. For 2°Na, there are additional A/2 plates in the horizontal beam paths. Their
orientation is adjustable by micrometer screws that allow for fine and reliable
equalization of the beam intensities.

Exemplary 23Na MOT loading curves taken during the optimization procedure
are shown in fig. 19 (a), where the increasing-field coil current is varied and all other
parameters are kept constant. For the Zeeman slower optimization, the component
responsible for non-optimal behaviour (e.g. one can be slowing limited through
the transversal spread or too high final slowing velocity) can be usually identified
by studying the loading curve shape. Typical are kinks that appear in a trapping
limited scenario when the loading is fast but suddenly capped. For a MOT, the
two main figures of merit are the saturated atom number and the loading rate
(or flux), the latter being defined as the initial slope of the loading curve. The
optimal Zeeman coil values were obtained by evaluating the loading rate as shown
in fig. 19 (b). The decreasing-field coil optimum of 5.5 A is in agreement with the
optimum of 5.03 A that was calculated in [119] for a starting capture velocity of
the slower of 200 m/s. A significant deviation exists between the experimentally
found increasing-field optimum (7.4 A) and the calculated one (9.03 A). This is
explained by the transversal momentum imposed on the particles through slowing.
As the increasing-field coil finalizes the slower, its magnetic field value determines
the amount of final slowing and defines the final velocity as the atoms leave the
slowing region. Larger coil currents lead to smaller final velocities, but also increase
the transversal spread over a given distance. The distance between Zeeman slower
and science chamber, given by the amount of vacuum components inbetween, is
approx. 22cm for this setup. This is quite large compared to other setups (e.g.
> 12 cm featured in [129]), and the corresponding transversal spread significantly
reduces the flux into the main chamber. In order to reach the calculated ideal
slowing parameters in the future, a six-way flange cross, situated between slower
and bellow connection, can be used to realize a transversal cooling stage [132] that
guides the atoms and allows further longitudinal slowing.

For these slowing parameters, the optimal magnetic field gradient was found
to be B{,, = 20.8 G/cm (see fig. 19 (c)). In summary, for the 23Na system, loading
rates of 1.4 x 107 atoms/s and saturated atom numbers of 3 x 107 atoms after about
2.5 seconds of loading were realized.

39K

After characterization of the 23Na 3D MOT, the species operation was swapped and
a similar optimization routine was started for 3?K without touching the geometric
alignment. The starting conditions in terms of laser power ratios and frequencies
are based on those featured in [131] and [133]. For 37K, the narrow hyperfine
splitting naturally splits the detuning space in several regions. Doppler cooling
can only be employed either very close to resonance (|5 ~ I'«) in the low-intensity
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limit, or below the whole excited state manifold (|5 ~ 5.6I'k) in the high-intensity
limit. The latter is favorable as its velocity capture range is about one order of
magnitude larger. Cooling and repumping intensities are branched from the laser
table in a way that operates the 2D MOT in the low-intensity, near-resonant and
the 3D MOT in the high-intensity, far-detuned limit. In contrast to 2*Na, the 3K
beams are distributed on the main table to their individual beam paths by using
additional fused fiber optic couplers, which leads to losses of 20 —40% of the light
power tabulated in the laser system chapter (tab. 2). In the 2D and 3D chamber,
this gives total MOT laser intensities of (Ic, I, )2p = (1.82,1.36)Isat. per beam and
(Ic,Ir)3p = (12,10.8)Isat. per beam, respectively. For the 2D MOT values, this
matches exactly the values given in [133].
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Figure 20: Typical 3K MOT loading curves (without pushing beam) for the old and new
dispenser. For the dual-species BECs, only the first 2-4 seconds are used. (b) MOT
atom number after 10s of loading as a function of both cooling and repumping
laser detuning.

Typical MOT loading curves for the potassium MOT can be seen in fig. 20. For
both curves, the pushing beam was off. All measurements shown in this thesis
have been conducted with a dispenser that was signaling progressing depletion
and hence had to be operated at a rather high current of 6 A (blue curve). The
large resistive heating also sublimated other materials, worsening the vacuum and,
together with the lesser amount of 3K, limited the achievable MOT sizes. During
the process of writing up this thesis, the then empty dispensers were replaced by
ones from the SAES group that behave mostly identical, but are not enriched. For
the new SAES dispenser, the needed vapor pressure is already reached at 4.5 A. The
iterative optimization has then be carried out in a similar fashion as for the sodium
cloud. The optimal magnetic field gradient for operating the 3K MOT was found
to be By = 6.4G/cm. To complement the magnetic field parameter scans shown for
the sodium MOT, fig. 20 (b) shows a typical optical field parameter scan, namely
in laser detuning space for the 3D MOT beams. Similar to sodium, all potassium
parameters were later fine-tuned, in this case by using the phase space density
of a 50 uK cold cloud in the magnetic trap as a figure of merit. Even though the
saturated atom numbers are much larger for the new dispenser, it is mentioned
here that the 3K MOT is usually never fully loaded. This can be traced back to
the sympathetic cooling mechanism that only remotely affects the potassium atom
number. In fact, dual-species condensates are usually achieved in this setup by
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loading an unpushed MOT for about two seconds. This is indicated by a shaded
region in 20 (a) that outlines the typical MOT loading duration. For such short
loading times, the loading rate, which is similar for both dispensers, becomes more
important than the actual MOT saturation value. The pushing beam increases both
loading rate and saturation value. Yet the dual-species condensates were found
to be quite sensitive to the exact atom number ratio. Having a slower potassium
loading curve was then actually beneficial as it allowed easier fine tuning of the
exact amount of loaded atoms. Hence especially for the later shown measurements,
the pushing beam has been deactivated.

Experimental sequence

The used laser cooling sequence is shown in fig. 21. It is processed as follows: The
sequence starts by loading 37K at its optimized magnetic field gradient B/, while
23Na is withhold via the pneumatic shutter. This first, single-species operation is
mainly used as a surveillance mechanism to verify stable potassium conditions,
without having its signal overshadowed by the sodium cloud on the photodiode
detector or the video cameras. After two seconds, the atom shutter is triggered.
The two-color 3D MOT is still operated at the potassium favoring gradient By
until a sufficient amount of 37K is loaded. The presence of 2*Na atoms was not
found to significantly obstruct the 3?K cloud. Following this, the magnetic field
coils are quickly ramped up to the sodium-favored gradient BY, and the 3K laser
frequencies are adapted to minimize losses. After about two seconds the sodium
MOT is saturated, finishing the MOT phase.

After the MOT, an optical molasses is prepared and held, cooling both samples
through polarization-gradient cooling using the MOT beams. The molasses transi-
tion features a steady reduction of both repumping lasers while the magnetic field

E 20 20
£ 15 15
210 10
3
= ° 5
S o oy, 0

0 1 2 3 4 5 6 7 721 7.22 7.23 7.24 7.25 7.26 7.27
= Ke[L | [ KelGd| [NaclGul| [Nag(G)
50 )( 6
g
E 4 4
=
< 2 2
=
2 o Iy 0
< 0 1 2 3 4 5 6 7 7.21 7.22 7.23 7.24 7.25 7.26 7.27
- Na,
32 100 100
>
‘w10 10
=
£
£ 1 1
=
? 01 0.1
] 0 1 2 3 4 5 6 7721 7.22 7.23 7.24 7.25 7.26 7.27

o two-color MOT two-color MOT . R
"K MOT % - molasses transition optical molasses
("K optimized) (trade-off) _
>
Time [s]

Figure 21: Experimental cooling sequence. The subscripts denote ¢ = cool, r = repump. The
detuning is given in absolute values of the frequency difference to the transition
If = 2) — |f’ = 3) transition (cooling) and |f = 1) — [f’ = 2)transition
(repumping). For further details, see text.



4.4 3D MOT CHARACTERIZATION AND COOLING SEQUENCE

gradient is lowered in 40 ms. In contrast, the usual molasses initialization method,
i.e. switching the magnetic field abruptly, gave lower accessible temperatures yet
inferior capture efficiencies, which in this configuration are nearly unity for both
clouds. In dual-species operation, tuning of the individual timings and parameters
to a trade-off configuration was necessary. In the case where no common optimum
was found for both species, leaning towards the sodium-favored configuration was
usually beneficial in view of the later sympathetic cooling mechanism. In the end,
this gave dual-species sub-Doppler temperatures Ty = 53 pK and Tx = 106 pK as
probed by TOF expansion. Together with the 3 x 107 23Na and the typical loading
of 1 x 103 37K atoms, these parameters constitute the normal operating conditions
in the dual-color MOT system.
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Magneto-optical cooling and trapping of alkali-metal atoms is limited in terms
of achievable temperatures as well as densities, hence different cooling strategies
are required to exceed phase space densities beyond ~ 107°. After the molasses
phase, the MOT beams are switched off and the coil currents ramped up, creating
a pure magnetic trap which provides a tight confining repository for the atoms. The
trapping mechanism hereby relies on the Zeeman interaction for weak magnetic
tields. Assuming that an atom’s magnetic moment p is aligned with the local
magnetic field B, the magnetic energy shift will be given by

AE = —(p- B) = upm¢gs| Bl (5.1)

with the Bohr magneton pug/kg ~ 67 uK/G, the total spin projection m¢ and the
Landé factor g¢. The inclined reader will remember that for the coil configuration
used in this experiment the energy shift of (5.1) obtains its spatial dependence in
quadrupolar form, B(x,y,z) = B’ \/ x?/4 +y? /4 + z2. Multiple things are notable:

1. For each internal atomic state, higher magnetic field amplitudes will either
attract or repel the corresponding atom, depending on the combined signs of
Landé factor and spin projection. As Maxwell’s equations allow the formation
of local minima yet forbid local maxima in |B|, only the atoms feeling repul-
sion (commonly referred to as low-field seekers) can be magnetically trapped.
State-selective trapping demands a reconfiguration of the state population
present in a MOT in order to minimize transfer losses. This is briefly discussed
in section 5.1 together with the initial transfer.

2. Equation (5.1) is a scalar quantity, and therefore the energy shift depends
only on the magnetic field amplitude and not on its orientation. This is due
to the postulate that the magnetic moment orientation will always be parallel
to the local magnetic field. The limitations of such an assumption and the
consequences (Majorana losses) are discussed in section 5.3.

3. The generated magnetic trapping potential is conservative, and therefore does
not induce any sort of cooling by itself. Cooling will be provided externally
using microwave radiation, which is presented in sec. 5.4.

Using the above techniques for subsequent phase space compression, quantum
degenerate samples of 2>Na can be generated in a magnetic trap [5, 129]. For 23Na,
the corresponding cooling efficiency has been mapped out down to the condensa-
tion threshold (~ 1 uK for densities ~ 10'3cm~3) and the already presented MOT
and molasses parameters have been fine-tuned to optimize the atom number at this
temperature. The negative scattering length of 3"K however dictates the use of Fes-
hbach fields in order to generate a 39K condensate, and the additional interspecies
interaction gives rise to stronger losses as the densities are increased. Therefore, it
is emphasized that the experimental task in this chapter is not necessarily to reach
the coldest temperatures or highest densities. As condensates can be generated
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in magnetic as well as in optical traps, the quadrupole trap merely serves as an
intermediate step to increase the dipole trap loading efficiency, which will take
place before reaching the BEC threshold. It is further pointed out that because 37K
will be sympathetically cooled, only a low amount on the order of 10° — 107 atoms
have to be loaded in the magnetic trap. Hence the requirements regarding efficient
39K trap transfer are comparably lax, and for most magnetic trapping properties
the focus lies on the 23Na performance.

5.1 MAGNETIC TRAP TRANSFER
Initial temperature

Once a magnetically trapped atomic cloud has thermalized, adiabatic changes of
the trapping gradient B” will leave its phase space density unchanged. The initial
field gradient however will impose a diabatic change due to the sudden switch-on
of the coils. The stiffer the gradient, the more Zeeman energy is imposed upon
the atoms. On the other hand, the initial gradient has to be strong enough to hold
the atoms against gravity and has to minimize the vertical mode matching offset
caused by the gravitational sag. Using the virial theorem [134], the temperature of
a thermalized sample in the magnetic trap can be expressed as

Tvr = Ti/3 + 16(uK/G)oymB’ (5.2)

with T; being the initial MOT or molasses temperature and o; its root mean square
width. The experimentally determined magnetic trap temperature is usually larger
than this calculated value, because the magnetic trap origin will be close to but not
identical to the molasses position. This spatial mismatch will inflict further heating
beyond the scope of eq. (5.2), and the temperature of the clouds after the magnetic
trap transfer can easily exceed several hundred pK. In the early stage of this
experiment as well as in a competing 2*Na-*°K group employing a similar setup,
T ~ TmK were reported [76, 135]. To hold the heating due to displacement minimal,
a prealignment scheme involving multiple-axes imaging was used: The position of
each molasses cloud was first compared and superimposed with that of strongly
magnetically compressed MOTs, as the latter indicate the magnetic trap origin.
Following this prealignment procedure, and using the molasses scheme of section
4.4 (Tna = 53 uK, Tx = 106 puK), a sudden switch on to 80 G/cm appeared optimal
for the dual-species operation. For this gradient and the measured rms width after
the molasses stage, eq. (5.2) predicts Tyrna = 992.5 uK and Tyrk = 159.7 uK. The
experimentally determined temperatures Ty, ~ 100 uK and Tx ~ 240 uK hint at
residual imperfections in the positioning of the potassium cloud but show excellent
agreement otherwise. It is mentioned that the estimation of initial temperatures in
a quadrupole trap is usually slightly vague. The high initial kinetic energy and the
finite magnetic coil switch-off time result in a rather small available time of flight
window for both species (see also section 5.2 for a discussion of alternative methods
used for cross-checking). Moreover, as the trap cannot be disabled instantaneously,
adiabatic cooling effects may persist. Following this initial trapping, the quadrupole
trap is ramped adiabatically to its final gradient value Bj. When one (both) DELTA
power supply is (are) in operation, usually B} = 156 G/cm, (B} = 216 G/cm).



5.1 MAGNETIC TRAP TRANSFER

Optical pumping: f =Tor f=27

For the ground state of 23Na and 37K, the Landé factors are gf—7 = —gf— = —1/2.
Hence the set |f, m¢) of magnetically trappable states is given by the low-field
seekers [2,2),12,1) and [1,—1), and the magnetic trap transfer efficiency depends
on the population distribution over these internal states. It is further essential
that trapped atoms do not change their internal state by spin-changing collisions.
Due to the different signs of their Landé factors, the magnetic moment orientation
of the f = 1 and f = 2 trappable substates is flipped with respect to each other,
and collisions between these atoms can transfer both to untrapped states (e.g. via
11,—1)+12,1) — [1,0) +(2,0)). The first task of magnetic trapping therefore consists
in choosing a hyperfine submanifold to work in and removing all atoms in other
states. The concept of redistributing the atomic population by flashes of laser light is
called optical pumping. Using resonant o -polarized light, one continuously drives
transitions |f, m¢) <> [f/, m¢ 4+ 1). Any spontaneous decay back to the ground state
will be arbitrarily polarized and therefore the set of magnetic quantum number
decay channels is {m¢, m¢ 4+ 1, m¢ + 2}. Repeating this process hence gives a net
preference to higher m¢ states, magnetizing the sample. The generation of negative
net magnetization is analogous.

As the magnetic field gradient scales with m¢, the |f = 2, m¢ = 2) state experi-
ences the largest magnetic potential of all trappable states. In systems like 8”Rb,
where all scattering cross sections are about equal, this state has beneficial proper-
ties regarding elastic collisional rates for the later cooling process and is therefore
the usual state of choice. In contrast to 8”Rb, the scattering cross sections of f =1
and f = 2 are quite different in 23Na. In particular, |f = 2, m; = 2) displays a more
unfavorable inelastic scattering rate, limiting the 1/e lifetime in a condensate to a
few seconds [136]. The common approach therefore is to prepare the sample in the
f = 1 manifold, which is also followed here. It has further been shown [129] that
optical pumping is usually much less effective compared to systems like 8”Rb, the
main reason being stronger depolarizing mechanisms due to the smaller hyperfine
splitting. High conversion efficiencies of 0.75 were only realized in the presence of
large magnetic bias fields of 80 — 100G [137, 138], an option that is not available in
the setup of this thesis. In this setup, a first pumping flash using a former MOT
cooling beam transfers all atoms into the f = 1 manifold, which is traced using
state-selective absorption imaging. Having made sure that the sample is cleaned
of f = 2 atoms, the capture efficiency is evaluated by retrapping the atoms in their
initial MOT configuration. The corresponding photodiode signal ratio gives transfer
efficiencies in the range of 26 — 31% for this pure [f) pumping scheme. m¢ selective
pumping demands a well-defined quantization axis along the propagation of the
pumping beam. Using bias fields on the order of a few Gauss induced by the com-
pensation cage, a second pumping flash increases the transfer efficiency by a factor
of 1.5 —1.6. The low switching time of the bias fields as well as residual jittering in
the beam shutter switching time made this second pumping constantly interfere
with the optimal molasses and magnetic trap capture parameters. Evaluating the
gain of optical pumping at later stages of the experiment, this lead to slightly
higher average atom numbers, yet at the cost of higher shot-to-shot fluctuations.
The my selective pumping was therefore eventually discontinued and only the first
pumping flash is currently in use.
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MAGNETIC TRAPPING

5.2 MEASURING in-situ

For the evaluation of the phase space density, only the static [82] parameters atom
number and temperature have to be determined. Both can be inferred after a
TOF measurement as outlined in sec. 4.3. However, the instant deactivation of the
quadrupole coil fields and the associated eddy currents generate parasitic transient
magnetic fields, and the corresponding Zeeman interaction detunes the atoms
with respect to the detection beam. For the experiment at hand, eddy currents
were found to persist for up to 3.4 ms, giving a lower limit for achievable reliable
TOF as well as uncertainties regarding the initial width of the expanding cloud.
Moreover, at high temperatures the released cloud quickly disperses, leading to
rapidly decreasing contrast. Both effects together constrain the available analysis
window and the deduction of the temperature can be error-prone. Lastly, the
limited switch-off time of the magnetic trap does work on the atoms and can
lead to a small amount of adiabatic cooling which is difficult to characterize. A
convenient alternative consists in the acquisition of in situ absorption pictures of
the still trapped cloud, when the relevant parameters can be extracted out of the
density distribution. This has to be done with care, as the presence of the linear
trapping potential leads to anharmonic mixing between the spatial coordinates, so
that the standard procedure of integrating over all but one coordinate and then
obtaining a width has to be applied and interpreted correctly. The total trapped
atom number can be written as

/

N/ng = J n(x,y,z) = ”J exp {—gfmfuBB\/xZM +y2/4+ 22| dxdydz, (5.3)
v kgT

with the peak density ng =n(0,0,0), and the in-trap density distribution n(x,y, z)

being given by a Boltzmann factor with 1/e length that is the ratio of magnetic

force and thermal energy. Any non-tomographic measurement method integrates

along the detection axis here chosen to be y, yielding the column density n I, (x,2) =

fiooo n(x,y,z)dy. Considering a cut through the vertical direction, the functional
form of the density distribution can be expressed as

grmsugB’
ny (x,0) o 2[x| K4 <kBT X|) , (5-4)
with X; being the modified bessel function of second kind and first order. The
temperature is then evaluated as [130]

_ 29rmsupB’

T
5 kg

A (5.5)
where A [ is the full width half maximum of n I, (x,0), and the f—subscript signals
the onefold integration. For a gradient of 216 G/cm along the vertical direction
and atoms in |f = 1,m¢ = —1), this gives a conversion factor of 0.145 (uK/pum)
between temperature and horizontal cloud extent. Experimentally, it is common to
integrate the column density also over the other (in this case vertical z-) direction
to suppress systematic noise. However, as the magnetic trapping potential is not
separable along the cartesian coordinates, the functional form and therefore also
the FWHM value of the column density along x will be a function of z, and for
the problem at hand, the subsequent integration along z will broaden the obtained
signal. This is depicted in the inset of Fig. 22 for a 40 pK hot cloud. By denoting



5.2 MEASURING in-situ

the integrated column density as n iy (x) and its FWHM as A/, eq. (5.5) has to
be complemented by a correction factor €; = A;/Ay in order to give the correct
temperature estimate, and will lead to an overestimation otherwise. In the limit of
complete integration over z, the integrated column density is

kgT 2 gemeupB’ grmsugB’
=4 ———— 1T+ - K. (5.
n”y/z(x) T (gf fLLBB’> ( + T Ix| | exp IsT Ix|| . (5.6)

For calculational convenience, it is much simpler to perform a Gaussian fit with
standard deviation ogayss to N If (x) and approximate the integrated FWHM by the
y,Z

fitted one using Agauss = 21/2 10g(2) 0Gauss for a Gaussian FWHM. This commonly
used [139, 130, 140] Gaussian approximation introduces a second correction factor
€2 =A I /AGauss that one has to account for. Due to the limited integration bounds,
both functional form mappings will be inherently nonlinear. The correction factors
are determined by first calculating the integrated column density for ensemble
temperatures between 10 uK and 300 uK using numerical integration. The estimated
temperature is extracted using eq. (5.5), once using the corresponding FWHM of
the exact functional form and once for a Gaussian fit of said form. To highlight the
susceptibility of the correction factors to the integration bounds, the integration
is performed completely along y and in a fixed 20 mm? area in the xz plane. The
result is depicted in fig. 22 for a temperature range up to 205 uK, together with
the FWHM of the column density for which eq. (5.5) is exact. The broadening
due to integration along the vertical direction corresponds to a correction €7 ~ %
that can also be obtained by comparing eq. (5.4) and (5.6). Shrinking the vertical
3

integration window in an experimental sequence then gives values between 3
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Figure 22: Estimated temperature using eq. (5.5) for the FWHM of the column density (blue
curve), integrated column density (red curve) and a Gaussian fit to the latter
(green curve). Out of the different slopes, the correction factors €7 and €, can be
evaluated. The inset shows the broadening of the integrated column density (red
curve) compared to a column density cut through the z = 0 plane (blue curve)
for a 40 uK hot cloud and a gradient of 216 G/cm.
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(for the whole cloud) and 1 (for the central slice). The Gaussian approximation
gives a nonlinear overestimation, being 15% for temperatures up to 60 uK and then
bending over to smaller overestimations, which can be attributed to the changing
ratio between cloud width and integration bounds. In total, both correction factor
functions appear benign. The last complication arises due to the effect of Zeeman
shifts on the absorption technique. The presence of the inhomogeneous magnetic
trapping potential changes the interaction of the detection beam with the atomic
distribution with respect to local polarization and detuning, which in turn leads to
different local scattering cross sections. For a probe beam on the cyclic transition
12,2) — 13,3), the differential Zeeman shift between the trap center and the cloud
density FWHM A[ is

5(Af) = 6.95 (MHZ/G)]:LBT — 100kHz/uK x T (5.7)
B

The actual field gradient drops out of the calculation, as the cloud adapts its
extent according to eq. (5.5). Hence the spatial distortion is mainly governed by
a comparison of the atom species linewidth to the thermal spread. These effects
appear strongly pronounced for 37K, as its smaller natural linewidth reacts more
sensitive to the inhomogeneous Zeeman shifts, and its small hyperfine spacing
more sensitive to local optical pumping. No globally monotonic scaling between
in-situ and real atom number could be obtained here, rendering even qualitative
statements futile. In order to obtain better estimations for this species, the probe
frequency would have to be detuned several linewidths to decrease the impact of
the differential Zeeman shifts on the absorption cross section [7].
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Figure 23: Experimental temperature determination using the in-situ and TOF method for
the 23Na system. Both methods are in agreement with each other, as indicated
by the unity slope line (dashed gray curve). The vertical error bars, given by the
standard deviation using the estimate along horizontal and vertical direction,
are smaller than the plot markers.

1 An exact in-situ atom number determination will only be possible by fitting a convolution of all the

spatially dependent parameters with the unknown density distribution to the acquired signal [141].
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For #*Na with its comparatively large linewidth, a much better agreement is
found. At temperatures between 10 and 100uK acquired via TOF, atom number
scaling factors between 3 and 3.7 are observed. Figure 23 shows a comparison of
TOF and in-situ temperature estimations for given evaporation depths and 23Na,
using eq. (4.20) and (5.5) together with the appropriate correction factors €, €>.
The temperature estimates agree with each other in a window given by a standard
error of £7% and therefore lie well in each other error bars. This result proved
to be very valuable during the optimization stage of the dual-species operation.
By approximating the 23Na parameters using in-situ imaging and measuring the
39K atom number in a subsequent TOF, the static parameters for both species can
be obtained in one single shot. In experiments with a cycle time on the order of
a minute, this approach allows expeditious qualitative optimization on a finely
sampled parameter grid. Once the optimal working point has been narrowed down
in parameter space, this method can be complemented by the more time-devouring
approach of separate TOF measurements for each species in order to cross-check
the determined temperatures and reassess whether the species are in thermal
equilibrium with each other.

5.3 MAJORANA LOSSES AND OPTICAL PLUGGING

In a semi-classical picture, the atom’s magnetic moment precesses around the
quantization axis set by the magnetic field. In order to maintain this precessing
motion when the field is subject to changes, the atom has to adiabatically realign to
the magnetic field orientation on a timescale given by the inverse Larmor frequency
of its precession, (wr)~" = (uB/h)~ . Every faster change will be diabatic and
can lead to spin flipping excitations in the local eigenbasis. At the origin, the
magnetic field approaches zero and (wi)~' diverges. Consequently, an atomic
spin passing the center cannot follow the field direction fast enough and will
"lose’ its quantization axis. It is then possible that the magnetic moment of the
atom is reversed relative to the local direction of the magnetic field and therefore
spin-flipped into an untrapped state, and thus leaves the trap. This loss mechanism
is famously known as Majorana losses*[144]. This phenomenon obstructs the cooling
efficiency o« N/T twofold, as it increases T while decreasing N. As the probability
distribution of vibrational wave functions maximize at the semiclassical turning
points, hot atoms spend only a short time at the trap center, and their loss rate is
dominated by collisions with the background gas. As the system gets colder and
denser, Majorana losses become therefore more pronounced. Intuitively, one might
expect the loss rate to scale as I' oc n o - ;y o X T—3. This is partially compensated
by the fact that slower atoms have more time to adapt to the magnetic zero, which
results in an inverse quadratic instead of cubic scaling ' o« T2 [145]. To quantify
this effect, a simple loss model can be employed [146], treating the magnetic center
as an ellipsoid with absorbing boundary conditions. The flux of atoms entering this
ellipsoid then directly gives the Majorana loss rate

ALY OTTL A
M7 AU keT

(5.8)

Cynically, Ettore Majorana himself got lost during a short ship trip from Naples to Palermo. His
mysterious disappearance has been the subject of debate and exhaustively covered in literature, with
vast speculations regarding his motives and fate [142, 143].
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where x is a geometrical prefactor defined by the ellipsoid volume. It can be
calculated either by approximating it with the spherically symmetric solution
giving Xsymm. = % ~ 0.09 [145], where the field gradient B” has to be replaced
by its geometric average over all dimensions, or directly evaluated by numerical
integration of the atomic velocity distribution [147]. For a given experimental setup,
magnetic field strength noise, fluctuations and drifts affect the loss region. These
perturbations are not easy traceable and differ from setup to setup. The most
sensible option therefore is to use x as a free fitting parameter to given data so
that it incorporates the averaged perturbations of the given experimental situation.
The latter method gives typical values between 0.1 and 1 [146, 148, 149]. Fig. 24
shows measurements of the 2>Na effective 1/e lifetime at varying temperatures
and a magnetic field gradient of 216 G/cm. Each loss rate has been recorded by
monitoring the remaining atom fraction at given trap holding times and extracting
the respective time constants out of exponential decay fitting. The high-temperature
limit of pure background collision induced losses can be prepared by disabling
the molasses stage, when the magnetic trap transfer significantly worsens. In the
probed temperature region, the densities are sufficiently low and three-body losses
can be neglected. The temperature dependent lifetime loss rate is then given by the

inverse overall loss rate
—1
B . h meB/\? 1
N = T i) = [ (M9 +T] . G9)

Using x and the background lifetime T as fitting parameters yields T = 46.5s and
x = 0.196. This is in accordance with other 23Na systems [149], in which x = 0.14
was measured.
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Figure 24: Measured effective 1/e lifetime as a function of temperature. A fit (solid line)
using the Majorana loss rate equation gives the geometric prefactor x.



