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Abstract

The future bloom and risk of blossom frosts for Malus domestica were projected using regional climate realizations and
phenological ( = impact) models. As climate impact projections are susceptible to uncertainties of climate and impact
models and model concatenation, the significant horizon of the climate impact signal was analyzed by applying 7 impact
models, including two new developments, on 13 climate realizations of the IPCC emission scenario A1B. Advancement of
phenophases and a decrease in blossom frost risk for Lower Saxony (Germany) for early and late ripeners was determined by
six out of seven phenological models. Single model/single grid point time series of bloom showed significant trends by
2021–2050 compared to 1971–2000, whereas the joint signal of all climate and impact models did not stabilize until 2043.
Regarding blossom frost risk, joint projection variability exceeded the projected signal. Thus, blossom frost risk cannot be
stated to be lower by the end of the 21st century despite a negative trend. As a consequence it is however unlikely to
increase. Uncertainty of temperature, blooming date and blossom frost risk projection reached a minimum at 2078–2087.
The projected phenophases advanced by 5.5 d K21, showing partial compensation of delayed fulfillment of the winter chill
requirement and faster completion of the following forcing phase in spring. Finally, phenological model performance was
improved by considering the length of day.
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Introduction

Apple production and its economic efficiency are clearly

influenced by blossom frosts [1]. In addition, global warming

could increase the risk due to greater changes in the date of

flowering than in the last spring freeze or increasing variability in

both. A generally higher risk of frost after bud burst for warmer

winters was further stated as due to faster completion of the

chilling requirement [2]. Past observations of late frosts and

blossom frosts around the world have indicated a decreasing [3,4]

up to increasing risk [4–8] for fruit trees. However, findings cannot

be generalized as they vary regionally. For instance, observed

damages due to late frost increased in Northern Japan while other

regions of Japan exhibited different tendencies [4]. An analysis of

meteorological and phenological records of the Rhineland fruit-

growing region in the West of Germany revealed, that risk of apple

yield loss due to frosts in April remained unchanged during the

period 1958 to 2007 [9–11]. This is consistent with studies

showing an advance during the past of about 2.2 d/decade for

both the last spring freeze (#0uC, Central Europe, 1951–1997)

[12] and for apple flowering (BBCH 60 [13], Germany, 1961–

2000) [14].

Regardless of its development during the past, future blossom

frost risk development remains uncertain as published estimates

diverge (Table 1). Discrepancies are mainly due to differences in

selected regions and varieties, as well as to the fact, that blossom

frost risk computation requires estimates for flowering dates in

addition to consistent climate time series which reproduce

temperature thresholds (e.g. 0uC ) accurately. For this purpose

climate model temperature time series are used as input for

empirical phenological models accounting for chilling and/or

forcing phases in winter and spring respectively [15]. While most

climate scenarios describe an enhanced warming beyond 2040

[16], the following risk estimates are given. For the apple cultivar

Golden delicious a ‘‘decreasing trend … of little significance’’ was

found (Trentino, Italy), concluding that blossom frost risk ‘‘will not

differ greatly from its present level’’ [17]. Similarly, for Finland the

risk is expected to generally ‘‘stay at the current level or to

decrease’’ for the period 2011–2040 compared to 1971–2000,

excepting the southern inland which exhibits increases [18].

Increases in frost damage to apple blossom (Malus pumila Mill. cv.

Cox’s Orange Pippin) were estimated for Britain [19] and an

increase in the frequency of apple blossom frost damage was

projected for Saxony (East Germany) by applying a simple thermal

model to predict flowering, beginning on each 1 January [20].

Using the same approach, no increase in the mean apple blossom

frost risk for Lower Saxony (Saxony and Lower Saxony are non-
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adjacent states) was found [21], despite temporarily/regionally

increasing blossom frost risk.

These differences in estimates can be attributed to two deficits:

1) The modeling properties of the mentioned model [20,21] are

very limited for climate impact studies, as it solely calculates

the onset of a phenophase based on accumulation of a heat

requirement (forcing), hence assuming that dormancy has

already been satisfied by a fixed starting date (see [22] for

more details). Since future fulfillment of dormancy cannot be

guaranteed, models including chilling phases seem to be more

suitable for future climate impact simulations [23]. With their

help, a possible impact of climate change on the fulfillment of

dormancy [6] can be assessed. However, most of these models

rely only on air temperature, ignoring possible influences of

other climatic variables. Nevertheless improvement was found

after including light conditions in the form of day length

[24,25], despite ongoing discussions about the influence of

light conditions on tree phenological phases [26].

2) Published estimates of future blossom frost risk (Table 1) are

based on single climate realizations and out of five studies,

only two presented statistics for future blossom frost risk

[17,21]. However, assessing climate impact on the basis of

models involves error concatenation resulting from the

following chain of information. The future climatic impact

is studied with the help of simulated climate time series,

generated by global circulation models (GCM) and regional-

ized or downscaled by regional climate models (RCM). For

this purpose these climate models are forced with greenhouse

gas emissions scenarios of an evolving world (IPCC scenarios,

SRES emission scenarios, [16,27]). In order to estimate

climate projection uncertainty, ensembles of GCM-RCM

combinations or several realizations of one GCM-RCM

combination (runs) are usually produced. These climate time

series are used after down-scaling to drive impact models in

order to assess the climatic impact in such different fields as

coastal protection, water management, environmental re-

search, food supply, urban planning and land use. Since

models cannot reproduce every environmental aspect in real

accuracy and resolution, systematic deviations of simulated

and observed climate time series as well as of simulated and

observed climate impact have to be taken into account.

Depending on model sensitivity and question at hand, these

biases can be removed by bias correction (e.g. 1-dimensional

[28]; 2-dimensional [29]). Hence the chain of information for

climate impact is: Scenario - emission - GCM - RCM -

climate run - (bias correction) - impact model. Further chain

members (e.g. prevention, adaptation strategies) or influences

(e.g. feedbacks, interpolation, statistics) are possible. Since

each member of this chain exists in different versions,

numerous computations have to be conducted in order to

cover the whole set of information available. Therefore most

impact studies focus on ‘‘likely’’ scenarios [30], often not

considering the full range of possibilities. This leads to the

effect of possibly biased but significant trends of single or

similar time series.

