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ABSTRACT

Quantum walks are discrete-time evolutions of single particles on
lattices that transfer the concept of classical random walks to quan-
tum theory. Topological insulators are objects that promise symmetry-
protected edge-states for transportation along the edge. Together, both
subjects lay the foundation to a description of new materials that may
be used e.g. for quantum computation or transport.

In this thesis, we study topological phases in quantum walks. Given
arepresentation of the discrete symmetry groups of the tenfold way, we
develop a topological classification which distinguishes three symme-
try indices whose values lie in the group of integers, the group of two
elements, or the trivial group, depending on the symmetry type under
consideration. The classification is applicable to quantum walks that
are gapped at the symmetry-protected points. All symmetry indices
are proven to be stable under norm-continuous perturbations, but only
two of the three indices are invariant under compact non-continuous
perturbations. These two indices describe the asymptotic behaviour
far to the left and far to the right, respectively. The third index reflects
whether a compact perturbation can be performed in arbitrarily small
steps without violating the symmetries. Given two walks in the same
phase (i.e. the symmetry indices coincide), we show that there is a
norm-continuous path of walks in that phase which connects them.
This renders the set of invariants we introduced complete.

Our theory covers translation invariant bulks as well, where we
prove that the third index vanishes and the left- and right indices add
up to zero. Hence these systems are fully classified by the right in-
dex alone. Joining two bulks in different phases (one left, one right),
we show that eigenvalues emerge in the gap (bulk-boundary corre-
spondence), whose eigenfunctions decay exponentially away from the
boundary. Since our theory does not demand translation invariance at
all, these composed systems are still described by our general classifi-
cation.

Restricting to the translation invariant case, we express the symmetry
index as a winding number of a loop in momentum space. Within this
restricted class, we prove that our classification is complete as well.

Keywords:
quantum walks, topological phases, bulk-boundary correspondence



ZUSAMMENFASSUNG

Quantenwalks sind diskrete Zeitentwicklungen von Einteilchen-Gitter-
systemen, die Konzepte klassischer Random Walks in die Quanten-
theorie tibertragen. Topologische Isolatoren versprechen Randzustan-
de fiir Transport an Grenzfldchen, die topologisch geschiitzt sind. Zu-
sammengenommen bilden beide Themengebiete die Grundlage fiir
eine Beschreibung vollkommen neuartiger Materialien, die z.B. fiir
Quantum Computation oder elektrischen Transport genutzt werden
koénnten.

Diese Arbeit behandelt topologische Phasen in Quantenwalks. Mit-
hilfe dreier Symmetrieindizes entwickeln wir eine Klassifikation topo-
logischer Quantenwalks, deren Werte je nach Darstellung der Symme-
triegruppe des Tenfold Way in der Gruppe der ganzen Zahlen, der
Gruppe mit zwei Elementen oder der trivialen Gruppe liegen. Die
Klassifikation ldsst sich auf Quantenwalks mit spektraler Liicke um die
topologisch geschiitzten Punkte anwenden. Die Robustheit gegeniiber
normstetigen Storungen wird fiir alle Symmetrieindizes gezeigt, doch
nur zwei der drei Indizes sind invariant unter kompakten nichtstetigen
Storungen. Diese zwei Indizes beschreiben jeweils das asymptotische
Verhalten weit links und weit rechts. Der dritte Index zeigt an, ob eine
kompakte Storung in beliebig kleine Schritte zerlegt werden kann ohne
die Symmetrien zu verletzen. Wir zeigen, dass zwei Quantenwalks in
der gleichen topologischen Phase normstetig innerhalb der Menge der
Quantenwalks dieser Phase verbunden werden konnen. Dies beweist
die Vollstandigkeit der Indizes.

Es wird gezeigt, dass der dritte Index im Falle translationsinvarian-
ter Quantenwalks verschwindet, und sich die links- und rechtsseiti-
gen Indizes zu 0 addieren. Daher werden diese Systeme vom rechten
Index allein bereits vollstandig bestimmt. Wir beweisen die Volumen-
Rand-Korrespondenz, welche exponentiell abfallende Eigenzustinde
mit Eigenwerten in der Liicke vorhersagt, wenn man Systeme in unter-
schiedlichen Phasen kombiniert. Diese Systeme werden ebenfalls von
unserer Klassifikation beschrieben.

Ferner gelingt es im translationsinvarianten Fall den Symmetriein-
dex als Windungszahl iiber der Brillouin-Zone darzustellen. Aufier-
dem beweisen wir die Vollstindigkeit des Index in diesem Fall.

Schliisselworte:
Quantenwalks, topologische Phasen, Volumen-Rand-Korrespondenz
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INTRODUCTION

1.1 MOTIVATION

The omnipresence of information technology and the internet has
made knowledge and information accessible to nearly everyone in the
world, almost instantly and at minimal costs. Still, besides the technical
organisation of such a large network to which everyone can contribute,
it is a major challenge to provide a central index or search engine
for the internet. Remarkably, a stochastic algorithm called PageRank
[AT05] simulates the activities of countless people following links by
using weighted classical random walks to create the weights that are
assigned to different web pages and their keywords, creating such an
index. But also in disciplines other than computer science classical ran-
dom walks were applied, e.g. in finance to model stock market prices
[Fam65], in biology to determine genomic distance in DNA [EST92] or
in psychology to model the timing and probability of decisions [NP97].

After the introduction of a quantum analogue [ADZ93] (called quan-
tum walks), its faster propagation was quickly applied e.g. in search
algorithms [Gro96; AKRO5]. These quantum walks might also serve
as quantum simulators, precisely controlled devices which allow us to
simulate quantum systems much like a classical computer today simu-
lates classical systems. This quantum simulator approach was already
suggested by Feynman [Fey82] to overcome the issues that arise due to
the exponential scaling of classical descriptions of quantum systems.

But besides using quantum walks for applications or simulations,
they are also very suitable to describe single-particle quantum mechan-
ics or effective single-particle descriptions like free fermions. After all,
they are unitary, discrete-time evolutions of single-particles on lattices
or graphs and hence suitable to describe Hamiltonian systems that are
periodic in time, or to provide a stroboscopic view of their dynamics.
As such, they are experimentally realized in very different scenarios:
neutral atoms in optical lattices [Kar+09], trapped ions [Sch+09], wave
guide lattices [Per+10] and light pulses in optical fibres [Sch+10] as
well as single photons in free space [Bro+10].

The flow of quantum information in a 1D-quantum walk measured
by the index [Kit06; Gro+12] was identified as an integer valued ho-
motopy invariant for quantum walks. Analysing translation invariant
walks [Gro+12] showed that the index is the total winding number
of the energy bands on the torus formed by quasi-energy and quasi-
momentum. Since the index was well defined without demanding
any additional symmetries and is a complete homotopy invariant for
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quantum walks, we wanted to know what happened if we introduced
symmetries which were well-known to yield topological phases in Hamil-
tonian systems. Moreover, since the index was a feature that had no
counterpart in Hamiltonian systems, we wondered whether there are
different indices or features that are unique to quantum walks.

After reading various publications (e.g. [Kit+10; Asb12]), we realized
that there are numerous questions unanswered and a rigorous classifi-
cation of topological phases in quantum walks was not yet written. The
tenfold way [AZ97] promised to be a good starting point for the addi-
tional symmetries the quantum walks should satisfy, for these lead to
the topological classification of Hamiltonian systems, which describes
topological insulators and topological order [HK10]. The theoretical
treatment almost everyone pointed to was [Kit09] which yields the
expected index groups for the tenfold way in the Hamiltonian case,
but does not provide results for quantum walks. Furthermore, the K-
theoretic formulation of the paper lowers the accessibility considerably.
This hints at why most authors simply applied the results from Hamil-
tonian systems to quantum walks or simply took them for granted, like
the bulk-boundary correspondence predicting topologically protected
states at the edge of two joined bulks that are in different topological
phases.

This encouraged us to develop our own topological classification of
1D-quantum walks and the tenfold way, which is found in this thesis.



1.2 OUTLINE

1.2 OUTLINE

This thesis is organized as follows: In Chapter 2 we collect basic math-
ematical and physical results and definitions, mainly to fix notation.
Furthermore, it covers technical calculations regarding the involutions
of the tenfold way, necessary results on the spectral theory of unitary
operators and an introduction to the Fredholm index.

After introducing random walks and quantum walks, Chapter 3
provides the rigorous definition of quantum walks, an analysis of the
simplifications in the translation invariant setting and a summary of
the index theory without symmetries.

In Chapter 4 we introduce the abstract symmetry indices we assign
to finite dimensional representations of the tenfold way. Then, using
an elementary group theoretic construction, we obtain all the index
groups of the tenfold way that are known from [Kit09].

Chapter 5 applies the abstract symmetry index to (infinite dimen-
sional) quantum walks, leading to three independent indices repre-
senting the behaviour far to the left, far to the right and the interplay
between homotopy and compactness of perturbations. The stability
of the left and right indices under compact perturbations allows us
to prove the bulk-boundary correspondence; predicting topologically
protected eigenstates in the gap. Moreover, we provide a decoupling
scheme that homotopically splits symmetric quantum walks into a
left and a right part, which serves as a key ingredient to show the
completeness of our invariants in three different scenarios.

In Chapter 6 we show that if the joined systems we need for the
bulk-boundary correspondence are translation invariant on their half-
chains, the eigenfunctions predicted are edge-states and thus decay
exponentially. Still restricting to bulk (i.e. translation invariant) sys-
tems, we prove that the minimal locality condition we demand in our
general theory is equivalent to the continuity of the band structure.
This is required for winding numbers to be well-defined.

Exploring bulk systems even further, in Chapter 7 we show how
our general theory simplifies in the translation invariant setting. Fur-
thermore, we introduce a standard form for chiral symmetric systems
which allows us to represent the classifying index as the winding of
a curve parametrized by quasi-momentum. Then we show the com-
pleteness of the symmetry index in the restricted class of translation
invariant systems.

In Chapter 8 we provide a set of examples that generates every index
value predicted by our classification. Multiple other examples demon-
strate the milestones of our classification and visualize the results,
before we conclude with a summary and an outlook in Chapter 9.






QUANTUM ESSENTIALS

This chapter provides the basic definitions and notations, as well as
some well-known results that are needed throughout the thesis.

Section 2.1 provides a brief overview about states and operators in
quantum mechanics, before treating symmetries and their representa-
tions as operators on Hilbert spaces in Section 2.2. The specific class
of symmetries and their representation theory we need later, namely
involutions, are analysed separately in Section 2.3. In Section 2.4, we
collect a few important definitions and theorems from functional cal-
culus and spectral theory, before we focus on Fredholm operators and
the notion of compactness in Section 2.5.

2.1 STATES AND MEASUREMENTS

In quantum mechanics, the state space of a physical system is a Hilbert
space H, which is a vector space that is complete with respect to the
norm induced by a scalar product. We will always assume H to be
separable, meaning it possesses a countable orthonormal basis. Its
vectors are typically denoted by greek letters, e.g. ¢ € H. For every
linear operator A on ‘H, its adjoint operator A* is defined via (¢, A*{) =
(A, ). We call an operator A unitary, if AA* = A*A = 1 and Hermitian,
if A = A*. The set of bounded linear operators on H is denoted by B(H),
while the set of unitary operators is denoted by U (H). Occasionally, we
use Dirac’s notation to denote a linear functional by (|, and a linear
function by |¢). Then, [)(| describes a projection onto the subspace
of H spanned by .

The state of a physical system is described by a normalized, posi-
tive trace-class operator p, called a density operator. The set of density
operators is denoted by

DH)={peBH)lp>o,trp=1}. (2.1)

A state p is pure, if it is a projection, e.g. Ip € H s.t. p = |P) (Y|, else it
is called a mixed state.

To learn something about the state of a system, one has to allow for
measurements or observations. Measurements (or observables) are rep-
resented by positive operator-valued measures P (POVM), which through-
out this thesis stem from a projection-valued measurement P (PVM for
short), see Definition 2.7. The only example we need is a measure-
ment of a particle’s position represented by the observable of position
Q, which is a self-adjoint operator. We often choose the Hilbert space
H = (*(Z) ® C%, where (*(Z) represents the position, while C? re-
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flects the internal state (like a spin). Choosing an orthonormal basis
{lx)}x € Z for €*(Z) allows to represent Q = > ..z x|x){x| ® 1, al-
lowing in this basis the possible measurement outcomes x € Z. The
result of the measurement is then described by the expectation value
(Q)p = tr(Qp). If p is a pure state stemming from ¢ € H, its expecta-
tion value is given by (Q), = (¢, Qy).

Between the preparation of a state p and the measurement of an ob-
servable, the system might change due to some operation performed
on it, which is expressed by the action of a quantum channel® T.
There are two equivalent ways how to describe transformations in
this framework: In the Schroedinger picture, T* transforms the state
p, whereas in the Heisenberg picture, T transforms the observable A.
Both representations are equally legitimate, and they are connected
via tr(T*(p))A = tr(pT(A)).

2.2 SYMMETRIES AND REPRESENTATIONS

In this section, we a brief description of symmetries and symmetry
groups in quantum mechanics is provided. In Chapter 4, we will look
at a specific class of symmetry groups, given by the so called ten-
fold-way. A few technical results about anti-unitary operators that are
needed, will be provided in this section for the sake of completeness. A
detailed treatment of symmetries and representation theory is found
e.g. in [Wei05; BR86; Lan17].

In the previous section we have seen that there are different ways to
describe a quantum mechanical system. Depending on the choice, the
definition of a symmetry has to be similarly adjusted. Broadly speak-
ing, a symmetry describes an invariance of certain aspects of a physical
system under corresponding symmetry transformations. For example
Emmy Noether’s famous theorem shows that the time translation sym-
metry of a system, i.e. the freedom to shift the time scale arbitrarily,
implies the conservation of energy.

Let us continue this section by stating what we mean by a symmetry
in quantum mechanics:

Definition 2.1 (Symmetry)
Amap S : D(H) — D(H) is called a symmetry, if it is one-to-one and
onto, as well as preserves convex sums, i.e. for t € [o,1] and p,, p, € D(H),

S(tpy+(1—1)p2) =t S(ps) + (1 - 1) S(p2). (2.2)

This formulation is due to Kadison [Kad65] and equivalent to e.g.
the formulation Wigner [Wig31; WG59] used almost 40 years earlier,
where he described states as rays, i.e. equivalence classes of normal-
ized elements of H that differ only by a phase. Wigner provided the
important theorem that symmetries in quantum mechanics are rep-
resented by unitary or anti-unitary operators [Wig31], following his

1 completely positive, trace-preserving map
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formulation with rays. For our purposes, the formulation by Kadison
is more suitable:

Theorem 2.2 (Wigner / Kadison)
Every symmetry S can be represented such that Vp € D(H)

S(p) =VpV7, (2.3)

where V is either unitary or anti-unitary’ and unique up to a phase e'® for
a € |o,2m].

This theorem and the equivalence of the different descriptions of
symmetries and their representations as unitary or anti-unitary oper-
ators from Wigner or Kadison (as well as those attributed to Jordan,
Ludwig, von Neumann and Bohr) is proven in [Lan17]. The fact that
symmetries are represented by unitary operators is not surprising, at
least if one considers the mathematical structure of quantum mechan-
ics as described in Section 2.1. Since states® and measurements rely on
the scalar productbetween 1, ¢ € H,and unitary operators U € U (H)
leave scalar products invariant, i.e.

Uy, Ue) =<y, d), (2.4)

a unitary representation of a symmetry appears to be the natural
choice.

The seeming peculiarity of the theorem is that there are symmetries
which cannot be represented by unitary operators but by anti-unitary
operators; hence operators that are not even linear. But before we in-
vestigate this peculiarity further, we have to introduce anti-unitary
operators properly:

Definition 2.3 (Anti-unitary operator)
An operator A: H — H is anti-linear, if Vz € C

A(zy) = ZA. (2.5)
If furthermore,
(AQ, AY) =P, ¥) = (¢, d). (2.6)

we call A anti-unitary (or conjugate-unitary).
The adjoint A* of an anti-unitary operator is defined as

(AP, ) = (P, AY). (2.7)
Thus, A anti-unitary is equal to A anti-linear with AA* = A"A = 1.

If one follows the proof of Wigner’s theorem and applies it to Hilbert
spaces over R instead of C, it yields only unitary transformations.
This is to be expected, since every anti-unitary transformations over
C is unitary if restricted to R. More precisely, as Barut explains in
[BR86, §13.2], this is due to the fact that the only automorphism of

2 see Definition 2.3
3 Here, we restrict ourselves to the case of a pure state p = [i)(¢| for simplicity
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the real field that preserves the absolute value is the identity, where
the complex field has the complex conjugation, which is a second
automorphism that preserves the absolute value. This explains why
the perceived peculiarity of anti-unitary operators is not strange, but
a technical consequence and (potential) difficulty in the treatment of
symmetries and their representations to be aware of. In Chapter 4, we
will see that most of our theory would be of little interest if there were
no antiunitarily represented symmetries.

Since we know that unitary operators leave scalar products invari-
ant, it is interesting to look at the action of an antiunitary operator on
scalar products. This allows us to understand how all symmetry repre-
sentations provided through Wigner’s theorem act on scalar products.
The application of an antiunitary operator

(AP, AQ) = (¢, P) (2.8)

has no effect on the real part of the scalar product, but flips the sign
of the imaginary part. However, the transition probabilities between ¢
and ¢ are not affected by antiunitary operators, since

(AP, AP)I* = K¢, )I* = K, ). (2.9)

Note that for e.g. Wigner [Wig31] and Weinberg [Wei05], this invari-
ance of the transition probabilities is the starting point to the definition
of a symmetry, hence provides a physical motivation to the mathemat-
ical definition provided above.

Let us note that a system typically not only satisfies one single sym-
metry, but a whole group of symmetries, the symmetry group. Since in
this thesis, we analyse quantum walks, which are discrete in space and
time*, we will not describe continuous symmetry groups that usually
occur in the analysis of systems in continuous space and time. Hence
from now on, the symmetry group S(H) of our system is assumed to
be discrete.

Wigner’s theorem describes how a symmetry is represented as an
operator on H (or equivalently D(H)). The issue with terminology
here is that one usually defines a representation as a map from a group
to the set of linear operators - which would hence not include the
antiunitarily represented symmetries. Many important properties of
antiunitary operators are summarized in Wigner’s paper [Wig60], in
which he explains, how each antiunitary operator can be considered
as a complex conjugation w.r.t. a fixed basis:

Given a Hilbert space H and a corresponding orthonormal basis
{®k}ken, let K denote the antiunitary operator that yields complex
conjugation in that basis, i.e.

K=K ckpr = ) Tk (2.10)

kelN keN

See Chapter 3, where we define the systems under consideration in this thesis, quan-
tum walks
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Then, since K leaves the ¢ invariant, every antiunitary operator A on
H can be written as

Ap = > TApr = ) TrAKgy. (2.11)
kelN keN
But since AK is a unitary operator®, we conclude that once there is
a complex conjugation K and a corresponding basis {@k}ren, every
antiunitary operator A can be written as

A= UK, (2.12)

with a suitable unitary operator U.

Since every element of the symmetry group is either represented
unitarily or anti-unitarily, we can split the group into a unitary and
an antiunitary part. Hence there is a function u : S(H) — {+1} that
assigns to each element S € S(H) its unitarity character® as a sign. In
Chapter 4, we will introduce a symmetry type, where this character will
be important for the case distinction. On the level of the representations
V for a given S, this sign occurs in the exponent of a phase when it is
commuted with V, i.e.

Veld = eianSy, (2.13)

Given S;,S, € S(H), the group structure of S(H) forces S5 = 5,5, to
be a symmetry in this group as well. The aforementioned freedom of
the phase that Wigner’s theorem grants us now leads to a freedom in
the definition of the corresponding representations: Since V and ¢'*V
both represent the same symmetry, they are equivalent representations
of S. Therefore, the product of V;, V, representing S,, S, differs from
V5 by a phase C:

V3 = C(SI/ Sz)vlvz- (214)

Instead of introducing the most general structure of these objects, we
will introduce the explicit cases in Section 2.3. Thus, at this point we
will conclude the discussion with the definition of a symmetry represen-
tation

Definition 2.4 (Symmetry representation)

Let H be a Hilbert space and S(H) be the symmetry group of the system
under consideration. Then, we call a map 7 from S(H) to the set of unitary or
antiunitary operators on H a symmetry representation, if it is a projective
group homomorphism, hence thereis a Cs.t. (2.14) holds forall S, S, € S(H).

Since this notion of a representation explicitly allows anti-linearity,
we cannot simply use results which are proven only in the linear case.
Luckily, in [WG59, §26] Wigner and Griffin treated time-inversion sym-
metries in detail and showed that any symmetry that inverts time

This follows directly from the definition: (AK¢$, AKy) = (Ky, K$) = (¢, )
This character is actually a character in the group sense as well - it maps from the group
to the unit circle and is a group homomorphism.
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can only be represented antiunitarily. As a consequence, they intro-
duce symmetry representations that are not restricted to the unitary
case. They do this by fixing one antiunitary element (e.g. the complex
conjugation K in our case) and analyses the unitary parts U of ev-
ery antiunitary operator A = UK as unitary subrepresentations. They
also introduce the notion of irreducibility in the antilinear case, which
matches the known one in the linear case: a symmetry representation
7t is called reducible, if there is a non-trivial, proper subspace of H
which is invariant under the image of 7. If this is not the case, 7 is
called irreducible.

The well known characterization of irreducibility in the form of
Schur’s lemma holds in the antiunitary case in a similar way:

Lemma 2.5 (Schur)

Let 1t be a representation of a group G by unitary or antiunitary operators.
Then, 1 is irreducible if and only if every hermitian operator that commutes
with the image 11(G) is a real multiple of the identity.

A proof of this lemma can be found in [Dim63, Theorem 2]. There,
it is shown that the hermiticity and the reality, instead of a simple
constant multiple of the identity, are needed due to the antiunitarity.

2.3 INVOLUTIONS

The symmetries that we analyse in Chapter 4 are involutions, i.e. sym-
metries that square to the identity: f(f(p)) = p. As will be discussed
there, the symmetry groups we are interested in either have one non-
trivial symmetry, or two non-trivial symmetries whose product yields
a third. Hence, the groups either have two or four distinct elements. In
the following, we prepare the necessary case-distinctions by providing
a pre-classification of the different cases that are possible, leading to
a set of ten different symmetry groups, if one takes the signs of the
squares of the representations into account. This set is called the tenfold
way and was compiled first by Altland and Zirnbauer” in [AZ97].

First of all, let us analyse the single symmetries, i.e. the symmetry
group S = {id, f}. Most of the following calculation is completely
elementary, but a more detailed treatment of the special features of
antiunitary operators can be found e.g. in [Wig60; WG59].

By Wigner’s theorem (Theorem 2.2), every involution can be repre-
sented either by a unitary or antiunitary operator V:

f(f(p) =V2p(V)=p VpeDH). (2.15)
Since this equation holds for all p € D(H),
V2 =%, «ae€ o 2m] (2.16)

has to be a multiple of the identity.

7 See the overview in Section 4.1 for more details regarding this classification.
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In the case of a unitary V, the freedom of phase by Wigner allows
us to modify V +> e~*3V, which makes the phase of V2 vanish. On the
contrary, in the case of an antiunitary V, choosing a phase does not
change the phase of the square, since

(ePV)(efV) = ePe PV2 = V2, (2.17)

However in this case, the associativity of the multiplication forces the
phase of V2 to be real, since

(VAV = V(V?) = eV = Vel® = ¢710V, (2.18)
hence a € {o, m}. Therefore three cases have to be distinguished:

1. V unitary
As shown above, in this case we can choose the phase s.t. V> = 1.
Functional calculus® guarantees V' to then have only eigenvalues
+1. Let P be the spectral projector to the eigenvalue +1. Then, V
can be written as

V=2P-1 (2.19)

2. V antiunitary with V> =1
Here V behaves like the complex conjugation K in the sense that
thereis a basis which is V-invariant and where V acts by complex
conjugation of the coefficients (compare (2.10)).

Explicitly, let P = (1 + V)/2 be a projection onto PH, a real
subspace of H in the sense that scalar products of ¢, € PH
are real (hence, PH is a real Hilbert space). Furthermore, since
PV = VP =P = P?,V leaves every element 1) € PH invariant.
PH is the subspace of V-real vectors, and since (1 — P)i = iP, we
can recreate H from PH by choosing a V-real orthogonal basis
of PH, writing an element ¢ € H in this basis (with potentially
complex coefficients) and assigning the real and imaginary part
of these coefficients to each sum of the complexification

H = PH +iPH. (2.20)

Given a complex conjugation K and its corresponding real-basis,
the construction from (2.11) can be used to find the V-real basis
simply by looking at the image of this K-basis under VK. In
this sense, specifying an orthonormal basis and declaring it the
V-real basis is the usual way to define V.

3. V antiunitary with V2 = -1
Since for every ¢ € ‘H,
(@, V) =V, V2p) ==V, ¢) = (¢, VP) =0, (221)

‘H has to be even dimensional if such a V is supposed to exist.
A normal form for V is constructed by starting with any vector

8 This is explained in Theorem 2.9

11
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¢+ € H and continuing with ¢} = V¢, which is orthogonal to
¢+ (see (2.21)). Iterating this step with any ¢, from the orthogonal
complement of {¢,, ¢;} until one has a basis for H leads to the
simple decomposition of V = UK into the complex conjugation
K with corresponding real basis {¢;, (1); }jen and a block diagonal

U to fulfil (2.21):
V=P uK, whereu; = |° ﬂ) (2.22)
jEN 1 0

This finishes the analysis for single involutive symmetries.

To understand the case of a symmetry group with four elements,
consider a pair of involutions f;, f,, whose product f; f, is also an
involutive symmetry. The involutive property ensures commutativity
(and conversely), since

fofi = fLfofifs = fi(fif2) fa = fifo (2.23)

Together with the identity element id, we have four elements, and since
they all commute, we have an abelian group of four involutions that is
isomorphic to Felix Klein’s Vierergruppe [Kle84].

Since the identity is unitary and each element is either unitary or
antiunitary, either all elements are represented unitarily, or we have
exactly two antiunitary and two unitary elements. Due to the setting
described in Chapter 4, we are only interested in the latter case, and
hence assume f;, f, to be antiunitarily represented by V,, V,. Since the
phase of ij is real by (2.18) and antiunitarity implies that ||V;|| = 1,
thereis s; € {+1,-1} s.t. ij = s;1. The representation of f; f, by V; is
now determined by the product

V, = oVyVs, (2.24)

but only up to a phase w, due to Wigner’s theorem. Now, we will show
that we can always choose a phase for V; s.t. V; and V, commute, and
then choose w s.t. all V; commute.

We know that V;V, and V,V; implement the same symmetry, due to
(2.23). Therefore, by Wigner’s theorem, they differ at most by a phase

CZ

ViV, =W,V e (Cvl)vz = VZ(CVI)' (2-25)
Since for every antiunitary V,

(CV)(CV)=CCV*=V* VCeC, || =1, (2.26)

absorbing a phase C does not change the value of V2. Hence we can
redefine V; to absorb C and hence choose w = 1 such that

Vy=ViV, =WV, (2.27)
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which implies V32 = 531, where s; = s;5,. Since every Vi hence squares
to £1, they all commute with each other, as is shown e.g. for V;

V1V3 = V12V2 = (V2V1)V1 = V3V1. (2.28)
After these simplifications, two cases remain to be distinguished:

1. s; = s,

V, is unitary with V2 = 1, and hence’ completely determined
by the projector P = (1 + V;)/2 onto the +1-eigenspace of V;.
Since P (and hence (1 — P)) commutes with V; and V, due to
our phase convention (2.27), PH and (1 — P)H are both invariant
under V; and V,. Furthermore, if s; = —1, they both have to be
even dimensional by the same reasoning as in (2.22). V; acts on
each of these spaces as an arbitrary conjugate-unitary involution,
ie. V; = V] @ V/. Since any element of the Hilbert space can be
written as ¢ + ¢, where ¢ € PH and i € (1 — P)H, the action of
V, already fixes V,:

2V, =2V,Pp = Vo, +5,Vi¢
2V, =2V,(1-P)y = VL — s,V . (2.29)

Hence, with respect to the decomposition into PH and (1 - P)H,
we can write V, as

sViooo (2.30)
o —sV/

V2 =

Since V; and V’ are now conjugate-unitary operators in PH and
(1 = P)H with no further assumptions to satisfy, we can simply
choose a basis in (1 - P)H s.t. V] = V/.

2. §; = —S,:
Without loss of generality, we choose V7 = 1 = —V?. Due to (2.27),
the unitary operator V; fulfils V3 = —1. Hence, its spectrum is
{-i,1}, and we can write V; as
Vi =iP —i(1-P), (2.31)

where P projects onto the +i-eigenspace. As can be seen by the
following calculation, V; and V, now both exchange PH and
(1-P)yH:
2ViP =V, +iV, =2V, -V, +iV,V2=2(1-P)V;  (2.32)
2V2P = V2 - iV1 = 2V2 - Vz + iVl(_VZZ) = 2(]]. - P)Vz.
Since V; is unitary, PH and (1 — P)H have the same dimension
n. The image of any orthonormal basis {¢ ]'}]’.‘:1 of PH under V,

9 This is the same argument as in (2.19), using functional calculus
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is a basis {i j}}; of (1 - P)H, and the action of V, again follows
directly from the action of V;:

2Vop = 2VoP = Vo — iVidh

2Vop =2Vo(1-P)y = Vo +iVii). (2.33)
Thus, the action of all three operators V;, V,, V; is fixed:

Vidj =¢; Vi = ;

Vapj = —i1p; Vo =ig;

V3pj =i¢; Vi = —iy;. (2.34)

This concludes the analysis of involutions that we need in Chapter 4.

At this point, let us quickly explain how this analysis produces the
ten different cases of the tenfold way. If we assume that V; and V, corre-
spond to different antiunitarily represented symmetries, we distinguish
by presence or absence of V; and by the value of V].Z, if present.

Firstly, there is a single case where there is no symmetry present.
Secondly, there are two different choices V* = +1 for each antiunitarily
represented symmetry V; and V,, and one choice for the unitarily rep-
resented V3, amounting to five choices. In the case of four involutions,
we know that the sign convention always implies s; = s;s,. Thus, we
can choose s; = +1 and get two cases s.t. s; = s, and two additional
cases s.t. s; = —s,. In total this yields the ten different cases of the
tenfold way.

24 SPECTRAL THEORY

In this section, we introduce a few results from spectral theory, func-
tional calculus and perturbation theory that we need throughout the
thesis. Additionally, spectral properties of Hamiltonians and unitary
evolution operators are strongly tied to concepts like localization or
recurrence and often related to the asymptotic behaviour of a system.
The relation between the dynamics in quantum mechanics and spectral
properties is well documented in [Las96]. There, the decomposition of
the spectral measures and the implied decomposition of the Hilbert
space is explained in detail.

While the famous book [RS81] by Reed and Simon is always a good
reference for a thorough and well written treatment of functional anal-
ysis, Teschl has a more recent introduction with even more specific
applications from quantum mechanics that is worth a read [Tes09].
Another standard textbook that covers most of this section is [Rud06].
Kato’s exhaustive treatment of perturbation theory [Kat76] is a very
good source to check some of the proofs that were omitted in this
section.

Let us begin by defining a few of the basic objects needed, resolvent
and spectrum:
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Definition 2.6 (Resolvent & spectrum)
Let A be a linear operator on a Hilbert space H. The resolvent set of A is
defined by

p(A)={zeC|(A-2z)" € B(H)}. (2.35)

Then, the function mapping the resolvent set to its defining inverses is called
the resolvent:

Ra:p(A) = B(H), 2= (A-2)"" (2.36)
The complement of the resolvent set is called the spectrum

d(A) =C\ p(A). (2.37)

The norm of the resolvent R(z) measures the (reciprocal) distance
between z and the spectrum, i.e.

dist(z, o(A)) = |[R(z)|| ™" (2.38)

In a Banach algebra with identity, the set of invertible elements is
open, thus p(A) is open and therefore the spectrum o(A) is closed. The
other key ingredient we need in order to formulate the spectral theorem
is a projection-valued measure:

Definition 2.7 (Projection-valued measure)

Let X denote the Borel g-algebra of R, ‘H be a Hilbert space and (€2, X) be
a measurable space. A map E : £ — B(H) is called a projection-valued
measure (PVM) or resolution of the identity, if

1. E(Q)=T1and E(0) =0
2. VS c Z: E(S) € B(H) is an orthogonal projection (E* = E, E* = E)
3. VS,,S, c XZ: E(S1)E(S,) = E(S,)E(S;) = E(5:NS,)

4. E is strongly o-additive, i.e. if {S,}, C X, such that for m # n :
ShNSy =0,then E(\J,,Sn)p =2, ESn)p Vo eH.

Every projection-valued measure E(S) gives rise to a unique Borel
measure on C, denoted by 11,(S) = (¢, E(S)¢). The polarization iden-
tity extends this definition to the complex Borel measure

3
Hi(S) = (@ EOI) = 2 D puiny S). (2.39)
k=0

The following theorem is the spectral theorem, formulated for uni-
tary operators. The most common form is likely the formulation for
self-adjoint operators, or the general one demanding only normal op-
erators. A proof can e. g. be found in [Rud06].

Theorem 2.8 (Spectral theorem)
Let U € U(H) be a unitary operator and T be the one-dimensional torus (the

15
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one-sphere S* in the complex plane), parametrized by e'*. Then, there exists a
unique projection-valued measure E : T — B(H), such that Vo € H

(o i) = [ e tp B = [ e ot (2.40)

Hence, the projection-valued measure is a more abstract way to write
down an operator in diagonal form. More precisely, to every unitary
operator U there exists a measure E and a unitary V mapping H to
L3*(T,E) s.t. VUV"™ is a multiplication operator:

(VUVY)() = u()y(2), (2.41)

where u : T — C. A typical example covered later is the Fourier trans-
form ¥ mapping translationally invariant operators in ¢*(Z) ® C“ to
multiplication operators on £L,(T,C?). Then, the task of diagonalizing
this operator reduces to the task of diagonalizing a one-parameter-
dependent d X d-matrix.

Another useful fact about the one-to-one correspondence between
spectral measures 1, and operators U is that one can integrate arbitrary
measurable functions f with respect to u, yielding a unique operator
f(U) in a well defined way:

Theorem 2.9 (Functional calculus)
Let U € U(H) and E be its spectral measure. For every measurable function
f there is a unique operator f(U) s.t.

. fW0) = [ et kg = [ e upan. e

The functional calculus allows us to look at functions of operators
by applying them to complex numbers and integrating w.r.t. its corre-
sponding measure. That is, functions of operators are as easily created
as functions of complex numbers.

Now, Lebesgue’s decomposition theorem allows us to decompose
the measure into three characteristic parts:

Po = Hpp + Hac + Hsc- (2.43)

The pure point part (), is a linear combination of point-measures.
Uac is absolutely continuous w.r.t. Lebesgue measure (there is a positive
density function f s.t. p,.qr) = f()dt), and g is supported on a null
set w.r.t. Lebesgue measure and assigns zero weight to single points.

Since the three different parts are supported on disjoined sets, inte-
grating a projection-valued measure E over each of these sets yields
three mutually orthogonal projections Py« that decompose the Hilbert
space H into three orthogonal components:

H = Hpp ® Hac ® Hse, (2.44)
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where each H,, is defined as

Hop = {p € H | u, pure point} (2.45)
Hae = {p € H | uy abs. cont. w.r.t. Lebesgue measure}  (2.46)
Hse = {@ € H| uy sing. cont. w.r.t. Lebesgue measure}. (2.47)

The corresponding Py, then in turn imply a decomposition of the
operator U

U = (UPpp) ® (UPy) @ (UP,). (2.48)

The spectrum of each of the restricted operators UPyy coincides
with the union of the support of all measures of the corresponding
type. Accordingly, o,p(U) is the set of all eigenvalues of U, hence a set
of discrete points; cac(U) is a union of closed intervals and os.(U) is
a Cantor set. Note that, even if this decomposition splits the Hilbert
space orthogonally, the spectral decomposition is not exclusive: the
different spectra may overlap, hence in general e.g.

opp(U) Noac(U) # 0. (2.49)

Nevertheless, the union of all spectral parts yields the spectrum of U.
The next theorem, named RAGE after Ruelle, Amrein, Georgescu

and Enss!, connects these subspaces to the propagation behaviour of
u:

Theorem 2.10 (RAGE)
Let U be a unitary operator on H and G,, be a sequence of compact“ operators
converging strongly to the identity. Then, for H. = Hae ® Hse and Hyp are
characterized as follows:

{¢e7{ 15{30719;0—Z|| LU —0} (2.50)

Hop = {¢ € H; lim sup ||(]1 - Gyp) Utl,b”z = O} . (2.51)
n=0 t>0

Without going too much into the details of our systems’ spatial
structure'?, let us assume H = ¢*(Z) with |x) labelling the standard
basis. Then, an example for such a sequence {G, },cp is given by

n
G = Z i), lim G, = 1. (2.52)
i=—n
Equation (2.51) now tells us that linear combinations of eigenvectors
are exactly those elements ¢ € Hp,, that stay in a finite section of H,

independent of the number of time steps, i.e.

Ve >03n, € N: sup||(1-Gn,) Uty <. (2.53)
t>o

10 For a proof, see e.g. [Las96].
11 See Definition 2.13 compact operators in the next section
12 This is detailed in Chapter 3, Quantum Walks
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On the other hand, vectors 1. € H. leave every finite subspace, at least
in the Cesaro mean as used in Theorem 2.10, which is defined as

n
1
lim — » G,. (2.54)
n—oo 1 ‘

1=1
The RAGE-theorem thus distinguishes pure-point spectrum from
continuous spectrum, but we do not know yet if there is a similar result
that distinguishes absolutely-continuous spectrum from singularly-
continuous spectrum. A first step in this direction is the following
consequence of the Riemann-Lebesgue-Lemma (see e.g. [Werl3, §4]

for a rigorous treatment of the topic in the context of recurrence):

Theorem 2.11
Let U € U(H) be a unitary operator, K € K(H) a compact operator (e.g. a
projection of finite rank) and ¢ € Hye. Then

lim |[KU'¢|| = o. (2.55)

t—o0

Thus we know that under the action of U, ¢ € H,. not only leaves
every finite region in the Cesaro mean (see (2.50)), but also directly
in norm. Making use of the notion of recurrence, whose proper in-
troduction would lead a bit too far here, Theorem 1 from [Grii+13]
shows the converse of Theorem 2.11 in the sense that if ¢y and U are
a recurrent pair, ) L H,.. Altogether, these results allow us to distin-
guish between all three spectral components by analysing dynamical
properties of unitary operators and vice versa. Note that we will in-
troduce another decomposition of the spectrum, namely into discrete
and essential spectrum, in Section 2.5.

For the rest of this section we will collect a few results on the pertur-
bation theory of linear operators. The book of Kato [Kat76] is a good
reference for a more thorough read with all the details and proofs in
one place. The following results and statements are all well known and
can be found e.g. in [Kat76, Chapter I, II].

An important task for many results in physics is to understand how
robust the results are under small perturbations. A setting with a
reasonable notion of "small perturbations" is described in the following
by using norm-continuity of families of operators. This concept allows
to describe homotopic operators!® and are key ingredients in proving
homotopy invariants later in this thesis.

Let {T,} be a family of operators on B(H) whose norm depends
continuously on x € I C R. Then, we define its resolvent as

R7(z,x) = (T, —z1)™". (2.56)

It (exists and) is holomorphic in z and x whenever z ¢ opp(Ty).
Furthermore, due to its holomorphy, for every x, there is an € > o s.t.
Rr(z, x) exists for every z € p(Ty,) and x € (x, — €, X, + €). Hence in this

A proper definition of homotopic operators in the context of our symmetries is found
in Definition 5.4.
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case, the domain of Rr(z, x) is p(Ty,), which means that the domain of
the resolvent does not change under suitably small changes of x.

Let I' be a closed curve in the resolvent set p(Ty,) enclosing one
isolated eigenvalue A. Then, the existence of the resolvent Rr(z, x) for
z € I' ensures that there are no eigenvalues of T on I'. The operator

P(x) = —ﬁ é Rr(z, x)dz (2.57)

is a projection and equal to the sum of the eigenprojections for all the
eigenvalues of Ty lying inside I'. Furthermore, P(x) is holomorphic in
x and thus

dim P(x)H = dim P(x,)H. (2.58)

This implies that the number of eigenvalues encircled by I' does not
change with the variation of x. A more detailed proof of this is found
in [Kat76, I §1.4] building on the result from [Kat76, I §4.6].

Proposition 2.12 (Continuity of the eigenvalues)
Let {Ty} be a family of operators on B(H ) whose norm depends continuously
on x € I. Then, the eigenvalues of T are continuous in x.

Continuity of the eigenvalues certainly does allow for splitting of
eigenvalues, e.g. a few eigenvalues A;(x) branching off a highly degen-
erate eigenvalue A(x,), but for every € > o there is a 0 > o such that
|x — x| < 6 implies |A;(x) — A(xo)| < €, thus the eigenvalues cannot
depart arbitrarily far.

2.5 FREDHOLM THEORY

If one wants to describe perturbations or small changes of operators on
infinite-dimensional Hilbert spaces, finite rank operators are a natural
candidate. But in many cases throughout this thesis, we will show
that it makes sense to consider the larger class of compact operators
instead. This section provides only a brief overview of the definitions
and results that we need. A more detailed review of Fredholm theory
(and operator algebras in general) is e.g. given in [Bla06].

Definition 2.13 (compact operator)

An operator K : H — H is a compact operator, if for all bounded sequences
{Ci} of vectors in H, {KC;} has a convergent subsequence. The set of compact
operators is denoted by K (H).