5.3 MAJORANA LOSSES AND OPTICAL PLUGGING

5.3.1 Plugging the trap

A multitude of options exist to suppress this loss mechanism inherent to quadrupole
traps. All of them employ additional mechanisms of magnetic or optical origin
that superimposes the quadrupole potential. Purely magnetic solutions rely on
time-averaging (TOP trap [150]) or on shifts of the magnetic zero (Ioffe-Pritchard
trap [151]) using an additional bias field coil. In this thesis, an optical solution is
utilized by focusing a blue-detuned laser beam into the magnetic center. There
it erects a repulsive potential barrier for the atoms, serving as an optical plug of
the magnetic trap bottom. For the discussion of optical forces, see chapter 6 and

references therein. It is only stated here that Vpjyg o< Ipyg for a blue-detuned beam.

The atomic ensemble will then reside in the newly formed minima of the combined
magneto-optical hybrid potential, avoiding the loss ellipsoid at the center. The
resulting trap geometry depends on the inclined angle between beam propagation
and coil symmetry axis. In a horizontal beam configuration, always two minima
will be generated, as the beam slices perpendicular through the magnetic field
symmetry axis. For the used experiment chamber, such a configuration gives
easier optical access, yet is prone to instabilities e.g. due to drifts or vibration
induced fluctuations of the magnetic trap position, which appear most strongly
pronounced along the axial direction of the trap. The plug is therefore used in a
vertical beam configuration, which is immune to vertical drifts smaller than the
Rayleigh length. If the beam traverses exactly along the coil symmetry axis, the
combined trap generates an infinite amount of degenerate minima at a given radial
distance, which is depicted in fig. 25 (a). In experiments that pursue Bose-Einstein
condensation already in the plugged trap, this is usually unwanted as an infinite
ground state degeneracy will lead to fragmentation rather than condensation. This
holds true also for this experiment, as a ring-shaped cloud is less useful for the
later transfer into the optical dipole trap. The plug is therefore radially displaced
by about half a beam waist, thereby generating one localized absolute minimum

(see fig. 25 (b)).
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Figure 25: Combined potential (in uK) in a vertical plug configuration for the experimental
parameters used in this thesis and a cut along z = 0. A plug propagating along
the symmetry axis (a) creates a ring of minima (red circle), whereas a deliberate
offset from the symmetry axis (b) generates one well defined minimum (red dot).
The potential value at the plug center is on the order of 250 uK.
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The presence of the plugging potential deforms the density distribution of
the cloud, when amongst others the in-situ determination of temperatures (see
5.2) becomes critical. To quantify this, the density distributions for the combined
potential with the used experimental parameters were obtained by numerical
integration. The resulting integrated column densities n iy (x) are depicted in
tig. 26 together with a cut of the combined potential through the yz-plane. At
temperatures above 60 uK, the effect of the plugged hole is less pronounced and
gets almost averaged out, when the in-situ temperature determination is still
reliable using an appropriate correction factor depending on the plug intensity.
At lower temperatures, the density first develops an asymmetry which turns
into a skewed Gaussian at temperatures in the low uK regime. Determining the
temperature at these parameters would demand a deconvolution of the obtained
integrated distribution, which is beyond the treatment introduced in sec. 5.2. In
the temperature region T < 10uK, the accessible expansion times are significantly
enlarged, when a TOF analysis becomes the most reliable tool.
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Figure 26: 2>Na integrated column density distributions (in arbitrary units) for a plugged
trap and temperatures between 2 and 150 uK. The parameters of the combined
trap are B’ =216 G/cm, Pprug = 3.7W, Apyg = 532nm, wo = 39 um and a radial
displacement by wy/2 into the third quadrant of the xy-plane.

5.3.2 Experimental implementation

In this experiment, the generating source of the repulsive potential is a single-mode
diode laser pumped solid state laser system (VERDI-V5) that generates up to 5W of
power in the green part of the optical spectrum (Agp = 532 nm). The experimental
setup is depicted together with the initial alignment procedure in figure 27. Despite
its apparent simplicity, the optical setup imposes some strict boundary conditions
regarding its initial alignment, daily usage and weekly maintenance. It had been
previously reported [149] that it is imperative to distribute the beam using an
optical fiber to ensure high enough pointing stability. For this task, the experiment
uses a large mode area photonic crystal fiber (NKT Photonics), whose fiber coupler
connector is embedded in a copper housing. With 5W of low-wavelength light, the
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Figure 27: Experimental setup. The initial alignment procedure uses resonant light instead
of the plug beam to induce fluorescence in the 23Na cloud [a]. Switching back
to the plug beam unveils the plugging effect [b].

power handling of the fiber turns out to play a vital role. Dissipating laser power in
the fiber cladding leads to heating and slight deformation of the copper, which in
turn squeezes the fiber, slightly changes its orientation and hence again changes
the power dissipated into the fiber, generating a closed feedback loop. This also
discouraged the use of higher amount of power: Using a different VERDI with
nominal output power of T0 W, coupling 8 W into the fiber lead to temperatures of
52°C in the housing. For the 5W VERDI, stable operating conditions could only
be achieved if the fiber is kept in constant thermal equilibrium, which forces to
install the plugs on/off switch after the fiber. Switching is achieved by using a
shutter tandem, of which one is designed to withstand high thermal load, while
the other ensures quick and reliable switching [152]. Under these conditions,
3.5 —3.7W of light can be delivered through the fiber, which is monitored by a
pickoff photodiode next to the fiber output. As the beam enters the chamber from
the top, the plug beam is superimposed with the vertical imaging path using a
dichroic mirror. Thus it will pass through the imaging objective, which has to be
accounted for when setting the beam spot size and divergence. After the beam
has passed the chamber, it is deflected onto a beam dump using a dichroic mirror
so not to interfere with the MOT optics. In the initial setup procedure, the beam
path is first aligned onto the atomic ensemble position by injecting light resonant
with both the cooling and repumping transition of the sodium D2 line into the
NKT fiber and maximizing the fluorescence signal on the horizontal detection
system (see fig. 27). A two-lens system after the outcoupler sets the focus position
and beam waist, both being preset using sodium fluorescence as shown in the
inset of fig. 27. For the tested waists between 13 and 50 pm, the corresponding
Rayleigh lengths are between 1 and 14.76 mm, rendering the exact focus position
largely irrelevant. With a decently aligned beam, absorption imaging along the
vertical axis unveils the effect of the blue plug piercing a hole into the atomic
distribution. At sufficiently low temperatures, the effect of a decently aligned plug
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is stunning, as it greatly increases the observed atom number compared to the
plugless configuration. Fine adjustment of the plugging performance as a function
of waist size fixes the latter to 39 um, extracted by a two-dimensional Gaussian
fit to the pierced density distribution. For 3.5 W of power, this results in a plug
height of 246 uK at its maximum, whereas the optical potential at the magnetic trap
center is Vp,o = Vpiug(0,0,0) = 150 uK. The plug position is monitored daily during
the experimental routine check-up and has to be slightly adjusted on a weekly to
monthly basis.

Having installed the plug, the Majorana losses are revisited by performing
lifetime measurements in the now plugged magnetic trap, as shown in fig. 28.
Compared to fig. 24, the vacuum conditions had been improved by applying
Titan sublimation pumping, giving lifetimes due to background collisions of over a
minute. For T < 100 pK, the expected Majorana loss rate (dashed line) translates into
lifetimes of below 30s. Instead, the observed lifetimes are about 35 s larger, signaling
the desired suppression. Due to the finite plug height, the Majorana loss mechanism
is not completely disabled, as atoms with enough kinetic energy can tunnel through
the optical barrier. The increasing density near the trap center reduces the lifetime
to its minimum of 28.5s at T ~ 10 uK. At even lower temperatures, the underlying
Boltzmann distribution supports less atoms with enough kinetic energy, and the
lifetime again increases. Assuming a Boltzmann like exponential loss reduction
[149] gives Nvisupp. o< Tm X exp [—Vp,o /kB T] for the suppressed Majorana rate. A fit
to the data represents the observed behaviour well down to T > 4 uK (solid line).
At even lower temperatures, the deviation from the expected curve indicates the
regime from which on 3-body losses, which are not included in the model above,
have to be taken into account. Summarizing, the plugged trap supports sufficient
lifetimes at all observed temperatures. With the Majorana losses out of the way, the
stage is set for performing phase-space compression, which is discussed next.
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Figure 28: 1/e lifetime as a function of temperature for the plugged trap and B’ = 156 G/cm.
The expected Majorana loss mechanism (dashed line) appears strongly reduced.
Below T = 4 pK, the data deviates from the suppressed Majorana rate model
(straight line), indicating the region of non-negligible three-body losses.
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5.4 EVAPORATIVE COOLING

The total energy of a gas with temperature T in a 3D linear trap is given by
E= %ng T. Fixing the binding energy of the system to a certain value Ul =nkgT
will result in an energy-selective removal of atoms carrying thermal energies > U.
As this resembles the mechanism in which the hottest parts of a liquid disperse as
vapor, this process is widely known as evaporation. Encompassing descriptions of
evaporative cooling theory can be found in [153, 154, 155], and only the core idea

is laid out here. The amount of energy that is removed per particle is given by

dE -
aN = U+ kkgT =kgT(n + «) (5.10)

where k ~ 1 denotes the average energy per particle that is removed beyond n. For
a thermalized ensemble, this is equivalent to a reduction of temperature if dT > 0:

dN«N, dT n+k—92dN

9
(E—dB) =3 (N=dNkg(T—dT) 7= & =~ —

(5.11)

Hence 1+« > 5 and therefore n > 4 as an approximate lowest bound for effi-

cient evaporation using the above Taylor approximation. The remaining atoms are
not in thermal equlibrium anymore, as the high-energy tail of their underlying
Boltzmann distribution is missing. Thermalizing is achieved by atomic collisions
that redistribute the respective atomic velocities and replenish the high-energy tail,
forming a new Boltzmann distribution with T" = T —dT. The atoms will equilibrate
after ~ 2 —4 collisions with each other, the almost exclusively cited value being
2.7 collisions measured in [156]. The elastic collision rate Iy = noVo, given by the
equilibrated peak density ng, mean velocity v and elastic scattering cross section o,
therefore plays an important role by ensuring constant thermalization ("thermal
adiabaticity" [157]) throughout evaporation. Through the thermal dependence of
the mean velocity, cooling the sample will lower I ~ /T, which has to be compen-
sated by sufficient density increase in order to maintain thermalization. Expressed
in atom number change, this demands that the power law

dN(t) 1 /dT(t) 1
dt N(t)_< dt T(

is fulfilled at all times. A more sophisticated model than the Taylor expansion
applied in (5.11) and (5.12) gives n > 3.17 as the lower bound for the truncation
parameter in a 3D linear trap from which on I is at least constant [153], signaling
runaway evaporation.

For n > 1, only particles carrying enormous relative amount of thermal energy
are removed, which happens on a timescale ~ e". Thus evaporation becomes less
costly in terms of atom number, yet also less efficient regarding the speed of the
evaporation process. In an otherwise loss-free environment, the cooling efficiency
would then be freely choosable and the upper bound for n determined by the
patience of the respective experimentalist. In a real experimental environment, it is
given by the timescale set by the ensemble lifetime, in the sense that n has to be
low enough so that the elastic collision rate exceeds the overall loss rate 1,55 by at
least two orders of magnitude. In experiments with low lifetimes on the order of a
few seconds (e.g. atom chip traps [151]), one aims for n ~ 7. [158]. With magnetic
trap lifetimes on the order of a minute such as those found in this experiment, n
can be easily set beyond 10.

t))“, o % 5/2 (5.12)
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Evaporation dynamics

If the atomic ensemble behaves sufficiently ergodic (usually satisfied through
fast interparticle collisions), any spatial pecularities drop out of the description,
when the evaporation dynamics are reduced to pure energy dependent terms.
One can further assume that the sample is neither too hot, so that all collisions
take place with zero relative angular momentum (s-wave), nor too cold, so that
classical statistics is still applicable. Approximating the out-of-equilibrium dynam-
ics by a series of truncate-and-thermalize events [159] characterized by the time
scale (I“e’l.)_1 = (Te1./2.7)7", the time evolution of the two essential parameters
temperature and atom number is given by:

T =it (WELE 1) gt (W) b on

dt Y(C+3/2) Y(C+3/2)
(5-13)
dT(t) / Yi(C+5/2m) /v(C+5/2)\
dt {”el'(t) (<%(C+3/z,n)/v(é+3/z)> 1>} T (5.14)

These differential equations are coupled with each other through the elastic collision
rate scaling with ~ N/T. Taylor approximating for small relative changes in N and
T gives a commonly stated description [155, 76], but throughout this thesis the
exact version is preferred. The incomplete Gamma function

n
vilen) = | artet (515)
denotes the integrated density of states and therefore describes quite intuitively the
truncation of the underlying Boltzmann distribution at 1. Hence the denominator
and numerator of eq. (5.14) denote the average energy (and therefore the temper-
ature) before and after truncation. y; converges to the usual Gamma function in
the limit of infinite integration, y(x) = vi(x, 00). ¢ describes the combined power
law of the underlying trap (e.g. ¢ = 3 for a 3D linear trap), which affects the
density of states and therefore enters through the calculation of y;. The overall
loss rate Iy = 1/7 + I'm + I3 acquires its time dependence indirectly through both
the temperature dependent Majorana term 'y ~ T~/ and the density dependent
three-body losses I's ~ n3. The evaporation dynamics are then fully defined by the
chosen 1, the resulting I'.1. and the system inherent I7,gs.

5.4.1 Microwave evaporation

In this experiment, the trap depth of the used magnetic trap is modified using
microwave (MW) radiation as shown in Fig. 29. For 23Na, a microwave field with
an energy hwyw on the order of the hyperfine splitting Exrs = 1771.626 MHz
couples the initial atomic state |f = 1, m¢ = —1) to the set |f = 2,{m¢ =—2,—1,0})
via magnetic dipole interaction. The corresponding detuning will acquire spatial
dependence through the differential atomic Zeeman-shift, dyw(r) = hwmw —
(Enrs + AEzee. (7)), which forms the key to realize trap depth control. As wyw
does not couple to the f = 2 manifold of 37K, it leaves the potassium trap depth
unaffected and therefore is a species-selective process. This is distinctly different
to RF evaporation, in which transitions |f, m¢) — |f, m{) are driven, and where
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Figure 29: Eigenenergies of bare (dashed gray) and dressed (blue) states for a MW detuning
of -20 MHz at the trap center and identical MW Rabi frequencies.

simultaneous evaporation of both species cannot be prevented due to the same
g-factors of 2*Na and 37K.

Each coupling strength is given by the respective complex Rabi frequency
Onw,—2,—1,0, which in this simplified notation also contain the respective po-
larization component and in this example are all set equal. Diagonalizing the
resulting rotating frame Hamiltonian gives the spatially dependent eigenenergies
as depicted in Fig. 29 for a 1D cut along x. At the bare states’ crossing points
(dashed gray curves), the Zeeman interaction shifts the MW field into resonance
with the hyperfine separation, resulting in avoided crossings of the dressed states
(solid blue lines). As the width is given by the Rabi frequency, the correspond-
ing microwave power has to be chosen large enough that diabatic Landau-Zener
transitions across the avoided crossings are negligible. Consequently, any atom in
the lowest eigenstate (red line) that moves adiabatically beyond the energetically
lowest crossing becomes untrapped. In the bare states’ picture, this crossing can
be associated with transitions |1, —1) — |2, —2) and is therefore driven with the 7
component of the radiation field.3 Over the course of evaporation, the atoms’ spatial
extent shrinks with decreasing temperature, which is equivalent to an increase in 1
if the microwave frequency is kept constant. Thus wyw(t) has to be continuously
swept to lower values, which slowly shrinks the 3D surface of avoided crossings
defined by the resonance condition, thereby keeping n constant.

The trap bottom is usually defined as the resonance frequency at the trap minimum,
which for a linear trap is given by Eyps at the trap center. Through the blue plug
potential, the combined trap minimum Vj is shifted towards a position (xo, Yo, zo).

Watch out! The polarization of an electromagnetic field is defined by its electric field component.
As magnetic and electric field unit vectors are orthogonal to each other, m-polarised light drives
transitions obeying the selection rule Am¢ = £1, not Am¢ = 0 [160].
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For a given temperature and microwave frequency, it therefore appears reasonable
to define the truncation parameter by

_ [hwmw — (Enrs — Vo) |

n(wmw, T) = ) , (5.16)
where
2
f(T) =3 x 0.7MHz/G x ‘;BT (5.17)
B

gives the differential Zeeman shift in MHz for a cloud with spatial extent specified
by T and the transition considered above. It is however pointed out that this con-
vention is slightly ill-defined. The optical potential is to a great extent identical for
all considered |f, m¢) states, and therefore does not affect the resonance condition!
So even at detunings smaller than V), (hot) atoms exist that are resonant with wymy.
Consequently, the convention used in this thesis is to use only the magnetic part of
Vo for the detuning and hence for 1. For the used trap parameters and a radial plug
displacement of half a beam waist, Bo(x0,Yo,2z0) =~ 330 mG, when the differential
Zeeman shift corresponds to a trap bottom of ~ 700 kHz.

Optimization

As optimization is a process comparing relative numbers, every function that maps
monotonically on the exact PSD is sufficient as a figure of merit. The optimization
carried out in this thesis therefore uses the in-situ methods described in 5.2 to
maximize the peak optical density as well as a "pseudo-PSD" approach obtained
out of a single TOF measurement [161]. Out of sec. 5.2 it follows that in a Gaussian
approximation the peak density can be expressed as ny o« N T~3/2. Moreover, for a
given TOF time to, eq. (4.20) gives that the temperature follows the relation

o2 (to)
kg (f(Bo) + g(to))

where f and g are functions depending on the magnetic field gradient By and
to that for the purpose of qualitative optimization do not have to be evaluated
as long as they are kept constant. Hence out of the atom number and spatial
extent at a large TOF time, the thereby obtained relative density and relative
temperature construct a quantity similar to the original PSD which is maximized.
After qualitative optimization, the actual phase space density is obtained for the
optimized parameter settings.

T= (5.18)

5.4.2  Evaporation protocol

The microwave field wyrw is delivered using a frequency generator [R&S SMB100A,
0.1 MHz — 12.75 GHz] whose signal is amplified to up to 45 dBm. A first switch
decides whether the generator is used for the MW evaporation or for RF state
transfer not shown in this thesis (see [162] instead). A second switch interrupts
the transmission from the generator, e.g. if only a cutout of a programmed ramp
shall be used. A circulator after the switch prevents backreflections of the amplified
signal.
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At the start of an experimental sequence, a set of wyw grid points are fed into
the generator. Upon receival of a digital trigger signal, the generator processes these
with a dwell time of 24 ms. The discrete ramp sampling (opposed to the desired
continuous ramp outlined above) is not an issue as long as the dwell time is small
compared to the ramps characteristic time constant. The generated signal is emitted
into the experiment using a double loop wound copper antenna glued to one of
the Feshbach coil holders. To make sure that no self-resonant frequency is present
near wyw, the antenna transfer function has been measured in the region around
Enrs using pickup antennas [162].

The evaporation process has been optimized by decomposing the total frequency
sweep into a set of seven linearly interpolated ramp stages characterized by their
eight start/end points labeled A-H. The first stage (A-B) has been designed to
provide robustness against detoriation of one of the earlier experimental stages
(molasses, MT transfer). As shown in sec. 5.1, the initial temperature is on the
order of 100uK, when n = 10 would be satisfied by wyw = 27t x 63 MHz. The
ramp instead starts at A = 27t x 100 MHz — V; /h. In the case the initial temperature
doubles (quadruples), this corresponds to 1 = 8 (4), which still ensures runaway
evaporation. The (A-B) ramp length of three seconds leads to a tolerable background
collision atom loss of about 5%, whereas the end frequency of B = 27t x 60 MHz —
Vo /h fixes the temperature to S 100 uK which provides similar temperature starting
conditions for the ramps that follow. The subsequent ramps (B-G) are optimized
using a strategy similar to the one described in [130]. For a given segment, e.g.
(B-C), the time constant and MW power are scanned, whereas the following (C-D)
ramp is unchanged. Next the stage (D-E) is appended and (C-D) optimized in
similar fashion. To avoid getting stuck in a local optimum, it is constantly checked
that a global change, e.g. by multiplying all time constants by the same factor, does
not significantly improve the result.

The result of this iterative optimization is a ramp where the detuning resembles
the functional form of an exponential with a quadratically decreasing time constant,
ie.

— (5.19)
65—16x10 352" >19

8Ramp (t) o exp

This reflects the fact that as the evaporation progresses, the elastic collisions increase
over time so that the evaporation time constant can be shortened. The last ramp
(G-H) is simply appended using the previous time constant for 4 s. The full ramp
duration is 24 s, ending at a final frequency H = 27t x 1.56 MHz — V; /h.

5.4.3 Single-species performance of >Na

With 23Na being the workhorse of this procedure, the evaporation was first charac-
terized in single-species operation, and 3K subsequently added. Figure 30 shows
the evolution of the 23Na atom number and temperature during the evaporation
ramp, once for the plugged case (green triangles) and for a pure quadrupole
trap (blue diamonds) with equal starting conditions, a magnetic field gradient of
156 G/cm and a plug characterized by a plug height Uy = 246uK and beam waist
39 um.

Comparing points belonging to equal evaporation times, it is clear that in absence
of the plug, the Majorana losses and accompanied heating render evaporation
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Figure 30: Time evolution of atom number as a function of temperature during evaporation.
Points of equal evaporation are marked by their evaporation time in seconds.
The pure quadrupole trap (blue diamonds) features strong Majorana losses
and accompanied heating compared to the plugged case (green triangles). The
dashed lines are simulations of the evaporation dynamics according to (5.13)
and (5.14) for the region of interest.

largely inefficient. At temperatures below 20uK, the power law exponent given by
the slope in double logarithmic representation rises above 3, when the runaway
evaporation criterion (5.12) breaks down. In contrast, the plugged potential operates
safely in the runaway regime, with an average slope & = 1.43. For the stages (B-G)
of the evaporation trajectory, the average value for n according to eq. (5.16) is on
the order of n = 12. This is a rather high value compared with other experiments
employing RF evaporation [130, 149]. In order to certify it, simulations of the
evaporation dynamics were performed that solve the differential equations (5.13)
and (5.14) by propagation on a discrete variable time grid defined by (I, ).
All other simulation parameters have been fixed by experimentally measured
values, where the Majorana and background losses are interpolated using the
measurements presented in fig. 28. Lastly, the three-body loss rate coefficient is
estimated using measurements in the optical dipole trap (see also section 6.4).
Using only the initial conditions as free fitting parameters and setting n = 12,
the simulated evaporation trajectory (dashed lines in 30) decently reproduces
the experimental one. The smaller experimental efficiency at lower temperatures
compared to the simulation can be attributed to a combination of a possible plug
displacement discrepancy between the measurements presented in fig. 28 and fig.
30, and most probable the underestimation of three body losses especially near the
end of the ramp.
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Peak density and cooling efficiency

Having obtained the quantities atom number N and temperature T, the peak
density no and consequently the peak PSD (= nyA3) have to be evaluated. For a
plugged potential with large plug Rayleigh length, a plug displacement (xp,yp)
and including gravity, the peak density is related to the atom number via

1
N =mng JJJV dx dy dz exp (_W {VMag. (X/ Y, Z) + vOpt. (X/y) + Varav. (Z) })

(5.20)
Wag. (X, U,2) = grmeugB’\/x2 /4 +y2 /4 + 22 (5.21)
X —xp)? + (Y —yp)?
Vopt.(x,y) = U exp [—2( v) z(y Yp) (5.22)
Wo
VGrav.(Z) =mgz (523)

This integral can be tackled by different approaches in order to access no:
1. Explicit numerical integration of eq. (5.20), yielding the "correct" result ny.

2. Neglecting the plug potential: This appealing approximation makes eq. (5.20)
analytically solvable as long as g¢gm¢ugB’ > mg, i.e. as long as the trap holds
against gravity. Using grm¢ = % as in this setup, the resulting density ng jin.
for a linear potential is given by

Mo lin. =

2 2
N (s’ — (mo)) 5 (55 G2
320 (GupB’) (kgT)°  2mo<usB’ 32w \2kgT) 27

For B’ = 156 G/cm as used in the measurement shown in fig. 30, the gravi-
tational correction term is on the order of 1%, but has to be accounted for
if one decreases the magnetic field gradient at later stages of evaporation to
counterfeit losses. This approximation works quite well at high temperatures,
but a quick glance at fig. 26 indicates that it will definitely overestimate the
density near the trap bottom and therefore at low temperatures.

3. Harmonic approximation: In the vicinity of the combined trap minimum, the
slope behaves quadratically rather than linearly. Assume a plug displacement
into the third quadrant, when the trap minimum (xo, Yo, zo) is situated in the
first one as depicted in fig. 25 (b). After a transformation on the principal axes
(u,v,z), with ey, = % (ex £ ey), the potential V(u,v,z) is expanded in sec-
ond order around the trap minimum (u, 0, zp). Dropping all anharmonicities,
this gives

1
Viwv,z) & 5m (wu(u—uo)? + wyv? + w(z—20)%) . (5.25)
Wy,v,z then give the radial, angular and vertical trap frequency as seen from
the origin, and for the used parameters in fig. 30, (wy, wy, w,) = 27 X
(593,133,475) Hz. Naturally w, is the smallest, vanishing for the rotational
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symmetric case x, = yYp = 0. The density nghamm. for this approximation is
then given by

m \3/2

N0 harm. = N X wywyw; <W> . (526)
Compared with ng jin , the harmonic expansion reproduces the correct density
at low temperatures on the order of a few uK, but of course fails in the high
temperature limit.
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Figure 31: Peak PSD as a function of evaporation time. The blue line corresponds to
the analytical solution disregarding the plugging potential, while the red line
corresponds to the harmonic expansion around the combined trap minimum.
The green triangles are obtained by numerical integration of the exact potential.
A gray dashed line indicates the border to the quantum degenerate realm.

