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Abstract

We consider SU(3)-equivariant dimensional reduction of Yang–Mills theory over certain cyclic orbifolds 
of the 5-sphere which are Sasaki–Einstein manifolds. We obtain new quiver gauge theories extending those 
induced via reduction over the leaf spaces of the characteristic foliation of the Sasaki–Einstein structure, 
which are projective planes. We describe the Higgs branches of these quiver gauge theories as mod-
uli spaces of spherically symmetric instantons which are SU(3)-equivariant solutions to the Hermitian 
Yang–Mills equations on the associated Calabi–Yau cones, and further compare them to moduli spaces 
of translationally-invariant instantons on the cones. We provide an explicit unified construction of these 
moduli spaces as Kähler quotients and show that they have the same cyclic orbifold singularities as the 
cones over the lens 5-spaces.
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1. Introduction and summary

Sasaki–Einstein 5-manifolds M5 have played a prominent role in developments in string the-
ory. For example, type IIB string theory on AdS5 ×M5 is conjecturally dual to the 4-dimensional 
N = 1 superconformal worldvolume field theory on a stack of D3-branes placed at the apex 
singularity of the 6-dimensional Calabi–Yau cone C(M5) over M5 [1–6]. They have more-
over served as interesting testing grounds for the suggestion that maximally supersymmetric 
Yang–Mills theory in 5 dimensions contains all degrees of freedom of the 6-dimensional (2, 0)
superconformal theory compactified on a circle [7,8]. Metrics on the non-compact spaces C(M5)

are also known explicitly [9–11], in contrast to the compact examples of Calabi–Yau string com-
pactifications.

In this paper we derive new quiver gauge theories via equivariant dimensional reduction 
over M5 and describe their vacua in terms of moduli spaces of generalised instantons on 
the cones C(M5)1; such instantons play a central role in supersymmetric compactifications 
of heterotic string theory [14]. This extends the constructions of [15] which dealt with the 
case of 3-dimensional Sasaki–Einstein manifolds, wherein these field theories were dubbed 
as “Sasakian” quiver gauge theories. The only Sasaki–Einstein 3-manifolds are the ADE orb-
ifolds S3/� of the 3-sphere by a discrete subgroup � of SU(2). They have natural extensions 
as ADE orbifolds M5 = S5/� of the 5-sphere which preserve N = 2 supersymmetry [2,1]. In 
the following we shall be interested in generalisations of these orbifolds to cases where � is 
instead a finite subgroup of SU(3). The corresponding affine cones C(S5/�) play a central role 
in the McKay correspondence for Calabi–Yau 3-folds [16,17]. Moreover, the BPS configura-
tions in the worldvolume gauge theories on D-branes located at points of Calabi–Yau manifolds 
which are resolutions of the orbifolds C3/� [18,19] are parameterised by moduli spaces of 
translationally-invariant solutions of Hermitian Yang–Mills equations on C3/�, which coincide 
with Calabi–Yau spaces that are partial resolutions of these orbifolds [20,21]. Drawing from the 
situation in the 3-dimensional case [15], it is natural to expect the same sort of similarities be-
tween these moduli spaces and those of “spherically symmetric” instantons on cones over any 
Sasaki–Einstein 5-manifold, where the generalised instanton equations can also be reduced to 
generalised Nahm equations of the form considered in [22].

On general grounds, any quasi-regular Sasaki–Einstein 5-manifold M5 is a U(1) V-bundle 
over a 4-dimensional Kähler–Einstein orbifold M4. In this paper we consider the special case 
where M5 = S5/� with � = Zq+1 ⊂ SU(3) a cyclic group. Then M4 = CP 2 and we can 
exploit the constructions from [23] which thoroughly studies SU(3)-equivariant dimensional 
reduction over the Kähler coset space CP 2 ∼= SU(3)/S(U(2) × U(1)). We shall construct the 
relevant quiver bundles and study the corresponding quiver gauge theories in detail; these quiv-
ers are new and we relate them explicitly to those arising from dimensional reduction over the 
leaf spaces CP 2 of the characteristic foliation of S5/Zq+1. In particular, we will compare the 
moduli spaces of spherically symmetric and translationally-invariant instantons on the cones 
C(S5/Zq+1) ∼= C

3/Zq+1, and show that they contain the same orbifold singularities C3/ZN

(where N is the rank of the gauge group) analogously to the cases of [15]. In analogy to 
the interpretations of [15], our constructions thereby shed light on the interplay between the 
Higgs branches of the worldvolume quiver gauge theories on Dp-branes which probe a set of 
D(p + 6)-branes wrapping a (partial) resolution of C(S5/Zq+1), and BPS states of the quiver 

1 The analogous instanton moduli spaces were studied by [12] for the 3-dimensional case and by [13] in arbitrary (odd) 
dimension.
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gauge theories on pairs of D(p + 4)-branes wrapping C(S5/Zq+1) which transversally intersect 
D(p + 6)-branes at the apex of the cone C(S5/Zq+1). In this scenario, it is the codimensionality 
of the D-brane bound states which selects both the quiver type and the abelian category in which 
the quiver representation is realised; in particular, the arrows of the quivers keep track of the 
massless bifundamental transverse scalars stretching between constituent fractional D-branes at 
the vertices.

The outline of the remainder of this paper is as follows. In Section 2 we provide a detailed de-
scription of the geometry of the orbifold S5/Zq+1 using its realisation as both a coset space and 
as a Sasaki–Einstein manifold. In Section 3 we give a detailed description of the quiver gauge 
theory induced via SU(3)-equivariant dimensional reduction over S5/Zq+1, including explicit 
constructions of the quiver bundles and their connections as well as the form of the action func-
tional. We then describe the Higgs branch vacuum states of quiver gauge theories on the cone 
C(S5/Zq+1) as SU(3)-equivariant solutions to the Hermitian Yang–Mills equations in Section 4
and as translationally-invariant solutions in Section 5. In Section 6 we compare the two quiver 
gauge theories in some detail, including a contrasting of their quiver bundles and explicit uni-
versal constructions of their instanton moduli spaces as Kähler quotients. Four appendices at the 
end of the paper contain technical details and results which are employed in the main text.

2. Sasaki–Einstein geometry

In this section we shall introduce the basic geometrical constructions that we shall need 
throughout this paper.

2.1. Preliminaries

Sasakian manifolds M2n+1 of dimension 2n + 1 are contact manifolds which form a natural 
bridge between two different Kähler spaces M2n and M2n+2 of dimensions 2n and 2n + 2, 
respectively. On the one hand, the metric cone over a Sasakian manifold M2n+1 gives a Kähler 
space M2n+2 = C(M2n+1). On the other hand, the Reeb vector field on M2n+1 defines a foliation 
of M2n+1 and the transverse space M2n is also Kähler. For further details, see for example [24].

A Riemannian manifold is called Einstein if its Ricci tensor is a scalar multiple of its metric. 
A Sasakian manifold which is also Einstein is called a Sasaki–Einstein manifold [24]. Since the 
cone over an Einstein manifold is also an Einstein space, the metric cone over a Sasaki–Einstein 
manifold is a Calabi–Yau space and in this case the transverse space M2n is Kähler–Einstein. 
Because of the R>0 scaling action on the cones we can write the Calabi–Yau metric as

ds2
C(M2n+1)

= dr2 + r2 ds2
M2n+1 , (2.1)

where r ∈ R≥0 and the tensor ds2
M2n+1 defines a metric on the intersection M2n+1 of the cone 

with the unit sphere in Cn+2.
Given a Riemannian manifold M and a finite group � acting isometrically on M , one can, 

loosely speaking, define the Riemannian space of �-orbits M/�, which is called an orbifold or 
sometimes V-manifold, see for instance [24]. The notion of fibre bundle can be adapted to the 
category of orbifolds, and we follow [24] in calling them V-bundles. Any quasi-regular Sasaki–
Einstein manifold M2n+1 is a principal U(1) V-bundle over its transverse space M2n. In this case 
the Sasaki–Einstein metric can be expressed as

ds2
2n+1 = ds2

2n + η ⊗ η , (2.2)

M M
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where ds2
M2n is the (pullback of the) Kähler–Einstein metric of M2n, and η is the contact 1-form 

which is a connection on the fibration M2n+1 → M2n of curvature dη = −2ωM2n with ωM2n the 
Kähler form of the base M2n.