Taking these deficits into account, the objective of this work is to

present a robust estimate of future blossom frost risk, taking the

climate-model-impact-model uncertainty into account, including

two new developed extensions of one sequential and one parallel

chilling-forcing model considering light conditions.

Methods

General Procedure and Regional Focus
Thirteen simulated time series of air temperature from varying

regional climate models were used to drive seven phenological

models for the projection of apple bloom in Lower Saxony,

Germany, whereas blossom frost risk was obtained by evaluating

the temperature following bloom. Changes of these variables over

time and compared to a reference period are referred to as

‘‘signal’’ in the following. The behavior of signal and variance

across climate and impact models was analyzed subsequently,

extracting the fractional uncertainty (inverse of signal-to-noise

ratio). From this the meaningful horizon of projection was

obtained, being basically the year at which the investigated signal

exceeds the variation of the signal. This climatological approach

[31,32] originally divides time series into their internal variability,

scenario and model uncertainty. Advancing this approach beyond

climatology, the present work estimates the extension of uncer-

tainty from the climate signal to the climatic impact by dividing

time series into their internal variability, climate model and impact

model uncertainty of one scenario.

In order to project apple bloom, phenological models were

calibrated with measurements of daily air temperature and

observations of phenophases. Subsequent projection of future

apple bloom was carried out with bias-corrected climate projec-

tions from physical-dynamical regional climate models (Table 2).

Calibrated models were validated for accuracy in prediction of

bloom by cross-validation as well as testing for different locations.

Blossom frost risk estimates were validated first by calculating the

accuracy of the phenological model (comparing measured blossom

frost risk with blossom frost risk simulated with measured

temperature) and secondly through calculating the influence of

Table 1. Published projections of future apple blossom frost risk.

Region

Increase (+)
Decrease (2)

No change (6) Model
Statistics on
time seriesa Ref.

Trentino, Italy 2, u
b

Modified Utah yes [17]

Finland 2, u,+b Thermal Time no [18]

Britain + Thermal Time-Chilling no [19]

Saxony, Germany + Thermal Time no [20]

Lower Saxony, Germany 2, u,+b Thermal Time yes [21]

aTests on blossom frost risk.
bdepending on subregion.
doi:10.1371/journal.pone.0075033.t001
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the time series on blossom frost risk projection accuracy

(comparing simulated blossom frost risk from measured temper-

ature with that from simulated temperature).

Climatic Data and Models
Data sources. Measured as well as simulated air temperature

time series for Lower Saxony, Germany, (Table 2, Figure 1) were

processed and applied as follows. Simulated temperature of

regional climate model projections of the IPCC-emission A1B

[27] was obtained from the Max Planck Institute for Meteorology,

Hamburg, Germany, (in the following climate runs 1–5) and from

the ENSEMBLES project (in the following climate runs 6–13).

Temporal interpolation. Temporal interpolation of mea-

sured daily temperature time series was used to obtain hourly time

series, following a stepwise procedure of spline interpolation [21].

Resulting hourly temperature time series showed a year-round

mean error of 20.031 K h21 and mean absolute error (MAE) of

0.448 C h21 as well as an error of 0.587 hours of frost (ƒ0uC) per

month of April, compared to measured hourly time series at 56

sites. Time series of the climate model CLM (3 h resolution) were

brought to hourly resolution by applying cubic spline interpola-

tion.

Spatial interpolation. Spatial interpolation through ordi-

nary kriging [33] was used to bring measured as well as simulated

data to common and regular grids (0.1u?0.1u as well as 0.2u?0.2u)
for the area 51u to 54u latitude north and 6.5u to 12u longitude

east. While measured data was interpolated directly, simulated

hourly temperatures (climate runs 1–5) were previously aggregated

by taking the mean of each hour of nine neighboring model grid

points (area approximately 30 km?30 km for REMO). By doing so

for every model grid point and hence obtaining a spatial floating

mean, the original model resolution was maintained. Simulated

daily mean and minimum temperature time series were not

aggregated due to the coarser spatial resolution.

Bias correction. Since several climate models underestimate

the occurrence of frosts, simulated temperature series were bias-

corrected for each month by distribution-based quantile mapping

[28], using non-parametric transfer functions obtained by applying

a Gaussian kernel with bandwidth h = 0.1 [34]. The period of

comparison from which transfer functions were derived for bias

correction was 54.467.3 years for climate runs 1 and 3, 49.864.9

years for climate runs 2, 4 and 5 as well as 57.964.4 years for

climate runs 6–13 (mean 6 standard deviation). Hence, the

influence of the multidecadal variability was assumed to be

negligible. Information on bias correction dynamics with climate

runs 6–13 (Table 2) have been published [35].

Projection of temperature. In the following, temperature

time series are presented as anomaly from the 1971–2000 mean as

indicated by DTy1,y2,s with the centers of the respective periods y1

and y2 and grid points s (see Methods S1 for equation).

Projection of last spring freeze. The last spring freeze was

defined as the last day before July 31st, exhibiting a minimum air

temperature #0uC, and taken directly for every year from

temperature time series.

Phenological Data and Models
Data sources. In order to simulate apple bloom pheno-

phases, time series (Table 2, Figure 1) from the German National

Table 2. Overview of employed data.

