
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 121 (2017) 1006–1013

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information
Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social
Care Information Systems and Technologies.
10.1016/j.procs.2017.11.130

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information
Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social
Care Information Systems and Technologies.
10.1016/j.procs.2017.11.130

10.1016/j.procs.2017.11.130

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Extracting and Conserving Production Data as Test Cases in
Executable Business Process Architectures

Daniel Lübkea*
aLeibniz Universität Hannover, FG Software Engineering, Welfengarten 1, D-30167 Hannover

Abstract

Because executable business processes are an important and critical software asset of organizations because they control and
integrate critical information systems. Thus, testing them thoroughly is a very important task within the software development
process. However, failures due to implementation defects still occur in production, which in turn means that the development team
needs to analyze, fix and repair the failing processes. In order to support the activities of reproducing the problem outside of the
production system and to create better test cases for verifying the fixed implementation, we propose to use process mining
techniques on the production process event logs to aid the support & development teams. With our approach it is possible to
automatically extract a working unit test case with all partner services being mocked that can run in a development environment.
Within in this paper we present the extraction algorithm, our implementation, and possible ways to integrate the tool into the
support & development process.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Process Mining; Regression Test; Unit Test; Test Case Extraction

* Corresponding author. Tel.: +49-511-762-19667; fax: +49-511-762-19679.

E-mail address: daniel.luebke@inf.uni-hannover.de

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Extracting and Conserving Production Data as Test Cases in
Executable Business Process Architectures

Daniel Lübkea*
aLeibniz Universität Hannover, FG Software Engineering, Welfengarten 1, D-30167 Hannover

Abstract

Because executable business processes are an important and critical software asset of organizations because they control and
integrate critical information systems. Thus, testing them thoroughly is a very important task within the software development
process. However, failures due to implementation defects still occur in production, which in turn means that the development team
needs to analyze, fix and repair the failing processes. In order to support the activities of reproducing the problem outside of the
production system and to create better test cases for verifying the fixed implementation, we propose to use process mining
techniques on the production process event logs to aid the support & development teams. With our approach it is possible to
automatically extract a working unit test case with all partner services being mocked that can run in a development environment.
Within in this paper we present the extraction algorithm, our implementation, and possible ways to integrate the tool into the
support & development process.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Process Mining; Regression Test; Unit Test; Test Case Extraction

* Corresponding author. Tel.: +49-511-762-19667; fax: +49-511-762-19679.

E-mail address: daniel.luebke@inf.uni-hannover.de

2 Author name / Procedia Computer Science 00 (2017) 000–000

1. Introduction and Motivation

Executable Business Processes modeled in WS-BPEL or BPMN 2.0 are resembling the implemented business
processes of an organization by orchestrating services of other Information Systems. Examples of projects that have
successfully used these technologies can be found in various domains, including Telco1, Mortgage2 and many other
domains3. Being a critical software component integrating information systems and passing data over system
boundaries, executable processes should be subject to rigor quality assurance. This usually means that executable test
cases are developed4 that cover as much of the processes as possible5,6. However, as with any software system, failures
in production occur. These failures can be fixed by using the Administrative Console of the run-time environment
called a Business Process Management System (e.g. rewinding a process, changing variable values or retrying service
calls.) If the failure is due to an implementation error, the support team very often needs to forward the incident to the
development team that needs to repair incorrect variables (in case of data transformation errors), fix the root cause
and write a regression test that verifies and ensures that the defect has been fixed. This is often complicated because
developers have no access to the production environment. For better development performance and improvement of
the process repair and the software fix, it would beneficial if the problem could be easily reproduced on a non-
production environment and a test case was available: Developers could safely try repairing the process without
affecting production data, develop and verify the fix, and eventually use the data generated by the new process version
for the repair.

Although all the relevant data is contained in the Business Process Management System, these systems do not offer
a way to export the data packaged for such an important task and do not offer support for replicating failing cases
outside the production system. Within this paper, we propose to use process mining techniques in order to extract all
relevant data of a process instance and store the information in a Replication Test Case, which is a unit test case
completely independent of the production environment, i.e. all information systems are replaced with mocks that
replay the original service calls.

2. BPEL Process Structure

Within this paper we use process mining7 techniques on BPEL processes8. BPEL (Business Process Execution
Language) is a language for modeling executable business processes that orchestrate services in order to realize the
business goals. However, our approach works with all process languages that have facilities to call and offer services
(or remote interfaces.)

