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Channel blockade in a two-path triple-quantum-dot system
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Electronic transport through a two-path triple-quantum-dot system with two source leads and one drain is
studied and the interaction between the two paths is analyzed. We observe a channel blockade as a result of
interchannel Coulombic interaction. The experimental results are understood with the help of a theoretical model
which allows one to obtain the parameters of the system, the stability regions of each state, and the full dynamical
transport in the triple-dot resonances.
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Triple quantum dots (TQDs), which have been implemented
only recently [1–4], offer the possibility of analyzing new
fascinating properties which are not present in double-
quantum-dot systems. These new properties, to name a few,
include interference phenomena between different transport
channels giving rise to dark states in triangular [5–8] and
linear [9] dot distributions and long distant coherent states
in TQDs [9–13]. TQDs are, as the smallest qubit chain,
a step towards the more complex architectures needed in
quantum computation. They allow for novel applications in
the field of quantum information processing, for example,
as exchange-controlled spin qubits [14,15] or as current
rectifiers [1,16]. They provide as well the implementation
of quantum cellular automata processes, a combination of
charging and reconfiguration events in the system being a
crucial process in quantum information [17,18]. Coherent
electron transfer using adiabatic passage was proposed for
TQDs in series [19]. Furthermore, decoherence due to charge
fluctuations is reduced in a TQD-based coded qubit as it
involves a decoherence-free subspace [15,20].

Our system is a triangular-shaped TQD with one lead
attached to each dot and two of the dots only capacitively
coupled [Fig. 1(a)]. A triangular geometry is suitable for
studying entanglement and effects of interference which makes
it an interesting device for quantum information processing.
The flexibility of this setup makes it a convenient tool for
investigating the transport properties of a TQD. In particular
we study the interaction between two double dot paths within
the TQD structure. Transport can be measured separately and
simultaneously for the two double dot paths and be compared
or combined to study the whole TQDs physics on the basis of
the double dots.

In contrast to former published works [4] where one
source and two drain leads were used, we now use one
drain and two source leads. In this configuration of two-path
transport the electrons from the different paths compete for
the occupation of dot A, which is shared by both paths
[Fig. 1(a)]. This competition gives rise to a current-blocking
effect, produced by the interchannel Coulombic interaction. By
applying different ac frequencies with a lock-in to the paths,
the interaction between the paths becomes apparent in a more
distinct manner.

*kotzian@nano.uni-hannover.de

We analyze the role of interactions between the charge flow-
ing through the two different paths by transport measurements.
We observe, as a consequence of interchannel Coulombic
interaction, channel blockade in transport.

I. TQD SAMPLE AND CHARACTERIZATION

The measurements were performed on a lateral TQD made
with local anodic oxidation by atomic force microscopy
(AFM) on a GaAs/AlGaAs heterostructure [21–23]. A two-
dimensional electron gas with an electron concentration
of ne = 3.47 × 1015 m−2 is located at 33 nm depth below
the surface. The dots A,B,C are arranged in a triangular
geometry [4] with each dot placed next to the other two and one
lead attached to each dot [Fig. 1(a)]. Dots A and B and also A
and C are tunnel coupled; dots B and C are only capacitively
coupled. The source leads S1 and S2 are connected to dots
B and C, respectively, and dot A is connected to the drain
lead D. We have two transport paths: path 1 with dots A
and B and path 2 with dots A and C. The sample has four
in-plane gates G1 − G4 [Fig. 1(b)] to control the potential
of the dots, interdot, and dot-lead couplings. A quantum
point contact (QPC) sensitive to all three dots is placed
next to dots B and C to perform charge measurements. The
measurements were conducted in a dilution refrigerator. To
measure the differential conductance of the two transport paths
simultaneously but separately, a lock-in technique was used
with ac voltages with two different frequencies f1 = 83.3 Hz
and f2 = 18.3 Hz, with UAC = 10 μV applied to S1 and S2,
respectively. In addition, different dc voltages are applied to
the source contacts. The QPC was operated by applying a dc
voltage to the source of the QPC, SQPC, and measuring a dc
current at the drain of the QPC, DQPC. The QPC is tuned by
the gate GQPC. In our transport measurement range the dots
contain several tens of electrons on the whole. The charging
energies are Ech,A = 2 meV, Ech,B = 6 meV, and Ech,C = 3
meV for dots A, B, and C, respectively.

