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Abstract: In many geodetic engineering applications it is 
necessary to solve the problem of describing a measured 
data point cloud, measured, e. g. by laser scanner, by 
means of free-form curves or surfaces, e. g., with B-Splines 
as basis functions. The state of the art approaches to deter-
mine B-Splines yields results which are seriously manipu-
lated by the occurrence of data gaps and outliers. 

Optimal and robust B-Spline fitting depend, however, 
on optimal selection of the knot vector. Hence we combine 
in our approach Monte-Carlo methods and the location 
and curvature of the measured data in order to determine 
the knot vector of the B-Spline in such a way that no oscil-
lating effects at the edges of data gaps occur. We introduce 
an optimized approach based on computed weights by 
means of resampling techniques. In order to minimize 
the effect of outliers, we apply robust M-estimators for the 
estimation of control points. 

The above mentioned approach will be applied to a 
multi-sensor system based on kinematic terrestrial laser-
scanning in the field of rail track inspection.

Keywords: Deformation, Free-form Curve, B-Splines, Knot 
Adjustment, Robust Parameter Estimation, Monte-Carlo 
Resampling Techniques 

1  Introduction
In several geodetic applications deformations and deflec-
tions to a target-state are derived from point clouds, captured, 

e. g. by laser scanner. In order to determine deformations 
or deflections, the spatial object has to be modelled. 
Especially complex objects need to be approximated by 
free-form curves and surfaces, such as B-Splines, in a 
sophisticated manner. 

Unfortunately, the measurements of the deformed 
object may contain data gaps and outliers. The state of the 
art approaches to determine B-Splines yields results which 
are seriously manipulated by the occurrence of data gaps 
and outliers. Missing data lead to oscillating effects at 
the edges of the data gap. Outliers could have an unlim-
ited effect on the results, if the unknown parameters (the 
control points) are estimated by means of the least-squares  
methods. Furthermore, the outliers have to be distin
guished from “real” deformations and wear marks.

B-Spline fitting usually consists of 3 main steps. First 
step is the parameterization of the measured data. The 
second step is the knot adjustment, which yields the knot 
vector U. The third step is the determination of the control 
points by means of a linear Gauss-Markov-Model (GMM) 
with the previously determined parameterization and 
knot vector as input parameters.

The parameterization of the measured data can be 
achieved using the mentioned methods of Piegl and Tiller 
[11]: equally spaced, chord length and centripetal. Lai and 
Lu [8] introduced an approach to estimate location param-
eters of the measured points which leads to a non-linear 
least squares fit. 

Knot adjustment for data fitting with B-Splines in
cludes two main tasks. On the one hand the number of 
knots has to be determined. On the other hand the loca-
tions of the knots have to be adjusted. 

The former task, a model selection problem, can be 
solved by applying an information criterion (Akaike or 
Bayesian, cf. Gálvez et al. [3]) or the usage of a significance 
test (cf. Liu and Wang [9]).

The latter task, an optimization problem, was tackled by 
plenty of researchers with a vast variety of approaches. Since 
the first works in the field of Splines in the 1960s and 1970s 
the optimal choice of the knot locations became important. 
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However, two problems make the optimal choice of the 
knot locations difficult. First of all there is no analytic 
expression for the optimal knot locations and secondly 
there exist many local optima of the least-squares func-
tion (cf. Gálvez et al. [3]; Jupp [6]; Rice [12]).

Nevertheless, there are approaches to estimate the 
optimal knot locations. Schmitt and Neuner [14] try to 
estimate the knot locations and the position of the control 
points at the same time. In order to solve the resulting 
highly non-linear system, they introduce adequate initial 
values and constraints.

The approaches to align the knot vector to the meas-
ured points are well known in many research papers. 
Piegl and Tiller [11] align it to the location parameter of 
the measured points. Park and Lee [10] align it to the cur-
vature of the measured points.

With the rising capability of information technol-
ogy artificial intelligence techniques obtain good results 
in an adequate amount of time. Some approaches use 
neural and functional networks, respectively. Other 
approaches use metaheuristic techniques like genetic 
algorithms (cf. Sarfraz and Raza [13]; Yoshimoto et al. 
[18]), artificial immune systems (cf. Gálvez et al. [3]; 
Ülker and Arslan [16]) or estimation of distribution algo-
rithms (cf. Zhao et al. [19]). 