2.2. Sphere S5

The 5-dimensional sphere S5 has two realisations: Firstly, as the coset space S5 = SU(3)/
SU(2) and, secondly, as a principal U(1)-bundle over the complex projective plane CP 2. As 
such, we have the chain of principal bundles

SU(3)
SU(2)−−−→ S5 U(1)−−−→ CP 2 . (2.3)

Our description of S5 will be based on the principal U(1)-bundle over CP 2, and we will construct 
a flat connection on the principal SU(2)-bundle over S5 by employing this feature.

2.2.1. Connections on CP 2

Let us consider a local section U over a patch U0 of CP 2 for the principal bundle SU(3) →
CP 2. For this, let G = SU(3) and H = S(U(2) × U(1)) ⊂ G, and consider the principal bundle 
associated to the coset G/H given by

G = SU(3)
H=S(U(2)×U(1))−−−−−−−−−−→ G/H ∼=CP 2 . (2.4)

By the definition of the complex projective plane

CP 2 =C
3/ ∼ = {[z1 : z2 : z3] ∈ C

3 : [z1 : z2 : z3] ∼ [λz1 : λz2 : λz3] , λ ∈ C
∗} , (2.5)

one introduces on the patch U0 = {[z1 : z2 : z3] ∈ CP 2 : z3 	= 0} the coordinates

Y :=
(
y1

y2

)
∼
(
z1/z3

z2/z3

)
. (2.6)

Define a local section on U0 of the principal bundle (2.4) via [23]

U : U0 −→ SU(3)

Y 
−→ U(Y) := 1

γ

(
�̄ Ȳ

−Ȳ † 1

)
,

(2.7)

with the definitions

�̄ := γ 12 − 1

γ + 1
Ȳ Ȳ † and γ :=

√
1 + Y † Y . (2.8)

From these two definitions, one observes the properties

�̄† = �̄ , �̄2 = γ 2 12 − Ȳ Ȳ † , �̄Ȳ = Ȳ and Ȳ †�̄ = Ȳ † . (2.9)

It is immediate from (2.9) that U as defined in (2.7) is SU(3)-valued.
One can define a flat connection A0 on the bundle (2.4) via

A0 = U† dU ≡
(

B β̄

−β� −a

)
, (2.10)

with the definitions



852 O. Lechtenfeld et al. / Nuclear Physics B 899 (2015) 848–903
B := 1

γ 2

(
�̄d�̄ + Ȳ dȲ † − 1

2
12 d

(
Y † Y

))
, (2.11a)

β̄ := 1

γ 2
�̄dȲ and β� := 1

γ 2
dȲ † �̄ , (2.11b)

a := − 1

2γ 2

(
Ȳ † dȲ − dȲ † Ȳ

)
= −ā . (2.11c)

That U ∈ SU(3) directly implies the vanishing of the curvature 2-form F0 = dA0 + A0 ∧ A0, 
which is equivalent to the set of relations

dB + B ∧ B = β̄ ∧ β� and da = −β� ∧ β̄ = β† ∧ β , (2.12a)

dβ̄ + B ∧ β̄ = β̄ ∧ a and dβ� + β� ∧ B = a ∧ β� . (2.12b)

As elaborated in [23,25], B can be regarded as a u(2)-valued connection 1-form and a as a 
u(1)-valued connection. Consequently, one can introduce an su(2)-valued connection B(1) by 
removing the trace of B . An explicit parametrisation yields

B(1) := B − 1

2
tr(B)12 ≡

(
B11 B̄12

−B12 −B11

)
with tr(B) = a , B11 = −B̄11 . (2.13)

The geometry of CP 2 including the properties of the SU(3)-equivariant 1-forms βi , the instanton 
connection B(1) and the monopole connection a are described in Appendix A.

2.2.2. Connections on S5

Consider now the principal SU(2)-bundle

G = SU(3)
K=SU(2)−−−−−→ G/K = S5 , (2.14)

where K ⊂ G. Then the section U from (2.7) can be modified as

Û : U0 × [0,2π) −→ SU(3)

(Y,ϕ) 
−→ Û (Y,ϕ) := U(Y)

(
ei ϕ 12 0

0 e−2 i ϕ

)
≡ U(Y)Z(ϕ) , (2.15)

which is a local section of the bundle (2.14) on the patch U0 × [0,2π) with coordinates 
{y1, y2, ϕ}. Note that Z−1 = Z† = Z̄ and det(Z) = 1, and furthermore Z(ϕ) Z(ψ) = Z(ψ) Z(ϕ)

= Z(ψ + ϕ), which implies that Z realises the embedding U(1) ↪→ SU(3); this also shows that 
Û ∈ SU(3). The modified (flat) connection Â on the bundle (2.14) and the corresponding curva-
ture F̂ are given as

Â := Û† dÛ = Ad(Z−1)A0 + Z† dZ =
(
B + i12 dϕ β̄ e−3 i ϕ

−β� e3 i ϕ −(a + 2 i dϕ)

)
, (2.16a)

F̂ := dÂ + Â ∧ Â = Ad(Z−1)F0

=
(

dB + B ∧ B − β̄ ∧ β� (
dβ̄ + B ∧ β̄ − β̄ ∧ a

)
e−3 i ϕ

− (dβ� + β� ∧ B − a ∧ β�) e3 i ϕ −da − β� ∧ β̄

)
= 0 .

(2.16b)

Again the flatness of Â yields the same set of identities (2.12), because F̂ differs from F only by 
the adjoint action of Z−1.
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2.2.3. Contact geometry of S5

By construction, the base space of (2.14) is a 5-sphere. The aim now is to choose a basis of the 
cotangent bundle T ∗S5 over the patch U0 × [0, 2π) such that one recovers the Sasaki–Einstein 
structure on S5. For this, we start with the identifications

β1
ϕ := β1 e3 i ϕ ≡ e1 + i e2 , β2

ϕ := β2 e3 i ϕ ≡ e3 + i e4 and κ e5 := 1
2 a + i dϕ , (2.17)

where κ ∈ C is a constant to be determined and the 1-forms βi originate from the complex 
cotangent space T ∗

(Y,Ȳ )
CP 2 at a point (Y, Ȳ ) ∈ U0 ⊂CP 2. Next we define the forms

ω1 := e14 + e23 , ω2 := e31 + e24 , ω3 := e12 + e34 and η := e5 , (2.18)

where generally ea1···ak = ea1 ∧ · · · ∧ eak . In the basis (2.17), one obtains

ω1 = 1
2 i

(
β1
ϕ ∧ β2

ϕ − β̄1
ϕ ∧ β̄2

ϕ

)
, ω2 = − 1

2

(
β1
ϕ ∧ β2

ϕ + β̄1
ϕ ∧ β̄2

ϕ

)
and

ω3 = − 1
2 i

(
β1
ϕ ∧ β̄1

ϕ + β2
ϕ ∧ β̄2

ϕ

)
. (2.19)

Note that ω3 coincides (up to a normalisation factor) with the Kähler form on CP 2, cf. Ap-
pendix A. The exterior derivatives of βi

ϕ and β̄i
ϕ are given as

dβi
ϕ = e3 i ϕ dβi − 3 iβi

ϕ ∧ dϕ and dβ̄i
ϕ = e−3 i ϕ dβ̄i + 3 i β̄i

ϕ ∧ dϕ . (2.20)

The distinguished 1-form η is taken to be the contact 1-form dual to the Reeb vector field of the 
Sasaki–Einstein structure. At this stage, the choice of the quadruple (η, ω1, ω2, ω3) defines an 
SU(2)-structure on the 5-sphere [26]. For it to be Sasaki–Einstein, one needs the relations

dω1 = 3η ∧ ω2 , dω2 = −3η ∧ ω1 and dη = −2ω3 (2.21)

to hold [27]. Employing (2.12) one arrives at

dω1 = 6 iκ η ∧ ω2 and dω2 = −6 iκ η ∧ ω1 , (2.22a)

dη = i
κ
ω3 and dω3 = 0 . (2.22b)

Consequently, the coframe {η, β1
ϕ, β

2
ϕ} yields a Sasaki–Einstein structure on S5 if and only if 

κ = − i
2 , and from now on this will be the case.

