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ABSTRACT: A simple micromechanical model for thermoelastic martensitic phase transitions
(PT)is developed. It is deduced from the local description of PT in transforming particles with subse-
quent usage of average procedure, based on a model for elastic three-phase materials (austenite,
martensite and new infinitesimal nucleus) under assumption of homogeneity of stresses in each
phase. In contrast to known approaches, anew local PT criterion and a corresponding extremum prin-
ciple for PT with dissipation are used. The macroscopic PT criterion obtained is split into two differ-
ent equations for description of temperature-induced PT and stress-induced PT. To identify the mate-
rial parameters of the model and to check its validity, simple one-dimensional experiments were
carried out for CuZnAl alloy. The experimental values of martensite start and finish temperatures and
austenite finish temperature for temperature-induced PT and the stress-strain diagram for
stress-induced direct PT at any fixed temperature have allowed to determine six material parameters
of the model for the simplest one-dimensional case. Then model prediction is compared with other in-
dependent tests. A good agreement is obtained of the calculated stress-strain curves for reverse PT
(martensite—austenite) at 8, = 20°C and for direct PT at temperature range of 30-80°C with experi-
mental data. Finally, the formula for determination of the transformation heat during tempera-
ture-induced PT for the given model is derived. It is shown that the predicted transformation heat is

close to the experimental one.

INTRODUCTION

number of descriptions of PT in elastic materials under
Aone- and general three-dimensional loading based on
micromechanical or phenomenological approach are known
(Boyd and Lagoudas, 1996; Brinson, 1993; Leclerq and
Lexcellent, 1996; Levitas and Stein, 1995, 1997, Liang and
Rogers, 1990; Patoor, Eberhardt and Berveiller, 1996;
Raniecki and Lexcellent, 1994; Tanaka, 1986; Sun and
Hwang, 1993, and others). We will restrict ourselves to mi-
cromechanical models because we believe that it is very dif-
ficult or even impossible within a purely phenomenological
approach to get expressions for transformation strain and
transformation condition at multiaxial deformations. A very
detailed description developed by Patoor, Eberhardt and
Berveiller (1996) is very important for describing the phys-
ics, but it requires time consuming computations. An alterna-
tive approach is the formulation of a simple noncontradic-
tory analytical three-dimensional micromechanically and
thermodynamically based model. Such models can be imple-
mented in computer codes for the analysis of structures con-
sisting of intelligent materials. Of course these models can-
not describe all details of material behavior, but this is not
always necessary. For example, in plasticity theory the sim-
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plest models with isotropic and kinematic hardening are the
most popular for structural analysis and simulation of tech-
nological processes, despite the fact that they neglect a lot of
details. The construction of such a simple model for descrip-
tion of shape memory alloys under complex loading is an
open problem (see, e.g., Leclerq and Lexcellent, 1996). Sig-
nificant progress in this direction for shape memory alloys
was made by Sun and Hwang (1993). The analysis of some
drawbacks of this paper is given in the paper by Levitas and
Stein (1997). In papers by Levitas (see Levitas, 1997a,
1997b) a new approach for the description of PT in arbitrary
dissipative materials is suggested, based on detailed
thermomechanical study of small transforming regions (nu-
cleus). Application of this approach to averaged microme-
chanical description of shape memory alloys is outlined in
short papers by Levitas and Stein (1995, 1997), where also a

‘comparison with results of Sun and Hwang (1993) and others

is made. But detailed comparison of the developed model
with experiments was not realized. It seems reasonable, be-
fore making a comparison with available two-dimensional
experiments (Sittner et al., 1996; Rogueda, Lexcellent and
Bocher, 1996), to check the applicability of the simplest lin-
ear variant of the model for one-dimensional tests for
pseudoelastic materials.