Data Specification Climate model runs
Resolution (spatial,
temporal) Period Ref.

observed early ripeners, BBCH 60 0.116u, d 1991–2012 a

flowering early ripeners, BBCH 65 0.116u, d 1991–2012 a

(DOY) late ripeners, BBCH 60 0.116u, d 1991–2012 a

late ripeners, BBCH 65 0.116u, d 1991–2012 a

measured T (uC )b 115 stations 0.126u, d variable c

simulated 1. EH5-REMO5.7, C20 1/A1B 1d 0.088u, h 1951–2100 [58]

T (uC )b 2. EH5-REMO5.8, C20 1/A1B 2e 0.088u, h 1961–2100 [59]

3. EH5-REMO2008, C20 3/A1B 3f 0.088u, h 1950–2100 f

4. EH5-CLM2.4.11 D2 C20 1/A1B 1 0.165u, 3 h 1961–2100 [60]

5. EH5-CLM2.4.11 D2 C20 2/A1B 2 0.165u, 3 h 1961–2100 [61]

6. C4IRCA3_A1B_HadCM3Q16 0.223u, d 1951–2099 [62]

7. CNRM-RM5.1_SCN_ARPEGE 0.232u, d 1951–2100 [62]

8. DMI-HIRHAM5_BCM_A1B 0.223u, d 1961–2099 [62]

9. DMI-HIRHAM5_A1B_ARPEGE 0.223u, d 1951–2100 [62]

10. DMI-HIRHAM5_A1B_ECHAM5 0.223u, d 1951–2099 [62]

11. ICTP-REGCM3_A1B_ECHAM5_r3 0.232u, d 1951–2100 [62]

12. KNMI-RACMO2_A1B_ECHAM5_r3 0.223u, d 1951–2100 [62]

13. MPI-M-REMO_SCN_ECHAM5 0.223u, d 1951–2100 [62]

aGerman Meteorological Service. Phenological observation program. URL: http://www.dwd.de (April 20, 2013).
bair temperature at 2 m elevation.
cGerman Meteorological Service. Station network. URL: http://www.dwd.de (April 20, 2013).
d‘‘UBA’’-Run, experiments 6215/6221.
e‘‘BFG’’-Run, experiments 29001/29002.
fexperiments 1518/1518, Max Planck Institute for Meteorology, Hamburg, Germany.
doi:10.1371/journal.pone.0075033.t002
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Meteorological Service (htp://www.dwd.de) of observed begin-

ning of flowering (first flowers open) as well as onset of full bloom

(50% of flowers open), defined as phenophases 60 and 65 on the

BBCH-scale [13], were processed and used to calibrate pheno-

logical models for early and late ripening varieties as follows.

Spatial interpolation. Phenological time series were spatial-

ly interpolated as described above for measured temperature time

series.

Basic phenological models. In principle, all applied phe-

nological models (Table 3, 4, Methods S1) assume that the time of

bloom is related to so-called sums of chilling and heat units (Sc,

Sf ) accumulated during winter (chilling phase) and spring (forcing

phase), (see Table 4 for denominations). It is assumed, that Sf is

related to Sc [36,37]. The basic models (Table 3, models 1–4) have

been described in the literature [17–21] and their equations are

given in Methods S1.

Extended phenological models. Models including an addi-

tional day-length-parameter for the calculation of the forcing

phase were included in the ensemble (Table 3, models 5–7), as a

higher performance of model no. 5 has been reported. Models 6–7

are new model variations of the sequential and parallel chilling-

forcing models [23], which were extended for a factor for the

length of day D, assuming that bloom is influenced by radiation

only during the forcing phase. For both, the rate of forcing Rf was

calculated as follows:

Rf (Ti)

~

0 if TiƒTbf

28:4

1ze({0:185(Ti{Tbf {18:4))
: D

10

� �c

else with

8><
>:

Rf : Rate of forcing ½{�

Ti : Daily mean air temperature at day i ½0C �

Tbf : Base temperature ½0C �

D : Length of the day ½h�

c : Calibration parameter ½{�

ð1Þ

Figure 1. Scheme of used input data and projection. Note that for simulated temperature the grid of the regional climate model CLM is shown
exemplarily.
doi:10.1371/journal.pone.0075033.g001

Table 3. Phenological models.

No. Type Daylength Tbf Tbc Sf(t2) Sc(t1) t1 a b c Ref.

1 Thermal time 2 + 2 + 2 +a 2 2 2 [20]

2 Sequential chilling-forcing 2 + + + + 2 + + 2 [23]

3 Parallel chilling forcing 2 + + + + 2 + + 2 [23]

4 Modified Utah 2 + + + + 2 2 2 2 [17,43]

5 Thermal time + + 2 + 2 + 2 2 + [25]

6 Sequential chilling-forcing + + + + + 2 + + + –

7 Parallel chilling forcing + + + + + 2 + + + –

aFor model 1, t1 was set to January 1.
doi:10.1371/journal.pone.0075033.t003
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Parameter estimation and model validation. Models were

parametrized for each grid point by fitting the models to observed

bloom (BBCH-scale [13], stages 60 and 65 for early and late ripening

varieties of Malus domestica) and measured daily air temperature

(Table 2). Fitting was performed through bound-constrained

simulated annealing, minimizing the root mean square error (RMSE)

between observed and simulated day of the year (DOY) of bloom.

Simulated annealing for parameter estimation of phenological

models has been described in detail [38] and was performed in the

present study by using the Global Optimization Toolbox (The

Mathworks Inc., Natick, Massachusetts) on a computing cluster

system (http://www.rrzn.uni-hannover.de/clustersystem.html). For

this, Tbc and Tbf were searched between 0uC and 10uC, as this is

believed to be the effective range of temperature on the development

of apple trees [23]. The models were validated internally (same

location) as well as externally (different location) by calculating the

prediction root mean square error (PRMSE) determined by full-cross

validation (‘‘leave-one-out’’) and by applying the model with

optimized parameters to six different and randomly chosen locations

in the range of 20 to 28.3 km distance.

All models accounting for Sc were initiated with t0~1 August.

The simple thermal-time model (1) was started with fixed t1~1
(January 1st, model 1), whereas the extended thermal-time model

(5) was started on August 1st (DOY 213, 214) in order to optimize

t1. Models 1 and 5 do not account for a chilling phase and hence

implicitly assume that chilling is already completed at t1.