As far as we know, the artificial immune system of 
Gálvez et al. [3] is the approach which yields the best results 
in knot adjustment until now, especially for complex data 
with gaps, discontinuities and cusps. Nevertheless this 
approach is still time-consuming and CPU-intensive and it 
is not unusual that the final solution converges into a local 
optimum instead of the global optimum.

The third and final step in B-Spline fitting is the esti-
mation of the position of the control points. Piegl and 
Tiller [11] and Koch [7] estimate the control points as 
parameters by means of a linear GMM. The observation 
vector is formed of the measured data. The design matrix 
consists of the basis functions. The parameters were 
determined by minimizing the residual sum of squares. 
As far as we know there is no work, which describes the 
usage of robust estimators, like Huber-, Hampel or L1-
estimator, instead of the least-square-estimator to deter-
mine the position of control points of a B-Spline. Because 
of the characteristics of laser scan data, like the fast but 
uncontrolled acquisition of millions of data points, we 
have to consider the probability for a significant amount 
of outliers, which seriously affects the results. That is the 
reason for introducing robust estimators into the estima-
tion of the control points. 

The paper is organized as follows: In Section 2 
the mathematical essentials for B-Spline curves and 

the estimation of the position of the control points are 
briefly described. Section 3 points out the basic proper-
ties of robust parameter estimation. Section 4 contains 
a detailed description of our proposed approach of knot 
adjustment. In Section 5 the different results of the pro-
posed approach and the robust estimation are presented 
and compared among each other and with an existing 
algorithm. This paper finishes with a short conclusion 
and an outlook in Section 6.

2  B-Spline Curves
The functional relation of a B-Spline curve is defined by 
(cf. Piegl and Tiller [11]):  

∑( ) ( ) ⋅
=

u N uC x= i p
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In Equation 1 the curve point C(u) = x(u), y(u)T is calcu
lated by a linear combination of the p-th-degree B-Spline 
basis functions Ni, p (u) with index i ∈ {0, …, n} and the 
control points xi = xi, yiT, where n + 1 is the number of 
control points. The p-th-degree basis functions can be 
calculated by a recursion formula (cf. Cox [1]; de Boor [2])
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The knot vector U is a nondecreasing sequence of real 
numbers. The real numbers ui are called knots. The first 
p + 1 knot of U usually consist of zeros. The last p + 1 knots 
usually consist of ones. m + 1 is the size of the knot vector 
and can be calculated by: 

= + +m n p 1

The parameterization u of the (measured) data points 
is also called location parameter. They are stored in the 
vector Ul = [u1, …ur], with r the number of the data points. 
For example Piegl and Tiller [11] mention 3 methods 
(equally spaced, chord length, centripetal) to parameter-
ize the observations. In the proposed approach we used 
the chord length, which sums up the Euclidean distance 

(1)
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(4)
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between the sorted observations, to parameterize the 
measured data. Since the parameterization method is not 
in the focus of this paper, the widely used method chord 
length was chosen. Nevertheless our approach allows to 
use the other methods. 

In order to fit a B-Spline to measured data l the knot 
vector U and the vector with parameterized data points Ul 
are determined previously. In a linear GMM the parameter 
x, the positions of the control points, are estimated. The 
design matrix A is constructed by the basis functions:

N u N u

N u N u
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3  Robust Parameter Estimation
Robust estimators include the attribute, that their influ-
ence function Ψ is limited. That means that the influence 
of data with large residuals (possible outliers) on the para-
meter estimation is limited. The M-estimators, like Huber-, 
Hampel- or L1- estimator, can be distinguished in their 
influence function. For example, the influence function of 
the Huber-estimator weights the residuals of the measured 
data in the following way (see Equation 6 and Figure 1):
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For the residuals εi, which are smaller than the so called 
tuning constant c, the influence function equals the influ-
ence function of the least-squares estimator. The  influence 

(5)

(6)

of residuals, which are larger than c, is limited to the value 
of c. For more information see, e. g. Hartun g et al. [4]  and 
Wicki  [17] .

By applying these estimators, a non-linear equation 
system has to be solved. This can be achieved by using the 
iterative reweighted least squares algorithm illustrated in 
Figure 2 (cf. Huber  [5] , p. 179 ff.). After an initial determina-
tion of the parameters x, the residuals v and the variance 
factor σ (calculated by median absolute deviation (mad) 
of v) with equal weights, the algorithm enters a while-loop 
which ends when the sum of absolute differences in v of 
2 consecutive iterations is smaller than a certain threshold 
near 0. Until then in each iteration new weights pi are cal-
culated depending on v and σ of the previous iteration and 
depending on the influence function Ψ. The weights pi are 
the main diagonal elements of the weight matrix P. x, v and 
σ are estimated iteratively by means of the updated weights.  
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Figure 2: Algorithm iterative reweighted least squares.