Figure 31 shows the peak PSD as a function of evaporation time using all
three methods outlined above to obtain the peak density ng for the used ramp.
As explained above, the linear approximation reproduces the numerical solution
particularly well at high temperatures, but overestimates the density at the late
stage of evaporation, giving a false peak PSD on the order of 10 after the final
evaporation stage. If the above approximations are used, the turning point in which
the linear description should be replaced by the harmonic one is at approx. 6 uK,
as indicated by the crossing of both lines at approx. 16s of evaporation.

The explicit numerical integration (green triangles) is now analyzed regarding
the phase space compression efficiency. As the usual goal is to enlarge the phase
space density at low atom cost, a cooling efficiency D can be quantified by the
power law relation

_dlog(PSD(t))

D(t) = logN(1) (5-27)

As explained in the evaporation protocol, the first three seconds of the chosen
ramp correspond to the "safety net" ramp (A-B). This part therefore leads only to
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negligible phase space increase, with a cooling efficiency D(0 — 3s) = 1.41. For the
ramp (B-G) corresponding to the interval between 3 and 20 seconds, the average
cooling efficiency is found to be D(3s —20s) = 2. This is lower than the 2.7 that
was given in a comparable experiment [149]. However, that article featured the
linear approximation neglecting the plug potential, and as outlined above, this
nonlinearly overestimates the density as the evaporation progresses. Applying
the same approximation to the ramp interval (B-G) gives the much larger value
Diin, (35 — 20s) = 2.57 that is comparable to [149]. The final evaporation stage (G-H)
indicates saturation at a PSD on the order of 1, just below the onset of Bose-Einstein
condensation (dashed gray line). In this high density regime, the impact of three
body losses becomes sizable, hampering the evaporation efficiency. The usual
remedy applied in such a situation is to decompress the magnetic trap by lowering
the magnetic field gradient, when further phase space compression is achievable.
Yet as outlined in the introduction to this chapter, reaching BEC in the magnetic
trap is rather detrimental for the dual-species operation. Hence pushing the pure
sodium operation beyond PSDs of 1 was not pursued.

5.4.4 Sympathetic cooling of 3*K
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Figure 32: Time evolution N(T) of 23Na (orange triangles) and 39K (gray dots) in dual-
species operation. Points are marked by their evaporation time in seconds.
Sympathetic cooling of 3K is highly efficient at temperatures > 10K, whereas
the time evolution of 23Na is almost unchanged compared to the single-species
case (green dashed line). Inset: PSD(N) for 39K during evaporation.

In dual-species operation, both 23Na and 37K are loaded into the plugged trap.
The initial trapped atom number ratio Nk /Ny is chosen by adjusting the individual
MOT loading times and is set between 10~% and 10~ for the experiments presented
throughout this thesis. As stated in section 5.1, the initial potassium temperature
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is Ty x = 240pK. As soon as both species reside in the trap, 23Na is subsequently
evaporated and act as a coolant for the 3K cloud mediated by interspecies collisions.
Figure 32 shows the time evolution of both Nk (gray dots) and Ny, (orange
triangles) as a function of their respective temperatures using the evaporation
protocol presented earlier. The temperature and atom number of both species have
been obtained by TOF analysis. As the evaporation progresses, the 3?K temperature
is steadily reduced, whereas the cooling efficiency of 23Na is barely affected
compared to the single-species evaporation (green dashed line).

Down to temperatures T > 10uK, sympathetic cooling is found to be largely
efficient, giving rise to cooling efficiency of Dx = 8.6 (red line in the inset in
fig. 32). This value is smaller than in some other combinations (e.g. D = 12 for
sympathetic cooling of °Li by #'K [163]), but found to be significantly higher than
D = 4.6 that has been realized for the fermionic counterpart 23Na +4° K [65]. Up
to this point, both clouds are roughly in thermal equilibrium, and the measured
3K temperatures are slightly higher by about ~ 15%. This might hint at unwanted
heating during the imaging process, but is in line with deviations found in other
experiments [164].

At temperatures below 10 uK, a rapid decrease in atom number is observed for
the 37K cloud, and the cooling efficiency becomes largely ineffective. The source
for this is twofold: First, as the blue plug strength is given by its detuning to the
respective atomic species D line (see also chapter 6), the repulsive potential is
significantly weaker for potassium, (Vpiugx = 0.43 VpiugNa)- Therefore it will suffer
from a higher amount of Majorana losses at lower temperatures. To get an estimate
of the expected losses, the supressed Majorana loss rate used in fig. 28 is employed,
rescaling the atomic mass and plug strength. For the temperatures measured at
evaporation times of 18 — 20, the estimated loss rate would correspond to about
9% atom number loss per second, which is far below the observed drop of about
50% per second, therefore the Majorana loss contribution appears secondary.

Primarily, the large density region below 10 uK exhibits large interspecies three-
body losses (Na+Na+K) and (Na+K+K), that appear more pronounced for the
smaller potassium cloud. The exact quantification of these loss channels is post-
poned to the next chapter. They will be revisited in the optical dipole trap (see sec.
6.4) as the absence of Majorana losses simplifies the estimation of three-body losses
in such an environment. Yet the main result can be stated as follows: In the face
of the high losses prevailing in the high density region of the plugged trap, the
temperature region T ~ 10 — 20uK, reached after 12 — 15 of evaporation, indicates
the optimal loading point for the ODT transfer in dual-species operation. Both
major loss contributions will be vanquished there: the interspecies losses can be
eliminated by using Feshbach fields, and Majorana losses simply do not appear in
optical traps.
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For an experiment designed to study ultra-cold molecules, a purely magnetic trap
cannot provide the final working environment. ' £* ground state molecules are not
magnetically trappable as they only possess a nuclear but no electronic magnetic
moment. The creation of Feshbach molecules further demands specific magnetic
fields in order to magnetoassociate the atom pair. Last but not least, Feshbach
resonances enable control of the scattering interaction for the mixture experiment,
and the magnetic trap results already indicated these to be of crucial importance. By
transferring the atoms into an optical dipole trap (ODT), the magnetic field strength
becomes again a freely tunable parameter.

Most excellent sources regarding the fundamentals and possible applications of
ODTs are [165, 166]. The main ingredients can be summarized as follows: Similar
to the magnetic trap (where Hyag. = — pt - B was utilized), the working principle of
optical dipole traps relies on energy shifts due to the interaction of internal atomic
states with an applied field, in this case laser light. The main difference is that
opposed to the permanent magnetic moment, the electric dipole moment is induced
by the external electromagnetic field. The same field couples the ground state |g)
to a set of excited states, usually the D line of the respective alkali atom. For a
coupling |g) <> |e), the atom-light interaction in the rotating frame is given by the
Hamiltonian

i 5 Q)
Ha_ 1 == , 6.
A-L= 5 (Q*(r) s > (6.1)

with the detuning & and the complex Rabi frequency Q(r). The eigenenergies

Ey(r) = i%w/éz 1 O(r)2 (6.2)

comprise a light shift, with the spatial dependence imprinted via the intensity
distribution of the laser beam, I(r) o< Q(r)2. The Gaussian shape of a TEMyg
laser mode then naturally provides an energetic hill (valley) in configuration space
for the |[+) (|—)) state, respectively. Assuming far off detuned laser light and low
saturation (|8 > [|Q)[), the problem acquires perturbative characteristics and the
corresponding eigenstates [+),|—) almost coincide with the bare atomic basis |g), |e).
Quite importantly, their assignment is given by 8. When an atom initially in the state
|g) traverses a laser region Q # 0, the sign of & decides whether it will adiabatically
evolve into the low-field seeking |+) (5 > 0) or high-field seeking |—) (6 < 0) state.
In the latter case, the potential felt by the atoms is given by the energy difference
between unperturbed and local eigenstate:

ho h
AE=Eg)—Ey=—5— <—2 52+Q(T)2> (6.3)

ho Q(r)?
=—> <1— 1+< é’;) >> (6.4)

hQ((r)?2 1
~ 4((:) o (;), (6.5)
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where the Taylor series expansion vx2 + 1 ~ 1+ x*/2+ O(x?) has been applied.
This light-induced energy shift, usually referred to as the AC Stark shift, gives rise to
the conservative optical trapping potential Vop (7). Due to the finite admixture of
le) in [—), spontaneous emission naturally appears in the description of the process
through decay of the excited state population pj¢y = |(—[e)]?. In the far-detuned
perturbative limit discussed above, perturbation theory dictates that the first-order
state correction of |g) by |e) is given by

(elHa-rlg), ,  Q(r)

= e 6.6
o =" 1o ©6)
and hence the rate of spontaneous emission y = I'p|) is on the order of
Qr)2  I(r)

Comparing eq. (6.5) and (6.7), it is clear that by increasing I(r) as well as 6 while
keeping their ratio constant, spontaneous scattering can be suppressed without
affecting the light shift potential. Feasible detunings on the order of several 100 nm
with 10 — 100 um foci then demand powers on the order of several Watt to constitute
sizable optical trap depths. The easiest way to produce a trapping potential is
realized using red-detuned light, as any focused laser beam automatically generates
a trapping potential with the trap bottom at its focal point. In particular, the intensity
profile of a Gaussian beam propagating along the x axis, with laser power P, beam
waist wp and spot size parameter w(x)

2P Wo 2 —2r?
I(r)=1 =— — — .
=10 = (i) o [sien] o
generates a tight, Gaussian shaped confinement perpendicular to and a loose,
Lorentzian shaped confinement along the beam direction.

Essential trap parameters

The optical trapping potential Vo, is typically expressed using one of the following
two forms:
Re [o(A)]

Vopt.(%,Y,2) = — Teoc

I(x,y,z Z me rl, i=xy,z). (6.9)
The first expression features the complex dynamic polarizability «(A) as a measure
of effective (i.e. detuning dependent) coupling strength between atomic structure
and interaction field. Formulas involving its real (imaginary) part conform to the
exact form of the qualitative descriptions (6.5) ((6.7)). At a given wavelength and
set of beam parameters, the overall trapping strength is characterized by the trap
depth Vo = [V(0,0,0)| that is commonly given in multiples of kg uK. With the finite
trap depth, it automatically follows that forced evaporation can be implemented in
an ODT simply by reducing the laser beam power.

The second expression in eq. (6.9) approximates the well of the Gaussian potential
as harmonic, which is sensible as long as the mean thermal energy of the sample is
well below the trap depth. For a single beam propagating along x, the axial and
radial trap frequencies are given by

w? = 2Vy > 4V

— Wy = 5 (6.10)
mxg mwg
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The Rayleigh length xg = Tw3/A is typically large compared to the atomic extent,
which implies small spatial variations and hence weak trapping properties on the
order of a few Hertz along the beam direction. Adding a second beam along y
results in a crossed optical dipole trap (cODT) that modifies the trap frequencies
according to

wi = /wi; +wi,y, (i=xy,z2) (6.11)

for all directions. In such a configuration, tight trapping conditions can be obtained
in all three dimensions. Along the vertical axis, the additional gravitational po-
tential shifts the trap minimum, an effect that becomes more pronounced as the
laser intensities are reduced, e.g. during forced optical evaporation. The displaced
minimum zg

1
V= Vopt.(0,0, z) + Vgray, = Emwizz —mgz (6.12)
!
d,Ve=m(wiz—g) =0 nzo= —% (6.13)

z

is called the gravitational sag. In order to counteract the differential gravitational
pull between both atomic species, the laser beam wavevectors are usually chosen to
be both in the horizontal plane in order to provide the strongest confinement along
the vertical direction. Optical potential landscapes starring the essential parameters
Vo, wi and z( are depicted in fig. 33.

- 200 - 100 0 100 200
vertical position z [um]

Figure 33: Combined potential Vop.(0,0,z) 4+ Verav. seen by 37K with the essential pa-
rameters Vj, wi,zo highlighted. The optical trap corresponds to a single
Aopt = 1064 nm beam propagating in the xy-plane with beam waist of 40 pm
and powers {750, 375,250, 187.5} mW leading to trap depths of {40,20,10,5} uK.
The dashed lines depict Vopt.(0,0,2), Vgrav. and the harmonic approximation to
the optical potential.
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6.1 TWO-SPECIES CONSIDERATIONS

The trapping potentials felt by 2>Na and 37K will differ by their respective dynamic
polarizabilities according to eq. (6.9) and (6.10), i.e. Vo x/VoNa = &x/0tNa and

wik | Vox o MNa

. 6.1
Wi,Na VoNa Tk (6.14)

For selected wavelengths, ab initio calculations of Re [«] are tabulated in the liter-
ature [167]. For A = 1064 nm, they read" 597.5 ag (3YK) and 233.6 ag (?3Na). The
resulting trap depth ratio of Vox/Vona ~ 2.5 unveils two distinct benefits for
operating this particular mixture. First of all, the unequal dynamic polarizabilities
almost balance the mass ratio 23/39 in eq. (6.14), leading to rather similar trapping
frequencies (wk/wna ~ 1.2). Second, having a much deeper trap for 37K, forced
optical evaporation by reducing the trap intensities leads to a preferred ejection
of 23Na. Hence sodium will still serve as the coolant for sympathetic cooling of
potassium, keeping the desired role allocation intact. The unequal trap frequencies
will however lead to a spatial mismatch of both clouds that worsens the interspecies
thermalization rates, and eq. (6.13) dictates that this appears most prominently
along the vertical direction through differential displacement of their trap minima.
Using the trap frequency ratio obtained above, the differential gravitational sag
between both species is evaluated as

6zo(wz) = |zoNa — zo x| ~ ¥ Hz*m. (6.15)

wZ

For low vertical trapping frequencies on the order of 27t x 50 Hz, the differential
sag of 32 um can already lead to an effective decoupling of both species, which is
typically unwanted in mixture experiments as well as for molecular association.
The differential sag can be eliminated by operating the trap at a "magic" wavelength
in which the trap frequencies for both species are identical [167, 168]. As ab initio
calculations are not available for each wavelength, the polarizability o;(A) = o (w)
for species i is calculated for each trapping frequency w using a classical oscillator
model [165],

3 P p
Re o ()] = 270 ( TR ) , (6.16)
lei wp; —w wp; —w

where the detuning is assumed to be large enough that no atomic sub-structure
has to be accounted for and the fast oscillating terms are explicitly kept®. wp;
then describes the individual D line centroid and T} the individual linewidth of
each species. Applying this model to 23Na and 37K, a magic wavelength was not
found. It can however be synthesized by combining a set of wavelengths to an
optical multi-color trap. For an initial trap operating at a wavelength of 1064 nm
with power Py, the stronger confinement of 3*K can be equilibrated by adding a
second beam whose wavelength A; is situated between the D transition lines of
both species and therefore acts deconfining on 37K with a certain strength given

This atomic unit description can be converted into SI units using (xgr/h) = 1.56346 x 1077 xa.

2 For a wavelength of 1064 nm and the sodium D line, the classical oscillator model agrees with the ab

initio value below the percent level. If the faster oscillating terms are omitted, the polarizability is
underestimated by about 30%
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Figure 34: Power ratio P, /Py that fulfils "magic" trapping conditions in an optical two-color
trap with A; = 1064nm as a function of A;. The alkali D lines of the mixture
serve as natural roots in the power ratio as the coupling strength diverges at
these points.

by its power P, and beam waist. Assuming equal spot size of both beams, Fig.

34 shows the power ratio P;/P; needed in the equilibrating beam to fulfill the
condition

VoNa | MNa
£ 6.1
Vox  mx (6.17)

that governs equal trap frequencies, as a function of A,. For completeness, also

the solution to Vo na E Vox is given. The amount of power needed for the second
beam never exceeds 10% of the incident beam, e.g. it reads 7.6% at the famous
He-Ne wavelength of 632.8 nm. The differential sag only becomes sizable at low
trapping frequencies, which is equivalent to laser powers P; < 100 mW. Hence
even a moderate amount on the order of a few mW of additional light is sufficient
to achieve equal trapping conditions. A completely different ansatz consists in
adding a vertical magnetic field gradient that cancels out the gravitational force
[169]. This particular case of magnetic levitation requires a magnetic moment ratio
|/ peNal . mg/Mmna and can therefore only be implemented in the vicinity of bias
tields fulfilling this condition. This however disagrees with the initial statement
of this chapter, namely that the magnetic field is needed as a free parameter,
and therefore would require an additional coil pair. Even though it might be an
appealing solution for differently designed experiments, further discussion on this
approach is discarded here.

6.2 EXPERIMENTAL REALIZATION

This experiment operates a crossed ODT as described in the previous section, with
an inclined angle of approx. 9o°. Both beams are generated out of the same laser
source (Mephisto solid state laser system, Aopt = 1064nm, 42 W nominal output
power) and distributed to the experiment table using high-power optical fibers
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Beam Power Whoriz, Wvert VoNa VoK 7= (Wx, Wy, W2y,
(1130,6,1130) Hz

along &, 38W 143pum gopm 22pK 56puK  (4,199,710) Hz

cODT 96 uK 245K  (1130,199,1334) Hz

alonge;, 47W 46um 46pum 74uK 188 uK

Table 3: Optical dipole trap parameters used in the experiment.

(OzOptics PMJ-A3AHPC-1064-6/125-3AS-7.5-1) situated downstream of two AOMs
whose first diffracted order is injected. Before they enter the chamber, the beams
are shaped to create one radially symmetric beam that ensures a high overall
optical trap depth, and an elliptically shaped beam that enlarges the horizontal
trap volume while keeping the gravitational sag minimal. The waists have been
estimated by mapping out the spot size parameter and independently by measuring
trap frequencies (see fig. 37). The used beam parameters are summarized in table 3.
After passing the experimental chamber, a fraction of both beams is directed onto
two separate photodiodes whose signal is fed back to the RF input of the AOMs,
enabling stabilization and dynamic control of the intensities in the experiment via
a PI control loop [170]. A modulation frequency offset on the order of 100 MHz
between the AOMs is used to time-average out spatial interferences of the beams
as they are crossed. The initial coarse alignment was carried out by looking for
characteristic stripe signatures when a cold cloud trespasses the trapping beam
during time of flight. For such a procedure, it is advised to deliberately align the
ODT below the magnetic trap release position, as longer time of flights increase the
search volume. After a first dipole trap signal has been identified, this can be easily
beam walked towards the trap minimum using two-axis imaging from the side and
the top. Two typical pictures of this positioning procedure are shown in fig. 35.
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(a) ODT stripe signature in time of flight, im- (b) ODT together with the plugged quadrupole
aged horizontally. trap, imaged vertically.

Figure 35: ODT signatures obtained via two-axis imaging. Horizontal imaging is used
for vertical alignment and vice versa. The red crosses indicate the potential
minimum of the plugged quadrupole trap.
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This coarse adjustment method is performed for both trapping beams individu-
ally. When sufficient overlap is reached, they are fine-tuned with respect to each
other. As the relative vertical offset of the crossed beams to each other changes the
combined potential, accurate, reliable and reproducible alignment of both beams
with respect to each other is needed. This is realized by equipping both beam
paths with two picomotor piezo mirror mounts (Newport New Focus 8821) each. In
combination with a picomotor controller (Newport New Focus 8742), the picomotor
angular resolution of 0.7 purad allows precise relative alignment on the single-pixel
level of the used imaging system. The atom transfer from the plugged quadrupole
to the optical trap is performed by ramping up both ODT beam intensities in half
a second after a certain MW evaporation time, followed by down ramping of the
quadrupole field in 0.2 s and sudden shuttering of the blue plug. A residual guiding
tield Bres = 2.49 G, applied along the vertical direction using the compensation coil,
preserves the individual spin projection of the atoms, |m¢n,) = Imex) = —1. If
only the AOMs are used for switching the ODT, the combined heating effects on
AOM and fiber interfere with the desired intensity regulation speed. Therefore the
AOMs are kept in constant thermal equilibrium and switching is achieved by an
AOM-shutter tandem. When the ODTs are not operated, the AOMs are kept on
continuously and two flag shutters downstream of the AOMs deflect the beams on
high-power beam dumps using 1/4 inch mirrors. Just before switching the ODTs
into operation, the AOMs are turned off, the shutters opened a millisecond later,
and the AOMs turned on again after 100 ms. This way any spurious shutter jittering
as well as heating effects are eliminated.

Transfer into the cODT

As outlined at the beginning of this chapter, especially the dual-species operation
benefits from the loading of rather hot samples (T ~ 10 uK at evaporation times of
approx. 15 seconds) in order to enable tuning of interactions as early as possible.
Because both the quadrupole and the dipole trap can be used for phase-space
compression, and both of them will display different cooling efficiencies, deeper
MW evaporation will not necessarily lead to much larger final phase space densities.
The cODT loading conditions were therefore determined in a double evaporation
scheme: for a given MW evaporation time, the cODT is loaded, followed by a reduc-
tion of the beam intensities in a 3 s long ramp that realizes a second evaporation
stage. The beams are always ramped to the same values and kept there for a short
thermalization period, after which the cODT is switched off and the atoms undergo
a TOF. The final beam intensity after the second evaporation stage fixes the final trap
depth, therefore the temperature can be assumed to be comparable. As it further
sets the trapping volume, this leaves the atom number as an easily tracable figure of
merit as the first evaporation stage time is scanned. Fig. 36 shows the atom number
of such doubly evaporated 2*Na samples as a function of the MW evaporation time
in the quadrupole trap. The chosen final trap depth gives T = 700 — 800 nK for this
measurement (see inset). The result shows a rather small sensitivity of the 23Na
system to the pre-evaporation, with similar combined efficiencies over a range of a
few seconds.
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Figure 36: 2>Na atom number in the cODT as a function of pre-evaporation time in the
quadrupole trap. After the transfer, the cODT intensities were reduced to obtain
comparable conditions for each pre-evaporated point (see inset and text).

6.2.1  Trap frequencies

In theory, the trap frequencies are completely fixed through the power and waist
of each beam. Yet both quantities, especially the spot size, are not exactly known
at the position of the atoms. Moreover, as the real trap frequencies can differ from
day to day through imperfect relative alignment of the beams, they have to be
remeasured on a regular basis. In this thesis, two well-known methods were used
to extract the trap frequencies, namely by observing dipole oscillations following a
directed external force, as well as parametric heating as a reaction to a parametric
drive. Both phenomena are common in classical mechanical systems and follow
rather intuitive reasoning - every child knows how to parametrically drive a swing.
By comparing the measured trap frequencies with a numerical ab-initio model for
a set of beam powers, both beam spot sizes at the position of the atoms can be
exactly deduced, giving the values in table 3.

If one assumes the harmonic approximation (eq. (6.9)) to be exact, the principal
axes dynamics are completely decoupled from each other. By adiabatic application
of an external force (e.g. ramping up a magnetic field gradient) along one of
the principal axes, the cloud will be displaced from its incident trap minimum.
Following a sudden switch-off of this external force, the cloud’s center-of-mass will
perform dipole oscillations along the chosen axis similar to a deflected pendulum,
with its oscillation frequency being identical to the trap frequency of the excited
principal axis. This behaviour is sometimes referred to as the excitation of Kohn
modes.3. If the mean energy of the atomic ensemble becomes comparable to the trap

The fact that the center-of-mass motion decouples from all internal dynamics, and therefore is
independent of the number of atoms, their temperature and their interaction strength, is quite
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depth, anharmonicities will lead to dephasing of the oscillation through additional
excitation of the other trap frequencies.

The simplest (albeit diabatic) realization of this method is to measure the vertical
Kohn mode w, by a release-and-recapture procedure. After a sudden ODT switch-
off, the cold cloud falls down along z and is recaptured after 500 us, corresponding
to a vertical displacement of 1.2 um. Following a variable holding time, the atoms
are released from the trap and imaged after a fixed TOF time. By sampling the
holding time after the recapture, the vertical center-of-mass position in TOF reveals
the in-trap oscillation as depicted in fig. 37 (a), when the trap frequency can be
extracted by a damped sinusoidal fit.

Along the horizontal direction, the atom cloud can be set into motion using one
of the compensation coils, where the applied force vector is not aligned with the

remarkable. It has it’s roots in Kohn’s theorem [171] which is exact for true harmonic confinement
[172].
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Figure 37: Trap frequency measurement. (a) Dipole oscillations of a 23Na BEC. A sinosoidal
fit gives the trap frequency, in this case w, = 27t x 157 Hz. (b) Parametric heating
of a 23Na BEC. The parametric resonance (or a subharmonic) can be inferred
by monitoring the number of particles that have been heated out of the trap
(left). Alternatively, the energy pumped into the system gives a breakdown of
the harmonic approximation, and the resonance can be observed by probing
anharmonicities, such as vertical movements following a horizontal drive (right).
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principal axes. In the general case of exciting both horizontal Kohn modes, the
periodic oscillation in the xy-plane is given by

f(t) = e /" {(cos() Ay ) sin (wxt + by ) + (sin(x) Ay)sin(w,t+¢2)}. (6.18)

The exponential decay models the dephasing of the oscillation amplitudes A, and
Ay that are given by the incident angle between applied force and trap axis, whereas
o denotes the incident angle and therefore the sensitivity of the camera system to
the respective principal axis. In systems where equal horizontal trap frequencies
are desired, this results in a beat signal f(t) that can complicate the assignment of
the trap frequencies [173]. Such geometric requirements do not exist in this setup.
For the majority of cases that follow, both beam intensities were set to provide a
nearly equal trap depth per beam. Due to their different trapping volumes, the
trap frequency of the large volume trapping beam then usually is a factor ~ 3
smaller, rendering the assignment of the oscillation frequencies straightforward. It
is also possible to create a perturbation that is automatically aligned with one of
the principal axes: First, one of the traps is adiabatically reduced, which displaces
the minimum of the remaining trap to its focal point. Afterwards, the reduced trap
is diabatically restored to its initial value, when the atoms will display oscillations
that probe the radial frequency of the restored trap. Due to the large Rayleigh
lengths the differential force felt by the atoms is rather small, but the oscillations
can be successfully traced when the time-of-flight time is chosen to be sufficiently
large (~ 20 ms).