The relevant BPEL concepts are shown in the (simplified) meta-model in Fig. 1: Most importantly, BPEL offers a
standardized way to specify, which services are called or are offered by an executable process. BPEL defines invoke
and reply activities for sending messages and receive and pick activities as well as message handlers for receiving
messages. All these activities reference a partner link. A partner link references the concrete service via a partner link
type. The service is a port type from a WSDL (Web Service Description Language), which defines operations.
Operations can be either one-way operations or two-way operations. This means that an operation has a fire-and-forget
semantic with a single message or defines a return message called output message.

Besides defining service calls, BPEL has an assign activity for defining the data-flow. All data is stored in variables:
Assign activities read from and write to variables (or parts thereof), and the service-related activities read and write
complete messages from/to variables.

The rest of the BPEL activities is concerned with defining the process-flow (loops, conditions etc., e.g. the
sequence, forEach, repeat und while activities) but are not important to our approach, because we use the process log
to reconstruct the ordering of the messages being sent.

BPEL itself is not compiled but it is instead deployed to a Business Process Management System (BPMS). The
BPMS has the responsibility of managing the execution of the processes, the versioning of different models and the
persistence of all information necessary for executing the processes. Usually, a BPMS can be configured to also write
a Process Log (also called Event Log), in which all events regarding the process execution (e.g. when an activity
started and was finished) are persisted and can be used later on for feeding Business Reporting or Business Intelligence
tools. For example, when process execution is managed by a BPMS, it is easy to do statistics for end-to-end process
execution times. However, the format of Process Logs has not been standardized and is dependent on the vendor.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.11.130&domain=pdf

	 Daniel Lübke / Procedia Computer Science 121 (2017) 1006–1013� 1007

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Extracting and Conserving Production Data as Test Cases in
Executable Business Process Architectures

Daniel Lübkea*
aLeibniz Universität Hannover, FG Software Engineering, Welfengarten 1, D-30167 Hannover

Abstract

Because executable business processes are an important and critical software asset of organizations because they control and
integrate critical information systems. Thus, testing them thoroughly is a very important task within the software development
process. However, failures due to implementation defects still occur in production, which in turn means that the development team
needs to analyze, fix and repair the failing processes. In order to support the activities of reproducing the problem outside of the
production system and to create better test cases for verifying the fixed implementation, we propose to use process mining
techniques on the production process event logs to aid the support & development teams. With our approach it is possible to
automatically extract a working unit test case with all partner services being mocked that can run in a development environment.
Within in this paper we present the extraction algorithm, our implementation, and possible ways to integrate the tool into the
support & development process.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Process Mining; Regression Test; Unit Test; Test Case Extraction

* Corresponding author. Tel.: +49-511-762-19667; fax: +49-511-762-19679.

E-mail address: daniel.luebke@inf.uni-hannover.de

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2017) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems
and Technologies.

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies, CENTERIS / ProjMAN / HCist 2017, 8-10
November 2017, Barcelona, Spain

Extracting and Conserving Production Data as Test Cases in
Executable Business Process Architectures

Daniel Lübkea*
aLeibniz Universität Hannover, FG Software Engineering, Welfengarten 1, D-30167 Hannover

Abstract

Because executable business processes are an important and critical software asset of organizations because they control and
integrate critical information systems. Thus, testing them thoroughly is a very important task within the software development
process. However, failures due to implementation defects still occur in production, which in turn means that the development team
needs to analyze, fix and repair the failing processes. In order to support the activities of reproducing the problem outside of the
production system and to create better test cases for verifying the fixed implementation, we propose to use process mining
techniques on the production process event logs to aid the support & development teams. With our approach it is possible to
automatically extract a working unit test case with all partner services being mocked that can run in a development environment.
Within in this paper we present the extraction algorithm, our implementation, and possible ways to integrate the tool into the
support & development process.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on
Health and Social Care Information Systems and Technologies.

Keywords: Process Mining; Regression Test; Unit Test; Test Case Extraction

* Corresponding author. Tel.: +49-511-762-19667; fax: +49-511-762-19679.