4  Methodology of Knot Adjustment
Our methodology is illustrated in Figure 3. Before the algo-
rithm starts, the number of control points n and the degree 
p of the basis function have to be chosen. As already men-
tioned in Section 1 this is a model selection problem which 
can be solved a�erwards by applying an information cri-
terion or a signi�cance test to di�erent solutions with a 
diverging number of control points or degree of basis func-
tion. This is not part of this work.Figure 1: Influence function for Huber-estimator.
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4  Methodology of Knot Adjustment
Our methodology is illustrated in Figure 3. Before the algo-
rithm starts, the number of control points n and the degree 
p of the basis function have to be chosen. As already men-
tioned in Section 1 this is a model selection problem which 
can be solved afterwards by applying an information cri-
terion or a significance test to different solutions with a 
diverging number of control points or degree of basis func-
tion. This is not part of this work.Figure 1: Influence function for Huber-estimator.
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Also the maximal number of iterations itermax has to 
be chosen. At the moment itermax (in this case: 20,000) 
serves as stop-criterion of our algorithm. 

Our algorithm offers 3 possible methods (“location”, 
“curvature”, “ranking”) to calculate the probability R. All 
methods are described in Section 4.1. The probability cal-
culating method pcm stores the selected method and has 
to be chosen previously. In case of selection of the method 
“ranking” the number of iterations with equally weighted 
R iterchance has to be chosen (see Section 4.1). At the 
beginning the measured data l has to be parameterized 
(using chord length). The resulting location parameter are 
stored in Ul.

In case of choosing “location” as pcm, R has to be cal-
culated depending on Ul. In case of choosing “curvature” as 
pcm, the curvature cur of the measured data has be deter-
mined and subsequently R has to be obtained depending 
on cur and Ul.

At the beginning of the following for-loop there is, 
in case of choosing “ranking” as pcm, an inquiry which 
checks if the actual number of iteration is lower or equal 
iterchance. In this case R is calculated equally weighted. If 
the actual number of iteration is larger than iterchance R 
is calculated depending on Uranking.

In the following step, all n-p internal knots Uinternal are 
chosen randomly, but depending on R.  

Uinternal, together with the multiple start- and end-
knots, has to be arranged to the complete knot vector 
Uactual in a non-decreasing way. For the choice of the knots, 
see Section 4.2.

In the next step the control points are estimated in a 
GMM by using Ul and Uactual. It is possible to use a least 
squares estimator as well as a robust estimator. For this 
solution the residual sum of squares Ωactual is calculated. 
Ωactual has to be compared with the Ω stored in the ranking 
Ωranking. When Ωactual is smaller than one or more Ωranking, 
Uactual and Ωactual are stored in the ranking and the result 
with the highest Ω in the ranking will be deleted. These 
steps are repeated until itermax is reached.

When itermax is reached the knot vector Ubest with the 
smallest Ωbest is chosen out of Uranking and Ωranking and each 
internal knot of Ubest is sequentially modified and stored 
as Ubest and Ωbest when the resulting Ωactual is smaller than 
Ωbest. After modifying each internal knot Ubest and Ωbest are 
obtained and the algorithm ends. 

4.1  Calculation of the Probability

As already mentioned in Section 4 and depicted in Figure 3 
we introduce 3 methods to calculate the probability R. 

Data: measured data (sorted) l;
# control points n;
degree basis function p;
# iterations itermax;
choice of probability calculating method pcm;
# iterations with equally weighted R iterchance
Result: �optimal position of internal knots in the  

knot vector Ubest

initialization;
determine the location parameter Ul of 1;
if pcm = "location" then
 | calculate probability R depending on Ul

else
  if pcm = "curvature" then
    calculate the curvature cur of l;
    calculate R depending on cur and Ul;
  end
end
for iter = 1 : itermax do
  if pcm = "ranking" then
    if iter ≤ iterchance then
      calculate R equally weighted
    else
      calculate R depending on Uranking