In the second section a thermomechanical theory of PT for
elastic materials with dissipation due to PT is presented. It is
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based on local consideration of small transforming volume
and direct usage of the second law of thermodynamics. The
theory includes a local nucleation criterion and a correspond-
ing extremum principle. To derive the macroscopic equa-
tions for description of behavior of macrosample a model for
elastic three-phase materials (austenite, martensite and new
infinitesimal nucleus) is used under assumption of homoge-
neity of stresses in each phase (third section). The parameter,
characterizing a level of internal stresses in obtained expres-
sions for stresses in austenite (4), martensite (/) and trans-
forming particle, is calibrated from experiments; known the-
oretical formulas for this parameter (Levitas, 1992; Sun and
Hwang, 1993) overestimate it by one or two orders. Two dif-
ferent equations for description of direct PT at different lev-
els of external stresses are obtained. The same equations—
but with another value of threshold thermodynamical driving
force of PT—are valid for the reverse PT. Thus,
three-dimensional macroscopic model of PT was derived
based on micromechanical consideration. Then simplifica-
tions of the model for uniaxial test are presented in the fourth
section. Six material parameters for the model are deter-
mined from the experiments for temperature-induced PT and
one experiment for direct 4-M PT under tension at any fixed
temperature. Then model prediction is compared with other
independent tests. A good agreement of the calculated
stress-strain curves for reverse PT at 6; =20°C and for direct
PT at temperature range of 30-80°C with experiments is ob-
tained. Finally the way of determination of the transforma-
tion heat during temperature-induced PT for such a model is
described. It is obtained that the predicted transformation
heat is close to experimental one. Some modifications of the
model are discussed for future investigations.

Symbolic tensor notations are used throughout this paper.
Vectors and tensors are denoted in boldface type; 4B and
A:B are contractions of tensors over one or two indices; the
Euclidean norm |4| = (4:4)"? is the modulus of tensor A4; :=
means equals per definition.

THERMOMECHANICAL THEORY
(LOCAL APPROACH)

Phase Transition Criterion for Elastic Materials with
Dissipation Due to PT

We use the approach developed by Levitas (1997a, 1997b)
for arbitrary dissipative materials. Consider a volume V of a
multiphase material with prescribed boundary data on a sur-
face S. Assume that in small volume V,, € V' with the bound-
ary 2, a PT occurs in time At (Figure 1). We apply the second
law of thermodynamics for each point of a volume ¥, in the
form of the Planck inequality

D=G:E—pp—psB=0 (1)

Here 2 is the rate of dissipation per unit volume, p is the mass

S

Figure 1. Multi-connected nucleus V, inside the volume V.

density, s is the entropy, y is the specific Helmholtz free en-
ergy, o and £ are the local (microscopic) stress and strain ten-
sors, 6 is the temperature. PT is considered as a
thermomechanical process of growth of transformation
(Bain) strain from the initial to the final value, which is ac-
companied by change of all material properties. The total
dissipation increment during PT in each transforming mate-
rial point is defined as

[+AL ('~ 0,
X[ z;a’t_fg] a'.ds—Al/J—fel psd® = 0
2

where Ay =p(y, — ¥)), the indices 1 and 2 correspond to the
value before and after PT. As we neglect all types of dissipa-
tion which are not related to PT (e.g., due to plastic flow or
variation of some internal variable), the total dissipation in-
crement coincides with the dissipation increment due to PT.
At X < 0, PT is impossible because it contradicts the
dissipative inequality. The condition X' = 0 is the criterion for
PT without dissipation due to PT because PT is possible (no
contradiction to the second law of thermodynamics). Since
practically all martensitic transformations, even in elastic
materials, are accompanied with a dissipation and a hyster-
esis, the PT criterion has the form

X=k 3)

Here k is an experimentally determined threshold value of
dissipation due to PT (e.g., the interaction of transformation
strain or moving interface with the crystal lattice defect,
emission of acoustic waves, lattice friction due to Paierls bar-
riers, microplasticity), which can depend on some parame-
ters, e.g., 0. At X <k PT is impossible.

For each point of nucleus ¥, PT criterion (3) should be ful-
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filled. Integrating this criterion over the volume ¥, we obtain
the necessary condition of nucleation

J, xav, =] , kdV, )
or taking into account Equation (2) for X we get
() gzi:dEdV,, -, svav, + [, [ psdsar,

= J, kv, =0 )

Temperature variation in the course of PT can be deter-
mined using the first law of thermodynamics or entropy bal-
ance equation, in particular, under assumption that the pro-
cess is adiabatic (Levitas, 1997b). In the following we
neglect temperature variation in nucleus during PT and as-
sume homogeneous temperature distribution.