2.3. Orbifold S5/Zq+1

Our aim is to now construct a principal V-bundle over the orbifold S5/Zq+1 by the fol-
lowing steps: Take the principal SU(2)-bundle π : G = SU(3) → SU(3)/SU(2) ∼= S5, which 
is SU(2)-equivariant. Embed Zq+1 ↪→ U(1) ⊂ SU(3) such that U(1) commutes with SU(2) ⊂
SU(3), and define a Zq+1-action γ on S5. The action γ : Zq+1 × S5 → S5 can be lifted to an 
action γ̃ : Zq+1 × G → G with an isomorphism on the SU(2) fibres induced by this action. The 
crucial point is that the fibre isomorphism is trivial as SU(2) commutes with Zq+1 by construc-
tion. Hence one can consider the Zq+1-projection of G to the principal SU(2) V-bundle ̃G, which 
is schematically given as

G
γ̃

π

G̃

π̃

S5
γ S5/Zq+1

(2.23)
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With an abuse of notation, we will denote the V-bundles obtained via Zq+1-projection by the 
same symbols as the fibre bundles they originate from; only Zq+1-equivariant field configurations 
survive this orbifold projection.

A section Ũ of the principal V-bundle (2.23) is obtained by a (further) modification of the 
section (2.7) as

Ũ : U0 × [0, 2π
q+1

)−→ SU(3)

(
Y,

ϕ
q+1

) 
−→ Ũ
(
Y,

ϕ
q+1

) := U(Y)

(
e

i ϕ
q+1 12 0

0 e−2 i ϕ
q+1

)
≡ U(Y)Zq+1(ϕ) .

(2.24)

Here ϕ ∈ [0, 2π) is again the local coordinate on the S1-fibration S5 U(1)−−−→ CP 2; hence e
i ϕ
q+1 ∈

S1/Zq+1. Analogously to the q = 0 case of S5 above, one can prove that Zq+1 realises the 
embedding S1/Zq+1 ↪→ U(1) ⊂ SU(3), and Ũ ∈ SU(3). As before, one computes the connection 
1-form Ã and the curvature F̃ of the flat connection on the V-bundle (2.23). This yields

Ã := Ũ† dŨ = Ad(Z−1
q+1)A0 + Z

†
q+1 dZq+1 =

⎛⎝B + 12
i dϕ
q+1 β̄ e−3 i ϕ

q+1

−β� e3 i ϕ
q+1 −(a + 2 i dϕ

q+1

)
⎞⎠ , (2.25a)

F̃ := dÃ + Ã ∧ Ã = Ad(Z−1
q+1)F0

=
⎛⎝ dB + B ∧ B − β̄ ∧ β� (

dβ̄ + B ∧ β̄ − β̄ ∧ a
)

e−3 i ϕ
q+1

− (dβ� + β� ∧ B − a ∧ β�) e3 i ϕ
q+1 −da − β� ∧ β̄

⎞⎠= 0 .

(2.25b)

Again the flatness of the connection Ã yields the very same relations (2.12).

2.3.1. Local coordinates
Our description of the orbifold S5/Zq+1 follows [15]. The key idea is the embedding S5 =

SU(3)/SU(2) ↪→R
6 ∼=C

3 via the relation

r2 = δμ̂ν̂ xμ̂ xν̂ = |z1|2 + |z2|2 + |z3|2 (2.26)

where xμ̂ (μ̂ = 1, . . . , 6) are coordinates of R6 and zα (α = 1, 2, 3) are coordinates of C3; 
here r ∈ R>0 gives the radius of the embedded 5-sphere. In general, on the coordinates zα the 
Zq+1-action is realised linearly by a representation h 
→ (hα

β) such that

zα 
−→ hα
β zβ and z̄α 
−→ h̄α

β z̄β = (h−1)αβ z̄β , (2.27)

where h is the generator of the cyclic group Zq+1. In this paper the action of the finite group Zq+1
is chosen to be realised by the embedding of Zq+1 in the fundamental 3-dimensional complex 
representation C1,0 of SU(3) given by

(hα
β) =

⎛⎝ζq+1 0 0
0 ζq+1 0
0 0 ζ−2

⎞⎠ ∈ SU(3) with ζ l
q+1 := e

2π i
q+1 l

. (2.28)
q+1
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Since CP 2 is naturally defined via a quotient of C3, see (2.5), one can deduce the Zq+1-action 
on the local coordinates (y1, y2) of the patch U0 to be

yα 
−→ ζq+1 zα

ζ−2
q+1 z3

= ζ 3
q+1 yα and ȳα 
−→ ζ−1

q+1 z̄α

ζ 2
q+1 z̄3

= ζ−3
q+1 ȳα for α = 1,2 . (2.29)

Next consider the action of Zq+1 on the S1 coordinate ϕ. By (2.28) one naturally has

ei ϕ
q+1

Zq+1−−−→ ei( ϕ
q+1 + 2π l

q+1 ) = ei ϕ
q+1 ζ l

q+1 for l ∈ {0,1, . . . , q} , (2.30)

i.e. the transformed coordinate ei ( ϕ
q+1 + 2π l

q+1 ) lies in the Zq+1-orbit 
[

ei ϕ
q+1
]

of ei ϕ
q+1 .

2.3.2. Lens spaces
The spaces S5/Zq+1 are known as lens spaces, see for instance [24]. For this, one usually 

embeds S5 into C3 and chooses the action of p ∈ {0, 1, . . . , q} as

Zq+1 ×C
3 −→ C

3(
p , (z1, z2, z3)

) 
−→ p · (z1, z2, z3) := ( e
2π i p
q+1 z1, e

2π i p
q+1 r1 z2, e

2π i p
q+1 r2 z3) (2.31)

where the integers r1 and r2 are chosen to be coprime to q+1. The coprime condition is necessary 
for the Zq+1-action to be free away from the origin of C3. The quotient space S5/Zq+1 with the 
action (2.31) is called the lens space L(q + 1, r1, r2) or L2(q + 1, r1, r2). It is a 5-dimensional 
orbifold with fundamental group Zq+1.

We choose the Zq+1-action to be given by (2.28), i.e. r1 = 1 and r2 = −2. Then r1 is always 
coprime to q + 1, but r2 is coprime to q + 1 only if q is even. Thus for q + 1 ∈ 2Z≥0 + 1 the only 
singular point in C3/Zq+1 is the origin, and its isotropy group is Zq+1. However, for q + 1 ∈
2Z≥0 there is a singularity at the origin and also along the circle {z1 = z2 = 0 , |z3| = 1} ⊂ S5 of 
singularities with isotropy group 

{
0, q+1

2

}∼= Z2 ⊂ Zq+1. Hence for the chosen action (2.28) we 
are forced to take q ∈ 2Z≥0 in all considerations.