Projection of Bloom
Bias-corrected air temperature time series of 13 climate realiza-

tions (Table 2, Figure 1) were used as input for seven phenological

models for 792 locations in Lower Saxony on a 0:10:0:10 grid

(climate runs 1–5) and for 274 locations on a 0.20:0:20 grid (climate

runs 6–13, Table 2, Figure 1) to project future apple bloom.

Projections were conducted for all grid points whereas presented

results were restricted to the area of Lower Saxony (Figure 1) in order

to avoid boundary effects due to interpolation. Comparison of results

from all 13 projections took place on the grid of lower resolution. All

simulations were conducted with early as well as late ripening

varieties and for two phenological stages (BBCH 60, 65). The change

in blooming date Dt2y1,y2,s with the centers of the respective

periods y1 and y2 and grid points s was calculated as the difference

in the 30-year-mean for each grid point. Years with unfulfilled

chilling were recorded by counting years without bloom or bloom

projected for DOYw200 as fraction of occurrences in a 30-year-

mean. Please see Methods S1 for equations.

Projection of Blossom Frost Risk
Subsequently, years with occurrences of frosts (daily minimum

temperature #0uC) and possibly blossom damaging situations

(daily minimum temperature #2uC) during the time from

simulated bloom (BBCH 60, BBCH 65) to the 31st of July of

each year were counted separately. The additional threshold of

2uC was chosen in order to account for spatial discrepancies of

observed bloom and measured temperature as well as for possible

radiation frosts with tissue temperatures falling below air

temperature [19], measured at standard meteorological condi-

tions. Blossom frost risk was defined as the ratio of number of years

with temperatures lower or equal to a predefined threshold

occurring after a specific phenophase in 30 years:

hy,s~
1

30
:
X15

i~{14

mi,s with

mi,s~
1 if min(fTyzi,t2y,s,s:::Tyzi,v,sg)ƒb

0 else

(

hy,s : blossom frost risk of year y at grid point s, ½{�

Ty,d,s : array of daily minimum temperature of

year y, day d and grid point s ½0C �

b : temperature threshold, either 0 or 2 ½0C �

v : 212 or 213 (leap year) for 31:7:, ½DOY�

t2y,s : onset of phenophase, e:g: begin of bloom

of year y at grid point s

y : year of calculation, e:g: 1980

i : index

s : grid point

ð2Þ

The change in blossom frost risk Dh was calculated from 30-

year-means of each grid point:

Dhy1,y2,s~hy2,s{hy1,s with

Dhy1,y2,s : projected change in blossom frost risk

from year y1 to year y2 of every grid

point s in Lower Saxony, ½{�

y1, y2 : year of calculation (past, future)

s : grid point

ð3Þ

Table 4. Denomination of variables and parameters.

Notation Description Unit

T Air temperature uC

Tbc, Tbf Base temperature for chilling,
forcing

uC

t Time hour [h], day [d] or year [a]

t0 Start of the chilling period
(dormancy)

day of the year [DOY]

t1 Chilling requirement completed,
start of forcing

day of the year [DOY]

t2 Forcing completed (BBCH 60,
BBCH 65)

day of the year [DOY]

Sc, Sf State of chilling, state of forcing –

Rc, Rf Rate of chilling, rate of forcing –

D Daylength h

a, b, c Calibration parameters –

i, s, z Index variables –

h Blossom frost risk –

b Temperature threshold for blossom frost uC

l Parameter for calculation of mean
and confidence level

–

doi:10.1371/journal.pone.0075033.t004
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Probability mass functions were calculated in order to estimate

the distribution of changes in blossom frost risk till the end of the

21st century (2070–2099 minus 1971–2000). The values of these

probability mass functions were estimated non-parametrically with

the help of kernel density estimation, applying a Gaussian kernel.

Please see Methods S1 for equations.

Partitioning of Uncertainty of Temperature, Bloom and
Blossom Frost Risk

In order to estimate the meaningful projection horizon

( = ‘Time of emergence’, [39]) of the results obtained as described

above, the fractional variance of the system was calculated and the

total variance of the projection was partitioned. For this purpose

the methodology of Hawkins and Sutton [31] was applied to the

presented projections for the day of bloom t2. Instead of looking at

different climate models and scenarios, the present work analyzes

the internal variability, the uncertainty from climate realizations of

one IPCC-scenario (A1B) and the variance resulting from the

impact models. Impact models were weighted by their error as

described for climate models [31]. The following calculations were

carried out with 10 year mean moving average time series of the

area mean of Lower Saxony (mean of all grid points s, please see

Methods S1 for equations). In brief, the total variance for bloom

was calculated as described below. Projection uncertainty of

temperature and blossom frost risk was calculated as described for

bloom (temperature analysis only for internal and climate

realization variability).

Btotal(y)~B1zB2(y)zB3(y) with

Btotal : Total variance of projected bloom, ½d2�

B1 : Internal variability (residual variance), ½d2�

B2 : Uncertainty of climate realizations

(variance across climate runs), ½d2�

B3 : Uncertainty of impact models (variance

across phenological models), ½d2�

y : year of calculation, e:g: 1980

ð4Þ

The contribution of B1,B2 and B3 to the total variance can be

expressed as fraction of the total variance:

Hz~
Bz
:100

Btotal

H : Fraction of the total variance, ½%�

z : 1, 2, 3

ð5Þ

The mean change in blooming dates of all projections (climate

impact signal) over the reference period was obtained as:

G(y)~
1

n

X
s,z

Wsxs,z,y with

W : model weight, ½{�

x : change of phenophase,Dt2,

compared to 1971{2000 ½d�

s : impact model (2{7)

z : climate realization (1{13)

n : number or climate realizations, ½{�

y : year of calculation, e:g: 1980

ð6Þ

Models were weighted (eq. 6) with weights W inversely

proportional to their model error (see [31]), giving models with

lower errors comparatively more importance. From G and Btotal

the fractional uncertainty F , which is the inverse of the signal-to-

noise ratio, was calculated as follows:

F (y)~
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Btotal(y)

p
G(y) with

l : parameter for calculation of confidence

levels 50% (l~0:67), 68% (l~1) and

90% (l~1:65)

ð7Þ

Statistics of Single Time Series
Continuous time series of calculated completion of dormancy,

blooming date and last spring freeze were analyzed using a Mann-

Kendall-test [40], whereas trends in blossom frost risk were

analyzed with a test by Cox & Lewis [41].