A. Charge measurements

To characterize the device, the charging is studied by using
the QPC as a detector. The derivative of the QPC current is
plotted as a function of gate voltages UG1 and UG3 (Fig. 2) with
denoted charge configurations |NA,NB,NC〉, where Ni are the
occupations of dots A,B,C. The electrons in the core of the
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FIG. 1. (a) Schematic of the TQD setup with capacitive and tunnel
couplings. (b) AFM picture of the TQD sample with the in-plane gates
G1–G4 and a QPC for charge measurements. The blue lines indicate
the insulating barriers written by AFM. (c) Transport through path
1. Charging lines of dots A and B (dot-dashed lines) are observed.
Charging of dot C (dotted line) is observed by a shift of the charging
lines. (d) Transport through path 2. Charging lines of dot A and C
(dot-dashed lines) can be seen and charging of dot B (dotted line) is
observed by a shift of these charging lines.
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FIG. 2. Charge measurement using the QPC. The green lines with
different slopes point out the charging of the respective dot with one
electron. Double-dot resonances are marked by circles in green, black,
and blue, the triple-dot resonance by a red circle.

dots are not included in Ni. The green lines indicate charging
events, where one more electron is added to the system; pink
lines indicate electron movement away from the detector. In
Fig. 2 there are charging lines with three different slopes. Each
line corresponds to one dot. The slope of the line depends on
the capacitive coupling of the dot to the other dots and the gates
G1 and G3. The lines with the lowest slope belong to dot C as it
is the least coupled to UG1, the lines with intermediate slope to
dot A and the lines with the largest slope to dot B as it is the least
coupled to UG3. Two dots are in resonance where two charging
lines meet. In those resonances there are two degeneracy points
among three different charge configurations, the so-called
triple points (TPs). Charge reconfiguration lines connecting
the two TPs mark the charge transitions between the dots.

Resonances between dot A and B (green circle), A and C
(blue circle), and also between the only capacitively coupled
dots B and C located in the two different paths (black circle)
are observed [24]. In the red circle the three charging lines
meet. This is a resonance among the three dots. We will focus
on such a region in the transport measurements.

B. Transport measurements

To understand transport in this system, the differential
conductance G is measured along path 1 and 2 simultaneously,
sweeping gate voltages UG1 and UG3 [Figs. 1(c) and 1(d)]. In
doing so, the QPC is not in use. TPs with finite differential
conductance are observed in both paths where the two dots
are in resonance. In path 1 [Fig. 1(c)] resonances of the dots
A and B can be seen. Charging of dot C is observed by a
shift of the charging lines of dot A and B, where dot C comes
into resonance. Analogously, charging lines of dot A and C
appear in path 2 [Fig. 1(d)], and charging of dot B is detected
indirectly by the shift of the charging lines of dots A and C.

A triple-dot resonance is formed where two double-dot
resonances coincide. In Fig. 3(a), where we combine path 1
and path 2 as observed in Figs. 1(c) and 1(d), we have three
double-dot resonances, A and B, A and C, B and C, in close
vicinity to each other. One observes regions of high differential
conductance in both paths but at different gate voltages UG1

and UG3. Along the B charging line (path 1) we can identify
two resonance lines where A is resonant with B. The whole
triple-dot physics can be observed. The different occupations
of the states at the TP participating in transport are marked in
Fig. 3.

To understand the experimental results in more detail a
theoretical model is developed to reproduce and explain the
transport properties measured in the system. We fit the trans-
port simulations to the experimental data to extract the interdot
tunnel couplings τAB = 0.012 meV, τAC = 0.020 meV, the
dot-lead tunnel couplings �D = 0.008 meV, �S1 = 0.003 meV,
�S2 = 0.006 meV, and the electron temperature Tel = 300 mK.
In the model we distinguish between particles coming from S1

and S2 in order to be as close as possible to the experimental
conditions.

II. THEORETICAL FRAMEWORK

Here we discuss in detail the theory used to simulate
the experiment. The total Hamiltonian of the system reads
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FIG. 3. (a) Experimental figure. Combined color plot of dif-
ferential conductance through paths 1 and 2 with denoted charge
configurations of the stability regions we were able to identify in the
measurement. (b) Theoretical simulation. Occupation probabilities
(ρSS

i ) of the i states present in the system. States |1,0,0〉 and |0,1,1〉 are
within a small region with low occupation probability; their position
in the stability diagram is not appreciable in the experimental figure
(a).