K (H) is precisely the norm-closure of the set of bounded finite rank
operators. The spectrum of a compact operator contains only nonzero
eigenvalues of finite multiplicity which form a sequence converging to
the unique accumulation point o. By the singular value decomposition,
every compact operator K : H — H can be written as

K = Z kilpi) (i, ki—oandk; >0 VieN, (2.59)

i=0

19
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given two orthonormal bases {@;}ien and {¢;}ien and {k;}ien. Ob-
viously, if there is an N € IN s.t. k; = o for all i > N, then K is of
finite rank. Interestingly, there is a finer classification of compact op-
erators, quite similar to the classification that the different {F-spaces
provide in terms of absolutely convergent (¢£*), square-summable (£?)
and bounded sequences (£~°). Phrased in terms of the singular values
of compact operators (2.59), we define:

Definition 2.14 (Trace class operator)

Let H be a separable Hilbert space and K be a compact operator with singular
value decomposition as in (2.59). K is a trace-class operator, if ||K||, is
finite, which is

Kl = trK] = Y (KK g, i) = > ki (2.60)
i=0 i=0
Then, the trace of K

trK = Zwi, ) (2.61)

is finite and independent of the orthonormal basis chosen.

Definition 2.15 (Hilbert-Schmidt operator)
Let H and K be as above. The Hilbert-Schmidt norm ||.||, is defined as

IK|2 = tr KK = Z k2. (2.62)
i=0

Then, K is a Hilbert-Schmidt operator, if ||K||, is finite.

Since the definitions are founded on the singular values k; of K, the

following sequence of implications is obvious!*:

finite rank = trace class = Hilbert-Schmidt = compact. (2.63)

The set of compact operators is a closed ideal in B(H), which
means that products of bounded operators with compact operators
are always compact. This allows forming the quotient Banach algebra
Q(H) = B(H)/K(H), called the Calkin algebra. Typically, we denote
the corresponding natural projection by n : B(H) — Q(H). This
allows us to define Fredholm operators, which are bounded linear
operators that are invertible up to a compact operator:

Definition 2.16 (Fredholm operator)
An operator F € B(H) is a Fredholm operator, if 7t(F) is invertible in
Q(H). The set of Fredholm operators is denoted by F (H).

14 Actually, we defined Trace class and Hilbert-Schmidt operators in Definition 2.14
only for compact operators. This is an imprecise simplification, skipping the step
of a general definition for arbitrary linear operators that leads to the lemma that
implies compactness. Since this is all straight forward textbook material, we hope to
be forgiven.
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Atkinson’s theorem shows [Bla06] that this definition is equivalent
to F € B(H) having finite dimensional kernel and a closed image of
finite codimension.

Since the codimension of the image of F is equal to the dimension
of the kernel of F*, the following definition makes sense for every

F € F(H):

Definition 2.17 (Fredholm index)
The Fredholm index of a Fredholm operator F is defined as

indp(F) = dim ker F — dim ker F*, (2.64)

therefore mapping ¥ (H) to Z. The set of Fredholm operators with index n is
denoted by Fn(H).

The following theorem collects some important properties of the
Fredholm index:

Proposition 2.18 (Properties of the Fredholm index)
LetF,G € F (H)and K € K(H). On H = €*(IN), let S denote the unilateral
shift S|x) = |x + 1). Then:

1. indg(FG) = indg(F) + indg(G)

2. indg(F + K) = indg(F)

3. indp(S")=n VneZ

4. indg is continuous, and therefore locally constant.

Since the image of indr is a discrete set, continuity implies that you
cannot leave a connected component by continuously changing F -
this makes indr a homotopy invariant. That is, it does not change under
norm-continuous deformations. Furthermore, every F € F,(H) can be
connected to an invertible operator by a compact operator. Since the
set of compact operators is contractible to o, and the set of invertible
operators is contractible to the identity, it follows that Fo(H) is path-
connected . In both cases, contractibility is easily seen with the aid of
functional calculus from Theorem 2.9. In the compact case, for every
K with singular value decomposition from (2.59) there is

Ki = ) (k) lpi)(wil, (2.65)

which norm-continuously connects K, = o and K; = K. The case of
invertible normal operators U is similar, where we define U; = ut
using functional calculus and the spectral theorem (Theorem 2.8) s.t.
U, =1 and U; = U. The non-normal case is a little more intricate and
can be found e.g. in [Bla06].

This argument can be extended to %, (H) for all n € IN:

Path-connectedness of () in the sense that between any two F, G € Fo(H) there is
a norm-continuous path of F; € Fo(H) s.t. Fo = Fand F; = G.

21
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Proposition 2.19
Fn(H) is path-connected for all n € Z.

Proof. Choose an isometry S such that S, = S" with index n and
S_nSy = 1 (typically, e.g. in ¢*(IN), think of S as the unilateral shift).
Then, for any F € F,(H), Proposition 2.18 implies that FS_,, € Fo(H).
Since F = FS_,S, € Fo(H)S,, it follows that F,(H) C Fo(H)S,.
Conversely, Proposition 2.18 implies that 7, (H) 2 Fo(H)S,, hence
Fn(H) = Fo(H)S, and the path-connectedness of 7,(H) implies the
path-connectedness of ¥, Vi > o. The result for n < o follows directly
from taking adjoints. O

Both propositions together prove that indr is a complete homotopy
invariant for 7, (). That is, not only do continuously connected oper-
ators have the same index (homotopy invariance), but given two oper-
ators of the same index n, there is a path within 7, () that connects
them (completeness).

Put differently, indg splits # () into a countable set of connected
components 7, (H) where each connected component is uniquely la-
belled by an integer, hence indr is an isomorphism between the con-
nected components of 7, (H) and Z.

Having established these results about Fredholm operators, we can
now introduce another decomposition of the spectrum of a bounded
linear operator than the one introduced in Section 2.4.

Definition 2.20 (Essential spectrum)
Let A € B(H) be a normal bounded linear operator on H. Then, the essential
spectrum o¢(A) is defined as

0e(A)={A e C|(A-AL) ¢ F(H)}, (2.66)
while the complementing discrete spectrum o4(A) is

04(A) = 0(A) \ ge(A). (2.67)

While the discrete spectrum consists of all isolated eigenvalues of
finite multiplicity, the essential spectrum contains the continuous spec-
trum, as well as all eigenvalues of infinite multiplicity and all limit
points of the set of eigenvalues.

This statement can equivalently be expressed by the dimensionality
of the projection valued measure E4 [RS81]:

Theorem 2.21

Let A € B(H) be a bounded linear operator on H. Then, A is in the essential
spectrum of A, iff the range of Ex(\¢) is infinite dimensional for all € > o,
where Ae = (A —€, A + €). On the other hand, A is in the discrete spectrum if
A € a(A), but there is an € > o, s.t. the range of E4(A¢) is finite dimensional.

In much the same way as the essential spectrum describes the spec-
trum up to compact contributions, many definitions make sense to be
broadened to hold only up to a compact part - which we often call to
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hold essentially. An example is given by the following definition of an
essentially unitary operator:

Definition 2.22 (Essentially unitary)
U € B(H) is called an essentially unitary operator, if it is unitary up to a
compact operator, i.e. there are K,, K, € K(H) s.t.

WW* -1 =K, W'W -1 = K,. (2.68)
By definition, essentially unitary operators are Fredholm.

This finishes our survey of preliminaries and allows us to define the
main actors in this thesis.
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After introducing some basic facts about quantum mechanics, repre-
sentations and functional calculus, we want to approach the physical
systems we consider in this thesis, i.e. quantum random walks (or quan-
tum walks for short).

We present an example of a classical random walk and an overview
about quantum walks in Section 3.1, before introducing the elementary
building blocks to define quantum walks in Section 3.2. Then, we take
a look at the implications of restricting the class of quantum walks to
those that commute with lattice translations in Section 3.3. We close
this chapter by providing a quick summary of the index theory for
quantum walks in Section 3.4.

Note that from now on, we restrict the dynamics of quantum mechan-
ical systems to those described by the discrete unitary time evolutions
of pure states and formulate time-evolution in the Schrédinger picture:
Let ¢, € H be the initial state of the system and U be the unitary time
evolution operator, e.g. a quantum walk. Then, the state of the system
after t time steps is given by vy = U',.

3.1 OVERVIEW

Before explaining the significance of quantum random walks, we want
to give a brief example of a classical random walk. By a classical random
walk, we mean a stochastic process in discrete time on a graph (e.g.
a lattice), which models the trajectory of a single particle in space
and time. The easiest example one can think of is the simple random
walk in 1D, where the state space is Z and the walker starts at the
position X, € Z at the time t,, and then moves either to the right with
probability p or to the left with probability 1 — p, decided by a coin.
That is, the coin decides whether the walker is shifted to the left or to
the right, and together, both operations denote a time step. This simple
example is translation invariant in time and space!, thus we may assume
to start at X, = oand ¢ = o. Then, P(X; = x) denotes the probability to
find the particle at position x after t time steps. It vanishes everywhere,
except if x = 2k —t for k € {o,...,t}, where it is given as

P(X;=2k—-t)= (;) pF(1 - p)t_k. (3.1)

That is, its time evolution operation does not depend on x and ¢, see Section 3.3 for a
more precise explanation.
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The characteristic Bernoulli-distribution confirms that the simple ran-
dom walk is a Bernoulli process, whose distribution hence converges
to the Gaussian distribution by the central limit theorem. Note that the
walker never stays on the same site but always moves exactly by one
site per step, thus always switches from the sublattice of even sites to
the sublattice of odd sites (and vice versa) in every step. This effect
denotes a sublattice symmetry, also called a chiral symmetry, which
splits the lattice into two sublattices where the parity of x determines
its chirality.

If we choose an unbiased coin, that is p = i, we see that the distri-
bution P(X; = x) is symmetrical in x, and we get for the expectation
value E(X})

E(X;) = Z x-P(X;=x)=o0, (3.2)
xeZ

as we expect from an unbiased coin. Expressing X; via the results of
the individual coin tosses Z; € {—1,+1}, we have

t
Xi= > Z, (3.3)
k=1

since we assumed to start at X, = o. Linearity of the expectation value
and independence of the coin tosses then leads to
t t
E(X?) = Z E(ZiZ)) = Z E(Z2)6; = t. (3.4)
k,j=1 k,j=1
Thus, for the standard deviation of the position as the square root of
the variance, we get

VVar(X;) = \JE(X?) - E(X;)? = VL. (3.5)

This characteristic dependence on the square root of ¢ is called diffusive
spreading, as opposed to ballistic spreading, where

v Var(X;) « t. (3.6)

Another similarly interesting property is recurrence, which denotes
whether a walker starting at i and propagating under a random walk
R is expected to return infinitely often. In our example, for i = o, we
have

i P(X; = 0) = i (t; ) = o, (3.7)
t=o0 2

t=o0
where the last step can be seen by applying Stirling’s approximation
for factorials, leading to

t
P(Xi =o)X, 5 0. (3.8)

Vi
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Thus we see that the simple random walk in 1D is recurrent if p = 2

and i = o (and hence for all i € Z, due to translation invariance). :

One of the earliest known usages of the concept of random walks
was by Pélya in [P6121], where he analysed the trajectory of random
walkers. He prove a theorem about simple random walks, which in his
nomenclature are d-dimensional random walks on Z? that transition
with equal probability p = /24 to each of their nearest neighbours on
the lattice. The theorem states, that every simple random walk on 7% s
recurrent if and only if d = 1, 2. This result is put into perspective when
connecting it to recurrence in quantum walks, which was thoroughly
treated in [Grii+13].

These days, in physics, mathematics and computer science, as well as
in many other subjects like biology, pharmacy and engineering, there
are applications of random walks. In many cases, one uses the fact,
that a random walk setup is much easier to develop and much lighter
on the hardware than e.g. keeping track of all combinations. Often
an abstract analytical approach is simply not feasible with the tools
at hand. But in order to quantitatively assess the results found, one
needs general statements about the behaviour of random walks, and
the simplicity of the method is often paid for by the complexity of the
interpretation.

In an interesting application [DS84] Doyle and Snell apply Pélya’s re-
sult about recurrence in random walks (along with a particular method
attributed to Rayleigh) to finite and infinite grids of resistors and de-
rive their electrical properties (see also [Mun07]). In another applica-
tion, Engh, Sachs, and Trask show in [EST92], that random walks are
a suitable tool to model genomic distance in DNA-sequences. One of
the most influential applications of random walks in everyday life is
most likely the PageRank-algorithm used by Google and eBay already
since their earliest days, which treats the Internet as a connected graph
of nodes (pages) and edges (hyperlinks). Broadly speaking, PageRank
is the limit probability distribution reached in a random walk on that
graph [ATO5]. If the network is not the set of web pages, but e.g. content
in peer-to-peer networks, Bisnik and Abouzeid showed in [BA07] that
a suitably tuned random walk model can estimate the popularity of
resources and approximate independent uniform sampling.

With the proposal of a quantum computer using qubits as opposed
to a classical computer using bits, the notion of quantum walks emerged.
Definitions very similar to the one we still use today was introduced by
Aharonov, Davidovich, and Zagury in [ADZ93]. In their example, they
showed that measuring the state of a quantum walk, and preparing it
again after every time step can lead to a classical random walk. How-
ever, they already hinted at quantum effects that distinguishes quan-
tum walks from their classical counterpart and might make quantum
walks interesting for applications e.g. in modelling quantum optics.
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In this thesis, we define a quantum walk W as a strictly local, unitary
operator that represents the discrete time-evolution of a single particle
(or walker) on a lattice (a complete definition is found in Section 3.2, or
in [Ahl+11]). Strictlocality demands, that the unitary operator imposes
a spatial structure on the Hilbert space, in the sense that a particle ini-
tially localized at a single site or cell is localized in a finite neighbourhood
of these cells after applying W.

If a random walk is supposed to be non-trivial, it needs at least two
possible results for the random variable that decides the direction of
propagation. For a quantum walk, the coin-space has to be at least of
dimension 2 in order to implement non-trivial dynamics. One possible
quantum analogue of the simple random walk in 1D is the following
Hadamard-Walk:

Let H = (*(Z) ® C* be the Hilbert space of a single particle on the
line with a two dimensional inner degree of freedom (e.g. a spin-2-
particle), and choose a basis

B={6:®¢i|x€Z je{+-}}, (3.9)

which spans H. In Dirac’s notation we write |x, j) to denote the linear
functionC —» H :z > z- 6, ®e¢;.

Flipping a coin in the classical random walk now corresponds to
applying a coin operation C that acts on the internal degree of freedom,
s.t.

Clx,+) = Cyslx, +) + Coslx, —)
Clx,=) = Ci—|x, +) + C_|x, -). (3.10)

The shifting of the state that depends on the outcome of the coin toss
is then realized by a shift operator S s.t.

Slx, ) = |x+1,+). (3.11)

Applying both operations consecutively then defines a quantum walk
(operator):

W = SC. (3.12)

Now, if we choose a self-adjoint coin, e.g. the eponymous Hadamard-
coin Cy, we get the Hadamard-Walk Wy

Wy = SCh, where Cu=—1|" "] (3.13)
2\t -1
Starting with the initial state
1
= —(lo,+) +ilo,=)), 3.14

after one application of Wy, we have

1+1 1—1
I;bl = T |1I +> + T |_1/ _>' (315)
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Figure 1: Probability distribution pg(x) of the Hadamard-Quantum-Walk
Wy, stemming from the squared norm of the C>-coefficient 1;(x),
and pr(x) stemming from the simple random walk from (3.1) with
p = /2, both plotted after t = 100 time steps. While the classical ran-
dom walk approaches a perfect Gaussian distribution in the limit,
the quantum random walk has two front-runners that carry most
of the probability. This indicates the ballistic propagation of the
Hadamard-Walk, as opposed to the diffusive propagation of the
Random Walk. Note that in both cases, the sites unreachable by
chiral symmetry were skipped in connecting the points.

Thus the probability to find the particle after one time step in either
+1 0or —1is p = /2, just as in the simple random walk. Now, we could
use this quantum mechanical system to further simulate the simple
random walk by measuring the position of 1; and prepare a new initial
state, this time localized at the measured position. Applying the walk
would again lead to the same superposition of states, this time shifted
by +1, and measuring again would generate just the same results as are
known from the classical random walk. Luckily, we are not restricted
to measuring and preparing anew, but can simple continue applying
the walk operator until performing a measurement on an arbitrary

Ve =Who, t>o. (3.16)

As Figure 1 shows, the probability distribution of a quantum walk
differs greatly from its classical counterpart. It suggests the ballistic
spreading that is characteristic for quantum walks, as well as the dif-
fusive spreading, that is characteristic for classical random walks.

Grover derived a famous search algorithm in [Gro96], which allows
finding a key in a database with N elements in O(VN) steps, compared
to the classical counterpart, which needs O(N) steps. It caused great
interest in quantum walks, since it was one of the first applications
where the proposed speed-up of quantum walks leads to an advantage
over their classical counterpart.

In general, quantum walks that are translation invariant w.r.t. time
and space, show ballistic spreading. This was provenin [Ahl+11], and is
briefly discussed in the context of Fourier methods in Theorem 3.6. The
general intuition, that temporal noise (that is, small changes in the walk
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operator from step to step) breaks the coherence of a quantum walk,
and hence reduces ballistic scaling to diffusive scaling (or even leads
to localization) proves true and is thoroughly analysed in [Ahl+11;
Ahl+12a; Ahl13; Wer13].

As was already stated in Theorem 2.11, Griinbaum et al. showed
in [Grii+13], that on the one hand, every ¢ € H,, leaves every finite
region eventually in norm, on the other, ) L H,. is equivalent to ¢
being recurrent for W, which is defined slightly different from the
classical case, namely directly via the total return probability. That is,
the sum of all probabilities of returning to the state ¢ after t steps for
the first time - the so-called first return probabilities. Furthermore, they
show that for a recurrent state 1) and walk W, every finite expected
return time 7 has to be a natural number, hence integer valued. This is
deduced via a topological argument where 7 is expressed as a winding
number of the phase of a walk’s corresponding Schur function.

A thorough analysis of the 1D-Hadamard-Walk with comparisons
between classical random walks and quantum walks is provided by
Ambainis et al. in [Amb+01]. Grimmett, Janson, and Scudo focussed
on the transport properties of quantum walks from the Heisenberg
picture by analysing the time-evolved position operator X; and deriv-
ing a weak-limit theorem showing that for a certain class of translation
invariant quantum walks, X;/t converges weakly to an absolutely con-
tinuous distribution as t — oo, thus suggesting ballistic, not diffusive
scaling [G]S04].

Recently, Cedzich et al. showed in [Ced+13], that the introduction of
electric fields in the case of 1D-quantum walks leads to a system whose
long time propagation properties, such as revivals, ballistic expansion
and Anderson localization, depend very sensitively on whether the
value of the electric field is rational or irrational. The corresponding ex-
periment was performed by Genske et al. and is published in [Gen+13].
It allowed to verify the theoretical predictions within the limitations
of the experiment, showing features related to Bloch oscillations and
interband tunneling.

From a computational perspective, there have been improvements
on search algorithms e.g. by Ambainis, Kempe, and Rivosh in [AKR05],
who show how to search N items arranged on a VN x VN grid in time
O(VNlog N) using a quantum walk. A similar result was obtained by
Patel and Raghunathan in [PR12] for quantum walks on fractal lattices
of noninteger dimensions. Goswami and Sen analyse in [GS12] how
a sudden change of the boundary conditions (by removing a detector
that was placed at a specific site) changes the probability distribution
of a Hadamard-Walk.

Furthermore, quantum walks have been shown to demonstrate quan-
tum effects such as Landau-Zener tunneling [Reg+11], and Anderson
localization [ASW11; Joy12]. Ahlbrecht et al. could even introduce on-
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site interactions between two walkers of a quantum walk allowing the
formation of molecule-like structures, as described in [Ahl+12b].

Regarding the experimental realizations, there are working simula-
tions of quantum walks with neutral atoms in optical lattices [Kar+09],
trapped ions [Sch+09], wave guide lattices [Per+10] and light pulses in
optical fibres [Sch+10], as well as single photons in free space [Bro+10].

In [Kit06, C.3], Kitaev defines a quantity he calls the flow of a uni-
tary operator that measures a quantum walk’s mean transport of in-
formation as described later in (3.48). Then, in [Gro+12], Gross et al.
provided a thorough analysis including proofs and examples of this
quantity they call the index of a quantum walk, as well as its gen-
eralization to the class of Quantum Cellular Automatons. The topic
deserves a proper introduction later in Section 3.4, where it is shown
that the index is a locally computable invariant, does not change under
norm-continuous deformations within the set of quantum walks, and
is complete in the sense that any two quantum walks with the same
index can be deformed into each other continuously, keeping a uni-
form bound on the size of the neighbourhood of the quantum walks
along the deformation path. In Section 3.4 we extend the definition to
hold for a larger class of objects called essentially local unitary operators,
and connect the index to the Fredholm index indg introduced in the
previous chapter.

After this brief overview let us make the definition of a quantum
walk from above rigorous.

3.2 DEFINITION

Instead of providing the most general definition, we restrict ourselves
to the case of s-dimensional square lattices. At each node x € Z°, there
is a local Hilbert space H, = C% , where {dx}yezs € N is bounded
from above by d = maxyezs {dx} < 0.

Typically, we do look at the direct sum of these local Hilbert spaces,
and hence define the overall Hilbert space as

H = (P H.. (3.17)
XeZ

It is tempting to avoid the varying dimension d(x) by adding basis
vectors at each position to equalize the H,’s dimensions to be d. One
could then simply assume that these additional vectors are left invari-
ant by the walk operators that implement the time evolution. But this
introduces additional eigenvectors for the eigenvalue +1 (or whichever
value one prefers), strongly interfering with assumptions regarding
the spectrum (e.g. existence of gaps) we impose throughout this thesis.
Therefore, we cannot in general remove the spatial dependence of the
local Hilbert spaces’ dimensions d(x).
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But in many situations, we demand the Hilbert space to allow for
translation-invariant operators, meaning that foralli € {1,...,s} there
exist unitary operators T; s.t. T;H, = Hy..,, where e; denote the unit
vectors in the i-direction. This makes H isomorphic to H = (*(Z°) ®
C“, and after choosing a T that represents the standard shift in the
first tensor factor (gauging), we denote the chosen basis in ¢*(Z°) by
{6x}yezs, and in Cc by {a;},i € {1,...,d}, writing 6, ® a; for the basis
of H.

We use the well-established Dirac-notation, where |x,i) : z + z -
Ox ® a; is a map from the complex numbers to the Hilbert space and
(x, 1| is the corresponding linear functional ¢ +— (x, i|@).

There are many advantages in being given H = ¢?(Z°) ® C* in tensor
product form. For every A € B(H) and every x, y € Z°, we can look at
the transition operators {Ay ,} of A:

Ay = (x|Aly). (3.18)

The transition operators Ay , are bounded operators on C’forallx,y €
Z¢,and every A € B(H) can be decomposed in the following way:

A= D0 10(YI® AL, (3.19)

X, YyEZS

Let us now define a quantum walk.

Definition 3.1 (Quantum walk)

Let H = (*(Z°) ® C? be the Hilbert space as above. We call a unitary operator
W a quantum walk, if it is strictly local, meaning there is a finite subset
N C Z? of the lattice (also called a neighbourhood), such that

(x,i|lWly,j)=0 Vx,yeZ’: x—y¢N. (3.20)

One can easily see, that for every y € Z, the condition of strict
locality implies a finite number of non-vanishing transition operators
Wy, y in (3.19). Furthermore, this number is bounded for all y € Z by
the number of elements of a minimal N' C Z° such that (3.20) holds,
which we call a minimal neighbourhood. The diameter of this minimal
neighbourhood determines the maximal jump length (sometimes also
called interaction length or simply jump length) of the walk. It expresses
the maximal distance an initially localized walker covers in a single
step.

There are situations, where it makes sense to generalize this def-
inition to also cover unitary operators obeying a less strict locality-
condition, namely essential locality, leading to the definition of essen-
tially local unitaries in Definition 3.4.

Another more constructive approach to defining quantum walks is,
to introduce a set of minimal building blocks (shifts and coins), which
are then combined via products to span the class of all coined quantum
walks. The nomenclature follows the classical counterpart of random
walks as mentioned in the introduction, where one tosses a coin and
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then shifts the walker, depending on the outcome. More rigorously, we
define:

Definition 3.2 (Shift-/Coin-operator)
An operator S;; € U(H) is called a minimal shift, if there is a basis

{a]‘}je{l,.‘.,d} s.t.

lx, i) i#],

Sl,jlx, Oti> = (3.21)

|x +1,a;) i=j.

A shift operator is a finite product of minimal shifts, all w.r.t. the same basis.

Complimentary, a unitary operator C on the same Hilbert space is called
a coin-operator, if it is diagonal in the spatial basis, e.g. Vx € Z° there are
Ve € UCY), s.t.

C= @ Vy. (3.22)

xeZs

This neatly confines the action of each building block to either only
translate the sublattice labeled by «; in one direction by [ steps, or act
on the local Hilbert spaces H, by separate unitary operators V, without
transitioning between positions. Of course, the identity is a trivial shift
and a trivial coin at the same time, therefore in the following, it is no
restriction to look at alternating combinations of coins and shifts:

Definition 3.3 (Coined quantum walk)

Anoperator W € U(H) is called a coined quantum walk, if thereisn € N
and for all i < n, there are coin operators C; and shift operators S;, all w.r.t.
the same basis of H, s.t.

W = C15:C,S, ... CySy. (3.23)

It is an interesting question, whether all quantum walks in the sense
of Definition 3.1 are coined quantum walks in a particular basis. In
the special case of 1D-translation-invariant walks, this is answered
affirmatively in [Vog09].

For one-dimensional quantum walks on the Hilbert space

H = (P H, (3.24)
xeZ
an equivalent way of defining a quantum walk W, is by its action on
half-space projections P , where Py, is the projector onto all H, for
X > X,. More precisely, given H, a unitary operator W is a quantum
walk, iff there is a finite subset N' € Z s.t. for every x, € Z,

img(Psy, — W*Psy, W) C @ Hy, o, (3.25)

xeN
where img denotes the image of an operator. Note that the finite direct
sum of finite dimensional Hilbert spaces on the right hand side ensures
that the image on the left hand side is of finite dimension, which is
represented in Figure 2. Now if we do not demand Py, — W*P>, W to
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Figure 2: Submatrix of PW — WP, with P = P;,. The dashed lines denote the
cuts induced by P, while the blue shading indicates that the diagonal
blocks vanish. A finite neighbourhood N leads to a maximal jump
length L. This limits the set of non vanishing w; ;, which necessarily
fulfil |i — j| < L. Therefore, only finitely many elements in the anti-
diagonal blocks do not vanish, and the overall matrix is of finite rank.
This fact is not changed by multiplication with the unitary operator
W*, and therefore P — W*PW is of finite rank iff PW — WP is. Note
that the same argument holds for essentially local operators, where
PW — WP is a compact operator.

be an operator of finite rank, but allow it to be a compact operator, we
arrive at the following definition:

Definition 3.4 (Essential locality, ELEU)

Let H be as in Definition 3.1 and U be an (essentially) unitary operator. We
call U essentially local, if for some x, € Z, P>y, — U"Px, U is a compact
operator.

We will sometimes use ELEU as an abbreviation for essentially local es-
sentially unitary (operator).

It might seem arbitrary to demand compactness only for some x,.
However, if P>, — U"P», U is a compact operator for some x, € Z, for
every x € Z,the difference between P>, — U*P», U and P>, — U"P>,U
is the finite rank (hence compact) operator

Psxy = Pox = U (Pxx, — Pox)U.

Since compact operators are closed under addition, demanding com-
pactness for some x, € Z leads to compactness for all x € Z.

In the same line of reasoning, note that for U ELEU and any x € Z,
P = P, decomposes U into four parts

U =PUP+(1-P)U(L-P)+PU(L-P)+(1-P)UP. (3.26)

The last two summands on the right hand side are compact due to the
essential locality of U, since the compactness of UP — PU implies the
compactness of PU(1 - P) and (1 - P)UP.

In the following section, we will introduce translation invariant op-
erators and use the Fourier transform to simplify the analysis of our
basic objects greatly.
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3.3 TRANSLATION INVARIANCE

In the previous section, we have defined quantum walks, as well as
essentially local unitaries. Since we look at Hilbert spaces H that are
isomorphic to tensor products £2(Z°) ® C?, there are translation oper-
ators {T;}:<i<s that allow to move states along the lattice directions,
e.g. Tilx,p) = |x +¢;, ). In a slight abuse of notation, we will write
Ty :=T;*... Ty forall x = (x;,...,xs) € Z°. This allows us to define
translation invariance:

Definition 3.5 (Translation invariance)

Let H be as in Definition 3.1 and {T;}1<i<s be the set of minimal translation
operators on this lattice. An operator A € B(H) is called translation invariant,
if it commutes with every T;. If this is only true for some i,, we will call A
translation invariant w.r.t. the x; -direction.

If we look at the transition operators Ay , in the translation invariant
case, we see, that they depend only on the difference of y and x:

(WAxylpdea = (x, VIAly, @)
= <x/ I;ZJ|ATy|O/ (P>‘7‘(
= <X -V, ¢|A|O/ (P>7“(

= <1//|Ax—y,0|(P>Cd (3.27)
Applying this to (3.19), we get (after using A, , = Ao, =: A;)
A= Z |x)(x — z| ® As, (3.28)
x,zeZ?s
or equivalently:
AP)x) = Y Ap(x—2)= ) Arpp(2). (329)
zeZ?® zeZs

For quantum walks W, their strict locality implies that only finitely
many W, are non-zero, therefore the series reduces to a finite sum.
In the following, we show that the Fourier transform
d°k
. 52 ZS 2 ’][‘S,
7o) (1,

(F)k) = ) ™ p(x) = P(k)

xeZs
s _ 1 sy —ix-k ],
P = [k (3:30)
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turns the above convolution into a product (with T° = [-7t, 1]° denot-
ing the s-dimensional torus):

(FAPR) = Y e* A p(x-2)

x,zeZ®

— Z Az Z eik-(x+z)¢(x)

zeZs xeZs

Z eik'xAxt:b\(k)

XeZs

- A(k)(k). (3.31)

Here, we used F as shorthand notation for ¥ ® 1.

In the case of quantum walks W, only finitely many d X d-matrices
W, do not vanish. This makes W(k) a matrix valued Laurent polyno-
mial? in the variables e'%i.

For the remaining section, let us restrict ourselves to the case of
one spatial dimension s = 1. Then, W(k) is a finite-dimensional, k-
dependant unitary operator, that can be diagonalized due to the spec-
tral theorem:

d
Wk) = ) " PQa(k), (3:32)
a=1

where w,(k) are the dispersion relations or quasi energies, and Q(k)
the bandprojections or eigenprojections. Note that this decomposition
is unique if there are no degeneracies in w, (k). But even when there
are degeneracies, perturbation theory for one-parameter families of
normal analytic operators shows [Kat76], that one can make analytical
choices for the quasi energies w,(k), as well as the eigenprojections
Q(k) around these degenerate points. Therefore, we always assume to
have taken such a choice for all k € [—7t, 7t].

Another useful tool derived from the diagonalization of W is the
group velocity operator (in momentum space representation):

%\ dwa(k)
dk

a=1

G(k) = Qulk). (3.33)

Naming this operator the group velocity operator is suitable, as the
following Theorem from [Ahl+11] shows:

Theorem 3.6
Let W (k) be a quantum walk in momentum representation, X(t) the t-evolved
position observable in the Heisenberg picture, s.t.

X(t) = (W) XWH, (3.34)

A Laurent polynomial in x is a linear combination of positive and negative powers of
the variable x.
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and G the group velocity operator (in position space) as defined above. Then

lim @ =G. (3.35)

t—o0

That is, for all bounded continuous functions f : R® — C going to zero at
infinity, we have that the weak operator limit of f(X(t)/t)is f(G).

This means, that for any initial state p,, the distribution of the random variable
X(t)/t converges weakly to the distribution of G in po.

If we look at the standard-deviation VVar as our function f,itfollows
that weak convergence of X(t)/t to some t-independent distribution
implies that /Var(X(t)) scales like ¢ for large t, the ballistic propagation
mentioned in the introduction.

As an example, let us consider T, the simple shift by one cell in
d=s=1

(¥, Tx) = Oy x11. (3.36)
Its Fourier transform is
T(k) = Z kx5, = ek, (3.37)
xeZ.

and in this case, since d = 1, this is already the diagonalization of T(k),
with Q(k) = 1 and w(k) = k.

Therefore, the group velocity operator is easily found to be G(k) =1,
which by Theorem 3.6 shows that any initial state p, (e.g. po = [0)(0])
is, in the averaging limit and in the expectation value, moving with
constant velocity of one site per time step to the right - which is exactly
what we know that T does: in each step, it shifts each state to the right
by one cell.

Having introduced the Fourier transform of a translation invariant
operator, let us fix some notation and state a few well known results
regarding the adjoint and the determinant of operators represented
in momentum space. Firstly, we have to decide how we distinguish
between matrix elements of the adjoint and the adjoint of a matrix-
valued coefficient:

(A7), =Ay) = (A7), =(A) = AL (3.38)

The consequences for A (k) are then

Ak =) ek (ar), = Y WA, = Y kA

xeZ xeZ xXeZ
- (Z eikXAx) = (A(K))" =: A*(k). (3.39)
xeZ

Since we often deal with finite dimensional k-dependent matrices
ﬁ(k), we often encounter the determinant of E[(k). We know that the
determinant is a polynomial, and therefore continuity and differentia-
bility of a finite dimensional matrix valued function simply transfer to
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its determinant. If we consider det fI(k) as a differentiable function in
k, it is useful to know the derivative of this function.

Lemma 3.7 (Derivative of the determinant)

Let U(k) be an d x d-matrix-valued function that is invertible and differ-
entiable for all k, and let det ﬁ(k) denote its determinant, considered as a
differentiable function in k. Then,

d — detU(k) = det U (k) tr ((ﬁ(k)) (3.40)

. dU(k)
dk )

dk

Proof. Since a(k) is invertible, and det is a homomorphism for multi-
plication, we can write

d
x — det U(k)

=lim (det U(k + 1) — det U(k))

det (U (k)U(k + h)) — 1

=det U(k) - lim

—0 h
det(1+h-U (k)L UKk) +Oh?)) -
= det (k) - lim et ()‘;f () +O(1) (3.41)

Due to the limit and the prefactor, as well as the fact that det is a
polynomial of degree d, we can ignore terms that are O(h?). What
remains is to show, that

Il(lm p ( det(l+k-V)- det]l) =tr(V). (3.42)
—0

In the V-eigenbasis, 1 + k - V is diagonal as well. Furthermore, the
determinant of a matrix is the product of its eigenvalues. Hence with
{vj} denoting the eigenvalues of V, we have

d
detl+k-V) = ]_[(1 +k-0)). (3.43)
j=1
Inserting this into the limit, we see that the det(1l) and the k-constant
1 cancel. The k linear term that remains is exactly the sum of the
eigenvalues of V, which is the trace. Putting it all together, we get

du(k)

ax det LI(o) tr 1( ) ——=

) ) (3.44)
k=0

finishing the proof. O

This concludes our section about translation invariant quantum
walks. We continue with a remarkable classification of quantum walks,
that gives a precise notion of the flow of quantum information of a uni-
tary operator.
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As a foretaste of the symmetry classification in the main part of this
thesis, this section introduces an index (i.e. a map from a set of opera-
tors that are supposed to be classified, to an index set, e.g. the integers),
that labels the homotopy classes of 1D-quantum walks. More precisely,
as was shown in [Gro+12], two quantum walks can be continuously
deformed into each other if and only if they have the same index.
Furthermore, along the way, the defining property of quantum walks,
that is strict locality and unitarity, is not broken, e.g. there is a uniform
bound on the maximal jump length on the way between the two walks,
and unitarity is always kept.

General index theory

The definition of the index can be chosen to be a bit more general
than absolutely necessary, in order to allow for a larger class of sys-
tems under consideration: the set of one-dimensional essentially local®
essentially unitary4 operators (ELEU):

Definition 3.8 (Index)
Let H = @B, Hx be the Hilbert space, P = P, be the half-space projection
and U an ELEU. Then, the index of U is defined as:

ind(U) := indg(PUP). (3.45)
Here, PUP is regarded as an operator on {*(IN) ® C%.

Under these assumptions, it can easily be seen, that PUP is again
essentially unitary (hence Fredholm), such that indr is well defined:
since essential locality implies, that the off-diagonal blocks in a block-
decomposition with respect to half-spaces induced by P and 1 - P
are compact operators, dropping them neither changes the Fredholm
index of U nor essential unitarity. Since the resulting operator is block-
diagonal with respect to P, essential unitarity of U implies essential
unitarity of the blocks on the corresponding half-spaces, finishing the
argument.

Since we defined the index of U as a Fredholm index, most of its basic
properties can be taken over from Fredholm theory directly (compare
with Proposition 2.18):

Corollary 3.9 (Properties of the index)
Let H,P be as above, T be the unilateral shift as in (3.36), K a compact
operator and let U, U,, U, be ELEU. Then

1. indU) € Z
2. ind(U; ® U,) = ind(U;) +ind(Us) = ind(U, U,)

3 see Definition 3.4
4 see Definition 2.22
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3. ind(T")=d-n Vn €N, esp.ind(l) =0
4. ind(U) = ind(U + K)
5. ind(U) is a homotopy invariant

The invariance of ind(U) with respect to compact additions (4.)
shows, that it does not matter where we cut the line, i.e. any P = P,
Va € Z yields the same result. (2.) tells us, how indices behave un-
der composition and multiplication, which together with (3.) shows,
that ind as a map is also onto, since a suitable combination of shifts
(restricted to a subspace in the coin space if needed) and the identity
generates every non-negative integer we want for ind. Furthermore,
(2.) shows, that ind(U) = —ind(U"), and combining these two results,
every integer value can be realized by a combination of shifts, identities
and possibly an adjoint.

The homotopy invariance (5.) follows directly from the homotopy
invariance of indg, since constance of the index was shown to hold
along all norm-continuous paths of Fredholm operators, which is a
superset to all norm-continuous paths of essentially unitary essentially
local operators.

The converse of this is called the completeness of the homotopy in-
variant and answers the following question: Are the sets of essentially
unitary essentially local operators with the same index connected? This
is much harder to answer, and not as easily concluded from the com-
pleteness of the Fredholm index on the set of all Fredholm operators
in Proposition 2.19. If we restrict the set of allowed operators, sets that
were formerly connected might disconnect, since the connecting paths
might contain now-forbidden operators.

Since quantum walks are a strict subset of the essentially local es-
sentially unitary operators, all the above properties are valid for them
as well. Surprisingly, by restricting to the class of quantum walks, a
theorem from [Gro+12] proves that completeness of the index holds in
this restricted class:

Theorem 3.10 (Completeness of the index)
Let W, Wy be quantum walks on H = @ vez Hx. Then, the following are
equivalent:

o ind(W,) = ind(W,)

® There is a norm continuous path [o,1] 3 t + W; of quantum walks of
uniformly bounded interaction length® L connecting W, and W.

Another result from [Gro+12] is, that the index is a locally computable
invariant. This means, that it can be calculated from any sufficiently
long slice of the walk, without further knowledge about the rest of the

5 See the comment after Definition 3.1 for the definition of the interaction length.
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system®. For the term locally computable invariant to make any sense at
all, it has to yield the same value everywhere - which makes it a global
property that can be probed locally.

Having learned that quantum walks with different indices can not
be continuously deformed into another (keeping a uniformly bounded
interaction length), itis an interesting question whether the index plays
a role in deciding if there is a way to locally decouple a quantum walk
U w.r.t. the spatial structure:

Definition 3.11 (Local decoupling)

Let H = Hi, & Hg be the Hilbert space with Hg = PH = @X>O H, and
Hy. = (1—P)H and U be an essentially local operator. We call a unitary
operator V a decoupling, if

VU = U & Ug, (3.46)

where Ug acts only on Hy and Uy, only on Hi.

An operator of the form U’ = Uy @ UR is called a decoupled operator.

A decoupling V is called compact, if V — 1 is a compact operator.

If additionally, V differs from the identity only on finitely many H,, we call it
a local decoupling. In this case, the subspace Hy = (V —1)H is of finite
dimension.

Given a local decoupling V, itis easy to construct a norm-continuous
path of unitary operators [0,1] 3 t = V; with V, =1 and V.U = U, ®
Ug, hence connecting U and the decoupled VU. This is most easily
expressed in the functional calculus: as an operator that differs from
the identity only on the finite dimensional Hy, we only have to solve a
finite-dimensional problem. This can be done easily by diagonalizing
on Hy and applying f+(1) = A! to the spectrum of V, thus contracting
V to the identity as t goes from 1 to o.

Since ind is a homotopy invariant, the existence of this path shows,
that a walk and its decoupled version have the same index. In [Gro+12],
the following theorem connects the value of the index to the existence
of a decoupling;:

Theorem 3.12 (Existence of a decoupling)
Let U be a quantum walk on H = P ., Hy. Then, the following are
equivalent:

e ind(U) =0
¢ U admits a local decoupling

If we simply try to extend this result to unitary, essentially local oper-
ators U, it certainly does not make sense to hope for a local decoupling

Typically, the index can be inferred from a slice of the walk spanning a number of cells
that is at least a multiple of the maximal jump length. If one regroups the walk to a
nearest neighbour-walk by collecting adjacent cells to build sufficiently large cells, a
slice of length 2 suffices, see [Gro+12, Sect. 5] for details.
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if the locality condition is not strict (i.e. finite jump length, U is a quan-
tum walk). With some effort, in Section 5.5 we explicitly construct for
any unitary, essentially local operator U with vanishing index a decou-
pling, that is connected to U. Furthermore, we generalize these results
to even satisfy additional constraints of keeping a spectral gap and
certain symmetry relations (admissibility) explained in Chapter 4.