E-mail address: daniel.luebke@inf.uni-hannover.de

2 Author name / Procedia Computer Science 00 (2017) 000–000

1. Introduction and Motivation

Executable Business Processes modeled in WS-BPEL or BPMN 2.0 are resembling the implemented business
processes of an organization by orchestrating services of other Information Systems. Examples of projects that have
successfully used these technologies can be found in various domains, including Telco1, Mortgage2 and many other
domains3. Being a critical software component integrating information systems and passing data over system
boundaries, executable processes should be subject to rigor quality assurance. This usually means that executable test
cases are developed4 that cover as much of the processes as possible5,6. However, as with any software system, failures
in production occur. These failures can be fixed by using the Administrative Console of the run-time environment
called a Business Process Management System (e.g. rewinding a process, changing variable values or retrying service
calls.) If the failure is due to an implementation error, the support team very often needs to forward the incident to the
development team that needs to repair incorrect variables (in case of data transformation errors), fix the root cause
and write a regression test that verifies and ensures that the defect has been fixed. This is often complicated because
developers have no access to the production environment. For better development performance and improvement of
the process repair and the software fix, it would beneficial if the problem could be easily reproduced on a non-
production environment and a test case was available: Developers could safely try repairing the process without
affecting production data, develop and verify the fix, and eventually use the data generated by the new process version
for the repair.

Although all the relevant data is contained in the Business Process Management System, these systems do not offer
a way to export the data packaged for such an important task and do not offer support for replicating failing cases
outside the production system. Within this paper, we propose to use process mining techniques in order to extract all
relevant data of a process instance and store the information in a Replication Test Case, which is a unit test case
completely independent of the production environment, i.e. all information systems are replaced with mocks that
replay the original service calls.

2. BPEL Process Structure

Within this paper we use process mining7 techniques on BPEL processes8. BPEL (Business Process Execution
Language) is a language for modeling executable business processes that orchestrate services in order to realize the
business goals. However, our approach works with all process languages that have facilities to call and offer services
(or remote interfaces.)

The relevant BPEL concepts are shown in the (simplified) meta-model in Fig. 1: Most importantly, BPEL offers a
standardized way to specify, which services are called or are offered by an executable process. BPEL defines invoke
and reply activities for sending messages and receive and pick activities as well as message handlers for receiving
messages. All these activities reference a partner link. A partner link references the concrete service via a partner link
type. The service is a port type from a WSDL (Web Service Description Language), which defines operations.
Operations can be either one-way operations or two-way operations. This means that an operation has a fire-and-forget
semantic with a single message or defines a return message called output message.

Besides defining service calls, BPEL has an assign activity for defining the data-flow. All data is stored in variables:
Assign activities read from and write to variables (or parts thereof), and the service-related activities read and write
complete messages from/to variables.

The rest of the BPEL activities is concerned with defining the process-flow (loops, conditions etc., e.g. the
sequence, forEach, repeat und while activities) but are not important to our approach, because we use the process log
to reconstruct the ordering of the messages being sent.

BPEL itself is not compiled but it is instead deployed to a Business Process Management System (BPMS). The
BPMS has the responsibility of managing the execution of the processes, the versioning of different models and the
persistence of all information necessary for executing the processes. Usually, a BPMS can be configured to also write
a Process Log (also called Event Log), in which all events regarding the process execution (e.g. when an activity
started and was finished) are persisted and can be used later on for feeding Business Reporting or Business Intelligence
tools. For example, when process execution is managed by a BPMS, it is easy to do statistics for end-to-end process
execution times. However, the format of Process Logs has not been standardized and is dependent on the vendor.

1008	 Daniel Lübke / Procedia Computer Science 121 (2017) 1006–1013
 Author name / Procedia Computer Science 00 (2017) 000–000 3

Also the graphical representation of BPEL Processes is not defined by the standard. Because of this, we use BPMN9
to visualize the executable business processes in this paper.

Fig. 1. Simplified Meta-Model of BPEL with Relationships to WSDL and XML Schema.

3. Process Log Analysis

Because the Process Log is specific to the BPMS used, we first needed to analyze a commercially available BPMS.
The analysis was done with the aim of identifying the relevant information for mining a Replication Test Case: How
can the execution order of activities be reconstructed and how can the data sent from and to the executable process be
extracted? The first finding was that the necessary information is only contained in the Process Log, if the BPMS is
configured to use the highest process persistence level. When this prerequisite is fulfilled, all relevant events -
including the data - is recorded. This especially includes the following Event Types:

 Start Executing Activity
 Activity Completed
 Variable Changed
 Message Received

All events contain the Event Type but also a reference to the affected process element. Usually this is an activity

except in the case of the Variable Changed event, which references a variable. A Variable Changed event contains
also the new data of the updated variable.

In the next step we created different Process Logs by deploying and executing small processes that combined
contained all message-related activities. This way, we identified the event patterns for the different message exchanges
containing SOAP one-way and two-way operations as shown in Table 1. Messages received by the process (and thus
later sent by the Replication Test Case) were indicated by their own event type. The Message Received events are
followed by a respective Variable Changed events. Both are created between the start and the completion of an
activity.