At good last, the trap frequencies have also been measured by parametrically
driving the system. This is done by a modulation pulse that modulates the intensity
of one of the trapping beams as

I(t) = Ip(1 + asin(wppgt)), o<1 (6.19)

using a frequency generator together with a voltage-controlled amplifier connected
to the corresponding intensity-regulating AOM of the trapping beam. Here the
modulation amplitude and frequency are denoted as « and wyo4. respectively.
When the modulation frequency equals twice the trapping frequency, wyod. ~ 2w
(or 22 with an integer n, when the corresponding higher harmonics become
resonant), the corresponding parametric resonance leads to an exponential buildup
of the atomic oscillation amplitude over time, i.e. particles heat up and leave the
trap. A scan of the modulation frequency unveils a typical drop in the atom number
(see fig. 37 (b)) at the parametric resonance condition, and the trap frequency can be
estimated by a phenomenological Gaussian fit. It is noted that through the steady
increase of kinetic energy, the parametric resonance can be observed in almost all
of the typically probed observables, e.g. heating leads to an increase in the cloud
width and stronger anharmonicities evoke oscillations along the axes perpendicular
to the parametrically driven one. This allows to find an observable that gives rise to
the smallest uncertainty in the fit, e.g. again the vertical center of mass displacement
(see fig. 37 (c)) following a horizontal drive.

All methods outlined above have their advantages as well as technical challenges,
e.g. the parametric drive can be applied to each beam individually which purifies
the trap frequency assignment. The main benefit of using both of them is that they
can be calibrated onto each other.
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6.3 BOSE-EINSTEIN CONDENSATION OF 23

Na

To furnish proof that Bose-Einstein condensation has occured, one utilizes the
unique properties of this state of matter. Out of the Gross-Pitaevskii equation,
it follows that the density distribution of a harmonically trapped BEC in the
Thomas-Fermi regime is given by inverted parabolae, characterized by their three
Thomas-Fermi Radii Ri(i = x,y, z). This functional form differs significantly from
that of an equally trapped thermal, Gaussian-shaped cloud characterized by its
three widths o;. Yet probing the density distribution in situ is challenging due to
the rather small size and enormous optical density of a trapped BEC. The trap is
therefore switched off and the images are taken after a sufficiently long expansion
time. Quite fortunately, it has been shown that the time-evolution of a BEC upon
free expansion from a trap obeys analytical scaling solutions, i.e.

bi(t). (6.20)

The introduced scaling factors b; follow a set of coupled classical equations of
motion:

d?b;(t) w?

a2 i (0bx )by (062 (0"

(6.21)

This relation was first shown by Castin and Dum [174] and independently by Kagan
et al. [175]. A treatment based on superfluid hydrodynamic equations that was
published shortly later leads to the same result [176]. Therefore, the functional
form of the condensate density is conserved in a TOF. Pictures of the ensemble
distribution are acquired and analyzed using absorption imaging, yielding the
condensates column density

2 2\ 3/2 2 2
_ 3 X2y x2 vy
figec (X, z) = figEC,0 <1 R R%) 0 <1 TR R%) (6.22)

with the peak column density figeco and the Heaviside function 0. As the thermal
cloud also retains its Gaussian shape after expansion, the popular evidence for
the process of Bose-Einstein condensation is given by the appearance of a bimodal
distribution of thermal and condensed cloud as the condensation threshold is
crossed.*

The quantum degenerate regime is reached through optical evaporation by
lowering the trap beam intensities. Due to the unequal beam waists, the radially
symmetric beam imposes a more than three times stronger trapping strength on
the atoms (see table 3). In the initial evaporation step, this beam is linearly ramped
down in 1.5s to a power of 1 W which provides nearly equal trap depths per beam.
In a subsequent evaporation step, both beams are ramped linearly to variable
combined trap depths, with roughly equal trap depth per beam. For the deepest
evaporation shown here, the final beam powers are 60 mW for the tight-confining
and 126 mW for the loose-confining beam after a 2.5s long ramp.

The probably second most popular evidence is the aspect ratio inversion of a condensed cloud in time
of flight. It could also be clearly observed in this setup and will be presented in another forthcoming
thesis [162].
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Figure 38: BEC phase transition from a thermal cloud (left) to a pure BEC (right). The
bimodal distribution is clearly visible in the intermediate regime.

Figure 38 shows recorded absorption images for a selection of evaporation
depths. The color coding of each picture has been normalized onto its peak column
density. Starting with an almost pure thermal ensemble (upper left), The onset
of condensation is clearly visible by the relative growth of the central part of the
cloud, which is identified with the condensed part. In the intermediate regime, two
distinct distributions are discernable. As the evaporation progresses, the thermal
cloud is not longer discernable and an almost pure BEC is obtained (lower right).
To estimate the condensed fraction, a bimodal distribution is fitted to the acquired
data. As given by the quote above, any fit method that contains bimodality will in
general be able to reflect this property. If one wants to fit the whole data set at once,
the most accurate result is obtained by a 2D surface fit a Ia fipimod. = Titherm. + TLBEC,
where the BEC part is given by eq. (6.22) and the thermal cloud is modeled by a
Bose-enhanced Gaussian

= 2 2
~ Mtherm.,0 X z
pu— 4’ E — - . .
ntherm.(xr Z) 92(1 ) 92 |: Xp < 20_3( 20_% >:| (6 23)

with g2(z) = Y%, z"/n2. This description can give rise to interpretational
problems in the region where condensate and thermal part overlap. A sensible
way of analyzing bimodal distributions therefore first cuts out the central part
of the acquired data, when only the thermal cloud wings remain. At sufficient
distance from the peak density, the higher order terms in the Bose-enhancement
series are negligible and the density distribution converges to the normal Gaussian
distribution. Through simulation and subsequent analysis of typical absorption
images, it was shown [177] that a simple Gaussian fit gives largely the same result
if only the wings are used. Having acquired the thermal part, it is substracted from
the whole dataset and the remnants are fitted to eq. (6.22). The thermal fit can
further be used to extract the steady-state temperature of the system. As a BEC
does not follow a Maxwell-Boltzmann distribution, its expansion properties cannot
be used to gain information of the system temperature. It is however in thermal
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Figure 39: Condensed fraction as a function of final evaporation trap depth. Inset: Exem-
plary experimental sequence that lead to a bimodal distribution.

equilibrium with the thermal cloud, so the latter one can be used as a thermometer.
Performing the cut-and-fit procedure for a set of time of flight images then yields
the system temperature.

Figure 39 shows the estimated condensate fraction Npgc/(Npgc + Ntherm.) in
percent as a function of the final evaporation trap depth in the cODT. Each data
point is the mean value out of 5 — 10 realizations under the same experimental
conditions, an exemplary experimental sequence is shown as a figure inset. By
plotting an atom number ratio, the systematic errors in the individual atom number
determination drop out (up to small nonlinearities), hence the vertical error bars
are mainly governed by statistics. As the condensate fraction approaches unity, the
thermal wings are only vaguely discernable, giving rise to higher uncertainties
regarding the actual amount of residual thermal cloud. This also shows that the
notion of a "pure" BEC, that is commonly featured in colloquial speech, is a bit
loosely defined. With only a few percent of thermal background, thermometry
becomes increasingly difficult in this region. Using time of flight and temperature
estimations out of condensate fraction and final trap frequencies, the temperature
of the "pure" BEC is estimated to be 79nK. To probe this region with sufficient
accuracy, more elaborate diagnostics such as magnon thermometry are required
[178].

The "pure" BEC shown in fig. 38 gave an atom number of 1.5 x 10° at a thermal
background of a few percent. Following the initial demonstration of BEC, the
sequence shown in the inset of fig. 39 was optimized e.g. in terms of ramp speed,
and most parameters of the previous experimental stages fine-tuned using the
number of condensed atoms as a figure of merit. Only the microwave evaporation
was untouched and kept at 15 seconds to ensure formidable dual-species operation
later on. Moreover, the removal of spurious noise sources (e.g. damping of vibrations
induced by the coil water cooling circuit using sorbothane) in the experimental
apparatus had a significant effect. In the end, stable, reproducible and "pure" 23Na
BECs with a total atom number of 1.1 x 10° were realized in this setup.



94

OPTICAL TRAPPING AND QUANTUM DEGENERACY

23 ;.39

6.4 THREE-BODY LOSSES IN THE “°Na”’ K MIXTURE
Having created the ideal coolant, one might expect dual-species condensation to
be a straightforward task. This section shows that one first has to overcome an
obstacle: interspecies losses. Due to the high densities prevailing in the crossed
dipole trap, higher-order effects in the density are no longer negligible. Both atomic
clouds can experience sizable three-body recombination effects that scale with
the fourth power of the appropiate scattering length [179]. In the following, first
the single-species case is discussed and the used formalism and approximations
directly adapted to the more complicated case of mixture operation. The whole
description assumes non-condensed, i.e. thermal clouds.

Up to third order, the density loss dynamics for the density n; of species i in
single-species operation is described by the rate equation

(dnéz,t)) i = —Lini(r,t) — Lin#(r,t) — Lind(r, 1), (6.24)

where L;(L,)[L3] denotes the respective one(two)[three]-body coefficient and the (V)
superscript reflects their homonuclear origin. To avoid redundancy, the one-body
loss coefficients are replaced by the respective background lifetimes used earlier in
this thesis, Lt = 1/x;. In presence of species j, interrecombination (e.g. i-i-j) gives
rise to additional loss terms:

<dni§’t)> = —%L?ni(r,t)n]- (r,t) — 1gl_énni(r,t)njz(r,t) — gl_;lniz(r,t)nj (r,t).
ij
(6.25)

The nomenclature of the respective coefficients can differ from article to article.
Some groups include the total number of particles lost in the particular process
into their coefficient, which is also the convention used above and throughout the
rest of this thesis. The fractional prefactors then account for the contribution of
each species to the heteronuclear loss processes.> The above equations are quite
cumbersome, but can be quickly simplified when adapted to the actual experimental
situation. It is recalled that the initially prepared atomic spin state is maintained in
the ODT via a 2.5G magnetic guiding field. With both ensembles being polarized
in the state |[F =1, mf = —1) , two-body collisions will be strictly elastic, hence
Lit = L? = szj = 0. Despite the reduction, there will be still 6 fitting parameters
(Tna, ), LS, L5, LI;Ia’K'K, L?a’Na’K) left to describe the system. Furthermore, as the
loss coefficient of the potassium density depends nonlinearly on the sodium one
(and vice versa), the central coldest part of the clouds can be the highest loss
region, which can lead to recombinational heating [179] and non-trivial temporal
deformation of the individual Gaussian densities (anti-evaporation).

Single-species measurements

To reduce the number of the fitting parameters, it is noted that the single-species
collisional loss properties can be first, which fixes the parameters L} , 5 in Eq. (6.24).
For that, it is assumed that the density distributions are homogeneously reduced, i.e.

Other groups prefer to give the rate K; describing the recombination event, therefore writing 2 x K3,
3 x K3 etc. [180, 181].
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dni(r,t)/dN;(t) = 0 with the atom number Nj;, and heating processes are neglected.

This then allows to express the rate equations in terms of atom number loss by
spatially integrating the respective densities:

dNNa(t) _NNa(t)

Tai———— L3 Ena NRL (1) (6.26)
dNg(t)  Ng(t) g 3
it k. w L3 &k Nk (t) (6.27)

&i are geometric factors that incorporate the spatial distribution of the trapped
clouds, &; = m J v dr3ni3 (r,0). For the single-species thermal clouds, analytic
solutions for &; can be explicitly written down, but they are kept general here
to conform to the two-species case that will follow. The atom loss rate notation
has the advantage that instead of continuously tracing it, the density distribution
has to be inferred only once using the readily accessible experimental observables
atom number, trap frequency and temperature. The danger of this method is that
it cleverly conceals the systematic errors of the setup. The geometric prefactors
&i are subject to daily changes, most notably due to realignment of the crossed
dipole trap beams which changes the jointly generated trap frequencies. Therefore
care has to be taken when evaluating data using outdated values of &. For the loss
measurements that follow here and in the next chapter, the trap frequency values
have been regularly updated and are usually acquired immediately after the loss
data set has been measured.

By recording single-species loss measurements, the loss coefficients of eq. (6.26)
can be determined numerically by fitting the loss rate equations solution to the
acquired data.® Two single-species sequences are prepared in which the potassium
(sodium) atom number is monitored as a function of the holding time ty in the
dipole trap. For the 37K sequence, the 23Na cloud is removed via a resonant
light pulse before 37K is transferred into the dipole trap. For the 2*Na run, 3°K
is simply not loaded. Being interested in the high-density region, the microwave
evaporation is proceeded up to the region where already the plugged magnetic trap
starts to show considerably losses in the 37K signal (compare with fig. 32). After
loading the sample into the ODT, the trap frequencies are set to (wy, Wy, Wz )Na =
27t x (532,190,865) Hz and (wx, wy, w; )k = 27 x (647,231,1053)x Hz. After the
samples have thermalized, their temperatures are measured independently by
time of flight measurements, yielding 2.66 uK for 3K and 3 uK for 23Na at atom
numbers on the order of < 1 x 10° (39K) and 5 x 10° (#3Na).

The acquired atom number decay curves for holding times up to 41 seconds are
depicted in Fig. 41. A considerable amount of three-body losses is observed for
neither species. For 23Nain the |[f =1, m¢ = —1) state, this agrees with calculations
by Moerdijk [182] and BEC measurements [136] that determined the L3 parameter
to be on the order of 2 x 1073% cm®s~'. Even taking into account 3! = 6 stronger

The single-species version with L; = 0 can be analytically solved, the same is true for L3 =0 # L,.

The solution is given here as it appears quite useful, but is rarely written down:

Ni(t) 2 2t N(0)2EL3T
O {(1 +N(0) E,Lg”t) (e _W)

~1/2

(6.28)

where the species sub- and superscripts have been dropped. In all other cases, the solutions are
obtained using numerics.
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Figure 40: Atom number as a function of their holding time in the dipole trap in single-
species operation. Three-body losses appear negligible for both individual
species. Two exponential fits (solid lines) govern the individual dipole trap
lifetimes (see text).

loss rates due to a bunching factor?, the three-body decay rate for the experimental
parameters would only amount to 4 x 103s~". The situation for 3K is similar. What
remains is the extraction of the 1/e lifetime of the samples, which are found to be
T = 37.8s and TN, = 31.7s.

Mixture measurements

Having acquired the single-species parameters, the experiment is repeated by
preparing a mixture at a temperature of 2.6 uK and an imbalanced atom number
ratio Nna/Nk ~ 4. This simplifies the ensuing analysis, as the losses will primarily
affect the minority potassium cloud whereas the sodium majority serves as a
collisional bath. The atom number as a function of the holding time for both species
is depicted in fig. 41. Rapid losses are observed in the 37K signal, with an effective
1/e lifetime of about 240 ms, whereas 23Na, being the majority cloud, shows only
a slight decrease over time. This validates the previous findings in the plugged
magnetic trap, and pinpoints interspecies losses as the main antagonist of the
high-density dual-species operation.

For the loss analysis, it is clear that the one- and three-body losses obtained earlier
are negligible on the relevant timescale of the experiment. For completeness, they
are put in the analysis as constants, but omitted in the written down description to
provide a more lucid notation. Clearly, the loss mechanism is driven by interspecies
losses. To model these, one now also has to account for the geometric mismatch of
the two cloud densities in the trap due to their different trapping potentials and

7 The probability of finding three bosonic atoms together is enhanced similar to photon bunching in
thermal radiation fields. Atom-bunching vanishes in a condensate like photon bunching vanishes in
a laser field [183].
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Figure 41: Remaining fraction of 2*Na (orange circles) and 37K (gray diamonds) atoms as
a function of the holding time in the dipole trap for the mixture experiment.
Three-body losses lead to a rapid atom number decay of the minority component
39K. The solid line is a fit of the coupled-system loss rate equations solution to
the acquired data. Both atom numbers are normalized to their fitted value at t
=0, being 3.8 x 10° for 23Na and 1.1 x 10° for 3?K. Inset: Calculated tempera-
ture evolution according to the solution of the presented coupled differential
equations. The calculated increase in temperature is on the order of 15%.

differential gravitational sag. For a given experimental parameter set, these are
obtained by numerical integration. Then

<NIRN%> :J n}\n%dg‘r (6.29)
vy

is the spatially averaged, temperature-dependent three-body density in a given
volume V, where A and B denote the species and i and j the loss exponent. The
temperature dependence is explicitly kept, as the rapid depletion might signal
strong heating, but the densities are assumed to maintain their Gaussian form
through rapid thermalization.

The three-body loss coefficients LnaNax and L,k x are then extracted by fitting
the experimental data to the solutions of three coupled differential equations
governing the sodium and potassium atom number loss dynamics as well as the
temperature time evolution [184, 179]:

dN 2

dfa =~ 3LNaNak (NZaNk)y, — 3N KK (NNaNg )y
dN 1 2

= 3MNeNax (NRNK)y — 3Tnakx (NNaNg )y

dT
3kp T (Nk + NNa) = Bra,NakENaNak (NRaNK )y + Bak kINak k (NNaNg )y,
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where the third differential equation accounts for the effect of anti-evaporation
induced heating. The notation here follows [184]. The quantity 3

3 2 [y Unand nxd®r 1 [y, Ugnnanzd3r
~ kT — 2V Na — 2V LS 6.30
PNaNax 2P 3 [yngnkd3r 3 [ynnangd3r (630)

(and similarly Bnax k) accounts for the mean potential energy of the lost atoms,
with U being the potential energy [184, 179]. Note that also the second and third
term of 3 are temperature dependent through the temperature dependence of n.

The high loss rate either stems from (Na+Na+K) recombinations, from (Na+K+K)
ones, or from a combination of both. One can get initial insight about the phys-
ical process by setting either one of the coefficients to zero and assume that the
sodium depletion as well as the temperature increase is negligible. Both cases,
pure (Na+Na+K) and pure (Na+K+K) losses, are then analytically solvable and can
be compared to each other. For this "‘poor man’s differential equation’, It became
visible that the (Na+Na+K) solution gives a higher agreement than the (Na+K+K)
one, which seems sensible due to the density imbalance in our system. Following
the qualitative understanding of the underlying processes, the whole system is
solved. As fitting routines can be error-prone to its starting conditions, the sum of
squared residuals was first explicitly evaluated on a {LnanNak, LNax x} parameter
grid. After manually selecting the global minimum region, the numerical fitting
routine was executed.

The obtained loss coefficent are Lnanax = 1.03(62) x 1072 cm®s~ ! and LNakK =
0.50(30) x 1072° cm®s~!, where the uncertainties include the statistical error on
the fit as well as systematic uncertainties in the evaluation of the experimental
quantities: temperature, atom number and trap frequencies for both species. The
calculated temperature increase is on the order of 15%, which is about equal to the
systematic uncertainties with which the temperature can be determined. The heated
cloud temperature is still well below the trap depth, hence the relatively small
heating rates will not lead to additional terms such as heating-induced evaporation
that might compete with the three-body loss rates. For the observed timescale, this
validates the approximative treatment that lead to eq. (6.29) .

In principle, three-body loss measurements allow to draw conclusions about the
sign and magnitude of the underlying scattering length through the relation [179]

6

h o4

L; = G(a)aa (6.31)
which is a result out of dimensional analysis (see sec. 7.2.1 for the derivation).
However, this relation depends on non-trivial Efimov physics encapsulated in
the coefficient C(a), and the Efimov effect is known to lead to resonances in the
three-body coefficient. Without detailed knowledge about the presence or absence
of resonant structures for the studied mixture, a conclusive statement cannot be
given. Comparison with extensive analysis on other alkali mixture indicates that the
loss rate coefficients are on the order of the ones observed in 3?K8”Rb and #*'K8”Rb
[184], #*°K87Rb [185] and 6Li'33Cs [89, 186] for scattering lengths of few hundred
ao. This will be revisited in the following chapter, when theoretical predictions
of the interspecies scattering length are presented and discussed. Although a
clean assignment between losses and scattering interaction remains challenging,
this thesis chapter concludes with an important result: With the high amount of
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undesirable losses, B = 0 G does not provide a suitable environment for operating
the dual-species apparatus, at least not beyond a low-density region. In order to
impede three-body losses, the interspecies scattering has to be reduced, for example
by using magnetic fields. This is tackled in the following chapter of this thesis.
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FESHBACH SPECTROSCOPY AND QUANTUM DEGENERATE
MIXTURES

The previous chapters described the experimental apparatus and demonstrated its
capability to produce quantum degenerate matter of 2°Na. While the dual-species
operation appeared largely unproblematic in the initial stages of the experiment,
it was shown that the mixture suffers from large losses when the high-density
region is reached. As the losses are caused by interspecies interaction, the following
chapter is devoted to their study by theoretical and experimental means in order
to obtain control over them. The primary objective of the ensuing investigation
is to gain the ability to condense both species simultaneously by using Feshbach
resonances. Its main results have been published in [4], figures appearing identically
in that publication are marked correspondingly. The taken course of action can be
summarized as follows:

1. The required magnetic bias fields must be provided and calibrated. Further-
more, the homonuclear Feshbach spectrum has to be recorded, in order to be
able to discern homonuclear and heteronuclear effects. This is presented in
section 7.1 and section 7.2.

2. The investigation of the heteronuclear system then starts with the theoretical
framework, which is presented in section 7.3. To its end, coupled-channel
calculations are performed using subroutines developed in the Tiemann group.
The results are phrased in terms of experimentally accessible parameters,
which unveils distinct signatures in the Feshbach spectrum that are accessible
by applying an external magnetic bias field. The results are further compared
with another, independently performed study by Viel and Simoni that was
published recently [187].

3. The measurements of the Feshbach spectrum for the incident channel of
interest (|1, —1)na + |1, —1)k) are shown in section 7.4. This includes the ex-
act positions and widths of the predicted signatures in the experimentally
accessible region from 0 to 1000 G.

4. The thereby acquired heteronuclear resonance spectrum is combined in sec-
tion 7.5 with the independently measured homonuclear one. Expressed in
terms of the individual scattering lengths, this gives rise to interaction do-
mains characterized by the mean-field stability criterion. These domains are
discussed in terms of their suitability for the purposes of sympathetic cooling
and achieving a quantum degenerate mixture.

5. Having identified a suitable domain, this chapter closes with the culmination
of all combined theoretical and experimental efforts featured so far - the
emergence of dual-species degeneracy.
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7.1 MAGNETIC FIELD CALIBRATION

Bias fields are generated by using the same coil pair that produces the field
gradients in the MOT and quadrupole trap. After the transfer to the dipole trap,
the quadrupole field is quickly ramped down to zero. It is then switched from
Anti-Helmholtz to Helmholtz configuration using a H-bridge. Using the Biot-Savart
law for the coil parameters, 3.25 G/A is obtained as a first estimate regarding the
translation between applied electric current and generated magnetic field strength
[76]. With the knowledge gained using the quadrupole trap it follows that magnetic
tields of about 1000 G can be generated before the thermal load might inflict damage
onto the coil environment. The exact calibration is done by using the cold atoms
as a magnetic field strength sensor. At a given field strength B, the atomic ground
state internal state energies shift according to the well-known Breit-Rabi formula:

AEHFS AEHFS 4mx

E(B));= Am) = T A inpB £ 1 2 .
( )|)_1/2,m1,1,m1) 202i+1) +mgipe 7 + 2441 +x (7.1)
AEHFs = angs(i+1/2) (7.2)

(97 —9i) uBB

X = :
Abrirs (73)
m=m;+1/2 (74)
Here, i and j = 1/2 are the nuclear spin and total orbital angular momentum

respectively, with g-factors g; and g; and projections m;, m;, and an¢s is the hyper-
fine coupling constant. Microwave spectroscopy is then performed by matching a
differential energy shift at a given electric current to the frequency of a microwave
field. The used probe is a 23Na cloud at temperatures of 700 —800nK to avoid
thermal broadening of the spectral lines. The small vertical guiding field, that kept
the spins aligned in the ODT, is always kept on. Depending on the magnetic field
strength, different basis sets have to be employed in order to return good quantum
numbers. For simplicity, two eigenstates are defined by

B1)(B=0)=If=1me=-1), (7.5)
B2)(B=0)=If =2,m¢=0). (7.6)

Then [31)(B) and [32)(B) denote the states whose eigenenergies at a given field
B are adiabatically connectable. Then it can be said that the driven microwave
transitions correspond to |31(B)) — |f2(B)), which is schematically shown in fig.
42. After the microwave pulse, the magnetic field is ramped down to zero and the
local eigenstate will coincide again with the |f, m¢) basis. The irradiation time of
the microwave is chosen to be long (~ 100 ms) compared to typical Rabi periods,
so that the number of removed atoms from the f = 1 manifold will just follow
a Lorentzian lineshape. By scanning the microwave frequency and exclusively
imaging the f = 1 fraction, a drop in the atom number signals the corresponding
microwave resonance.

Figure 42 further depicts an exemplary measurement for an applied current
value of I = 64 A. The microwave resonance location is obtained using a Lorentzian
fit. By classifying the resonance frequency in the Breit-Rabi diagram, the applied
current is assigned to a magnetic field value. Repeating such a measurement for a
series of current values gives a calibration curve that can be written by the simple
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Figure 42: Microwave spectroscopy using 23>Na. The upper graph shows the Breit-Rabi
diagram and sketches the relevant states for the microwave transitions. The
lower graph shows the number of detected 23Na atoms in f = 1 as a function of
microwave frequency. A dip unveils the resonance location, whose position is
determined by a Lorentzian fit (solid line).

linear relationship B = Bg + B11. The value By is determined by the strength
of the guiding field, the earth’s magnetic field and residual magnetizations of
experimental apparatus components. Therefore, also the case I = 0 A is spectro-
scopied and the guiding field strength varied. This allows the determination of all
By contributions, and provides information whether the guiding field is properly
aligned with the Helmholtz field". Using this method, the usually applied guiding
tield strength was determined to be 2.49 G. Since the background magnetic field
can vary from day to day, regular re-evaluation of the magnetic field calibration
is indispensable. Typically, selected values for the applied current are remeasured
after a measurement campaign has been completed, and daily drifts are recorded.
In addition, every time a distinctive signature (resonances, zero crossings, etc.) is
recorded, the magnetic field strength value of the signature’s extremal points is
spectroscopied.

The microwave dip positions are determined with a statistical uncertainty on
the order of 10 kHz. For a given bias field of 100 G, this translates into a magnetic
field uncertainty of 34 mG. Further sytematics will be given by the ripple level, i.e.
periodic AC fluctuations and random noise, of the used power supply regulation.
For the power supplies used here, the specified peak-to-peak [rms] ripple at full
load is equivalent to a peak-to-peak [rms] magnetic field ripple of 180 mG [60 mG].

1 Itis.
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This is far below the typical width of all signatures that will be encountered in the
Feshbach spectrum, which renders further magnetic field stabilization unnecessary.