    end
  end
  Choose the n-p internal knots Uinternal randomly
  depending on R;
  Arrange Uinternal to the knot vector Uactual;
  Estimate control points with a GMM depending 
  on Ul and Uactual;
  Calculate the residual sum of squares ώactual;
  if ώactual < ώranking then;
    ώranking = ώactual;
    Uranking = Uactual;
  end
end
Choose Uranking with smallest ώranking as Ubest, ώbest;
for iter = p + 1: n do
  for Ubest (1, iter) = 0:0.001 do
    Arrange the complete knot vector Uactual;
    Estimate control points with a GMM
    depending on Ul and Uactual;
    Calculate the residual sum of squares ώactual;
    if ώactual < ώbest then
      ώbest = ώactual;
      Ubest = Uactual

    end
  end
end

Figure 3: Methodology of knot adjustment.
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The first method “location” calculates the probability out 
of the parameterized location parameter Ul of the mea
sured data l. 

First of all, the possible span of the internal knots 
(in this case the span ranged from 0 to 1, because of the 
parameterization of the measured data) is divided in 
many (in this case: 1000) parts. For each part where the 
mean distance to the next 2 location parameters exceeds 
a certain threshold (in this case: 0.02) the probability of 
this part is set to 0. In the other case the probability is 
set to 1. As a consequence the internal knots can only 
be chosen in areas where measured data is nearby. That 
means that internal knot spans are extreme unlikely to 
be located in data gaps, which has, due to possible sin-
gularities in the design matrix, negative effects on the 
appearance of the B-Spline.

The second method “curvature” calculates the prob-
ability depending on curvature values of the measured 
data points. The calculation is similar to the calculation 
of the method “location” with the difference that the 
probability of the parts lying under the threshold is cal-
culated as the mean curvature of the 5 closest measured 
data points.

The third method “ranking” calculates the probabil-
ity depending on a ranking list Uranking of the knot vectors 
with the smallest sum of squares Ω. For the first iterations 
(in this case: iterchance = 3000) the whole knot span is 
weighted equally. Otherwise the unwished chance that 
the algorithm converges to a local optimum increases. The 
knot vectors with the smallest Ω are stored in Uranking (in 
this case Uranking consist of the top 20 knot vectors). For an 
iteration number larger iterchance the probability is calcu-
lated depending on Uranking. For each part, where an inter-
nal knot of Uranking is placed, the probability for that part is 
increased inversely proportional to Ω. As a consequence 
the probability for choosing parts increases, where a good 
solutions was achieved. In order to solve the problem that 
the algorithm converges to a local optimum, some knot 
vectors were still chosen with an equally weighted prob-
ability.  Using the method “ranking”, our algorithm trans-
forms into an evolutionary strategy.

4.2  Choice of the Knots

In order to determine knots out of the calculated probabil-
ities R a resampling step, established for particle filter, is 
introduced (cf. Simon [15], pp. 466 f.). In step 1 n-p random 
numbers are generated uniformly distributed on [0,1]. In 
step 2 the probabilities of the 1000 parts are accumulated 
and stored for each part (see Figure 4). 

 

Figure 4: Cumulative probability in method “ranking” (after last 
iteration).

Finally, the part where the accumulated probability is 
greater than the randomly chosen number is chosen. That 
means that parts with low probabilities are unlikely to be 
chosen as the new internal knot. 

5  Results

5.1  Knot Adjustment

In order to verify the capability of our algorithm it is 
applied to several test functions. Yoshimoto et al. [18] 
and Gálvez et al. [3] used the following functions (Equa-
tion 7–9) which represent complex data with discontinu-
ities and cusps. 

The first function represents a step function (see 
Figure 5):
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The third function contains a cusp (see Figure 7):

ϕ ω
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= +
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ω −e
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500
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For each test function 201 data points are generated 
using the Uniform distribution within the interval 
U~[0,1]. All data points are perturbed by an additive 
random noise that follows the normal distribution 
N~[0,1] (cf. Gálvez et al. [3], p. 96 f.).

In the following Tables 1 to 3 Ωbest of the different prob-
ability calculating methods of the proposed approach are 
compared to Ωbest of the implemented clonal selection 
algorithm (csa) of Gálvez et al. [3]. κ is the number of inter-
nal knots and can be calculated according to Equation 10.

κ = −n p

For reason of comparability, Ωbest is calculated as average 
of 30 runs, without regarding the 5 best and worst runs 
(cf. Gálvez et al. [3], p. 98). The mentioned standard devia-
tion σ is calculated out of all 30 runs.

Table 1: Ωbest (±σ) for function φ1(ω) from κ = 1 to κ = 7. 