There is no dedicated event that indicates that a message is sent. This data must be resolved by finding the variable
that carries the message sent via the structure of the process model. This means that the mining algorithm must
combine information from the Process Model with information contained in the Process Log. The variable value must

4 Author name / Procedia Computer Science 00 (2017) 000–000

then be constructed from the event log by locating the last Variable Changed event executed before the message is
sent.

One challenges was identified during the implementation of our approach: Because BPEL Activities do not have a
unique ID but only a non-unique name, BPEL vendors need to find a way to uniquely reference a process model
element in the events. The BPMS, which we used, did this by constructing path expressions similar to XPath.
However, the path expressions could not be mapped trivially to the process model but we needed to reverse engineer
how these path expressions are constructed.

Table 1. Process Log Excerpts for different Activities

Receive Reply Invoke (One-Way) Invoke (Two-Way) Pick w/ OnMessage OnEvent Handler

1 Executing Receive 1 Executing Reply 1 Executing Invoke 1 Executing Invoke 1 Executing Pick 1 Executing
EventHandlers

2 Message Received 2 Message Reply 2 Completed Invoke 2 Variable Changed 2 Ready to Execute
onMessage

2 Executing
OnEvent

3 Variable Change 3 Completed Reply 3 Completed Invoke … …

4 Receive
Completed

 3 Message Received 3 Message Received

 4 Variable Changed 4 Ready to Execute
Scope

 … 5 Executing Scope

 5 Completed
OnMessage

6 Variable Changed

 6 Completed Pick …

 7 Completed Scope

4. Test Case Extraction Algorithm

With the information about the Process Log structure available, we designed an algorithm that recreates the process
instance and stores the information in a Replication Test Case. In general, we save all variable values if we encounter
a variable change, thereby recreating the variable states as we replay the events (lines 18-20). For receive, reply, and
invoke activities the handling is similar: We wait for the completion event (line 6), resolve the activity in the BPEL
model (line 7), follow the model to the operation (lines 8+9) and from there to the variable name (lines 10+11) and
finally extract the variable data in the variables being sent or received (line 11). With this information, a new activity
in the test case is created (lines 12-16). Because the onMessage and onEvent elements are stored differently in the
Event Log, we need to remember if the last encountered event was a Message Received event. Whether it is directly
followed by a Variable Change event (onMessage) or followed by a scope and a Variable Change event (onEvent),
we can differentiate and properly handle the two cases. This is realized by remembering the previous activities in a
variable called lastEventEventWasMessageReceive, which is set to true when encountering a message receive on an
onEvent and onMessage (line 22) and is kept at true if a scope follows directly (lines 2-4). The whole algorithm is as
follows:

1 for e in E
2 if NOT(lastEventEventWasMessageReceive AND e.activity.type = scope) then
3 lastEventEventWasMessageReceive <- false
4 end if

5 onEvent <- (lastEventEventWasMessageReceive AND e.type == VARIABLE_CHANGED)

6 if (e.type = COMPLETED AND e.activity.type IN (invoke, receive, reply)) OR onEvent then
7 communicationActivity <- onEvent ? lastMessageReceiveOn : e.activity
8 partner <- resolvePartner(communicationActivity)
9 operation <- resolveOperation(communicationActivity, partner)

	 Daniel Lübke / Procedia Computer Science 121 (2017) 1006–1013� 1009
 Author name / Procedia Computer Science 00 (2017) 000–000 3

Also the graphical representation of BPEL Processes is not defined by the standard. Because of this, we use BPMN9
to visualize the executable business processes in this paper.

Fig. 1. Simplified Meta-Model of BPEL with Relationships to WSDL and XML Schema.

3. Process Log Analysis

Because the Process Log is specific to the BPMS used, we first needed to analyze a commercially available BPMS.
The analysis was done with the aim of identifying the relevant information for mining a Replication Test Case: How
can the execution order of activities be reconstructed and how can the data sent from and to the executable process be
extracted? The first finding was that the necessary information is only contained in the Process Log, if the BPMS is
configured to use the highest process persistence level. When this prerequisite is fulfilled, all relevant events -
including the data - is recorded. This especially includes the following Event Types:

 Start Executing Activity
 Activity Completed
 Variable Changed
 Message Received

All events contain the Event Type but also a reference to the affected process element. Usually this is an activity

except in the case of the Variable Changed event, which references a variable. A Variable Changed event contains
also the new data of the updated variable.