If we decompose

E=8°+& 6)

where £¢ and €' are elastic and transformation strains and
assume that

pyY, = 052 :E;: €5 +py?, i=12 ©)

as well as E} = E, = E, where E; is the tensor of elastic moduli
of i-phase, zpf’ is the thermal part of the free energy, then

ff&:dge =fff§e:E:d§e
£ |
= 05(£5:E: &5 — g[:E: &}) ®)

and it follows from Equation (5) that

!

fV” fgl, G :dg'dv, — an A¢9an - an kdv, =0 (9)

i.e., the elastic strains disappear.
The Postulate of Realizability

To determine all unknown parameters b (position, shape
and orientation of nucleus, transformation strain £’ and so
on) the postulate of realizability is used (Levitas, 1995,
1997a, 1997b).

If starting from the state [ . (X(b*) — k(b*))dV,, <0 for all
permitted PT parameters b* '(i.e., PT does not occur) in the
course of continuous variation of boundary data and all pos-
sible b* condition (4) is fulfilled for the first time for some
parameter b, then nucleation will occur with this b.

If, in the course of variation of boundary data the criterion
(4) is met for one or several b, then for arbitrary other b* the
inequality [+ (X(b*) — k(b*))dV, <0 holds because PT cri-
terion is fulfilled for the first time for parameters b, but is not
fulfilled for parameters b*. Consequently, we obtain the
extremum principles

[, X@) = k@)ar, <0=[, (X(6)= k)Y,
(10)

for determination of all unknown parameters b.

The main essence of the postulate of realizability is: if only
a dissipative process (plastic flow, PT) can occur, it will oc-
cur, i.e., the first fulfillment of the necessary energetic condi-
tion is sufficient for the beginning of a dissipative process.

Note that at £ = 0 the extremum principle (10) is equivalent
to the principle of minimum of Gibbs energy for the whole
system (Levitas, 1997b).

PHASE TRANSITION CRITERION AND
EXTREMUM PRINCIPLE FOR
AVERAGED DESCRIPTION

Consider the volume V of 4 + M mixture. During the time
At some PT occurs in a small volume V,, € V, V,, < V with a
boundary Z (Figure 1). Volume V¥, can be a multi-connected
region, i.e., it can represent different martensitic variants in
different grains. The following condition for the driving
force X, follows from Equation (9)

o Eaz, gt o —
X, = 7 anfE]a'.ds av, — Ayl =k,
(1)

where X, is the dissipation increment per unit volume of ¥,
(driving force of PT) and &, is the threshold value of X, re-
lated to the actual dissipative processes in the course of PT.
To get the relationship connecting local and macroscopic
strains and stresses, a model for elastic three-phase materials
(austenite, martensite and new infinitesimal nucleus) under
the assumption of homogeneity of stresses in each phase is
used (see Levitas, 1992). Under this assumption Equation
(11) is equivalent to

&
Xy = [0, del - dy = k, (12)

Here o0, and £/, are the mean stress (which equals to a local
one) and transformation strain tensors in V,,. The rate of dissi-
pation per unit volume of V due to PT is defined by D =
XnCn > 0, where ¢, = V,/(AtV). In the following we will ne-
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glect the volumetric transformation strain. Then from Equa-
tion (12) it follows

e!
Xy = [@Snde — @S —y]) =k (3)

where S, and e/, are the deviators of 6, and £/, (= e},). Using
the results of Levitas (1992) for a three-phase composite we
obtain
S, =8S+Pe; Sy =85-Pl-c)e;
(14)

S, =8, —Pe,; e =cey

where § and e’ are the stress deviator and transformation
strain averaged over the mixture (Figure 2). The subscripts 4
and M mean averaged over 4 and M values, c is the volume
fraction of M, P is a parameter depending on elastic moduli.
Note that e/, = 0.

Remark 1. The consideration of three-phase composite
with introduction of new infinitesimal nucleus allows us—in
contrast to known approaches (for two-phase composite 4
and M)—to take into account in more detail the variation of
the stress-strain state in transforming region.