κ location curvature ranking csa

1 2896.99  
(±0.00)

2896.99
(±0.00)

2896.99
(±0.00)

2896.99
(±0.00)

2 651.46
(±0.78)

651.19
(±0.90)

606.02
(±0.00)

606.02
(±0.00)

3 272.25
(±0.89)

272.39
(±0.76)

271.53
(±0.01)

271.09
(±1.88)

4 229.81
(±1.67)

229.71
(±1.76)

228.19
(±0.07)

225.84
(±12.24)

5

6

7

217.61
(±1.68)
172.60
(±2.79)
166.86
(±1.79)

216.45
(±1.06)
171.29
(±1.19)
165.60
(±1.54)

215.74
(±1.22)
170.08
(±0.40)
163.51
(±0.50)

219.24
(±6.51)
169.69
(±0.73)
166.03
(±2.95)

Table 1 to 3 show that the method “ranking” always yields 
a smaller mean value for Ωbest than the methods “location” 
and “curvature”. In comparison to the csa the method 
“ranking” provides in the majority of the cases slightly 
smaller mean values for Ωbest. In the vast majority of the 
cases the standard deviation σ of the method “ranking” is 
significantly smaller than σ of the csa. Figure 5 to 7 show the 
solutions with the smallest Ωbest over 30 runs for the method 
“ranking”. The best results of the other methods weren’t 
displayed because the visual differences are too small.  

(9)

(10)

Figure 5: Best 3rd-order B-Spline fitting for function φ1(ω) with 
method “ranking” (κ = 4).

Table 2: Ωbest (±σ) for function φ2(ω) from κ = 1 to κ = 17.

κ location curvature ranking csa

1 43262.28 
(±0.00)

43262.28
(±0.00)

43262.28
(±0.00)

43262.28
(±0.00)

2 23595.93
(±1.12)

23595.72
(±0.27)

23595.57
(±0.00)

23595.57
(±161.74)

3 1771.39
(±20.18)

1747.55
(±11.84)

1643.68
(±0.00)

1643.69
(±0.01)

4 1050.54
(±23.47)

1038.23
(±27.82)

998.13
(±6.96)

995.18
(±2.86)

5 834.02
(±33.83)

818.52
(±16.75)

772.96
(±11.82)

778.14
(±40.79)

6 466.34
(±94.50)

438.82
(±69.66)

354.27
(±6.88)

424.73
(±160.59)

7 207.52
(±28.80)

220.28
(±24.51)

157.59
(±5.18)

153.52
(±7.98)

8 162.83
(±14.25)

166.93
(±16.26)

139.54
(±3.80)

141.07
(±7.11)

9 137.11
(±8.30)

141.92
(±10.77)

124.49
(±3.45)

132.51
(±9.32)

10 125.14
(±6.49)

131.93
(±9.05)

112.65
(±5.19)

124.10
(±9.01)

11 115.70
(±7.04)

122.42
(±8.50)

103.17
(±3.87)

118.86
(±9.08)

12 108.01
(±5.90)

113.30
(±6.34)

99.64
(±1.43)

112.75
(±10.71)

13 103.60
(±4.30)

106.93
(±6.60)

97.03
(±1.48)

104.39
(±10.22)

14 97.23
(±3.10)

101.35
(±5.25)

93.22
(±3.15)

96.55
(±6.23)

15 94.39
(±2.89)

95.35
(±3.72)

90.39
(±3.62)

93.26
(±8.06)

16 91.49
(±3.11)

93.56
(±3.94)

85.04
(±4.11)

90.94
(±6.11)

17 89.47
(±3.95)

89.45
(±3.47)

82.21
(±3.85)

87.44
(±5.06)
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Table 3: Ωbest (±σ) for function φ3(ω) from κ = 1 to κ = 17.