In the next step we created different Process Logs by deploying and executing small processes that combined
contained all message-related activities. This way, we identified the event patterns for the different message exchanges
containing SOAP one-way and two-way operations as shown in Table 1. Messages received by the process (and thus
later sent by the Replication Test Case) were indicated by their own event type. The Message Received events are
followed by a respective Variable Changed events. Both are created between the start and the completion of an
activity.

There is no dedicated event that indicates that a message is sent. This data must be resolved by finding the variable
that carries the message sent via the structure of the process model. This means that the mining algorithm must
combine information from the Process Model with information contained in the Process Log. The variable value must

4 Author name / Procedia Computer Science 00 (2017) 000–000

then be constructed from the event log by locating the last Variable Changed event executed before the message is
sent.

One challenges was identified during the implementation of our approach: Because BPEL Activities do not have a
unique ID but only a non-unique name, BPEL vendors need to find a way to uniquely reference a process model
element in the events. The BPMS, which we used, did this by constructing path expressions similar to XPath.
However, the path expressions could not be mapped trivially to the process model but we needed to reverse engineer
how these path expressions are constructed.

Table 1. Process Log Excerpts for different Activities

Receive Reply Invoke (One-Way) Invoke (Two-Way) Pick w/ OnMessage OnEvent Handler

1 Executing Receive 1 Executing Reply 1 Executing Invoke 1 Executing Invoke 1 Executing Pick 1 Executing
EventHandlers

2 Message Received 2 Message Reply 2 Completed Invoke 2 Variable Changed 2 Ready to Execute
onMessage

2 Executing
OnEvent

3 Variable Change 3 Completed Reply 3 Completed Invoke … …

4 Receive
Completed

 3 Message Received 3 Message Received

 4 Variable Changed 4 Ready to Execute
Scope

 … 5 Executing Scope

 5 Completed
OnMessage

6 Variable Changed

 6 Completed Pick …

 7 Completed Scope

4. Test Case Extraction Algorithm

With the information about the Process Log structure available, we designed an algorithm that recreates the process
instance and stores the information in a Replication Test Case. In general, we save all variable values if we encounter
a variable change, thereby recreating the variable states as we replay the events (lines 18-20). For receive, reply, and
invoke activities the handling is similar: We wait for the completion event (line 6), resolve the activity in the BPEL
model (line 7), follow the model to the operation (lines 8+9) and from there to the variable name (lines 10+11) and
finally extract the variable data in the variables being sent or received (line 11). With this information, a new activity
in the test case is created (lines 12-16). Because the onMessage and onEvent elements are stored differently in the
Event Log, we need to remember if the last encountered event was a Message Received event. Whether it is directly
followed by a Variable Change event (onMessage) or followed by a scope and a Variable Change event (onEvent),
we can differentiate and properly handle the two cases. This is realized by remembering the previous activities in a
variable called lastEventEventWasMessageReceive, which is set to true when encountering a message receive on an
onEvent and onMessage (line 22) and is kept at true if a scope follows directly (lines 2-4). The whole algorithm is as
follows:

1 for e in E
2 if NOT(lastEventEventWasMessageReceive AND e.activity.type = scope) then
3 lastEventEventWasMessageReceive <- false
4 end if

5 onEvent <- (lastEventEventWasMessageReceive AND e.type == VARIABLE_CHANGED)

6 if (e.type = COMPLETED AND e.activity.type IN (invoke, receive, reply)) OR onEvent then
7 communicationActivity <- onEvent ? lastMessageReceiveOn : e.activity
8 partner <- resolvePartner(communicationActivity)
9 operation <- resolveOperation(communicationActivity, partner)

1010	 Daniel Lübke / Procedia Computer Science 121 (2017) 1006–1013
 Author name / Procedia Computer Science 00 (2017) 000–000 5

10 inputMessage <- variables[communicationActivity.inputVariable]
11 outputMessage <- variables[communicationActivity.outputVariable]

12 if e.activity.type = receive then

a.testCase.partners[partner].add(new TestActivity(operation, inputMessage))
13 else if e.activity.type = reply then

a.testCase.partners[partner].last.outputMessage <- outputMessage
14 else if e.activity.type = invoke and operation.isOneWay then

a.testCase.partners[partner].add(new TestActivity(operation, outputMessage))
15 else if e.activity.type = invoke and operation.isTwoWay then

a.testCase.partners[partner].add(
 new TestActivity(operation, outputMessage, inputMessage))

16 end if
17 end if

18 if e.type == VARIABLE_CHANGED then
19 variables[e.variable] <- e.variableValue
20 end if

21 if e.type = MESSAGE_RECEIVED AND e.activity.type IN (onEvent, onMessage) then
22 lastEventWasMessageReceive <- true
23 lastMessageReceiveOn <- e.activity
24 end if
25 next

5. Example

Fig. 2. Simple Example Executable Process integrating two Information Systems.