2.3.3. Differential forms
Similarly to the previous case, one can construct locally a basis of differential forms. However, 

one has to work with a uniformising system of local charts on the orbifold S5/Zq+1 instead of 
local charts for the manifold S5. Choosing the identifications

β1
q+1 := β1 e

3 i ϕ
q+1 ≡ e1 + i e2 , β2

q+1 := β2 e
3 i ϕ
q+1 ≡ e3 + i e4 and η := e5 ≡ ia − 2 dϕ

q+1

(2.32)

and by means of the relations imposed by the flatness of (2.25a), one can study the geometry of 
S5/Zq+1. Defining the three 2-forms

ω1 := 1
2 i

(
β1
q+1 ∧ β2

q+1 − β̄1
q+1 ∧ β̄2

q+1

)
, ω2 := − 1

2

(
β1
q+1 ∧ β2

q+1 + β̄1
q+1 ∧ β̄2

q+1

)
and ω3 := − 1

2 i

(
β1
q+1 ∧ β̄1

q+1 + β2
q+1 ∧ β̄2

q+1

)
(2.33)

and employing (2.12) implied by the flatness of Ã, one obtains the correct Sasaki–Einstein rela-
tions (2.21).
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2.3.4. Zq+1-action on 1-forms
Consider the Zq+1-action on the forms βi

q+1, β̄i
q+1, and η. Firstly, recall the definitions (2.32)

and (A.1), from which one sees that

βi
q+1

Zq+1−−−→ ζ 3
q+1 βi

q+1 and β̄i
q+1

Zq+1−−−→ ζ−3
q+1 β̄i

q+1 . (2.34)

This follows directly from the transformation (2.29). Moreover, it agrees with the monodromy 
of βi

q+1 and β̄i
q+1 along the S1 fibres, i.e.

βi
q+1 = βi e3 i ϕ

q+1
ϕ 
→ϕ+2π−−−−−−→ βi

q+1 ζ 3
q+1 . (2.35)

Secondly, for the 1-form η from (2.32) we know that a is a U(1) connection. As any U(1)
connection is automatically U(1)-invariant, due to the embedding Zq+1 ↪→ U(1) one also has 
Zq+1-invariance of a.2 We conclude that

η
Zq+1−−−→ η . (2.36)

From the definition (2.26) of the radial coordinate, one observes that r is invariant under Zq+1. 
The same is true for the corresponding 1-form, so that

dr
Zq+1−−−→ dr . (2.37)

Following [15], let T be a Zq+1-invariant 1-form on the metric cone C(S5/Zq+1) which is locally 
expressed as

T = Tμ eμ + Tr dr ≡ Wi β
i
q+1 + Wi β̄

i
q+1 + W5 e5 + Wr dr (2.38)

with i = 1, 2 and μ = 1, . . . , 5, where W1 = 1
2 (T1 − i T2), W2 = 1

2 (T3 − i T4), W5 = T5 and 
Wr = Tr . This induces a representation π of Zq+1 in �1

(
C(S5)

)
as

Wi 
−→ π(h)(Wi) = ζ−3
q+1 Wi , Wi 
−→ π(h)(Wi) = ζ 3

q+1 Wi , (2.39a)

W5 
−→ π(h)(W5) = W5 , Wr 
−→ π(h)(Wr) = Wr . (2.39b)

3. Quiver gauge theory

In this section we define quiver bundles over a d-dimensional manifold Md via equivari-
ant dimensional reduction over Md × S5/Zq+1, and derive the generic form of a G-equivariant 
connection. For this, we recall some aspects from the representation theory of G = SU(3), and 
exemplify the relation between quiver representations and homogeneous bundles over S5/Zq+1. 
Then we extend our constructions to G-equivariant bundles over Md × S5/Zq+1, which will 
furnish a quiver representation in the category of vector bundles instead of vector spaces. We 
shall also derive the dimensional reduction of the pure Yang–Mills action on Md × S5 to obtain 
a Yang–Mills–Higgs theory on Md from our twisted reduction procedure (for the special case 
q = 0).

2 Alternatively, one can work out the transformation behaviour of a directly from the explicit expression (2.11c).
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3.1. Preliminaries

3.1.1. Cartan–Weyl basis of su(3)
Our considerations are based on certain irreducible representations of the Lie group G =

SU(3), which are decomposed into irreducible representations of the subgroup H = SU(2) ×
U(1) ⊂ SU(3). For this, we recall the root decomposition of the Lie algebra su(3). There is a 
pair of simple roots α1 and α2, and the non-null roots are given by ± α1, ± α2, and ± (α1 + α2). 
The Lie algebra su(3) is 8-dimensional and has a 2-dimensional Cartan subalgebra spanned by 
Hα1 and Hα2 . We distinguish one su(2) subalgebra, which is spanned by Hα1 and E± α1 with the 
commutation relations[

Hα1,E± α1

]= ±2E± α1 and
[
Eα1,E−α1

]= Hα1 . (3.1a)

The element Hα2 generates a u(1) subalgebra that commutes with this su(2) subalgebra, i.e.[
Hα2,Hα1

]= 0 and
[
Hα2 ,E± α1

]= 0 . (3.1b)

In the Cartan–Weyl basis, the remaining generators E±α2 and E± (α1+α2) satisfy non-vanishing 
commutation relations with the su(2) generators given by[

Hα1,E± α2

]= ∓E± α2 and
[
E± α1 ,E± α2

]= ±E± (α1+α2) , (3.1c)[
Hα1,E± (α1+α2)

]= ±E± (α1+α2) and
[
E± α1,E∓ (α1+α2)

]= ∓E∓ α2 , (3.1d)

with the u(1) generator given by[
Hα2,E± α2

]= ±3E± α2 and
[
Hα2 ,E± (α1+α2)

]= ±3E± (α1+α2) , (3.1e)

and amongst each other given by[
Eα2,E−α2

]= 1
2

(
Hα2 − Hα1

)
and

[
Eα1+α2 ,E−α1−α2

]= 1
2

(
Hα1 + Hα2

)
, (3.1f)[

E± α2 ,E∓ (α1+α2)

]= ±E∓ α1 . (3.1g)

3.1.2. Skew-Hermitian basis of sl(3,C)

Equivalently, we introduce the complex basis given by

I1 := Eα1+α2 − E−α1−α2 , I2 := −i
(
Eα1+α2 + E−α1−α2

)
, (3.2a)

I3 := Eα2 − E−α2 , I4 := −i
(
Eα2 + E−α2

)
, (3.2b)

I5 := − i
2 Hα2 , (3.2c)

I6 := Eα1 − E−α1 , I7 := −i
(
Eα1 + E−α1

)
, (3.2d)

I8 := iHα1 , (3.2e)

which reflects the splitting su(3) = su(2) ⊕m in which

Ii ∈ su(2) for i = 6,7,8 and Iμ ∈ m for μ = 1, . . . ,5 . (3.3)

This representation of generators is skew-Hermitian, i.e. Iμ = −I †
μ for μ = 1, . . . , 5 and 

Ii = −I
†
i for i = 6, 7, 8, in contrast to the Cartan–Weyl basis. The chosen Cartan subalgebra 

is spanned by I5 and I8, and [I5, Ii] = 0. From the commutation relations (3.1) one can infer the 
non-vanishing structure constants of these generators as



858 O. Lechtenfeld et al. / Nuclear Physics B 899 (2015) 848–903
f67
8 = −2 plus cyclic , (3.4a)

f63
1 = f64

2 = f71
4 = f73

2 = f82
1 = f83

4 = 1 plus cyclic , (3.4b)

f12
5 = f34

5 = 2 , (3.4c)

f25
1 = −f15

2 = f45
3 = −f35

4 = 3
2 . (3.4d)

The Killing form KAB := fAC
DfDB

C (with A, B, . . . = 1, . . . , 8) associated to this basis is di-
agonal but not proportional to the identity, and is given by

Kab = 12 δab for a, b = 1,2,3,4,

K55 = 9 and Kij = 12 δij for i, j = 6,7,8 . (3.5)

Introducing the ’t Hooft tensors ηα
ab for a, b = 1, 2, 3, 4 and α = 1, 2, 3 one has

fab
5 = 2η3

ab and fa5
b = − 3

2 η3
ab . (3.6)

3.1.3. Biedenharn basis
The irreducible SU(3)-representations Ck,l are labelled by a pair of non-negative integers 

(k, l) and have (complex) dimension

p0 := dim
(
Ck,l

)= 1
2 (k + l + 2) (k + 1) (l + 1) . (3.7)

We decompose Ck,l with respect to the subgroup H = SU(2) × U(1) ⊂ G, just as in [23]. A par-
ticularly convenient choice of basis for the vector space Ck,l is the Biedenharn basis [28–30], 
which is defined to be the eigenvector basis given by

Hα1

∣∣∣∣nq m

〉
= q

∣∣∣∣nq m

〉
, L2

∣∣∣∣nq m

〉
= n (n + 2)

∣∣∣∣nq m

〉
and Hα2

∣∣∣∣nq m

〉
= m

∣∣∣∣nq m

〉
,

(3.8)

where L2 := 2 
(
Eα1 E−α1 + E−α1 Eα1

) + H 2
α1

is the isospin operator of su(2). Define the 
representation space (n,m) as the eigenspace with definite isospin n ∈ Z≥0 and magnetic 
monopole charge m2 for m ∈ Z. Then the SU(3)-representation Ck,l decomposes into irreducible 
SU(2) × U(1)-representations (n,m) as

Ck,l =
⊕

(n,m)∈Q0(k,l)

(n,m) , (3.9)

where Q0(k, l) parameterises the set of all occurring representations (n,m). In Appendix B.1 we 
summarise the matrix elements of all generators in the Biedenharn basis.