7.2 HOMONUCLEAR FESHBACH SPECTROSCOPY

In order to distinguish between homonuclear and heteronuclear signatures, the
single-species Feshbach spectrum of 3K was recorded separately. As fig. 8 shows,
this only has to be done for potassium, since sodium in the spin state under
consideration does not possess Feshbach resonances in the experimentally rele-
vant magnetic field range. Strictly speaking, the measurement of the potassium
resonances is not necessary, since they have already been located and analyzed
2007 in experiments conducted at LENS [188]. For 39K in 1, —1) +[1,—1), three
s-wave resonances are known to exist in the magnetic field window 0 — 1000 G.
For this very reason, however, an independent measurement is very well suited
for cross-checking the magnetic field calibration®. Furthermore, this measurement
serves as a testbed for the experimental measurement protocol: Since the result is
already known, the orchestrated experimental sequence can be scanned for possible
artifacts. This section therefore also serves as an introduction to the Feshbach
resonance measurement method, as all subsequent measurements will follow the
same patterns of state preparation, field ramps and data evaluation.

7.2.1  Two-body effects, three-body observables and lineshapes

As shown in chapter 2, the Feshbach resonance phenomenon is characterized by a

pole of the scattering length at the resonance location By as a function of magnetic
field:

a(B) = apg (1 — BéBBo) (7.7)

Although this is a two-body effect, it can affect other observables as well. The
detection of Feshbach resonances is typically achieved by performing atom loss
spectroscopy, which makes use of the fact that the three-body loss rate can be
represented as a function of the scattering length. This can be shown by naive
dimensional analysis: At the end of the last chapter, the three-body loss rate was
introduced through

d _ 3
<dtn(t)>3-b0dy =—L3 xn’(t). (7.8)

Therefore, the dimension of the three-body loss coefficient is

(1/length)® /time _ length6
( 1 / length) 7 time

[L3] =

(7.9)

In the ultra-cold limit, it can be assumed that the scattering length is the only
relevant length scale. To generate the dimension time, the reduced Planck constant

As with the measurement of temperature (in-situ and in time of flight) and atom number (via
absorption and fluorescence detection), the benefits of different calibration methods for mutual
adjustment is emphasized here.
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is employed in combination with the mass of the particle (h/m = [J s/kg] = [m?/s]).
Hence, the three-body loss rate can be expressed as

L3(a) = €(a) —a”, (7.10)

with a dimensionless prefactor C(a) that can also depend on a, but whose value
cannot be determined through this analysis. As a result, an increase in the scattering
length is noticeable in a significant increase of the corresponding three-body losses,
which can be easily traced by observing the atom number while the magnetic field
is scanned. Figure 43 depicts the solution of eq. (7.8) for a constant holding time and
C(a) = €, in which the three-body coefficient has been replaced by the scattering
length which in turn can be expressed through the magnetic field. The resulting
lineshape (solid line) is well described by either a Gaussian (dashed line) or a
Lorentzian (not shown), with a minimum at the resonance location. The FWHM
of such fitting curves should not be confused with the width AB of a Feshbach
resonance, which is defined by the value where the scattering length crosses zero.
To avoid confusion, the FWHM value is always denoted as o.

Taking into account the complete physical description, the exact functional form
of the loss curve is not entirely trivial. Two points are given here at a glance:

1. Due to the finite collision energy, the resonance does not occur exactly at the
atomic asymptote but in the continuum, and the presence of the continuum
states can not be neglected. The coupling of evanescent bound states embed-
ded into the continuum leads to an asymmetric line shape known as the Fano
profile, that deviates from the ideal symmetric case outlined above.

2. The coefficient C(a) is a log-periodic function of the scattering length, with
two different functional representations depending on the sign of a, therefore
giving also an asymmetric contribution. This can be understood as follows:
Three body losses are a loss channel involving three atoms, which are usually
described by saying that two of them enter a bound molecular state and
the third carries away the excess energy. The probability that such a dimer
is formed must depend on the bound state distribution of the underlying

Remaining atom fraction

6 8 10 12 14
Magnetic field [G]

Figure 43: Expected ideal lineshape across a resonance at Bres = 10G and unity width.
The solid line is the solution of the differential equation (7.8) at a constant
holding time using the relation (7.10) together with (7.7), which expresses the
loss rate coefficient by the magnetic field. The resulting lineshape is not far from
a standard Gaussian (dashed line, not a fit).
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potential. From the discussion in chapter 2 it is clear that shallow bound
states with binding energies o 1/a? exist only at positive scattering length.
For negative scattering length, these dimers must therefore either decay
into very deeply bound states or form an Efimov trimer state. The physical
situation at 4 < 0 and a > 0 is described by two entirely different models,
which explains their asymmetry with respect to the sign of the scattering
length. Typically, periodic dips occur for positive and periodic peaks for
negative scattering length. For an in-depth explanation of the origin and
extent of Efimov physics, it is referred to [189].

In order to be able to construct the physically correct line profile, one would now
have to fold all these effects and implement corresponding fitting parameters. It is
clear that this is not a sensible approach when compared to the typical quality and
availability of data and the lack of knowledge regarding e.g. the Efimov specifics
for this particular mixture. It would further distract from the main purpose of
the three-body measurement for this thesis - the detection of Feshbach resonance
locations. It is much more advisable to use a function with as few fit parameters
as possible. Thus, ultra-cold Feshbach resonances are usually fitted using either
gaussian [190, 191] or lorentzian [192, 193] functions, which is also utilized here.

Yet the deviations from the idealized representation in equation (7.10) can be
summarized as follows: The position of the resonance determined by three-body
measurements will be slightly detuned from the real two-body resonance location.
The detuning can be considered small when no large asymmetries are observed, but
its exact value is difficult to assess and would demand detailed measurements of the
Efimov scenario. For an overview, it is referred here to the extensive measurement
campaign carried out by the Arlt group [184]. If one is only interested in the exact
resonance location, it can be further pinpointed by measuring the binding energy
through photoassociation [74].

7.2.2 Experimental sequence

After microwave evaporation, the sodium atoms are removed by a resonant light
pulse and the potassium cloud is transferred into the optical dipole trap. The
quadrupole field is ramped down and subsequently switched to Helmholtz mode.
A time of flight measurement of the thermalized cloud gives a temperature of
8.64uK. In atom loss spectroscopy;, it is searched for spectral features as a function
of the applied magnetic bias field strength. The magnetic field is ramped in a few
milliseconds to a given value B¢ and held there for a holding time t},44 > 100 ms.
At the end of each cycle, the cloud is released from the cODT, all magnetic fields
are switched off, and the atom number is obtained by performing absorption
imaging. As soon as a spectral variation in the atom number is found, the holding
time is adjusted in order to obtain a clearly visible drop in the signal without
completely depleting the atomic sample. A magnetic field scan using this fixed
holding time then recovers the corresponding spectral feature. In order to account
for experimental drifts, the magnetic field grid is sampled randomly.

The results are depicted in fig. 44. As a navigational aid, the upper graph shows
the scattering length as a function of magnetic field, as calculated by the LENS
group [188]. Below that, three cutouts show the measured atom signals in the
magnetic field regions where the resonances are expected. Their positions B; and
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Figure 44: Homonuclear 3K Feshbach spectroscopy. Upper graph: Scattering length for
potassium collisions in the spin state under consideration. Lower graph: Atom
loss spectroscopy of the three s-wave resonances. A Lorentzian fit of the data
set gives the resonance location and FWHM, the shaded region indicates the
combined statistical error in resonance location and FWHM. The colored boxes
below the resonances denote the standard deviation of this work (blue), [188]

(orange) and [194] (green), respectively.

FWHM widths o; (i = 1,2,3) are extracted using Lorentzian fits. The error with
which the resonance position can be determined is then given by the quadratic
sum of magnetic-field accuracy and the statistical error obtained out of the fit.
The latter is usually the dominant contribution here, but typically far smaller
than the characteristic width of each resonance. The obtained resonances, fitted
by a symmetric profile, are compared once with a similar measurement campaign
done at LENS [188], and further with a second, more detailed campaign also
done at LENS [194], in which Efimov structures have been analyzed and a more
complex model was applied. The reported resonance locations are given in table
4, and their locations and respective errors are additionally stated graphically
through blue, orange and green boxes in fig. 44. Comparison with the values and
uncertainties stated in [188], all locations measured here are well inside their error
bars. Comparing the data with [194], the measurements are slightly outside each
others 1o error bars. This can be interpreted as the expected error that appears
through the simplified fitting model used in this thesis, where Efimov induced
asymmetries are not explicitly modeled.

i-th FR  B; (this work) of Bi (D’errico et al. [188]) B (Roy et al. [194])
1 32.9 (0.1) 5.7 (0.7) 32.6 (1.5) 33.64 (0.15)
2 162.4 (0.5) 15.3 (0.5) 162.8 (9) 162.35 (0.18)
3 561.6 (0.6) 25.4 (2.8) 562.2 (1.5) 560.72 (0.2)

Table 4: Experimental magnetic field positions B;, FWHM widths o; and respective errors
(£) of the located Feshbach resonances, together with the data acquired in [188,

194].
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7.3 THEORETICAL MODEL AND EXPECTED SIGNATURES

In this section, the theoretical study is presented that models the diatomic collision
process for the spin states under consideration. This will clarify whether scattering
phenomena are expected, and if yes, in which magnetic field region one has to
search for them. The numerical results are expressed by magnetic field dependent
scattering rates, which outlines the form and width of the expected signatures and
provides landmarks for the following Feshbach spectroscopy.

The Hamiltonian H for the diatomic collision is given by

H=T+ V(T) + th(T) + Hdd(r) + HZee- (7.11)

Here, T = —h?V?/(2y) is the relative kinetic energy operator, whereas Hyg (qd),[Zee]
are the hyperfine (magnetic dipole-dipole) [Zeeman] interaction, respectively:

i) =S40 (ar 100+ 280 (a5 i), (7:12)
Haalr) = SA(r) [352 - 57], 713
Hzee(B) = "2 [(gys. + giia) + (9552 + 91ia)g]. (714)

The hyperfine interaction is mainly given by Fermi contact interaction, and is
identical to the atomic hyperfine constant a; at large distances, a; 1 — co= a;. At
small distances, it acquires radial dependence through electronic distortion of the
considered atom by the other one. The dipole-dipole interaction term describes
spin-spin interaction through the total molecular spin S and its projection to the
molecule fixed axis S,, whereas the parameter A(r) incorporates the usual r3
dipolar term and second-order spin-orbit interaction. The potential energy V(r) is
given by the singlet (S = 0) and triplet (S = 1) potential energy curves (PECs) and
corresponding projectors, V(r) = PoVo(r) + P71 V7 (r).

To obtain the Feshbach molecular wave function and its binding energy, coupled-
channel calculations of the ground state levels are performed. For this, the multi-
channel Schroedinger equation is solved numerically by propagating the logarith-
mic derivative of the multi-channel wave function ¥(r) in discrete steps with an
optimized step mapping function that accounts for the local oscillating frequency
of the wave function.3 The propagation starts at a point Tt in a classically forbid-
den region, Tstart < Tin, Where 1y, is the inner turning point in the corresponding
classical scattering trajectory. Typically, the value of rsurt can be set using WKB
theory. Through the starting conditions ¥, = 0 and 0,¥; = 1, the scattering wave
functions will exponentially increase in the classically forbidden region and start
oscillating when they reach the allowed region. As outlined in the fundamental
chapter, the phase shift is obtained by comparing the resulting scattering solution
with asymptotic solutions. In the fundamental single-channel approach, this was
done by a simple sine wave, whereas in the general case it is done using spherical
Bessel functions to account for centrifugal terms. For a more extensive review of
the computational methods employed here, the sources [196, 197, 198, 199, 200]
and especially [201] are recommended.

Propagating the log-derivative instead of the wave function itself increases the numerical
stability.[195].
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The predictive quality that this model can accomplish depends on the accuracy
to which the above system-dependent parameters (ai, A, Vo, V1) are known. For
the diatomic system, hyperfine parameters and electronic and nuclear g factor
are tabulated in [107] and the atomic masses in [202]. Crucial for the modeling of
cold collisions is the reliability of the X' Z*and a3Z " potential energy curves. Very
recently, the amount and quality of spectroscopic data for the NaK system has been
considerably increased [203, 204], which changes the treatment of the individual
terms in the Hamiltonian. The impact of these changes can be traced by comparing
the results acquired here with another, independently performed study by Viel and
Simoni that was published shortly before [187] but in which evaluation by new
data has not been taken into account*. Both datasets are briefly reviewed in the
following.

The first step consists in the acquisition of the most up-to-date X' £+ and a3£*
potential energy curves. In most of recent theoretical studies [51, 205, 206], the
spectroscopic data from the Tiemann group published in 2008 [207] is employed.
Viel and Simoni rely on the same dataset. In their approach, they further replace
the hyperfine and spin-spin parameters by the corresponding atomic expressions,
setting a;(r) — a; and A(r) — o?r—3, where q; is the hyperfine coupling constant
of species i and « is the fine-structure constant.

In a collaborative effort with the Ospelkaus group, the Tiemann group performed
a molecular beam study, taking into account the specific needs of a cold collision
experiment. In this measurement campaign, the rovibrational ladder of the a3+
potential was investigated up to the last bound state in order to improve the
accuracy in the triplet part. The high-resolution hyperfine spectra obtained at
various rovibrational levels further allowed to study the radial dependence of the
hyperfine and magnetic dipole-dipole parameters a;i(r) and A(r). The details of
the used model can be found in the article [203]. As a result, a set of molecular
parameters were derived that reproduce the correct radial form of the interaction
terms, and these parameters are used here.

Once the potential energy curves have been acquired, they are subsequently mod-
ified by using already known Feshbach resonances that provide a complementary,
ultra-cold dataset probing the long-range region of the potential. The refinement
procedure is done by defining some fitting parameters (e.g. the Cg coefficient in
the long-range dispersion term) and perform coupled-channel calculations. The
resulting theoretical resonance locations are then fitted to the experimental data
until sufficient convergence is reached. The study of Viel and Simoni employs
three s-wave resonances and a p-wave multiplet from the 2*Na +4° K MIT data set
presented in [65]. These resonances are however strongly related to bound states
with predominant triplet character (see also fig. 59 in chapter 8 for the magnetic
field dependent evaluation of spin expectation values). For the used resonances,
the triplet character can be evaluated to be about 98%. It can therefore be expected
that the refinement study of Viel and Simoni will give an accurate description of
the a3 triplet potential, while artifacts in the X'+ description might survive.
In this study, the PECs were additionaly refined by a recent dataset obtained in
the Shanghai group of Pan. This new evaluation gave a significant change for the
singlet potential, because their observed resonances (s and d) involve bound states
with significant singlet character, with typical spin expectation values of 0.76 [204].

The data of [204], in this thesis acquired through priv. communication, was not publicly available at
the time the study of Viel and Simoni was conducted.
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Figure 45: Calculated scattering length as a function of magnetic field using different
models and data. Both this and the model used in [187] predict two Feshbach
resonances in the magnetic field region below 250 G. The importance of addi-
tional d-wave resonances is visible through strong magnetic shifts of the low-field
resonance.

Using the refined PECs, isotopic rescaling from 23Na +4° K to 23Na +37 K is
performed by changing the reduced mass pin T of eq.(7.11) as well as appropriate
hyperfine parameters and g-factors for 3?K. The corresponding coupled-channel
Schroedinger equation is then solved numerically using the methods described
earlier. For a given collisional energy, the resonance-dependent collisional properties
such as scattering lengths and rates are obtained out of the scattering phase shift.
The scattering channels are written as (|f, m¢)yy, If, me)x 1, m¢)), where f is given
by the total angular momentum of the respective atom, { by their relative angular
momentum and m¢, m denote their projection onto the quantization axis. In the
experiment, the pair |1, —1)n, + |1, —1)k is prepared at temperatures where the
¢ = 0 contribution will be dominant because of the low temperature. The entrance
channel is therefore defined as

=11, =111, -1k 10,0) (7.15)

Similarly, the Hilbert space is restricted to { = 0, and therefore does not include
the appearance of d-wave resonances or inelastic collisions due to dipole-dipole
interaction. The collisional space is then fully defined by M = myn, +mg = —2.

To show the sensibility of the prediction to the model and dataset, the resulting
scattering lengths are compared. For this, the calculations in [187] are represented
using the formula describing overlapping resonances [208]

2
a(B) = apg (1+¢€B) H (1 — B_AE%)> . (7.16)

Here, Bp,i and A; are the resonance location and width for resonance i (= 1,2),
whereas apg is the background scattering length that varies linearly through ¢.5

Inbetween the resonances, the used equation (7.16) shows slight deviations from the numerical result
obtained in [187], which is also stated in the corresponding article, where the exact form can be
found. As this simplified version does correctly reproduce the widths and locations, it will not have
any shortage to the conclusions drawn here.
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Figure 46: Elastic (straight black) and inelastic (dashed red) two-body scattering rate con-
stants as a function of the magnetic field for the incident channel o. The labels
A, B and C denote Feshbach resonances, interaction zeroes and channel mixing,
respectively. [4]

The result is shown in fig. 45 for a magnetic field region from 0 to 250G. The
calculations in this study have been done once with the pure MIT set and once
by taking into account the additional d-wave data. The model used by Viel &
Simoni and in this work agree on a qualitative level, predicting two Feshbach
resonances, while quantitative discrepancies persist. This is apparent for the low-
tield resonance that differs by about 30 G from the one predicted in [187]. It can
be seen that the refinement procedure from the work of [204] shifts the calculated
low-field resonance significantly to higher fields. Measuring the exact location of
this resonance will therefore be imperative, as it gives direct insight into the singlet
component. It further dictates the exact value of the interspecies scattering length
anak in absence of magnetic fields. From the calculations using all refinements,
anak o) (B = 0) = =416 ap for &) = [1,—1)y, [1,—1)k 0,0), where a; is the Bohr
radius. This appears to be compatible with the three-body loss coefficients that
were extracted at the end of the last chapter.

To provide navigational landmarks for the later experiment, the collisional effects
are expressed by the elastic and inelastic two-body scattering rate constants K¢, (B)
and K ,(B), respectively. These are shown in fig. 46 in a magnetic field region from
0 to 1000 G and a collisional energy of 1 uK. At least three different signatures can
be identified, which are denotes as A, B and C for convenience: For the incoming
spin state combination, Feshbach resonances (A.1 & A.2) are expected at 34.2G and
248.1 G, as shown by the local maxima of the elastic two-body scattering. Similarly,
a zero crossing (B) of the scattering length exists at 117.3 G. Finally, at about 259G,
another channel of the M = —2 space, namely my, = 0 and mg = —2, opens up by
crossing the threshold E|4). At magnetic fields larger than 259G, transitions to the
now open channel give rise to the inelastic part of the incident channel, displaying

111



112

FESHBACH SPECTROSCOPY AND QUANTUM DEGENERATE MIXTURES

a peak (C) at 651G, with a shoulder at 690 G. A more detailed discussion of the
last feature is given in section 7.4.3. As all these signatures will evoke or impede
losses in the mixture, all of them can be located using atom loss spectroscopy.

7.4 HETERONUCLEAR FESHBACH SPECTROSCOPY OF [1,—1 >, + [1,—1 >¢

This section presents the measurements of the previously unknown heteronuclear
Feshbach spectrum. In its essence, the experimental sequence is similar to the
homonuclear case presented earlier, but preceded by a preparation phase to account
for the large three-body losses at zero magnetic field.

Both species are transferred simultaneously into the cODT. To avoid large density-
dependent losses, loading takes place at a temperature of about 10 uK. After the
coils have been switched over to Helmholtz operation, the bias field is first ramped
up in 5ms to a magnetic field value of By ~ 100 G. This magnetic field window
serves as a safe spot for the dual-species operation, as neither the inter- nor
the intraspecies interactions are disruptive in this region (see also fig. 44 and
46). A rigorous discussion of this region follows in section 7.4.2. The magnetic
field value is chosen such that thermalization through elastic collisions is still
provided on a reasonable time scale. Following this, the dipole trap beam intensities
are subsequently reduced, forcing evaporation of the atomic clouds. After the
system has thermalized, time of flight measurements give a typical temperature of
T = 2.3 uK for both species.

Through their mutual loss increase, the fluctuations of both species atom num-
bers are coupled with each other. Therefore, the atom numbers are chosen such
that this stage of the experiment yields an atom number imbalanced mixture
(Nmajor/Nminor = 10). This is achieved through adjustment of the individual MOT
loading times. The atom numbers for each species are tuned in a range of 10* to
10® depending on the atom number imbalance that one wants to prepare.

After this initialization phase, Feshbach spectroscopy is performed similar to the
homonuclear case by searching for spectral features as a function of the magnetic
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Figure 47: Expected ideal lineshape across a heteronuclear Feshbach resonance at Byes =
10G, unit width and atom number ratio (Nmajor/Nminor) = 10. Solid blue and
red line are the solutions to the coupled differential equations governing the
interspecies loss dynamics at a constant holding time. The Feshbach resonance
is visible in a strong drop in the minority component (blue curve), with the
resulting lineshape being similar to a Lorentzian (dashed line). The majority
component (red curve) shows only a slight decrease.
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bias field strength. Through the atom number imbalance, the minority cloud is
used as a probe while the majority component serves as a bath. The lineshape of
the minority cloud will be different from the homonuclear case, which is pictured
in fig. 47. For a holding time in which the minority component will show sizable
losses, the majority atom number will be barely affected by the resonance. By
approximating dNyajor/dt =~ 0 (hence Nnajor(T,t) = Nmajor (1)), the coupled loss rate
equations reduce to minority atom number loss dynamics. It is further assumed
that temperature increase is not significant and that background collisions and
homonuclear three-body losses appear on much larger timescales. Under all these
approximations, the time evolution of the minority atom loss simplifies to

dNygin (t) 1 (Maj,Maj,Mi
—a X —ng R m)E(Maj,Maj,Min)Nl%/lajNMin(t) (7.17)
2 (Maj,Min,Mi
3 Lé A m)5(Maj,Min,Mm)NMaijxﬁn(t) (7.18)
1
= Nvtin (t) (7.19)

where the numerical factors & account for the geometric mismatch of the two
cloud densities in the trap. The first term can be expected to dominate as it
depends quadratically on the majority component. By neglecting the second term,
the minority atom number dynamics can be described by a simple exponential
decay. In these atom number imbalanced systems, it is therefore sensible to define
an effective 1/e lifetime Ty, of the minority component that gives a general
assessment of the loss strength of the spectroscopied loss regions. The resulting loss
profile in fig. 47 then resembles more a Lorentzian than a Gaussian distribution,
even though both fitting functions will give satisfying results.

Starting from the safe spot By, the bias field is ramped in a few milliseconds
to a variable value B¢ and held there for variable holding times tyoq > 100 ms.
At the end of each cycle, all magnetic fields are switched off and the clouds are
released from the cODT. Atom numbers are obtained by performing absorption
imaging, where the majority is measured in-situ and the minority in time of flight.
As in the homonuclear measurement, the magnetic field values are sampled in a
pseudo-random® fashion.

7.4.1  Heteronuclear Feshbach resonances

The expected heteronuclear signatures are the ones outlined in the theoretical sec-
tion 7.3. They are presented piece by piece, with the regular Feshbach resonances
tirst. Figure 48 shows the recorded atom losses corresponding to signature A.1 (a)
and A.2 (b). The low-field resonance A.1 around 30 G was found to be strongly in-
terwoven with one of the homonuclear 37K resonances measured earlier. To discern
the overlapping resonances, it was used that the homo- and heteronuclear reso-
nance exhibit strongly different widths. The homonuclear resonance is spectrally
sharp with a comparatively small width of ox = 5.7 G, where o denotes the FWHM
value of the loss signal. In the case of heteronuclear collisions, the calculated large
negative background scattering length is equivalent to the existence of a virtual state

Although a true randomizing option is implemented in the experimental control, the random
sampling points are often manually set. Because human entities are rather bad at randomizing
samples [209], there will be some sort of Markovianity left, but this is only of academic interest.
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(a) A.1: low-field resonance
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Figure 48: Remaining fraction of atoms as a function of the applied magnetic field strength
B. The Feshbach resonances A.1 and A.2. are visible due to drops in the atom
number. (a) 3”K Atom number loss in single-species operation (gray diamonds)
and 23Na losses in dual-species operation (yellow dots) unveil two overlayed
resonances. The fitted function (dashed line) determines the homonuclear res-
onance. A Gaussian fit (solid line) to the wings of the 23Na minority signal
determines the heteronuclear resonance location. The absolute atom numbers are
3 x 10% (#3Na) and 1.5 x 10° (3?K). (b) The high-field resonance A.2, measured
using 37K as the minority. The absolute atom number is 2.6 x 10°.

right above threshold. Large continuum coupling persists in this channel, which
will in turn broaden the resonance strongly (oA, = 27.3G). The heteronuclear
signature is recorded using 3Na as the minority probe. By numerically solving
the combined loss dynamics using the simple mapping of the magnetically tunable
scattering length onto the L3 coefficient, the following scenario is expected: As the
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resonance pair is approached, the heteronuclear resonance is first interacted upon
through its larger width, and the line profiles are identical to the ones presented
in fig. 47. As the homonuclear resonance region is reached, a steep dip appears
in the 37K majority, which in turn strongly diminishes the main loss term for the
23Na minority. This will result in a decrease of minority losses in the vicinity of
the resonance pair. The predicted simulation results match the ones obtained in
the experiment. In principle it is possible to perform a bimodal fit to the resulting
overlapping feature. Inspired by the treatment of bimodal density distributions
found in BECs, the data set was instead divided into regions and only the flanks
that clearly belonged to the heteronuclear resonance (as they are not visible on
the homonuclear 37K signal) were fitted. Out of simulation and measurements, a
region spanning =~ 20k is determined in which the heteronuclear signature will be
significantly affected by the 37K resonance. This region is then filtered out for the
titting procedure of the A.1 resonance location. Even without the central part of

the feature, it can be located with a statistical uncertainty of 0.8 G to be at 32.5G.

This is mainly because for a Gaussian fit, amplitude uncertainties are more strongly
correlated to uncertainties in the width rather than uncertainties in the location of
the extremal point.

No such complication exists for the high-field resonance A.2, which is measured
to be at 247.1G £ 0.2G using 3°K as the minority probe. Both locations are in
excellent agreement with the previous theoretical predictions (see fig. 46), with
small deviations on the order of 1G that reflect both the uncertainty in the potential
energy curves and the expected but unknown Efimov detuning.

7.4.2 The interaction zero crossing

The value at which the interspecies scattering turns from repulsive to attractive
(Zero point crossing, signature B in 46) is of particular interest for the dual-species
operation, as it provides the magnetic field region in which atom losses are expected
to be low. The naive dimensional analysis would indeed predict the three-body
losses to be minimal (even zero) in this region. Yet identifying a minimum of the
three-body loss rate with a zero crossing of the scattering length is not necessarily
correct. Indeed, several situations where these do not coincide have been reported in
the literature, e.g. for Li and Cs systems [210, 211]. Therefore a "normal" three-body
loss measurement that was used for the homo- and heteronuclear resonances can
give misleading results in this case. To localize the zero point crossing, a mechanism
had to be utilized that traces two-body losses directly.