Within this section we illustrate our approach by providing an example. The process shown in Figure 2 is very
simple but sufficient to demonstrate how the algorithm works. We replay the Process Log of one process instance on
top of the process model. An excerpt with the important events is shown in Table 2: First, the variable change is

6 Author name / Procedia Computer Science 00 (2017) 000–000

processed that stores the message used for starting the process into Var1. Then the completion of the Receive A is
processed. For this, the algorithm resolves which variable, partner and operation is referenced by this activity in the
process model. Thus, a new test partner with a two-way test activity is created. The test activity sends the value stored
in Var1. At this point, the message for the reply to the partner is not known. Next, the variable changes for Var2 and
Var3 are processed. The success completion of the Invoke B activity is processed similar to the processing of Receive
A: The variables, partner and operation is resolved. Consequently, a new test activity for answering a two-way
operation with receiving the value of Var2 and sending the value of Var3 back to the process is created in a new
partner that mocks Information System B. In the next step, the variable change event for Var4 is processed. Finally,
the completed successfully event for Reply C is processed. Because it is a reply activity, the reply message in Var4 is
added to the test activity originally created by processing Receive A. As can be seen from this example, all start activity
events and the successful completion of all other activity types, including the completion of the data transformation
activity type assign, are ignored. This allows to fetch only a small part of the Process Log from the production system
in order to reduce the load imposed by the data transfer.

The resulting (simple) test case is shown in Fig. 3: Two mocks have been generated and every mock serves the
messages for the two operations.

Table 2. Example Process Log.

Event Type Referenced Element Data

Variable Changed Var1 <Message1 />

Completed Successfully /process/sequence/receive[@name='A']

Variable Changed Var2 <Message2/>

Completed Successfully /process/sequence/assign

Variable Changed Var3 <Message3/>

Completed Successfully /process/sequence/invoke[@name='B']

Variable Changed Var4 <Message4/>

Completed Successfully /process/sequence/assign[2]

Completed Successfully /process/sequence/reply[@name='C']

Fig. 3. Extracted Test Case.

	 Daniel Lübke / Procedia Computer Science 121 (2017) 1006–1013� 1011
 Author name / Procedia Computer Science 00 (2017) 000–000 5

10 inputMessage <- variables[communicationActivity.inputVariable]
11 outputMessage <- variables[communicationActivity.outputVariable]

12 if e.activity.type = receive then

a.testCase.partners[partner].add(new TestActivity(operation, inputMessage))
13 else if e.activity.type = reply then

a.testCase.partners[partner].last.outputMessage <- outputMessage
14 else if e.activity.type = invoke and operation.isOneWay then

a.testCase.partners[partner].add(new TestActivity(operation, outputMessage))
15 else if e.activity.type = invoke and operation.isTwoWay then

a.testCase.partners[partner].add(
 new TestActivity(operation, outputMessage, inputMessage))

16 end if
17 end if

18 if e.type == VARIABLE_CHANGED then
19 variables[e.variable] <- e.variableValue
20 end if

21 if e.type = MESSAGE_RECEIVED AND e.activity.type IN (onEvent, onMessage) then
22 lastEventWasMessageReceive <- true
23 lastMessageReceiveOn <- e.activity
24 end if
25 next

5. Example

Fig. 2. Simple Example Executable Process integrating two Information Systems.

Within this section we illustrate our approach by providing an example. The process shown in Figure 2 is very
simple but sufficient to demonstrate how the algorithm works. We replay the Process Log of one process instance on
top of the process model. An excerpt with the important events is shown in Table 2: First, the variable change is

6 Author name / Procedia Computer Science 00 (2017) 000–000

processed that stores the message used for starting the process into Var1. Then the completion of the Receive A is
processed. For this, the algorithm resolves which variable, partner and operation is referenced by this activity in the
process model. Thus, a new test partner with a two-way test activity is created. The test activity sends the value stored
in Var1. At this point, the message for the reply to the partner is not known. Next, the variable changes for Var2 and
Var3 are processed. The success completion of the Invoke B activity is processed similar to the processing of Receive
A: The variables, partner and operation is resolved. Consequently, a new test activity for answering a two-way
operation with receiving the value of Var2 and sending the value of Var3 back to the process is created in a new
partner that mocks Information System B. In the next step, the variable change event for Var4 is processed. Finally,
the completed successfully event for Reply C is processed. Because it is a reply activity, the reply message in Var4 is
added to the test activity originally created by processing Receive A. As can be seen from this example, all start activity
events and the successful completion of all other activity types, including the completion of the data transformation
activity type assign, are ignored. This allows to fetch only a small part of the Process Log from the production system
in order to reduce the load imposed by the data transfer.