Ĥ = Ĥ0 + Ĥlead + Ĥint. The dot system (Ĥ0) is a three-
site Anderson-like Hamiltonian [25]: Ĥ0 = ∑

i εi ĉ
†
i ĉi +∑

i τi,i+1ĉ
†
i ĉi+1 + ∑

i<j Vij n̂i n̂j , where ĉ
†
i is the electron

creation operator and n̂i the particle number operator of
dot i. εi (i ∈ {A, B, C}) is the chemical potential of the
dots, τij the coherent interdot tunnel coupling, and Vij the
Coulomb interaction between the electrons in different dots.
The reservoirs are modeled as a Fermi electron gas Ĥlead =∑

lk εlkd̂
†
lk d̂lk that has a constant temperature T and chemical

potential μl (l ∈ {S1, S2, D}). The interaction part of the
Hamiltonian Ĥint = ∑

li γl d̂
†
l ĉi + H.c. couples the reservoirs

and the dots with a hopping parameter γl . The energy levels
are tuned with the gate voltages present in the experiment
(UG1, UG2, UG3, UG4).

The rates between the leads and the dots for incoming (+)
and outgoing (−) electrons with respect to the dot system
are given by Fermi’s golden rule �

(+)
i←l = 2π/�|γl|2f (μl − εi)

and �
(−)
l←i = 2π/�|γl|2[1 − f (μl − εi)], where f is the Fermi

distribution function. �l ≡ 2π/�|γl |2 is smaller than the

interdot coupling τij ; thus we can apply the Born-Markov
approximation [26] for the interaction of the system with the
leads. From the von Neumann equation ∂t
(t) = i/�[Ĥ ,
(t)],
which contains the full system time evolution, we trace over the
bath’s degrees of freedom, getting the reduced density matrix
ρ(t) = Trleads
(t) [27] and obtaining the master equation

∂tρi(t) =
∑

j

Lij ρj (t). (1)

ρi(t) is the occupation probability of the i state of the system
and L is the Liouvillian superoperator that contains all the
information about the system H0 and the jumping terms
between the leads and the dots �i↔l . As we just want to study
the steady-state properties of the system, we solve the kernel of
Eq. (1) to obtain the steady-state occupations ρSS = Ker[L].

By taking the steady-state occupations and the tunneling
rates to and from the contacts we are able to calculate the
current and the differential conductance

I =
1∑

i,j=0

ρSS
|1,i,j 〉�

(−)
|0,i,j 〉←|1,i,j〉 − ρSS

|0,i,j 〉�
(+)
|1,i,j〉←|0,i,j〉

G = dI

dV
. (2)

In order to distinguish the electrons coming from the different
sources, we apply a lock-in signal which allows us to
distinguish the electrons coming from the different paths. We
use the label B (C) for the electrons flowing from dot B (C);
hence, instead of eight states we have now 27. The current and
conductance through path α is given by

Iα =
∑

i,j=0,B,C

ρSS
|α,i,j 〉�

(−)
|0,i,j 〉←|α,i,j〉 − ρSS

|0,i,j 〉�
(+)
|α,i,j〉←|0,i,j〉,

Gα = dIα

dV
, (3)

where α ∈ {B,C}. We have that I = IB + IC, so G= GB + GC.

III. SIMULATION

Using the master equation techniques described above, we
calculate the transport through the two paths and the stability
regions of each state. In Fig. 3(b) we plot the numerical result of
the steady-state occupations ρSS

i . For small and large UG1 and
UG3 the states |0,0,0〉 and |1,1,1〉 are occupied, respectively.
Above |0,0,0〉, for larger values of UG3, the state |0,0,1〉 with
one more electron in C becomes occupied and at the right-hand
side, for larger values of UG1, the state |0,1,0〉 with one more
electron in B becomes occupied. Below |1,1,1〉, for smaller
values of UG3, the occupation of |1,1,0〉 with one less electron
in C increases and at the left-hand side, for smaller values of
UG1, the state |1,0,1〉 with one less electron in B is occupied.
All these regions obtained numerically correspond perfectly
to the ones in Fig. 3(a). The small regions of |1,0,0〉 and
|0,1,1〉 connect the states with one electron and two electrons,
respectively. Each of these small regions, not really seen in
Fig. 3(a), contain two TPs of path 1 and two TPs of path 2.
When two TPs coincide we have a quadruple point.
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With the information from the theoretical calculation of
the occupations we determine the degenerate states present
in the TPs [Fig. 3(a)] of path 1, (|0,0,0〉, |0,1,0〉, |1,0,0〉),
(|1,1,0〉, |1,0,0〉, |0,1,0〉), and (|0,0,1〉, |0,1,1〉, |1,0,1〉),
(|1,1,1〉, |1,0,1〉, |0,1,1〉). The two last TPs are equal to the two
first but with one more electron in C, which shifts the energy
of the degenerate states by Coulombic interaction. Similarly,
for path 2 we have high positive differential conductance at
the TPs which contain the degenerates states (|0,0,0〉, |0,0,1〉,
|1,0,0〉), (|1,0,1〉, |0,0,1〉, |1,0,0〉) and, with one more electron
in dot B, (|0,1,0〉, |0,1,1〉, |1,1,0〉), (|1,1,1〉, |0,1,1〉, |1,1,0〉).
There is high positive differential conductance visible in an
extended area around the TPs due to strong coherence effects
near the TPs and temperature broadening of the states. In path 1
the TPs thus merge and form a vertical line of high differential
conductance.