Results

Validation of Methods
The presented methodology was evaluated at the levels climate,

quality of phenological model in order to simulate phenophases as

well as blossom frost risk. A bias correction had no influence on

the mean temperature pattern, whereas the accuracy of simulated

frost distribution was drastically improved (Table 5), see also [35]).

While climate model time series underestimated frosts in April, this

was corrected through the bias correction.

Models could be fitted to reproduce bloom with 3.2 to 5.7 d

mean accuracy (RMSE), whereas testing models with fitted

parameters (see Methods S1) for different locations revealed an

external PRMSE of 3.9 to 8.0 d (Table 6). While the thermal time

model (1) exhibited the highest mean error (1.8 d higher than

mean of other models), the thermal time model with extension for

day length exhibited the lowest mean error (2.0 d lower than mean

of other models). On average models (1–3) were improved by

2.0 d when accounting for day length (models 5–7), whereas

performance did not differ greatly between BBCH-stages 60 and

65 nor between early and late ripening varieties.

Blossom frost projection accuracy was verified at different levels,

since direct comparison of measured blossom frost with blossom

frost from simulated time series is not possible in a direct manner

Future Blossom and Frost Risk for M. domestica
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for short periods (,30 a). Therefore the influences of phenological

models and of time series on blossom frost incidents were extracted

separately. Applying the phenological models to measured climate

data of the calibration period 1991–2012 reproduced blossom frost

incidences from measured temperature and measured bloom

(Figure 2, Table 5). Subsequently the influence of the time series

on blossom frost projection accuracy was tested by applying the

validated phenological models on measured and on simulated-bias

corrected time series (1951–2012). Despite bias correction,

projection with simulated-bias corrected time series showed a

mean absolute error (MAE) of blossom frost risk of up to 7.5

percentage points (Table 5). However, mean influences of impact

model and time series on blossom frost risk projection accuracy

were 1.4 and 3.6 percentage points respectively (mean MAE).

Finally blossom frost risk was biased by +0.9 and 23.6 percentage

points by impact model and time series, respectively, still resulting

in an overall underestimation of blossom frost.

Dormancy and Bloom
In the mean, observed bloom from 1991 to 2012 changed by

23.3 d K21 (R2 = 0.87) while air temperature increased by

0.037 K a21. Phenological models, which were calibrated with

these data, gave the following results when applied to simulated

temperatures. All chilling-forcing models consistently showed a

delay for the release of dormancy t1 (Figure 3) with major changes

not occurring before 2030, following the temperature warming

patterns of both simulated climate data sets. However, t1 showed a

larger spread across ENSEMBLES runs than for ECH5-REMO/

CLM simulations, while the number of years with unfulfilled

chilling requirement increased in both cases (Figure 4). Unlike t1,

projection of the onset of the phenological phases for t2 (BBCH 60,

65) revealed an advancement. While models 2–7 follow a relatively

homogeneous pattern, model 1 projects a faster advance. These

main patterns also become visible on a regional scale (Figure 5,6).

However, changes in the day of bloom vary regionally depending

Table 5. Stepwise error of simulation chain segments. SE: Simulation error, ABS: absolute level from measured data.

Parameter T bias corrected

Frost occurrences per
month of April Blooma

Blossomb frost
risk h

[h] [d] [d, DOY] [2]

Frost ABS – 25 4 – –

Frost SEc no 7 3 – –

Frost SEc yes ,1 ,1 – –

Bloom ABS – – – 117–126 0.163

Bloom SEc no – – – –

Bloom SEc yes – – 4–8 –

Blossom frost ABS – – – – 0.163

Blossom frost SEc no – – – –

Blossom frost SE from phenol. modelscd yes – – – 0.001–0.034

Blossom frost SE from time seriesce yes – – – 0.021–0.075

amin-to-max range across all ripening groups and phenophases.
bmin-to-max range across all ripening groups, phenophases and phenological models.
cMean absolute error (MAE), average over all grid points.
dError from comparison of measured blossom frost risk with blossom frost risk simulated with measured temperature (1991–2012).
eError from comparison of blossom frost risk simulated with measured temperature with blossom frost risk simulated.
with simulated temperature (1951–2012).
doi:10.1371/journal.pone.0075033.t005

Table 6. Prediction Root Mean Squared Error PRMSE of
phenological models [d].

Model early ripeners late ripeners mean

BBCH 60 BBCH 65 BBCH 60 BBCH 65

1 7.97 7.26 7.28 7.27 7.45

2 6.67 5.95 6.24 6.03 6.22

3 7.10 6.30 6.54 6.25 6.55

4 6.81 6.83 6.54 6.67 6.71

5 4.14 4.12 3.91 4.34 4.13

6 4.96 5.08 4.88 5.10 5.00

7 5.13 5.19 4.89 5.29 5.13

mean 6.11 5.82 5.75 5.85 5.88

doi:10.1371/journal.pone.0075033.t006

Figure 2. Present temperature incidence of Lower Saxony
(1991–2010). Bars indicate mean flowering period (BBCH 60–65) of
early and late ripening varieties.
doi:10.1371/journal.pone.0075033.g002
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on the model. Regarding the timescale, all models project a shift in

the day of bloom of 25.463.0 d by 2035 compared to 1971–2000

(area mean, all varieties and stages), whereas results for 2084 differ.