Let us analyze expressions (14). Stresses in S and S, con-
sist of two parts: the external stresses S and internal stresses.
If e}, = 0, no residual stresses exist in 4 and M. Conse-
quently, the internal stresses must be proportional to e/, ,, and
P is a coefficient which transforms inelastic strain into
stresses and characterizes elastic properties of a system. If
there isno M, itholds c=0and S, =S, if there isno 4, thenc=
1 and S, = S. The averaged value of internal stresses over the
representative volume must be zero. As (1 — c)cPe), —
c(1 — c)Pe',, =0, we fulfill this requirement. As ¢, — 0, the

Nucleus, V,

Figure 2. Scheme of averaging over volume with PT.

nucleus does not affect the averaged stresses S, and Sy,. The
expression for .S, also has no qualitative contradictions.
Thus, if e/, = 0 and the nucleus is austenitic, then S, = S ,. If
e, = ¢!, and the nucleus is martensitic, then

S,=S8,—Pel, =S—(-c)Pe,, =S, (I5)

Remark 2. The expression Sy, =S at ¢ = 1 means that the
averaged value of the residual stresses for pure martensitic
state is zero. The local values of the internal stresses are in
general case nonzero and their energy affects the transforma-
tion condition. If we add in the expression for X, [Equation
(12)] at the transition from the local description to the aver-
aged one, the term which characterizes the internal stresses
and is linear on the volume fraction c, then it can be formally
included in the expression for k,. The energy of the internal
stresses is indirectly allowed for in the expression for the
threshold value £, that is calibrated from experiments.

There is one problem, related to the value of parameter P.
Analytical expression obtained for P (Levitas, 1992) and
similar expression (Sun and Hwang, 1993) yields P = u,
where u is a shear modulus. Atc¢ = 0 or ¢ = 1 the maximal in-
ternal stresses S, in M or A can be estimated as

S = ey = 2uey S S g
2@}/ 2€y

where Ty = 2uey and ey are a yield stress and an elastic strain
at yielding in shear. If e, = 107> for steel and ey = 102 for
shape memory alloys, | e, | = 1071, then |S,,| = 0.5 (10 +
100)ty, which is impossible. The reason for the contradiction
lies in the fact that simplified estimations for P do not take
into account the anisotropic (plate-like) form of martensitic
particles and the specific character of transformation strain
distribution. For example, at transformation strain with in-
variant plane and formation of fine microstructure, the inter-
nal stresses are zero, bute’,, # 0 (Balland James, 1992). Itis
possible in principle, but extremely difficult to derive correct
expression for P. That is why we shall determine the parame-
ter P from simple experiments.

After substituting S, from Equation (14) into Equation
(13) and integrating we obtain

X, =8,:(e, —el)—05P(|e}> — |e{?)
- @i -v)=k, (17)

Under assumption of the homogeneous distribution of local
stresses in nucleus the extremum principle Equation (10) can
be written as

* * * *
X (e ef )= ky(ef el )= 0

= X,(e),e])— k,(e5,e]) (18)
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i.e., the real values of e; maximize X, — k, in comparison
with all possible e!”. Tensors ¢! meet some additional con-
straints, which depend on the type of PT. If k,, is independent
of e/ then from the principle (18) we obtain

Sq:(eh —el")—05P(|ef |2 — |el"?)
<S,:(eh—e)=05(]es)* —lel>) (19

In a paper by Levitas and Stein (1997) five micromechan-
ical mechanisms of PT (nucleation at direct A — M and re-
verse M — A PT, interface motion at direct and reverse PT
and reorientation of martensitic variants) are taken into ac-
count. Here we will only consider nucleation at direct 4 — M
and reverse M — A PT.

Atdirect4 — MPT, e} =e|" =e’, =0. According to crys-
tallography, the transformed particle consists of several vari-
ants of M in different grains. As for each variant the modulus
of transformation strain equals transformation shear y’, and
e}, is the mean value of different variants of transformation
strain over multi-connected regions of a nucleus, then |e/ |
could not exceed its maximal value @ < y' which is deter-
mined from experiments. The value a can depend on ¢ and di-
rection n = ¢} /| &} | in transformation strain space e}, but in
the first approximation we will neglect this dependence and
consider a = const. Consequently it follows from the princi-

ple (19)

Fey' )= S :e) —05P|e)’|* < S, :e) — 05P e} |?
(20)

at|e)><a @n

At | e’; | <a, this constraint does not affect the results, and
then from condition dF (e}’ )/ dez* = () we obtain

e, = (/P)S, atle}<a (22)

At| e}’ | = a, using the method of Lagrange multiplier, we de-
rive the following equation

e, =aS,/|S4| at]e)|=a (23)