Index theory for translation invariant operators

It is a remarkable feature of the index ind, that it is a locally computable
invariant, hence can be inferred from a small number of neighbouring
cells H,. Thus while local computability reduces the computation to a
finite patch, the invariance implies that the value of ind is independent
of where the patch lies. In this sense, the index is a translation invariant
property.

In the following, we will see, that determining the index is signif-
icantly simpler if the essentially local operator is actually translation
invariant. The following proposition from [Gro+12, Prop. 5] establishes
this in the case of quantum walks, but the proof is similarly applicable
for essentially local unitary operators as well:

Proposition 3.13 (Index: translation invariant)
Let W be a translation invariant quantum walk. Then, there is a constant
CeTs.t.

det W(k) = C - gkindW) (3.47)

Hence calculating the determinant of the k-dependant multiplica-
tion operator in momentum space allows to read-off the index directly.

Given the group velocity in momentum space from (3.33), and us-
ing Theorem 3.6, we know that the probability distribution for the
Hermitian operator G in a state p is equal to the asymptotic position
distribution that stems from p in ballistic scaling (see the details in
[Ahl+11]). Choosing a state where the coin-factor is unpolarized, e.g.
p =o0®1/d, we find [Gro+12]:

(X()) = (X(0)) + é ind(W). (3.48)

This shows why ind(W) is called the flow that measures the drift of
quantum information: it represents the mean velocity of the walk in
units of cells to the right per time step.

Remarkably, in the translation invariant case, the index can also
be determined by looking at the windings of the quasi-energy-bands
wq (k). As is shown in [Gro+12, Fig. 3], summing up the signed number
of crossings of any line of constant quasi-energy for all bands together
yields the same number as the sum of derivatives of all branches, which
is to be the index.

The completeness of the index in the setting of arbitrary quantum
walks is a strong result on its own, but it is even more conspicuous,
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that restricting the class to translation invariant quantum walks yields
a similar completeness result in this restricted class as well:

Theorem 3.14 (Completeness of the index: translation invariant)
Let W, W, be translation invariant quantum walks on H = (*(Z) ® C°.
Then, the following are equivalent:

e ind(W,) = ind(W,)

 There is a norm continuous path [o,1] 3 t +— W, of translation
invariant quantum walks of uniformly bounded interaction length L
with the specified boundary values.

This statement can be found in [Gro+12, Prop. 6]. There, proving
this theorem is greatly simplified due to the result that every one-
dimensional translation invariant quantum walk is a coined quantum
walk as mentioned after Definition 3.3.

Perturbations

In the following chapter, before we introduce the strong constraints
that the involutive symmetries of the tenfold-way demand, we briefly
define a set of perturbations of (essentially) unitary operators that are
used throughout the rest of the thesis. They give a foretaste of the
kind of perturbations which leave the symmetry indices unchanged. In
the following chapters, it will be of large interest whether the indices
are homotopy invariants or even robust w.r.t. local perturbations that
change only a small part of the operator in some finite neighbourhood
of a cell.

For now, we define the following three types of perturbations. Note
that we usually add more qualifiers to these perturbations. That is,
we demand at least admissibility which demands that the perturbation
respects the symmetry constraints. The details of this follow later, e.g.
with Definition 4.2.

Definition 3.15 (Perturbations)
Let U, U’ be (essentially) unitary operators on H = @ vez Hx. Then, U and
U’ are called perturbations of each other, that are

local, if U’ — U is non-zero only on finitely many Hy,
finite rank, if U’ — U is a finite rank operator,
compact, if U’ — U is a compact operator.

A unitary operator V s.t. U’ = VU is called a perturbation for U, that is
local, finite rank or compact.

Following the definitions of finite rank and compact operators from
Section 2.5, it is obvious that local perturbations are contained in the set
of perturbations of finite rank. The converse is not true, since finite rank
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perturbations might be skew w.r.t. the decomposition into the H,, i.e.
span infinitely many cells. Since compact operators are limits of finite
rank operators, the set of compact operators contains the finite rank
operators, but not vice versa.

In Section 5.4, we prefer to write perturbations multiplicatively, i.e.
describing perturbations for U instead of perturbations of U. Due to
unitarity, the conditions from Definition 3.15 can be rephrased, with
V.=Uuur

-y =uu-1=v-1L (3.49)

For a compact or finite rank perturbation, we see that V —1 is again a
compact or finite rank operator. In the case of local perturbations, a
similar statement is possible whenever we have a strict locality con-
dition, i.e. U and U are quantum walks. Then, in the case of a local
perturbation V for U, V differs from the identity only on finitely many
sites. More precisely, given two quantum walks U, U” with maximal
jump length L,, L, that are local perturbations of each other s.t. U — U’

is non-zero only on @ ‘H,, V can only differ from the identity on
P .ccr He, where

C'= {y!Hx eC:lx—y| < max{Ll,Lz}}. (3.50)

xeC

For unitary operators that are not quantum walks, even in the case of
a local perturbation, a finite C’ is not guaranteed. On the other hand, a
V that differs from the identity on finitely many sites, clearly implies
a local perturbation between U and U’ independent of their locality
constraints.

This finishes our treatment of perturbations, the index and the in
general non-admissible quantum walks or essentially local unitary oper-
ators. As the following chapter shows, we will now add symmetries to
the picture and develop our topological classification of one dimensional
quantum walks with discrete symmetries.



SYMMETRIES AND THE INDEX OF A
REPRESENTATION

In many situations in quantum mechanics we are given a system and
a description of the time evolution and we try to find a suitable math-
ematical framework describing the features of interest. To simplify
the situation, one of the first steps is to analyse which parts of the
system are invariant under which operations, i.e. whether the system
possesses symmetries that help in the description.

Before introducing our topological classification of essentially local
unitary operators that lie in one of the symmetry classes of the tenfold-
way, we want to provide an overview over the concept of topological
phases as well as preliminary work in the field.

4.1 OVERVIEW AND PRELIMINARY WORK

Since the early days of quantum mechanics and condensed-matter
physics the discovery and classification of quantum matter into differ-
ent phases were of special interest. The Landau’s approach to symme-
tries and phase-transitions describes how the presence or spontaneous
breaking of symmetries characterizes different phases of quantum mat-
ter, indicated by a suitable order parameter.

The discovery of the quantum hall effect [KDP80; Lau81] showed
that Landau theory is insufficient to describe all phases of quantum
matter. In that scenario, describing electrons put on a two dimensional
square lattice and applying a strong perpendicular magnetic field leads
to Landau levels, which are quantized. Therefore, filling the Landau
levels up to level N produces a gap that separates the occupied and the
empty states just as in an insulator. The application of an electrical field
causes the electrons to drift, leading to a quantized Hall conductivity in
the direction orthogonal to the electric and magnetic fields, which is
proportional to N, thus taking integer values (after a suitable choice of
units). Today, this result is confirmed to high precision (up to 1 part in
10%) and is e.g. used to determine the fine-structure constant [K1i05].

Describing the quantum hall effect in momentum space [Tho+82]
allows one to view the Landau levels as the (constant) 2D band struc-
ture of the corresponding Hamiltonian, hence a real-valued function
on the 2D-torus (the Brillouin zone). Each of these bands corresponds
to an eigenfunction on the torus, which acquires a well-defined geo-
metrical phase (the first Chern number or Berry phase as introduced
e.g. in [Ber84], see Corollary 7.9 and (7.38)) if we follow a closed curve
around the torus.
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As long as the gap stays open, the sum n of all Chern numbers
of occupied bands is a topological invariant, i.e. its value does not
change under continuous deformations of the corresponding Hamil-
tonian. Since a description via quasi-momentum assumes an infinite
dimensional translation invariant system, this invariant is considered
a bulk-invariant. In [Tho+82], Thouless et al. showed that this bulk-
invariant n and the number of filled Landau levels N coincide, which
thus confirms the invariance of the quantized Hall conductivity under
small changes of the magnetic field.

Hence, the value of the Hall conductance serves to classify a phase of
the system, which is a topological invariant, even without breaking any
symmetry. This coined the term topological phases differing from the
Landau phases known before, as well as the term topological insulator
instead of an ordinary insulator.

Hatsugai provided a modification of the system for rational values
of the magnetic field in [Hat93b; Hat93a]. He restricts the system in one
direction to a finite number of sites that is commensurate with the de-
nominator of the magnetic field, which leads to the occurrence of edge
states. After a Fourier transform with respect to the other direction,
the winding of the edge states gives another topological invariant, the
edge-invariant. Remarkably, in that paper he succeeded in showing that
the value of the edge-invariant coincides with the value of the bulk-
invariant. This and many similar phenomena are subsumed under the
statement later coined the bulk-boundary-correspondence (which we anal-
yse in Section 5.3). For more information on topological insulators in
general, see the review [HK10] and references therein.

In Section 2.3 we provided a classification of the simplest kind of non-
trivial symmetry groups one can think of. That is, discrete symmetry
groups generated by one element which thus has to be an involution, or
two distinct involutions whose product thus yields a third involution,
leading to Klein’s Vierergruppe. In his remarkable general analysis of
symmetric spaces [Car26], Cartan introduced a large number of differ-
ent symmetry classes. In a following publication he introduced labels
for these classes e.g. Alll or BDI, which became the de-facto standard
notation for symmetry classes in many fields, including topological
insulators [AZ97].

The symmetries of primary interest for the theory of topological
phases are (besides translational symmetry) time-reversal symmetries,
particle-hole symmetries and chiral symmetries. Before defining these
in Section 4.2, we give a few references. Analysing the action of time-
reversal symmetries T on atomic nuclei with and without taking spins
into account [Dys62; Dys70], Dyson identified the classes A, Al and All,
characterized by the absence of 7, the presence of 7 squaring to +1 and
the presence of 7 squaring to —1 (compare with the single antiunitarily
represented symmetry in Section 2.3). Adding a unitarily represented
chiral symmetry y, which is present in many spin-2-systems, leads to
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the cases Alll (compare with the single unitarily represented symme-
try), BDI (compare with the four-group, where s; = s, = +1) and CII
(compare with the four-group, where s; = s, = —1). An example for
an explicit particle-hole () symmetric system is the superconductor
described via Bogoliubov-de Gennes theory [Gen66]. If 1 is the only
non-trivial symmetry in the symmetry-group, the symmetry classes
are D or C, whose topological classification differs i.a. in the dimen-
sionality of the system under consideration [RH02; HK10].

Altland and Zirnbauer completed this case distinction in [AZ97],
providing the tenfold-way that lists all possible combinations of (absent
or present) particle-hole symmetries, time reversal symmetries and
chiral symmetries with the respective options for the squares. Using
the results from Section 2.3 and restricting to 1D, we provide our own
derivation of the tenfold way in Section 4.2.

Classifying quantum matter by identifying topological invariants is
certainly of sufficient interest on its own. Nevertheless, there is a strik-
ing phenomenon known as the bulk-boundary-correspondence' which
predicts that by joining two bulk systems, eigenstates localized at the
edges occur. Moreover, there are topological invariants at the bulk (e.g.
a Chern number derived from a band structure) and invariants at the
boundary (e.g. a number of states localized at the edge, weighted with
the parity of the eigenfunction w.r.t. a chiral symmetry), whose values
are predicted to coincide. If the conjecture holds, these edge-states can-
not simply vanish, at least as long as the bulk-invariants of the joined
systems predict non trivial edge-invariants. They are supposed to be
invariant of how the connection is made, which implies a stability or
protection of the edge-states w.r.t. perturbations that do not break the
symmetries.

An example of the emergence of edge states and the bulk-boundary-
correspondence in a range of Hamiltonian systems is provided by
[RHO2] or by [HK10, I.3] and references therein. We will explicitly
prove the bulk-boundary-correspondence within the range of our the-
ory of quantum walks in Section 5.3.

In 2009, Kitaev provided a thorough analysis of the tenfold way for
Hamiltonian systems using topological K-theory and Bott periodicity
of the homotopy groups to classify Hamiltonian vector bundles over
the Brillouin zone [Kit09]. His results are not restricted to low dimen-
sions, but work for every spatial dimension. That is, he explains which
values the topological invariants can have?, but he does not provide a
way to determine them for an explicit Hamiltonian of a certain symme-
try class. Furthermore, it seems impossible to extract at least a sketch
of a proof from his publication, as opposed to the very recent publi-
cation by Thiang, who provided a full framework for treating gapped

1 Sometimes, the boundary is referred to as edge and vice versa. We consider both terms
as interchangeable.
2 More precisely, he derives the index groups I(S) as we introduce in Section 4.3.
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topological insulators [Thil6], using a different K-theoretic approach
than Kitaev.

To summarize, we note that in case of Hamiltonians, the classification
of symmetries of the tenfold way is covered well, even though the
approaches are sometimes not very well documented.

Still, it remained obscure how this theory might apply to the promis-
ing new systems explained in Chapter 3, namely quantum walks. Due
to the relative recency of the concepts, there was no prior classification
of topological phases for quantum walks covering more than a few ex-
amples. The approach to this problem that was taken in [Asb12; Kit+10]
was to look at the classification of the Hamiltonian case from [Kit09]
and generate quantum walk examples W, whose effective Hamiltonian
Heft is determined up to a branch cut of by the logarithm of W = eiHef,
With this approach, the authors succeeded in showing the existence of
quantum walks whose effective Hamiltonians satisfied the symmetries
of all cases of the tenfold way. Furthermore, they proposed topological
invariants for some examples that were determined by counting gap
closures along continuous paths in the examples” parameter plane.

One striking distinction from the Hamiltonian case is that in the uni-
tary case, there are two symmetry-related gaps at +1, as opposed to
the single gap at o in the Hamiltonian case. This was noted in [Jia+11]
and was applied by Asbéth in [Asb12] to introduce two different invari-
ants, corresponding to each of the gaps. Then, in [AO13], Asbéth and
Obuse introduced two topological invariants for a more general class
of examples, namely chiral symmetric split-step-walks®. They used
these invariants to predict the occurrence of topologically protected
edge states by assuming the bulk-boundary-correspondence and visu-
alized this numerically in the following way by preparing a state at the
boundary of two joined walks and looking at its time evolution. On
the one hand, if it occurred that the probability to find the walker close
to the boundary was bounded from below with a non-vanishing value
for many steps, the initial state presumably had some overlap with an
eigenstate at the edge. On the other hand, if walks of the same phase
were connected, where one thus would not expect topologically protected
edge-states, their examples suggests that no such lower bound existed,
which they considered showed bulk-boundary-correspondence.

At the same time, Kitagawa published a summary of their prior work
[Kit12] which suggested that their construction might extend to differ-
ent examples than the Split-Step-Walk which they treat as the quantum
walk in earlier publications. Complementing this in a more recent
publication [TAD14], Tarasinski, Asb6th, and Dahlhaus suggested to
consider the class of coined quantum walks and provided a way to
determine two different topological invariants via a scattering-matrix
they define. The scheme to determine these invariants is applicable
for every coined quantum walk, and their predictions are confirmed

3 We apply our theory to this exemplary class of Split-Step-Walks in Section 8.2.
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with a simulation of a Split-Step-Walk, a Four-Step-Walk and a doubled
Split-Step-Walk.

Yet, none of these approaches provide a rigorous topological classi-
fication of one-dimensional quantum walks as one would hope for a
topic of such broad interest. That is, a concise theory which precisely
answers:

¢ Which assumptions do the classified objects have to satisfy?

* What are the topological invariants i and how can they be deter-
mined?

* Which perturbations leave the different i invariant?
¢ Is the classification provided by the i complete?
¢ How do we compose systems?

* Are the composed systems still described by the theory?

Clearly, one could continue this list and make it reflect exactly what a
thorough theory should have in all detail. Instead, since this thesis cov-
ers large parts of such a rigorous topological classification, it appears
to be more fruitful to simply start with the theory and point to the Out-
line in Chapter 1 or our collaborations’ publications [Ced+15; Ced+17].
The collaborating team was comprised of Cedzich, Geib, Griinbaum,
Stahl, Veldzquez, A. H. Werner and R. F. Werner.

4.2 SYMMETRY TYPES AND CLASSES

In Section 2.2 we introduced a general notion of symmetries, symmetry
groups and their representations. In the following, we provide an ab-
stract classification of (essentially) unitary operators U (e.g. quantum
walks) or Hermitian operators H (e.g. Hamiltonians) by defining what
it means to be of a certain symmetry type. The symmetries considered are
the following:

* particle-hole symmetry 1, which is represented antiunitarily
satisfying nU = Un or nH = —Hp,

* time reversal symmetry t, which is represented antiunitarily
satisfying U = U*t or TH = Hr,

* chiral symmetry y, which is represented unitarily
satisfying yU = U*y or yYH = —-Hy.

Each symmetry is described by an identifying symbol* S € {n, 7, )}, its
(anti-) unitarity character, and the condition of admissibility, which is
written as a commutation relation, potentially up to taking the adjoint.
This last part is the necessary condition an operator U or H has to

which in a slight abuse of notation is also used for actual representations as an operator
on a Hilbert space
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fulfil in order to satisfy the symmetry S € {n,t,y} if represented as
operator on a Hilbert space. Equivalently, we call U or H admissible
for S, if it satisfies S as described in its definition. Hence, while this
description of a symmetry is independent of a particular representation
on a Hilbert space, it already entails how the represented operators
commute, given an admissible U or H. Furthermore, note that the
commutation relations for U follow from those of H if one sets U =
exp(iH).

Combining the results from Section 2.3, one easily verifies that each
of these symmetries is an involution, i.e. its action (e.g. p = npn*)
squares to the identity. This allows us to finally define a symmetry
type and its representation:

Definition 4.1 (Symmetry type)

Any subset S of symmetries {n, T, y } defined above, including the correspond-
ing (anti-) unitarity character and admissibility conditions of S, together with
the sign of S* for each element S € S, is called a symmetry type.

Definition 4.2 (Representation)

A representation p of a symmetry type S is a collection of operators
representing a symmetry type, i.e. a subset of unitary or antiunitary operators
{n. 77k

An essentially unitary U or Hermitian operator H is called admissible
for the representation® p, if it fulfils the commutation relations with all
operators in p as demanded by the respective symmetries.

Note that the admissibility condition of essentially unitary operators
U,V is in general not compatible with products. This can be seen e.g.
for 7:

UV =UtV =U'V't = (VU)'r, 4.1)

hence in general, admissibility for U and V does not imply admissibil-
ity for UV In contrast, if U and V commute, UV = VU is T-admissible.

Another important example is given by V = f(U*U), where f de-
notes a convergent power series with real coefficients. Then, for all k
we have

wu(uru)* = ur(uu) e = (uuu) e, (4.2)

and hence by linearity w.r.t. real coefficients, admissibility of U f(U*U)
follows.

The definition of a symmetry type appears to allow for a large num-
ber of case distinctions for all possible subsets with all possible signs
of squares. In the following, using the results from Section 2.3, we will
systematically reduce the number of different inequivalent symmetry
types to ten - deriving all the symmetry types of the so called ten-fold
way?®.

5 In Definition 4.3, we will update this admissibility condition and demand furthermore,
that U and H are essentially gapped.
6 Compare e.g. [AZ97], as described in the introduction to this chapter
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S A D C Al Al AII BDI CI CIO DN

n? +1 -1 +1 -1 -1 +1
(= +1 -1 +1 +1 -1 -1
V2 +1 +1 -1 +1 -1

IS) 0 Z, 0 0 0 Z Z 0 272 27,
si 0 dmod20 0 0 try try 0 try dmodsg

Table 1: All symmetry types of the tenfold-way, determining the squares of
the generators {n, 7, v} and labelled by the widespread Cartan nota-
tion [Car27]. An empty cell denotes that the corresponding generator
is not part of the symmetry type. Anticipating Definition 4.7 and
the results from Section 4.4, I(S) denotes the range of the symmetry
index si of a representation.

At this point note that whenever a symmetry type contains two of
the three different symmetries considered, the third is present as well,
since every composition of two of the above symmetries yields the
third, fulfilling the corresponding commutation relation and having
the right unitarity character. Hence under the given circumstances,
the symmetry group either consists of one of the above symmetries
and the identity, or all of the above symmetries and the identity. This
corresponds exactly to the group of two involutions, and Klein’s Vier-
ergruppe’ as introduced in Section 2.3.

Using the case-distinction from Section 2.3, we are now able to write
down all symmetry types allowed in our setting. Instead of introduc-
ing another convention, we stick to the notation Cartan introduced in
[Car27].

Table 1 provides an overview over every symmetry type in Cartan
notation, answering which symmetries are present and whether they
square to +1 or —1. These ten different cases are constructed as follows:
There is one case with no symmetry present, called A. Then, there is AllL,
the case where only one unitary symmetry (i.e. y) is present, whose
square we choose as 1. Then there are D, C, Al and AIl where there is
only one antiunitarily represented symmetry, two cases n*> = 1 and
two cases 72 = £1l. This amounts to five symmetry types with only one
symmetry present. Using the convention of commuting symmetries
from Section 2.3 in (2.27) (i.e. choosing the representation p abelian),
the square of two operators determines the square of the third. This is
opposing some part of the literature, where fixing y*> = +1 is preferred,
at the cost of loosing commutativity of the operators. In our case,
we have y* = n?7* and hence fixing the squares of the antiunitary
operators fixes 2. This yields the four remaining cases BDI, CI, CIl and
DIII, which are labelled as in [AZ97] (for the signs of the squares, see
Table 1).

7 Restricted to the case of exactly two antiunitarily represented operators
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It is an important result we see in Section 4.4, that whenever our
classification predicts anon-trivial index group, there are 1 or y present
(or both) with at least one of them squaring to +1. Before going into the
details of the explicit construction, let us motivate what the presence
of 1 or y implies for the spectrum of an admissible operator.

Let U be an admissible unitary operator for a symmetry type S and
let ¢ be an eigenvector of U with eigenvalue e'®. Then, whenever 1, 7, y
are part of the symmetry type, we have

U(ng) = nU ¢ = e~ (1)
U(td) = tU ¢ = e'“(1¢)
U(yd) = yU'¢ = e “(y9). (4.3)

Thus the admissibility condition for 7 and y ensures, that the spectrum
of U is symmetric w.r.t. the real axis. Indeed, as (4.3) shows, whenever
e'? # +1, eigenvalues come in pairs {¢'?,e~'“}. This distinguishes 1
from the rest of the spectrum. Figure 3 shows the action of the sym-
metry w.r.t. the real axis, as well as the special role of +1 by example.
As we will see shortly, this invariance of the eigenspaces at +1 under
the symmetries, as well as an absence of essential spectrum at +1, will
be crucial for the classification. A motivation behind this is, that this
setting on the one hand allows for a translation-invariant U which
is gapped at +1, on the other allows for a U that stems from joining
two gapped translation invariant systems (bulks), such that eigenvalues
within this gap may emerge (rendering the resulting U not gapped any-
more)®. More precisely, for both U (and H), our classification demands
an essential gap at +1 (or 0):

Definition 4.3 (Essential gap)

Let A be a normal operator on H. We call A essentially gapped at z,, if
there is no essential spectrum at z,, i.e. zo & Oess(A).

We use the same term for a unitary operator U, if it is essentially gapped at
+1 and for a Hermitian operator H at o. Furthermore, we update Definition 4.2
to reflect that an admissible operator is always assumed to be essentially

gapped.

Due to the spectrum being closed, thereisan € > 0s.t. z & 0ess(A) for
allz € C, |z — z,| < €.Thatis, A has only finitely many eigenvalues inan
e-ball around z,, as long as they are all of finite multiplicity. Figure 3
shows an example of a unitary and a Hermitian essentially gapped
operator. A more elegant way to phrase the essential-gap condition is to
use the projection 7 to the Calkin algebra as defined in Definition 2.16.
Then, U is essentially gapped if and only if the spectrum of 7(U)
does not contain +1. Indeed, this provides the perhaps quickest way
to see, why this gap is essential: whenever U is perturbed by a compact

This notion and motivation will be made more precise e.g. in Section 5.3, where the
notion of bulk and boundary are introduced and a correspondence between both is
formulated.
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Figure 3: (a) Spectrum of an essentially gapped unitary operator U. Due to
unitarity, the spectrum lies on the unit circle. While the green lines
denote continuous spectrum, the red dots denote pure-point spec-
trum. The blue line represents the real axis, and the black arrow
symbolizes the action of 7,7 on the spectrum of U. The unitary
operator is not gapped, since there is an eigenvalue right in the gap
at —1. If this eigenvalue is only finitely degenerate, it is not part of
the essential spectrum, making U essentially gapped.

(b) Spectrum of a gapped Hermitian operator H. Here, the real axis
runs vertically with the blue line marking o.

1

\
ol e

operator K s.t. U’ = U + K, the essential spectrum is unaffected, since
n(U’) = n(U). Furthermore, given an essentially gapped operator A
with essential gap at z,, the eigenspace of A at z, is finite dimensional by
definition. Hence A, restricted to this eigenspace is a finite dimensional
operator K. Removing K renders A gapped, thus A is gapped at z, up to a
compact operator, which justifies calling it essential as announced e.g. in
Section 2.5.

It is useful to note, that a translation invariant operator A on an
infinite dimensional Hilbert space can only have eigenvalues of infinite
degeneracy, hence 0(A) = 0ess(A). Therefore every essentially gapped
translation invariant operator is gapped.

4.3 SYMMETRY INDEX

This section provides the last brick in the foundation we need to explain
what is meant by fopological phases of quantum walks, or how and why it
makes sense that we assign numbers to admissible unitary operators
and Hamiltonians.

The integral condition that allows for a topological classification
in this context and that is responsible for the topological stability or
-protection, is the invariance of the eigenspaces corresponding to eigen-
values in the gaps. Since we are interested in a classification that is
invariant under norm-continuous perturbations that are compatible
with the admissibility conditions’, it makes sense to analyse a short
example by asking: What happens in the gap of an admissible unitary
operator U of symmetry type D after a small perturbation s.t. U’ is still
of type D?

9 The invariance of the symmetry index that labels the homotopy classes under so called
gentle perturbations is thoroughly explained in Chapter 5.
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The particle-hole-symmetry 7 forces the spectrum to be symmet-
ric w.r.t. the real axis, hence eigenvalues moved by the perturbation
have to move symmetrically in pairs. This allows the dimension of the
eigenspace of one gap (e.g. at +1) to change only by an even number -
which hints that a classification must at least distinguish between even
or odd number of eigenvalues in the gap, thus corresponding at least
to an index group I(D) = Z, (Table 1 confirms that this is already the
whole group).

In the following, we substantiate this argument by introducing an
equivalence relation on the set of finite dimensional symmetry repre-
sentations, that identifies the topologically irrelevant (trivial) represen-
tations. These are the so called balanced representations by which (as
we will see later) the eigenspaces may change without changing the
topological phase.

Definition 4.4 (Balanced representation)
A symmetry representation p is called balanced, if there exists a unitary
operator U (or Hermitian operator H) which is p-admissible and gapped.

Indeed, balanced representations split finite dimensional Hilbert
spaces (e.g. the corresponding eigenspaces of essentially gapped uni-
taries at +1) into a direct sum of spaces of equal dimension, that are
mapped to each other by y and 7 if they are part of the symmetry type,
as the following Proposition shows!:

Proposition 4.5 (Balanced representations)
Let p be a representation on a finite dimensional Hilbert space H. Then, the
following are equivalent:

1. pis balanced, i.e. there is a gapped admissible V.

2. There are Hy and H_ s.t. H = H, & H_ that are swapped by y and
n and are invariant under T (whenever these are part of the symmetry
type), i.e.

yH, =H_ nH, = H- TH, =H,. (4.4)

3. There is an admissible unitary V with V> = —1.

Proof. (1) = (2): Since V is a unitary operator, the eigenvectors of its
spectral decomposition span H. Furthermore, since V is gapped, every
eigenvalue has either positive or negative imaginary part. Hence, we
can define H, (H-) as the span of all eigenvectors of positive (negative)
imaginary part, and use (4.3) to verify the relations for y, n, 7, if they
are part of the symmetry type.

(2) = (3): Let P be the projector onto H, and P_ onto H_. Then,

V =iP, —iP_ (4.5)

is admissible, clearly unitary, and V> = 1.
(3) = (1): By definition, since V has only eigenvalues +i. O

10 Compare e.g. (4.3) for the action of y, 1, T on eigenvectors and the spectrum
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This proposition will be especially helpful when computing the ac-
tual index groups later in this section. But before we can do this, we
have to define the equivalence relation between representations p,, p.
of the same symmetry type. The corresponding equivalence classes
will then be labelled by a map si that associates to every representation
an element of an abelian group I(S), the index group.

Definition 4.6 (Equivalence modulo balanced reps.)

Let p4, p» be finite dimensional representations of a symmetry type. p; and
P, are equivalent (py ~ p,), if there are balanced representations B, f. and
a unitary operator V s.t.

P1® P =V(p®B)V" (4.6)

That this is actually an equivalence relation is easily shown, since
reflexivity follows with V =1, 8; = f,, symmetry with V — V* and
transitivity follows from the following reasoning:

Given two balanced representations f,, f, with corresponding gapped

admissible unitary operators U,, U,, the direct sum ; ® 5, is balanced
as well, with the gapped admissible unitary U, ® U,. Hence if p; ~ p,
and p, ~ p; with corresponding f,, ., Vi, and y,, 75, Va3 s.t.

P2@).® B, = V23(p3 ® 73)‘/;3 ® B

P2®P2 @2 =Vi(p1© )V @72 (4.7)
thereisa V s.t.

Vip2@P2®72)V =079 (4.8)
and hence

P3@ Y3 ® P2 =V (V' (Vir(p:s © B)Via ® 72) V) Va3, (4.9)

where the outermost V,; is understood as V,; & 1.

To make the imprecise statement that si labels equivalence classes
by assigning numbers rigorous, we define the symmetry index of a
representation:

Definition 4.7 (Symmetry Index)

Let p be a finite dimensional representation of S and ~ be the equivalence
relation from Definition 4.6.

Then, the symmetry index si(p) is defined as the equivalence class of p:

si(p1) = si(p2) © p1 ~ P2 (4.10)

The set of equivalence classes 1(S) is then called the index group of the
symmetry type S, with group operation

si(p1) +si(p2) = si(p: @ p2). (4.11)

The sloppiness to call something a group before actually showing
this, will be overcome by the following proposition:
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Proposition 4.8 (Symmetry index)
There is a map si that takes any finite dimensional representation p of S to an
element si(p) € I(S) such that

si(p) = 0 & p is balanced. (4.12)

Furthermore, the corresponding index group I(S) is an abelian group.

Proof. From Definition 4.6 we know, that the relation is indeed an
equivalence relation. Since the direct sum of balanced representations
is balanced, the direct sum of equivalent representations yields equiva-
lent sums, which justifies the introduction of the sum in Definition 4.7.
Furthermore, a balanced representation g has trivial index, since

si(p) +si(B) = si(p ® B) = si(p). (4.13)

On the other hand, any p’ s.t. si(p’) = o is equivalent to a balanced
representation p, and hence itself balanced by definition.

For every direct sum, there is a unitary operator V that swaps the
summands, that is

p2®p1 = Vp1®p2 V*. (4:.14)

Thus, both elements p, ® p; and p; @ p. are equivalent, making I(S)
an abelian semigroup.

The last step is to explicitly construct inverses. Given p = {n,y, 1},
let p’ be the representation created from p by defining

’ ’

n=n T =—1 Yy =—y. 4.15)

Since a sign does not change the admissibility conditions, p’ is still a
valid representation of S. Let V be a unitary operator on H @ H s.t.

V((Pl ® (Pz) =¢.® (_¢1)- (4.16)

Then, V is unitary with eigenvalues +i and hence gapped. Furthermore,
V is admissible for p @ p’, making p @ p’ balanced. Hence, by the
definition of the group action

si(p) +si(p’) = o, (4.17)
making p’ the inverse of p, finishing the proof. O

In what follows, we show that for all symmetries S of the tenfold-
way, the index group I(S) is isomorphic to either the trivial group {o},
the group Z, or the group Z.

44 INDEX GROUPS

In this section, we will synthesize the results from this chapter, to-
gether with the abstract analysis of involutions from Section 2.3, to
provide explicit formulas for si, thus allowing to identify the genera-
tors of the index group and hence the group for every symmetry type
S mentioned in Table 1. Given a representation p, the dimension of the
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Hilbert space H is denoted by d. We will only treat the case of unitary
operators, since the Hamiltonian case follows directly from substitut-
ing U = exp(iH) and working with the corresponding admissibility

conditions!!.

Symmetry types A, AL, All

In these cases, there is neither 7 nor y present, hence the p-admissibility
does not demand symmetry of the spectrum w.r.t. the real axis. There-
fore, e.g. U = il is admissible and gapped, rendering every represen-
tation balanced and thus I(S) = {o}.

Symmetry type D

This case corresponds to case 2 of a single antiunitarily represented
symmetry 1> = +1 in Section 2.3. Therefore, any admissible unitary
operator V has real entries w.r.t. the basis in which 7 is the complex
conjugation. This makes V areal orthogonal matrix. If 4 is even, we can
always choose V' as a direct sum of 2 X 2-real rotation matrices'?, which
has no real eigenvalues. If d is odd, this is not possible, since any odd-
dimensional real-orthogonal matrix has at least one eigenvalue +1, in
this case rendering every admissible unitary V imbalanced, yielding
I(D) = Z, with si(p) = d mod 2.

Symmetry type C

This case corresponds to case 3 of a single antiunitarily represented
symmetry > = —1. As shown there, in order for such an 1 to exist, 4
has to be even. But the same construction as in D shows, that in this
case, there is a balanced V for all 4, rendering every p balanced and
thus I(C) = {o}.

Symmetry type Al

This case corresponds to case 1 of a single unitarily represented sym-
metry y* = +1. We know, that y can only have eigenvalues +1. From
Proposition 4.5 we know, that a balanced representation swaps H.
and H_. Hence, to determine the balanced part of a representation, we
look at the dimensions d., d_ of the eigenspaces P,H and P_H of y. To
fulfil the swapping condition, we need that d, = d_, since then we can
construct pairs of ¢, € PyH and ¢_ € P_H such that ¢, + p_ € H,
(and hence ¢, — ¢_ € H_). Therefore, representations not containing
any balanced ones are those, where d, = o or d_ = 0. In general, given

As a rule of thumb, replace every 1 with o and +i with +1 to get the corresponding
relation. In [Ced+17], we cover the Hamiltonian case completely.
The rotation angle may not be chosen as any integer multiple of 7.
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a representation p with corresponding dimensions d = d; +d_, one
reads off

si(p) =dy —d_ =tr(y). (4.18)

Clearly, the choice of the sign is arbitrary, one could choose the opposite
sign for the symmetry index. Independently of the choice, we identify
the symmetry group as I(AIll) = Z.

Symmetry type BDI

This case corresponds to case 1 of the Vierergruppe, with two antiuni-
tarily represented symmetries, 7> = n* = +1. As in the case of Alll,
y? = +1, and hence a balanced representation must have try = o.
Conversely, we have to show that tr y = o already implies p balanced.
Since y and 1 commute, we can choose an 7-real basis {(p;.—'} in the
corresponding +1-eigenspaces of y. Assuming tr y = o, we know that
both eigenspaces have the same dimension. We define ¢; = (p; + z¢>]‘
and H, as the span of the {¢r}, and H_ = yH,. Since ¢ € H, is
mapped by y and 1 to H_ (and vice versa), but 7 = yn leaves both
spaces invariant, we conclude by Proposition 4.5 that try = o implies
p balanced. Hence the index group I(BDI) = Z as in the case of Alll,
and si(p) = try accordingly.

Symmetry type CI

This case corresponds to case 2 of the Vierergruppe, with two antiunitar-
ily represented symmetries, —t> = n*> = —1. Analogous to the case C,
the condition for 7> demands an even dimensional H. Following the
convention in Section 2.3 by identifying V; = 7, we can construct H
by writing down the basis { qb;}, where

é(@ + ). (4.19)

H_ then follows by applying V, = 1, leading to a basis {lp}}, where

¥ =

) =—ing = %(@ ~y)). (4.20)

On these spaces, 7,1, ) act as desired by Proposition 4.5, hence in the
case of CI, every representation is balanced, s.t. I(CI) = {o}.

Symmetry type CII

This case corresponds to case 1 of the Vierergruppe, with two antiunitar-
ily represented symmetries, 7> = n*> = —1. It is analogous to the case
BDI, with the exception, that both eigenspaces of y are now of even
dimension. This is shown in Section 2.3, with V; = n and V; = y. The
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even dimensionality leads to a doubling of the eigenvectors, thus try
takes values in 2Z, which is isomorphic to Z. Hence I(CIl) = 2Z with

si(p) = try.
Symmetry type DI

This case corresponds to case 2 of the Vierergruppe, with two antiuni-
tarily represented symmetries, —7*> = n*> = +1. Hence, the difference
to Cl is, that 7 and 71 switch roles, i.e. we identify V; = nand V, = .
The existence of an antiunitary operator that squares to —1 (here: 7)
forces d to be even, similar to C. But the additional constraints that the
admissibility conditions for n and y provide, prevent that every p is
balanced, as the following example shows:

Since d has to be even, the minimal dimension is d = 2. In that case,
if p is balanced, H. both have to be one-dimensional, since y and 7
are present and have to map them onto each other. Furthermore, 7 has
to leave them invariant. But since 72 = -1, invariant subspaces have to
be of even dimension. Hence there are no balanced representations in
d = 2 dimensions. Furthermore, for arbitrary d, this condition, together
with the even splitting into H. due to the existence of 1 and y for
DI, Proposition 4.5 shows that for p to be balanced, the dimension
dmod 4 = o. That this is sufficient is shown by explicitly using the
bases {¢ j};?zl and {¢ j};?zl for the y-eigenspaces +1 and —1 from (2.34):

Let d = 2n. We define

’ . _n
Qb] = ¢2j—1 + szj Vi< ] = Z (421)

Then, {qb;, ngb;., Tqb;., )/qb;} is pairwise orthogonal for all j. Furthermore,

{or, 797} and {ng}, ves)

form a basis for H; and H_.If niseven,d mod 4 = oand H = H, + H_,
hence p is balanced. This shows, that d mod 4 = o is sufficient for p
balanced. If # is odd, there is a two-dimensional subspace that is not
affected by the identification of the balanced part in the construction
above. Hence the symmetry index is si(p) = d mod 4, which takes
values in I(DIII) = 2Z,, considered as a subgroup of Z,.

(4.22)

n/z n/2
j= j=1

Forgetting symmetries

Before we apply this classification to the systems of interest, namely
quantum walks and generalizations thereof, we comment on connec-
tions between different symmetry groups. That is: what happens to the
symmetry index (and its group) if we forget about (or failed to identify)
a symmetry? More precisely, we want to determine the homomor-
phisms from I(S,) to I(S,), i.e. the maps that connect indices from the
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finer symmetry class S; to the indices of the coarser symmetry class
S,.

As can be seen from Table 1, the symmetry types are interconnected
in the sense that any symmetry type with o € {n, 7,7} present can be
considered as the coarser symmetry type where we just forget about
the existence of 0. Clearly, whenever o is the only symmetry present,
dropping it leaves us with the case A, which has trivial index group.
Furthermore, whenever all three symmetries are present, one can not
just forget one symmetry, but two, since any pair of symmetries implies
the third. Starting from CI, Proposition 4.5 clearly shows that forgetting
symmetries leaves balanced representations balanced!3, rendering for-
getting in that case trivial as well. This leaves us with only three cases
with potentially non-trivial symmetry indices through forgetting: BDI,
CII and DIII.

In all three non-trivial cases, if we forget 1 and y, we are left with 7
alone, thatis Al or All, which has trivial I(S). Hence the homomorphism
is the zero map. If we ignore 7 and either n or y, we are left with non-
trivial index groups, namely I(D) or I(AIl), and another trivial case
when reducing CII to C by forgetting about 7 and . In the last case,
one could think that we can simply adjust the sign of n* by choosing
a phase for 1, which is possible now that there is only one symmetry
left. But (2.17) showed, that the square of an anitunitary involution is
invariant under phase-shifts. Therefore, we can not transform CII to D
by forgetting and we are left with only two non-trivial index groups.
The homomorphisms corresponding to the remaining cases are shown
in Table 2. Since BDI contains 1 with n*> = +1, every representation p
of BDI is also one of D. For BDI, si;(p) = try = d4 —d_ as defined in
(4.18). In the case of D, si,(p) = d mod 2, and therefore we have

six(p) = (d+ —d-)mod 2 = (d+ +d-)mod 2 = si;(p) mod 2. (4.23)
Therefore, the forget homomorphism between BDI and D is
m : Z =1(BDI) - I(D) = Z, : m(s) = smod 2. (4.24)

The forget homomorphism between DIII and D is easily found, since
both depend only on the dimension of the representation. The fact
that d is even for every p that represents DIII directly implies that the
homomorphism m = o.

For DIII, forgetting about n and 7 leaves us with y as the single
symmetry. As can be seen from (2.34), the +i-eigenspaces of y are of the
same dimension for every representation of DIIl. Due to the unitarity of
y and the absence of further antiunitarily represented symmetries, we
can map y to i y without changing the admissibility condition, hence
transforming the +i-eigenspaces of ) to F1-eigenspaces. Therefore,
regarded as a representation of Alll, d, = d_ and therefore si(p) =
try =o.

Note that by switching types the admissibility conditions change, hence both notions
of balanced differ.



4.4 INDEX GROUPS

BDI CIl DI

Alll id id 0
D mod 2 - o

Table 2: Forget homomorphisms between non-trivial index groups. The top
row denotes the starting symmetry type, while the left column de-
notes the symmetry type after forgetting about two symmetries. As
an example, consider BDI, which contains an 1 with 7*> = +1. Then,
every representation of BDI is also one of D. The respective symme-
try indices si(p) yield potentially different results depending on the
symmetry type’s perspective. In this case, the thus induced homo-
morphism is the quotient map m(s) = s mod 2.