While model 1 shows the strongest change (226.768.2 d), models

2–7 project a mean shift of approx. 212.963.3 days. The latter

again differ in their regional variation. Although the classic

sequential and parallel chilling forcing models (2–3) show a similar

mean shift of bloom as their versions extended for daylength

(models 5–7; 213.5 d and 211.2 d respectively), the former

exhibit higher variation (63.6 d and 62.2 d respectively). A

similar variation was also found for model 4 (63.3 d).

Projected Last Spring Freeze and Blossom Frost Risk
According to the scenario and climate runs considered, the last

spring freeze (ƒ0uC) will shift by 210.064.2 days and

227.367.4 days by 2035 and 2084 respectively, with regard to

the reference period 1971–2000 (Figure 7). Hence these 30-year-

mean trends indicate an increasing discrepancy of the day of

bloom and the last spring freeze. Correspondingly the mean

occurrences of blossom frost (h) are projected to decrease in the

long run (Figure 5,6). Nevertheless model 1, which showed the

fastest advancement of bloom, projects a mean increase of blossom

frost risk by 3.4 percentage points whereas models 2–7 project a

mean change by 24.1+ 3.3 percentage points, ranging from

22.6 percentage points for late ripeners (BBCH 65) to 26.0

percentage points for early ripeners (BBCH 60). In the mean, runs

of EH5-REMO/CLM and ENSEMBLES runs produced similar

estimates for changes in blossom frost risk (22.764.4 percentage

points and 23.264.5 percentage points respectively). However, all

models also exhibited regional and temporary increases in blossom

frost occurrences. The resulting probability mass function values

(pmf ) are shown in Figure 8, displaying also the contrary result of

model 1. A larger spread and stronger decrease was observed for

the probability of temperatures of ƒ2uC after onset of

phenophases.

Projection Uncertainty
Phenophases followed temperature patterns closely, with early

and late ripening varieties advancing at 5.6 and 5.4 d K21

respectively and BBCH 60 and BBCH 65 advancing at 5.6 and

5.4 d K21 respectively, resulting in a mean change of 25.5 d K21

(Figure 9). Higher correlations were found between changes in

begin of flowering date and mean temperatures between February

and April (26.1 d K21, R2 = 0.93). However no correlation was

Figure 3. Projected changes in air temperature, fulfillment of chilling requirement and onset of flowering. Projected with 5 (ECH5-
REMO/CLM) and 8 (ENSEMBLES) climate runs and five (Dt1) and seven (Dt2) phenological models for Lower Saxony (area mean), relative to the 1971–
2000 mean. DT : single year-mean, min-to-max range of climate runs (shaded area), 10 year moving average of each run (solid lines, see Methods S1
for equation). Dt1 , Dt2 : BBCH 65, early ripeners, 30-year-moving-average, all impact model mean (solid white line), single model range (shaded areas).
The range of each phenological model (min-to-max) obtained from climate runs is plotted with 20% transparency (darker areas illustrate coinciding
results).
doi:10.1371/journal.pone.0075033.g003

Figure 4. Proportion of years with unfulfilled chilling require-
ment. Areas: min-to-max range across seven phenological models for
each climate run (area mean of Lower Saxony, 30-year moving average);
white line: Mean of impact models and climate runs.
doi:10.1371/journal.pone.0075033.g004
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found between changes in the respective variances of temperature

and flowering dates, with exception of the simple thermal time

model (model 1, data not shown).

The projection uncertainty increased with increasing lead time

(Figure 10, top) and for the period investigated, the accuracy of the

projection of t2 in the short run is mainly dependent on the

projected climate and internal variability. With increasing horizon

of projection, the climate signal (temperature) becomes stable

while impact/phenological model results diverge. Consistently

fractions of climate and internal variability of the total variance

decreased with increasing lead time (Figure 10, bottom). Finally,

the projection accuracy at the end of projection horizon depended

equally on the climate and impact/phenological model variance.

The resulting fractional uncertainty F decreased over time.

Comparing the sources of uncertainty, the fractional uncertainty

of temperature time series decreased faster than of blooming date

and blossom frost risk time series. Accordingly, the lowest level of

fractional uncertainty at any of the confidence levels investigated

was also reached by temperature. While the 90% percentile for

temperature and bloom reached 1 in 2019 and 2042–2044

respectively, the uncertainty of blossom frost risk passed 1 only by

the 68% percentile (61 standard deviation) by 2077 (Figure 11).

From this point on, the projected change (signal) exceeded the

variance of the projection (noise). A minimum of the fractional

uncertainty was found for 2078 (temperature), 2083–2084 (bloom)

and 2085–2088 (blossom frost risk), after which it was projected to

increase. This result was similar for early as well as late ripening

varieties and for both BBCH stages.

Discussion

Phenological Models
Projections with pure forcing models [20,21] are subject to

changes in dormancy completion [23] and varying warming of the

seasons. The application of such a model in the present study

produced similar results of increasing risk as in the mentioned

literature, but different to the main outcome of the present

Figure 5. Changes in bloom and blossom frost risk as projected
by different phenological models and climate runs 1–5. Early
ripeners, BBCH 65, temperature threshold b~0uC, reference period
1971–2000, resolution 0.1u. White fields denote non-significant results,
black fields denote missing/insufficient data. 1–99% percentile range.
y = 1985 and 2084, s = grid point.
doi:10.1371/journal.pone.0075033.g005

Figure 6. Changes in bloom and blossom frost risk as projected
by different phenological models and climate runs 6–13. Early
ripeners, BBCH 65, temperature threshold b~0uC, reference period
1971–2000, resolution 0.2u. White fields denote non-significant results,
black fields denote missing/insufficient data. 1–99% percentile range.
y = 1985 and 2084, s = grid point.
doi:10.1371/journal.pone.0075033.g006