Substituting Equation (22); in inequality (22), we obtain the
constraint [S,| < Pa for Equation (22), in stress space. Equa-
tion (23), is valid for all the values of .S, in stress space be-
cause the constraint Equation (23), is met in case of Equation
(23), for all the values of S,. Consequently at [, < Pa both
solutions Equation (22), and Equation (23), are possible. To
choose the true solution for |§,] < Pa in stress space we com-
pared—using the extremum principle (20)—which of them
maximizes X, and obtained that for |§ 4| < Pa the true solution
is Equation (22),. For |S4| = Pa only one solution, Equation

(23), is valid. Substituting Equation (22), and Equation (23),
in Equation (17) we obtain an explicit expression of 4 — M
PT criterion in stress space

05P~1S 417 = WY, —v%)+ ks at|S,|<Pa
24

alS, = a*P/2+ W8 — v )+ kyny at|S,|= Pa
(25)

Let us determine €’. By definition we have

e'(1)= c(t)el, (t) and
(26)
e'(t+At)=c(t)e, (t+At)+c,(1)e(1)

Ife}, is not changed in previously formed M (e/,, (1) =e, (¢ +
Av)),then e’ = e, cand with Equations (14), (22), (23) we get

27
e’ = exp fc—l S(x - t
c o p (x)exp(—=x)dx at|ej|<a

de! SA

—_—=q

dc [S 41

at|e)|= a (28)

For temperature-induced PT, .S = 0 and using Equations
(14),27), wegete' =S, =8),= S, =¢), =e}, =0(le}| <a),
i.e., internal stresses equal to zero for this case.

For description of a uniaxial test we will use Equation (24)
for the temperature-induced PT at zero external stress and
Equation (25) for the stress-induced PT. As we checked for
material parameters P and a, obtained below from ex-
periments, inequality (25), is satisfied for the stress-induced
PT.

Atreverse M — A PT, transformation strain accumulated
during 4 — M PT is recovered, i.e., in Equation (17) e/, = 0.
AsD=X,c, = X .c where X, is the dissipative force conju-
gated to cand c=—c¢,,, it follows X, = — X, and Equation (17)
results in

X, =S84:el = 05Pe[|2— @ — 94 ) = ks <0
(29)

where e] now is the transformation strain in particle of Mun-
dergoing PT. The general case of reverse PT was considered
in a paper by Levitas and Stein (1997). We will use Equation
(29) to model the uniaxial test.
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APPLICATION OF THE MODEL
FOR DESCRIPTION OF
ONE-DIMENSIONAL EXPERIMENTS

Experimental Methods

At present three different types of alloying systems are
used as shape memory materials: Ni-Ti-, Fe- and Cu-based
alloys. For the present investigations the brass type is used.
An important reason for this is the complete transformability
of the high-temperature phase (austenite) into the low tem-
perature phase (martensite). Figure 3 is evident for the com-
plete austenite — martensite transformation of this type ofal-
loy. This is different from Fe-based alloys where a
noncomplete transformation takes place. This implies that
residual austenite is left in the microstructure. Another rea-
son for choosing a brass type alloy is the good feasibility of
microstructural investigations (Different kinds of Micros-
copy) compared to Ni-Ti based alloys. The chemical compo-
sition as well as the transformation temperatures (M;, M, A,
Ay are the martensite start and finish temperatures and the
austenite start and finish temperatures, respectively) of this
alloy are given in Table 1.

The driving force for the phase transformation (8 — a)can
be provided by temperature changes [thermally induced
martensite as shown in the micrograph (Figure 3)] or by me-
chanical stresses/strains. In the latter case, the martensite do-
mains will have the orientation of the external stress tensor.

The material for the test sample was melted in a vacuum
induction furnace. Sheets were produced by hot rolling at a
temperature of 800°C. The material was only betatized,
which implies a heat treatment at 800°C for 15 minutes and
subsequently water-quenched. This treatment results in a
well recrystallized material. Experiments were carried out
for this nearly defect-free (exception: grain-boundaries) ma-
terial. The transformation temperatures of the as betatized
material were analyzed by DSC (Differential Scanning Calo-
rimetry) measurements. Additionally, an analysis of the ther-

Figure 3. Thermally induced martensite. The material was betatized
at800°C for 15 min and then water quenched. LM-picture at —35°C.

Table 1. Chemical composition and transformation
temperatures of the investigated alloy.