3.1.4. Representations of Zq+1
As the cyclic group Zq+1 is abelian, each of its irreducible representations is 1-dimensional. 

There are exactly q + 1 inequivalent irreducible unitary representations ρl given by

ρl : Zq+1 −→ S1 ⊂C
∗

p 
−→ e
2π i (p+l)

q+1
for l = 0,1, . . . , q . (3.10)
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3.2. Homogeneous bundles and quiver representations

Consider the groups G = SU(3), H = SU(2) × U(1), K = SU(2), K̃ = SU(2) × Zq+1 ⊂ H
and a finite-dimensional K-representation R which descends from a G-representation. Associate 
to the principal bundle (2.14) the K-equivariant vector bundle VR := G ×K R. Due to the em-
bedding Zq+1 ↪→ U(1) ⊂ SU(3) and the origin of R from a G-module, it follows that R is also 
a Zq+1-module. Consequently, as in Section 2.3, the Zq+1-action γ : Zq+1 × S5 → S5 can be 
lifted to a Zq+1-action γ̃ : Zq+1 × VR → VR wherein the linear Zq+1-action on the fibres is 
trivial. Thus one can define the corresponding K̃-equivariant vector V-bundle ṼR by suitable 
Zq+1-projection as3

VR
γ̃

π

ṼR

π̃

S5
γ S5/Zq+1

(3.11)

and again we denote the vector V-bundle ṼR by the same symbol VR whenever the context is 
clear.

It is known [31] that the category of such holomorphic homogeneous vector bundles VR is 
equivalent to the category of finite-dimensional representations of certain quivers with relations. 
We use this equivalence to associate quivers to homogeneous bundles related to an irreducible 
SU(3)-representation R = Ck,l , which is evidently a finite-dimensional (and usually reducible) 
representation of SU(2) ×Zq+1 ↪→ SU(2) × U(1).

3.2.1. Flat connections
Inspired by the structure of the flat connection (2.25a) on the V-bundle (2.23), one observes 

that it can be written as4

A0 = [B11 Hα1 + B12 Eα1 − (B12 Eα1

)†]− i
2 ηHα2 + β̄1

q+1 Eα1+α2 + β̄2
q+1 Eα2

− β1
q+1 E−α1−α2 − β2

q+1 E−α2, (3.12a)

or equivalently

A0 = � + Iμ eμ (3.12b)

with the coframe {eμ}μ=1,...,5 defined in (2.32) and the definition

� := �i Ii with �6 = i
2

(
B12 − B̄12

)
, �7 = 1

2

(
B12 + B̄12

)
, �8 = −iB11 . (3.13)

Note that � is an su(2)-valued connection 1-form. The flatness of A0, i.e. F0 = dA0 +A0 ∧A0
= 0, is encoded in the relation

F0 = F� + Iμ deμ + �i
[
Ii, Iμ

]∧ eμ + 1
2

[
Iμ, Iν

]
eμν = 0 , (3.14a)

F0
∣∣
su(2) = 0 : F� = − 1

2 f i
μν Ii e

μν , (3.14b)

F0
∣∣
m

= 0 : deμ = −�i f
μ

iν ∧ eν − 1
2 f μ

ρσ eρσ , (3.14c)

3 See also the treatment in [15].
4 Note that (2.25a) implicitly uses the fundamental representation C1,0 of SU(3).
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where F� = d� + � ∧ �. The equivalent information can be cast in a set of relations starting 
from (3.12a) and using the Biedenharn basis; see Appendix B.2 for details.

3.2.2. Zq+1-equivariance
Consider the principal V-bundle (2.23), where the Zq+1-action is defined on S5 as in Sec-

tion 2.3. The connection (3.12) is SU(3)-equivariant by construction, but one can also check its 
Zq+1-equivariance explicitly. For this, one needs to specify an action of Zq+1 on the fibre Ck,l , 
which decomposes as an SU(2)-module via (3.9). Demanding that the Zq+1-action commutes 
with the SU(2)-action on Ck,l forces it to act as a multiple of the identity on each irreducible 
SU(2)-representation by Schur’s lemma. Hence we choose a representation γ : Zq+1 → U(p0)

of Zq+1 on Ck,l such that Zq+1 acts on (n,m) as

γ (h)
∣∣
(n,m)

= ζm
q+1 1n+1 ∈ U(1) . (3.15)

Consider the two parts of the connection (3.12): The connection � and the endomorphism-valued 
1-form Iμ eμ. In terms of matrix elements, � is completely determined by the 1-forms B(n,m) ∈
�1
(
su(2),End( n,m)

)
which are instanton connections on the K̃-equivariant vector V-bundle

Ṽ(n,m)

(n,m)−−−−→ G/K̃ ∼= S5/Zq+1 with V(n,m) := G ×K (n,m) , (3.16)

simply because they are K-equivariant by construction and Zq+1 ↪→ U(1) ⊂ SU(3) commutes 
with this particular SU(2) subgroup (see also Appendix A). More explicitly, taking (3.15) one 
observes that Zq+1 acts trivially on the endomorphism part,

γ (h)B(n,m) γ (h)−1 = B(n,m) , (3.17)

as well as on the 1-form parts �i because they are horizontal in the V-bundle (2.23). For 
Zq+1-equivariance of the second term Iμ eμ, from (3.12a) and the representation π defined in 
(2.39) one demands the conditions

γ (h)Ew γ (h)−1 = π(h)−1(Ew) = ζ 3
q+1 Ew for w= α2, α1 + α2 , (3.18a)

γ (h)E−w γ (h)−1 = π(h)−1(E−w) = ζ−3
q+1 E−w for w= α2, α1 + α2 , (3.18b)

γ (h)Hα2 γ (h)−1 = π(h)−1(Hα2) = Hα2 . (3.18c)

One can check that these conditions are satisfied by our choice of representation (3.15), due 
to the explicit components of the generators (B.2). We conclude that, due to our ansatz for the 
connection (3.12) on the principal V-bundle (2.23) and the embedding Zq+1 ↪→ U(1) ⊂ SU(3), 
the 1-form A0 is indeed Zq+1-equivariant.

3.2.3. Quiver representations
Recall from [23] that one can interpret the decomposition (3.9) and the structure of the 

connection (3.12) as a quiver associated to Ck,l as follows: The appearing H-representations 
(n,m) form a set Q0(k, l) of vertices, whereas the actions of the generators Eα2 and Eα1+α2

intertwine the H-modules. These H-morphisms, together with Hα2 , constitute a set Q1(k, l)
of arrows (n, m) → (n′, m′ ) between the vertices. The quiver Qk,l is then given by the pair 
Qk,l = (Q0(k, l) , Q1(k, l)

)
; the underlying graph of this quiver is obtained from the weight 

diagram of the representation Ck,l by collapsing all horizontal edges to vertices, cf. [23]. See 
Appendix C for an explicit treatment of the examples C1,0, C2,0 and C1,1.