Figure 7. Changes in last spring freeze. Reference period: 1971–
2000. White fields denote non-significant results, black fields denote
missing/insufficient data. 1–99% percentile range.
doi:10.1371/journal.pone.0075033.g007
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ensemble study. For this reason, sequential or parallel chilling-

forcing models have been recommended [23], as well as models

including nearly time-invariant factors as day length [25]. The

mean error of all models presented (5.9 d) was in the range of

published model performances [15,20,21,23,25,42,43]. This error

must be seen in context to the observed flowering duration (BBCH

60 to BBCH 67), which ranged during the calibration period from

6 to 27 d (1 to 99% percentile range). As large errors in simulated

flowering dates can erroneously increase the blossom frost risk, the

influence of the RMSE on the simulated blossom frost risk was

tested (not shown), but no significant influence was found in the

range of the calibrated models errors. Having further a negligible

bias, the models were rated as suitable for blossom frost risk

projections from this point of view. Furthermore, in the present

work models were improved by including day length, thus

confirming previous findings [25]. Also other models including

Figure 8. Distribution of projected changes in blossom frost risk by the end of the 21st century (2070–2099 minus 1971–2000) for
early and late ripening varieties, phenophases BBCH 60 and 65 and 7 phenological models: Temperature thresholds ƒ0uC and ƒ2uC;
inter-quartile range across 13 climate runs; phenological models are presented by same colors. Calculated from all grid points s (see Methods S1 for
equation).
doi:10.1371/journal.pone.0075033.g008

Figure 9. Simulated relation between projected absolute
changes in decadal mean air temperature and changes in the
day of bloom compared to the 1971–2000 mean. Depicted values
are related to 139 years (y~f1956 :: 2094g, see Methods S1 for
equation) and 13 climate realizations for the area mean of 2
phenophases and 2 variety groups. Slope of regression (solid
line) = 25.4842, offset = 0.0385, R2 = 0.81.
doi:10.1371/journal.pone.0075033.g009

Figure 10. Uncertainty in the projection of apple bloom (t2).
Drawn from phenological impact models 2–7 and 13 climate
projections. Mean uncertainty of phenophases (BBCH 60, 65) and
ripening groups (early, late).
doi:10.1371/journal.pone.0075033.g010
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exponential terms were applied in blossom frost risk estimation

[17,43], relying solely on temperature as input. As they increase

the ‘‘resistance’’ for each computation of a day of the year for

flowering, exponential models eliminate one deficit of pure

temperature sum models which is a calculated flowering date

beyond summer in exceptional years, leading to high errors (given

that dormancy is completed). In addition, the error of models

including a parameter for day length might be lower due to a

higher number of parameters. This statistical effect should be

separated from the physiological meaning of the parameter. As the

role of the length of day in flowering physiology of apple is still

under debate [26], these model properties cannot be isolated for

the present study, but should be regarded in the future. Finally,

while presented combination of sequential or parallel models with

an exponential term for day length improves model robustness,

these models are also more complex.

Influence of Climate Change on the Onset of
Phenophases

The observed effects of delayed completion of the chilling

requirement and earlier flowering due to faster completion of heat

requirement are well known[6,15,42,44–46]. Thereby the exten-

sion of the growing season [47,48] and the advancement of

flowering dates during the past due to climate change have been

studied largely for several tree species[44,49–51] including apple

flowering phenology [9,14,42], allowing the assumption of a

general trend. Accordingly ‘‘very similar’’ reactions of apple and

cherry blossoming (BBCH 60) as well as winter rye stem

elongation (BBCH 31) to early spring conditions were observed

[14]. However, the observed mean change of onset of flowering

(BBCH 60) of 23.3 d K21 during the short calibration period of

phenological models (1991–2012) were lower than those reported

from other studies for the entire second half of the 20th century.

These published estimates range from 27 to 28 d K21 of year-

mean temperatures (values calculated from [9,42]) for late ripeners

up to 25 d K21 of mean temperatures from February to April

[14] for early ripeners. Still these discrepancies should result from

geographic and orographic differences from the present to the

mentioned publications: Analyzing the present model projections

for the same periods as in the mentioned literature (1958–2007,

1976–2002, 1969–1998) fairly reproduced these dependencies

with 27.5 up to 28.6 d K21 for late, and 26.5 d K21 (February-

April temperatures). Consistently, also the projected findings for

changes in the onset of apple flowering of 25.4 to 25.6 d K21 (all

varieties and stages and years) and 26 d K21 (BBCH 60,

February-April temperatures) are in a comparable range. From

this can be concluded, that apple flowering phenophases have a

clear and comparable reaction to changes in temperature despite

differences in region and varieties and that this impact can be

tracked by one-dimensional phenological models in combination

with climate ensembles.

Furthermore, despite a continuous advancement of flowering

dates, an opposing effect of delayed release of dormancy and

enhanced spring warming was observed. While warmer winters

result in reduced chilling, they can be compensated to a certain

extent by warmer springs [52]. For apple bloom this has been

reported for the past [42]. However, reduced chilling will

eventually slow down the advancement of flowering dates as

postulated [42,52] and as deduced from the relative changes for t1

and t2 in the present study for the 2nd half of the 21st century. In

addition, eventually years with unfulfilled dormancy will occur.

Such events have not been observed in Germany during the past

century [6], but are discussed for the future [6,45,46]. A rough

estimate for the probability of years with unfulfilled chilling

requirement of up to 15% can be found for the largest producing

area in Lower Saxony (Niederelbe) [53]. While this estimate

coincides with the here presented range, the mean fraction of years

with unfulfilled chilling requirement is lower (3.7%). Following the

authors, it must be stated, that these projections are subject to

large uncertainties and require further investigation.

Spring Freeze and Blossom Frost Risk
Last spring freeze follows the warming pattern with changes of

increasing speed towards the second half of the 21st century. The

projected shifts for the period 1985–2035 (30-year-means) of

22.0 d/decade are in the range of those changes reported for the

second half of the 20th century for Central Europe (22.2 d/

decade [12]). Following the future warming pattern in simulations,

last spring freeze is likely to change about 23.5 d/decade (2035–

2084).