Composition Cu Zn Al
wt-% 69.8 26.3 3.9
at-% 66.8 244 8.8

Temperatures M; M, A A;

°C -35 -8.6 =71 5

mal transformation behavior (8 — a) was carried out, using a
light microscope with polarized light and cooling equip-
ment.

Samples for stress tests were spark eroded from sheets
(thickness: d = 1.7 mm). The samples (Figure 4) were pol-
ished and betatized. Prior to the stress-strain experiments the
samples have undergone an age treatment at ambient temper-
ature for 3 weeks. Stress-strain experiments were carried out
with a strain rate of € = 0.5 mm/min at different temperatures
(20°C < T<80°C). Yielding to € = 2% and subsequent un-
loading at a temperature of 80°C provides evidence for the
fact, that no true plastic deformation due to the induction of
dislocations occurs at these test conditions.

Analytical Description

Now let us simplify the equations obtained for
one-dimensional tension or compression (stress-induced
PT). For this case stresses and strains have the following
principal components:

2 1 1
(o) = (6,0,0), (S)= (—3— o, — 50, - 50)

(30)
(e')= (8’,——;81,——181)

and principal axis of S and e’ coincide. Then |S,| = |S] + Plef],
NBI2)IS1=0,/(3/2)e o = €5 = €}, | = a,4/(2/3)]€]| = &' =
el C, where o, €', el are uniaxial stress, transformation
strain and maximum value of transformation strain, respec-
tively. Equation &' = ¢!, ¢ follows from Equation (28) be-

80

19.2

12

28

41.5

Figure 4. Sample for stress-strain experiments. The material was
yielded in the as betatized condition (well recrystallized in the aus-
tenitic state).
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cause §,4/|S,| is constant for uniaxial test. In our consider-
ation we assume that Young’s moduli for austenite and
martensite are the same and can be determined from the ini-
tial linear part of each stress-strain diagram. Let us assume
that P and a are temperature independent. The change in the
thermal part of the free energy is assumed to be a linear func-
tion of 6 (below we will show the validity of such approxima-
tion), i.e.,

Ay = p8, - 9% = Ayo — Asef 31)
and

kA_,M=b+dC, kM_,A=_b+d(C_l) (32)

are linear functions of martensite fraction ¢, where Ay, As,,
b, d, P and a are material parameters. Then for direct austen-
ite-martensite PT under tension or compression according to
Equation (25) we have
t 3 t 2
X = O€ gy + 5 P(emax ) (C— 05)*' AU/(G) = kA -M (C)
(33)

or

asinax + % P(sina.x )Z(C" 05)_ Awo + ASOB = b+dc
(34)

If, for reverse PT, we use Equation (29) at e =e\, = (Emars
—(1/2)€ pax , —(1/2)€!, ) for stress-induced PT, then for re-
verse martensite-austenite transition the same formula for X
in Equation (33) is valid, but &),_. 4(c) should be negative

X = Oh +3 Pleha (e = 05) = AP(O) = ki (€)

(35)

or
3 t 2
O + 5 P(€ha ) (¢ = 05) = Ao + Asy)

=-b+d(c-1) (36)

Remark 1. Taking into account that ¢ = e'/e!,,, = [¢ —
(0/E)]/€ ax , Where ¢ is total strain, E is Young’s modulus, we
get from Equations (34) and (36) a linear dependence be-
tween stress o and strain & at constant temperature for
stress-induced PT.

Remark 2. For unidimensional test we could integrate
Equation (28) and obtain a simple formula ¢ = £'/¢!, ., i.e.,

c A
1 LM As
tgor=d/As,
o o
0 > O
M, As

Figure 5. Volume fraction-temperature diagram for temperature-
induced PT.

we could integrate kinetic equation in closed form. For mul-
tidimensional and nonproportional loading it can be more
complicated.

For the case of temperature-induced PT at § = 0 we ob-
tained above that ¢’ =e/,, = 0. Then, using Equation (24), we
get

—AY(0) = kygop (37

If, for reverse PT, we use Equation (29) ate] =e/, =§=0
for temperature-induced PT, then for reverse martensite-
austenite the same formula for X in Equation (37) is valid,
but £y, 4(c) should be negative.

Thus, we get for direct PT at cooling

—Ayo + Asgl = b+ dc (38)
and for reverse PT at heating
=AYy +Asel = —-b+d(c—1) 39

Remark 3. The simple approximation Equations (32) ac-
cepted above means that the temperature-volume fraction di-
agram for temperature-induced PT forms a parallelogram
[Equations (38), (39) describe two parallel lines (Figure 5)].
The case with nonparallel lines will be discussed below.