For this, the two-body losses that appear during optical evaporation are exploited.

The reasoning is sketched in fig. 49. In standard optical evaporation (a), a certain
amount of particles is removed from the trap. For the optical trapping potential
U;, where i denotes the species, one finds Uk ~ 2.51 Uy, i.e. a preferable ejection
of 23Na as the cODT intensities are reduced. Sympathetic cooling of 3“K by 23Na
will lead to an enhancement of 23Na losses during rethermalization (b). In the
experiment, a balanced atom number is prepared at ~ 10 uK. After lowering the
optical potential depth in 1.5s to a value which gives 2 pK in single-species 23Na
operation, the sodium atom number is recorded after a thermalization time. The
loss enhancement will be reduced and ultimately disabled as the interspecies
scattering rate approaches zero (c). This behaviour is reproduced in the experiment

by observing a signal revival in the sodium atom number as shown in fig. 50.
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Figure 49: Sketch of the thermalization measurement method. (a) Evaporative cooling of
23Na in an ODT. A certain amount of particles is lost. (b) Evaporative cooling
in the mixture and anax # 0. Through the larger trap depth, 3K is barely
evaporated. Interspecies collisions that sympathetically cool 37K will lead to
an enhancement of losses in the 23Na cloud. (c) Evaporative cooling in the
mixture and anzk = 0. As the mixture does not interact, the loss enhancement is
suppressed.
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Figure 50: 23Na atom number as a function of the magnetic field strength B in a forced
evaporation sequence. A revival of the 23Na signal at ~ 117G indicates the
reduction of this loss enhancement as the interspecies scattering rate goes to
zero. A Gaussian fit (solid line) is used to extract its location. [4]
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By fitting a phenomenological Gaussian to the observed signal increase, the zero-
crossing is determined to be located at 117.2G +0.2G, in agreement with the
predicted value of 117 G.

7.4.3 Channel mixing resonance

The last remaining signature, previously denoted as C in fig. 46, is the result of
channel mixing between the states spanning the M = —2 manifold.

Figure 51 depicts the energy levels of the diatomic system for M = —2 as
a function of the magnetic field strength B. The atomic asymptote is given by
the incident channel «, with its energy dependence through the magnetic mo-
ment leveled to zero. For lucidity, all states with the exception of |x) and |B) =
If =1, m¢ =0)n, + If =2, m¢ = =2)g have been grayed out. At a magnetic field
of 259G, 3 becomes an open channel by crossing the collisional threshold of |x).
Starting from that field, |) will be embedded in the continuum of |$3), and inelas-
tic collisions |x) — [3) become energetically allowed. This explains the sudden
appearance of the inelastic scattering rate constant in fig. 46. Similarly, from this
magnetic field on, the scattering length has to be described by a complex number,
where the imaginary part reflects again an inelastic contribution. The effect of
inelastic losses becomes sizable in the magnetic field region between 650 and 700
G, when two molecular states cross |x) and resonantly enhance the (elastic and
inelastic) scattering rate constant. Any collisional decay to |3) is accompanied by a
kinetic energy gain Eqp = E«(B) — Eg(B) of the atom pair. In the region B > 600G,
Exp > 2.7mK strongly exceeds the optical confinement, and the atom pair leaves
the trap. The channel mixing process can therefore be directly probed using atom
loss spectroscopy.
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Figure 51: Energy levels of the diatomic system in the collisional space M = —2 as a function
of magnetic field strength. At 259G, the state combination [1,0)y, + |2, —2)k
(orange dots) becomes an open channel by crossing the atomic asymptote (blue
dots).
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Figure 52: Remaining fraction of 2>Na atoms as a function of the applied magnetic field
strength B. Two overlapping loss features are discerned, which are identified
as signature (C) from fig. 46. A combined fit (straight line) is given together
with two individual Lorentzian loss profiles (dashed lines). The absolute atom
number is 3.7 x 10° 23Na atoms [4].

As losses in this resonance region will be primarily mediated by two-body instead
of three-body collisions, dynamics on faster timescales are expected. The samples
are held at a given magnetic field for tpgg < 10 ms, much shorter than the holding
times for signatures A.1 and A.2. Almost complete depletion of the atomic signal
is observed, with a 1/e lifetime of 4 ms at 650 G. In unison with the calculations
presented in section 7.3, the strongly shortened effective lifetime suggests two-body
collisions as the driving loss mechanism. This assumption can be further tested
by examining the atom number decay at different densities or temperatures [212],
which is not investigated here. The observed double feature corresponds to the
predicted overlap of two Feshbach resonances, as can be seen by a secondary
structure (or "shoulder") in the inelastic contribution in Fig. 46). Their individual
positions are extracted by a joint fit as shown in fig. 52.

In total, the s-wave resonances A.1 and A.2, the zero crossing B and the two
closely spaced resonances C have been experimentally located. Their positions and
widths, together with the calculations of this work and recent predictions of [187]
are summarized in table 5.

7.5 QUANTUM DEGENERATE MIXTURES

Based on the recorded Feshbach spectrum, it is now possible to discuss magnetic
tield regions suitable for producing quantum degenerate atomic samples of two
species. For this purpose, a domain is searched for in which either both species can
be individually cooled and display a non-destructive interspecies behaviour, or in
which one of the samples can efficiently cool the other one sympathetically.
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Feature Bgyp [G] Obxp[G]  Bmn[G] Brn[Gl[187] Tmin [order of mag.]

A1 32.5 (0.8) 27.3(2.9) 34.2 2.0

~ 100 ms
A2 247.1 (0.2) 9.5(3.0) 248.1 241.4
B 117.2 (0.2) 11.7(1.1) 117. 75.7 ~10s
C 646.6 (1.5) 48.6 (5.6) 651.5 - ~10ms

686.2 (1.5) 40.9 (5.9) 686.7 -

Table 5: Experimental magnetic field positions Bgy,, FWHM widths ogyp. and respective
statistical standard errors (+) together with the theoretically calculated positions
By, of this thesis and a comparison with recent work [187] Each type of signature
has a different characteristic effective minority lifetime. The order of magnitude
(when sampling with the same parameter set) is given.

7.5.1 Interaction domains

Figure 53 shows the interspecies scattering length from 0 to 700 G based on the
results obtained in the last section, together with the intraspecies scattering taken
from [213] for 23Na and [188, 214] for 3?K. Due to the magnetic field independent
interaction of 23Na in this magnetic field window, it can be condensed at arbitrary
bias field values, and its scattering length an, = 52 ap will only contribute to
a positive interaction offset on the dual-species operation. For 3K on the other
hand, the appearance and relative shape of its Feshbach resonances constrains the
magnetic field of operation to a magnetic field valley between 32.6 G and 162.8 G
and to the immediate left-side slope of the 562.2G resonance. Outside of these
regions, the 37K interaction will be negative, leading to mean-field collapse of
the condensate wave function. The further discussion concentrates on the valley
region, where the 37K scattering length is strictly positive and widely tunable
between 10 ap and oco. Due to the location of A.1 at the valley border and the
appearance of the zero point scattering near the valley center, the interspecies
scattering monotonically decreases in the discussed region, and can be set to values
—62.1ap < anak < 0o. This freedom regarding sign and magnitude of intra- as
well as interspecies interaction marks the valley as a rich source for different two-
species scenarios, including miscibility, phase separation, collapse and droplet
formation. The figure of merit for the identification of different interaction domains
is [215, 216, 217]

59(B) = (g&ak(B)/ (gna X gk (B))) — 1, (7.20)

where g;(B) = ((27th?q;)/1) denotes the interaction parameter for the intra- and
interspecies interaction respectively, h being the reduced Planck constant and ;
the respective reduced mass. A condensed mixture is said to be miscible if g < 0,
whereas 5g > 0 implies either immiscibility or mean-field collapse, depending on
the sign of gnak-

Figure 54 shows 8g(B) in the aforementioned magnetic field valley, where four
different interaction domains are identified. In the region By : B < 109.1G, the
interspecies interaction outweighs the intraspecies one, such that 6g > 0, when
the atomic wave functions will be phase separated, rendering sympathetic cooling
of 37K inefficient. This changes in the region around the zero point crossing, B; :
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Figure 53: Inter- and intraspecies scattering lengths ana,x, ana and ax as a function of
magnetic field strength. The positions of 3?K and 23Na3?K resonances are
indicated by dashed vertical lines. The regions in which 3K BECs experience
single-species mean-field collapse are marked.
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Figure 54: Miscibility parameter 89 as a function of magnetic field. Three sign changes exist
in the magnetic field valley outlined by the two low-field 37K resonances, that
can be assigned to miscible, immiscible and collapse regions, respectively. At the
crossover of B3 and B4, beyond-mean-field effects will lead to the formation of
heteronuclear quantum droplets.

109.1G < B < 131.5G. The clouds are miscible in this domain, but due to the small
values of ax and an,k, 'K displays unfavorable thermalization properties and
cannot be efficiently cooled to quantum degeneracy. At B3 : 131.5G < B < 151.1G,
both intra- and interspecies interactions are sizable, with 6g > 0. In this region, two
clouds with high density overlap will not be mean-field stable, leading to collapse
of the mixture. At the borders of the collapse region B3, the mean-field terms cancel
each other out, and beyond mean-field effects can lead to the formation of self-
stabilizing droplets [96]. Finally, at B4 : 151.1G < B < 162.8 G, g becomes again
negative as 37K is approaching its second resonance. In this region the individual
intraspecies scattering lengths are large enough allowing for efficient evaporation,
whereas anax will be small and negative, ensuring miscibility of the cloud. The
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region B4 can therefore be highlighted as most suited for the purpose of condensing
both clouds.

The exactness of eq. (7.20) relies on equal densities, and therefore neither accounts
for density imbalances nor includes geometric effects due to the unequal optical trap
depths and gravity [218]. The mass imbalance mg/mna. ~ 1.7 partially balances the
stronger confinement of 37K, giving relative trap frequencies wy/wn, &~ 1.217. This
leads to a differential gravitational sag of dzp(w;) = (3.19/ w?) Hz’m, decreasing
the overlap region and shifting the boundaries of the magnetic field domains
B1,2,3,4. In particular, B4 will extend to lower magnetic fields, and the B3 — B4
boundary will smear out.

A note on single-shot imaging processing

To verify that both clouds are condensed in the same experimental cycle, they
have to be subsequently imaged in the same time of flight. The CCD sensor
architecture uses frame transfer in order to enable the CCD camera to rapidly
switch between exposure and readout. In this configuration, only a part of the CCD
chip is illuminated and parallel chip arrays are used to store the acquired data.
Then a set of four pictures is taken, first two "atomic" pictures that each contains
one atomic species, with a delay of 3 ms inbetween. These are followed by two
reference pictures that are taken after both clouds have left the acquisition region.

Most critically, condensate signatures such as the bimodal distribution have to be
visible in both pictures of a single shot. In this experiment, early attempts to achieve
two condensates faced an unfavorable signal-to-noise ratio. The picture storage
region of the CCD had been blackened using a custom machined slit aperture, yet
the way it was implemented gave rise to diffraction patterns on the illuminated part
of the chip. These pattern may change slightly between atomic and reference image,
leading to stripes in the calculated density distribution. To separate the desired
information from parasitic bias and noise, a wide variety of image processing
methods such as Fourier filtering is described in the literature [177, 219, 220, 221].
In this thesis, the additional noise is reduced using a principal-component analysis
(PCA). This method is nowadays widely used in the field of data mining and face
recognition [222, 223], but has been also applied in cold atom experiments in the
past [224, 225]. In these cold atom systems, the PCA was applied onto the obtained
density distributions. In this thesis, the PCA operates only on the reference picture,
with the intrinsic advantage that the atomic picture and therefore the actual atom
distribution will be not altered [226].

The reasoning behind PCA is that for the investigated cold atom system, the
dimensionality of the data space is much larger than the dimensionality of the
feature space that one is interested in. Therefore, even though an image acquired
on a 100 x 100 CCD chip spans a vector space of dimension 104, a much smaller
vector subspace can be defined that is able to describe the whole image up to a
small error. This vector subspace is efficiently spanned by the principal components
of the system.

Two regions of interest (ROI) are defined: The atom ROI contains the atomic
density distribution, whereas the ref. ROl is another illuminated part that does
not overlap with the atom ROI. A database of ~ 200 reference images is acquired.
This set of reference images is used to build a linear model that can estimate the
illumination at the atom ROI out of the illumination of the ref. ROL A singular value
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decomposition on the ref. ROI allows to express the picture data as a superposition
of the 200 principal components, which contain all relevant information of the
picture. Using the same transformation on the atom ROI results in a constructed
estimate of the reference image in the atom ROI. The resulting fringe reduction
helped tremendously for the initial verification of simultaneous degeneracy. It
can be of similar use when intra-trap structures such as quantum droplets are
investigated, such as recently done by the Pfau group [227].

7.5.2  Dual-species degeneracy

Two stable condensates are realized in this setup by optical evaporation in the
magnetic field region By, typically at By = 153 G. Here, all three scattering lengths
are of similar magnitude,

aNa,K,Nak = 152,65.4,—52.6} ao, (7.21)

which leads to similar thermalization rates. Following a quick magnetic field ramp
to Bo, dual-species evaporation is performed by consecutive linear intensity ramps
of the crossed optical dipole trap. Both species are then released from the optical
traps and the bias field is subsequently switched off. The whole experimental
sequence is depicted in fig. 55.

(46x46) trap (143x40) trap P [W]

B ~__\

216 G/cmE 3
117G 153 G
b :TOF'

0 1 2t + 6 8 10
Quadrupole trap Helmholtz field time [S]
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Figure 55: Exemplary experimental sequence to obtain quantum degenerate mixtures.

Interestingly, probing the magnetic field border between the regions B3 and B4
showed that stable quantum degenerate mixtures can be created also at magnetic
fields B < B4. As an example, this is shown below for B = 150.4 G. In particular,
5g(B) = 0.047, when eq. (7.20) dictates mean-field collapse as B € B3. The cooling
procedure is operated as depicted in 55. After optical evaporation, the final trap fre-
quencies are Wy y, Na) = 27 (36, 129,157) Hz. Figure 56 shows the resulting density
distributions for a typical experimental run as well as the one-dimensional inte-
grated optical densities. A bimodal fit discerns the condensed (N.) and thermal part
(Nt) of the clouds. For the used parameters, condensed fractions of N.na = 42 %
and N.x = 17 % with a total atom number N + Nt of 4 x 10% for 23Na and 7 x 10%
for 37K are obtained.

As outlined before, the magnetic field regions B3 and B4 given by eq. (7.20) will
shift due to the reduced cloud overlap. It is therefore perceivable that depending
on the density distribution of both clouds, this geometric effect can ensure stability
at the chosen field B. Alternatively, it was pointed out that at the border of these
regions, beyond-mean-field effects will lead to the formation of quantum droplets.
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Figure 56: Top: Typical absorption images of 23Na (left) and 37K (right) after a ballistic
expansion time of 11.3ms (?3Na) and 14.4 ms (23K), respectively. Optical evapo-
ration was performed at a magnetic field B = 150.4 G. Bottom: Integrated column
densities of the top pictures (blue dots) together with bimodal fits of the thermal
(red line) and condensed parts (blue line), respectively [4].

Both effects have been investigated. The possibility of forming heteronuclear
quantum droplets in NaK is currently investigated theoretically in the Santos group.
Figure 57 shows the calculated ground state density distribution obtained out
of a two-component coupled Gross-Pitaevskii description that includes the Lee-
Huang-Yang correction. The simulations have been performed using the identical
parameter set (atom number, trap frequency, scattering lengths) that lead to the
experimental shot depicted in fig. 56. At the used magnetic field B, a droplet
solution emerges in the center of the trap. In this region, the mean-field terms
cancel each other out, which locks the atom number density ratio

K L [9Na (7.22)
MNa gk

For the magnetic field B, both intraspecies scattering lengths are similar, thus
gNa > gk through the mass dependence. Therefore, nng < ni in the droplet
region, leading to an ejection of 23Na condensate atoms from the droplet region.
These are visible as additional flanks in fig. 57. Thus, the appearance of a droplet
may well explain the observed stability. However, up to now the predicted spatial
signatures were not observed in the experiment.

The most apt explanation for the stability of both condensed clouds can be
given by the details of the trapping geometry. At the final trap frequencies, the
differential gravitational sag 6zp = 3.27 pm exceeds the individual (i.e. without
interspecies interactions) vertical Thomas-Fermi radii of the condensate wave
functions, when the condensate wave function overlap of the two clouds is already
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BEC part Droplet part

Figure 57: Density distributions for 23Na (left) and 37K calculated using a two-component
Gross-Pitaevskii equation where Lee-Huang-Yang beyond mean field corrections
are included. Condensate atom numbers, trap frequencies and scattering lengths
are chosen to be identical to the experimental realization presented in fig. 56.
The effect of gravitational sag is not included. Picture provided with courtesy
from Daniel Edler, only labels have been added.

strongly reduced to about 30 %. Hence the impact of the interspecies interaction is
reduced, and mean-field stability can be obtained. This was verified by calculating
stationary solutions of the coupled Gross-Pitaevskii equations for the mixture
in the Thomas-Fermi approximation. For the used experimental parameters and
final observed atom numbers, the derived chemical potentials dictate stability of
the condensates. The reduced overlap also modifies the thermalization properties
of the mixture. In an interacting and overlapping scenario, both clouds have to
be in thermal equilibrium after a thermalization time, hence Ty, = Tx. Yet in a
forced evaporation sequence with non-interacting or non-overlapping clouds, in
general Ty, # Tk. The intermediate regime, i.e. the effect of reduced interspecies
collisions due to decreased spatial overlap, has been studied before [228], where
a considerable decrease of the interspecies rethermalization rates was found. In
the experimental sequence corresponding to the measurement campaign of fig. 56,
the individual cloud temperature are obtained by Gaussian fits to the wings of the
thermal cloud fraction. This gives Tx = 186 nK and Ty, = 87 nK, respectively. Both
values are consistent with the individual extracted condensed fractions and critical
temperatures. It can be therefore assumed that in the chosen evaporation sequence,
both samples are in thermal equilibrium with themselves, but not with each other.
Verifying these findings by numerical simulations demands exact tracing of the
evaporation dynamics in presence of the thermal background and are therefore
beyond the scope of the stationary Gross-Pitaevskii equation ansatz that was used
to support the above explanation of mean-field stability. Both effects, the mean-field
stability as well as the thermalization properties, are currently under investigation -
their results will be discussed in future work of this group [116].

The main objective, namely the realization of a quantum degenerate mixture, has
been achieved. The presented experimental shot at a magnetic field B displayed
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about condensate fractions corresponding to about 1 x 10* atoms for each species.
Through optimization of the evaporation trajectory and operating at a magnetic
field of 153 G € B4, these numbers could be increased to condensate atom numbers
of 4 x 10 each, at comparable temperatures ~ 100 nK.

7.5.3 Conclusion

This chapter presented a detailed theoretical and experimental investigation of the
23Na and 37K collisional properties at ultra-cold temperatures. It was focused on
the spin state combination |1, —1)nq + 1, —1)x with the goal to achieve dual-species
condensation. The theoretical calculations show three distinct signatures, and it has
been shown how all of them can be spectrally resolved using atom loss spectroscopy.
The measured features coincide well with the theoretical prediction, highlighting
the quality of the recent data on the fermionic isotope pair [204]. The potential
energy curves can be further improved by measuring the remaining Feshbach
resonances of the bosonic isotope in other collisional channels. It was shown
that the interplay of intra- and interspecies scattering lengths gives rise to four
different magnetic field regions B1 7 34, in which different mixture phenomena can
be studied. By tuning anqk, a quantum degenerate mixture was achieved by forced
optical evaporation. Quantum degenerate mixtures are found to be stable beyond
the mean-field criterion, and the influence of the differential gravitational sag on
the miscibility and the thermalization properties of the mixture was discussed. With
reduced cloud overlap, the mixture was found to be out of thermal equilibrium
as the cODT is switched off, and the 23Na appears colder due to the lower trap
depth. Thermalization can be achieved by raising the trap frequencies after the final
stage of forced evaporation, which reduces the differential sag. Combined with the
miscible interactions, a high spatial overlap of the atomic clouds gives ideal starting
conditions for the association of Feshbach molecules and subsequent molecular
ground-state spectroscopy. A thorough study of the different interaction regions
B1,2,3,4 is left for future studies. Of considerable interest is the border between B3
and B4 due to the possibility to study higher-order mean-field effects like the Lee-
Huang-Yang correction to the Gross-Pitaevskii equation. This correction manifests
itself in the formation of quantum droplets. With the condensed clouds at hand, this
region can be revisited and quantum droplets studied. Together with the immiscible
region By and the miscible region B4 explored in this article, the magnetic field
valley outlined in fig. 54 provides a wealth of possible phase transitions to be
studied in future research.
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TWO-PHOTON PATHWAYS IN MOLECULAR NaK

The preceding chapters showcased the experimentally achieved progress. Using
the resonances located in chapter 7, Feshbach molecules can be created either by a
magnetic field sweep over the resonance [229] or by radio-frequency association,
which is done by matching the binding energy of the molecular state to the fre-
quency of a rf-source [55, 230]. This chapter is devoted to theoretical considerations
regarding the transfer from the thereby created Feshbach molecules into the ground
state. The main results of this chapter have been published in [1], figures appearing
identically in that publication are marked correspondingly.

Compared to the free atom pair, the radial amplitude of the Feshbach molecular
wave function is already much stronger (= 100x) localized. Still, its mean molecular
bond length is very large, as can be seen in fig. 58, in which the Feshbach wave func-
tion is represented through the least bound vibrational state of the a% " potential.
As its radial extent can be much larger than the characteristic Van der Waals length
of the underlying potential, several of the Feshbach molecule properties will be
given by the simple sum of the corresponding atomic properties, and some distinct
molecular features will appear less pronounced. In particular, the permanent dipole
moment of bialkali molecules scales as v~ in the long-range region [231] where T is
the internuclear distance, and therefore no sizable dipolar effects can be expected to
emerge for this state. Moreover, as transitions between vibrational levels do not obey
selection rules, the loosely-bound Feshbach molecule is not a stable configuration
as it can decay to lower vibrational states of the potential. Therefore, it is desirable
to transfer the molecules via an optical transition into the absolute ground state of
the system. Here, their radial wave function will be a Gaussian function localized
at the equilibrium distance of the underlying potential energy curve (see also fig.
58), and a large dipole moment can be achieved.

The radically different character of Feshbach and ground state sets constraints
to the type of transfer that can be successfully executed. Firstly, the direct wave
function overlap between weakly bound Feshbach molecules and deeply bound
ground state molecules is vanishingly small. Secondly for alkali dimers, Feshbach
molecules and ground state molecules can have very different electronic spin
character. While Feshbach molecules often display dominant a3~ " character?,
rovibronic ground state molecules are purely X'Z* molecules. As the electric
dipole operator does not act on the spin wave function, this contribution will also
be extremely small.

Both problems can be met by using a two-photon transfer involving a singlet-triplet
bridge in the excited state manifold. This is also depicted in fig. 58, in which the
molecular potential curves corresponding to the ground asymptote K(4s) + Na(3s)
and the excited asymptote K(4p) + Na(3s) are shown together with a sketch of a
typical two-photon scheme for mapping Feshbach molecules onto the rovibrational
ground state. A pump light field couples Feshbach molecules to an appropriate

That ultra-cold Feshbach molecules are treated as triplet-dominant is more a rule of thumb than
a strict law. Singlet amplitude is generated by superposing states with opposing amplitudes (e.g.
[ 11) —1{1)), whereas cold systems usually prepare pure spin states ensembles.
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electronically excited intermediate state; an overlapping Stokes pulse couples the
target X' Z* rovibrational ground state to the same excited state level, completing
the two-photon transfer. Therefore, an appropriate electronically excited state serves
as a bridge for the transfer, both in terms of wave function overlap and electron
spin mixing for triplet-to-singlet conversion.

This experimental approach for ultra-cold molecule creation has first been demon-
strated in a seminal KRb experiment of the JILA group [232, 233], where second-
order spin-orbit coupling has been used to induce the singlet-triplet mixing. Two
differences can be noted between the KRb study and the NaK case. First, by compar-
ing the atomic spin-orbit coupling constant &gy, (), Na] = 79.20(19.24)[5.73]cm ™
of atomic Rb, K and Na in their lowest p- state, one sees that such a bridge will be
expected to be far weaker for NaK than KRb. As one cannot endlessly compensate
this weakness by increasing laser power and focusing of light beams, the suitability
of such a scheme has to be reevaluated for NaK.

Na(3s) + K(4p)l
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Figure 58: Scheme of the coherent transfer sequence from a Feshbach state to the absolute
ground state of the molecule. In this example, the intermediate level is of the
resonant type, where A'Z ~ b31T are strongly coupled. Green and orange wave
function amplitudes reflect the respective singlet and triplet components of this
particular level [1].
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The second difference between NaK and KRb is hidden in the Feshbach molecular
state. The Feshbach resonances obtained in this thesis were shown to be exception-
ally broad. In experiments done at the MIT using 2>Na?°K, broad resonances have
also been reported [65], and it has been argued that this can vastly influence the
spin character. For the MIT system, it was stated [74] that the singlet amount in
the Feshbach state might allow for direct singlet coupling to an intermediate state,
which would render a triplet-singlet bridge unnecessary.

At the time this study was conducted, the bosonic data presented in this thesis
had not been acquired yet, and experimental Feshbach molecular data was only
availabe for the fermionic molecule 23Na*°K. Therefore, the Feshbach state mod-
eling presented here used the fermionic isotope in order to be able to compare
the used model and theoretical results to experimental data. For the fermion, the
nuclear spin is ix =4, hence 7/2 < fx < 9/2. For the excited state, the dominating
contribution to the singlet-triplet admixture will be given by the interaction between
orbital angular momentum and spin, therefore the effect of hyperfine coupling
was neglected. Without hyperfine coupling, the singlet and triplet potential will be
identical for both isotopes, thus the excited state results are directly adaptable to
the bosonic case.

Ultimately, the parameter of interest is the product of the two dipole matrix
elements, representing the two-photon transition:

drox) = (Wrlding ) (Wine [dhbx). (8.1)

Here, \pr) corresponds to the Feshbach molecule, whereas iy ) is the intermediate
level selected for an effective two-photon process. The rovibronic ground state is
abbreviated as [\x) = ‘X1 Itv=0,] = 0)>, where v and ] are the vibrational and
rotational quantum numbers of the molecule.