κ location curvature ranking csa

1 4912.60  
(±0.01)

4912.59
(±0.00)

4912.55
(±0.00)

4912.55
(±0.00)

2 2672.91
(±0.15)

2672.93
(±0.25)

2672.87
(±0.00)

2672.87
(±0.00)

3 594.68
(±1.03)

594.39
(±0.87)

593.56
(±0.05)

593.57
(±1.73)

4 441.67
(±3.69)

439.69
(±2.59)

438.07
(±8.34)

437.60
(±10.45)

5 262.24 258.80 248.95 242.85
(±10.10) (±6.57) (±0.26) (±1.49)

6 231.87 226.09 215.02 221.91
(±8.23) (±4.85) (±0.72) (±7.19)

7 205.72 202.51 191.65 199.57
(±6.19) (±5.33) (±0.82) (±10.99)

8 185.58 186.30 168.72 177.19
(±6.78) (±5.07) (±1.41) (±10.87)

9 171.85 170.65 161.09 164.67
(±3.84) (±4.45) (±0.57) (±10.25)

10 161.70 162.02 150.88 154.83
(±4.24) (±3.77) (±1.18) (±6.82)

11 155.04 155.04 145.52 149.20
(±3.36) (±4.40) (±2.20) (±5.15)

12 148.17 149.29 142.10 142.31
(±2.92) (±3.95) (±1.01) (±5.28)

13 145.84 146.21 138.26 142.04
(±2.07) (±2.55) (±1.93) (±4.89)

14 143.15 143.15 128.90 138.55
(±4.09) (±3.87) (±3.48) (±5.05)

15 139.71 141.00 123.14 133.35
(±3.96) (±3.76) (±1.83) (±6.70)

16 132.76 133.76 121.37 128.22
(±4.41) (±4.67) (±1.18) (±7.61)

17 128.99 127.85 118.52 126.58
(±4.00) (±4.29) (±2.98) (±6.85)

That means the results of the method “ranking” are more 
stable than the results of the csa, which converge, in a not 
negligible amount of runs, into a local optimum instead of 
the global optimum. Especially for large κ our algorithm 
yields better results than the csa.

5.2  Robust Parameter Estimation

The results shown in the previous Section 5.1 are 
obtained by a least squares estimation of the control 
points. Due to the fact that the test functions are per-
turbed by a normally distributed noise that is suf-
ficient. In order to check the performance of robust 
estimation, we generated a point cloud of 911 points 
out of the desired values for a rail track. These desired 
values or true values, respectively, are stored in the vector l� .  
Again l�  is perturbed by a normally distributed noise 
N~[0,0.067], which conforms with the data sheet of a 
usual profile scanner for rail track inspection. Addition-
ally, 3 outliers are inserted, arranged about 4 mm above 
the desired values. The resulting points are stored in l . 
Figure 8 shows the comparison between an estimation 
with least squares and the estimation using a robust 
estimator, in this case the Huber-estimator (with the 
tuning constant c = 1). Both results are obtained using 
the method “ranking” for knot adjustment. In the area 
of the 3 outliers the least squares estimation is distorted 
in the direction of the outliers, whereas the fit using 
the Huber-estimator stays closer to the data without  
outliers.

Figure 6: Best 3rd-order B-spline fitting for function φ2(ω) with 
method “ranking” (κ = 10).

Figure 7: Best 3rd-order B-spline fitting for function φ3(ω) with 
method “ranking” (κ = 8).
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Figure 8: Comparison estimation with least squares and Huber.

In order to validate that visual result, we calculated the 
residual sum of squares of the estimated parameters to the 
“measured” values l  (ώ) and to the true values l�  (ώ̃).

v A x v v
v A x v v

ˆ Ω
ˆ Ω

l

l

T

T� � � ��
= ⋅ − → =
= ⋅ − → =

Table 4: Comparison of least squares and Huber-estimation.

least squares Huber

ώ 86.0781 86.9692
ώ̃ 43.6250 41.8616

Table 4 shows that the estimation using the Huber-estimator 
has a smaller ώ̃ thus the effect of the outliers is lower than 
using the least squares estimation. 

6  Conclusion and Outlook
In this paper we introduced an algorithm which deter-
mines the knot vector of a B-Spline with a mixture of 
Monte-Carlo methods and an evolutionary algorithm and 
simultaneously is robust against outliers. The results of 
knot adjustment are slightly better than the results of com-
parable algorithms. Especially for an increasing number of 
internal knots our algorithm yields better results. Further-
more the proposed algorithm produces more stable results, 
because the deviation of the results is significantly smaller. 
We also showed that robust parameter estimation for 

B-Splines obtains good results and is essential in case of 
an outlier-contaminated point cloud.

Beside the extension of our approach on B-Spline 
surfaces, the input and tuning parameters, as the chosen 
assumptions at probability calculation (e. g. size of the 
ranking, thresholds and partitioning), are going to be 
implemented in a closed loop simulation. Especially, the 
extension with respect to a more sophisticated introduc-
tion of prior knowledge is planned.
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