O. Lechtenfeld et al. / Nuclear Physics B 899 (2015) 848–903 861
3.3. Quiver bundles and connections

In the following we will consider representations of quivers not in the category of vector 
spaces, but rather in the category of vector bundles. We shall construct a G-equivariant gauge 
theory on the product space

Md ×K̃ G := Md × G/K̃ = Md × S5/Zq+1 (3.19)

where G and all of its subgroups act trivially on a d-dimensional Riemannian manifold Md . The 
equivariant dimensional reduction compensates isometries on G/K̃ with gauge transformations, 
thus leading to quiver gauge theories on the manifold Md .

Roughly speaking, the reduction is achieved by extending the homogeneous V-bundles (3.11)
by K̃-equivariant bundles E → Md , which furnish a representation of the corresponding quiver 
in the category of complex vector bundles over Md . Such a representation is called a quiver 
bundle and it originates from the one-to-one correspondence between G-equivariant Hermitian 
vector V-bundles over Md × G/K̃ and K̃-equivariant Hermitian vector bundles over Md , where 
K̃ acts trivially on the base space Md [31].

3.3.1. Equivariant bundles
For each irreducible H-representation (n,m) in the decomposition of Ck,l , construct the (triv-

ial) vector bundle

(n,m)
Md := Md ×K̃ (n,m)

(n,m)−−−−→ Md (3.20)

of rank n + 1, which is K̃-equivariant due to the trivial K̃-action on Md and the linear action on 
the fibres. For each module (n,m) introduce also a Hermitian vector bundle

Ep(n,m)

C
p(n,m)−−−−→ Md with rk(Ep(n,m)

) = p(n,m) (3.21)

with structure group U(p(n,m)) and a u(p(n,m))-valued connection A(n,m), and with trivial 
K̃-action. Denote the identity endomorphism on the fibres of Ep(n,m)

by π(n,m). With these data 
one constructs a K̃-equivariant bundle

Ek,l ∼=
⊕

(n,m)∈Q0(k,l)

Ep(n,m)
⊗ (n,m)

Md

C
p−−−→ Md (3.22)

whose rank p is given by

p =
∑

(n,m)∈Q0(k,l)

p(n,m) dim (n,m) =
∑

(n,m)∈Q0(k,l)

p(n,m) (n + 1) . (3.23)

Following [23], the bundle Ek,l is the K̃-equivariant vector bundle of rank p associated to the 
representation Ck,l

∣∣
K̃ of K̃, and (3.22) is its isotopical decomposition. This construction breaks 

the structure group U(p) of Ek,l via the Higgs effect to the subgroup

Gk,l :=
∏

(n,m)∈Q0(k,l)

U
(
p(n,m)

)n+1 (3.24)

which commutes with the SU(2)-action on the fibres of (3.22).
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On the other hand, one can introduce K̃-equivariant V-bundles over S5/Zq+1 by (3.16). On 
V(n,m) one has the su(2)-valued 1-instanton connection B(n,m) in the (n + 1)-dimensional irre-

ducible representation. The aim is to establish a G-equivariant V-bundle Ek,l over Md × S5/

Zq+1 as an extension of the K̃-equivariant bundle Ek,l . By the results of [31] such a V-bundle 
Ek,l exists and according to [23] it is realised as

Ek,l := G ×K̃ Ek,l =
⊕

(n,m)∈Q0(k,l)

Ep(n,m)
� V(n,m)

V k,l−−−→ Md × S5/Zq+1 , (3.25)

where

V k,l =
⊕

(n,m)∈Q0(k,l)

C
p(n,m) ⊗ (n,m) (3.26)

is the typical fibre of (3.25).

3.3.2. Generic G-equivariant connection
The task now is to determine the generic form of a G-equivariant connection on (3.25). Since 

the space of connections on Ek,l is an affine space modelled over �1(End(Ek,l))G, one has to 
study the G-representations on this vector space. Recall from [23] that the decomposition of 
�1(End(Ek,l))G with respect to G yields a “diagonal” subspace which accommodates the con-
nections A(n,m) on (3.21) twisted by G-equivariant connections on (3.16), and an “off-diagonal” 
subspace which gives rise to bundle morphisms.

In other words, K-equivariance alone introduces only the connections A(n,m) on each bun-
dle (3.21) as well as the SU(2)-connections B(n,m) on the V-bundles (3.16). On the other hand, 
G-equivariance additionally requires one to introduce a set of bundle morphisms

φ±
(n,m) ∈ Hom

(
Ep(n,m)

,Ep(n±1,m+3)

)
(3.27a)

and their adjoint maps

(φ±)
†
(n,m) ∈ Hom

(
Ep(n±1,m+3) ,Ep(n,m)

)
, (3.27b)

for all (n, m) ∈ Q0(k, l); one further introduces the bundle endomorphisms

ψ(n,m) ∈ End
(
Ep(n,m)

)
(3.27c)

at each vertex (n, m) ∈ Q0(k, l) with m 	= 0. The morphisms φ±
(n,m) and ψ(n,m) are collectively 

called Higgs fields, and they realise the G-action in the same way that the generators Iμ (or more 
precisely the 1-forms β̄±

(n,m) and i m
2 η�(n,m)) do in the case of the flat connection (3.12). The 

“new” Higgs fields ψ(n,m) implementing the vertical connection components on the (orbifold of 
the) Hopf bundle S5 → CP 2 must be Hermitian, i.e. ψ(n,m) = ψ

†
(n,m), by construction in order 

for the connection to be u(p)-valued.

3.3.3. Ansatz for connection
The ansatz for a G-equivariant connection on the equivariant V-bundle (3.25) is given by

A= Â + �̂ + Xμ eμ (3.28)

wherein the u(p(n,m))-valued connections A(n,m) and the su(2)-valued connection � are ex-
tended as
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Â :=
⊕
(n,m)

A(n,m)⊗�(n,m) ≡ A⊗1 and �̂ :=
⊕
(n,m)

π(n,m)⊗�i I
(n,m)
i = �i Îi ≡ 1⊗� ,

(3.29)

together with Îi =⊕(n,m) π(n,m) ⊗ I
(n,m)
i . The matrices Xμ are required to satisfy the equivari-

ance condition [22,32][
Îi ,Xμ

]= fiμ
ν Xν for i = 6,7,8 and μ = 1, . . . ,5 . (3.30)

As explained in [32], the equivariance condition ensures that Xμ are frame-independently defined 
endomorphisms that are the components of an endomorphism-valued 1-form, which is here given 
as the difference A − (Â + �̂ ).

The general solution to (3.30) expresses Xμ in terms of Higgs fields and generators as

1
2 (X1 + iX2) =

⊕
±,(n,m)

φ±
(n,m) ⊗ E

± (n,m)
α1+α2

,

1
2 (X1 − iX2) = −

⊕
±,(n,m)

(φ±)
†
(n,m) ⊗ E

± (n,m)
−α1−α2

, (3.31a)

1
2 (X3 + iX4) =

⊕
±,(n,m)

φ±
(n,m) ⊗ E± (n,m)

α2
,

1
2 (X3 − iX4) = −

⊕
±,(n,m)

(φ±)
†
(n,m) ⊗ E

± (n,m)
−α2

, (3.31b)

X5 = − i

2

⊕
(n,m)

ψ(n,m) ⊗ H(n,m)
α2

. (3.31c)

Altogether the G-equivariant connection takes the form

A =
⊕

(n,m)∈Q0(k,l)

(
A(n,m) ⊗ �(n,m) + π(n,m) ⊗ B(n,m) − ψ(n,m) ⊗ i m

2 η�(n,m)

+ φ+
(n,m) ⊗ β̄+

(n,m) + φ−
(n,m) ⊗ β̄−

(n,m) − (φ+)
†
(n,m) ⊗ β+

(n,m) − (φ−)
†
(n,m) ⊗ β−

(n,m)

)
.