The resulting (simple) test case is shown in Fig. 3: Two mocks have been generated and every mock serves the
messages for the two operations.

Table 2. Example Process Log.

Event Type Referenced Element Data

Variable Changed Var1 <Message1 />

Completed Successfully /process/sequence/receive[@name='A']

Variable Changed Var2 <Message2/>

Completed Successfully /process/sequence/assign

Variable Changed Var3 <Message3/>

Completed Successfully /process/sequence/invoke[@name='B']

Variable Changed Var4 <Message4/>

Completed Successfully /process/sequence/assign[2]

Completed Successfully /process/sequence/reply[@name='C']

Fig. 3. Extracted Test Case.

1012	 Daniel Lübke / Procedia Computer Science 121 (2017) 1006–1013

 Author name / Procedia Computer Science 00 (2017) 000–000 7

6. Integration into the Support & Development Process

Fig. 4. Failure Handling Process involving the Support, Development and Operations Organizations.

With a tool that implements the described algorithm it is possible to export a failing process instance from the
production system and have developers analyze and fix the problem without giving them access to the whole
production system, e.g. by following the incident process as shown in Fig. 4: Whenever an executable process fails
and the Support Team is not able to successfully resolve the problem by themselves, they can extract a Replication
Test Case. For this operation, only read-only access to the BPMS is required. The Replication Test Case is then given
to the Development Team, which can run it on a non-production environment and get to the same process state as the
failing one in production repeatedly. Analysis can be done from there and – in case a software fix is required – the
Replication Test Case can serve as a validation whether the original problem has been fixed. The information on how
to repair the failing process is then passed from the Development Team to the Support Team. Also the fix could then
be passed to the Operations Team in order to deploy it.

7. Conclusions & Outlook

Within this paper we demonstrated that process mining techniques can be used to build a Replication Test Case,
which can be used to isolate a failing process instance and transfer it off the production environment in order to better
analyze and fix the underlying root cause. The Replication Test Case is completely independent of any surrounding
services, because the exchanged data is also extracted and consequently can be mocked during test-time. The ability
to transfer and analyze executable processes has been used to suggest a new incident management process, which
allows to strictly separate roles if required and allows the parties with minimal rights to perform their tasks. Especially
the developers can get the required information, which they need without having access to the production system.

However, the approach is heavily dependent on the Business Process Management System being used because
there is no existing standard how Process Logs should be created and saved. The algorithm and thus the
implementation of this approach is dependent on the events, event types, and event order. As such, the algorithm could
look very different if used with a differently structured Process Log.

Possible future work can be to help development teams build automated regression test suites. If the data in the
extracted test suite is anonymized and assertions are generated from the messages sent by the executable process
automatically, regression tests can be developed by extracting and anonymizing productive or manually tested process

8 Author name / Procedia Computer Science 00 (2017) 000–000

instances. In this way, it would be easily possible to add automated tests for already implemented and frequently used
features.

References

1. Zimmermann, O.; Doubrovski, V.; Grundle, J. & Hogg, K. Service-oriented Architecture and Business Process Choreography in an Order
Management Scenario: Rationale, Concepts, Lessons Learned Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, ACM, 2005, 301-312.

2. Berli, W.; Lübke, D. & Möckli, W. Plödereder, E.; Grunske, L.; Schneider, E. & Ull, D. (Eds.) Terravis -- Large Scale Business Process
Integration between Public and Private Partners Lecture Notes in Informatics (LNI), Proceedings INFORMATIK 2014, Gesellschaft für
Informatik e.V., 2014, P-232, 1075-1090.

3. Hertis, M. & Juric, M. B. An Empirical Analysis of Business Process Execution Language Usage IEEE Trans. Software Eng., 2014, 40, 738-
757.