The two identity maps id in Table 2 now originate from the trivial
fact, that the index map is given by try for all three symmetry types
involved. It is independent of whether one forgets about n and 7 or
not.

This completes the discussion of the forget homomorphisms and
allows us to finally proceed to classifying quantum walks or the more
general essentially local unitary operators.
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In the previous chapter, we defined the symmetry index for finite di-
mensional representations of a symmetry type. At this point, it is still
unclear, how this might help to classify infinite dimensional quantum
walks (or Hamiltonians), where the symmetries are represented as
infinite-dimensional operators. We will repeat the updated notion of
admissibility shortly, which distinguishes the +1-eigenspaces of ad-
missible unitary operators by noting their invariance under the action
of every representation of the symmetry type.

5.1 DEFINITION AND HOMOTOPY INVARIANCE

In this section, we connect the abstract introduction of symmetry in-
dices to quantum walks (or more abstractly - unitary operators) to
show how this serves us in classifying quantum walks with symme-
tries. For the rest of this chapter, we will stick to the general notion
of our Hilbert space H as a direct sum of finite dimensional H,, in-
stead of limiting ourselves to £2(Z) ® C* as defined in Section 3.2. Still,
the standing assumption will be that every symmetry representation
p, restricted to each of the H,, is balanced. The advantage of this is
that p commutes with every projection P = P>, = P* for all x € Z,
hence carrying admissibility of U over to PUP if restricted to PH. The
definition of invariants introduced in Section 5.2 requires a notion of
admissibility for essentially local essentially unitary operators (ELEU,
see Definition 3.4):

Definition 5.1 (Admissibility)
Let U (or H) be an essentially unitary (or Hermitian) operator on H and let
p be a representation of a symmetry type S. Then, we call U (or H) admissible

for p, iff it is
1. admissible for p as in Definition 4.2
2. essentially gapped as in Definition 4.3.

Furthermore, whenever we have a spatial structure H = @xez H,, we
assume p to be balanced w.r.t. each H,.

Essentially unitary operators are not necessarily diagonalizable, thus
we restrict the following definition to strictly unitary operators. In this
case, the essential gap guarantees finite dimensional +1-subspaces for
admissible unitary operators (and finite dimensional o-eigenspaces for
admissible Hermitian operators), guaranteeing that the expression is
well-defined:
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Definition 5.2 (Symmetry index of an operator)

Let p be a symmetry representation, U an admissible unitary operator and H
an admissible Hermitian operator on a Hilbert space H.

Then, we define the symmetry index of U at +1 as

si+(U) =si(p+), (5.1)

where p, is p restricted to the +1-eigenspace of U. si_(U) is defined analo-
gously on the —1-eigenspace of U.
The symmetry index of U is defined as

si(U) := si (U) +si-(U). 5.2)

The symmetry index of H is defined as the symmetry index of p on the
o-eigenspace of H

si(H) := si(po), (5.3)
where p, is p restricted to the o-eigenspace of H.

Whenever H is finite dimensional with a symmetry representation
p, we can directly make use of the formulas for si(p) and derive explicit
formulas for si.(U) in almost all non-trivial cases.

Proposition 5.3 (si for finite d)

Let p be a symmetry representation of a symmetry type S # DIl on a finite
dimensional Hilbert space H of dimension d. Then, si(p) = si(U) for all
p-admissible unitary operators U. Furthermore,

six (U) = 2(1 — det(xU)) S=D,
siy (U) = étr (y@=U)) S e {AIl, BDI, CII}. (5.4)

Proof. We assumed a finite dimensional H, hence U has a finite set of
eigenvalues with corresponding eigenspaces. Since the +1-eigenspaces
are p-invariant, we can always decompose p into p, ® p_ & pp,, where
pp is defined on Hj, the eigenspace of non-real eigenvalues of U.
Clearly, Hj, is invariant under both U and py,, hence the restriction
of U onto H, is a gapped admissible operator, rendering py, balanced.
Hence, si(pp) = 0 and

si(p) = si(p+ ® p- ® py) = si(p+ ® p-) = si(U). (5.5)

Let us now prove the formula for D. The admissibility for U guaran-
tees that non-real eigenvalues always occur in complex-conjugate pairs
with identical multiplicity. Since all eigenvalues lie on the unit-circle,
the product of these pairs is always 1. Therefore, the determinant of
FU, which is the product of all eigenvalues, is just (—1)/, where  is the
number of +1-eigenvalues. Hence si.(U) can be read off by the parity
of det(¥U), proving the first formula.

For the cases Al BDI and CII note that y swaps H. and H_ on
the balanced part of H, i.e. H, = H,. & H_. More precisely, y acts
like the Pauli-matrix o, on the eigenspaces of U belonging to non-real
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eigenvalues, i.e. on Hy,. Since o, is traceless, H;, does not contribute to
try. Hence writing >(1 + U) just isolates the eigenspaces of +1 while
mapping the eigenspaces of 1 to zero, finishing the proof. m]

Since the symmetry indices siy crucially depend on the +1-eigen-
spaces, it is interesting to analyse their stability under alterations of
the quantum walk. That is, answer which perturbations leave the sym-
metry indices invariant. In general, we will restrict ourselves to pertur-
bations that do not break the symmetries and do keep the essential gap.
Thus every perturbation has to be admissible for the same symmetry
representation as the unperturbed walk.

The perturbations introduced in Definition 3.15 are all instantaneous
in the sense that we do not ask whether this perturbation can be applied
in arbitrarily small steps. Before we find a criterion that distinguishes
between perturbations that are instantaneous or those that are not by
introducing the relative index in Section 5.4, we focus on the homotopy of
admissible essentially local unitary operators, more precisely defined
as gentle perturbations:

Definition 5.4 (Gentle perturbation)

Let U and U’ be admissible unitary operators on H. Then, U and U’ are
called gentle perturbations of each other (or U and U’ are homotopic), iff
there is a norm-continuous path [o,1] 3 t + Uy connecting U, = U with
U, = U’ such that U; is admissible for all t € [o, 1].

Sometimes, when we ask for the existence of gentle perturbations,
we want additional locality conditions to be fulfilled along the way,
meaning that U; fulfils these for all ¢ € [0, 1]. Typically these are either
compact when demanding U; to be compact perturbations of U, essen-
tially local in the context of essentially local operators, strictly local in
the context of quantum walks or translation invariant in the context of
translation invariant unitary operators, or combinations of these. We
mention the additional conditions when needed.

The relation to be continuously deformable to each other within the set
of admissible unitary operators is an equivalence relation!, and as such
splits the set into equivalence classes that can be labelled by homotopy
invariants. The following theorem states that the symmetry index is
such an invariant:

Theorem 5.5 (Homotopy invariance of si.)
Let U and U’ be admissible unitary operators on H that are homotopic. Then
si.(U) = sia (L), (5.6)

That is, si.. is invariant under gentle perturbations, hence a homotopy invari-
ant. The same result holds for si(H) in the Hamiltonian case.

1 Since every homotopy is an equivalence relation
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Proof. The norm-continuity of the homotopy U; connecting U and U’
reduces the proof to showing that there is a A > o such that

sio(Uy) = siu(Uy) Y €[t—At+A] (5.7)

On the compact interval [o, 1], the minimal distance between +1 and
the rest of the spectrum exists and does not vanish. This, combined
with the continuity in norm allows us to connect these A-intervals
from o to 1 and conclude that the indices are constant for all ¢ € [o, 1].

But the above statement from (5.7) is a direct consequence of the fol-
lowing Proposition 5.6; the slightly stronger statement that si.. islocally
constant. The above argument and the proposition hold identically in
the Hamiltonian case. O

Proposition 5.6 (Local constance of si)
Let U be an admissible unitary operator. Then, there is an € > o s.t. for all
admissible unitary operators U’,

Iu-u'l<e = si(U)=si(U’). (5.8)
The same result holds for si(H) in the Hamiltonian case.

Proof. 1t suffices to prove the theorem for si,(U), since the argument
for si_(U) and si(H) is identical if one replaces the eigenvalues and
eigenprojections accordingly.

Let P be the projector onto the +1-eigenspace of U. Since U is ad-
missible, it is essentially gapped at +1. Therefore, there is a distance
0 > o between +1 and the rest of the spectrum of U. Furthermore,
dim P = d is finite. Let R(z) denote the resolvent of U at z and let I’
denote a path in C encircling +1 with radius 2/=. Due to the distance 9,
this circle contains only eigenvalues at +1, and hence by (2.57), P can
be expressed as a contour integral

P=-— ¢ R(2)dz. (5.9)
2701 T

Let R’(z) denote the resolvent of U’ at z. The second resolvent identity
R’(z) = R(z) = R'(z)(U" — U)R(z) (5.10)
can be reordered to yield
R'(z) = R(z)(1- (U’ - U)R(z)) "
=R(z) )" ("= U)R(2))". (5.11)
n=0
From (2.38) we see that ||R(z)||™" = 9/ for all z € T, therefore this is a

convergent series for all z € I, as long as ||U" — U|| < /2. This serves as
a preliminary candidate for our €, and we assume from now on that U
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and U’ are more than ¢/>-close in norm. Then, R’ is defined and on T’
bounded by

IR ()]

IR -1 = [u" = U]l - IR
267 1257 - Ul (5.12)

The projection onto the spectrum of U’ encircled by I' is then defined
in the same way as P from (5.9), leading to the following expression
for the difference in norm of P and P’:

}{R'(z) —R(z)dz
r

< L Tmax ||R'(z) - R@)|. (5.13)
27T zel

, 1
IP" =Pl = —
27

Here, |I'| denotes the length of I', which is 7 - 0, and the maximum is
equally simple expressed via (5.11) as

IR"(z) = R()Il

IA

IR Y (0 - ul|- IR

|lu'-ul|- IR@)I1?

- : (5.14
-l IRG )
Using [|R(z)||™" = ¢/2 and putting it all together, we get
u-ull-+
HF—MSQ-” I3 <2 (5.15)
R T

where the last inequality only holds if we assume ||U’ — U|| < ¢/4, which
is not a restriction, but only updates our candidate for e. If the norm
difference of two projections is smaller than 1, they have to be of the
same dimension, hence

dimP = dim P’ = d. (5.16)

We thus confirmed the general result from (2.58) that P and P’ have
the same dimension d. That s, as long as ||U’ — U|| < /4, no eigenvalue
leaves T'.

Up to this point, we have not yet used any symmetries. But we know
from (4.3) that every symmetry maps eigenvectors to eigenvectors for
either the same eigenvalue, or its complex conjugate partner. Therefore,
sets of eigenvalues chosen symmetrically w.r.t. the real axis induce a
subspace spanned by the corresponding eigenvectors that is invariant
under the symmetries. Clearly, the subspace P’H belonging to the
eigenvalues of U’ encircled by I' is such an invariant subspace. Denote
by P’ the projection onto the +1-eigenspace of U’. Then, U’ is gapped
on (P’ — P/ )H, and therefore the representations P’pP’ and P’ pP/
differ only by a balanced representation, yielding?

si (U’) = sit (P, pP,) = sis(P'pP’). (5.17)

Here, “:=" does not denote a new definition, but reminds us that this is exactly as
defined.
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For ||U’ — U]| sufficiently small, we have to prove
siy(U) := si+(PpP) = si (P’ pP’). (5.18)

In the case of trivial symmetry types I(S) = {o}, this is trivially true. For
type D and DIII there is nothing to do either, since we already showed
that dim PH = dim P’H = d as long as ||U’ — U|| < %/4, and the index
depends only on d. Hence, the statement is proven with € = 9/,.

The remaining cases are Alll, BDI and CII, for which the symmetry
index of finite dimensional p is given by si,(U) = tr(PyP), where P
still denotes the projection onto the +1-eigenspace of U. We get

|A| :=[si+(P'pP’) = si(PpP)| = |tr(P’'yP’) - tr(PyP)|
< |tr(P’7/P’) - tr(PyP’)| + |tr(P)/P’) - tr(PyP)|
=|tr (P’ - P)yP’)| +|tx (Py(P' - P))|. (5.19)

Now, using the trace norm ||.||; from Definition 2.14, we see

Al < 11" = Pl ([yPll, + [Py1L)
<2d||P"-P|, (5.20)

where in the last step, we used ||y|| = 1 and tr P = tr P’ = d. Hence
as long as ||P’ — P|| < /24, the integer valued A fulfils |A| < 1 and is
therefore o.

The proposition thus follows with

0 1
T A+t (:21)

satisfying ||{U" — U|| < %/4and (5.15), as well as |A| < 1. O

Let U and U’ be p-admissible unitary operators. The converse of
Theorem 5.5 is called the completeness of the invariants. That is, U and
U’ are homotopic if and only if their indices si. match. This result is
presented in Section 5.6. Completeness thus implies that after fixing a
scenario (here: admissible unitary operators, no locality restriction)
there is no finer classification than the one provided by the invariants
(here: si.).

In the following section, we will change the scenario and first coarsen
it by allowing essentially unitary operators, and then restricting it by
demanding essential locality. That is, we will classify ELEU.

5.2 INDICES STABLE UNDER COMPACT PERTURBATIONS

The symmetry index si.(U) introduced in the previous section proved
to be invariant under gentle perturbations. For this, we did not need any
spatial structure of the Hilbert space at all. But since we want to pro-
vide a classification of quantum walks, it appears natural to analyse
how the spatial structure might influence our theory. As was men-
tioned in the introduction, there is strong interest in understanding so
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called topologically protected edge states that emerge whenever two bulk
systems are joined that are in different phases. In this section, we intro-
duce the symmetry indices that predict these states and prepare the
introduction of the bulk-boundary correspondence that will be treated
in the subsequent section.

In our one-dimensional setting, spatially joining two infinite sys-
tems leads to a situation that will be described in detail in Section 5.5,
namely the systems far to the left and far to the right, which should not
differ notably from the systems before the joining, and (if necessary for
boundary conditions or unitarity) a transition system, which serves
to connect both sides. The new symmetry indices we will introduce
shortly fit nicely into this setting, since each side of a system has its own
symmetry index §1 or & which will be invariant under any compact ad-
missible perturbation (hence is independent of the explicit transition)
and carries over to the joined system, depending on the side.

In the previous section, si.(U) was shown to be invariant under
gentle perturbations of unitary operators U. But in the unitary case,
admissible compact perturbations are not necessarily gentle, as will
be shown in Section 5.4. In the Hamiltonian case, this distinction is
not needed at all: Let H;, and H, be admissible Hamiltonians that
are compact perturbations of each other. Then, since the admissibility
conditions regarding the symmetries are real-linear,

Hy = (1—t)H, + tH, (5.22)

is admissible for all ¢ € R, as long as the essential gap remains open.
But this is necessarily the case, since H; is a compact perturbation
of H, for all t, hence leaves the essential spectrum untouched. Thus
it provides a homotopy H; to H,, therefore connecting all compact
admissible perturbations of H, gently.

This encourages us to drop unitarity for this section and use essen-
tially unitary operators U as introduced in Definition 2.22. The advan-
tage is that within this larger class, we can form convex combinations
of admissible compact perturbations U,, U,

U; = (1- HU; + tU, (5.23)

and hence compact perturbations become gentle. Furthermore, this
makes joining two systems U, and U, especially simple, since we can
just pick an a € Z and define

U = P<yU, Py + PsyU,Ps,. (5.24)

If we assume U, and U, tobe unitary, aslong as they are not incidentally
decoupled® at a, U will not be unitary any more and thus have left the
class of systems we describe. But if U, and U, are essentially local
essentially unitary operators as defined in Definition 3.4, U will be an
ELEU too, and hence still be in the same class.

3 See Definition 3.11 for the definition and Section 5.5 for more details.
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We note that the admissibility condition from Definition 5.1 already
covered the essentially unitary case, i.e. the symmetry relations are
assumed to hold exactly, not only essentially. Hence, as a first step to-
wards our new invariants, we transition from an admissible essentially
unitary operator to the case of an Hermitian operator by introducing
its imaginary part

ImU = %(u — ) = (Im UY-. (5.25)

Note that Im U is self-adjoint, not merely essentially self-adjoint. Fur-
thermore, if U is p-admissible as an essentially unitary operator, Im U
is p-admissible as a Hermitian operator. The non trivial step is to rec-
ognize the essential gap at 0. Looking at the image

n(ImU) = %(n(m — n(U)) (5.26)

in the Calkin algebra* and using Theorem 2.9 shows that 7(Im U) is
gapped at o, making Im U an essentially gapped Hamiltonian.

Definition 5.7 (Symmetry index: essentially unitary operator)
Let p be a representation of a symmetry type S and let U be an essentially
unitary operator that is p-admissible. Then, we call

si(U) = si(Im U), (5.27)

the symmetry index of an essentially unitary operator. The Hermiticity
of Im U demands to use the definition for Hamiltonians from Definition 5.2.

Note that for an exactly unitary operator U, this is consistent with
the definition si(U) = si,(U) +si—(U), since they coincide. But an essen-
tially unitary operator is not necessarily diagonalizable, hence there is
no direct equivalent of si, in this case.

Adding the spatial structure, i.e. essential locality, to the definition
of our systems finally allows to introduce the new indices:

Definition 5.8 (Symmetry index: ELEU)

Let p be as above and let U be a p-admissible ELEU. Furthermore, let P = P>,
be the projection onto the non-negative half-axis.

Then, Uy, = (1 - P)U(1 - P) and Ur = PUP are ELEU on their respective
half-spaces and we define the left- and the right symmetry index as

s(U) = si(UL), Si(U) = si(Ug). (5.28)

where the Hermiticity of Im U implies to use the Hamiltonian part of Defini-
tion 5.2.

The choice of the cut-point for the definition distinguishes o with-
out a clear reason. This is similar to the situation of defining essential
locality in Definition 3.4: any other cut-point results in a compact per-
turbation which does not change the symmetry indices as the following
theorem shows:

4 Seee.g. Section 2.5



5.2 INDICES STABLE UNDER COMPACT PERTURBATIONS

Theorem 5.9 (Properties of si for ELEU)
Let U be p-admissible and ELEU. Then

1. The indices si(U), S(U) and si(U) are invariant under gentle pertur-
bations, as well as compact admissible perturbations.

2. si(U) = s(U) +s(U).
3. The definition of s1 and 81 is independent of the cut-point.
4. Let U be translation invariant. Then, si(U) = o.

Proof. 1. Let U’ be an admissible gentle perturbation of U with cor-
responding path U;. Then, ImU;, (1 — P)Im U;(1 — P) and P Im U,;P
are essentially gapped on their respective Hilbert spaces H, (1 - P)H,
PH and depend continuously on f since a projection P, as well as Im
are norm-continuous. Hence, the homotopy invariance of the index
from Theorem 5.5 shows that the indices si(U), si(U) and si(U) are all
constant along the path.

Let U’ be a compact admissible perturbation of U. Then, similar to
the Hamiltonian case in (5.22),

(1—-HU + U = U + U - U) (5.29)

is a path transforming this compact perturbation to a gentle perturba-
tion of U, implying the constance of the indices.

2. From (3.26) we obtain the decomposition
U=PUP+A-P)UM-P)+PUM-P)+((1-P)UP. (5.30)

The last two summands on the right hand side are compact and fulfil
the symmetry relations, since P commutes with the symmetries and U
isadmissible. Therefore, PUP + (1—-P)U(1 - P) is a compact admissible
perturbation of U and the statement follows from

si(U) = si(PUP & (1 — P)U(1 - P))
= si(PUP) +si((1 — P)U(1 - P)) = &(U) + si(U). (5.31)

3. Without loss of generality, let 2 > o0 be another cut-point with cor-
responding Px,. Then, Py = (1 — P)Py, is the projection onto @i_; H,.

Similar to the proof of (2.), we see that P\yUPy @ P>,UP5, is an ad-
missible compact perturbation of PUP, s.t.

Si(U) = si(PUP) = si(PpUPp) + si(PsaUPsy). (5.32)

But since Py projects onto a finite number of complete cells, on which
we assume symmetry representations to be balanced, the first sum-
mand on the right hand side vanishes. Therefore, the value of s does
not depend on the cut-point chosen in the definition, and since &
follows completely analogously, all definitions in Definition 5.8 are in-
dependent of the cut-point a € Z.
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4. Translation invariance of U implies translation invariance of Im U
and hence Im U is an admissible essentially gapped Hamiltonian that
commutes with translations. Hence, we can apply the Fourier trans-
form and find eigenvalues that are continuous functions on 7. If any
of these functions vanished somewhere, 0 would be part of the es-
sential spectrum of Im U, contradicting admissibility. Thus, Im U is
strictly gapped, and being p-admissible, is its own gapped admissible
Hamiltonian that renders p balanced, implying si(U) = o. O

Having shown the homotopy invariance and invariance w.r.t. com-
pact admissible perturbations of s1 and st for admissible ELEU, we now
have all the tools at hand to state bulk-boundary-correspondence in the
following section.

5.3 BULK-BOUNDARY CORRESPONDENCE

In the previous section, we introduced a pair of new invariants st and
st for every admissible essentially local essentially unitary operator U.
Since these are independent of the cut-point, we may compute them
as far out as we please. These indices can therefore not be inferred
from any finite piece of U, strikingly different from ind, the index
of an essentially local operator defined in Definition 3.8, which is a
locally computable invariant, hence can be determined from an (almost)
arbitrarily small piece of the walk (at least in the strictly local case of
quantum walks).

Luckily, the stability of S1and st w.r.t. admissible perturbations makes
it clear that they suitably classify the topological phase of different bulk
systems. But in order to write down bulk-boundary correspondence as a
rigorous statement, we have to make clear what the bulk systems are
and what we mean by boundary. Our theory allows for a very general
definition of bulk, e.g. potentially disordered systems where the local
coins are chosen from a translation invariant distribution, or even drop
strict translation-invariance and demand almost-periodicity. Since in
this thesis, we emphasize the translation invariant case, we define:

Definition 5.10 (Bulk)
Let p be a symmetry representation and U be an ELEU. Then, we call U a
bulk, if it is translation invariant and p-admissible.

Demanding translation-invariance is a restriction which has mul-
tiple consequences. Firstly, it makes every essential unitary U exactly
unitary. Secondly, it reduces the essential gap condition to a strict gap
condition. Thirdly,it ensures that si(U) = o from Theorem 5.9. There-
fore, the symmetry indices si, & differ only by a sign and are hence
determined by each other. The consequence is that a classification of
bulks only depends on a single invariant, e.g. SL.

With the following definition of a crossover, we want to describe the
joining of two systems.
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Definition 5.11 (Crossover)

Let p be a symmetry representation of a symmetry type S and Uy and UR be
bulks that are admissible for the same p. We call an ELEU U a crossover of
UL and UR ’ Zf

Pq(U = Ug)Pzql| = 0 = lim [[Po (U = Up)Poo| . (5.33)

lim
a—00

In words, this means that U coincides with U, far to the left, and with UR far
to the right.

If we restrict the bulks further, e.g. to be unitary operators or quan-
tum walks, we define a unitary or strictly local, unitary crossover
respectively. Now, bulk-boundary correspondence can be stated:

Theorem 5.12 (Bulk-boundary correspondence)
Let U be a crossover of Uy, and Ug. Then,
Si(ll) = §(UL) + S_l\(uR) = - ﬁ(UL) + §(UR) (5.34)

Hence, if Ur and URg are in different classes, si(U) = siIm U) # o and thus
at least one eigenvector of Im U emerges at o.

If we demand strict unitarity, at least one eigenvector of U emerges at +1 or
—1. Furthermore, | si(U)| is a lower bound on the dimension of the combined
T 1-eigenspaces.

Proof. The first step is to show that si(U) = si(UL), from which §i(U) =
s1(Uy) follows analogously. Due to the invariance of si(U) w.r.t. admis-
sible compact perturbations shown in Theorem 5.9, it suffices to show
that P5,(U — Ug)Ps, is compact. Then, for any b € Z with b > a, using
Psp + Py =1 and PsyPs, = P5,P5>p = Psp, we have:

P»,(U — UR)Pz,

:P<bP2a(u - uR)PZa +P2b(u - uR)PZaP<b+

PpP>o(U = UR)P>p + P5p(U — UR)Psp- (5.35)
Every term that contains P>, P, or P<, P>, is of finite rank, and there-
fore

Ky = Pz»z(u - uR)PZa - sz(u - UR)PZb (5‘36)

has finite rank, too. Since limits of finite rank operators are compact,
the limit K of K, for b — oo is compact, too. But since U is a crossover,

Jim |Ps6 (U = UR)Ps|| = o, (5.37)
and therefore,
Jim [|Ky[| = lim [[Poy (U = UR) P2y = Pza (U = Ur) Pl

= ([P (U = Ug) P (5.39)

5 See e.g. Definition 2.13.
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Hence P, (LI - UR)PZQ is approximated in norm by finite rank opera-
tors, and since compact operators are closed w.r.t. limits in norm, this
implies si(U) = si(Uy).

In the unitary case, we know that the o-eigenspace of Im U is pre-
cisely the direct sum of the +1-eigenspaces of U. For all symmetry
types, |si+(U)| is bounded by dim(P.,), the dimension of the pro-
jection onto the +1-eigenspace of U, as can easily be checked using
Proposition 5.3 (and in case of DIl by using Definition 5.2 directly and
noting that d mod 4 < d). This finishes the proof. O

In the unitary case, the theorem cannot predict whether the eigen-
values emerge at +1 or —1. Given a crossover U, one can easily create
an admissible compact perturbation U’ (which necessarily is again a
crossover) that creates an arbitrary number of +1-eigenvalues (and
hence of suitable —1-eigenvalues such that the overall si(U) = si(U) +
si-(U) does not change). What one cannot change by admissibly and
compactly changing the crossover, is the symmetry indices st and §1.

The examples in Section 8.2 treat this in great detail. Furthermore,
an interactive visualization that can be viewed in a browser [Stal5a], as
well as in Wolfram Mathematica™ [Stal5b] was created to further in-
vestigate the phenomenon of different crossovers and changing indices.
For Split-Step-Walks, this is thoroughly explained in Section 8.3.

It is at this point not clear, whether the eigenvectors belonging to
the eigenvalues that emerged in the gap are decaying exponentially,
or merely polynomially. We will thoroughly analyse this question for
translation invariant quantum walks in Section 6.2 and prove exponen-
tial decay in Theorem 6.9. On the one hand, the scenario there is more
restricted, since strict locality is imposed for the bulks, on the other,
we don’t even need admissibility, the result already holds for vectors
fulfilling the eigenvalue equation for the gap only on one half-space.

In the following section, we will return to si, for exactly unitary
operators and use them to predict, whether an admissible compact
perturbation within the set of essentially local unitary operators is
gentle.

5.4 RELATIVE INDEX

In Definition 3.15 we introduced local, compact and finite rank perturba-
tions for unitary operators. In (3.50), we showed how these conditions
can be expressed multiplicatively. In this section, we briefly introduce
anew index, the relative index of a perturbation, which indicates whether
within the set of admissible essentially local unitary operators, a com-
pact perturbation is gentle, or not. Clearly, this question is only of interest
in the unitary case, since in the essentially unitary case, as well as in the
Hamiltonian case, we already know from Theorem 5.12 that compact
admissible perturbations are always gentle.
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Since the admissibility condition for 7 is a commutation relation
without an adjoint, the product of two p-admissible unitary operators
U, V is admissible for 1, but whenever 7 or y are part of p, products
of admissible operators are not necessarily admissible any more (see
(4.1)). Hence, the conditions for V such that VU is admissible, given
an admissible U, are not the admissibility conditions for p, but those
for a slightly different representation p:

Lemma 5.13 (Relative representation)
Let U be an admissible essentially local unitary operator on H for a symmetry
type S and let V be a unitary operator. Furthermore, let

n=n T=Ur y=Uy, (5.39)
whenever these operators are part of the symmetry type.

Then, these operators form a symmetry representation p of S, called the
U-relative representation. Moreover, U’' = VW is p-admissible iff V is
p-admissible. The subspace

Hy =(V-)H=WVU-UH=(V"-1D)H (5.40)

is invariant under n, T, y, V, V*. Whenever V — 1 is compact, V has an essen-
tial gap at —1, and hence the —1-eigenspace H,, C Hy is finite dimensional.

Definition 5.14 (Relative Index)
Let U, V and p be as above. Then, the symmetry index of p restricted to H,

SiVU : U) = si(V) (5.41)
is called the relative index of a perturbation V for U.

Proof of Lemma 5.13. Firstly, we have to verify that p has the same
squares as p, thatevery element of p commutes, and that p-admissibility
for VW is equivalent to p-admissibility for V. The invariance of Hy
follows directly from (5.40) and applying the admissibility conditions
for p and V to the appropriate part of (5.40). All of this can be checked
by a direct calculation.

The compactness of V —1 directly implies the essential gap at —1
and hence the finite dimensionality of H,, finishing the proof and
ensuring that si(VU : U) is well-defined. O

Since si_ is a homotopy invariant due to Theorem 5.5, si(VU : U)
vanishes, if VU is a gentle perturbation for U. Therefore, a vanishing
relative index is necessary for a compact perturbation to be gentle. We
will now prove that this is actually sufficient:

Lemma 5.15
Let U be an admissible unitary operator and let V be an admissible compact
perturbation for U s.t. U’ = VU. Then,

si(VU:U) =0 & V isa compact gentle perturbation for U.
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Proof. Due to Theorem 5.5, VU and U are gentle perturbations and
(&) is evident.

Conversely, suppose si_(V) = 0. We have to create a continuous path
t + V; of p-admissible unitary operators on Hy connecting V with 1,
s.t. U; = V;U is an admissible homotopy from VU to U. Since si_(V) =
o, there is a gapped admissible unitary V. The restriction of V, to
Hy will be called Vg‘ . Using functional calculus, we can contract the
eigenvalues of this finite dimensional unitary operator to 1 by applying
the function f.(z, t) := z!, or to —1 by applying f_(z,t) := (-z)'. Hence
by concatenating f, and f_ suitably, we found an admissible V;” on
‘H,,;. On the complement of H, in Hy, we apply f. to the spectrum
of V, and compose V; from V;” on 7-{‘; and the deformed V, on the
complement. This proves (=). m|

An obvious disadvantage of relative indices is that they need to refer
to some reference operator. As such, the previous lemma allows us to
decide whether an operator is a compact perturbation of the reference,
or not. But it does not tell us much about the connected components of
references that are not compact perturbations of each other. Moreover,
we do not know whether a compact perturbation with non-vanishing
relative index is a non-compact gentle perturbation. That is, whether
they can be connected by a norm-continuous path U; of admissible
operators that is not restricted to be a compact perturbation of the
reference U for all ¢.

The following theorem rules out this possibility: by showing that
the relative index can be expressed as a difference of the absolute in-
dices si. Since we know that these are invariant w.r.t. to any gentle
perturbations by Theorem 5.5, we learn that a compact perturbation
with non-vanishing relative index cannot be contracted.

Theorem 5.16 (Relative index from si.)
Let U be an admissible unitary operator and let V be an admissible compact
perturbation for U s.t. U" = VU. Then,

silU":U) =si_(U’) —si_(U) = sip (U) —si (U). (5.42)
The full proof of this theorem is found in [Ced+17, Thm. VI1.4]. We

only treat the case of a finite dimensional Hilbert space H, excluding
DII:

Proof. Sincesi(U) is invariant under compact admissible perturbations,
si(U) = si(U’) and therefore

si_(U) +si, (U) = si(U) = si_(U’) + si (1), (5.43)

thus it suffices to show the first equation in (5.42).
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Proving the theorem in the finite dimensional case is now just a matter
of calculating si—(V) using the formulas from Proposition 5.3. In the
case of D, we get (after exponentiation)

(1)) = det(V) = det(VU) - det(U™™)
= (—1)s-WU)-si-(W), (5.44)

Since for S = D, si(U) takes values in Z,, the statement is proven.
In the case of Alll, BDI and CII, we have

si_(V) = étr (F1-V)) = étr (y(Uu-u))
=si_(U’) —si-(U), (5.45)
finishing the proof. m|

This theorem, together with Lemma 5.15, is the first result in the
direction of completeness of the symmetry indices si., as described
in the introduction to this chapter. More precisely, within the set of
unitary admissible operators, the si. are a homotopy invariant by The-
orem 5.5. The above theorem now adds that whenever two unitaries
share the same values of si. and are compact perturbations of each other,
their relative index vanishes and they are homotopic by Lemma 5.15.
In Section 5.6 we will prove, that this restriction is superfluous.

A simple corollary is a formula that reminds of a chain rule for the
relative index.

Corollary 5.17 (Chain rule of si(U’: U))
Let U’ and U"” be compact admissible perturbations of U. Then, U"” is a
compact perturbation of U’ and

si(U”:U) =si(U”:U’) +si(U’: U). (5.46)

The issue with this rule is that the perturbations V; = U'U*and V, =
U”(U’)* that correspond to the two relative perturbations si(U” : U’)
and si(U’: U), are admissible for different symmetry representations
of the same type, since one relative index is relative to U, and the other

relative to U’. Luckily, in the case of strictly local unitary operators, i.e.
quantum walks, the situation is simplified:

Lemma 5.18 (Chain rule for walks)

Let W be an admissible quantum walk and let V,, V, be admissible local
perturbations for W, such that V; and V, differ from the identity only in
separate regions that are further apart from each other than the jump length
of W. Then,

si(VLVIW W) =si(V,IW: W) +si(ViW: ). (5.47)
Proof. The space on which the overall perturbation V;V, acts non-
trivially is

Hy,y, =VLVi-D)H = (V,V, -V, +V, -1)H

=(V,-DH+(V,-1)H =Hy, ® Hy,. (5.48)
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Figure 4: Schematic picture of locally contracting three perturbations to one.
The tube visualizes the infinite chain, while the winding of the blue
ribbon characterizes the relative index of the perturbation at the
respective position. Considering each of the windings as a suffi-
ciently separate perturbation of a quantum walk W, Lemma 5.18
tells us that we can apply the perturbations in any order. Since the
relative indices as visualized are (from left to right) +1, -1, +1, we
know by Theorem 5.16 and Lemma 5.15 that each perturbation by
itself cannot be contracted admissibly, but since the relative indices
for left-center, as well as center-right add up to o, both perturbations
together can be trivialized.

The last equality follows from the fact that V; and V, act sufficiently
far apart. Restricting to Hy,, the representation p’ that stems from
W’ := V;W coincides with p that stems from W, leading to

si-(V) = si_(V2), (5.49)
hence finishing the proof. m]

Figure 4 visualizes locally contracting three perturbations to one. An
important consequence of this lemma is that two spatially separated
perturbations which cannot be contracted to the identity individually,
might become trivial when considered as one perturbation. That is,
whenever the summands on the right hand side of (5.47) are non-zero,
with opposing signs.

This case will be of special interest, after we establish the gentle
decoupling theorem (Theorem 5.20). Imagine a two-fold locally per-
turbed walk, with overall vanishing relative index. Then, decoupling
the walk leads to half-space walks on either side that cannot be con-
tracted trivially without reversing the decoupling (see Figure 5).

5.5 DECOUPLING

In Section 5.3, we discussed the consequences of joining two symmetry-
admissible bulks with different st and §1, namely the occurrence of
topologically protected edge states at the boundary. Depending on
the definition of bulks, it can be hard to satisfy the conditions of ad-
missibility and unitarity if both are supposed to be retained after the
joining. Since we assume the bulks to be translation invariant unitary
operators, it suffices to describe how to join exactly unitary operators,
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without treating essentially unitary operators. A decoupling in the sense
of Definition 3.11 simplifies the situation considerably, since whenever
unitary operators are given as direct sums w.r.t. PH and (1 — P)H, one
can freely combine left and right parts to form new unitary operators
that are decoupled as well. The obvious difficulty is to do this admis-
sibly, that is, to find a gentle decoupling, which not only leaves s1 and &
invariant, but also si . In the following, we will show that this is always
possible.

Independent of the explicit locality condition, or of essential or exact
unitarity, we know from Theorem 3.12 that there is a necessary and
sufficient criterion for the existence of a local decoupling for a given
quantum walk W: ind(W) = o. This is the setting of [Gro+12], which
is on the one hand more general than the setting in this chapter (no
admissibility, i.e. no essential gap and no symmetry relations), on the
other more restricted (strict unitarity, strict locality). Since the index
can be defined via the Fredholm index as in Definition 3.8, it is well
defined even in the most general setting of an ELEU. Hence, it makes
sense to ask which role ind plays w.r.t. the question at hand: How do
we determine whether an admissible essentially local unitary operator
can be decoupled gently?

Corollary 3.9 shows that ind is invariant under gentle and compact
perturbations (hence also invariant w.r.t. their admissibility restric-
tions), it adds up under products and direct sums and takes values
in Z. Thus on one hand, ind shares lots of properties with our sym-
metry index si. On the other, there are important differences, since e.g.
in the case of quantum walks, ind(U) can be inferred from knowing
U on any sufficiently large number of H, w.r.t. its jump length®, while
e.g. si(U) is completely undetermined from knowing U on any finite
piece, since it does not change under compact admissible perturba-
tions. Moreover, we note that ind is more similar to st than to si, in
the sense that it is a right index ind(U) = indg(PUP), where P = Py,
as usual. Since unitary operators have an empty kernel, we have that
indr(U) = o. Therefore, since for essentially local unitary operators U,
the operators PU(1 — P) and its adjoint are compact, thus they do not
change the index and we have that

indg (U) = indg (PUP) +indg (1 - P)U(1 - P)) = o. (5.50)

Hence in our setting, the right index ind carries all information and we
can safely ignore its counterpart on the left hand side and their sum.
If we now take admissibility into account, we see that we are in the
lucky situation that admissibility implies ind(U) = o. This stems from
two independent lines of reasoning: Firstly, we can see that for most
symmetry types, the symmetry relations imply ind(U) = o. Secondly,

See the brief discussion after Theorem 3.10 about ind as a locally computable invariant,
a global property of U that can be probed locally, at any position.
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we show that the existence of an essential gap requires ind(U) = o. For
symmetry types, where y is present, we have

ind(U) = indg(y*PUPy) = indp(Py*UyP)
= indg(PU*P) = ind(U*) = —ind(U), (5.51)

since indf is invariant under unitary conjugation and y is always as-
sumed to commute with P.

If 7 is present, the symmetry relation yields PUPt = tPU"P. This
implies that 7 maps ker PUP onto ker PU*P and therefore, their di-
mensions coincide. That is, ind(U) = indg(PUP) vanishes by Defini-
tion 2.17.

This argument hence covers all symmetry types except those where
only 7 is present (or none at all). In these cases, we invoke a variant
of the Brown-Douglas-Fillmore theorem [BDF73, Thm. 3.1]. It shows
that in the case of non-vanishing ind(U), the essential spectrum of U is
the full unit circle T. But admissibility demands an essential gap, and
therefore ind(U) = o is necessary for U being admissible.

Theorem 5.19
Let U be an essentially local unitary operator on a separable Hilbert space H
with ind(U) # o. Then,

ess(U) =T, (5.52)
i.e., the essential spectrum of U is the full unit circle T.

If we add translation invariance to the assumptions of the theorem,
it can be proven using the discussion after (3.48). There, it was argued
that the index represents the overall winding of the quasi-energy for
all bands. The setting of quantum walks from [Gro+12] can in this case
even be extended to essentially local translation invariant unitary op-
erators. Then, Theorem 6.1 guarantees continuity of the quasi-energy
s.t. speaking of a winding at least makes sense. Since the theorem as-
sumes that the index does not vanish, we have a non-trivial winding
and hence by continuity, the full unit circle is covered with continuous
spectrum. The full proof in our explicit case and without demanding
translation invariance is found in [Ced+17, Prop. VIL1].

We have thus shown that for the systems under considerations, i.e.
essentially local admissible unitary operators U, ind(U) = o is fulfilled.
In the case of quantum walks, this is a necessary and sufficient crite-
rion for the existence of local decouplings, as was shown in Theorem 3.12,
taken from [Gro+12]. In the case of essentially local admissible unitary
operators U, we know that if U’ = VU is decoupled, PU’P is a uni-
tary operator on PH, and therefore has vanishing index. With tails
of arbitrary length for PUP due to essential locality (as opposed to
strict locality, where the length is bounded), we cannot hope for V' to
be a local decoupling of U. But we can hope for it to be compact in the
sense of Definition 3.11 and Lemma 5.13. Then, since ind is invariant
under compact perturbations, we know that ind(U) has to vanish as
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well. That is, vanishing index ind is a necessary condition for the exis-
tence of a compact decoupling, and since we just showed that this is
fulfilled for all essentially local admissible unitary operators, we pro-
ceed by stating the main theorem of this section, the gentle decoupling
theorem:

Theorem 5.20 (Gentle decoupling theorem)

Let U be an essentially local p-admissible unitary operator and let P be the
projection to the half-line as before. If p is a symmetry representation of All,
additionally assume that P — UPU" has a +1-eigenspace of even dimension.
Then there exists an essentially local compactly gentle decoupling V for U s.t.
U’ = VU is decoupled, i.e. [P,U’] = o.

We will only provide a sketch of the proof by describing the steps in
the construction of V. The full proof can be found in [Ced+17, VIL].