(3.32)

3.3.4. Zq+1-equivariance
One needs to extend the Zq+1-representation γ of (3.15) to act on the fibres (3.26) of the 

equivariant V-bundle (3.25). Since by construction K̃ = SU(2)×Zq+1 acts trivially on the fibres 
of the bundles (3.21), one ends up with the representation γ : Zq+1 → U(p) given by

γ (h) =
⊕

(n,m)∈Q0(k,l)

1p(n,m)
⊗ γ (h)

∣∣
(n,m)

=
⊕

(n,m)∈Q0(k,l)

1p(n,m)
⊗ ζm

q+1 1n+1 . (3.33)

To prove Zq+1-equivariance of (3.28) one again needs to show two things. Firstly, the con-
nections A ⊗ 1 and 1 ⊗ � have to be Zq+1-equivariant. This can be seen as follows: For A ⊗ 1

the representation γ of (3.33) acts trivially on each bundle Ep(n,m)
, and thus

γ (h) (A ⊗ 1) γ (h)−1 = A ⊗ 1 . (3.34)

Furthermore, 1 ⊗ � is Zq+1-equivariant because � is by (3.17), and hence the connection
A ⊗ 1 + 1 ⊗ � satisfies the equivariance conditions.
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Secondly, the endomorphism-valued 1-form Xμ eμ =A −Â−�̂ needs to be Zq+1-equivariant 
as well. Due to its structure, one needs to consider a combination of the adjoint action of γ
from (3.33) and the Zq+1-action on forms from (2.39). As γ acts trivially on each bundle Ep(n,m)

, 
the Zq+1-equivariance conditions

γ (h)Xμ γ (h)−1 = π(h)−1(Xμ) for μ = 1, . . . ,5 (3.35)

hold also for the quiver connection A just as they hold for the flat connection A0 by (3.18).
Thus the chosen representations (2.39) and (3.33) render the quiver connection (3.28) equiv-

ariant with respect to the action of Zq+1. On each irreducible representation (n,m) the generator 
h of Zq+1 is represented by ζm

q+1 1n+1 which depends on the U(1) monopole charge but not on 

the SU(2) isospin. This comes about as follows: The bundle morphisms associated to βi
q+1 map 

between bundles Ep(n,m)
⊗ (n,m)

Md that differ in m by −3 (from source to target vertex), but 
differ in n by either +1 or −1. Thus the representation γ should only be sensitive to m and not 
to n. We shall elucidate this point further in Section 6.1.

3.3.5. Curvature
The curvature F = dA +A ∧A of the connection (3.28) is given by

F = FA ⊗ 1+ 1⊗ F� + (dXμ + [ Â,Xμ

])∧ eμ + Xμ deμ + [ �̂,Xμ

]∧ eμ

+ 1
2

[
Xμ,Xν

]
eμν , (3.36a)

where FA = dA + A ∧ A. Employing the relations (3.14) then yields

F = FA ⊗ 1+ (dXμ + [ Â,Xμ

])∧ eμ + �i
([

Îi ,Xμ

]− fiμ
ν Xν

)∧ eμ

+ 1
2

([
Xμ,Xν

]− fμν
ρ Xρ − fμν

i Îi
)
eμν . (3.36b)

Since the matrices Xμ satisfy the equivariance relation (3.30), the final form of the curvature 
reads

F = FA ⊗ 1+ (DX)μ ∧ eμ + 1
2

([
Xμ,Xν

]− f ρ
μν Xρ − fμν

i Îi
)
eμν , (3.36c)

where we defined the bifundamental covariant derivatives as

(DX)μ := dXμ + [ Â,Xμ

]
. (3.36d)

Inserting the explicit form (3.31) for the scalar fields Xμ leads to the curvature components in 
the Biedenharn basis; the detailed expressions are summarised in Appendix B.3.

3.3.6. Quiver bundles
Let us now exemplify and clarify how the equivariant bundle Ek,l → Md from (3.22) realises 

a quiver bundle from our constructions above. Recall that the quiver consists of the pair Qk,l =(
Q0(k, l) , Q1(k, l)

)
, with vertices (n, m) ∈ Q0(k, l) and arrows (n, m) → (n′, m′ ) ∈ Q1(k, l)

between certain pairs of vertices which are here determined by the decomposition (3.9). We 
consider a representation Q̃k,l = ( Q̃0(k, l) , Q̃1(k, l) 

)
of this quiver in the category of complex 

vector bundles. The set of vertices is

Q̃0(k, l) = {Ep(n,m)
−→ Md , (n,m) ∈ Q0(k, l)

}
, (3.37)

i.e. the set of Hermitian vector bundles each equipped with a unitary connection A(n,m). The set 
of arrows is
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Q̃1(k, l) =
{
φ±
(n,m) ∈ Hom

(
Ep(n,m)

,Ep(n±1,m+3)

)
, (n,m) ∈ Q0(k, l)

}
∪
{
ψ(n,m) ∈ End

(
Ep(n,m)

)
, (n,m) ∈ Q0(k, l) , m 	= 0

}
, (3.38)

which is precisely the set of bundle morphisms, i.e. the Higgs fields. These quivers differ from 
those considered in [23] by the appearance of vertex loops corresponding to the endomorphisms 
ψ(n,m). See Appendix C for details of the quiver bundles based on the representations C1,0, C2,0

and C1,1.
These constructions yield representations of quivers without any relations. We will see later 

on that relations can arise by minimising the scalar potential of the quiver gauge theory (see 
Section 3.4) or by imposing a generalised instanton equation on the connection A (see Section 4).

3.4. Dimensional reduction of the Yang–Mills action

Consider the reduction of the pure Yang–Mills action from Md × S5 to Md . On S5 we take 
as basis of coframes {βj

ϕ, β̄
j
ϕ}j=1,2 and e5 = η, and as metric

ds2
S5 = R2

(
β1
ϕ ⊗ β̄1

ϕ + β̄1
ϕ ⊗ β1

ϕ + β2
ϕ ⊗ β̄2

ϕ + β̄2
ϕ ⊗ β2

ϕ

)
+ r2 η ⊗ η . (3.39)

The Yang–Mills action is given by

S = − 1

4g̃2

∫
Md×S5

tr F ∧ �F , (3.40)

with coupling constant g̃ and � the Hodge duality operator corresponding to the metric on 
Md × S5 given by

ds2 = ds2
Md + ds2

S5 . (3.41)

We denote the Hodge operator corresponding to the metric ds2
Md on Md by �Md . The reduction 

of (3.40) proceeds by inserting the curvature (3.36c) and performing the integrals over S5, which 
can be evaluated by using (3.39) and the identities of Appendix D.2. One finally obtains for the 
reduced action

S = − 2π3 r R4

g̃2

( ∫
Md

tr
(
FA ∧ �MdFA

)⊗ 1

+ 1

2R2

∫
Md

4∑
a=1

tr (DX)a ∧ �Md (DX)a + 1

r2

∫
Md

tr (DX)5 ∧ �Md (DX)5

+ 1

8R4

∫
Md

�Md

4∑
a,b=1

tr
(
[Xa,Xb] − fab

5 X5 − fab
i Îi
)2

+ 1

8R2 r2

∫
Md

�Md

4∑
a=1

tr
(
[Xa,X5] − fa5

b Xb

)2 )
. (3.42)

Here the explicit structure constants (3.4), i.e. fab
c = fa5

5 = fa5
i = 0, have been used. One 

may detail this action further by inserting the G-equivariant solution (3.31) for the scalar 
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fields Xμ in the Biedenharn basis, which allows one to perform the trace over the SU(2) ×
U(1)-representations (n,m). The explicit but lengthy formulas are given in Appendix D.3.

3.4.1. Higgs branch
On the Higgs branch of the quiver gauge theory where all connections A(n,m) are trivial and 

the Higgs fields are constant, the vacuum is solely determined by the vanishing locus of the scalar 
potential. The vanishing of the potential gives rise to holomorphic F-term constraints as well as 
non-holomorphic D-term constraints which read as

[Xa,Xb] = fab
5 X5 + fab

i Îi and [Xa,X5] = fa5
b Xb , (3.43)

for a, b = 1, 2, 3, 4. The equivariance condition (3.30) implies that Xμ lie in a representation of 
the su(2) Lie algebra. Hence the BPS configurations of the gauge theory Xμ, together with Îi , 
furnish a representation of the Lie algebra su(3) in the representation space of the quiver in u(p). 
These constraints respectively give rise to a set of relations and a set of stability conditions for 
the corresponding quiver representation. The details can be read off from the explicit expressions 
in Appendix D.3.