4. Lübke, D. Unit Testing BPEL Compositions; in Baresi, L. & Nitto, E. D. (Eds.) Test and Analysis of Service-Oriented Systems Springer, 2007.
5. Yang, Q.; Li, J. J. & Weiss, D. M. A survey of coverage-based testing tools The Computer Journal, Br Computer Soc, 2009, 52, 589-597.
6. Lübke, D.; Singer, L. & Salnikow, A. Calculating BPEL Test Coverage through Instrumentation Workshop on Automated Software Testing

(AST 2009), ICSE 2009, 2009.
7. van der Aalst, W. Process Mining – Data Science in Action, Springer, 2016.
8. OASIS. Web Services Business Process Execution Language Version 2.0 2007.
9. Object Management Group (OMG). Business Process Model and Notation (BPMN), Version 2.0, 2011.

	 Daniel Lübke / Procedia Computer Science 121 (2017) 1006–1013� 1013

 Author name / Procedia Computer Science 00 (2017) 000–000 7

6. Integration into the Support & Development Process

Fig. 4. Failure Handling Process involving the Support, Development and Operations Organizations.

With a tool that implements the described algorithm it is possible to export a failing process instance from the
production system and have developers analyze and fix the problem without giving them access to the whole
production system, e.g. by following the incident process as shown in Fig. 4: Whenever an executable process fails
and the Support Team is not able to successfully resolve the problem by themselves, they can extract a Replication
Test Case. For this operation, only read-only access to the BPMS is required. The Replication Test Case is then given
to the Development Team, which can run it on a non-production environment and get to the same process state as the
failing one in production repeatedly. Analysis can be done from there and – in case a software fix is required – the
Replication Test Case can serve as a validation whether the original problem has been fixed. The information on how
to repair the failing process is then passed from the Development Team to the Support Team. Also the fix could then
be passed to the Operations Team in order to deploy it.

7. Conclusions & Outlook

Within this paper we demonstrated that process mining techniques can be used to build a Replication Test Case,
which can be used to isolate a failing process instance and transfer it off the production environment in order to better
analyze and fix the underlying root cause. The Replication Test Case is completely independent of any surrounding
services, because the exchanged data is also extracted and consequently can be mocked during test-time. The ability
to transfer and analyze executable processes has been used to suggest a new incident management process, which
allows to strictly separate roles if required and allows the parties with minimal rights to perform their tasks. Especially
the developers can get the required information, which they need without having access to the production system.

However, the approach is heavily dependent on the Business Process Management System being used because
there is no existing standard how Process Logs should be created and saved. The algorithm and thus the
implementation of this approach is dependent on the events, event types, and event order. As such, the algorithm could
look very different if used with a differently structured Process Log.

Possible future work can be to help development teams build automated regression test suites. If the data in the
extracted test suite is anonymized and assertions are generated from the messages sent by the executable process
automatically, regression tests can be developed by extracting and anonymizing productive or manually tested process

8 Author name / Procedia Computer Science 00 (2017) 000–000

instances. In this way, it would be easily possible to add automated tests for already implemented and frequently used
features.

References

1. Zimmermann, O.; Doubrovski, V.; Grundle, J. & Hogg, K. Service-oriented Architecture and Business Process Choreography in an Order
Management Scenario: Rationale, Concepts, Lessons Learned Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, ACM, 2005, 301-312.

2. Berli, W.; Lübke, D. & Möckli, W. Plödereder, E.; Grunske, L.; Schneider, E. & Ull, D. (Eds.) Terravis -- Large Scale Business Process
Integration between Public and Private Partners Lecture Notes in Informatics (LNI), Proceedings INFORMATIK 2014, Gesellschaft für
Informatik e.V., 2014, P-232, 1075-1090.

3. Hertis, M. & Juric, M. B. An Empirical Analysis of Business Process Execution Language Usage IEEE Trans. Software Eng., 2014, 40, 738-
757.

4. Lübke, D. Unit Testing BPEL Compositions; in Baresi, L. & Nitto, E. D. (Eds.) Test and Analysis of Service-Oriented Systems Springer, 2007.
5. Yang, Q.; Li, J. J. & Weiss, D. M. A survey of coverage-based testing tools The Computer Journal, Br Computer Soc, 2009, 52, 589-597.
6. Lübke, D.; Singer, L. & Salnikow, A. Calculating BPEL Test Coverage through Instrumentation Workshop on Automated Software Testing

(AST 2009), ICSE 2009, 2009.
7. van der Aalst, W. Process Mining – Data Science in Action, Springer, 2016.
8. OASIS. Web Services Business Process Execution Language Version 2.0 2007.
9. Object Management Group (OMG). Business Process Model and Notation (BPMN), Version 2.0, 2011.