Similar to the index theory in the case of quantum walks in [Gro+12],
this proof relies heavily on a canonical object, the C*-algebra generated
by two projections, see e.g. [RS89]. Its connection to the index theory
is studied in [ASS94]. The projections P and Q = UPU" generate the
C*-algebra of two projections, where additionally, P — Q is a compact
operator due to U being essentially local and unitary. The decoupling
condition [P, VU] = o makes V the intertwining operator between P

and Q:
PV =VQ. (5.53)

Thus, we have to find a unitary V, where V —1 is compact, that inter-

twines P and Q. Such a unitary V is called a canonical decoupling.
Similar to [Hal69; And14], decomposing H into the following sub-

spaces greatly simplifies the discussion about the actions of V on H

(a,b € {o,1}):
Ha = {¢ € H|Po =ag, Qp =bo}, H.=( |Hi. (554
a,b

With P and Q defined as above, e.g. Ho, and H,, are associated to
the regions far to the left and far to the right respectively, while it
can be seen that ind(U) = o demands H,; and H,, to be of the same
dimension.

The canonical decoupling is then found by introducing

X=(0-2P)1-P-Q), (5.55)

which correctly intertwines P and Q, and choosing the polar isometry
Vean Of X as the canonical decoupling on Hoo & H; & H,

Vean = (X*X) 72X (5.56)

Furthermore, Vean — 1 is compact. Before adding the admissibility-
conditions, note that any unitary V,, that interchanges H,, and H;,
is compatible with the decoupling condition for V, since these are ex-
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Figure 5: In the spirit of Figure 4, this figure shows consequences of the gentle
decoupling theorem Theorem 5.20 and the chain rule for quantum
walks Lemma 5.18: (a) By the chain rule, the admissible compact per-
turbations can together by contracted to the state of no perturbation.
(b1) and (b2) are both applications of the gentle decoupling theorem,
creating a crossover where the perturbations reside on each side of
the cut. (c) Individually, these decoupled parts cannot be deformed
to the decoupled trivial case, since the relative index does not vanish.
This shows that the decoupling from the gentle decoupling theorem
is not homotopy continuous in the sense that homotopic walks lead to
homotopic half-walks after decoupling.

actly those +1-eigenvectors of one projection that lie in the kernel of
the other projection.

Following the results from Section 5.4, the final V we construct
should be an admissible compact perturbation which therefore has
to be p-admissible on the space Hy = H, & Ho ® Hio, since X and
hence V acts like 1 on Hyo ® H;. Translating these relations to P and
Q, and checking that V.. is admissible without eigenvalue —1 on
Hoo ® Hyiz & H., as well as showing that the representation p is bal-
anced on H,; & H;, shows that the relative index between VU and U
vanishes. For more details, see [Ced+17, Prop. VIL.2].

The final step in the proof is then, to construct for every symmetry
type the admissible unitary V,, that swaps H,, and H,,, and has only
eigenvalues +i. This can be checked explicitly in [Ced+17, Lem. VIL.3]
for every case distinction that the different types demand. Remarkably,
only in the case All this leads to an additional assumption: an even
dimensional H,,. To summarize:

V = Vean @ Vo on (Hoo @ His & H1) ® (Hor © Hiyo) yields a decou-
pling for U via U’ = VU, since it fulfils the intertwining relation (5.53).
Furthermore, it has no eigenvalue —1 and V —1 is compact. Hence by
Lemma 5.15, we can contract it to the identity admissibly, providing
for every essentially local admissible unitary U an essentially local
compactly gentle perturbation U’ that is a decoupling.

We can now apply the gentle decoupling theorem together with
the relative index from the previous section to show that decoupling
affects the homotopy, see Figure 5. The gentle decoupling theorem is
a strong result that we can use to represent the different indices in a
lucid way. Since we now have a uniform way to decouple admissible,
essentially local unitary operators, without changing the indices §i,
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81, siz, we can write down the following matrix of indices for decoupled
operators U = U @ Ug:

si+(Ur) si+(UR) | si+(U)
si_(Up) si-(Ug) | si-(U) (5.57)
auy s | s

Following Definition 5.8, we have that si(U) = si(Ur) and si(U) =
si(Ugr). Hence by summing rows to the right or columns to the bot-
tom, we reproduce all the sums that we know from the respective
definitions.

We learned in Theorem 5.9 that & and s are invariant under com-
pact admissible, as well as gentle perturbations. Hence under these
perturbations, si,(Ur) and si-(Ur) can only change by the same inte-
ger, but with opposing signs (Ur analogously). Furthermore, si,(U)
and si_(U) are invariant under gentle perturbations by Theorem 5.5,
but compact admissible perturbations can change them by si(U’: U)
as proven in Theorem 5.16. Hence for these perturbations, si. (U ) and
si+(UR) can only change by the same integer, but with opposing signs
(si- analogously). Summing up, the top-left 2 X 2-block in the index
matrix behaves in the following way

n (—ﬂL —TIR)
nr, nR

si+(UL) si+(Ur)

si-(Ur) si-(Ur)
with ny, ng € Z whenever U’ is a compact perturbation of U, and with
ny, = —ng if U’ is a gentle perturbation of U. This shows that the ele-
ments of the 2 X 2-block are not invariant and can change, depending
on the perturbation allowed. We can even create a suitable compact
perturbation U’ that generates any desired value of si..(U’) and si_(U"):
Let U be fixed and U’ be a compact admissible perturbation of U
which keeps the decoupling intact, e.g. by U’ = (Vi @ Vr)U. Then,
ng, =si(VpUp : Up) and ng = si(VrUg : Ug) by Corollary 5.17. To create
the desired si.(U’), we have to pick Vi and Vg suitably. Fortunately,
we are not bound to do this gently. On each half-space, we have an infi-
nite reservoir of balanced representations, and thus we have infinitely
many subrepresentations where we can perturb admissibly, keeping
unitarity to push the spectrum to the desired values. A demonstration
of this is the change in si. by non-gentle decouplings in Section 8.2.
This matrix representation will be used in figures and examples to
give a quick overview over the important indices.

Having established the gentle decoupling theorem, we can now re-
turn to the question from the beginning: is the index classification
provided in the previous sections complete? The gentle decoupling
theorem will turn out to be an essential milestone in proving this in
the following section.

Sl+(U£) Sl+(u1’2
S(U7) sio(UY)
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5.6 COMPLETENESS

In the previous sections, we introduced symmetry indices of different
kinds and showed their invariance in broader or narrower settings.
Now, if we are given an operator from a certain setting, we can deter-
mine a symmetry type, write down a symmetry representation and
calculate symmetry indices. Furthermore, we know for a wide variety
of perturbations whether these change the indices or not.

In this section, we tackle the reverse question: let p be a fixed rep-
resentation of a symmetry type on a Hilbert space H, and fix the set
of admissible, essentially or strictly local, exact or essential unitary op-
erators on H. Is there a combination of independent invariants that
decomposes this set into connected components, such that any two
operators whose invariants have the same values, are in the same con-
nected components. Put differently, is there a norm-continuous path of
operators connecting the pair that fulfils the same assumptions along
the way as the pair they connect?

If this question is answered in the affirmative, we call the classifica-
tion complete, since then the indices decompose the set of objects to be
classified into sets labelled by the values of the indices that are exactly
path-connected w.r.t. the transformations allowed. In other words, the
map that assigns a tuple of indices to the connected components of the
set of objects w.r.t. the transformations is an isomorphism.

Before we go into the details, let us first review what we already
know about the index ind that is defined without symmetries. As
stated in Theorem 3.10, in [Gro+12, Thm. 3.6] Gross et al. show that
within the set of strictly local unitary operators, i.e. quantum walks, the
index ind is a complete homotopy invariant. The important bit is that the
conditions are satisfied along the way, i.e. the condition of a uniformly
bounded interaction length is kept. If one allowed for e.g. essentially
local unitary operators along the way, the result clearly would be much
weaker.

Regarding our symmetry indices, Section 5.4 shows a partial com-
pleteness result. Fixing an admissible essentially local unitary opera-
tor U, we look at the set of compact admissible perturbations of U.
Let U’ denote an arbitrary element of this set. The relative index be-
tween the variable U’ and the fixed U is now a homotopy invariant by
Lemma 5.15. Furthermore, Theorem 5.16 teaches us that the relative
index is just the difference of the absolute indices si., and therefore
we learn that the converse holds as well. That is, any pair of U; and
U, with matching si(U, : U) = si(U, : U) is homotopic within this set.
Hence for this setting, there is no finer decomposition than the one
provided by the relative index, i.e. the sets of operators of matching
relative index are path-connected and the classification is complete.

After carefully analysing the perturbations that leave invariant the
different indices we introduced in this Chapter, we arrive at three set-
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tings that are candidates for completeness. We assume that we have
fixed a representation p of symmetry type S € {D, Alll, BDI, CII, DIII}
on a Hilbert space H, where admissibility exclusively refers to. The
fact that we do not allow symmetry types with trivial index group is
because we cannot gain any insight from the cases where our symme-
try classification is not classifying anything. A completeness theorem
would then either be trivially true (C, CI) or trivially false (A, Al AIl).
Luckily, this section will show that in all three scenarios, the proof of
completeness succeeds.

I. The set of admissible essentially local unitary operators, where
we allow essentially local gentle perturbations. In this case, S,
S, si_ are independent invariants, with the dependent invariant
Siy = SI+S1—si_.

II. The set of admissible essentially local unitary operators, where
we allow essentially local gentle perturbations and admissible
compact perturbations as transformations. In this case, 51 and &
are independent invariants.

III. The set of admissible unitary operators without demanding a
locality condition, where we allow gentle perturbations as trans-
formations. In this case, si; and si- are independent invariants.

Additionally demanding translation invariance from the set of objects
or transformations requires a more specialized case distinction. For
symmetry types which contain y, this will be done in Section 7.2. The
main result of this section is then the following theorem:

Theorem 5.21 (Completeness)

In each of the settings 1., I1., III. and for all S € {D, Alll, BDI, CII, DI}, the
respective indices are complete.

Moreover, all values of the indices can be realized by a crossover of two
translation invariant quantum walks that has a finite transition area.

Instead of providing the complete proof in all detail, we will provide
a sketch where we emphasize important steps. The full proof is found
in [Ced+17, VIIL].

We know that any decoupled operator is essentially local by defini-
tion, and the gentle decoupling theorem (Theorem 5.20) guarantees a
gentle decoupling for all objects from setting I and II only using gentle
transformations, hence keeping the indices as they are. This leads to
two unitary half-walks on each side of the decoupling that fall into
setting III.

More precisely, by Theorem 5.20, we can decouple every operator
from I and II gently without changing any of the indices 1, s1 and
si-. Therefore, we can gently deform every operator in I and II to
a decoupled one. Let U = UL ® Ug and U’ = U] & Uy represent
the gently decoupled operators with matching indices as demanded
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by the setting. Since the theorem guarantees the decoupling is done
compactly, we furthermore know that essential locality does not suffer:
u;, Ug, Ui, ufz are all still essentially local p-admissible operators on
their respective half-spaces. But since U and U’ are unitary operators
on H and given as a direct sum, the left and right parts of U and U’
are also unitary on their corresponding half-spaces. The difficulty is
now to make si.(U] ) = si.(UL), since that is the only missing condition
for the half-space operators to belong to setting III. From the example
in (5.57) we know that we can find compact perturbations Vi, Vg
confined to the corresponding half-space, s.t. any value for n; and
ng is possible. In setting II, this is sufficient, since it allows compact
admissible perturbations. Hence setting II is transformed to setting III.
In setting I, U and U’ are only equivalent if the overall perturbation V
is gentle. By Lemma 5.15 this is exactly the case if

si(U": U) = si(U; : Uy) +si(Ug : UR) = o. (5.58)

Hence given two operators U and U’ from setting I or II, whose indices
relevant to the setting coincide, we can bring both into a decoupled
form, such that si. (U}) = si+(U] ) (Ur analogously). Since every decou-
pled operator is essentially local, any decoupled gentle perturbation
of decoupled operators is essentially local. Therefore, the locality con-
straint vanishes and setting III remains, i.e. the commutation relations
with p and the essential gap. Thus, in the first step, we reduced the
settings I and II to III by applying the gentle decoupling theorem.

In the second step, we use continuous functional calculus to admis-
sibly transform the spectrum of the unitary operators from setting III
to be contained in {+1,-1,+i, —i} without leaving the setting. That
is, these unitary operators fulfil U4 = 1, have infinite dimensional
+i-eigenspaces and finite dimensional +1-eigenspaces that contain no
balanced subrepresentations. These strongly simplified unitary opera-
tors are then easily described by a few algebraic rules.

In the third step, we argue that the system of symmetries together
with the transformed unitary U is completely characterized up to uni-
tary equivalence by si.(U). This means that two unitary operators U
and U’ that are p-admissible with si.(U) = si+(U’) are connected via
U’ = ZUZ", with Z being a symmetry commuting operator due to the
admissibility of U and U’.

The final step shows that any symmetry-commuting unitary oper-
ator Z on an infinite dimensional Hilbert space can be contracted to
the identity with a suitable Z;. This contraction provides the gentle
perturbation between U and U’ by conjugation, i.e. U; = Z;UZ}, and
therefore finishes the proof.

As mentioned above, the full proof can be found in [Ced+17, VIIL].
We will revisit many of the techniques used when proving complete-
ness for translation invariant essentially local unitary operators that
are admissible for a chiral symmetry in Section 7.3.



5.6 COMPLETENESS

Summing up this chapter, we have provided a complete homotopy
characterization of essentially gapped one dimensional essentially lo-
cal unitary operators that satisfy the discrete symmetries of the tenfold
way. As opposed to many other authors, we did not rely on translation
invariance to simplify the setting, but provided a theory that does not
fail to describe the non-translation invariant systems of interest, which
are crossovers between two systems in different phases.

With these results, we can now proceed to the typical setting of bulk
systems, namely translation invariant unitary operators.
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In this chapter, we connect locality-properties of translation invariant
operators to the smoothness of their band structure and decay proper-
ties of their eigenfunctions. We lay the necessary foundation for later
chapters where we derive general formulas for the symmetry indices
in the special case of translation invariant unitary operators.

6.1 ESSENTIAL LOCALITY AND CONTINUITY OF BAND STRUCTURE

It is well known, that the Fourier transform translates local properties
of W (e.g. the strength of the decay of W(x)) to global properties
of W (e.g. smoothness or differentiability / continuity). Remarkably,
this section will show, that the most general locality condition that
suits our index theory, namely essential locality, already implies the
minimal necessary condition for e.g. winding numbers to make sense:
continuity of the band structure.

6.1.1 Equivalence Theorem

Let us begin by stating the main result of this section, the equivalence
theorem:

Theorem 6.1

Let H = (*(Z)®C% and A € B(H) be a translation invariant operator.
Denote by P = Py, the projection onto the non-negative half-space. Then, the
following are equivalent:

1. A is essentially local, i.e., [P, A] is compact.
2. A can be approximated in norm by strictly local operators (A},)neN.

3. A can be approximated in norm by translation invariant operators
(A} )nen s.t. the map k v— A}, (k) is smooth.

4. k v A(k) is a continuous function with periodic boundary conditions.

Furthermore, if A is unitary and admissible for all symmetries of the ten-fold-
way, A, in (3) can be chosen to be unitary and admissible.

In order to prove this theorem, we need a few results from the theory
of Fourier series and a description in terms of Hankel matrices, both
provided below. For a detailed look into these topics, we recommend
to the interested reader the publications [DM72], [Har58], [BDF73],
[Sto48] and references therein.

The first definition will cover the Hankel operator.
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Definition 6.2 (Hankel operator)
Let PH be the non-negative half-space and H a linear operator on PH. We

call H a Hankel operator, if there is a sequence (h;)1en and a basis {@;}ien of
PH s.t.

(¢i, HPj) = hixj. 6.1)

The matrix H; j corresponding to H is called the Hankel matrix. It is a matrix
which is constant along its anti-diagonals.

The following example of a Hankel matrix was first used by Hilbert!
in [Hil94], and has gained a lot of attention from 1950-1960 in a gener-
alized form (see e.g. [Ros58]).

Example 6.3 (Generalized Hilbert matrix)

Let t be a real number that is not a positive integer. Then, (h;)jeN with
hiy = (I + 1 —t)™" defines a Hankel operator that is called a generalized
Hilbert matrix.

As[Ros58, Thm. 5] shows, the generalized Hilbert matrix is abounded
self-adjoint operator, that has non-vanishing continuous spectrum for
all t allowed in its definition.

Another class of operators we need are Toeplitz operators. They are
basically Hankel operators with a changed sign in its definition:

Definition 6.4 (Toeplitz operator)

Let PH be the non-negative half-space and H a linear operator on PH. We
call T a Toeplitz operator, if there is a sequence (t;);en and a basis {@;}ieN of
PH s.t.

(Qi, Tj) = ti-j. 6.2)

The matrix T; ; corresponding to T is called the Toeplitz matrix. It is a matrix
which is constant along its diagonals.

Hence another way to phrase the definition is, that Toeplitz operators
are half-space compressions of translation invariant operators?. Given
a Toeplitz operator T with sequence t, we call the Fourier transform
the symbol of the Toeplitz operator.

The connection between Hankel operators and Toeplitz operators is
best seen with the help of a flipping operator

S:PH - 1-P)H : (SY)(x) =¢(-1—-x) Vx>o. (6.3)

Then, S maps any ¢ € PH to (1 — P)H, and S™' = S* thus maps from
(1 - P)H to PH. Figure 6 shows that (1 — P)W(1 — P) and PWP are
Toeplitz matrices representing Toeplitz operators on PH and (1 — P)H
respectively. Furthermore, one recognizes that the anti-diagonal blocks

Confusingly, the historical Hilbert matrix (f = 2) was specifically excluded in the
definition of the generalized Hilbert matrix later on, since it’s properties are quite
different from those of the general Hilbert matrix (f € Z not a positive integer).

2 See the conventions for translation invariance in (3.29).
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—
1-P)WA-P)  (1-P)WP
wo w_1 w_z : ZU_3 w_4 w_5 w_6

We Ws W,

PW(1-P) PWP

Figure 6: Finite part of the translation invariant operator W; ; = w;_; in matrix
representation. The dashed lines represent the cut positions w.r.t. P.
It cuts the matrix into four blocks. The diagonal blocks shaded
blue are Toeplitz matrices indicating the Toeplitz operators in the
infinite dimensional case, while the anti-diagonal blocks are Hankel
matrices after either flipping the sign of i or j as performed by S.
Note the constant diagonals of the Toeplitz matrix, as well as the
constant anti-diagonals in the Hankel matrix if one considers the
sign-flip.

(1-P)WP and PW(1 - P) are Hankel operators, at least after flipping
the sign to identify it as an operator on PH. We will check algebraically
that (1 — P)WP is a Hankel operator after applying S*. For all i,j > o
we have:

(i, S" M= P)WP}j) = (P-i1, WOj) = W_(i4j)-1, (6.4)

which depends only on the sum of the indices, and is hence a Hankel
operator, relabelled after a shift by 1. What we have thus learned is, that
the off-diagonal blocks of translation invariant operators are Hankel
operators. Furthermore, the definition of essential locality demands
that both blocks are compact each for themselves if and only if W is
essentially local. Since we are interested in essentially local translation
invariant operators, this example is an important step towards proving
Theorem 6.1. There, we combine it with the following Theorem from
Hartman [Har58] which connects the compactness of Hankel operators
to the existence of a continuous Fourier transform. It is written in
matrix-valued form, as found e.g. in [Pel03, Thm. 4.2].

Theorem 6.5 (Hartman)

Let H, be a finite dimensional Hilbert space, B(H,) the set of bounded
operators on Ho, and let {Q;}jen be a sequence in B(H,). Then, the block
Hankel matrix {Qj,};1eN determines a compact operator on €*(IN) ® H,, if
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and only if there exists a continuous function U [-n, 7] > Lo(B(H,))

such that
T(k) = ZQjefkf +Z\yjefkf. (6.5)

j=o j<o

This theorem covers the most important part of the proof. Still, in
order to derive the useful formulas in the later chapters, we need suit-
able approximations of the operators under investigation. One step is
provided by a classical result of Fejér [Fej04], more suitably formulated
and provenin [DM72, 1.4, Thm. 3]. For our purposes, we have to extend

the result to matrix valued function A\(k), which is done by replacing
the absolute value with the operator norm in C? in the proof just cited.

Theorem 6.6 (Fejér)
Let A € L,(T,C%) be a continuous function with periodic boundary condi-

tions and corresponding Fourier transform A. Moreover, given the {Ay} as
in (3.29), let

Sa(k) = Z Aok (6.6)

x=-n
be the Fejér kernels of A. Then, the arithmetic means
Z; = %(§o+§1 +...+5,.0) (6.7)
converge uniformly to A.
The corollary follows immediately

Corollary 6.7
A can be approximated in norm by strictly local operators.

Proof. The strict locality of S; can be seen most conveniently by

i pm ~ j
(S9)0) = — /dke—fk<x-y>Ay¢<k) = YApa-y), 68)
y=—j° " y=-j

since a finitely supported ¢ is mapped to a finitely supported S;y. A},
is a finite sum of strictly local operators, hence itself strictly local.

The uniform convergence of A}, — A in norm is now a direct conse-
quence of E’H — Ainnorm by the Plancherel identity [DM72, 1.4, Thm.
1], which follows directly from the unitarity of the Fourier transform,
ie.

sup [|A} (k) = A(K)I| = (|4}, = All = |4}, = All < €, — o (6.9)
keT
O

Having gathered these results, we can now combine them to prove
the equivalence of essential locality and continuity of the band struc-
tures:
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Proof of Theorem 6.1. (1) = (4): The essential locality of A states that
the off-diagonal blocks A,_ = PA(1-P) and A, = (1 - P)AP are
compact operators. Since A is translation invariant, after applying
S from Definition 6.4, A, _ and A’ are compact Hankel operators
with corresponding sequence (A;);>o and (A_;_,);>, respectively. Then,
Hartman’s theorem (Theorem 6.5) implies, that there are continuous
®+_, @_+ (with periodic boundary conditions) s.t.

T 0= A+ Y g

j=o0 j<o
U_, (k) = Z Ajyelti 4 Z e, (6.10)
j=o0 j<o

Projecting to the half-space P is continuous in norm since the multi-
plication of bounded operators is continuous. Furthermore, relabelling
U, to again be supported only on (1 — P)H by flipping with f does
not break continuity. Therefore, the composition

Ak) = (p\ir;_) (k) + f (p\ff_+) (k)= Ajel 6.11)
jEZ
is continuous as well, proving the statement.

(4) = (2): In essence, this is the Stone-Weierstras Theorem [Sto48],
which states that every continuous function can be approximated w.r.t.
the sup-norm with arbitrary precision using a suitable trigonomet-
ric polynomial. Cor. 6.7 proves this explicitly by using the arithmetic
means of the Fejér-kernels E;

(2) = (1): The commutator [P, A] can be written as

[P,A] = PA— AP = PA - PAP — AP + PAP
= PA(1-P) - (1 - P)AP. (6.12)

Since limits of finite rank operators are compact, in order to show the
compactness of [P, A], we first suppose that A is strictly local. Then,
due to the finite neighbourhood, strict locality implies that A maps
only a finite number of sites from PH to (1 — P)H (and vice versa).
Hence, [P, A] is a finite rank operator. Therefore, if A is assumed to be
the norm-limit of strictly local operators, [P, A] is not necessarily finite
rank any more, but as the norm-limit of finite rank operators at least
compact - which proves the statement.

(2) = (3) = (4): We will first prove this without unitarity and admis-
sibility. Starting from (2), we have already proven that this implies (4)
via (1). Therefore, we may construct the same sequence of translation
invariant, strictly local operators converging to A as in (4) = (2),

Al = %(so 45 4+... 45,0, (6.13)
with the Fejér-kernels §n (as defined above) stemming from A via
(4). Since we already know that A}, is translation invariant, to prove
(3), it remains to show that the ;{;1 are infinitely differentiable. But by
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definition, the Z; are Laurent-polynomials in e’k with constant, matrix-
valued coefficients and therefore infinitely differentiable. This proves
(4) and hence finishes the proof.

In the case of a unitary and admissible A, we cannot simply use
the averaged Fejér-kernels A;, directly, because they are in general not
unitary. Nevertheless, we can use them to build a new sequence that
is unitary and admissible.

Since A is admissible for the symmetry, by definition, it fulfils the
commutation relations with o € {1, 7, y}, depending on the symmetry
type. Given A\(k) = Y ez Axe™, (7.3) and (3.39) together show that
admissibility for g(k) reduces to an admissibility condition for each
Ay wr.t. the single-site-symmetries ¢ from (7.3), which thus implies
that every (finite or infinite) sum with symmetric summation indices
and real-linear coefficients of A, e** (e.g. the Fejér-kernels S, and their
averages A}) is again admissible. Therefore, the A;, are all admissible,
and thus their Fourier transforms A\’n (k) as well.

In the next step, we have to restore unitarity, since in general, A, is not
unitary. Using the ;4\;1 (k) we already analysed, we explicitly construct
a unitary admissible sequence U, fulfilling all the desired properties.

Let us begin by noting, that since ||Aj, — A|| > €,, and A unitary,

1A% AL =Tl = [I(A7 = AT)(AL - A) +21 - A A - ATAL |
< (1AL - ATIIAG - All + [|A7A - AL Al
+]|ATA - AAL||
< € +2€y. (6.14)
Therefore, the spectrum of A}A’, gets arbitrarily close to 1, hence there

is an n, € N such that for all n > n,, the kernel of A}y A}, is empty. The
same estimate holds for A/, (k), since
sup |4}, (k) - A(K)]| = |A} - A'l| > ey (6.15)
ke[—-m,m]

Then, the inverse square root
My (k) = (A, () A, (0) (6.16)

exists, and is infinitely differentiable as it stems from applying a con-
vergent power series (using functional calculus) to the polynomial
Al (k)*A’,(k). Now, we define

U, (k) = A% (k)M (k). (6.17)

By construction, U, (k) is unitary for all n € IN and infinitely differen-
tiable as the product of two infinitely differentiable operators. Addi-
tionally, since A}, is p-admissible and M, is a power series in (A},)*A7,,
U, is admissible for all n € IN by (4.2). This finishes the proof of
(2) = (3) in the unitary and admissible case. Then, (3) = (4) follows
as before by stating that g(k) is the norm-limit of the continuous func-
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tions U, (k), hence continuous by itself. This completes the proof of
Theorem 6.1.
]

For the rest of this section, we provide a few applications that shine
light on this sections” theorem about the interplay between essential
locality and the continuity of the band structure.

6.1.2 Interlude: exponentials

Given an operator A, the property of [P, A] being compact, i.e. A being
essentially local, is the same as stating that [77(P), 7(A)] = o, with 7t be-
ing the natural projection onto the Calkin algebra as in Definition 2.16.
Therefore, commutation of A with P in the Calkin algebra is equiva-
lent to A being essentially local. Therefore, every analytic function of
an essentially local operator is essentially local, due to the linearity of
the commutator.

This shows a favourable connection between Hamiltonians H and
their time-evolution-operators W = exp(iHt): if H is essentially local,
so is W. Additionally, if H is translation invariant, by Theorem 6.1,
essential locality already implies continuity of H(k), which then implies
the continuity of exp(iﬁ (k)t).

On the opposite, strict locality is not preserved by exponentiation,
which can easily be seen by the strictly local bilateral one-site shift
T(k) = e'* that gets mapped to

exp(iT(k)t) = Z geikj. (6.18)
jeN
Since all positive integer powers of the shift e'* occur, the whole posi-
tive half-axis is left as the image of [P, exp(if(k)t)], which is not finite,
hence contradicting strict locality. Still, as the limit of a sequence of
strictly local, translation invariant operators, exp(if(k)t) is still essen-
tially local.

6.1.3 Application: contracting the shift

We know from Cor. 3.9 that the index ind is a homotopy invariant for
essentially local essential unitaries. Furthermore, in the case of strictly
local unitary operators, i.e. quantum walks, we know by Theorem 3.10
that this invariant is even complete, i.e. a matching index of two walks
implies the existence of a norm-continuous path of quantum walks of
the same index connecting both walks.

In what follows, we try to connect the identity 1 and the bilateral
shift T on ¢?(Z) continuously. Obviously, any attempt to do so has to
fail by the above reasoning, since

ind(1) = 0 # 1 = ind(T). (6.19)
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Still, it is a useful example which shows how badly essential locality
fails on deformation paths, even if one tries to connect the simplest
examples of strictly local unitaries.

Let us define our deformation from WO =1to W1 (k) = f(k) as

Wi(k) = (T(k))! = etk (6.20)

Obviously, this is a norm-continuous interpolation between WO and
W, for all k € [-7, 7]. But as a function of k, W, (k) is not continuous,
since for t # {o, 1}, W, jumps from exp(—itm) to exp(itm) as k crosses
from 1 to —m, which is a dependence on the arbitrary choice of the
cut point of the Brillouin zone. This violates the constraint of periodic
boundary conditions. Hence by Theorem 6.1, W; cannot be essentially
local for any t € (-, ).

Since we work with an explicit example, we could skip the theorem,
and use a direct approach: analyse spectral properties of W; and con-
tradict the compactness of PW;(1 — P). In order to do so, let us look
at the action of W; in position space by applying the inverse Fourier
transform:

(Wi)(x) = (af*wtfw) (x)
Jaker ity
yeZ

Sll‘l(T( t) Z (—1)y—~
t+y— x

yeZ

= > Wilx = y)e(y). (6.21)
yeZ
Since we want to know whether PW; (1 — P) is compact, we could look at
the image of PW; (1 — P) directly. But it proves to be considerably easier
to introduce a flipping operator S : PH — (1 — P)H, which performs
the same flipping operation as defined in (6.3), i.e. (SY)(x) = (-1 —x).
Then, any ¢ € PH is mapped by S to (1 — P)H, leading to

(Wi (1= P)SP)(x) = > Welx = y)i(-1-y)

y<o

= Z Wi(1+z + x)P(2)

z20

sm(rc t)z (- 1)Z+x ¥(2). 622)

1+z+x—

The missing projection P in PW;(1 — P) makes the above expression
vanish if x < o. Since we are interested in the case t € (0, 1), the pref-
actor is constant, non-vanishing, hence does not contribute to whether
PW;(1 - P) is compact or not. Furthermore, the factor (—1)*** can be
seen as stemming from a conjugation with —1, which is hence a unitary
conjugation and therefore leaves the spectrum invariant.
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The remaining operator is a generalized Hilbert matrix, which is
known to have continuous spectrum for all t under consideration (see
e.g. Example 6.3). Since the spectrum of a compact operator contains
only non-zero eigenvalues of finite multiplicity which form a sequence
converging to the unique accumulation point o, its” spectrum is only
pure-point. Therefore, PW;(1 — P) cannot be compact, and thus W; is
not essentially local for any o < t < 1.

6.14  Application: decay properties of walk matrix elements

The spatial structure of the Hilbert space under consideration is impor-
tant e.g. to analyse exponential decay of the eigenvectors ¢ of quantum
walks with a gap, as will be done in Section 6.2. Instead of looking at
the eigenfunctions, we will analyse the decay of the matrix elements
(y|U|x) in operator norm and show that polynomial decay stronger
than the (diverging) harmonic series is sufficient to prove essential local-
ity of U unitary (and not necessarily translation invariant).

Let U be a unitary operator whose matrix elements Uy , as defined
in (3.18) decay polynomial w.r.t. the distance, i.e.

Uyl <cly—x[™* Vx#y. (6.23)

The norm on the left-hand side denotes the standard operator norm,
which in this case, coincides with the matrix norm for complex d X d-
matrices. Strictly local unitary operators W (quantum walks) obviously
do belong to this class of polynomially decaying operators, since in that
case, thereis an L € IN s.t.

Wyy=o0 Vy-x|>L, (6.24)

and we could simply choose a sufficiently large ¢, given L and the
dimension d of the local Hilbert spaces, to fulfil the inequality for
every a. As opposed to most of this chapter, note that for now, we do
not restrict ourselves to translation invariant operators.

From (2.63) we know that Hilbert-Schmidt operators are compact.
Therefore, if the Hilbert-Schmidt norm of PU(1 — P) and (1 — P)UP are
each finite,

[P, U] = PU(1 - P) + (1 — P)UP (6.25)

is compact and hence U is essentially local.
Hence, for PU(1 — P), we find3

IPU(1 - P)|2 = tr (1 - P)UPU) = Z tr ((y|U"PUly)), (6.26)
y<o

where we used the cyclicity of the trace to get rid of one application
of 1 - P, since (1 — P)> = 1 - P. On the right hand side, we note that
the trace tr now refers to the trace on the coin space, hence simply the

3 The case (1 — P)UP is completely analogous
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trace on C?. Writing it in terms of matrix elements Uy , as in (3.18), we
get

|IPU(1 - P)|? = Z tr (Z u;,yux,y) = Ztr (U, Ury).  (627)
y<0 x>0 X20>y
The right hand side is now a sum over Hilbert-Schmidt norms ||U. |3
Each summand in the trace contributes at most [|U, , ||*, where ||U, ||
denotes the standard matrix norm for the complex d x d-matrix Uy, ;.
Hence, we showed that ||Uy |7 < d[|Uy,,[|*> and using the polynomial
decay of U, we have

IPUG=P)IE < d Y Uyl < ed )] |y — x>, (6.28)

x=0>y x=0>y

After substituting z = y — x, we determine n(z) as the number of
identical terms |z|72% in this double sum

n(z) :=|{(x,y)|y—x=z/\x20/\y<o}|=|z|, (6.29)

where |S| denotes the cardinality of the set S. This leads to the final
estimate in this application:

|IPU(1 - P)|2 < chlzl 2|2 = chnl_”‘. (6.30)
Z>0 n=1

The series on the right hand side converges?* iff 1 — 2a < —1, hence
a > 1. Therefore, any decay of the matrix-elements U, , thatis stronger
than harmonic decay leads to finite Hilbert-Schmidt norm and hence
compactness of [P, U] due to (2.63). Thus, if (6.23) holds for @ > 1, U
is essentially local.

In the following, we show that this criterion is optimal, by analysing
the example from the previous application (6.21), the contraction of
the shift, e.g. for t = %:

(-1

W(x/]/) = Wt(x—]/): 1+y—x,

(6.31)

which easily fulfils (6.23) with@ = 1and c = 2, i.e.

|W(x, y)|| = <2ly—-x|T" Vx,yeZ, x#y. (6.32)

2
[1+2(y = )|
Since we know, that the contracted shift is not essentially local for any
t € (o, 1), we learn, that the sufficient condition a > 1 we just deduced
is actually optimal: polynomial decay of matrix elements with a > 1
implies essential locality, but there are unitary operators with matrix
elements that decay with a = 1 (e.g. the contracted shift), that are not
essentially local.

Obviously, if the exponent is —1, we recognize the harmonic series, which diverges.
Any exponent a < —1 leads to convergence, with the value of the series given by C(—a),
where ( is the Riemann zeta function.
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If instead of polynomial decay, in (6.28) we demand translation in-
variance (hence not demanding any decay properties), we get

IPUG=P)I2 <d > lx]- U (633)
x>0

By the same reasoning as above, this expression converges, if the series
{Ux }x>o is absolutely convergent, i.e. >}, [|Ux|| < oo. But this condi-
tion, combined with the similar condition one gets from ||(1 — P)UP]||2,
which demands {U, } <, to be absolutely convergent, is just stating that
U is absolutely summable over Z. This is exactly the case if U, decays
as in (6.23) with @ > 1 and a suitable ¢ > o:

U]l < clx|™. (6.34)

What we have thus learned is, that polynomial decay as in (6.23)
with a > 1, i.e. decay stronger than the harmonic series, is sufficient
for essential locality of U. In the translation invariant case, we know
from this sections” main theorem (Theorem 6.1), that essential locality
furthermore implies the continuity of u.

With the help of the following Lemma®, the result from this special
case can also be shown directly:

Lemma 6.8
Let {Uy }xez be absolutely summable over Z, i.e.

DU < oo, (6.35)

Then, fln(k) converges uniformly to a continuous limit function El(k) as
n — oo, where

U, (k) = Z Uy ek, (6.36)
x=—n

Proof. The absolute convergence of U, (k) implies the existence of U (k)
for all k € T. The convergence is uniform, since (as n — o)

D, W™l < Y Il —o, (6.37)

|x|>n |x|>n

| - Tuw)| =

and therefore, by the uniform convergence theorem, a uniformly con-
verging sequence of continuous function has a continuous limit. O

Finishing this application about decay properties of matrix elements
and their implications, we look at the decay properties of eigenfunc-
tions at a boundary created by an eigenvalue in a gap - a situation
we already know briefly from the bulk-boundary-correspondence in
Section 5.3.

This Lemma can be considered a suitable reformulation of the Riemann-Lebesgue-
Lemma.
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6.2 EXPONENTIAL DECAY OF BOUNDARY EIGENFUNCTIONS

Before we return to the setting and corresponding restrictions the sym-
metries impose as described in Chapter 4, we want to prove an im-
portant statement that is often assumed, but to our knowledge never
proven in this context. This sections” main result is Theorem 6.9, which
shows that given z € C lying in a spectral gap of a translation invariant
quantum walk, any function that fulfils the corresponding eigenvalue
equation with z on a half-line decays at least exponentially:

Theorem 6.9 (Exponential decay at the boundary)
Let W be a translation invariant quantum walk with spectral gap at 1, minimal
neighbourhood® N and let

W(A) = Z W,A%, (6.38)
zeN

be the A-weighted sum of the Fourier coefficients W, s.t. W(e‘ik) = W(k).
Furthermore, let ¢ € H satisfy

(Wo)(x) = p(x) Vx >o. (6.39)
Then, there are vectors ¢, ; € C?s.t., forx > o,
A
dlx)= Y A Y x -, (6.40)
AeM  i=o

where M is the set of solutions ofdet(W(A) —1) =owitho < |A| < 1and
foreach A, r, is the algebraic multiplicity of the zero A.

Note that to improve readability and without loss of generality, we
chose the positive half-line and z = 1 to state the theorem.

Before we get to the proof, let us connect the result to the bulk-
boundary-correspondence from Section 5.3. There, we learned” that
whenever we join two admissible quantum walks with differing in-
dices, an eigenvalue emerges in the gap as demanded by the conditions
of admissibility. Thus after succeeding to prove this section’s main re-
sult, we learn that the eigenfunction corresponding to the emerged
eigenvalue in the gap has to decay exponentially®. A visualization of
the exponential decay is shown in Section 8.2, as well as in the dynamic
web-application [Stal5a], explained in Section 8.3.

In the following, let W, W’ be translation invariant quantum walks
with interaction lengths L, L’ and spectral gaps’ at 1. We join W, W’
such that the resulting walk W” is a crossover? between W’ and W,

6 See Definition 3.1.

7 reducing the statement to the case of quantum walks to seamlessly connect to this
section’s setting

8 There mightbe some potentially different behaviour close to the cut point that depends
on the interaction lengths of the walks on both sides of the cut, i.e. the details how the
cut is made.

9 Thatis, thereisane > o0s.t. Yo €C, |lw—1|| <€: w ¢ c(W)

10 See Section 5.3.
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ie. thereisana € Z, s.t. (W”¢)(x) = (W'¢)(x) for all x < —2a, and
(W”¢)(x) = (W¢)(x) for all x > o. Instead of choosing a symmetrical
transition area, we shifted it by a to the left, to let the bulk system begin
at x = 0. This makes the (already complicated) indices a lot better to
read.

If now, e.g. due to bulk-boundary-correspondence, there is a new
eigenvalue 1 for W”, i.e. an eigenvalue in the gap, the corresponding
eigenfunction ¢ necessarily has to fulfil the eigenvalue equation for W
on the right-hand-side of the crossover-region,

(W=-1)gp)(x)=0 Vx>o, (6.41)

because there, W and W” match. This is a C?-valued linear recur-
sion relation of finite order. Usually, it cannot be solved by trying to
invert (6.41) directly, because the non-vanishing, matrix-valued coeffi-
cients Wy in this linear system of equations are not invertible (except
in the trivial case of only one non-vanishing Wy). But it has high po-
tential to be solved by fixing a suitable (finite) selection of components
P(x), p(x +1),...,¢p(x +r) and iteratively applying the corresponding
transfer matrix T to determine all the other components!?.

If the two joined walks are decoupled as described in Section 5.5,
we can write them as a direct sum of two half-space walks. Then,
we can solve each side of the boundary independently, since we can
decompose every eigenfunction into a left-eigenfunction and a right-
eigenfunction. In this case, the transfer matrix approach is particularly
promising, since a selection of components starting from the cut point
needs to be propagated by the transfer matrix only in one direction.

Still, even a decoupled walk is no guarantee for the transfer matrix
approach to work. If we look at a walk, which in a suitable basis
{la), ..., laq)} for C% leaves one |a;) invariant, translation invariance
implies

Wlx,a;) =|x,a;) VxeZ, (6.42)

and thus any coefficient of |x, a;) is ignored by the transfer matrix
equations. But this in turn forbids any prediction of decay that holds
for all coefficients, at least as long as these |x, a;) contribute to the
wanted eigenvector.

Luckily, the case of an invariant |«a;) is excluded by our second con-
straint, namely the spectral gap of W at 1: assume there is an |a;)
invariant under W. Then, we can define

6 == > —lxa), (6.43)

X+ =
X€eZ 2

which is a normalized eigenvector to W (on the whole line!) corre-
sponding to eigenvalue 1. This violates the gap condition and therefore
indicates that walks of these kind were excluded from our setting by
the constraints given in the beginning.

11 See e.g. [Wer13, §5.6] for an example of a transfer matrix in a quantum walk scenario.
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To prepare the proof of the theorem, let us analyse what a purely
exponential ansatz for ¢ within the given setting would yield:

Firstly, ¢ has to fulfil the eigenvalue-equation (6.41) for W on the
right half-line. Secondly, ¢ has to decay exponentially, i.e. there is a
o< |A|l <1and ¢, € C?s.t.

P(x) =A"¢p, Vx>o. (6.44)
Thirdly, since W is translation-invariant, (3.29) holds
(W)(x) = > Weath(2). (6.45)
zeZ

Using the exponential ansatz, the eigenvalue equation

(Wo)(x) = ¢(x) (6.46)
becomes

Z Wy, A_(x_z)¢o = Qbo- (6.47)

zeZ.