This chapter focuses on a detailed analysis of the involved molecular potentials
to identify transition windows in which both the transition amplitude from the
Feshbach state to the intermediate state and from the intermediate state to the
ground state are sizable. In what follows, the individual components of the result-
ing two-photon matrix element are piecewise evaluated. For the Feshbach state
near a resonance, the influence of the hyperfine interaction on the singlet admixing
is shown, and the suitability of a pure singlet bridge is discussed. The interme-
diate state is studied with particular emphasis on its spin mixing characteristics.
Combining the ground and excited state analysis, two-photon transition dipole
matrix elements are calculated, which unveils possible two-photon transfer paths.
The theoretical framework relies again on coupled-channel calculations. These
were first performed using subroutines developed in the Tiemann group. For the
excited state manifold, this formalism transforms the problem at hand to Hund’s
coupling case (e), as the spin-orbit operator acquires diagonal form in this basis. To
which extent it will reflect the experimental situation is not clear, and modifications
might be in order, similar to the hyperfine operator shown in the last chapter. Later
on, the author acquired spin-orbit coupling matrix elements in Hund’s coupling
case (a) from Andrey Stolyarov (Moscow University) that were obtained out of
deperturbation analysis [69]. Using these experimentally obtained matrix elements,
another calculation routine was set up independently. Both formalisms gave similar
results, and the former approach is presented here.
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8.1 THE FESHBACH STATE

The initial state of the two-photon sequence, i.e. the Feshbach level, is investigated
first. This already gives insight into the requirements concerning the choice of
an intermediate level in order to accomplish an efficient ground state conversion.
The crunchpoint of eq. (8.1) lies in the radial variation of the Feshbach molecule’s
wave function that is obtained out of the coupled-channel Schroedinger equation
introduced in chapter 2. Hence, solutions are pursued for the equation

Hbr) = ERpE), (8.2)

subject to either bound-state or scattering boundary conditions and with the multi-
channel Feshbach state vector . The Hamiltonian H for the diatomic collision is
again given by

H =T+ V+Hps+ Hgq + Hzee- (8.3)

T = —h?V?/(2y) is the relative kinetic energy operator, whereas Hy¢ qd) [zee] are
the hyperfine (magnetic dipole-dipole) [Zeeman] interaction, respectively. The nu-
merical approach to the coupled-channel calculation is identical to the one outlined
earlier and not repeated here. Again, the atomic masses, hyperfine parameters as
well as electronic and nuclear g factors are taken from [107, 202].

For this analysis, the X' Z*and a3Z*potentials obtained in [207] were used, in
which both triplet and singlet transitions have been studied together. The whole
potential representation is tabulated in their article as a nonlinear power series
expansion in the potential minimum regime, as well as a hard-core short-range
and Van der Waals long-range extension, which are smoothly matched. The joint
description of both the X' Z*as well as the a3Z* curves fixes their relative position
and therefore serves as a common frequency reference connecting the singlet to the
triplet manifold, removing uncertainties in the two-photon detuning between Pump
and Stokes lasers. The potential curves are refined by using again the MIT Feshbach
data that provides a complementary, ultra-cold dataset probing the long-range
region of the potential.

The Feshbach molecule is fully described by the basis set given by the atomic
quantum numbers (Hund’s coupling case e):

‘(1/ S, f/ m)Na/ (1/ S, f/ m)KI F/ mF) = |fNa/ MNa, fK/ mg, F/ mF> ’ (84)

where sa (ia) is the electron (nuclear) spin, f5 the total angular momentum and
ma its projection onto the space fixed axis of atom A, and F, mr the total angular
momentum and its projection of the system excluding rotation. The number of
channels is given by the number of possible projections of the individual angular
momenta onto the space fixed axis equating to the same total magnetic quantum
number. For a rotational state { = 0, M = mg¢. In this study, it is assumed that
the diatomic pair has been converted to a molecule possessing a total magnetic
quantum number of M = —3/2, as this is the combination in which a particularly
broad Feshbach resonance has been observed at MIT. For this combination, the
total number of channels that constitute the Feshbach scattering wave function is
sixteen.
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8.1.1  Feshbach spectrum and spin character

Having employed the Feshbach resonance locations to improve the long-range
description of the potential, the resulting coupled-channel calculations reproduce
the s-wave resonance positions measured in [65] with an uncertainty of 100 mG. The
calculated binding energies for M = —3/2 are shown in fig. 59 below the asymptote
of the atom pair |1,1)Na + [9/2,—5/2)kx. Three s-wave resonances situated and
observed in [65] between 96 G and 138 G are discernable.
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Figure 59: Binding energies of 23Na*°K for the total quantum number M = —3/2 as a

function of magnetic field leading to s-wave resonances. For various magnetic
fields the expectation value (S) of the electronic spin is given. Inset: Singlet
character as a function of B for the (1,1)nq + (9/2,-5/2)K resonance situated at
136 Gauss. For the sharp resonances at lower fields, only a subtle change in spin
character is observed. [1]

Having obtained the scattering multi-channel wave function, its spin composition
is inspected as a function of the applied magnetic field. For this, the expectation
value of the total spin is calculated, once using the numerically obtained Feshbach
wave function (corresponding to full coupling of hyperfine and Zeeman interac-
tion) and once by performing a basis transformation through angular momentum
recoupling (where the angular momentum quantum numbers are assumed to be
well defined). Denoting |¢;) as an eigenvector (e.g. of the atomic spin basis) of an
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operator K the expectation value of its quantum numbers for the Feshbach state
under consideration can be written as

(R) = (brlKip) &5
= (Prlk [ZIM@M] br)
— Z Ki<1l)Fl|¢i><¢i|1l)F>
= Z Kil(dihbr)l?

where «; are the corresponding eigenvalues to each basis vector. Clearly (S) =0
and (S) =1 correspond to pure singlet and triplet states, respectively. The closed
channel state will be dominantly a bound state of the a®£*potential, hence any
notable singlet admixture will probably arise out of coupling to open channels. As
the resonance width can be linked to the coupling strength between these collision
channels, the wide B = 138 G Feshbach resonance seems a promising candidate for
generating singlet character in the Feshbach state. In [74], it was shown that the
singlet admixing increases as the magnetic field approaches the resonance, and a
singlet admixture of 14% was stated. This behaviour is confirmed by the numerical
calculations shown in fig. 59, where the expectation value of the total spin operator
is evaluated. A comparison of the three s-wave resonances shows that the spin
character only changes significantly for the broadest resonance at 138 G, saturating
also at approx. 14% as the resonance is approached (see inset in 59).

This result can be understood by utilizing a different basis, as the total spin is not
appearing as a quantum number in the atomic spin basis. However, the expected
spin character can be calculated by performing angular momentum recoupling into
a representation in which the total electronic and nuclear spin quantum numbers
S and I are defined. The unitary transformation from such basis [S, I, F, M) to the
atomic basis of the entrance channels |fn,, mna, fx, Mk, F, M) then reads

|fNa1 MNa, fK/ mg, F/ M) - Z <fNa/ fK|S/ I) <mNa1 mK|F/ M> ‘S/ I/ F/ M) ’
F,S,1

where the transformation coefficient is expressed by the Wigner 9gj symbol

(fna, fIS, I) =4 s ix  fx ¢ V2fna + 12k +1)(2I+1)(2S+1)  (8.6)

together with Clebsch-Gordan coefficient (myj,, mk|F, M) that projects onto the
magnetic submanifold. Summing over all possible cases for M = —3/2 gives a
singlet (S = 0) fraction of ~ 18% at the lowest asymptote, roughly matching the
saturation behavior by 14% shown in the inset of fig. 59. The difference is induced
by the competition between hyperfine and Zeeman coupling at 125G, when fn;,
and fx will no longer be exact quantum numbers. As one shifts away from the
resonance to lower fields, the molecular state converges towards an almost pure
triplet state.
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8.1.2  Feshbach molecular wave function and its magnetic field dependence

The rather high value of more than 10% singlet admixture suggests that a pure
singlet pathway towards the ground state is possible, in which only Franck-Condon
factors to excited singlet states have to be calculated. The following section will
discourage this conclusion. For this, the scattering wave function itself is inspected,
as it comprises more information than the spin character. Near the Feshbach
resonance, one has to distinguish between "atomic" open-closed channel mixing on
one side, and "molecular" singlet-triplet mixing on the other side. To provide an
intuitive insight into both perspectives, two different representations of the total
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Figure 60: Multi-component wave functions for the bound level at 110G (upper graph) and
125G (lower graph), projected onto the Hund’s case (e) basis. The 125G wave
function displays a distinct open channel fraction through sizable amplitude at a
large internuclear distance > 40A. This component has the quantum numbers
of the open channel with lowest energy, which are given in the figure. [1]
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multi-channel wave function are utilized. At large internuclear distances, Hund'’s
case (e) is a convenient choice of a basis set, as the coupling to the molecular axis
plays only a secondary role. By projecting the wave function onto the atomic basis
[fNa, MNa, Tk, Mk, F, M), one obtains direct access to the open and closed channel
character of the scattering wave function. This is shown in fig. 60 for two magnetic
tield values 125G and 110G, for which the bound molecular level has a binding
energy of Ej25 = 250kHz x h and Ej19 = 11 MHz X h, respectively. Closed and
open channels can be distinguished by their long-range behaviour as indicated
in the upper graph of fig. 60. At larger internuclear distances, closed channel
amplitudes quickly decay to zero, whereas the open channel amplitude remains
sizable?.

At 125G, the molecular state is only weakly bound and strong coupling to the
open channel persists, which is highlighted by the large amplitude of one sin-
gle basis vector, labeled by quantum numbers. As the open channel contains a
considerable fraction of singlet character, this directly translates into an increased
singlet-triplet ratio for the Feshbach state. At first glance, one could therefore inter-
pret a high singlet admixing as being beneficial for the desired ground state transfer,
because one could directly couple to a more or less pure singlet intermediate state.
Yet components going over to open channels possess significant wave function
amplitude only at large distances, which will not contribute to the transition dipole
matrix element in eq. (8.1) due to vanishing vibrational overlap with the excited
state. Hence, the wave function amplitudes and their state character localized at
smaller internuclear distances are of great interest.

The Hund’s case (e) representation is not suitable for directly identifying the
singlet and triplet admixture, as the total spin is not appearing as a quantum num-
ber in the basis vector. For that reason, the Feshbach wave function is transformed
into a state basis in which the total spin is used, namely Hund’s case (b). Here,
the angular momentum coupling, neglecting in this case the molecular rotation,
gives rise to a set of quantum numbers |S, G, F, M), where the quantum number
G is obtained by coupling the total spin S with the nuclear spin of sodium. After-
wards, the nuclear spin of °K and G are coupled to obtain F. Note that the 2*Na
hyperfine splitting is larger by a factor of 1.4 compared to “°K, which validates the
coupling order. The resulting projections of the wave function onto the basis (b) are
shown in fig. 61, again for a magnetic field of 125G (upper graph) and 110G (lower
graph). For reasons of clarity and comprehensibility, all but the strongest triplet
and singlet channel contributions have been removed. From fig. 61 it is evident that
one benefits from changing the magnetic field from 125G to 110G, as it leads to
compacting the Feshbach wave function at internuclear distances r < 20 A, where
the maximum amplitude becomes 0.035 for 125G and 0.16 for 110G already. Both
triplet and singlet amplitudes are enhanced in the deeply bound 110G region.
To quantify this in terms of bound states, the single-channel wave functions for
the last bound levels of the X'+ and a3L* potentials, vx=74 and v,=19, have
been calculated. At internuclear distances drawing near the chemical region, the
amplitude from the continuum coupling will be damped out and the individual
channel wave functions will change over to the corresponding bound state wave
functions. Matching their amplitude at internuclear distances r < 10A (see fig.

The open channel wave function still has to decay eventually as it has to be an element of the
Hilbert space £2. To handle the continuum description, an infinitely large box is installed at a large
internuclear distance of 5000 ay that does not change the overall physical picture.
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61), scaling factors 3,(B), Bx(B) for the unperturbed single-channel wave functions
are obtained. These scaling factors can be interpreted as the amplitude gain or
loss for the Franck-Condon overlap in the eventual two-photon transfer. For the
two magnetic fields shown in fig. 61, this gives a ratio x(110)/Bx(125) = 5.48 for
the strongest singlet and 3,(110)/Ba(125) = 4.33 for the strongest triplet channel.
Evaluating Feshbach transition dipole matrix elements, this gain in 34 x directly
translates into a transition probability gain of one full magnitude.

Concluding, the rise in singlet character close to the resonance field is accom-
panied by significant total amplitude loss in the inner part. This behavior cannot
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Figure 61: Multi-component wave function of the bound level at 125G (upper graph) and
110G (lower graph), projected onto the Hund’s case (b) basis. For clarity, all but
the strongest triplet and singlet channels were removed. As dashed lines the
vibrational wave functions of the pure singlet and triplet states are given for the
least bound level, scaled to the amplitude of the appropriate inner parts of the
multichannel wave function. [1]
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be revealed by inspecting the spin character, as it cloaks such details due to the
integration procedure by which expectation values are calculated. Instead, one has
to look directly into the multi-channel wave function, which naturally contains a
much higher degree of detailed information. Note that this behavior is depending
on the resonance that one works with (e.g. the sharp resonance at 96 G displays
slightly increasing singlet character as one moves from the resonance). For each
resonance, there will be a magnetic field which optimizes the transfer to the molec-
ular ground state via a selected intermediate state. This reflects the competition
of singlet amplitude admixed by the open channel coupling and the increase in
amplitude of the desired component in the inner region of the wave function.

8.2 INTERMEDIATE STATES

The intermediate state will be one of the eigenstates of the Hamiltonian
H = Ho + Hint. 8.7)

Here, Hy contains the kinetic energy and diabatic potential operators of a specific
molecular state manifold. The generally used manifold corresponds to either one of
the two lowest electronic excitations Na(3p)+K(4s) or Na(3s)+K(4p), and the spin-
orbit coupling will be the dominant interaction in Hin . Since the atomic spin-orbit
coupling constant for the lowest p-state of K is about a factor of 3 larger than the
corresponding coupling for the lowest p-state of Na (£ (nq) = 19.24[5.73]em ™),
the states asymptotically converging to K(4p) are chosen for this analysis, which is
also the energetically lowest one of both sets mentioned above.

Note that the state px) will be populated from the intermediate states. [{x)
is symmetric under parity inversion for the rotational state ] = 0, demanding for
levels with odd parity for the excited states. For the asymptote under consideration,
this then gives five molecular state vectors. For state labeling, the 25*TAL sym-
metry (Hund’s case (a)) is used, where A (Q) gives the projection of the electron
orbital (total) angular momentum along the internuclear axis. The manifold under
consideration then comprises two states ! Zg+,3ﬂo+ sharing Q = 0™ and three states
3ZT,1TI1,3T[1 sharing QO = 1.

The interaction Hamiltonian Hyy can be divided into hyperfine and spin-orbit
interaction. Despite playing a pivotal role for the ground states, the hyperfine
interaction is neglected in the following ion on excited states, because it is a small
perturbation compared to the singlet-triplet coupling by the spin-orbit interaction.
For the same reason, by setting B = 0, no magnetic field effects are discussed.
Whether this simplification will give any shortage to the conclusions drawn here is
discussed near the end of the chapter.

An in-depth review of the remaining coupling terms can be found e.g. in
[234, 235]. The weakest term is given by the spin-rotation coupling YR - S with
a coupling constant y [236] that can induce e.g. the coupling between 3TTy+ and
TTy+. Additionally, there is the Coriolis interaction from Hy coupling states with
AQ = £1. The coupling from Q =1 to QO = 2 does not play any role here because
Q = 2 states do not posses ]’ = 1 levels. The dominating term is given by the spin-
orbit interaction which couples states possessing the same value of QO (AQ = 0).
In the asymptotic limit r — oo, it acquires diagonal form in the atomic spin basis,
where it leads to the well-known fine structure splitting, in this case mediated by
potassium’s fine structure constant £x. After a basis transformation to Hund’s case
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(a), it will be in general a radially dependent function. For the excited states under
consideration, the corresponding matrix elements have been studied and tabulated
by Stolyarov and co-workers [69].

In matrix representation, the multi-channel vector for the excited states [Pexc.) is
written using its five channel components:

T+ Vis SO Cor. S—R 0 123_
SO T+Viyr S—R Cor. Cor. Mo+
Hbexe.) = | Cor. S—R T+Vip SO 0 T, | (8.8)
S—R Cor. SO T+Vss SO 3rf
0 Cor. 0 SO T+ Vi 3,

Where SO, Cor. and S-R are spin-orbit, Coriolis and spin-rotation interaction,
respectively, T is the kinetic energy operator and V;,, denotes the potential energy
curve for state m. Note that these are the diabatic potential energy curves of the
system. Therefore they will cross in radial space and share the same asymptotic
dissociation limit. Diagonalization of them in presence of their interaction terms
will give the adiabatic potential curves3, displaying avoided crossings and splitting
according to the fine structure at the asymptote.

The computational approach to this problem is a bit different from the ones
performed in context of Feshbach resonances. Again, the multi-channel radial
Schroedinger equation is solved, but here not the scattering wave function but the
bound state spectra of the coupled potential energy curves have to be obtained.
For bound state calculations, several fast spectral methods are available. Here, the
Fourier grid method is utilized, in which the radial dependence of the Hamiltonian
is discretized on a grid [86]. The main appeal of this method is that all eigenvalues
and -functions are deductible by diagonalizing one single matrix. The radial grid is
discretized on N grid points with a total length L, hence every matrix element of
the Hamiltonian is itself a matrix. In Hund’s case (a), the potential energy curves
are diagonal N x N matrices:

Vi1 0
Vin2
Vin = (8-9)
Vin,N—1
0 Vi, N
The kinetic operator is diagonal in the Fourier k-space. Through an inverse Fourier

transform, it can be represented on the radial grid as a non-diagonal N x N matrix
that is equal for each of the channels:

h? (N% +2)
Ty = STMER (8.10)
. h?
Ty =—1 (i) i4] (8.11)

4ul2 sin? [(i—j)(rt/N)]
For a given grid size N, diagonalization of the Hamiltonian in eq. (8.8) gives the 5N
lowest coupled channel eigenvalues and -functions of the system. By projecting the

eigenvalues on the individual channels, the individual state admixture is obtained.

3 adiabatos (Greek): ‘impassable’, from a- ‘not” + dia ‘through’ + batos "passable’ (from bainein ‘go’)
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8.2.1  Modeling excited state molecular potentials

The reliability of the following calculations will be dictated by the accuracy with
which the applied PECs and their interaction reflect reality. For NaK, ab initio
curves provided by quantum chemistry calculations are tabulated in the literature
[237]. These give a complete overall description of the PEC, which, however, is
accompanied by lower total accuracy. The results obtained by using such potentials
can in general not compete with the accuracy provided by spectroscopic studies. The
desired states have also been investigated by molecular spectroscopy [69, 70, 71]. The
results of such studies are usually represented by a set of spectroscopic constants
that reproduce the measured energy levels.

Out of these constants, the potential energy curves were reconstructed using the
Rydberg-Klein-Rees (RKR) method [238]. This provides the underlying potential
curve by using the energy levels that this curve will produce, and can therefore
be seen as an inversion method that constructs the problem out of the solution.
For this, one utilizes the semi-classical Sommerfeld quantization rule of the action
integral:

Vi §VE 1)~ Vel T dr £ (v " ;) , (5.12)

where the integration is performed for one complete cycle of motion. The effective
potential is the sum of potential energy curve Vo (r) and rotation energy:

R+ 1)

Vet (1, ]) = Vo (r) + pIveS:

(8.13)
The rotation-vibration energy for a level with quantum numbers (v,]) is E =
G(v) + B(v)J(J + 1) with the vibration energy G(v) and the v-dependent rotational
constant B(v). Obtained out of a spectroscopic study, they are parametrized using
the Dunham expansion [239]

E(v,]) = Z ZYik <V + ;) O+ 11 (8.14)
ik

with the so-called Dunham coefficients Yix. The potential can be reconstructed out
of these energies by noting that for any given energy level, the inner and outer
turning points r— and v, mark the points at which the energy is equal to the
potential energy. To link Vo, E(v,]) and the turning points, one uses the PEC area
for a given E(v,]),

T+

A(E,]) = J [E—V(r)]dr, (8.15)

T_

and the turning points can be evaluated using

OFA =14 —T1_, (8.16)
1 1
OjJA o« — — —. .
JA e T4 T_ (8 17)
The area function in eq. (8.15) does not look so different from the action integral
in (8.12). In fact, using the Sommerfeld quantization rule, it is possible to form
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an integrand that only depends on the measured eigenvalues. The derivation is
skipped here, but can be found e.g. in [240]. As a result, the turning points for
a given vibrational level vy can be constructed out of the so-called Klein action
integrals f and g:

h Yo 1
f:wmjw o)) .
(Y[ kB
o=(vm) |, B0t ) 819
Ty = ;+f2:l:f (8.20)

Note that | and v are discrete variables in the physical system, they are treated as
continuous in this description. The action integrals are solved numerically. This
procedure is obtained for a set of selected energy levels, yielding the potential
sampled by the corresponding turning points, and spline interpolation gives a
continuous form. The spectroscopied energy levels can be usually reproduced by
this method with a relative error of 107> [241]. The reason why the RKR method
works so well is that for large vibrational numbers, the semi-classical quantization
rule can be considered valid. For small vibrational numbers, the low-lying turning
points sample a potential not far from a harmonic oscillator, for which the semi-
classical treatment is exact following out of the Ehrenfest theorem [242].

The resulting molecular RKR potentials reproduce the bound molecular states
of the chemical region with a quality which considerably exceeds the ab initio
approach. Yet the RKR treatment is only applicable for the region in which the
molecular states have been explored experimentally. For the used states, the valid
vibrational level range is:

v={0—"75} (A(2)'%) (8.21)
v ={0—63} (b(1)31T) (8.22)
v={0—36} (c31) (8.23)
v ={0—43} (B(1)') (8.24)

If RKR potentials are extrapolated beyond the spectroscopically investigated range,
the potential slope errors become large. It is therefore advised to use these RKR
potentials only to describe the potential minimum part, and switch to different
representations at short- and long-range, respectively. The short range part of
the PECs can be modeled by a repulsive wall involving a high inverse power in
internuclear distance r. The long-range description is given as an inverse power
series involving the individual dispersion coefficients, where high quality theoretical
values are tabulated in the literature [243, 244]. However, as pointed out in chapter
2, it is only valid for internuclear distances larger than the LeRoy radius, when
the atoms of the dimer can be considered detached. The LeRoy radius for NaK is
reported to be 10.8 A [70]. Yet the only RKR curve fully covering the region until that
value is the B'TT one [70]. This it implies that one has to borrow an ab initio shape in
order to bridge the part between RKR and long-range description. To avoid mixing
theoretical and semi-empirical descriptions, it was decided to follow a different
path described below, taking the ab initio curves of [245] and refine them by using
the fully explored ground state potentials. The RKR potentials [69, 70, 71] are then
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employed together with spectroscopic data as a cross-check for the spectroscopically
covered regions.

Ab initio calculations rely on approximations which in the end will over- or
underestimate certain facets of the potentials as for example the well depth of
the potentials. It is noted that a lot of these errors are systematic. As an example,
r-dependent errors in the theoretical curves are mostly generated out of basis-
set superposition errors*, so they will in general affect all calculated curves in
similar fashion. Possessing reliable experimental data on both the ground states,
the a3~ "and X'+ can be compared with the ab initio ground state PECs. Out of
this, some systematic deviations in the ab initio calculations can be found and used
to correct the corresponding excited states.

This idea has been developed in [246, 247] and is used here in the same fashion.
For a given singlet (triplet) state S (T), the first refinement step is given by

Vs refined = Vx,exp. + [V ab initio — VX,ab initio 1 (8.25)
VT,reﬁned = Va,exp. + [VT,ab initio — Va,ab initio] . (826)

The potentials are further refined by comparing them to data sets acquired by
the Tiemann group [207], as depicted in fig. 62.
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Figure 62: Left: Experimentally acquired spectra as a function of assigned rotational angu-
lar momentum ] obtained in [207]. Right: Calculated spectra with the refined
potential curves for the same values of J. The energy is given with respect to the
ground state dissociation threshold. Rotational progressions unveil the difference
between real and calculated rotational constant B for that state.

4 In quantum chemistry calculations, interaction energies are usually calculated using a linear combina-

tion of atomic orbitals and calculating the energy of the molecule with respect to the asymptotic limit.
Both atomic basis sets have to be truncated, giving rise to a uncertainty with which the asymptotic
energy can be determined. When the atomic wave functions start to overlap, each atom can borrow
basis functions from the other basis set, so the accuracy is increased. The comparison of asymptotic
and intertwined distances then produces errors.
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In their experiment, all levels are uniquely assigned to a rotational angular mo-
mentum quantum number. Coupled channel calculations are performed using the
same rotational angular momenta and the curves V& refined, VT refined for the excited
state potentials. A first comparison allows to extract common energetic offsets. Of

special interest are measurements of rotational progressions, which are visible in fig
62 as energetically closely spaced J-chains. In such progressions, the energy of the

rotational level is given by Egxp. = Bigxp)J(J + 1), where B; is the rotational constant
of the i-th molecular state. Comparing this with calculations of the same progression
allows to obtain AB; = B cale. — Bi Exp.- In a rigid rotor model, B ~ (req.)

, where

Hence, AB; is balanced out by slightly (~ 10~3 — 10-2A) shifting the equilibrium

~2
Teq. is the equilibrium internuclear distance of the corresponding potential curve.
distance of the corresponding excited state potential.
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Figure 63: Diabatic PECs of the Na(3s) + K(4p) manifold used in this study. The energy

zero is chosen at the atomic ground state asymptote. Shown are the refined
diabatic PECs (dashed) as well as RKR curves (solid) for comparison. Inset:

Potential difference between the B'TT RKR potential, the raw ab initio curve
(dashed line) and the refined curve (solid line), respectively.

This whole procedure considerably improves the quality of the curves, as shown
exemplary in the inset of fig. 63 for the B'TT potential. It is reliable for the singlet
states, as the region, where the ground state refinements are applied, is well covered
by the spectroscopic studies. For the triplet states, one has to employ refinements
through the corresponding a3~ + state, which gives good results for R > 4.55 A up
to and beyond the LeRoy radius. For smaller internuclear distances, the short-range
description could be used from the ground state, but already small differences in
the short-range parameters could lead to massive discrepancies due to the high
inverse powers involved, and the refinement procedure would actually worsen the
initial potential. To circumvent artifacts arising of such modifications, the refined
part is instead smoothly connect to the respective RKR parts at R = 4.65A. The final
PECs used for the following calculations are shown in fig. 63 (dashed lines) together

with the RKR curves obtained from [69, 70, 71] (solid lines), showing satisfactory
agreement.
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8.2.2  Spin character of excited molecular states

Similar to the ground state discussion, this analysis begins by inspecting the spin
character of the individual eigenstates. For finding the eigenstates the molecular
state vectors in (a) are unitarily transformed into the Hund'’s case (e) basis, as the
spin-orbit operator is diagonal in this representation. A diagonalization procedure
then gives rise to a set of eigenstates and -energies for each total angular momentum
], spanning 7o00cm ™! for the full depth of b3TT. Projecting the eigenstates onto the
Hund’s case (a) state vectors and integrating their squared amplitudes yields the
fractions of the individual channels. This is shown in fig. 64 for QO =1 and a fre-
quency window of 3000 cm ! below the dissociation limit 32S; / >(Na)+42P; /2(K).
Symbolic notations such as 3¥ % (311) marks the channel fraction of 3L+ within a
dominant 31T state. In the JILA scheme [56] an eigenstate of the type 'TT~3 £ ~3 T
was used, where the notion ~ implies coupling. Therefore, the focus here lies on
the 'TT—3TT and 'TT— 3£+ coupling because this promises to have a strong Stokes
transition from B'TT to X' £*. The resulting structure can be briefly divided into
two regions, which are naturally split at the energy E of the lowest level of B'TT,
being indicated in fig. 64 by a black vertical line.