In order to use the above model for description of PT for
the one-dimensional case six material parameters ¢.,,,, P,
Ay, Asy, b, dmust be determined. It can be done, e.g., using
experiments for temperature-induced PT and one experi-
ment for direct austenite-martensite PT under tension at any
fixed temperature, i.e., the unknown material parameters can
be found from the following system of linear algebraic equa-
tions:

—AYo +AsoM, = b (40)
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—AwO + ASQM[ =b+d (41)

—'Awo + ASQAf =-b+d (42)

3
Olsinax - ZP(S;nax )2 - Al/)o + A5091 =b (43)

3
Uzsﬁnax +ZP(£‘lmax )2 - A'(/)O +AS09] =b+d (44)

Here 0, 0, are the stresses at the start of PT (¢ =0) and at
the finish of PT (¢ = 1) under tension at temperature 0,;
el =€ — £°is the maximum value of transformation strain
at the finish of PT (c = 1) which equals the difference be-
tween total strain € and elastic strains £° at stress ¢,. Using ex-
perimental values of 6; =75 MPa, 0, = 131 MPa, £/,,, =0.02
for direct PT at tension under 6, =20°C and M;, M, A, from
Table 1, we solved the system of Equations (40)—(44) and de-
fined the material parameters which are presented in Table 2.
Then using the properties obtained we compared experimen-
tal data with the predicted stress-strain curves for reverse PT
at @, = 20°C [Figure 6(a)] using Equation (36) as well as for
direct PT at different temperatures (Figure 6) using Equation
(34). Figures 7 and 8 show relationships for direct PT be-
tween pseudo yield stress, “hardening” modulus do/de’ and
temperature. The errors of results predicted by the model do
not exceed spread in experimental data which is approxi-
mately equal to 15%.

Remark 4. The elastic moduli (the Young’s modulus for
uniaxial test) which define the initial part of stress-strain dia-
gram without PT in Figure 6 should be determined from ex-
periment.

Transformation Heat during Temperature-Induced PT

Let us determine for our model an expression for transfor-
mation heat and compare it with an experiment. The energy
balance equation (the first law of thermodynamics) for mac-
roscopic representative volume reads

c:£—pU—divh=0 (45)

where U is the internal energy per unit mass, k is the heat
flux, div is divergence operator; per definition y = U — 6.
For temperature-induced PT itholds o= 0. To calculate U let
us consider two definitions of specific heat capacity of each
phase at constant elastic strains (Denbing, 1981)

Table 2. Material parameters.

ehay = 002 Ay, = —13.1 MPa As, = —0.049 MPa/K

P = 301 MPa b = 0.037 MPa d = 1.3 MPa

8U1 6s1 8U2 632
= =0 —: - —% =0/ —=
. 00 0 2 00 06 (46)

Using Equation (46) and assuming that specific heat of each
phase is temperature independent, we can obtain explicit ex-
pressions for the internal energy and entropy

U[=U]0+1’1(9—90); U2=U20+1/2(9—90)

47

6 0
s = 80 +Vy ln-—-, Sy = 8§y + V> In — (48)
9, 9,

where s,y and U are the reference entropy and internal en-
ergy at some reference (for instance, room) temperature 6.

Below we consider the case of the same specific heatv =
v, = v,. Then using definition ; = U, — s, and Equations
(47), (48) we get

Ay = AU, — 0As, (49)

which we have used above for approximation of the thermal
part of free energy, i.e., Ay = AUy = Uy — Uy, Asg =530 —
$10-

Using mixture rule for determination of internal energy of
composite (because for the model developed the energy of
internal stresses for temperature induced PT equal to zero)

U= (- o), +cU, (50)
we get
U= AUyc +v0 (51)

Substituting Equation (51) in Equation (45) at =0 we have

. 1 .
vl = ——divh— AUsc (52)
P

where —AU,c s the heat source, — [ { AUpdc = —AUj is the
transformation heat during the whole PT. The experimental
value of the transformation heat, determined by DSC, is
AU, = —14.7 MPa which is close to the predicted value Ay,
presented in Table 2.