Since W is a quantum walk, there are only finitely many W, non-
vanishing. Let N' C Z denote the minimal finite neighbourhood and
introduce

W(A) = Z W,AZ, (6.48)
zeN

to write the eigenvalue equation as
W(N)po = Po. (6.49)

From (3.31) we know, that the Fourier transform W of a translation
invariant quantum walk is

W(k) = Z Welkx, (6.50)
xeN

Furthermore, due to the finite neighbourhood N, W is a Laurent-
polynomial in the variable e’¥, and hence easily continued analytically
from the unit circle to the (punctured) unit disc by replacing the vari-
able with A restricted as above. Obviously, this is the same as extending
the domain of W from the (punctured) and open unit disc to the (punc-
tured) closed unit disc by noting that

W(k) = W(e ). (6.51)

We conclude this motivation by observing that for an exponentially
decaying solution ¢ as in (6.44) to exist, the corresponding A has to
fulfil

det (W(A)-1) =0 (6.52)

with o < |A] < 1. The finiteness of N guarantees this to be an algebraic
equation for A, but at this point the main question is still not answered:
Given a translation invariant quantum walk W with spectral gap at 1
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and a vector ¢ fulfilling the eigenvalue equation for eigenvalue 1 on
a half-line, does this necessarily imply that ¢ decays exponentially?
Finally proving this sections’” theorem answers this in the affirmative:

Proof. The main idea of the proof is to use the steps sketched in the
motivation and turn an integration around the unit circle into a sum
of residues from the interior of the unit disc by using the Residue
Theorem, hence transitioning from W to W.

Since we know that ¢ fulfils the eigenvalue equation on the positive
half-space, it is clear that ¢ := (W —1)¢ vanishes for x > o. Further-
more,

PA) = A~ (6.53)
x<0
is absolutely convergent and analytic for |A| < 1:it is written as a series
in x with only positive powers of A, whose coefficients stem from a
bounded function . Therefore, the geometric series of |A|, combined
with the finite constant ||1|| is @ majorant to ibv(/\). Similar to W and
17\/, the boundary value

Ple™) = P(k) (6.54)

is the Fourier transform of 1. With this at hand, we can compute ¢(x).

Let x € C? be an arbitrary vector, which is extended to 6, ® x € H
to represent x at x and o everywhere else. Furthermore, let x > o be
any arbitrary position on the positive half-space. Then,

(Xlp(x)) = (6x ® x|d) = {6+ ® x |[(W = 1)), (6.55)

where in the last step we used that W — 1 is invertible, since W is gapped
at 1. Applying the Fourier transform to the scalar product leads to

(o) = = / dk e (x [(W () - 1) §(k)), (6.56)

27 J_n

where we used the functional calculus from Theorem 2.9 to transition
from W (k) to (W(k) —1)~*. Substituting u = e~’¥, we arrive at a contour
integration around the unit circle C

(o) = = o 2w [ -1 Faw),  657)
2m Jo ou
where we used the fact that at the boundaries, W and W coincide (and
{E, QE respectively). We want to apply the Residue Theorem, hence we
have to find the singularities of the integrand. Commuting the scalar
u~' to the right creates u_llzbv(u), which is a power series in u that is
analytic on the unit disc, thus has no singularities that might contribute
residues to the integral. The same argument holds for u* for all x under
consideration.

By (6.48), W(u) is a Laurent-polynomial in u with C-valued coef-
ficients and highest order n € IN. Therefore, V~V(u) —1 is a Laurent-
polynomial as well with the same highest order .
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Let us assume!2, that W(A) — 1 is invertible for all [A| < 1. Then,
(W(/\) - Il)_1 exists on the whole unit disc and hence does not con-
tribute singularities to the integral. Then, as a product of analytic func-
tions, the integrand in (6.57) is analytic as well, and so by Cauchy’s
integral theorem, the integral vanishes. This means, that ¢(x) = o for
all x > o, which proves the trivial case of ¢ not being localized on the
right at all'®.

In the non-trivial case, let us assume that W(A) — 1 is not invertible
for all A in the unit disk, i.e. there are A such that W(/\) —1is a singular
operator. These A are exactly those solutions of

det (W(A)-1) = o, (6.58)

that lie in the unit disk. Let us denote this set of solutions M and let
7, count the algebraic multiplicity of the zero A € M. Note that r, is
bounded by 7 - d, since each element of the d X d-matrix 17\/(/\) —-1is
a Laurent polynomial of order at most 7, hence the highest possible
order of each summand in the determinant is n - d.

The Residue Theorem allows us to write (6.57) as

(ulo) = 7 e S0 = 3 Restf ), (659
where
f(u) = —u* Z u¥ (x |(W(u) 1) Y-y - 1)). (6.60)
>0

By definition of r,, the order of the pole A of (W (u)—1) " is ). Since
all other factors in f(u) are analytic functions, the order 7/, of the pole
of f at A is at most r), and for each A, there is /1, (u) s.t.

ha(u)
(= A)'s
where /1 is holomorphic and h(A) # o. By Cauchy’s differentiation
formula, we can then write the Residue as

1 [df’rlm(u)]
GV B
It is important to note, that the only x-dependency is rooted in the
first factor of f. Therefore, looking at the equation above, there will be
a common factor A* that remains unchanged, but whose derivatives
create a polynomial in x of degree at most ) — 1. All other factors of f

f(u) = , (6.61)

Res(f,A) = (6.62)

Note that we use the variable A instead of u to indicate, that we are now solving for
the decay coefficient in the unit disk.

Due to the specific setting we have in mind, namely a suitable cutting and joining of
W and W’, a ¢ vanishing on the right is of no interest to us, since it is no candidate
for an eigenvector on the right half chain. Still, it is needed to complete the proof of
the theorem in this trivial case
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contribute an expression depending on A and ¢, which is independent
of x. Hence we can write

r-1
p(x)= Y A > xl (6.63)
AeM  i=o
proving the theorem. m]

This finishes the chapter about the interplay between translation
invariance, locality and decay properties. Adding to the applications
already mentioned, Chapter 8 motivates most of this chapters’ results
with detailed examples.
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SYMMETRY INDEX AND TRANSLATION
INVARIANCE

After analysing translation invariant essentially local operators with-
out explicitly demanding symmetries, let us now return to the setting
of Chapter 4. As was already suggested in the definition of bulks in
Definition 5.10, a natural assumption for a bulk system in the theory
of topological phases is translation invariance. This provides a signifi-
cant simplification for almost everything we do, since Fourier methods
from Section 3.3, as well as some of the results derived in the previ-
ous chapter, allow us to transition to a description in terms of vector
bundles over the Brillouin zone.

In Section 7.1, we apply the setting from Chapter 4 to the trans-
lation invariant systems. There, we show that we can flatten every
p-admissible translation invariant essentially local unitary operator
while keeping all topological properties. Then, Section 7.2 shows ex-
emplary for all symmetry types that include a chiral symmetry y which
squares to +1, that the so called bulk-invariants known from the liter-
ature can be directly derived from our classification. In Section 7.3,
we discuss how translation invariance influences the result from Sec-
tion 5.6 that showed completeness of the symmetry indices in the non-
translation invariant setting.

7.1 THE TRANSLATION INVARIANT TEN-FOLD WAY

At a first glance, restricting our classification to the translation invari-
ant case sounds straight forward. We know how translation invariant
essentially local operators are defined (Definition 3.5), hence we can
determine for every classified operator whether it is translation in-
variant or not and apply our classification as before. But clearly, there
is a decision to be made: given a Hilbert space ¢*(Z) ® C?, we have
picked a cell structure. This cell structure is also reflected by the sym-
metry representation p, which we assume to be balanced w.r.t. the
H, = C“. Regarding the homotopies, if we allowed this cell struc-
ture to change along the way, e.g. by regrouping neighbouring cells as if
putting up domino tiles, or by adding trivial systems, we would weaken
the equivalence relation by allowing more transformations, leading to
a potentially coarser classification.

Therefore we will for the moment not allow these changes, but de-
mand the cell structure to be rigid, leading to a potentially finer clas-
sification of translation invariant operators. Whenever we want to em-
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phasize, that we do not fix the cell structure, we call the cell structure
flexible.

The objects to be classified are admissible essentially local (essen-
tially) unitary translation invariant operators, which we call bulks, fol-
lowing Definition 5.10. After Fourier transformation, the Hilbert space
becomes H = L2(T,dk) ® C? and can be read as the space of C?-valued
square integrable functions Q)\(k) on the quasi-momentum space. The
Fourier transform of a bulk U then acts by multiplying 12; (k) from the
left with U(k), a unitary operator on C¢. While for quantum walks,
each entry of U(k) is a Laurent-polynomial in exp(ik), we have just
shown in Theorem 6.1, that essential locality translates exactly to the
minimal assumption necessary for e.g. windings to make sense: con-
tinuity of k +— U(k) on T, i.e. continuity on the circle, emphasizing
the periodic boundary conditions. The fact that every eigenvalue of
a translation invariant walk on H is infinitely degenerate, transforms
the essential gap condition to a strict gap condition, hence +1 are not
in the spectrum of any U (k).

In the next step, we have to determine how the symmetry relations
change in the translation invariant setting. One has to be careful, be-
cause for A anti-unitary, an A-real basis in position space leads to a
flip in the argument, since the Fourier basis element commutes with
A up to a sign flip in the exponent A exp(ik) = exp(—ik)A. We assume,
that the symmetry representation is translation invariant as well, that
is, 0 € {n, 7,7} is not only block diagonal w.r.t. the cell structure as al-
ready assumed in the definition, but it acts as the same d-dimensional
unitary or anti-unitary operator o, in each of the cells:

o= @ o, = o(k)=o,. (7.1)
x€eZ
This i.a. prevents making U translation invariant in an artificial way by
shifting spatial dependence to p.

In the unitary case (i.e. ¢ = y), the Fourier transform of y is hence
the multiplication operator y,; that commutes with u up to a star, as in
position space.

In the anti-unitary case (i.e. 0 € {n, t}), the sign flip from above
occurs as well, and we have!

(Folo*y)(k) = Z 0.Uz07x—;

x,zeZ

ik ik(x—
= Z o6 U 0%’ x Z)xpx_z

x,z€Z.

01(2 e—ikzuz)ai 3 ey,

z€Z YyeZ
o, U(=k)a’ (k). (7.2)

1 See (3.29) and (3.31) for the definitions of translation invariant operators used.
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Figure 7: Action of the represented symmetries 1, T and y on the spectrum

w(k) of fl(k), using (7.5). While y is an axial symmetry w.r.t. van-
ishing quasi-energy, i.e. w(k) = —w(k), T is an axial symmetry w.r.t.
vanishing momentum, i.e. w(k) = w(—k). Their concatenation 1 is
hence a point-symmetry w.r.t. the origin. This emphasizes why one
cannot expect symmetry protection of the gaps from a symmetry type
that has neither y nor 1 but only 7.

This allows us to write down the symmetry conditions in momentum
space (see Section 4.2). Note that from now on, we drop the index 1
indicating the action on a single cell, since it will be clear from the
context whether ¢ or 0; was meant.

nU(k) = U(-k)n, <U(k)=U(-k)'t, yUKk) =Uk'y. (7.3)

The computation (7.2) translates directly to the Hamiltonian case as
well. Let H be a translation invariant Hamiltonian, that is

Hk) = Z R EL (7.4)
xeZ

where H,=H}, and the H, fulfil the same admissibility conditions
w.r.t. the single-cell symmetries as H w.r.t. the symmetries on H from
Section 4.2. Thus, we have

tH(k) =1 Z e™H, = Z e ™ H,. 7 = H(-k)T

X€Z xXeZ
yH(k) =y Z e™H, = - Z e™H,y = ~H(k)y
x€eZ xXeZ
nH(k) = y7H(k) = ~H(=k)n. (7.5)

This is noteworthy, since it shows how 1, y and 7 act on the spectrum
w(k) of a(k), see Figure 7.

As e.g. the RAGE-theorem (Theorem 2.10) or the index ind in the
translation invariant case ( 3.13) shows, there are many properties of
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uantum walks or bulks that directly depend on the eigenvalues of
U(k) as a function of k or on the presence / absence of specific parts
of the spectrum. However, for the topological classification, spectral
information - besides the gap condition and the symmetry w.r.t. the
real axis - are completely irrelevant. As the following lemma shows,
for every bulk, we find a homotopic one that has flat bands. That is,
it squares to —1 and the homotopy invariants have the same values.
Moreover, the object that determines the index values is the band
projection corresponding to the whole upper half-plane alone - not
even the splitting into individual bands matters:

Lemma 7.1 (Flattening bands) R
Let U be a bulk for a symmetry representation p with U(k) diagonalized as
in (3.32):

d
Uk) = ) e PQu(k). (76)
Furthermore, let A = {a | w, (k) € (0, 71)} s.t.
Q) = > Qulk) (7.7)
acA

denotes the band projection for the upper half-plane. Then, within the set of
bulks, there is a gentle perturbation Uy s.t. U, = U and

Uy (k) = U, (k) = iQ(k) — i (1 - Q(k)) = 2iQ(k) — i1, (7.8)

which is hence called U in flat-band form.
The symmetry conditions for U, (k) can then be phrased in terms of Q(k):

nQk)n" =1-Q(-k)
tQ(k)T" = Q(=k)
yQ(k)y™ =1-Q(k). (7.9)

Proof. The splitting in this way is well-defined, since U is gapped.
Therefore, there is an € > o s.t. T, the unit-circle without an open
disc of radius € around each of +1 and —1, contains ¢(U). Since the
continuous functional calculus preserves essential locality, contracting
the spectrum of U(k) to +i does not violate gentleness.

Let f : [0o,1] X Te — T, written as fi(z) := f(t,z), be a suitable con-
tinuous function, s.t. fo(z) = z and f1(z) = sign(Im z)i. Besides the gap,
the admissibility constraint is fulfilled if f; has only real coefficients, or
more precisely f;(z) = fi(z).

Then, we define U; = f;(U) in the continuous functional calculus,
which yields in momentum space

d
Ui(k) = £ (U k) = ) fi(e™*®)Qalk). (7.10)

The symmetry conditior/l\s for Q(k) now follow directly by applying
(7.3) to the definition of U, (k). O
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We have thus shown, that the topological classification of U(k) de-
pends crucially on the band projection Q(k) as a function of k, not on
the spectrum, or the individual band projections Q,/(k). Described in
terms of differential geometry, we are classifying the Hermitian vec-
tor bundle Q(k) over the unit circle T with fiber Q(k)C?. This view is
supported e.g. by [Kit09], where the classification of symmetric Hamil-
tonians in terms of K-Theory leads to the same index groups I(S) that
we have derived.

Denote by I(S) the symmetry groups that [Kit09] deduced with
his classification of vector bundles using K-Theory. Compared to our
results I(S), one sees that the resulting groups are isomorphic for
each symmetry type S. In the following, let us analyse the connection
between both groups more thoroughly:

Every bulk U by definition is suitable for classification through our
theory. Hence, there is an index si(U) € I(S) that is stable under gentle
perturbations within the general setting, thus it is also stable under
every gentle perturbation within the restricted translation invariant
setting. In short, there is a map j : I(S) — I(S).

By definition, addition in I(S) and I(S) is defined via direct sums,
hence j is a homomorphism for addition. To show that j is surjective,
we have to provide for each S a translation invariant example s.t. si(U)
spans I(S). This is done in Section 8.1. Regarding injectivity, despite
the completeness of our classification (see Section 5.6), it could be that
two translation invariant bulks with the same set of indices can only
be connected to each other by breaking translation invariance along the
way. Then, these would correspond to different elements in I;(S) which
would render j not one-to-one. We will analyse this later in Section 7.3
and show that for some symmetry types, there are additional invariants
to consider, at least in the setting of rigid cell structures.

In the introduction to this section, we have briefly discussed the
(possible) dependence of the classification on the cell structure. In
the general theory, the dimension of the local Hilbert spaces H, does
not matter. Thus, the classification does not change if we combine
neighbouring cells arbitrarily and declare the resulting cell structure
as the new one?. In this chapter, we demand translation invariance
w.r.t. a rigid cell structure. This is a tight restriction to the setting,
which i.a. fixes the dimension of every H, to be the same for all x.
Thus, a reorganization of the cells in the way just described is clearly
forbidden.

One kind of regrouping that is often used in the context of the index
ind of a quantum walk [Gro+12] is the flattening of the Hilbert space
H = ¢2(Z) ® C* onto H’ = (*(Z) by mapping O, ® a; to d4.v+i, effec-
tively dropping the cell structure completely. Since shifts by one cell

More precisely, we assume that we have fixed a representation p of the symmetry type
before we make these changes. Else, the condition of balanced cells is weakened by
combining cells, which would make a difference.
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on H become shifts by d cells on H’, the scale of position has to be
adjusted by a factor d. But besides this scaling factor, the index ind
and e.g. jump lengths of quantum walks do not change under this
mapping.

In the other direction, since quantum walks possess a finite jump
length L, it makes sense to consider so called nearest neighbour quantum
walks, which are walks where the underlying Hilbert space is mapped
to one, where at least L neighbouring cells are put together and consid-
ered as one. This procedure brings every quantum walk into a standard
form with a (potentially much) larger coin space such that it acts only
on directly adjacent cells.

In our current setting of bulks with rigid cell structure, there is (in
general) no finite maximal jump length L, and hence such a regroup-
ing does not make sense. But as we will see later when considering
completeness of the symmetry indices in this setting, the minimal ver-
sion of this regrouping, regrouping direct neighbours in pairs of two,
already changes the classification. Therefore, let us explicitly write
down the effect of regrouping neighbouring cells in the sense that we
consider H] = H,x ® Hoy+q as our new cell®. Most importantly, this
changes the notion of translation invariance: translations on the new
cell structure correspond to translations by an even number of sites on
the old cell structure. More precisely, if we allow for regrouping once,
and then demand only translation invariance in the regrouped setting
along the way, formerly disconnected regions might connect. That is,
two bulks U and U’ might not be translation invariant gentle pertur-
bations of each other if we demand translation invariance in the rigid
setting, but their regrouped versions U, and U; might be in the new
setting. Therefore, regrouping once along the way bridges the regions
of U and U’ within this coarser class.

Definition 7.2 (Regrouping) R
Let U be a bulk on H = KZ(ZA) ® C* with Fourier transform U (k). Then, we
define the regrouped bulks U, on H, = L3(T) ® C>* = ¢*(Z) ® C* as

= a(k/z) (6] .
r k) = k/ —~ k/» , .
) = Hep | Ll(k/2+n))H(/) (711)
where
=21 1
H(k) = N (e‘ik]l ik ]1) . (7.12)

3 As an analogy, regard Hy and Hax+1 as one domino tile within the infinite chain of

domino tiles that is H. Now, if we put up all these domino tiles, the standing tiles
became the new basic cells, and we performed the regrouping just described.
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Let us quickly show that this definition represents exactly what
we described before. In position space, ¢ € H is mapped to ¢, €
(*(Z) ® C*, which has an even part 1., and an odd part 1,, s.t.

e\ [ wiew
¥ = (%(x)) } (w(zx . 1)) | 713

The action of U, on ¢, as a convolution in position space is then
completely determined by the action of U on ¢. Therefore let

(Urp)(x) = Y UL w(2) = Y UL, ( y(2z) ) (7.14)

zeZ. zeZ. 1/}(22 + 1)

Using (3.29), we can read off
(UI;D)(ZJC) = Z sz—zll)(z)

z€Z
(UP)ex +1) = > Userr=(2). (7.15)
zeZ

Equating this with (7.13) and splitting the sum into even and odd
contributions, the following convolution kernel results

UZX u2x—1

u; =
u2x+1 u2X

(7.16)

Applying the Fourier transform to the coefficients then yields

Z eikx Usyss

xeZ

_ik. 13
— i3S § 612(2x+s)u2x+s
XeZ

ik ﬁg(k/z) s even,
f[o(k/z) s odd.

(7.17)

Here, U, and U, are the restrictions of U to even and odd coefficients,
respectively. Since —1 = e'™ = ¢'™Y for y odd, and 1 = ¢'™¥ for y even,
we have

U (ko + 1) = Up (o + 10) + Uy (Fa+ 1) = U (k) = Uy (K/2)
U (kf2) = U, (%) + U, (/2). (7.18)
Putting it all together, we get
Ue(kf) e U, (k)
e U (kf) U, (Hf2)
akk) o
0 Uk + 7r)

U, (k) =

= H(t/2)

) H(k/2)", (7.19)

which is the form from Definition 7.2.
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In the next section, we will introduce a standard form for bulks for
the non-trivial symmetry types where a chiral symmetry is present
that squares to 1: Alll, BDI and CII.

7.2 WINDING FORMULA FOR CHIRAL SYMMETRIES

In Section 3.4, we learned that the index of an essentially local uni-
tary operator ind(U) can be determined by computing the kernel of
the compression of U and U* to PH. Alternatively, in the case of a
translation invariant essentially local unitary operator, after computing
the Fourier transform of U, it suffices to read-off the index from the
exponent of det U (k). Moreover, given the eigenvalues w, (k), the index
agrees with the sum of their winding numbers, providing another way
of computing ind(U), as well as a topological interpretation. A side ef-
fect is, that in the translation invariant case, it allows us to determine
the index ind(U) much simpler than following the standard procedure.

In the general case of an essentially local admissible unitary operator
U, determining e.g. the symmetry index s1(U) amounts to computing
siIm(PUP)), which involves determining the kernel of Im(PUP) and
then applying the correct formula from Proposition 5.3 restricted to
this subspace.

Since in the definition of bulks, we emphasize translation invariant
operators, it is advantageous to find ways to determine symmetry
indices in a more practical way. Luckily, there is an approach we call the
chiral reduction, that yields a simple formula for i for every symmetry
type that fulfils* > = +1. Note that we will work within the general
picture as long as possible and introduce translation invariance as late
as possible. The main result of this section is the explicit translation
invariant formula for 81 in the case of non-trivial chiral symmetry:

Theorem 7.3 (Chiral index formula: TI)
Let p be a representation of one of the symmetry types Alll, BDI or CIL and let
U be a bulk in chiral block form (Definition 7.4) with B(k) as in (7.31). Then,

si(U) = wind(k — det B(k)). (7.20)
Furthermore, if U (k) is continuously differentiable, we have
o1 [T (= dB(k)

A visualization of the winding of the curve det E(k) is given in
Section 8.3. The interactive Split-Step-Explorer shows the winding, as
well as the quasi-energies and corresponding edge-states together with
a brief explanation on the corresponding webpage [Stal5a].

Actually, most of the arguments also work for the single symmetry type, where there
is a chiral symmetry, which squares to —1, i.e. DIIl. But since the resulting formulas and
their proofs deviate considerably, we will not cover this case, but refer to [Ced+18a]
for the treatment of DIIL.
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In order to prove this theorem, we have to introduce the foreshad-
owed chiral block form via chiral reduction. After that, we will analyse
statements of completeness for the different symmetry types where
this theorem holds.

Chiral reduction

For the rest of this chapter, p represents any of the symmetry types
AIll, BDI and CII with y* = 1. This allows to use P, the projection onto
the +1-eigenspace of y = 2P, —1, to bring every admissible ELEU
U to block matrix form w.r.t. P, and P = 1 - P, and the respective
subspaces H. = P.H. Thus for the moment, we return to the general
setting that does not demand translation invariance.

Definition 7.4 (Chiral block form)

Let p be a representation for Alll, BDI or CIl with y = P, —P_ on ‘H =
H, @ H-_, s.t. dim(H,) = dim(H-). Furthermore, let U be an ELEU on ‘H.
With respect to P, and P_, we can write U in chiral block form, s.t.

A
C

1 o

u-= .
o -1

(7.22)

and 7/:(

Since p-admissibility in these cases reduces to yU = U*y (besides
the essential gap condition), the additional conditions for U can easily
be deduced.

Lemma 7.5 (Chiral block form: ELEU)

Let U be an ELEU in chiral block form that fulfils the commutation relation
with y. Then, A = A*, D = D* and C = —B". Furthermore, U is essentially
gapped iff B is Fredholm.

That is, the lemma collects the algebraic properties of a p-admissible
ELEU U. Let us continue with the case that U is exactly unitary, not
merely essentially unitary, before proving both lemmas together.

Lemma 7.6 (Chiral block form: unitary)
Let U be an essentially local unitary operator in chiral block form that fulfils
the commutation relation with y. Then,

(0) BB*+A2=1, B'B+D?>=1, AB=BD
(1) U is gapped at +1 and —1 iff B has a bounded inverse.
(2) U is in flat-band form iff B is unitary and A = D = o.

Proof. The algebraic relations for the ELEU follow directly from the
definition of the chiral block form and the admissibility relation. (o) are
precisely the unitarity conditions for U in chiral block form. Note that
for U merely essentially unitary, (o) holds after projecting into the
Calkin algebra, hence holds essentially.
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To prove (1) (=), let U be properly gapped at +1. Then, the imaginary
part of U

ImU = l(l,[—ll"') =
21

o —iB ) (7.23)
iB* o

has a proper gap at o, and is hence invertible. This is exactly the case
if B has a bounded inverse. For the converse (<), let B be invertible.
Then, Im U is invertible and therefore properly gapped at o, implying
a properly gapped U at +1, proving (1).

This already proves Lemma 7.5 through demanding (1) to hold only
for (U) instead of U. That is, for the image of U in the Calkin algebra,
the gap becomes an essential gap and the invertibility of B becomes
invertibility up to a compact operator, which is the definition of a Fredholm
operator.

In order to prove (2), recall that a flat-band unitary U fulfils U* = -1
asin Lemma 7.1. Then, (=) follows by using the unitarity of U to write
U = —-U" and reading off the relations. (<) follows directly from the
unitarity of B and the computation of U>. O

In the translation invariant case, we know from Lemma 7.1 that the
topological classification of U is the same as the classification of U,
since they are homotopic even within the set of bulks. This result will
be crucial in discussing the completeness of our classification of bulks,
e.g. in Proposition 7.10 for AIll. These two lemmas have thus shown,
that the chiral block form of U effectively reduces the classification of
admissible unitary operators U to the classification of unitary operators
B.More precisely, since the flat-band condition guarantees a proper gap
for U, there is no (essential) gap condition for B, and the admissibility
for y is covered completely. That is, in the case of Alll, there are no other
symmetries and hence no further restrictions for B. In the cases BDI and
CII, there are additional constraints stemming from the admissibility
for 1. Then, the admissibility for 7 follows from our choice that all the
represented symmetries commute with each other.

Let us now check which conditions are imposed on B stemming
from a flat-band U}, due to the presence of 7. Since the construction
around (2.30) shows that 7, takes block diagonal form with identical
blocks (after choosing a suitable basis in the second block), we can
write

n= My O ’ BDI: n, =+1 (7.24)
o M Cl: n; =-1.

n-admissibility of U then demands n,B = B7;. The question at hand
is now: Did the chiral block form reveal that BDI and CII can after all
be reduced to D and C, respectively, contradicting completeness of the
index and our index construction in general?

Luckily this is not the case. The substantial condition we overlooked
is the essential gap: classifying B with corresponding symmetry rela-
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tions for n is not the same as classifying admissible essentially unitary
operators B of symmetry type D or C, since admissibility demands an
essential gap. Hence without this condition, more paths are allowed
which connect different subsets, rendering their index identical®.

Index formulas

In the following, we investigate how the chiral block form simplifies the
computation of si(U) (and hence si(U) etc.).

Lemma 7.7 (Chiral block form: si)

Let p represent Alll, BDI or CII, and let U be a p-admissible essentially
local unitary operator in chiral block form. Then, the symmetry index can be
expressed as a Fredholm index

si(U) = —indg(B). (7.25)

It is interesting to note that for chiral symmetries squaring to +1,
this expression reduces si to a Fredholm index of the matrix block
B, which represents that part of y, which maps positive to negative
chirality. This resembles the definition of ind, which uses a block from
the block-decomposition with respect to a projection onto the half-line
of positive positions.

Proof. As was shown in (7.5) and (7.23), the imaginary part of U is

© _ZB) . (7.26)
iB* o

ImU =

Using Definition 5.7 and Proposition 5.3, we know that B is Fredholm
and si(U) = try v, where N = ker(Im U) = ker(U — U*). The simple
form of Im U allows to read off the kernel as
N ={¢p:®¢,|B'¢p; =0AB¢p, =0} =ker(B*) ®ker(B). (7.27)
But since this decomposition is in the same basis as the chiral block
form, we know that y acts like 05 on ¢, @ ¢, and hence
si(U) = try y = dimker(B*) — dim ker(B) = —indg(B). (7.28)
O

We know from Table 1 and Section 4.4 that in the case of CII, si(U)
must be an even integer. This is now easily confirmed, since the re-
stricted n,-symmetry for B with 17 = —1 forces ker(B) and ker(B") to
be of even dimension, respectively. To see this, let ¢ lie in the kernel of
B. Then, the admissibility implies

mB¢ = B(ny@) = o. (7.29)

This is very similar to the forgethomomorphisms from Section 4.4. There, not knowing
about a symmetry (or forgetting about its existence) allows for transformations that
connect formerly different classes, thus reducing the number of equivalence classes.
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But since né = —1, we have

(P, m@P) = (M, m;P) = —(P, M) = 0. (7.30)

Thus, ¢ is an independent eigenvector and the kernel is even dimen-
sional. The argument for ker(B*) is completely analogous.

We have already commented on the similarity between the definition
of the index ind(U) and the value of si(U) if U is in chiral block form.
In the following, we will return to the translation invariant case and
extend this similarity to deduce a representation of si(U) as a winding
number in much the same way as ind(U) can be written as a winding
of the eigenvalues w,(k) as remarked after (3.48).

In the very beginning, we assumed that every symmetry considered
is compatible with the cell structure, i.e. they act on translation invari-
ant operators through the one-cell symmetries as described in (7.3).
Moreover, we can use the chiral block form of Definition 7.4 to split
the d-dimensional coin-space further into two subspaces of dimension
d’ =4/, such that after Fourier transform, f[(k) is in chiral block form:

Ak) Bk
—B*(k) D(k)

The admissibility of a translation invariant U demands a gap at +1, s.t.
by Lemma 7.6, B is invertible, and hence B (k) is invertible for all k as
well. Moreover, the essential locality of U is equivalent to continuity of
ﬁ(k) forall k € T (with periodic boundary conditions) by Theorem 6.1,
which makes B(k) depend continuously on k as well. This is exactly
the minimal condition one needs for a winding number to make sense.
Let f : [-nt,1] — C be a continuous function that never vanishes.
Then, wind(f) denotes the winding number of f around the origin. The
following result from [ASO1, Thm. 7] connects the Fredholm index to
a winding number:

U(k) = . (7.31)

Theorem 7.8 (indr as winding)
Let Ty be a continuously differentiable Toeplitz operator. Then, T s is Fredholm
iff its symbol f is non-zero on the whole unit circle. In that case, the Fredholm
index is minus the winding number of f around the origin, namely
indg(Tf) = —wind(f) = 2—; ] ‘;—f. (7.32)

In order to proof our statement in full generality, we need a more gen-
eral form of this statement. A version of the theorem for matrix-valued
f’ is e.g. provided by [Pel03, Thm. 4.8], which amounts to replacing f
in the above theorem with f’, and with det(f’) in the denominator of
the integrand. The full form is found in [GGK90, XXXIL5: Thm. 5.1],
where the assumption of continuous differentiability is weakened to
demand mere continuity, and which treats matrices as well.

This allows us to prove Theorem 7.3 and hence finally express si as
a winding number.
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Proof of Theorem 7.3. By Definition 5.8, we know that si(U) = si(PUP).
Since U is a bulk in chiral block form, we can apply Lemma 7.7 to PUP,

which is an ELEU on the half-space PH, and get
si(U) = —indg(PBP). (7.33)

By Definition 6.4, the half-space compression of a translation invariant

operator yields a Toeplitz operator with symbol | B(k). Since U is gapped,

B is invertible due to Lemma 7.6. Therefore, B(k) never vanishes and
we can apply Theorem 7.8 to get

si(U) = wind(k — det B(k)), (7.34)

finishing the first part of the proof.

In order to prove the additional formula, let U(k) be continuously
differentiable. Then, f(k) = det E(k) is continuously differentiable as
well and we can write the winding as in (7.32):

2niwind(f) = j;(((:)) /o?k % log det E(k)
_ /dkt ( 1<k>dB(")), (7.35)

where in the last step we used the derivative of the determinant from
Lemma 3.7. Using the unitarity of B(k) then leads to the final result

Si(U) = /dkt (B (k)dB(k)). (7.36)

O

It was mentioned in the introduction, that e.g. in the quantum hall
effect, the classifying topological invariant can be expressed as the
total Chern number of the quasi-energy bands, computed e.g. via an
integral over the quasi-momentum space.

Since we are rooted in one spatial dimension, the best candidate for
a geometrical expression of our symmetry index is the Berry phase (or

first Chern number), introduced in [Ber84] (for a more recent review,

see [XCN10]). There, Berry shows that a continuous transformation of

the Hamiltonian can lead to an eigenstate acquiring a phase-difference.

If the transforming path is a loop, this phase-difference f, is shown to

be a homotopy-invariant that takes values in the integers (up to 2m),

that can be expressed as an integral over the Berry connection

1 [T d
o= 2 fak (utb), S0ut0), 7.37)

where ¢, (k) represents the eigenstate which changes differentiably

while the time evolution changes continuously from k = —m to «,

which is a loop in the Brillouin zone.
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Applied to our situation, this leads to the following definition of the
total Berry phase f, acquired by summing over all eigenfunctions of a
d-dimensional matrix-valued function:

1 no & d
ﬁ = E [cik aZ:l <qja(k)r £¢a(k)> (7.38)

Returning to our symmetry index, we show that ﬁ(AU) can be expressed
as twice the Berry phase of the upper band, if U(k) is continuously
differentiable and flat-band:

Corollary 7.9 (st as Berry phase)

Let U = U, be a flat-band bulk for symmetry type A, BDI or CIL. Then,
forall a = 1,...,d’, there is a continuously differentiable eigenfunction of
U to the eigenvalue i, denoted by ¢.(k), that spans the projection Q (k)
s.t. together, they sum up to the upper band projection Q(k) as defined in
Lemma 7.1.

In this case, si(U) is twice the Berry phase for the upper band, i.e.

_ 2 n & d
si(U) = Py [(ik Z <¢a(k)/ £¢a(k)>~ (7.39)

Proof. From Lemma 7.6 we know, that a flat-band bulk fl(k) in chi-
ral block form has vanishing diagonal blocks A and D, and unitary
antidiagonal blocks s.t.

k)= ° E(k). .
(k) (_B(k)* ’ (740

Let { XQ}Z,ZI denote a (fixed, k-independent) basis of H_, the —1-eigen-
space of y on H from Definition 7.4 (after Fourier transform). Then,
foralla =1,...,d,

_ 1 [iB(k)xa
Palk) = \/5( L ) (7.41)

is a suitable eigenfunction as described in the Corollary. It inherits con-
tinuous differentiability (respecting the boundary conditions) directly
from B(k). Furthermore, due to the unitarity of B(k),

~ _i o E(k) E(k))(a
U(k)pa(k) = NG (—E(k)* 0 )( iXa )

i (iﬁ(k)xa
—Xa

7 ) = ia (k). (7.42)

Moreover, unitarity of B(k) guarantees that the ¢,(k) are an orthonor-
mal basis with cardinality d’. That is, they span the +i-eigenspace
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of U, and therefore their corresponding projections sum up to Q(k).
Anticipating the Berry formula, we note

Seball) = =2 B0 (X) 7.43)

Now, the trace in (7.36) evaluates to

(B (k)dB(k))

d’

-3 Bk, B

_ Z< : (iE(k)Xa) \;_dkB(k)( )>

d’

d
=2 Z <¢a(k), @¢a(k)>, (7.44)
finishing the proof. m]

At this point, it makes sense to look back and relate the result to
the bulk-boundary-correspondence from Section 5.3. Recall that in Defi-
nition 5.10, we defined a bulk as a translation invariant p-admissible
ELEU. But since every bulk defined this way is already unitary (not
merely essentially unitary), the winding formula just obtained allows to
quickly determine si(U) for every bulk given.

As explained in the introduction, the first approaches regarding
bulk-boundary correspondence in quantum walks was more of an ex-
ploring kind [Kit+10; Asb12], where effective Hamiltonians of specific
examples were analysed with corresponding specific formulas to com-
pute relative phases between two systems. Then, a crossover between
two systems is implemented on a small finite lattice, and an initial
state on the boundary is driven by the crossover-walk, which indicates
topological protection if some probability remains around the origin
after a small number of time steps. Hence the often assumed bulk-
boundary correspondence was verified by identifying a lower bound
on the probability in a small area at the edge of two systems, which is
stable for a few time steps. Later, a winding number like the one stated
in Theorem 7.3 was stated (see e.g. [AO13]) as a candidate for a bulk-
invariant, i.e. a number denoting an absolute topological phase, which
was assumed to be robust w.r.t. some class of admissible perturbations.

Our result is hence not the discovery of the winding formula, but on
one hand, the statement that this winding number matches a pre-
cisely defined symmetry index s, which was shown to be robust
under a sharply defined, broad class of perturbations. On the other
hand, it confirms the common interpretation of the bulk-boundary-
correspondence in the following sense: Topological invariants are bulk-
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invariants, in the sense that their values can be computed from the bulk
alone. On joining two bulks, these values predict the occurrence of edge
states at the interface if they differ.

Clearly, this is not new to us, since our result in Theorem 5.12 was
stated within a setting that contained all these systems, and thoroughly
proven, not merely conjectured or verified along a few examples. Fur-
thermore, we know, that the homotopy invariance and stability w.r.t.
perturbations of our symmetry indices simply carry over to the more re-
stricted subset of bulks. But the converse, i.e. the question of complete-
ness within the setting of bulks in chiral block form, is not answered
yet and has to be analysed:

We know from Theorem 5.9 thatsi(U) = o for translation invariant U.
Since si(U) = si(U) + s1(U) = o, we have found all classifying topologi-
cal invariants from our general, non translation invariant theory, since
translation invariance of the bulks ensures that si.(U) = o because
of the gap condition. But as already mentioned in the introduction
of Section 7.1, restricting our setting by demanding translation invari-
ance for all objects under considerations does not change the classifica-
tion provided by Chapter 5. That is, the assigned symmetry indices in
the restricted setting are invariant w.r.t. every perturbation described,
since the translation invariant objects were already included in the set-
ting. But the completeness result might not be as simply transferred to
the translation invariant settings, since adding additional constraints
might disconnect formerly connected subsets, since bridges between
them might require the breaking of translation invariance, or at least
the breaking of translation invariance w.r.t. to the rigid cell structure
(that is, allow for regrouping). Hence, in the following subsection, we
analyse whether for every U,, U, that share the same value of 81, we
can find gentle perturbations within the set of bulks on a rigid cell
structure that connect them. In cases where this is impossible, we in-
troduce the additional invariant necessary, and show that allowing to
regroup adjacent cells once does restore completeness in this more
flexible setting.

7.3 COMPLETENESS

The extensive simplifications that the chiral block form, as well as
the flattening construction provide can now be used to answer the
questions about completeness directly. Let us begin with Alll, where
there is only one symmetry, i.e. y with ? = 1.

Proposition 7.10 (Completeness: TI, AIll)

Let p be a representation of Alll and let H = €*(Z) ® C? be a rigid cell
structure.

Then, the classification of bulks on H through st is complete.

That is, any two bulks U, U’ such that si(U) = s1(U’) are gentle perturbations
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of each other that keep translation invariance w.r.t. the cell structure along the
way.

Proof. The Fourier transform maps U to U(k), which is a continuous
periodic function on T due to the essential locality of U and Theo-
rem 6.1. Following Lemma 7.1, for every U(k), there is a gentle pertur-
bation that keeps translation invariance w.r.t. the cell structure, which
brings U(k) to U, (k), its unique flat-band form. Now we can transform
U(k) into chiral block form, which by Lemma 7.6 is block-antidiagonal
with a unitary B (k) that hence completely determines f[b(k). The -
admissibility (including the gap condition due to its flat-band form) is
fulfilled automatically due to the chiral block form for any Vb(k) that
stems from a continuous unitary loop By (k).

Since the determinant of a loop in the unitary group U (d’) induces a
loop from the unit circle to the unit circle, it has a winding number. We
need the following well-known properties about U (d’), that can e.g. be
found in [Nak03, (4.56)]: The unitary group is path-connected, but not
simply connected, since the fundamental group is 7, (ﬂ(d’ )) = Z.By
definition, the fundamental group is formed by the homotopy classes
of loops and hence two loops in U(d’) are homotopic iff the windings
of their determinants coincide.

Summing up, if we are given two bulks U, U’ such that si(U) = si(U’),
we bring them into flat-band and chiral block form, s.t. E(k) and E’(k)
are two arbitrary unitary loops in U (d’) that share the same winding
number due to Theorem 7.3 and §i(U) = si(U’). Therefore they are
homotopic. Moreover, the continuity of the loop guarantees continuity
of the flattened path along the way. Therefore, essential locality is again
implied by Theorem 6.1, finishing the proof. m|

Note that the result can be stated within the stricter class of quantum
walks as well. The only adjustment needed is that for strict locality,
one needs to ensure the uniformly bounded jump length along the way,
which can be done exactly as in the proof of (3.13), found in [Gro+12,
Prop. 6].