The region lying energetically below Eq can be classified as a perturbative region.
The eigenstates display > 99% character of either the 3£+ (red squares) or 3TT;
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Figure 64: Integrated square of the individual QO = 1 channel wave functions at each
eigenenergy, together with a ] = 1 perturbative model for the 'TT(3Z") case
(open stars, p.t. = perturbation theory). A label of the form 35+ (317) marks the
35+ fraction within a dominant 31T state. The vertical line at E, is positioned at
the first state with dominant 'TT character [1].
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(green triangles) channel in the upper line of fig. 64. Note that this corresponds
to a distinct molecular structure, where the assignment of measured energies to
vibrationally bound levels is straightforward. In this area, 'TT (blue dots) fraction
is generated in almost pure 3Z states via spin-orbit coupling and in almost pure
3T1; states via higher order effects, as the direct coupling matrix element between
1T and 3TTy is strictly zero. The spin-orbit induced singlet admixture in 3Z* states
becomes 0.02 — 0.04%.

This result can be understood by a simple perturbative approach. The k-th

eigenstate of 'TT is denoted as ‘1])L”> and its eigenenergy as Ey, similarly the n-th

bound 3%7 level as ‘1]);2> and E,,. Approximating the spin-orbit operator by its
atomic coupling constant i, the first order state correction of the almost pure
triplet manifold becomes

1]—[ 2 32 : !
Z N)Ekk E|;I)n ) ‘¢kn> ~ Ex X Z FCAFE(:,TI) ‘lpkﬂ> (8.27)
m n " mn

where the problem reduces to a calculation of the vibrational overlap FCF between
the states of interest and their respective energy difference AEy . Summing the
squared coefficients of eq. (8.27) results in the singlet fraction of the n-th triplet
state, which is also displayed in fig. 64 (open stars), and the good agreement
with the simulation emphasizes the perturbative character of the admixing. Note
that the absolute amount is slightly overestimated by the perturbative approach.
The dominant contribution in eq. (8.27) to the interaction comes from the k-th
vibrational 'TT level sharing considerable (42% mean) wave function overlap with
the n = k + 2-th vibrational 3£+ level, which originates accidentally from the
relative forms of the potentials and their relative positions in r.

For completeness, also the 3y + 317 interaction is discussed. Far below Eg, the
eigenstates have either dominantly 3£+ or 3T character. However, the interaction
features a frequency window of around 400cm™' below Ey, in which the assign-
ment to an experimental observation becomes difficult because the admixtures of
either 3Z* (3TT) character to 31T (3Z%) exceed 1%. As the eigenenergies approach
around E =~ —1200cm~', the mixed amount rapidly increases to 30% and decreases
subsequently, displaying a resonant behavior. In this energy interval the two poten-
tials 3ZF and 3TT cross each other. The vibrationally averaged interaction parameter
then largely exceeds the vanishing frequency difference, and the crossing resonance
occurs. The appearance of this structure near Eq is accidental.

At and above Ey, the assignment of structures in fig. 64 becomes complicated, and
work in this area will be accompanied by increased spectroscopic effort. This region
is classified as the resonant region, because the presence of vibrationally bound
7T states is accompanied by levels of other electronic states. These resonances
are qualitatively different from the crossing resonances discussed before. They
appear due to energetically nearly degenerate singlet and triplet rovibrational
levels (AE,, x < 5cm™ '), when the interaction parameter will be larger than the
energy difference and any perturbative treatment will break down. The resonantly
interacting states share no similarities concerning relative vibrational quantum
numbers, and no simple pattern can be identified in the spectrum.

Such accidentally resonant structures also appear below the first 'TT state and
belong to '=F — 3T1; states coupling with Q = 0", which have been removed from
fig. 64 for clarity. Also a perturbative region admixing ' £+ character to dominantly
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3T, states exists just below the potential minimum of the ' £ state about 6000 cm ™!

below the asymptote, and is almost overlayed by the £+ — 31T, crossing resonance.
As the wave functions involved in this low energy region only spread over a small
internuclear distance range, the overlap with the Feshbach molecular wave function
will be small and two-photon transfer not efficient. The general two-photon process
will be quantified in the following section.

Discussion

The suitability of the found structures (second order admixing, crossing resonances
and degenerate resonances) are shortly discussed for the two-photon process, com-
menting on their robustness to changes in the PECs. Shifting the potential curves
in terms of total energy or equilibrium distance will shift the crossing resonances
accordingly to the new crossing position, but will not alter their fundamental
structure. On the other hand, the direct resonances occurring in near-degenerate
states will react highly sensitive to any potential change due to their accidental
nature. Despite the good agreement of the refined PECs with experimental data, it
puts large uncertainties in the actual mixing value of such a resonance. In fact, by
changing the PEC parameters slightly, some resonances will vanish completely and
others appear. This model is therefore not reliable for giving quantitatively exact
predictions of the positions and values of the resonant mixtures.

The second order admixed states in the perturbative region will present the most
robust structures. They will be largely unaffected by energetic offsets, as only the
energy denominator in eq. 8.2 varies, and a mismatch by 1 cm ! will change AE,,
by less than 0.1 %. Also slight radial mismatches in the turning points will only
introduce minor corrections due to the integral nature of the 3£+ state perturbation
by the 'TT manifold. Together with the relative spectroscopic ease which awaits
one at such a perturbative level, this highlights the perturbative region as being
a good candidate for the desired two-photon transfer. Yet the absolute value of
the singlet spin character might cast doubt on the suitability of these states for the
two-photon process. For the KRb analogue, the used level was reported to possess
a singlet character of 0.2% [248]. By just comparing the SO coupling strengths, one
would expect the NaK case to have a factor (Erp/ £x)? ~ 17 lower admixture. This
is partially compensated for due to the earlier discussed potential shapes, which
favor the NaK case. The NaK admixture of around 0.04%, a typical value from fig.
64, is still a factor of 5 lower than the KRb one. For a definite statement, one has
again to inspect closely the wave functions and calculate transition matrix elements,
which is quantified below.

8.3 TWO-PHOTON PROCESS

In the previous sections, a full understanding of ground and excited state molecular
potentials was provided. Everything is now set to quantify the two-photon transition
matrix element dr_,x) given by equation (8.1). For the Feshbach state the broad

= 9/2 resonance appearing for M = —3/2 is used. Decomposing the Feshbach
molecular state vector yields the individual channel contributions. Because the
Hilbert spaces of the ground and excited states do not match (the ground state
comprises hyperfine structure), the Feshbach molecular state is presented using
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the least bound vibrational states, as depicted in 61: Note that by cutting off the
other channels, interference effects of those contributions are ignored, and only
interference of the strongest channels with each other is considered. The neglected
amplitude would gain importance when evaluating the hyperfine structure for
the excited states. Using this approach, the Feshbach molecular state cany be
approximated by

We(B)) ~ Bx(B)|X'EF(v=74,]=0))+Ba(B)[a’ZT (v=19,]=0)) (8.28)

where (; (i = a, X) are the magnetic field dependent scaling factors obtained in the
matching procedure of section 8.1.

The transition dipole matrix elements are calculated from the Feshbach molecular
state and the X'Z+(v =0,] = 0) state to all j = {1,...,683} electronically excited
bound eigenstates obtained up to 10 cm~' below the atomic asymptote P/, of potas-
sium. They formally read [binej) = Y ; ci,j [i), with i = {12,357, 111, 3To, 3114 },
where the sums of the squared coefficients give the channel fractions shown in
tig. 64 of section 8.2. The radial dependent singlet and triplet electronic transition
dipole moments are taken from [245].

The resulting absolute values |dx| of the dipole matrix elements from the ground
state X' ZF (v =0,] = 0) to the intermediate states and |d«| from the Feshbach state
to the intermediate states are shown in fig. 65 as a function of the intermediate
state eigenenergy for a magnetic field of B = 110 G for all states with Q = 0" and
Q = 1. In the upper graph, locally strongest transitions to singlet (triplet) dominant
eigenstates have been connected by a red (blue) line, serving as a guide to the eye.
In the lower graph, the locally strongest triplet (singlet) transitions are connected
by blue (red) lines, representing transitions to triplet (singlet) dominated states.

The one-photon process corresponding to the Stokes pulse is discussed first,
which is shown in the upper graph of fig. 65. The rovibronic ground state is localized
at the bottom of the X' Z* potential, which has its minimum at Req x = 3.499A.
In the region in which this singlet wave function has significant amplitude, the
singlet transition dipole moments do not vary by more than 10%, being 9.7 Debye
(A'Z+)and 7.5 Debye (B'TT) at the equilibrium distances [245]. The ground state
wave function then acts as a Gaussian filter between 3 and 4 A for the singlet
part of the intermediate states. The first eight eigenstates around -7000cm™! in
tig. 65 have dominant triplet character, resulting in modest matrix elements. As
soon as the bottom of the A'L " PEC is reached, the matrix element rises steadily
due to the increasing Franck-Condon factors. When the inner turning point of
the A'Z™" state approaches R x, the matrix element maximizes at 2.92 Debye for
the eigenstates around E =~ —5260 cm ™~ and decreases rapidly thereafter. Due to
the large electronic dipole moment of the X'~ ¥ to A'Z* molecular transition, its
peak value gives the global maximum moment achievable for the Stokes pulse.
A similar behavior is observed around Ey, when B'TT contributions enter into
the intermediate states and the matrix element peaks with an absolute value of
2.52Debye at E ~ —900cm ™. In addition to the two singlet dominant structures,
one recognizes the window (blue color in fig. 65) between the potential minima of
the 3£+ and the B'TT state. In this region, a significant admixture of B'TT character
to the dominantly c3Z* molecular states leads to significant transition dipole
moment from the purely singlet X' (v = 0,] = 0) state to the c>£" dominated
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Figure 65: Absolute values of the transition dipole matrix elements for all intermediate
states. Upper graph: Stokes laser transitions (/i) — [X)). Lower graph: Pump
laser transitions (|F) — [i), decomposed into the singlet (red squares) and triplet
(blue circles) part). The energy is given with respect to the P;/, dissociation limit

[1].

intermediate states. Note that transition matrix elements to these triplet dominant
states largely exceed matrix elements to close lying singlet dominant states.

The lower graph of fig. 65 shows the matrix elements obtained for the Pump
pulse. Due to the large extension of the loosely bound Feshbach molecules over
considerable internuclear distances, the wave function overlap will in general tend
to be larger the closer the intermediate level gets to the dissociation limit. This is
strongly noticeable for the singlet fraction, which shows a sharp rise in dipole matrix
element around E ~ —4500cm ™' due to largely increasing Franck-Condon factors.
At lower energies, the singlet dipole matrix elements are below 10~° Debye and
the singlet component can be considered negligible. At E ~ —2530 cm ™', the triplet
matrix element rises by one order of magnitude, marking the beginning of the 3£+
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Two-photon dipole matrix element
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Figure 66: Absolute value of the two-photon dipole matrix element. The circles mark double
dots that indicate degeneracy induced resonances [1].

dominated intermediate states. Matrix elements corresponding to these transitions
are about one order of magnitude larger than the ones which can be assigned to 3TT
transitions, owing to the fact that the 31+ electronic transition dipole moment is
considerably larger in the region of interest, which is further enhanced by a higher
Franck-Condon overlap at the outer turning points. The largest values appear for
levels at and beyond the P;/, asymptote (E = —57.72 cm ). However, the density
of states is very large in this area. In addition, phenomena like predissociation have
to be taken into account, opening unfavorable decay channels.

Figure 66 shows the two-photon transition dipole matrix element d(z_,x obtained
from the matrix elements shown in fig. 65. Degeneracy induced resonances can
be recognized due to the appearance of double dots, examples are encircled in
fig. 66. The largest transition dipole matrix elements are obtained at one of these
resonances situated in the £+ — 1T regime, where two-photon matrix elements
of 0.052 Debye? can be reached at E ~ —560 cm~' making these resonances highly
interesting for two-photon transfer schemes. However, the exact positions and
properties of degeneracy induced resonances critically depend on small corrections
of excited state molecular potentials and their prediction should be taken with care.
Making use of these resonances demands accurate spectroscopic knowledge of the
resonance positions as they can only be pinpointed by experiments.

Further possible pathways can be identified by investigating levels in the pertur-
bation region, as their theoretical description is much more robust. Intermediate
c3Z* levels perturbed by a small admixture of singlet character from the B'IT
molecular potential lead to two-photon coupling matrix elements from the Fesh-
bach state to the X' £+ (v = 0,] = 0) state of 10~ — 10~ 2Debye?, coming close to
the values obtained for degenerate resonances. It is further noted that in this area,
the one-photon dipole moments for the two involved transitions can be of similar
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magnitude. In general, a two photon STIRAP sequence benefits from similar peak
Rabi frequencies of Pump and Stokes pulse in terms of robustness. Those states
are found e.g. at E ~ —1542cm ™', when the singlet (triplet) dipole matrix elements
read 0.057 (0.069) Debye. For the ground state case, this exceeds the 0.046 Debye
reported in a similar analysis for the KRb case [248]. It can therefore be concluded
that such states will be highly promising candidates for the two-photon process.
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In this thesis, a novel experimental apparatus was presented and its capabilities to
realize quantum degenerate matter successfully demonstrated. The main obstacle
in dual species operation for this mixture, namely sizable three-body losses due
to strong interspecies interaction, was effectively eliminated. By locating Feshbach
resonances, the interspecies interaction became freely adjustable, and for the first
time, a Bose condensed mixture of 23Na + 3K was simultaneously created. The
experimental achievements were complemented by a theoretical study concerned
with the coherent transfer of a triplet-dominated Feshbach molecule to the ground
rovibrational singlet state. The necessity of a singlet-triplet bridge was proven, and
the excited state manifold was resolved in terms of spin character and dipole matrix
elements in order to provide possible two-photon pathways. The conjunction of
theoretical and experimental efforts are the NaK molecular potential energy curves,
for which profound understanding has been acquired on both the theoretical and
experimental level. In the following sections, the next steps planned with the NaK
system are presented.

QUANTUM DROPLETS

The experimental achievements of this thesis put this system into the quantum
degenerate realm, which enables a wide variety of further phenomena to be studied.
In addition to the planned magnetoassociation into quantum degenerate Feshbach
molecules, also the investigation of quantum degenerate mixtures is possible.
The location of the found Feshbach resonances and the resulting shape of the
interspecies scattering length leads to a surprisingly rich playground for studying
miscibility phenomena. The key elements here are the coincidental overlap of
intra- and interspecies resonance, the interspecies zero crossing in the outlined
magnetic field valley and the constant 23Na scattering length. The combination of
these three properties dictate the shape of the magnetic field valley, in which all
common mixture phases can be found. Any experimental studies in these region
will benefit from the large width of the corresponding magnetic field regions, when
an elaborated magnetic field stabilization is not necessary:.

Above all, the investigation of the interaction regions revealed the presence
of a droplet region in a magnetic field range around 150 G. These droplets have
spectacular properties. Most notably they are self-stabilizing objects, i.e. their
density distribution shows no expansion even in absence of a trapping potential.
This phenomenon can be of great interest also for other research fields such as
matter wave interferometry. A topical idea in this research field is to conduct future
measurement campaigns in microgravity environments or on satellites, as the
leading order phase shift scales quadratically with the available interferometry time
[133]. In such systems, the interferometry time is mainly limited by the expansion
velocity of the source. As a quantum droplet does not expand, the realization of a
single macro-droplet could significantly increase the achievable sensitivity.
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An investigation of this effect is therefore highly desirable. The theory of droplets
is still quite young, and the same holds true for their experimental realization.
Droplets have been realized 2016 in dipolar dysprosium [37] followed by the
realization 2017 in a potassium spin mixture [99]. In the latter system, the droplets
showed low lifetimes on the order of ~ 10 ms, which was attributed to three-body
decay. Realizing it in the 2*Na + 37K system would be the first demonstration
of this effect as a two-species droplet. A benefit of the Na + K system is that the
individual scattering lengths in the droplet region are ~ 50 ap each, which means
that rather long lifetimes of the samples are in reach. The temperature and density
dependent three-body losses of the relevant magnetic field range are currently
under investigation. At the same time a theoretical collaboration with the Santos
group in Hannover was started, in which the corresponding beyond-mean-field
terms were derived and numerical simulation performed that match the parameters
of the Hannover NaK experiment.
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Figure 67: Calculated aspect ratio R;/Rx for a Gross-Pitaevskii equation including beyond-
mean-field effects for the magnetic field region of interest and typical trap
parameters of this experiment. The droplet solution enforces a radial symmetric
profile. Picture provided with courtesy from Daniel Edler.

Figure 67 shows the radial profile of a typical simulation result in the critical
region. As a first experimentally detectable signature, the aspect ratio of the droplet
compared to the BEC could be identified. As already described in the fundamental
part of this thesis, a BEC is characterized by a density distribution that is largely
similar to the inverted trap potential. Initial simulations show that this does not
apply to the heteronuclear droplet solution, which instead enforces radial symmetry.
Droplets could then be identified by a bimodal structure, with a round droplet
in the middle and deformed condensate flanks. This effect can be enhanced by
setting a large trap aspect ratio, e.g. by adiabatically ramping down one of the
trapping beam intensities. The resulting waveguide-like trap should clearly unveil
the corresponding signature. A study of this novel state of matter would be a direct
investigation of a quantum many-body system, and thus fits perfectly to the dipolar
phenomena that will be investigated in this experiment in the long run.
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THE COMPLETE FESHBACH SPECTRUM

In chapter 8, Feshbach resonances were examined with regard to their suitability for
the envisaged two-photon transfer. By decomposing the scattering wave function
near a Feshbach resonance into its singlet and triplet components, it was shown
that a cleverly selected operating point can significantly increase the usable radial
part of the wave function. In that chapter, only an exemplary representation was
given, since resonances using the fermionic isotope “°K were used. A thorough
investigation of this mechanism for bosonic resonances has so far been postponed,
simply due to the lack of experimental data for comparison. With the realized ex-
perimental apparatus, it is now possible to acquire the complete Feshbach spectrum
for the bosonic isotope. In this thesis, Feshbach spectroscopy was performed in
the spin state combination [1,—1) + |1, —1). Of special interest is the [1,1) +1,1)
combination, as it constitutes the absolute ground state of the diatomic system.
For an overview, the remaining resonances to be expected are listed in table 6. In
subsequent measurement campaigns, Feshbach spectra could already be obtained
in other collisional channels, where the theoretical and experimental treatment is
essentially identical to the one outlined in chapter 7 of this thesis. The current stage
of this campaign is the theoretical comparison and further data evaluation, and the
results will be presented in a forthcoming thesis [162]. The encompassing knowl-
edge about the collisional spectra, acquired through the bosonic and fermionic
isotope, can then be used to further improve the molecular potential energy curves,
which in turn further increases the prediction accuracy for the two-photon process.

Feshbach resonance choice for ground state transfer

With all Feshbach resonances being resolved, the theoretical study, which has
been presented here for the fermionic isotope, can be extended to the bosonic
case. The theoretical study of Viel & Simoni has already taken a similar path [187].
In their article they represent spin expectation values not only as a function of
the magnetic field but also by their radial dependence. They concluded that for
23Na3K, Feshbach resonances exist in which the singlet character can be large,
but will be not delocalized such as the fermionic combination was proven in this
thesis to be. However, it is pointed out again that the predictions in [187] are based
on a significantly worse model of the singlet potential and should be taken with
care. It therefore seems wise to revisit these calculations with the updated potential
curves. A comprehensive examination using the approach outlined in chapter 8
can then be readily adapted to the bosonic case. The refined excited state potentials
generated in this work are identical for both isotopes, and only the hyperfine terms
of the ground state potential have to be replaced.
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M=mn,+mk [f, mf>Na + If, mf>K Bres[G]

2 1,1) +1,1) 410.0
508.5
1 |]/]> + |],O> 65
329.0
467.0

580.5
11,0) +11,1) 8.5

418.5

0 [1,0) +[1,0) 5.5
29.5

1,1) +1,-1) 15.0

393-5

536.5

>600

10.0

522.5

1, —1) + (1,1
1,—1) + 1,1

-1 11,—1) + 11,0
1,0) +[1,—1

12.5
107.5
540.5
138.0

471.0
>600

~ ~ ~  ~—

-2 1,—=1) +11,-1) 33.3
247.68
650
11,0) +12,—2) 229.5
260.5
>600
12,—-2) +[1,0) 360
528

Table 6: Overview of predicted Feshbach resonances for the different spin state combina-
tions. The calculations have been performed on a grid spacing of half a Gauss in a
magnetic field region < 600G. The |1,—1) + |1, —1) structures have been observed
in this work. All others will be presented in [162].
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TO THE GROUND STATE

Having selected a suitable resonance, atom pairs will be converted into molecules
using rf-association. Here, the magnetic field is moved into the vicinity of a reso-
nance, and a radio frequency is matched to the binding energy of the molecular
state. This method has been already thoroughly investigated in other systems
[55, 230, 74], and with the high knowledge of the underlying molecular poten-
tials, the binding energy can be precisely predicted. Afterwards, the stage is set
for molecular spectroscopy using the associated molecules. Through a combined
theoretical and experimental effort [1, 203], the wavelength region around 816 nm
(for the pump pulse, or "up-leg") and 573 nm (for the Stokes pulse, or "down-leg")
has been selected. As a wavelength of 573 nm is difficult to realize without relying
on dye lasers, the corresponding laser frequency will be provided by frequency
doubling a 1146 nm source.

The two-photon transition will be executed in STIRAP (Stimulated Raman adi-
abatic passage) configuration [249]. An excellent review on this method can be
found in [250]. In a STIRAP sequence, pump and Stokes beam couple the initially
populated state |1) and the target state |2) resonantly to an excited state |e). Both
beams are operated in pulse mode, and the pulses act in seemingly counterintuitive
ordering (first Stokes pulse, then pump pulse, with an overlap inbetween). When
the Stokes beam is initialized, the initial state |1) does not interact with the given
light field - it is the dark state |D(t = 0)) of the system as the process starts. As
the pump pulse intensity raises, a dark state |D(t)) can always be found through
destructive interference of pump and Stokes beam, and the admixture of |1) and
12) into the dark state is given by the mixing angle, i.e. the local Rabi frequency
ratio of both beams. Using the adiabatic theorem, the atoms will always follow the
dark state if the pulse shape is chosen accordingly. Quite remarkable, the ensuing
adiabatic passage can be crafted such that the excited state is never populated,
which suppresses spontaneous emission and allows to work on resonance.
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Figure 68: STIRAP population dynamics. Left: In an ideal three-level STIRAP scenario
(time-delayed Gaussian pulses with anti-intuitive ordering, not shown here),
particles are succesfully transferred with a transfer rate of about 1 from an initial
to a target state without significantly populating the intermediate state. The
temporal pulse area was deliberately shifted from the "perfect" case (57) to
highlight that small changes lead to an excited state contribution. Right: The
presence of non-resolved hyperfine structure gives rise to a set (here: three)
of STIRAP transitions with different Rabi frequencies. In this example, typical
Clebsch-Gordan coefficients were used for the relative coupling matrix elements.
The resulting transfer efficiency is significantly reduced.
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This works great in an idealized three-level system as shown in 68. However,
recent experimental results in fermionic 23Na*°K showed that the hyperfine spec-
trum of the excited state manifold can affect the STIRAP efficiency [135, 251]. For
the excited state used in that study, a single hyperfine transition cannot be isolated
due to the absence of Fermi contact interaction. The individual excited states are not
coupled directly with each other because of selection rules. They do however lead to
a fragmentation of the STIRAP process in multiple parts. Therefore instead of one
STIRAP with one well-defined dark state, they drive multiple STIRAP transitions
simultaneously, all with different Rabi frequencies and dark state conditions. The
resulting dephasing destabilizes the intended dark state and considerably worsens
the achievable transfer efficiency. An exemplary simulation for this is also shown
in 68.

For the Hannover experiment, this implies that the Feshbach resonance has to
be selected in terms of possible complications arising in the excited state manifold.
The collaboration with the Tiemann group has already investigated hyperfine state
resolved spectra in a molecular beam experiment [203], which will strongly help to
choose an atomic state combination in which intermediate state complications can
be minimized.

On the experimental side, the STIRAP system has been completely setup. A
picture of the different parts of the setup is shown in fig. 69. Both the 816 nm and

Figure 69: STIRAP lasers and locking region (details see text).

1146 nm laser wavelengths will be provided by tunable TOPTICA DL-pro diode
laser systems. As molecular Rabi frequencies are usually small, the relative laser
phase of the beams has to be stable over a rather long time, which translates into a
desired relative linewidth of the beams of < 1kHz [252]. In conventional systems,
stability is achieved by beating both beams on a photodiode, which is not possible
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here owing to the large frequency difference of the beams to each other. A part
of both sources are therefore locked onto a high-finesse (7 ~ 16000) Fabry-Perot
cavity situated in a vacuum environment. To provide tunability of the beams, the
light sent to the locking region is traversing fiber-coupled EOMs and the shiftable
sideband peaks can be locked onto the cavity modes. At the moment of writing,
all beam paths, the frequency doubling stage and locking of both beams onto the
cavity has been succesfully realized [116].

Hence molecular spectroscopy can be started as soon as Feshbach molecules have
been realized. It is mentioned that molecular spectroscopy can also be done in cold
atomic systems which have not been Feshbach associated yet. This gives a tradeoff
between the experimental cycle time (faster data acquisition allows faster averaging
of noisy spectra), and the smaller Rabi frequency (the free atomic scattering wave
function is about a factor 100 weaker localized at low internuclear distances).

Having accomplished the ground state transfer, the last pending question is
whether first measurements in this realm will be conducted in an optical dipole
trap or an optical lattice. This experiment intends to use a 1064 nm based optical
lattice system that has been already set up and whose corresponding beams have
been already aligned into the main chamber. Performing experiments in an ODT
system will focus more on the chemical reactivity in ultra-cold collisions, and can
help to understand the molecular properties of ultra-cold NaK. Quantum chemical
effects will be strongly suppressed in an optical lattice, and working in such an
environment will emphasize the dipolar properties of the system. In both cases, the
number of posable theoretical questions, thinkable physical scenarios and possible
experimental measurements will be endless.
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