In Fig. 4 we plot the measured conductance of paths 1 and
2 separately [(a),(b)] as well as the results from the simulation
[(c),(d)]. In path 1(2) we observe the splitting of the resonance
between the dots A,B(A,C) due to the interaction with dot
C(B). We also observe negative differential conductance in
path 1 [gray color in Figs. 4(a) and 4(c)], where path 2 has
high conductance [red color in Figs. 4(b) and 4(d)] at a TP. It
is visible not only at the TPs but in an extended area around
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FIG. 4. (a, b) Experimental differential conductance measured
at the drain contact along path 1 (a) and path 2 (b) for the setup
shown in Fig. 1(a). (c, d) Theoretical simulation result reproducing
the experimental figures (a) and (b), respectively. The dotted line is the
cut plotted in Fig. 5. Negative differential conductance (gray regions)
is visible in both simulation and experimental result. (e, f) Simulation
of the differential conductance for switched transport direction
measured at S1 for path 1 and at S2 for path 2, respectively. Negative
differential conductance is not observed because the particles are
coming into the system from the same lead D.

due to temperature broadening and strong coherence effects
near the TPs. In the following we will analyze and compare
the transport features of the two paths in more detail.

IV. CHANNEL BLOCKADE

In Fig. 5 we show a cut from Fig. 4. We observe that the
resonance of path 2 splits into two (�,�) due to the interaction
with the third dot present in path 1, as the energy levels of dots
B and A in path 1 come into resonance at �. Thus, the current
increases through path 1, which partially blocks path 2 and
decreases its conductance. This point is a quadruple point, i.e.,
four states of the two paths are coexisting in the same region of
the stability diagram (see Fig. 3). The transport through path
2 is stronger than through path 1 (τAC > τAB); thus when the
quantum-dot levels in path 2 are in resonance (�,�) path 1 is
fully blocked, decreasing its differential conductance even to
negative values [more appreciable in Figs. 4(a) and 4(c)].

This channel blockade process is a consequence of Coulom-
bic correlations between the charges flowing through the
two transport channels which share dot A. This dynamical
blockade depends on the ratio between the tunneling prob-
abilities through the two paths. If the tunneling probability
through path 1 (path 2) is high due to a resonance condition
in this path, the transport through path 2 (path 1) with
lower tunneling probability is blocked resulting from strong
Coulombic interaction in the shared dot which does not allow
double occupancy. In this dynamical process the electron
occupation probability of dot A by electrons from one path
determines the conductance through the other path. If the bias
voltage is increased, the path with higher conductance raises
the electron occupation of dot A, making dot A less accessible
to electrons from the other path. Therefore, the transport of
the other path decreases with the increase of the bias voltage,
which explains the negative differential conductance observed
in the stability diagrams.

In Fig. 6 we schematically identify the dominating and the
blocked transport channels for each resonance (�,�,�). We
show the involved initial and final states connected by two
different transport paths. Transport through path 1 connecting
two different charge states of the system is illustrated by blue
arrows; transport through path 2 is illustrated by red arrows. In
the case of the resonant configuration, (�) and (�), transport
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FIG. 5. Cut through the transport measurement (left) and simula-
tion (right) of Fig. 4 for paths 1 and 2 at UG3 = 103 mV.
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FIG. 6. Transport mechanism for the peaks in Fig. 5. In (�,�)
path 2 blocks path 1, schematically shown with a cross in a dashed
line. In (�), however, dot A becomes partially occupied with electrons
coming from both paths.

through path 1 is blocked by transport through path 2. In
the resonant configuration (�) both paths conduct and the
occupation of dot A is provided by the transport from both
paths.