Let us consider the DSC experiment in more detail. Inte-
grating Equation (45) over the sample volume V' we get

Q=—[ h-nds = [, pUar (53)

where S is the sample surface, Q is the total heat exchange
rate from the sample which is measured by DSC. Using
Equations (51) and (53) we obtain



332 V. I. LEVITAS, A. V. IDESMAN, E. STEIN, J. SPIELFELD AND E. HORNBOGEN

160 - O, MPa 200 — O, MPa

160 — -_
120 —

120 —
80 —

80 —

40 —
40 —

0.00 0.40 0.80 1.20 1.60 2.00 0.00 0.40 0.80 1.20 1.60 2.00

250 - O, MPa

200 — —

150 —

100 —

50 —

[ . T r T ; — 1€, %
0.00 0.40 0.80 1.20 1.60 2.00

0.00 0.40 0.80 120 1.60 2.00

200 — O, MPa 300 — O, MPa
—
— -
160 —| -
_—
—
—
- —
o
— 200 —
120 —|
80 —
g 100 —
40 —
0 ‘ —— T — T £, %
I ! I I ] o £ %
0.00 0.40 0.80 1.20 1.60 2.00 T I T T I ! I 16, 7
0.00 0.40 0.80 1.20 1.60 2.00
c f

Figure 6. Stress-strain diagram at: (a) @ = 20°C; (b) 6 = 30°C; (c) § = 40°C; (d) 6 = 50°C; (e) 6 = 60°C; (f) 6 = 80°C. —— — experiments, — —— —
results predicted by the model.
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Figure 7. Relationship between pseudo yield stress o® and tem-
perature 8. O — experiments, —— — results predicted by the
model.
m + AUgme = Q (54)

where m is the mass of a specimen. The value 8= const is pre-
scribed in experiments. At cooling without PT (¢ = 0) and
measuring Q, we can determine v from Equation (54). Then
measuring Q during PT we can determine from Equation
(54)

dc_ 00) v

= = (55)
de mOAUO AUO

and after integration over the temperature, we get the de-
pendence c(f). In particular, it follows from Equation (5%)
that

AU, = i [ o@)de-vy - M) (56)

It is evident that the simplest linear dependence between ¢
and 6, accepted in this paper, gives Q(6) = const [see Equa-
tion (55)], which is not the case in experiments. For more
precise model relationship between 0 and c can be deter-
mined from Equation (55).

CONCLUDING REMARKS

The model developed is based on micromechanical ap-
proach with average technique and includes a new
PT-criterion and the corresponding extremum principle. The
final equations are rather simple, require a small number of
material parameters and allow us to describe the one-dimen-

4000.00
] do/de’

| o
!
3000.00 —
VAR
- o
i o
|
2000.00 — °
i
|
i
1000.00 —
0.00 — - I T I T O
20.00 40.00 60.00 80.00

Figure 8. Relationship between coefficient do/de' and temperature
6. O — experiments, —— — results predicted by the model.

sional experiments for CuZnAl alloy. But some modifica-
tions of the model should be considered in the future for de-
scription of material behavior for more complicated cases,
e.g., the pseudoelastic behavior of shape memory alloys after
preliminary plastic treatment (Spielfeld, Hombogen and
Franz, 1997; Treppmann and Hornbogen, 1997) and
two-dimensional experiments (Sittner et al., 1996; Rogueda,
Lexcellent and Bocher, 1996) with proportional and
nonproportional loading.

In the present model it is assumed that the difference be-
tween start and finish temperatures are the same for direct
and reverse temperature-induced PT. This simplification can
be taken away if we prescribe that the threshold value of driv-
ing force for reverse PT ky,. 4(c)= b, — d,chas other material
parameters b, d, than for direct PT. The parameter d, can be
determined if we use the equation for start of reverse temper-
ature-induced PT with temperature A; [similar to Equations
(40)—~(42)]. Parameter b, can be determined using, for exam-
ple, experimental value of the transformation heat (above we
used the experimental value of the transformation heat only
for comparison with predicted value).

In pure martensite and for temperature-induced PT, the
model predicts zero internal stresses. Such a model cannot
describe the experimental situation when temperature A4; is
less than equilibrium temperature 6,,, determined from con-
dition Ay(6,,) = 0. In order to take into account the internal
energy due to incompatibility of different martensite vari-
ants, we can assume that 1, is a growing function of c.
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