In the other cases, namely BDI and CII, there is an n-symmetry
present, which translates to an 7,-symmetry for B in chiral block form
as explained in (7.24). This then implies that B(k) fulfils the same
symmetry relations with 7, as explained in (7.3), that is

B(k) = m; B(=k)np- (7.45)

The effect of this additional symmetry on det B(k) is shown by a simple
computation:

det B(k) = det (n; B(=k)n) = det B(~k). (7.46)

In the last step, we used that the effect of conjugation with an antiuni-
tary operator is complex conjugation of the eigenvalues and rotation
of the eigenvectors with a unitary operator, due to (2.12). The determi-
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nant is invariant under unitary conjugations, hence what remains is
the complex conjugation of the eigenvalues and hence of their product,
the determinant.

To clarify the notation, let us introduce c to denote the curve that
leads to s1, that is

c:[-n,m] > C, c(k)=det E(k), c(k) = c(—k). (7.47)

Here, the last relation follows from (7.46).

As we will show, this constraint prevents the completeness of st in
the case of BDI. In the simplest case of d = 2, we have one dimensional
chiral “blocks”. Let E(k) = +1and B (k) = —1 be two of these blocks.
Since they are constantin k, their winding numbers vanish, respectively.
If completeness of s1 held, we would be able to connect them within
the set of bulks.

The additional symmetry constraint from (7.46) forces c(o) and c(m)
to be real. To satisfy the gap condition along the way, B; has to keep a
bounded inverse by Lemma 7.6, which forbids a path between B and
B’ that crosses the origin, that is Et(k) # o for all t and k. But this is
impossible, since at the same time, Et has to fulfil the reality condition
at k, € {o, 7}, that is ¢;(k,) has to continuously connect +1 and —1
along the real line without crossing o. Therefore, there is no admissible
path within this set, and st is not complete for BDI.

The lack of completeness hints at an additional invariant, which
stems from the tighter constraint to fix a cell structure. As we will show
shortly, by allowing to regroup the system as described in Definition 7.2,
this additional invariant trivializes.

Definition 7.11 (Regrouping sign)
Let U be a bulk for BDI with corresponding curve c as above. Then, the
regrouping sign of U is defined as

rs(U) = sign(c(0)). (7.48)

As was already explained in the completeness-contradicting exam-
ple above, the reality condition from (7.46) shows, that no gentle per-
turbation c;(0) can change the value of rs(U;), since the determinant
cannot change its sign without crossing o while satisfying the reality
condition.

The following proposition now fixes the completeness of bulks on a
rigid cell structure in the case of BDI:

Proposition 7.12 (Completeness: TI, BDI)

Let p be a representation of BDI and let H = (*(Z) ® C? be a rigid cell
structure. Then, the classification of bulks on H through stand rs is complete.
That is, any two bulks U, U’ such that si(U) = si(U’) and rs(U) = rs(U’)
are gentle perturbations of each other that keep translation invariance w.r.t.
the cell structure along the way.
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Proof. The general outline of the proof matches the proof of Proposi-
tion 7.10 for AIIl, but the presence of 1 and rs complicate the pathfind-
ing, as will be seen shortly.

Analogously to Proposition 7.10, Lemma 7.1 guarantees that there
is a gentle perturbation within the set of translation invariant bulks on
a rigid cell structure, that transports C[(k) to l?lb(k), its flat-band form. In
chiral block form, this yields a unitary B(k) that completely determines
U, (k). Furthermore, y-admissibility and the gap condition are satisfied
in chiral block form for any U, (k) that stems from a continuous unitary
loop Et(k). The consequence is that a curve c as defined in (7.47) is
restricted to the unit circle, and we can identify the phase function
@(k) € Rvia

c(k) = e2mie), (1) = p(—m) + wind(c). (7.49)

Now, adding the nj-admissibility from (7.24) to the picture restricts
the allowed loops B t(k) even further:

The particle-hole symmetry 7, is an antiunitary operator with 77 =1,
hence by (2.12), there is an 7;,-real basis where 1; acts as complex
conjugation. As was already used in the example above, (7.46) shows
that c(k,) = +1 for k, € {o, £n}. Furthermore, defining Et(k) on [o, 7t]
fixes Et(k) on the whole interval [, 7] by (7.45). Hence, it suffices to
determine B; (k) at the interval [o, 7t].

With these preliminary considerations at hand, let us show that U,
and EI{) are homotopic within the set of admissible translation invari-
ant essentially local unitary operators with rigid cell structure. Since
si(U) = si(U’), their winding numbers coincide as well, and we have

e2™90) = c(k) = c(—k) = e2™P(R), (7.50)
This implies that

20(0) = p(k) + 9(=k) = p(m) + p(-70) € Z, (7.51)
and we get with k = 7 and (7.49)

2¢(m) = 2¢(0) + wind(c), (7.52)
finally leading to

c(71) = c(0)e™Wind©) = ¢(o) . (=1)ViNd©) = rg(17) . (1P, (7.53)

Hence c(m) is completely determined by c(o) and wind(c), or rs(U)
and si(U), respectively. Since both invariants are assumed to coincide
for U and U’, we have deduced that in this case, ¢(7) and ¢’(7r) match
as well.

What is left now is to connect B(k) and B’(k) with a suitable B;(k) on
the interval [o, 7t]. Since we already know, that the matching of st and
rs implies that c(o) = ¢’(0) and c¢() = ¢’(n), the endpoints of ¢; are
fixed by these values.

The orthogonal group has two connected components [Nak03, 4.7].
These are distinguished by the determinant, which takes values on the
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intersection of the real axis with the unit circle, that is +1. Since rs is
given by the sign of c(0), and rs(U)=rs(U’), we know that the endpoints
both have the same determinant and hence the corresponding E(o) and
B’ (o) lie in the same connected component of O(d’). But admissibility
precisely allows for paths B +(0), that lie in the orthogonal group, thus
we can interpolate between B(o) and B’ (0) in O(d"). B(T() and B’ (m0)
follow completely analogously.

What remains is to show the existence of the homotopy B;(k) that
interpolates between B(k) and B’ (k) for k € (o, m). Given ko € {o, 7},
we know that the endpoints B(ko) and B/ (ko) lie in the same connected
component of the orthogonal group O(d’), since their determinants,
given by c(k,) and c’(k,) coincide. Hence there is a path within this
connected component that connects B (ko) and E’(ko). The additional
constraint of 7n,-admissibility is exhausted by restricting to half the
Brillouin zone, hence the path B (k) for k € (o, ) simply lies in the
unitary group U(d’), without additional constraints. That is, similar
to the case AlIl, since the winding numbers of B (k) and E'(k) coincide,
they can be contracted one onto the other within the unitary group
and the result follows. O

For symmetry type BDI, in the translation invariant case with rigid
cell structure, we have thus shown, that I is not complete by itself,
but that we need to introduce the Z,-valued invariant rs. However, as
the following Lemma shows, if we loosen the rigid cells constraint by
allowing to regroup at least once, rs trivializes to depend only on the
winding of c(k), s.t. st becomes a complete invariant in this more flexible
setting.

Lemma 7.13 (Regrouping for BDI)
Let U be a bulk for BDL and let U, be its regrouped pendant as in Definition 7.2.
Then, rs(U,) depends only on si(U).

Proof. From Definition 7.2, we know that
a (k/z) O

U, (k) = H(k/2) o ltp+n)

) H(K/)". (7.54)

In each of these regrouping-blocks, we can find a basis s.t. U is in chiral
block form. This change of basis does not change H, since it acts like the
identity on the regrouping-blocks. Hence writing U, in regrouping
blocks with chiral sub blocks yields

A B o 0

G =S P 0 ° (Hewy, (7.55)
o o A; By
o o Cy Dj

where we shortened notation such that e.g. A denotes A\(k/z) and e.g.
B denotes B(k/> + 7).
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Since y, on a new cell is just the direct sum of y = (3 % ) on the old
cells, we transition to the chiral block form for the regrouped setting
by conjugation with the unitary V, that is

1 0 0 O
o Yy o Ve = 1T o ’ V= 0 0 1 o' (7.56)

o Y o -1 01 0 O

0 0 0 1

The second factor on the right hand side of (7.55) is then transformed
to

A B o o A o B o
v C D o o ve=|© A o By (7.57)
o o A, Bj C o D o
(0] (0] CT[ Dn (6} CT[ o Dﬂ
Hence, the relevant chiral block up to the action of H is
Byt = [B® _ o (7.58)
o B(k+mn)
In the case of H, conjugation with V leads to
V2VHK)V =V ]1 ]14 ) v
e—zk 1 _e—zk 1
1 1 0 0
—ik  _ ,—ik
~|¢ ¢ ° o (7.59)
0 0 1 1
o o etk _p-ik
In a slight abuse of notation, this allows us to write
H(k
vakv: = [HE o) (7.60)
o H(k)

where on the right hand side, 1 in H(k) has to be replaced by 1. But in
this basis, H is block-diagonal and acts on each block identically. That
is, the conjugation with H(¥/2) to get U, translates to a conjugation with
H (/=) on each block separately. We get

By (k) = H(¥/2)Bpy(k/2)H* (¥/2). (7.61)

H is unitary and the determinant is a homomorphism w.r.t. multipli-
cation, therefore we have

det (Bx(k)) = det (B(k)) - det (B(k + n)), (7.62)
and thus for ¢,

¢, (k) = (k) - c(kfa + 7). (7.63)
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Using the result from (7.53) allows us to write
¢r(0) = ¢(0) - ¢(10) = ¢(0)* - (=)™ = (~g)Mnd(® (7.64)
and finally compute rs(U,)

1 wind(c) even,

(7.65)
—1 wind(c) odd.

rs(U,) = sign(c,(0)) = {
Hence we have thus shown, that regrouping makes rs(U,) a function
of wind(c), i.e. a dependent invariant which is completely covered by
si(U), finishing the proof. O

Therefore we now proved that the regrouping sign is needed for a
complete classification of BDI-admissible bulks U, if we fix the cell
structure and do not allow regrouping. If we do allow regrouping,
we can regroup U and U’ after flattening, making rs useless, since it
depends only on s1(U) = si(U’) respectively, and thus is the same for U,
and U/. That is, in the setting of flexible cell structures, st is a complete
homotopy invariant for BDL.

Let us now analyse completeness for CII. We know from (7.45) that
nbg(k) = E(—k)nb, which is the same as for BDI. The difference is
now that (7.24) implies 17 = —1 for symmetry type CII, which means
that the chiral blocks are of even dimension. This restriction to even
dimensions obviates the introduction of an additional invariant, as
Proposition 7.14 shows. Before we state the proposition, let us explain
why the regrouping sign is trivial in the case of CII:

The admissibility condition for E(k) implies that for k, € {o,+m},
E(ko) commutes with 7. Furthermore, from (4.3) we learn, that for
any ¢ s.t. E(ko)cp = e'“¢, there is Ny ¢ s.t.

B(ko) (1) = e™ (). (7.66)

But since n; = -1, ¢ and 7, ¢ are orthogonal and hence independent
eigenvectors. This implies that the dimension d’ is even and we can
write it as d’ = 2d”. Reordering the eigenvalues s.t. w,j—; = —w,; for
all j =1,...,d”, implies that
2d” d”
det E(ko) = 1_[ 'Vl = rl elVai1p iV = 1, (7.67)
J=1 J=1

Thus we showed, that the sign of c(k,) is an invariant for all bulks of
CII, but with the same trivial value. Therefore, it does not contribute
to a classification. The following proposition shows that si suffices as
the index for a complete classification:

Proposition 7.14 (Completeness: TI, CII)

Let p be a representation of CIl and let H = ¢*(Z) ® C? be a rigid cell
structure. Then, the classification of bulks on H through st is complete.

That is, any two bulks U, U’ such that si(U) = si(U’) are gentle perturbations



7.3 COMPLETENESS

of each other that keep translation invariance w.r.t. the cell structure along the
way.

Proof. Most of the proof is completely analogous to the proof of Propo-
sition 7.10 for AIIL That is, we transition from U and U’ to the flat-band
form in chiral block form. These are each determined completely by uni-
tary loops B (k) and E’(k), which are admissible for 7; in the sense of
(7.45). Similarly to the BDI-case, admissibility reduces the analysis to
[0, ], since [—, 0] follows by symmetry. Hence for the endpoints E(ko)
and E’(ko) for k, € {o,£m}, we are left with paths in the orthogonal
group of finite dimension d’, denoted O(d’). But the discussion before
this proposition showed, as opposed to BDI, that for CII, c(k,) = 1.
Hence the endpoints lie in the same connected component, namely the
connected component of the identity in O(d”) denoted by O*(d’), and
can thus be connected.

The windings of E(k) and E’(k) coincide due to their matching §i,
and therefore we are left with two paths within the unitary group
U (d") which have the same winding number. In order to connect these
two, we use that the set of 7,-commuting unitaries is connected to
the identity in the case of CIL. This is due to 77; = —1 which by (7.66)
forces the eigenvalues to come in pairs, allowing to continuously move
the spectrum to +1 without changing the eigenvectors, keeping the
symmetry. This makes the case CIl differ from BDI, where 7; = +1.

Returning to the overall path, since O*(d’) is contained in U(d’),
there is a contraction B; (k) between B (k) and E’(k) for all k € [-mt, ]
which is periodic at the boundaries and fulfils all the required con-
straints, finishing the proof. m]

We have thus seen that the chiral block form provides a signifi-
cant simplification in proving completeness for symmetry types with
a chiral symmetry y present that squares to 1. In the cases Alll and
CI, a1 provides a complete classification within the set of bulks, even
if restricted to rigid cell structure. For BDI, if we allow flexible cell
structures (or at least allow regrouping once), 8 provides a complete
classification as well. Restricted to rigid cell structures, we had to intro-
duce the regrouping sign rs. Together with s, it provided a complete
classification in the rigid setting for BDI.

In the following chapter, we will proceed to the examples and visu-
alize the results of this thesis.
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In this chapter, we provide multiple examples, applications and visu-
alizations of the theory that was derived in this thesis.

In Section 8.1, we provide a translation invariant example that gener-
ates all values of the symmetry index. This shows that in every setting
that was described, the sets that are labelled by symmetry indices are
non-empty. After that, we consider the Split-Step-Walk in Section 8.2,
which serves as the iconic example to show the splitting and joining
of bulks (Section 5.5), the bulk-boundary correspondence (Section 5.3),
forgetting about symmetries (Table 2), the index as a winding number
(or bulk-invariant, Section 7.2) and the exponential decay at the bound-
ary (Section 6.2). In Section 8.3, we introduce a browser-application
called the Split-Step-Explorer, which we developed to visualize many of
the aforementioned features of the Split-Step-Walk, together with a brief
explanation on the corresponding web page [Stal5a]. The Four-Step-
Example we introduce in Section 8.4 shows how the simple Split-Step-
Walk can be generalized to a slightly more complicated example, that
is still easily classified by our general theory. We modify the example
to explicitly break two out of three symmetries, which leaves a larger,
but also coarser class of less symmetry, that corresponds to forgetting
about these two symmetries. Finally, in Section 8.5 we provide a non-
translation invariant Split-Step-Walk that is described by our general
theory and still permits precise statements about the symmetry indices,
as long as the spatial position does not vary too wildly.

8.1 TRANSLATION-INVARIANT GENERATOR

The previous chapters provide a list of different (symmetry-) indices
with corresponding results stating on the one hand the invariance of
the indices w.r.t. perturbations that still follow certain constraints, on
the other the completeness of these indices. Searching for the best! set-
ting for every theorem, it was often necessary to adjust the assumptions
for a given chapter. Throughout this thesis we learned, that quantum
walks, which satisfy discrete symmetries of the tenfold-way, are not
necessary the best object to look at for each part of the classification.
Therefore, the assumptions of the setting regarding the basic objects
ranged from essentially local essentially unitary operators (ELEU) to
translation invariant strictly local unitary operators, i.e. translation in-
variant quantum walks. The allowed homotopies respectively ranged

Usually, best means most general. But if there are multiple parameters to tweak, it is
often hard to find the right compromise between generality and applicability.
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from gentle perturbations that are translation invariant w.r.t. a rigid
cell structure along the way, to merely compact admissible perturba-
tions that are essentially local.

Therefore, it is even more remarkable, that there is an example, that
is compatible with all the different settings, the so called translation-
invariant generator W,. With slight adjustments, it serves as a generator
for the index groups I(S) that correspond to the different (non-trivial)
symmetry types of the tenfold way (see Table 1).

In order to write down the generating example, let H = {*(Z) ® C?
be the Hilbert space of a typical Qubit on the 1D-lattice. Then, for a
suitable basis |x,s) with x € Z and s = +1, we define W, as

Welx, +) =ilx—1,-) Welx, =) =ilx+1,+). (8.1)

As can be seen in Figure 8, W, simply swaps basis elements of opposite
spin in neighbouring cells and multiplies with i. The multiplication
with i ensures that Wg? = -1, and hence the whole spectrum of W lies
at +i. Furthermore, W, commutes with the simple translations

T|x,s) =|x+1,s), (8.2)

and is thus translation invariant w.r.t. the rigid cell structure.

- DAL,

-3 -2 -1 0 1

Figure 8: Schematic picture of the action of W, on the basis elements |x,s),
denoted by a black dot. The walk multiplies the coefficient with i
and swaps the basis elements as indicated by the arrows. In this
form, by following the arrows, one can clearly identify the red box
as the kernel of PW,P, where P denotes the projection onto the
non-negative half-chain as indicated by the grey separation line.

This lucid choice of the basis has a disadvantage, namely that we
cannot stick to our usual convention to pick an n-real basis. Let us look
at how the complex conjugation? K commutes with W,:

KWglx,s) = Ki|x +s,—-5) = —i|x +5,-5) = W;le,s>, (8.3)

where in the last step we used W, = —W; due to W; = —1. This shows,
that in this choice of basis, K represents a time reversal symmetry 7,
which squares to +1. Furthermore,

ylx,s) =slx,s) (8.4)
is an obvious choice for a chiral symmetry y, since

Weylx,s) =s-ilx+s,—s) = =sWg |x,s) = yWg |x,s). (8.5)

2 Note that we choose K s.t. the basis |x, s) is real w.r.t. K, i.e. K|x, s) = |x,s).
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Thus, y squares to +1 as well, and with n = 7y, we see that in this
form, W, is a translation invariant quantum walk of symmetry type
BDI. Performing the Fourier transform w.r.t. T, we can read off

~ o iek
W (k) = (ie‘ik . ) . (8.6)
This allows us to easily determine the symmetry index si(W) by using
Theorem 7.3. Since y is already diagonal in this basis, W,(k) is already

in chiral block form and
B(k) = ie'* (8.7)

denotes the upper right block. Since it is a 1 X 1-matrix, its determinant
and trace are trivial, and we get3

Si(Wy) = — /dkt (B (k)dB(k)) 1. (8.8)

If W, were not translation-invariant, we would have to determine
s1(W,) via Definition 5.8 and Definition 5.7 as

Si(W,) = si(PIm W¢P). (8.9)
That is, we have to compute the trace of y on the kernel of P Im WP,
as follows from the derivation of the symmetry index for BDI in Sec-
tion 4.4. The definition of the imaginary part yields

ImWy = — (wg W;) = —iW,, (8.10)

which tells us that it acts only on its direct neighbours. Moreover,
Im W, simply swaps |x, +) and |x — 1, —) with each other, while P acts
like the identity on |x, s) for all x > o. That leaves only one candidate
for the kernel of PIm WP w.r.t. the Hilbert space PH. That is |o, +),
since it gets mapped by Im W, P to | — 1, —), which is projected away by
P. This could similarly be deduced from Figure 8. Hence we identified
the null space of P Im W, P as the span of |o, +), and we can determine
s1(W,) as the trace of y on this space by reading off the eigenvalue of
y for the eigenvector |o, +), that is

Si(W,) = 1. (8.11)

If we choose p’ as the inverse representation in the sense of Proposi-
tion 4.8, that is, we define

Y ==y =1 n =1, (8.12)

the whole argument runs as before with the only difference being that
y has flipped the eigenspaces, implying a sign flip in §'(W,). That is,

Clearly, one could have just as easily read off the winding of this trivial curve, leading
to the same result.
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with p and p’, we can create a representation p, = p @ p’ such that for
W, & W,, we have

SI(W, ® W) = Si(W,) +351"(W,) = o. (8.13)

Here, we choose the new basis in H & H such that we double the
dimension of the coin space. That is,

(Iep)e(x)ey) - lx)e(Pp®o)+[x) (e ). (8.14)

In Figure 8 this corresponds to combining both half-chains one below
the other.

Similarly, we can combine an arbitrary number of p and p’ to create
a new representation p” and a suitable direct sum of multiple W, to
create every value s1 in I(BDI) = Z. Hence we have fully generated the
index group for BDL.

How can we use this example for other non-trivial symmetry types?
As Table 2 shows, forgetting about the existence of 7 (and hence 7 as
well), leaves us with symmetry type Alll. In this case, the symmetry
index is determined exactly as before, thus this case is already treated
completely.

Forgetting about y and 7, hence leaving only 1 leaves us with symme-
try type D. This case is not covered by the winding formula, since it is
not (recognized as being) chiral symmetric. But the general way works
as before, and we determine the index as described for D in Section 4.4.
That is, §(Wg) is again determined via the null space of PIm W,P,
which is the span of |o, +). On this space, p is one-dimensional and
with si(p) = d mod 2, we have §(Wg) = 1. Here, 1 denotes the gen-
erator for I(D) = Z,. In this case, doubling W, as for BDI, we find
si(Wg @ W,) = o. Hence we generated all values of the index group
I(D) = Z,.

The remaining two non-trivial symmetry types are CII and DII,
which both possess an antiunitarily represented symmetry with square
—1. This causes the values of the symmetry indices to double, since the
eigenvectors spanning the null spaces always occur in pairs. Therefore,
itis plausible to look for examples that are direct sums of W, (and W2),
similar to the way we generated the different values of I(S).

For symmetry type CII, we choose the new generator as

W, = Wy © W, (8.15)

It is admissible for y. = y @ y, where y (and likewise T and ) denote
the symmetries from the non-doubled example of W, in (8.4). With
n = y1, we define

nc=(° "7), .t n§=(_” ? )=—11, (8.16)
n o >
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and admissibility of W, for 7, follows directly from admissibility of
W, for n,i.e. Wen = nW,, s.t.

T]CWC = o _TYWg — o - 877 — WCT]C- (817)
nWe 0 Wen 0
As always, 7. is determined via (2.27) and we have
0 T
Ve =1NcTe < MNcYe="Tc = Tc= ( ) (8.18)
-7 0

That is, admissibility for 7. follows directly from admissibility4 for
7, and we can conjugate with V from (7.56) to bring W, into chiral
block form. Completely analogous to Lemma 7.13, we can read off the
relevant chiral block B c(k) from (8.6) and get

.= |B® © (8.19)
o B(k)
Using Theorem 7.3 as in (8.8), we get
S(W,) = — / dk tr (l 0) =2 (8.20)
27 J_n o i

Comparing with the result from the general theory is even easier, as we
quickly check. We have to determine the null space N in the doubled
case, where

ImW, = %(WC — W) = —iW,. (8.21)
Hence the kernel is similarly spanned by |0) ® (|+) ®0) and |0) ® (0 ®
|+)). There, ) acts as y on each eigenvector individually, and we have

SIW,) =tryy =2 (8.22)

as before. The algorithm to generate the whole index group that was
used after (8.11) for BDI is now similarly applicable to CII, and yields
I(CII) = 2Z as expected.

Finally, let us introduce a generator W, for DIII,

Wy = Wy & W, (8.23)

To compare the action of W; and W,, see Figure 9. Similar to CII, we
introduce doubled symmetries, but switch the roles of 1 and y s.t.
n; =1and y; = -1. That is, we choose®

R I
o N 1 o n o

4 This is only shown directly to provide self-consistency. Admissibility for 7, has to
follow directly from admissibility of y. and 1. by construction.
5 In this case taking the squares into account, we have 75 = ngy;.
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W2

-+
-3

)
2 - (6} 1 2 3

Figure 9: Schematic picture of the action of W, = W, & W, for Cll and W =
Wy & W; for BDI on the new basis elements that stem from the direct
sum of two |x, s), denoted by a black dot. The blue arrow denotes
the action of Wy, that is multiplication with i and swapping basis
elements as indicated. The green arrow denotes the action of W,
or Wy = —W,, depending on the sign of +i. Similar to Figure 8,

one identifies the red boxes as the vectors that span ker (PW.P) =
ker (PW,;P).

Note that this choice does not need a chiral or time-reversal symmetry
of W, only n from symmetry type D is required. Since for DI, we
have not proven a translation-invariant formula, we have to use the
general approach in this case as well. Thus, we compute the null space
of PIm W,P as before. Since Wg, =Wy,

Im Wd = (Wd - W;) = —in, (8.25)

L
2i
and the kernel of W, is computed using

ker (W;,) = ker (- W) = ker (W,). (8.26)

We see that the vectors |0) ® (|+) @ 0) and |0) ® (0 @ |+)) span the null
space as in the case of CII before. Using the index formula si(p) =
d mod 4 for DIII, we find that s1(W,) = 2, which serves as the generator
of the group 2Z, as described in Section 4.4.

The simplicity of W¢ should allow to generate similar examples for
more intricate representations p. One would hope to be able to show
that for every (non-translation invariant?) p, there is an element W,
that generates the full group I(S). But it is not clear whether such a
general statement is even possible. Certainly, it is beyond the scope of
this section.

8.2 THE SPLIT-STEP-WALK

The iconic example found throughout most of the literature regard-
ing topology in quantum walks was (to our knowledge) introduced
in [Kit+10], and treated in [Kit12; Asb12; AO13; TAD14]. It is called
the Split-Step-Walk. For many authors, it served as a testing environ-
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ment for topological phenomena like symmetry indices for translation
invariant systems, or signatures of eigenstates localized at a bound-
ary. In its typical form, it is a quantum walk which is admissible for
symmetry representations of BDI, and by forgetting about symmetries,
can serve as an example for D and AIll as well. Using the doubling
procedures introduced in the previous section, it could even serve as
an example for all symmetry types of the tenfold way.

As was already mentioned in the introduction, after defining the
Split-Step-Walk, we will apply many techniques that were derived
earlier in this thesis to join different bulks, verify the bulk-boundary
correspondence, forget about symmetries, compute the symmetry in-
dex in multiple ways and finally determine the exponentially decaying
eigenfunctions at the boundary, if present.

The Split-Step-Walk W is an alternating product of shifts and two-
dimensional coin operations, i.e. a coined quantum walk as defined in
Definition 3.3. More precisely, W is a translation invariant quantum
walk on the line with two-dimensional coin space, that is a strictly
local unitary operator on H = ¢*(Z) ® C* defined as

W = BS|AS;B. (8.27)

On the canonical cell structure, the shift operations S|, St are minimal
shifts in the sense of Definition 3.2. Thus, we fix a basis w.r.t. these
shifts which we call spin up and spin down and denote with + and —
respectively. We introduce the two shift operations

STlX, +> = |.'X +1, +> Sllxr +> = |x/ +>
ST'X, _> = |xr _> Sllxl _> = |x -1 _>1 (828)

where S¢ shifts spin up vectors to the right while leaving spin down
vectors untouched, and S| shifts spin down vectors to the left while
leaving spin up vectors untouched. Note that the product 515 is the
standard shift S in the quantum walk literature that was e.g. introduced
in Section 3.1. The coins A and B are unitary operators that are block
diagonal with respect to the spatial structure, i.e.

A= @Ax B= @ B,. (8.29)

xeZ xeZ

Thus in the general case, the coins can be chosen non-translation in-
variant, as we need later on the one hand for splitting and joining, on
the other when transitioning to Section 8.5. Additionally, we assume
that A and B themselves are admissible for the symmetries that will
be introduced shortly. Since coins and symmetries are assumed to be
block-diagonal, this admissibility constraint reduces to admissibility
of Ay and By w.r.t. the on-cell symmetries.
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The representation p on H for symmetry type BDI will now consist

of
n=K y=Po t=ny=oK (8.30)

xeZ xeZ

where K denotes complex conjugation which is real w.r.t. the basis
chosen by the shifts, and o, denotes the first Pauli-matrix o; = (9§
which flips the spin.

Since 1|x,s) = |x,s), n commutes with Sy and S|. The assumed
admissibility of A and B for 1 then implies that A, and By have real
matrix elements w.r.t. the basis chosen. Therefore, the n-admissibility
of each factor of W implies that W is admissible for 7.

The chiral symmetry y simply flips the spin, and we have
VST|X/ +> = |.X' +1, _> = SIV|x, +>

ySilx, =) = |x,+) = SIylx,—). (8.31)
Exchanging St and S| leads to a similar expression, and we get

S =5y 51 =57 (8.32)
The coin operations A and B are admissible for y, if

Axoq = 0,A% and Byo, = 0B}, (8.33)

which from now on, we assume to hold. Then, we can simply see that
W is admissible for y, since

yW = yBS|AS;B = B'S;A'S|B" = W'y. (8.34)

This special alternating form, which is a concatenation of coins and
shifts that is symmetrical up to flips of the shifts w.r.t. the central coin A,
reminds of a palindrome. Thus, we refer to this form as y-palindromic.

Since 1 and y square to +1, and hence T = ny as well, we confirm
that W is of symmetry type BD], if n and y are both part of p (and are
thus not forgotten).

In the following, we choose different rules for Ay and B, to allow
different settings. Firstly, we choose the setting of bulks, which means
that translation invariance fixes the coins for all x. Using the standard
rotation matrix R(0), i.e.

R(0) = ¢1940 = cos(0) sin(0) (8.35)
—sin(8) cos(0) '

where 0, denotes the second Pauli-Matrix o, = (¢ /), aBDI-admissible
choice for the coins is

Ay =R(6,) By = R(%:/2). (8.36)
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This is easily checked: n-admissibility follows, since R(6) has real en-
tries. For y, we see that

—sin(0) cos(0)

o=R(8) = ( cos(0) sin(0)

) = R*(0)ox, (8.37)
implying admissibility of A and B for y.

The translation invariance allows us to transition to momentum
space by applying the Fourier transform as in Section 3.3. Since R(0)
is block diagonal in position space and independent of x, it is left
unchanged by Fourier transform, and we have

W(k) = R(:/2) (1 0
o e’

R(6,) (Eik O) R(0:/5). (8.38)
(0] 1

This can be decomposed into the right-moving, left-moving and
still-standing parts, which correspond to the three non-vanishing coef-
ficients in the Fourier expansion of W (k). We get:

W = (1 + cos 6;) cos O, sin 6, cos 0, )
L=

—sinB,cos B, (1—cosB)cosH,
w1 —(1 —cos 0;) cos 6, sin 6, cos 0,
- —sin 0 cos 0, (14 cos 6;) cos O,

—sin6;sin6, cos B, sin O,

W, = ) . (8.39)

—cosO;sin@, —sin 6, sin O,

To determine the spectrum of W(k), we use the fact that in the non-
trivial cases, there will always be y or 1 (or both), even after forgetting
symmetries. But (4.3) shows, that the spectrum is symmetrical w.r.t.
the real axis, and hence (using (3.32)) we can diagonalize W(k)

— iw(k)
W) = v |° ©

) V(k), (8.40)

o e—ia}(k)

where V(k) is the unitary matrix that diagonalizes W(k). Using that
the trace is invariant under cyclic permutations of factors, we have

eia)(k) o

tr W(k) = tr{ V*(k) ,
{ e—z(u(k)

V(k)} = 2cos w(k). (8.41)

The left hand side of this equation is easily computed from (8.38),
leading to

cos w(k) = cos k cos O, cos 6, — sin O, sin O,. (8.42)

For different values of 0,, 0,, we can analyse the dispersion relation. In
order to satisfy the gap condition for W, there must not be any essential
spectrum of W at +1. Since translation invariant operators have only
essential spectrum, we need a proper gap at +1, or equivalently, w(k)
has to have a gap at o and 7. Values for 0, and 0, where this is not
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the case do not create admissible walks and are hence excluded from
our theory. Solving (8.42) for these values leads to

Wo, 0, admissible & PneZ: 0,+0,=n-m. (8.43)

Figure 10 shows different dispersion relations for different values of
0: and 0,, as well as the parameter plane with the excluded values.
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Figure 10: Dispersion relations for the Split-Step-Walk with different values
of the angles 0, and 0, that fix the translation invariant walk.
The walk in (a) is clearly not admissible, since it violates the gap
condition at w(k) = 7 = —7. The parameters for (b) are very close
to (a) and we see that the gap just opened. (c) provides another
walk which lies close to the gap at o but is still admissible. (d)
shows the parameters of the different walks from (a)-(c). The white
lines denote gap closures of the dispersion relation. Thus, the gap
condition there is violated and walks from these parameters are
excluded from our theory.

In the next step, we want to determine the symmetry index si(W) for
the different values of 0, and 0,, where the resulting W is admissible.
Since W is a translation invariant quantum walk of symmetry type BDI,
we have a chiral symmetry y that squares to +1 such that we can use
the winding formula from Theorem 7.3 to determine Si.
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We need to find the chiral block form for W(k). y acts like o; on
momentum space operators. o, is then diagonalized by V:

1 0 1 (1 1

o, =V* % V=— . (8.44)
' o -1 V2 (—1 1)
Therefore, the chiral block form is given by

viviv: = | A® - BE) (8.45)

—B*(k) D(k)

and we get

E(k) = cos 0, sin 0, + cos 62( sin 0, cos k + i sin k) (8.46)
with derivative

di—;{k) = —cos 0, (sin O, sink + i cos k). (8.47)

Even if E(k) is continuously differentiable, it is easier to determine
the value of si(W) without using the integral formula. This is due to
det E(k) =B (k), allowing us to read-off the winding number of this
element easily, since it is an ellipse in the complex plane. It can be
constructed from the unit circle by scaling it with cos 0,, then scaling
the real part by sin 0,, and finally shift by cos 0, sin 0, along the real
line, see (8.46). Figure 11 provides a visualization of the winding of the
element, as well as the coloured parameter plane indicating si(W) for
each pair of 0; and 0,. Now that we know the symmetry indices of W,
considered as a translation invariant quantum walk of symmetry type
BDI, we can deduce st for the settings AIIl and D. Since AIll is chiral
symmetric with y* = 1, the index formula for & leads to the same
result and we can refer to the parameter plane in Figure 11. Again, we
can use the index formula

Si(W) = si(PIm WP) (8.48)

and deduce si(W) for symmetry type D. That is, after determining
ker PIm WP, we have to apply the index formula for symmetry type
D from Section 4.4 to determine si for D. In the case of BDI, we have
si(p) = try, and in the case of D it is si(p) = d mod 2. This suffices to
deduce s1 for D from BDI, since

d mod2=(d;+d-) mod2 = (dy —d-) mod2=try mod2. (8.49)

Hence si for D follows from applying mod 2 to i for BDI. Clearly, what
we have done is, we verified the forget homomorphism from BDI to
D from Table 2 by hand. The resulting parameter plane is shown in
Figure 12. In the next step, we want to drop translation invariance and
verify the gentle decoupling theorem from Theorem 5.20. More precisely,
we find admissible unitary decouplings V s.t. W = VW differs from
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(a) trivial / undefined winding (b) non-trivial winding of det B(k)
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(c) parameter plane for W

Figure 11: Winding of det B(k) for the translation invariant Split-Step Walk.
The black winding in (a) stems from point A in the parameter plane
of (c). It lies on a white line and is hence not covered by our setting.
The winding number is undefined since it crosses the origin. The
grey path for D does not wind around the origin and hence corre-
sponds to si(W) = o. The blue winding in (b) corresponds to B and
Ssi(W) = 1, while the red winding corresponds to C and si(W) = —1.
We added colours in (c) to indicate the value of si(W) matching
the colour of the windings from (a) and (b). That is, red denotes
—1, blue denotes 1 and grey denotes o. The coordinates of A, B, C
match with those in Figure 10, while D has 0; = —% and 6, = —%.



8.2 THE SPLIT-STEP-WALK

\ \
—Tt _I 0

\
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Figure 12: Parameter plane of the Split-Step-Walk for symmetry type D. The
white lines denote non-admissible walks, while grey indicates
si(W) = o and blue indicates si(W) = 1.

W only at a neighbourhood around the decoupling site x = o. By
definition, a decoupled operator W’ is then given as

W' = WL & Wg, (8.50)

where each half-space-walk acts only on (1 — P)H and PH respectively.
The criterion for a decoupling is thus commutativity with P. Clearly,
W and W’ are compact admissible perturbations of each other. Hence
the relative index of W and W from Section 5.4 tells us, whether these
perturbations are gentle or not. If si(W : W) # o, we know that the
absolute indices si; of W and W’ differ, rendering the perturbation
non-gentle.

Let us now proceed to find minimal decouplings for W at x = o.
These are decouplings, where W is modified only on those |x, s), that
are reached after applying W once to any vector localized at x = o.
For this argument, we return to the general setting of admissible W,
which are not necessarily translation invariant, but where A and B
are direct sums of potentially varying A, and By. Since we only need
commutativity with P, and B already commutes with P, because it is
block-diagonal w.r.t. position, the decoupling at x = o is only decided
by S| AS4. Due to the unitarity of W and V, we only need to check that
S|AS; leaves PH invariant, because the invariance of (1 — P)H then
follows by unitarity.

W is a nearest neighbour quantum walk, and therefore we only have
to look at the action of W on |o, +), because no element of PH that is
orthogonal on |o, +) can be mapped to (1 — P)H due to the maximal
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jump length of 1. Furthermore, we can rule out every contribution from
lo, +), due to

S ASqlo,+) = S|Al1,+) € PH, (8.51)

and the fact, that S| shifts at most by one step. Let A, denote the
modified coin of the decoupled operator, s.t.

Ap =

e (8.52)
a—y ad__

Then, n-admissibility demands that the matrix elements are real, while
y-admissibility for A demands that

0:A0 = Aj04 = ey = a0__. (8.53)
The action of S|AS; on |0, —) can now easily be determined
S|AStlo,—) = S|Alo, =) = (as—|o,+) +a__| —1,-)). (8.54)

This lies in PH if and only if a__ = o. Together with (8.53), this implies
that A, has to be purely off-diagonal if W is supposed to be decoupled.
Furthermore, unitarity of A demands that a,_ and a_, lie on the unit
circle, which leaves only four cases due to 7-admissibility:

Case 1: Aoy = R +0,
+1 (6]

Case 2 ; Ay =|° ﬂ) — +ig, = +R(}2). (8.55)
F1 (6]

Figure 13 provides an explicit example of the matrix elements belong-
ing to a Split-Step-Walk that was decoupled by A, = -0, that is a
non-gentle decoupling corresponding to case 1. Having found all min-
imal decouplings for the Split-Step-Walk even in the non-translation
invariant case, let us now return to the translation invariant Split-Step-
Walk, where A, = R(6,) and B, = R(9/2) for all x € Z. In case 2, since
the rotations R(6) are all connected, admissible and continuous in 6,
we can find a path

Wi = R(%:/2)S R(O(£))S1R(%:/2), (8.56)

with 0(t) = (1 —1t)0, £t - /2 such that the decoupled W' = W; is a
gentle perturbation of W = W,

In the first case, note that the spectrum of R(6,) (that is, A, before
the perturbation) consists of e*'%_On the one hand, since R(6,) is ad-
missible for 17, an admissible and norm-continuous (i.e. gentle) pertur-
bation can only move these eigenvalues symmetrically®. On the other
hand, we see that A, has eigenvalues —1 and 1, with non-degenerate
eigenvectors. Since BDI-admissibility fixes these eigenvalues, there is
no way to move them without dropping either unitarity or admissibil-

6 This is the same argument as in the introduction to Section 4.3.
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_37
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Figure 13: Matrix elements W} , of a decoupled Split-Step-Walk where 6, =
/3 and 0, = /4. Each 2 x 2-block Wy , represents the four spin-
combinations in the coin space as in (8.52). n-symmetry forces
each of them to be real. The black lines mark the block decompo-
sition w.r.t. the projection P onto all cells H, with x > o and its
complement 1 — P. The translation invariant walk W is modified
only at x = o by setting A, = —0,. Due to the shifts Sy and S,
this changes only the matrix elements in a direct neighbourhood
of x = o. Since A, is a decoupling coin for the projection P, the
off-diagonal blocks are empty. That is, no state localized in PH can
be mapped to (1 — P)H and vice versa.

ity. Therefore, the compact (and local) admissible unitarity-preserving
perturbation by A, = +0, cannot be gentle.

In addition, we know that restricted to the +1-eigenspaces, y and W
commute, and we can choose the eigenvectors of W to be of definite
chirality, that is they are eigenvectors of y to eigenvalues +1 or —1.
Let W denote the walk before the perturbation, and W’ the walk after
perturbing with A, from (8.55). Furthermore, denote by N, and N}
the +1-eigenspaces of W and W' respectively. Then,

siz(W) = tra, v (8.57)

and W’ analogously. For an admissible compact perturbation that is
not necessarily gentle, the si. themselves can change. But Theorem 5.9
guarantees that

sit (W) +si-(W) = si(W) = si(W’) = si (W) +si_(W'), (8.58)

hence the overall change of the index has to vanish. Since W is a
translation invariant operator, the overall symmetry index si(W) van-
ishes (see Theorem 5.9), and hence si(W’) vanishes as well. In other
words, whenever a perturbation creates (or removes) a W’-eigenvector
at A € {+1} with chirality s, admissibility enforces that a second eigen-
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vector emerges, which has opposing chirality —s, such that their contri-
bution to trys y vanishes. For a compact, non-gentle perturbation, the
second eigenvector may emerge at +1 or —1, independent of A.

But if the perturbation is gentle, we know from Theorem 5.5 that si,
and si_ are each for themselves invariant. The consequence is, that for a
gentle perturbation, the eigenvalues at A must come (or go) in chirally
opposite pairs.

Thus we have just created four different decouplings for W, two
gentle and two non-gentle ones. Each of them modifies W only in three
neighbouring single cells, arbitrarily chosen to be centred at x = 0. In
addition, we know from Theorem 5.9 that si((W) = s1(W’) and si(W) =
si(W’), since both are invariant under arbitrary (admissible) compact
perturbations. Therefore, the parameter planes for W denoting si (and
hence —$§1) from Figure 11 (and in the case of D from Figure 12) are
both valid for W’ as well.