Blossom frost risk possibly decreases in the long term. This result

can be obtained roughly by putting together the relative

advancement of projected bloom and last spring freezes, as well

as in more detail through the present computation with single

models. Starting with a blossom frost risk of up to 16%,

simulations showed a decline in blossom frost occurrence to about

half by the end of the 21st century. Nevertheless, blossom frost is

unlikely to disappear and staying at a comparable level as present

until the middle of the century. As blossom frost risk strongly

depends on the region, period, variety and BBCH stages,

publications are hardly comparable. While the present observa-

tions and computations for the past are in the range of other

studies [9,19,20], projected results differ. The often stated

hypothesis of an increase in blossom frost risk due to advanced

bloom in combination with increased variance in the last spring

freeze date [19] does not hold true for the present study, as spring

freezes declined comparably faster than flowering dates.

Projection Uncertainty
Climate impact projection to a near future is often highly

uncertain since the internal variability of the system at hand is

larger than the expected changes at point of time. As these changes

Figure 11. Uncertainty pattern of projected temperature (T),
apple bloom (t2) and apple blossom frost risk (h). 68.3%
percentile (solid lines) and 50-to-90% percentile ranges (gray areas)
from 13 climate projections and phenological impact models 2–7
(bloom, blossom frost risk).
doi:10.1371/journal.pone.0075033.g011
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increase with time and relatively to the total variance of the

projection, more confidence in the projection signal is gained.

Future climate is commonly assessed in ensemble run projections,

including RCMs [54] and bias-corrected simulations [35].

Sampling, climate model, radiative and boundary uncertainties

have been investigated for climate models, varying for RCMs

across field, region and season [54]. While such climate ensembles

are also increasingly used to drive impact models [55], the impact

models error adds to the signal strength. Uncertainty of climate

projections increases with increasing simulation members, as

clearly shown by the different patterns of fractional uncertainty of

temperature and bloom as well as blossom frost risk. Thereby

projection uncertainty of surface temperature depended only on

the different climate models, whereas bloom depended on climate

and impact models and blossom frost risk additionally depended

on the interaction of projected bloom and temperature.

In the present approach times of emergence of 34 years and 57

to 59 years were estimated for temperature and blooming date

respectively (compared to the mean 1971–2000), considering one

SRES scenario (A1B). This is in the range of the estimated time of

emergence for regional surface temperatures of SRES scenarios

A2, A1B and B1 from GCMs [39]. While the approach relies

heavily on the chosen climate ensemble and impact models, larger

variance can be expected with increasing spatial (or temporal)

resolution. Therefore the estimated lead time for the minimum of

uncertainty of ,100 years (2078–2088) is consistent with ,30 to

80 years established for temperature [31]. However, the present

works investigated a range of climate and impact models of one

scenario, while the cited publications investigated three scenarios

for climate models. Hence further projections of future bloom are

required in order to remove this lack of comparability. Nonethe-

less, looking at the cooler scenario B1 and neglecting the similar

scenario A2 for central Europe, a larger spread in the day of

bloom and hence in the estimated blossom frost risk can be

expected, increasing the time of emergence of the climate impact

signal. Transferring the estimated time of emergence to other

climate impact studies from different research fields by assuming

similar variability across models would imply, that a large fraction

of these studies operates at the very edge of statistical significance.

For example, from a review on 14 publications on future risks

through wheat diseases [56], 8 include statements and 2 are solely

based on statements for a time horizon #2030. From the present

findings, the statistical meaning of these studies must be carefully

put into context.

Two effects arise: On the one hand, using a location parameter

(e.g. mean or median) of a climate ensemble as input for impact

models may produce significant future changes while ignoring

climate projection uncertainty. On the other hand, using single

impact models and/or fixed impact model parameters can give

only mean tendencies, similarly ignoring parameter ranges in

climate impact. The presented results show these effects, as single

impact models with climate ensemble mean as input show

consistently significant trends of advancing bloom and, with one

exception, of decreasing blossom frost risk. Regarding the total

uncertainty of climate and impact models, this may hold true for

bloom beyond the estimated projection horizon. However,

projected changes in blossom frost risk are low compared to the

variability across models. While this is a particularly pronounced

problem of extreme events such as blossom frost, it has severe

consequences. From the present results, despite a tendency of

decreasing blossom frost risk, it must only be concluded that future

blossom frost risk is very unlikely to increase.

Limitations
The present work does not consider the severity and distribution

of frosts. Hence it must be taken into account, that other plant

reactions than those investigated and resulting from frost

distributions may dominate in the future. As actual blossom frost

damages were not evaluated, the presented results depict the

blossom frost risk tendency. Although blossom frost damage

severity increases with decreasing temperature [5], temperatures

cannot be translated directly into economic losses, as frost

protection (e.g. sprinkler) takes place in practice. Furthermore

employed models accounted for day length, but did not use actual

surface radiation from climate models. Hence possible effects due

to changes in light conditions (e.g. phenological effects) and effects

due to severe radiation (radiation frosts) are not represented to full

extent. Additionally, the influence of the day length on apple

flowering physiology remains uncertain. Despite low availability of

consistently bias corrected climate time series of high temporal

resolution [29], future approaches should consider this. Finally,

future changes in varieties were not taken into account albeit

varieties might respond differently to blossom frost [57].

Conclusions
Regarding the aspects of phenological model structure, simu-

lation uncertainty as well as blossom frost risk, the following

conclusions must be drawn from the present findings. Despite a

lack of physiological explanation, phenological model performance

is improved by including the length of the day. However,

projection results from single time series must be put into context

to the uncertainty of the modeling chain, considering the

significant projection horizon. The latter depends on the

investigated variable and was determined for the present

simulation of bloom at 2042–2044. Differently, a minimum of

uncertainty was estimated for temperature, bloom and blossom

frost risk for the range 2078–2088. Finally the resulting regional

blossom frost risk cannot be expected to increase in the long term,

as compensatory effects of delayed fulfillment of chilling require-

ment and faster completion of the forcing phase in spring take

place.
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