To observe the channel blockade in our experiment, it is
crucial to have two sources [(+) transport direction, indicated
in Fig. 1(a)]. If we switch the transport direction of both
paths with a source lead connected to dot A and two drain
leads connected to dots B and C [(−) transport direction], the
electron flow splits at dot A into two paths with a probability
which depends on the tunneling rates of path 1 (τAB, �S1 ) and
path 2 (τAC, �S2 ); hence there is no blocking effect between
the paths. While negative differential conductance is visible
in the experiment and simulation detecting the current at the
common drain lead of the paths [Figs. 4(a), 4(b), and 4(c), 4(d),
respectively], no negative differential conductance occurs for
the switched bias direction, as can be seen in Figs. 4(e) and 4(f).

Consequently, the transport directions in the two-path
device are not equivalent, as shown in Fig. 4. Thus, the
transport through the dot setup is nonlinear even around zero
bias voltage. The two transport directions in such a two-path
device are equivalent only for an equal tunneling probability
in both paths. The nonlinearity of transport in our device with
unequal tunneling rates in the paths (τAB < τAC and �S1 < �S2 )
is shown in Fig. 7, where we plot the differential conductance
of path 1 [Fig. 7(a)] and path 2 [Fig. 7(b)] in an area around
a triple-dot resonance as a function of the bias voltage at path
1, US1, and gate voltage UG3. A Coulomb diamond of dot A is
visible. We observe high differential conductance in both of the
paths at zero bias voltage and UG3 = 180.2 mV. This region
corresponds to a quadruple point. Thus we have a similar
situation as in Fig. 5. A cut through this region in path 1 and
path 2 shows the differential conductance through the paths
separately in dependence of the bias voltage at path 1, which
determines the transport direction in this path. The transport
through path 1 exhibits a Coulombic peak being asymmetric
around zero bias voltage (Fig. 8); the transport through path
2 shows a corresponding asymmetric dip. The asymmetry
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FIG. 7. Differential conductance of path 1 (a) and path 2 (b)
as a function of bias voltage at S1. We observe high differential
conductance in both paths at zero bias voltage and UG3 = 180.2 mV,
where we expect to have a quadruple point.

stems from the inequality of the two transport directions of
the system originating from the direction-dependent channel
blockade effect. It clearly shows that the transport is highly
nonlinear, even around zero bias voltage.

The charge transport blockade was previously studied
theoretically for one dot attached to three leads (one drain
and two sources) which contain some amount of up and down
spins [28]. Electron spins coming from different leads compete
to occupy the dot, blocking the access of the other electron
spin coming from the other lead. Other configurations [29–31]
where channel blocking occurs consist of two independent
parallel capacitively coupled double quantum dots. Here,
in contrary, the states of the dots are coherently coupled
forming molecular states so that the electrons are delocalized
throughout the TQD system and consequently in both paths.
Hence the transport through the TQD structure involves
quantum coherences between the states occupied by electrons
flowing through the different paths.

While former experimental work investigated basic trans-
port properties through a triple quantum dot with only
one source lead [4], here we analyze in detail a different
transport configuration where two source and one drain leads
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FIG. 8. Cuts (a) along the dotted line [Fig. 7(a)] in path 1 and (b)
along the dotted line [Fig. 7(b)] in path 2 close to a quadruple point.
The differential conductance in path 1 (path 2) shows an asymmetric
peak (dip) which reflects nonlinear transport around zero bias voltage.
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combined with two different lock-in frequency signals allow
us to investigate nonlinear transport characteristics through
the two different paths mediated by interchannel Coulombic
interactions. Only in this way does the channel blockade
manifest itself in the conductance, as it is dependent on the
direction of electron flow in each path. With the support of the
simulation and bias measurements, we are able to show that
the transport indeed is nonlinear in this system.

V. CONCLUSION

In summary, we have shown channel blockade in electronic
transport through a TQD system with two source leads,
which leads to nonlinear transport characteristics in such a

setup. Interchannel Coulombic interaction between electrons
coming from the two sources gives rise to a blockade of
transport through one path, when the other path has high
conductance, and affects in this way the transport properties
of the multiterminal device. Our work provides a step towards
a better understanding of transport properties in complex
multidot systems.
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