We have now reached the point where we can finally analyse com-
posed systems, that is join two different bulk systems and verify the
bulk-boundary-correspondence from Theorem 5.12. But before we use the
decoupling construction, let Wy, and Wr be two translation-invariant
p-admissible quantum walks. Furthermore, let W, be a crossover (see
Definition 5.11) between W; and Wg. That is W, agrees with Wy, far
to the left, and with Wy far to the right. Then, 5i(W,) coincides with
si(Wr), and s1(W;) with si(Wg). The bulk-boundary-correspondence
now predicts

si(W.) = —si(Wp) + si(Wg). (8.59)

Thus, if Wi, and Wr are in different topological phases, i.e. SI(Wy) #
si(Wg) and we have

si(W¢) = silm W,) # o. (8.60)

But a non-vanishing si(Im W,) demands that W, has at least one eigen-
vector corresponding to eigenvalue +1 or —1, hence an eigenvalue in
the gap. Since s1 (and hence s1(Wg) — 51(W)) is invariant w.r.t. compact
admissible perturbations, we can neither locally nor compactly perturb
the walk s.t. this topologically protected eigenvector vanishes; at least not
without breaking the symmetries. Moreover, Theorem 6.9 guarantees
that these eigenvectors are localized at the boundary, and decay expo-
nentially in the bulk. This is where a decoupling proves its strength:
exponentially decaying eigenvectors of a decoupled walk are localized
on one side of the cut, hence are supported only in one of the two bulks
that were joined.

The gentle decoupling theorem allows us to decouple any admissible
quantum walk W without changing its indices. That is, the resulting
W’ has the following form

W =W,@Wr W.=(1-P)W(@-P) Wg=PWP, (86l)
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and the indices si. and s1, &1 both coincide for W and W’. More precisely,
we know from Definition 5.8 and Theorem 5.9 that

(W) = si((1- PYW(L - P)) = si(Wy) = §(W"),
Si(W) = si(PWP) = si(Wg) = Si(W’). (8.62)

Now, this allows for the simplest kind of composition. That is, we can
create arbitrary pairs of Wy, and Wr stemming from different quan-
tum walks that are admissible for the same symmetry representation.
The resulting crossovers W, then represent any desired combination of
si(W,) and Si(W,). Furthermore, the decoupling simplifies searching
for eigenfunctions considerably. That is, eigenvectors can always be
chosen to be localized only on the left or right side of the cut, which
makes the boundary conditions especially simple.

Returning to our example, we know that gentle and non-gentle de-
couplings for the translation invariant Split-Step-Walk are given by
(8.56). Let Wi, and Wg be left and right half-space quantum walks that
stem from two different translation invariant Split-Step-Walks W (k)
and Wr(k), which were decoupled by potentially different methods
(e.g. by those derived before). Since these decoupled walks cannot be
translation invariant any more, the restriction to essential spectrum
alone is lifted and thus additional eigenvectors might have emerged in
the process. But in general, one can simply construct a different pertur-
bation and make these additional eigenvectors vanish or correspond to
different eigenvalues. What we are interested in are eigenvectors that
are topologically protected, that is, eigenvectors that cannot be removed
by engineering the crossover between the two joined walks differently.

Their crossover W, = Wy @ Wg is then still a decoupled quantum
walk, and hence eigenvectors of W;, and Wgr become eigenvectors of
W, corresponding to the same eigenvalue as before. With the help
of Theorem 6.9, let us now explicitly determine the topologically pro-
tected eigenvectors of the translation invariant Split-Step-Walks that
are decoupled by (8.55). By the above reasoning, if we then create
crossovers W., we know that the topologically protected eigenvectors
of the corresponding side of the cut simply carry over to the respective
We.

In this approach we solve the eigenvalue equations for a translation
invariant Split-Step-Walk W as a recursion relation in the bulk

Wo =s¢ P =Xxo, (8.63)

where s = +1 and xy = +1. This yields exponential solutions, and
selecting those solutions satisfying the boundary conditions imposed
by the method of decoupling leaves us with the valid topologically
protected eigenstates.

Let W(/\) be defined as in (6.48), that is

W(A) = Z W,A%, (8.64)
zeN
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where W, are the Fourier-coefficients of W that where computed in
(8.39). The decay coefficients A are then the solutions to

det (W(A)-s1) = o, (8.65)

as described in Theorem 6.9. In that section, no additional assumptions
on admissibility were to be satisfied. But in this case, the fixed chirality
X from y¢ = x¢ simplifies the equations, since any solution ¢ has to
satisfy

P(x) = c(x)o, (8.66)

where ¢, is an eigenvector of the action of y on the single cells, that
is 04, and c(x) is a suitable complex coefficient that normalizes ¢. The
eigenvectors of ¢, can be chosen as

Po = (I1+) +x|-)) = (1) (8.67)
X

such that c(x) are real coefficients by the choice of n as complex con-

jugation, which leaves the basis elements |x, s) invariant. Thus, taking
chirality into account, (8.65) is replaced by

W()\)(l) =s(1). (8.68)
X X

The solutions to this equation are the decay coefficients A,

cos O_ — xsin 0,
cos O_ + xsin 0,
sin 8- — y cos 6.

A, = 8.69
X sinO_ + y cos O, (8.69)

/\+X =

where 0. = 2(0; £ 0,). Since As; - As— = 1, there is always7 exactly
one solution that provides exponential decay to the right |A| < 1, and
exactly one solution that provides exponential decay to the left [A| > 1.
Hence in our case we have only one decay coefficient A for every can-
didate ¢, and the ansatz from Theorem 6.9 yields up to normalization

Pr(x) = (Asy)” (1) Vx > o, (8.70)
X

if |A] < 1, and ¢r(x) = o for all x < o. The ansatz for eigenvectors
localized on the left-hand side is then

Pr(x) = (Asy) ™ (1) Vx <o, (8.71)
X

if [A| > 1,and ¢r(x) = oforall x > o.

7 The case Asy = 1 = As_ is excluded since these values of 6; and 0, correspond to
non-admissible walks, indicated by the white lines in Figure 10.
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The fact that the walk is a nearest neighbour walk could make it
necessary to determine the value of ¢ (o) differently, such that it satisfies
theboundary condition imposed by the specific crossover. Theorem 6.9
and p-admissibility provided necessary conditions for the eigenvectors
that correspond to eigenvalues in the gap, but if these vectors do not
satisfy the constraints imposed by the decoupled walk at the boundary
x = o, they are no eigenvectors for W at all. As was already suggested
in (8.58), the different choices of A, that determine how the decoupling
is made now impose different boundary conditions for ¢; and ¢r.

Checking the eigenvalue-equation for every combination of s and
X for both ¢r and ¢ and all four different decouplings lead to
an intricate case distinction that can be followed in all detail in the
Mathematica™ file [Sta15b] which was published as supplementary
material along [Ced+15]. The combinations of y and s for the different
choices of A, that satisfy the boundary condition are also represented
shortly. Note that in this example, allowing for an arbitrary ¢ (o) never
made ¢ satisfy a boundary condition it did not satisfy already by ex-
tending the definition of (8.70) to ¢r(0), or setting ¢1(0) = o. That is,
the simplest choice for ¢ (o) always sufficed. This allows us to deter-
mine the normalization constant, which by the geometric series and

llpoll = V2 leads to

o) =y 22l (1 (1) Vx> o,
X
r(x) = 4 — X MZSX|_2 (Asy) ™ (1) Vx <o. (8.72)
X

The candidates for eigenfunctions on the respective side of the cut are
represented in Table 3. We see that there are at most two topologically

oL X=1 X=-1
s= 1 (14, 2+) (1—,2-)
s=-1 (1—,2-) (1+,2+)
PR X=1 X=-1
s= 1 (14,2-) (1—,2+)
s=-1 (1—,2+) (1+,2-)

Table 3: The different combinations of s and yx that are compatible with the
boundary conditions imposed by the different A,. Here, the digits
with the sign denote the case from (8.55), with the corresponding
sign for the Pauli matrix, e.g. the cell (1—, 2+) denotes that decoupling
with —o; or with +io, yields an eigenfunction ¢r on the right hand
side with eigenvalue s = 1 and chirality y = 1. Note that satisfying
the boundary condition does not yet imply that the eigenvector exists
for every 6, and 0,.

protected eigenvectors at each side of the cut for each decoupling. But
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for e.g. ¢r to exist, it has to be paired with |As,| < 1, which strongly
depends on 6, and 0,. Hence only all constraints together decide about
whether we have zero, one or two topologically protected eigenstates
on each side of the cut. The areas where |As,| < 1 are shaded in
Figure 14.

61 61
s b
| |
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2 2 2 2
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(©s=-1 x=1 (d)ys=-1 x=-1

Figure 14: Parameter plane of the Split-Step-Walk. The green areas represent
[Asy] < 1, while grey areas represent |As,| > 1. Hence, if a Split-
Step-Walk has a candidate for an eigenvector that is compatible
with the boundary conditions of the decoupling as shown in Ta-
ble 3, the corresponding parameter plane in this figure indicates
whether the decay coefficient A, corresponds to a right eigenvec-
tor (|Asy| < 1) or a left eigenvector (|Asy| > 1).

Finally, this allows us to plot the eigenfunctions for two examples of
0, and 0, for all four decouplings, see Figure 15 and Figure 16. More
precisely, the plots show the real valued-coefficients ¢r(x), ¢pr(x) up
to the factor ¢,. This allows to distinguish whether the phase jumps
from site to site indicating whether A, is negative or positive, as
opposed to traditional plots that show only the probability p(x) =
l¢(x)||>. The inset used in the figure gives a quick overview about
the different symmetry indices as introduced in (5.57). Note that the
overall symmetry index si(W) is always o, which can be seen as follows:
W is a compact perturbation of a translation invariant Split-Step-Walk,
which has vanishing si by Theorem 5.9. But compact perturbations
leave S1 and st invariant, and therefore their sum si as well. The marginal
column sums lead to si((W) and s1(W), whose value is also indicated
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Figure 15: Exponentially decaying eigenfunctions at the cut point x = o for B

from Figure 10. The exact values of ¢ (x) and ¢r(x) can be found
in (8.72). The four different decoupling-coins A, generate differ-
ent eigenfunctions at the respective sides as predicted. For each
eigenfunction, a solid line denotes that the respective eigenvalue is
s = +1, while a dashed line indicates s = —1. Furthermore, a blue
colour refers to positive chirality x = +1, while a red colour indi-
cates x = —1. Thus, the emergence of an eigenfunction has direct
consequences for all relevant symmetry indices in the inset table.
Due to the invariance of & and si w.r.t. compact admissible per-
turbations, all four decouplings leave §i(W) = —1 and si(W) = +1

invariant, which is still the same value that the translation invari-
ant walk had before decoupling. On the one hand, for non-gentle

decouplings A, = +0;, the row-sums in the inset table show that

siy and si- can change, as opposed to &1 and s1. On the other, gen-
tle decouplings A, = £R(7/2) change neither §i, s, nor si.. The
exponential decay, as well as the site-wise sign flip in the case of
—1 < A < o are readily seen in the graphs.

151



152

EXAMPLES

1.0

0.8
0.6 -
0.4 ér(x)
0.2
0 -

-0.2 A
-0.4

ofd n
olo o
OHD—\

-0.6 T T T
6 -4 -2 0

(a) Ao = +01

1.0

0.8
0.6

0.4 ¢L(X) ‘\\

0.2 H

0 —
-0.2 H
-0.4 H
-0.6 T T T

6 4 -2 0

() Ao = +R("/2)

1.0

0.8
0.6
0.4
0.2

-0.2 A
-0.4

-0.6

1.0

0.8
0.6
0.4
0.2

-0.2 A
-0.4
-0.6

Figure 16: Exponentially decaying eigenfunctions at the cut point x = o for D
from Figure 11. The same analysis as in Figure 15 applies for this
example as well. Note that the Split-Step-Walk at these values of 0,
and 0, isin an area of si(W) = o = s1(W), and thus the column sums
of the 2 X 2-inset both have to vanish. That is, on each side of the cut
the eigenfunctions have to occur in chirally opposite pairs, which
is readily indicated by the differing colour on each side. While
the gentle decouplings A, = £R(7/z) may not change the row sums
si. (W) on the right, the non-gentle decouplings A, = +0, again can.
Nevertheless, all decouplings leave the overall sum of the indices,
si(W), invariant.
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by the colouring of the parameter plane. As explained in (8.58), since
case 2 denotes a gentle perturbation, it does not change the marginal
row sums si+(W). But +0, in case 1 is a non-gentle perturbation, and
therefore si. (W) can change. si, (W) and si.(WR) reflect whether an
eigenvector emerged at the left or the right side, whether it emerged
ats = +1 or s = —1, and whether it had chirality y = +10r y = -1, as
denoted by the inset, known from (5.57):

si+(WL) sis(Wg) | siv(W)
si_(Wp) si_(Wg) | si_(W) (8.73)
W) s | siw)

In conclusion, we have thoroughly analysed the translation invariant
Split-Step-Walk and applied many results from the translation invari-
ant, as well as general theory of the thesis to great effect.

The following section will briefly describe how these results were
visualized first in an interactive Mathematica-notebook, and then in
an interactive web-application that accompanied papers and posters
of this research.

8.3 SPLIT-STEP-EXPLORER

This interlude explains the motivation behind- and creation of the Split-
Step-Explorer, that was repeatedly mentioned throughout this thesis. It
is an important tool we used to properly understand, visualize and
communicate many results and applications of our classification of
quantum walks with discrete symmetries of the tenfold-way.

The everyday usage of Mathematica™ [Wol17] in our research mo-
tivated us to create a toolbox to test our predictions and conjectures
against the well-known examples. That is, we implemented the basic
building blocks that span the class of coined quantum walks, namely
arbitrary spin-dependent shifts and position-dependent coins. Then,
we implemented the algebraic relations to look at time evolutions of
arbitrary initial states by any coined quantum walk. Using Mathemat-
icas acceptably efficient implementation of sparse- and dense-array-
algebra®, we could perform a few thousand time steps on a typical
lattice of a few thousand cells e.g. for a Split-Step-Walk, Four-Step-
Walk or a similar Few-Step-Walk with arbitrarily position dependent
coins in double precision within seconds on an average laptop. Due
to the simplicity to switch to arbitrary precision, we could distinguish
rare numerical artefacts from actual effects. As an example, 5000 deci-
mal digits precision on a lattice with 2000 sites and a Split-Step-Walk
performing 1000 time steps on an initially localized vector takes about
one minute on a laptop.

8 In the Wolfram Language, arrays are called PackedArrays for some reason, while
Arrays usually denote Lists of arbitrarily mixed objects or types.
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Figure 17: The first version of the Split-Step-Explorer, published [Stal5b]
along the announcement of our classification [Ced+15]. It con-
tains all intermediate steps and definitions of the deductions in
Section 8.2. In addition, the interactive panel allows to choose a
Split-Step-Walk via the parameter plane, and see the winding of

det B(k), the quasi-energy-spectrum w (k) and the topologically pro-
tected eigenvalues in the gap, depending on the decoupling chosen.
Moreover, there is an implementation of the Split-Step-Walk that
allows for arbitrary, non-translation invariant coins, and acts on
general basis elements, or kets. Additionally, it serves to verify the
boundary conditions for every decoupling imaginable.

To exactly verify a pen-and-paper calculation, we wrote a symbolic
algebraic implementation on kets, e.g. to check boundary conditions or
periodic effects stemming from coins with angles that are rational mul-
tiples’ of 7. This was done by defining a basic symbolic object called
ket, on which operators are defined just as on paper. Time evolution
with a quantum walk acting on these kets then leads to larger and
larger sums of kets, leaving us with an intricately nested tree of objects.
Such an approach is feasible for a few hundred time steps if one starts
from a single (or a few) kets.

For translation invariant systems, we used the Fourier transform
to translate the algebra of coined quantum walks into the algebra of
matrix-valued Laurent polynomials in e’*. This allowed us to deter-
mine spectrum and windings analytically, which is necessary e.g. if we
want to distinguish essential and discrete spectrum.

Synthesizing all these approaches, we created the Split-Step-Explorer
in Mathematica [Stal5b] (see Figure 17) to follow the examples in our
(and others’) papers. The openness and modularity of the notebook
allows everyone to modify the tools and methods presented to his or
her needs.

In talking with other groups and through discussions after talks and
poster-sessions at conferences we learned, that providing a notebook

More precisely, a walk that is translation invariant w.r.t. a shift of g-cells, if g denotes
the denominator of the angle of the coin in multiples of 7.
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for Mathematica is not yet accessible enough for many researchers,
since most universities do not provide licenses for the researchers, or
that any other similarly powerful tool like MATLAB [Mat17] or SciPy
[JOP+01] is used for their research, such that installing and starting
Mathematica was too much of an effort. Thus in the 21th century,
it turned out to be appropriate to create a web-application [Stal5a]
that is supported by any sufficiently modern web-browser, which we
hence did. Figure 18 shows a screenshot of the Split-Step-Explorer
web-application. This was favoured over a separate application for
Smartphones or Tablets, since a web-application was simply the most
accessible solution, even if this meant to lower one’s sights regarding
the performance.

We decided to use Bootstrap [OT16] to provide good accessibility of
the controls, a clean interface and make everyone feel right at home
as if navigating any major website. Since our approach to topological
phases did not need to perform large-scale time evolutions of walks,
or diagonalization of large unitary matrices, we did not need to do any
heavy load on the hosting backend, but could simply rely on the client
browser to do necessary computations. D3.js [Bos16], the JavaScript
library for producing dynamic, interactive data visualizations in web-
sites provided the necessary framework to do beautiful plotting and
allow to interact with mouse and touch. To parse ETEX-based input, we
used MathJax [Soc09], which made typesetting beautiful equations in
web pages as easy as in a paper. The final Split-Step-Explorer [Stal5a]
shows most of the results from Section 8.2, as is seen in Figure 18.

While preparing a poster for an annual Quantum Walk conference in
Prague [Sta+16], we decided to make the poster interactive by mount-
ing a Tablet-PC to the wall, right on the poster. This required a few
adjustments to the Split-Step-Explorer web-application, since it should
also function as a screensaver-like slideshow of our results. It turned
out that this version serves equally well to visualize our results using
a video projector in a presentation. A screenshot of the final version
[Stal6] is found in Figure 19.

Note that the Split-Step-Walk W’ in the explanation of the Split-Step-
Explorer differs from the Split-Step-Walk W in Section 8.2 by conjuga-
tion with B. That is,

W’ = B'WB = S| AS;B2. (8.74)

The reason is, that this is the most commonly found form of the Split-
Step-Walk, even if it has disadvantages (see the previous section for
the details). This requires to modify the symmetry representation p by
conjugation with B, making p site-dependent, and potentially parame-
ter dependent, if B has any of these dependencies. 7 is not changed by
conjugation with B, since we restricted ourselves to n-admissible coin
matrices B, which means that B and 1 commute.
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Accompanying the

Split-Step-Explorer

paper: Bulk-edge correspondence of one-dimensional quantum walks by C. Cedzich, F. A. Grinbaum,

C. Stahl, L. Velazquez, A. H. Werner, and R. F. Werner.

To operate, move the mouse over the diamond-patterned parameter-space. Clicking on it fixes 81 and 02, while clicking
again returns to the mouse-following-mode.

62 ‘ o w(p) 0

a2 0 w2 om aom2 0 w2 om

0.x L1011 ox i| o R(m12) -0
v 011 N 1001 000
, 1[0 ' 1[0 110
¥ b
-1086-4-2024681 -1086-4-202 46810 108642024681 -108-6-4-2024681
Explanation
System  The famous quantum walk example that is found throughout the literature of topology in quantum walk, the so called split-ste p-quantum-walk:

Parameter plane

Bulk index by
winding number

Band structure

Eigenfunctions of
decoupled walk

Color coding

Figure 18: Screenshot of the Split-Step-Explorer as a web-application. By mov-
ing the mouse over (or touching / clicking) the parameter plane,
one can modify the underlying, translation invariant Split-Step-
Walk. The parameter plane is statically drawn from the known

while the winding of the chiral block, the quasi-energy spec-

trum, as well as the topologically protected eigenstates in the four
differently decoupled cases are generated on-the-fly in the browser,

data,

W = 5;R(6:)S| R(61)
Here you can set the two angles. 8y, 82 € [—m, ] by clicking or by moving the crosshairs with the mouse.
The colors indicate the right symmetry index si (W) of the walk as defined in the paper.

White lines - here a gap closes (see band structure), so the model is ot in the class considered
The initial point s the 50 - called Hadamard walk

The ellipse shown is the off - diagonal matrix element of the walk operator with respect to the basis in which the chiral symmetry is diagonal.

The parameter s the quasi-momentum. The winding number of this curve with respect to the origin is shown i the top right comer. By definition, this
agrees with the chiral bulk index of the walk and hence coincides with the index given in the parameter plane.

The band structure, i.e.. quasi-energy over quasi-momentum. Observe that a gap closes at 0 or 7, when a white ling is crossed in the parameter plane.
These are the eigenfunctions of the walk,

when decoupled by putting a o, coin at site 0 instead of R(6,), or

when decoupled by putting a +iay coin at site 0 instead of R(62).

Al four decouplings preserve both the chiral and the pariicle-hole symmetry.

Decoupling with i is "gentle’. since the angle 7r/4 can be changed continuously to the value 8y, while satisfying all symmeiry-constraints.

The color coding for the eigenfunctions is as follows:

— Wy=

o —
— T =—
— =

The eigenfunctions are exactly powers: 9(z) = p%1ho. Depending on whether || < 1 (resp. |u| > 1) the eigenfunction belongs to the right (resp. left)
half chain, provided that the eigenvalue equation is also solved at the boundary.

The symmetry index as defined in the paper can be determined by adding the chiraliies (blue minus red) of all eigenfunctions on the right hand side.

An altemative proposal by Asboth and Obuse suggests fo get a finer classification by doing this separately for the two eigenvalues, i&., to either count
only solid or only dashed lines. As is evident from comparing the two diagrams, the result then depends on the cutting method. That s, this proposal is
not topologically invariant.

The nsettable n th fgures shows al the ncics as deined i the paper i e folloing format
si(Wp) sidWg)|si(W)

si(Wg) si(Wg)|si(W)

si(Wy) si(Wg)|si (W)

The underlying theory is now published on the arXiv. It contains the complete classification to fully understand these explanations and ts implications.

using the results from Section 8.2. It is found at [Stal5a].
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si(Wi) = st (W) and si(Wy) — si (W)

Figure 19: Screenshot of the reduced Split-Step-Explorer as a web-application
that is optimized for presentation on a video projector or tablet.
Usage is identical to the full-version from Figure 18, except that one
has to choose the decoupling coin that is shown in the top panel.
The explanation is displayed if one clicks on the corresponding
blue button. Zooming in the browser leaves the panel untouched,
while trying to optimize the space for the plots. This version of the
Split-Step-Explorer is found at [Sta16].

But for y (and hence 7), this is not the case. Thus, on the one hand,
this modification makes the new chiral symmetry B-dependent. On
the other, we know that conjugation with a unitary operator does not
change the spectrum of any operator, but only changes the basis in
which we build our quantum walks. Hence, after a relabelling of all
states ¢ € H with B*)p € H, we are again describing the (almost)
y-palindromic Split-Step-Walk, since

(B*$,S|AS1B>B* ) = (¢, BS|AS1BY). (8.75)

In the following section, we extend the Split-Step-Walk by adding
another set of coins and shifts in the Four-Step-Example.

8.4 FOUR-STEP-EXAMPLE

Due to the modularity of the analysis of the Split-Step-Walk in Sec-
tion 8.2, we can simply extend these results to similar examples con-
taining more shifts and coins. In order to satisfy y-symmetry stepwise,
we have to keep the example y-palindromic, which is satisfied by

W = CS|BS|AS1BS;C, (8.76)

where A, B and C are coins, i.e. unitary operators that are block-
diagonal w.r.t. position. p-admissibility follows exactly as before, and
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(a) dispersion relation of W(k) (b) winding of det B (k)

Figure 20: A particular example of the Four-Step-Walk as defined in (8.76),
with 8, = /5, 8; = "/i6and O, = 7/12. Similar to the Split-Step-Walk
in Figure 10, the quasi-energy w(k) in (a) indicates the admissibil-
ity of W (k) since it leaves the gap atoand 7 open, and is symmetric
w.r.t. the gap. (b) shows that det B(k) winds twice around the ori-
gin, which leads to si(W) = +2. Note that due to 7-symmetry, the

winding of det B (k) is symmetrical w.r.t. the real axis, as is shown
in (7.46). Furthermore, the dispersion relation has all three sym-
metries from (7.5), that are axial symmetries w.r.t. the dashed lines
(t and y), as well as their composition (1), which imposes point
symmetry w.r.t. the origin.

the decoupling theory applies by choosing A, and B, both as the de-
coupling coin from (8.52).

As an example, let us firstlook at the translation invariant case where
A, B and C are rotations as in Section 8.2:

Ay=R(0,) By=R(0,) Cy=R(%:) VYxeZ. (877)

Similar to (8.42), we derive the dispersion relation via

cosw(k) = é tr W(k) = Co + C; cOsk + ¢, cos 2k, (8.78)
where
Co = —cos B, sin” O, cos O, — sin 6, cos(260,) sin 6,

¢; = —sin(26;) sin(6, + 0,)
¢, = cos O, cos*(0;) cos O,. (8.79)

An example of the dispersion relation and (following Theorem 7.3) the
winding of det B(k) is shown in Figure 20. In principle, this allows us
to analyse the gap closings and hence find the non-admissible angles
for the Four-Step-Walk. But it turns out to be easier to use an equivalent
criterion for this purpose, as described shortly. To apply it, we need the
chiral block B (k), which additionally serves to determine the symmetry
index s1(W). It is computed exactly as in (8.46).
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The symmetry index as a winding number can only change if the
path B(k) crosses the origin. But this case is excluded, not only because
the winding number (and hence the index) is undefined in these cases,
but also because B (ko) =0 implies that W(ko) violates the gap condition.
This can easily be seen, since B(k,) = o implies that W(k,) is block
diagonal in y-eigenbasis, hence commutes with . On the other hand,
W(ko) is y-admissible which implies that it is real. But if W(ko) is a real
diagonal matrix, its eigenvalues are clearly real and unitary, hence +1
- violating the gap condition at k.

We find all k, s.t. B(k,) = 0 in two steps. Firstly, we analyse the
necessary condition of vanishing imaginary part Im B(k,) = o. Then,
we find the zeros to the remaining equation within the set of k, s.t.
E(ko) is real. The solutions to

Im B(k,) = i (E(ko) - E*(ko)) . (8.80)

arek =0,k =mor

sin 0, -sin 0, + \/— cos(260,) — cos(206,)

cosk +isink =
\/2 cos O cos 0,

(8.81)

Inserting them back into E(ko) leaves only two cases to distinguish:
B(ko) = 0 = sin(0, £ 20; + 6,) or
B(ko) = 0 = sin(6, — 65). (8.82)

That is, we have to exclude the following non-admissible values for the
Four-Step-Walk

dneZ: 0O,+20,+6,=nm or 6,—0,=nm. (8.83)

Now that we have identified the phase boundaries at which the wind-
ing number of det B (k) can change, we determine si(W) for all transla-
tion invariant admissible Four-Step-Walks by computing it for a repre-
sentative on each octahedron or tetrahedron that the constraints from
(8.83) form. This can either be done by inspecting the winding of B(k),
or by computing the winding number directly via the integral from
Theorem 7.3. Figure 21 shows the non-admissible values for the Four-
Step-Walk, as well as the (surface of) the three-dimensional parameter-
cube with the symmetry index si(W) indicated by the colour similar
to the Split-Step-Walk in Figure 11. Note that the doubling of the shift
operations now increases the range of the symmetry index to

siW) € {-2,-1,0,1, 2}. (8.84)

In what follows, we want to modify the Four-Step-Walk from above
such that it explicitly breaks n-symmetry, and hence yields an example
of AIIL.

Both the Split-Step-Walk and the Four-Step-Walk we considered
were BDI-admissible, and therefore had an n-symmetry that squared
to +1. As was mentioned in Figure 20, the direct implications of the
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01

Figure 21: The three dimensional parameter cube for the Four-Step-Walk.
White lines denote the parameters thatlead to non-admissible Four-
Step-Walks and are hence excluded. The colour coding corresponds
to the one from the Split-Step-Walk, where grey denotes trivial
index, while blue and red indicate si(W) = +1 and si(W) = -1
respectively. Due to the fact that the number of shifts is doubled
compared to the Split-Step-Walk, the maximum (and minimum)
value of s1 doubles as well. Hence we denote si(W) = +2 in green
and 51(W) = —2 in yellow.

presence of an 7-symmetry are the point-symmetry of the dispersion
relation w.r.t. the origin and the axial symmetry of the winding of the
determinant of the chiral block B(k) w.r.t. the real axis. Both properties
were computed in (7.5) and visualized in Figure 7.

As a second example, we insert an additional coin M = i(0, + 05)/V2
between C and S| (and Sy respectively) to explicitly break 1- (and hence
7-) symmetry, and not only forget about them. Thus, we are left with a
chiral symmetry y alone and get

Wy = CMS|BS|AS1BS;MC, M = i( : 1.). (8.85)
V2 \-1 —i

We choose the coins A, B and C exactly as in the Four-Step-Walk
which was BDI-admissible, see (8.77). Even if a complete analysis of
this modified Four-Step-Walk is beyond the scope of this section, we
can easily compute the properties by example. Figure 22 shows the
dispersion relation and the winding of det By (k) for aset of parameters,
where the breaking of 1- and 7-symmetry is evident. This example
proves that there is indeed no set of operators n or tthat made Wy
an operator of symmetry type BDI for all parameters that lead to a
gapped Wy. Furthermore, by counting the winding around the origin,
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(a) dispersion relation of WM(k) (b) winding of det B M (k)

Figure 22: Dispersion relation and winding of det By (k) for Wy, the modified
Four-Step-Walk which is of symmetry type All. Comparing the
dispersion relation in (a) to Figure 7, one notes that n and 7 are
explicitly broken, not merely forgotten. This is confirmed by the
winding in (b), which is not symmetric w.r.t. the horizontal axis.
See Figure 20 for an opposing example where this symmetry is
unbroken. The blue colour of the winding indicates that si(Wy) =
+1.

the symmetry index 8l in the example is determined as +1. In the
next section, we leave the (mostly) translation invariant examples and
analyse a Split-Step-Walk, where the angles 0, and 0, are allowed to
depend on x.

8.5 NON-TRANSLATION INVARIANT SPLIT-STEP-WALK

In this section, we return to the Split-Step-Walk from (8.38)

—~ ik
W(k):wl/z)( R LCATE

1
O

O) R(6:/s). (8.86)
1

The difference is, that we do not only change the coin at x = 0 as in
the decoupling case, but we allow 0; and 0, to vary. The area where for
each x, 0; is allowed to be chosen from, is a rectangle that lies in one
of the tilted squares of constant 1 in the Harlequin-like pattern from
Figure 11. If we chose a larger area, e.g. an area which contains parts
of a forbidden line representing a gap closure, we could approach the
line from both sides at different positions, producing arbitrarily many
phase boundaries which closes the essential gap.

In contrast, staying within one square (and keeping a suitable dis-
tance to the forbidden lines as explained later) allows us to admissibly
and continuously deform W into an appropriate W,, with W¢ = -1,
whose index is readily computed and matches the index of W due to
W, being a gentle perturbation of W.
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Case 04(x) 0,(x)
1 [_g_gv—%"’fl] [—ea, +ex]U [T — €, T+ €5]
2 [%—51,§+51] [—ea, +ex] U [T — €, T+ €5]
3 [—e1,+e]U[m—€p, M+ &4] [-Z-e, -2+,
4 [e1, +e U [ — &g, M+ &4] [Z -6, 2 +e,

Table 4: The four different cases determining how the angles 0, and 0, are
allowed to vary from cell to cell. The values ¢, and ¢, fulfil (8.87) to
ensure that the intervals do not cross the forbidden lines, preserving
the essential gap condition. Satisfying this constraint, case 1 and 4
are depicted in Figure 23, while case 2 and 3 can be inferred, noting
that case 2 matches case 1 with 8, shifted by 7, and case 3 matches
case 4 with 0, shifted by 7.

Thus, let us consider four different cases for W. That is for every
x € Z, the angles for the coins 0,(x) and 6,(x) are allowed to take any
value within the range shown in Table 4. Then, as long as the length
and width of the rectangle 2¢, and 2¢, is subject to

sin % + sin % <42, (8.87)

we show that the corresponding walks W; in case j = 1,...,4 are
gapped and have BDI-index of the corresponding pair of squares these
values are chosen from:

Case j 1 2 3 4
si(W)) -1 +1 0 0

(8.88)

The allowed regions for the different cases are marked in Figure 23.
A crucial step in proving the statement is that in every tilted square
that is enclosed by forbidden lines, there is a Split-Step-Walk W, that
squares to —1. This is easily seen if we look at what happens to W if
we choose ¢; = ¢, = o. Let us start with W5 and W,. Then, vanishing
€, leads to R(6,) being a decoupling coin as described in (8.55), case
2. Hence, we have a Split-Step-Walk that is decoupled in every cell,
and acts like W, = +ig,, depending on whether we chose 0, as o or 7.
Clearly, for this W, we have W2 = —1.

In the case of W; and W,, the argument is a bit trickier. Again, we
encounter a decoupling coin, but this time, since the decoupling stems
from the outer coin R(%/2), it is skew w.r.t. the cell structure, similar to
the generating example from Section 8.1, depicted in Figure 8. More
precisely, choosing 0, = 0o and 0; asin case 3or4 and ¢, = ¢, = 0, we
have

W, = isinp  Fcosp| (8.89)
+cosp —isinp
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Figure 23: Parameter plane for the Split-Step-Walk as in Figure 11. The diag-
onally hatched rectangles denote case 1 from Table 4, where each
coin is picked from walks with si(W) = —1. The anti-diagonally
hatched rectangles denote case 4, which represents si(W) = o. Note
that case 2 and 3 follow by shifting 0, in case 1 and 0, in case 4
by 7, and represent si(W) = +1 and si(W) = o respectively. Exem-
plary for one rectangle, the black line denotes the constraint from
(8.87) on which the corners of the rectangle has to lie if we want to
preserve the essential gap.
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If we choose 0, = 7, the overall sign changes, i.e. W, = —W,,. Indepen-
dent of these case distinctions, W, always fulfils W; = =W, and hence
Wz =-1

What we have thus shown is that for every W; and every 0;(x), there
is a Split-Step-Walk W, whose angles differ from those of W; at most
by ¢; for every x. Therefore, we have the estimate:

1A = Aoll = sup IR (0:(x)) = R(02,0(x)) |

xeZ.
= sup [|R(0:(x) = B,0(x)) = 1]
xeZ
< |IR(g5) = 1| = |e'® — 1] = 2sin % (8.90)

since A and A, are block diagonal w.r.t. the cell structure, and multi-
plying with R(—6,,(x)) as an element of the orthogonal group does
not change the norm.

The estimate for B> — BZ is identical if one again uses the group
structure of the rotation matrices s.t. R*(0) = R(260), and we get

IB> - B2|| < zsini;. (8.91)

Using both estimates, as well as the fact that W; and W, are both
Split-Step-Walks, we get from (8.86):
IW = Woll =[S - (A — Ao)S;B? + AoS1B? — AS;BZ|
< (A = Ao)SB2|| + 1151(B* = BY) ||
= ||A = Aoll +[|B* - B3|l

. € . €
< 2sin = +2sin = < V2. (8.92)
2 2

We can use this estimate to show that in every case, W = W, is gapped
at +1 (—1 follows analogously). Similar to the proof of the homotopy
invariance of si, in Theorem 5.5, the second resolvent identity from
(5.11) is R(1 = (W = W,)R,) = R, and yields a geometric series for R,
withR=(1-W)*and R, = (1 - W,)7%, if

(W = Wo)Ro|| < 1. (8.93)

We know that W, has constant blocks w.r.t. two dimensional cells!?,
and hence the norm of 1 — W, coincides with the norm of the single
blocks, leading to

IRoll = [(x )" = —. (8.94)

%~

Combining this with (8.92), we see that (8.93) is sharply satisfied, and
we learn that R exists as a bounded operator whence +1 lies in the
resolvent set of W. Furthermore, since the spectrum is closed, it cannot
approach +1 arbitrarily, hence there has to be a finite distance between

In case 3 and 4, these cells coincide with the cells from the spatial structure, while in
case 1 and 2, the cells are shifted by one basis-element, thus they are skew. But since
the identity is diagonal in every basis, this does not make a difference.
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+1 and the spectrum of W. The argument for —1 is completely analo-
gous, and thus we know that W is a gapped admissible operator.

Now, by continuously contracting each 0; to the respective 0;,, we
create a homotopy between W; and W,,. The estimate from above guar-
antees, that on the way to W,, each intermediate walk is itself an
admissible gapped Split-Step-Walk, fulfilling the same conditions as
W; and W,. Hence, W; is a gentle perturbation of W, and we conclude,
that si(W;) = s1(W,,).

Then, we get s1(W,) from Figure 11 for each case j:

Case j 1 2 3 4
si(Wj) -1 +1 0 0

(8.95)

This finishes the example of a non-translation invariant Split-Step-Walk
and the examples as a whole.
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CONCLUSION AND OUTLOOK

In the beginning of this thesis, we were looking for a rigorous non-
trivial theory that describes quantum walks that are admissible for the
symmetries of the tenfold way. Striving for the most general setting,
we identified the larger class of essentially local essentially gapped
unitary operators as the right object of classification instead of merely
looking at translation invariant gapped quantum walks.

Without further assumptions on these objects we found three sym-
metry indices whose values lie in the groups predicted by the Hamilto-
nian theory, depending on the symmetry type. We showed that there
are non-gentle but compact perturbations that can be distinguished by
one of our indices, which is a unique feature that distinguishes our the-
ory from the Hamiltonian case. The other two indices are insensitive
to compact perturbations and measure the asymptotic behaviour far
to the left and far to the right, respectively. All three symmetry indices
are proven to be stable under gentle perturbations and are hence ho-
motopy invariants. Remarkably, these three homotopy invariants are a
complete set of invariants in the sense that two classified objects are
connected to each other within the classification if and only if their
sets of invariants match. That is, there is no finer classification or ad-
ditional hidden invariants, at least not based on these assumptions.
This is the best result one could hope for in our attempt to connect
quantum walks with the tenfold way and thus confirmed our choice
of classifying objects and symmetry indices.

Restricting to translation invariant operators, we prove that demand-
ing essential locality is equivalent to continuity in momentum space.
This strengthens our choice even further, because continuity is exactly
the necessary condition for winding numbers to make sense. Further-
more, we were able to express the symmetry index in three of the five
non-trivial cases as a winding number of a determinant in momentum
space after bringing them to a standard form. In two of these cases,
we even succeeded in showing completeness of this symmetry index
within the class of bulks with a fixed cell structure. In the third case,
we proved that completeness in this setting only holds if we either
add a parity-valued additional index or allow for a single pairwise
regrouping of neighbouring cells along the paths.

Since we chose a sufficiently general setting, we were able to prove
a precise statement of bulk-boundary correspondence. That is, we
showed that joining two bulks in different phases leads to the emer-
gence of exponentially decaying eigenfunctions in the gap. What dis-
tinguishes our result from earlier work is that the bulks to be joined as
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well as the joined system together with its emerged eigenvalues in the
gap are all described within a single theory.

The translation invariant generator was introduced as an example
that generates all index groups, showing by example that all values
predicted by our theory can be realized. Our exhaustive examples
visualized many aspects of our classification, which is still enhanced
by the accessible web-tool [Stal5a] we developed for demonstration
purposes.

We conclude this thesis with a few suggestions of possible directions
of future research:

¢ Translation invariance: In Chapter 7 we restricted ourselves to
symmetry types where y* = +1. Meanwhile, most of the issues
we had with the other cases are resolved and a publication of
these results is in preparation [Ced+18a].

¢ Additional symmetries: In our attempt to find a suitable setting
for a theory of topological phases in quantum walks, we used the
tenfold way as an anchor which kept us in an area of comfort we
know from the Hamiltonian case. Now that we finished our clas-
sification in these cases, a natural generalization we are working
on [Ced+18b] is to go back to Section 2.3 and instead of restrict-
ing ourselves to the choices that lead to the tenfold way, to allow
for the abstract group of 7 involutions {S;}__, and to exhaust the
full range of phases m;; € T s.t. V;V; = m;;V;;. We expect that
a proper identification of equivalent symmetries should on the
one hand lead to the tenfold way in the purely Hamiltonian case,
and on the other hand to a larger set of symmetry types in the
unitary case, which clearly contains the tenfold way.

¢ Higher dimensions: Even if we considered it an advantage that
our theory requires only elementary group theoretic methods,
being able to apply K-theoretic methods to quantum walks could
allow us to classify 4 > 1 as well. Using Bott periodicity, [Kit09]
covers all dimensions in his periodic table, not only d = 1. A
good starting point might be the work of Prodan and Schulz-
Baldes [PSB16; SB16; SB15; GSB16] whose results also helped us
to understand the translation invariant classification for DIIIL.

* QCA: Possibly the largest impact is expected from a theory that
breaks the limits of quantum walks as a one-particle theory by
extending to interacting systems. That is, we transition to quan-
tum cellular automata (QCA) where every cell can host a particle
s.t. the Hilbert space is a tensor product rather than a direct
sum. The analogue of the index theory without symmetries from
Section 3.4 has been successfully transferred to QCA [Gro+12]
leading to a positive rational instead of an integer, so this might
be worth an attempt.
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