4. Spherically symmetric instantons

In this section we specialise to the case where the Riemannian manifold Md = M1 is 
1-dimensional. We investigate the Hermitian Yang–Mills equations on the product M1 × S5/

Zq+1 for the generic form of G-equivariant connections derived in Section 3.3.

4.1. Preliminaries

Consider the product manifold M1 × S5/Zq+1 with M1 = R such that M1 × S5/Zq+1 ∼=
C(S5/Zq+1) is the metric cone over the Sasaki–Einstein space S5/Zq+1, which is an orbifold of 
the Calabi–Yau manifold C(S5). The Calabi–Yau space C(S5) is conformally equivalent to the 
cylinder R × S5 with the metric

ds2
C(S5)

= dr2 + r2 ds2
S5 = r2

(
dτ 2 + ds2

S5

)
= e2τ

(
dτ 2 + δμν e

μ ⊗ eν
)

(4.1)

where τ = log r . The Kähler 2-form is given by

ωC(S5) = e2τ (ω3 + η ∧ dτ) . (4.2)

4.1.1. Connections
As R is contractible, each bundle Ep(n,m)

→ R is necessarily trivial and hence one can gauge 
away the (global) connection 1-forms A(n,m) = A(n,m)(τ ) dτ ; explicitly, there is a gauge trans-
formation g : R → Gk,l such that

Ã(n,m) = Ad(g−1)A(n,m) + g−1 dg

dτ
= 0 with g = exp

(
−
∫

A(n,m)(τ )dτ
)
. (4.3)

The ansatz for the connection on the equivariant V-bundle then reads

A= 1⊗ � + Xμ eμ , (4.4)

where the Higgs fields φ±
(n,m) and ψ(n,m) depend only on the cone coordinate τ (compare also 

with [32, Section 4.1]). The curvature of this connection can be read off from (3.36c) and is 



O. Lechtenfeld et al. / Nuclear Physics B 899 (2015) 848–903 867
evaluated to

F = dXμ

dτ
dτ ∧ eμ + 1

2

([
Xμ,Xν

]− fμν
ρ Xρ − fμν

i Îi

)
eμν . (4.5)

4.2. Generalised instanton equations

The ansatz (4.4) restricts the space of all connections on the SU(3)-equivariant vector V-
bundle over C(S5/Zq+1) to SU(3)-equivariant and Zq+1-equivariant connections.

4.2.1. Quiver relations
On this subspace of connections one can further restrict to holomorphic connections, i.e. con-

nections which allow for a holomorphic structure.5 For this, one requires the holomorphicity 
condition F0,2 = 0 =F2,0 which for the connection (4.4) is equivalent to

F14 +F23 = 0 , F1τ +F25 = 0 , F3τ +F45 = 0 , (4.6a)

F13 −F24 = 0 , F15 −F2τ = 0 , F35 −F4τ = 0 . (4.6b)

Substituting the explicit components of the curvature (4.5), one finds relations for the endomor-
phisms Xμ given by

[X1,X4] + [X2,X3] = 0 = [X1,X3] − [X2,X4] and

[Xa,X5] = fa5
b
(
Xb + 2

3

dXb

dτ

)
(4.7)

for a = 1, 2, 3, 4.

4.2.2. Stability conditions
By well-known theorems from algebraic geometry [33–35], a holomorphic vector bundle ad-

mits solutions to the Hermitian Yang–Mills equations if and only if it is stable. This condition 
can be translated into a condition on the remaining (1, 1)-part of the curvature F : One demands 
that F is a primitive (1, 1)-form, i.e. ωC(S5) � F = 0, or in components

F12 +F34 +F5τ = 0 . (4.8)

Using the explicit components (4.5) one can deduce the matrix differential equation for Xμ given 
by

[X1,X2] + [X3,X4] = 4X5 + dX5

dτ
. (4.9)

One can also regard the stability condition in terms of a moment map μ from the space of 
holomorphic connections to the dual of the Lie algebra of the gauge group [36]. The dual μ∗
then acts on a connection A via μ∗(A) = ωC(S5) � F , which is well-defined as the curvature F
is a Lie algebra-valued 2-form. Then the stability conditions correspond to the level set of zeroes 
μ∗−1(0); we shall return to this interpretation in Section 6.2.2.

5 For a Hermitian connection A on a complex vector bundle, the requirement for it to induce a holomorphic structure 
is equivalent to the (0, 1)-part A0,1 of A being integrable, i.e. the corresponding curvature F is of type (1, 1).
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4.3. Examples

We shall now apply these considerations to the three simplest examples: The quivers based on 
the representations C1,0, C2,0 and C1,1. For each example we explicitly provide the representa-
tion of the generators and the form of the matrices Xμ, followed by the quiver relations and the 
stability conditions.

4.3.1. C1,0-quiver
The generators in the fundamental representation C1,0, which splits as in (C.1), are given as

Ia =
(

02 I
(0,−2)
a

−(I (0,−2)
a

)†
0

)
and I5 =

(
I
(1,1)
5 0
0 I

(0,−2)
5

)
(4.10a)

for a = 1, 2, 3, 4, with components

I
(0,−2)
1 =

(
1
0

)
= i I (0,−2)

2 and I
(0,−2)
3 =

(
0
1

)
= i I (0,−2)

4 , (4.10b)

I
(0,−2)
5 = i12 and I

(1,1)
5 = − i

2 . (4.10c)

The endomorphisms Xμ read as

Xa =
(

02 φ ⊗ I
(0,−2)
a

−φ† ⊗ (I (0,−2)
a

)† 0

)
and X5 =

(
ψ1 ⊗ I

(1,1)
5 0

0 ψ0 ⊗ I
(0,−2)
5

)
(4.11)

where the Higgs fields from Appendix C give a representation of the quiver

(0,−2)

ψ0

φ
(1,1)

ψ1

(4.12)

The Zq+1-representation (3.33) reads

γ : h 
−→
(
1p(1,1) ⊗ 12 ζq+1 0

0 1p(0,−2) ⊗ ζ−2
q+1

)
, (4.13)

where h is the generator of the cyclic group Zq+1.

4.3.1.1. Quiver relations The first two equations from (4.7) are trivially satisfied without any 
further constraints. The second set of equations all have the same non-trivial off-diagonal com-
ponent (and its adjoint) which yields

2
dφ

dτ
= −3φ + 2φψ0 + ψ1 φ . (4.14)

Thus for the C1,0-quiver there are no purely algebraic quiver relations.
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4.3.1.2. Stability conditions From (4.9) we read off the two non-trivial diagonal components 
which yield

1

4

dψ0

dτ
= −ψ0 + φ† φ and

1

4

dψ1

dτ
= −ψ1 + φ φ† . (4.15)

By taking ψ0 and ψ1 to be identity endomorphisms, we recover the Higgs branch BPS equations 
from equivariant dimensional reduction over CP 2: In this limit (4.14) implies that the scalar field 
φ is independent of τ , while (4.15) correctly reproduces the D-term constraints of the quiver 
gauge theory for constant matrices [23,25].

4.3.2. C2,0-quiver
The generators in the 6-dimensional representation C2,0, which splits as in (C.3), are given by

Ia =
⎛⎜⎝ 03 I

(1,−1)
a 0

−(I (1,−1)
a

)† 02 I
(0,−4)
a

0 −(I (0,−4)
a

)† 0

⎞⎟⎠ and I5 =
⎛⎜⎝I

(2,2)
5 0 0
0 I

(1,−1)
5 0

0 0 I
(0,−4)
5

⎞⎟⎠
(4.16a)

for a = 1, 2, 3, 4, with components

I
(1,−1)
1 =

⎛⎝√
2 0

0 1
0 0

⎞⎠= i I (1,−1)
2 and I

(0,−4)
1 =

(√
2

0

)
= i I (0,−4)

2 , (4.16b)

I
(1,−1)
3 =

⎛⎝0 0
1 0
0

√
2

⎞⎠= i I (1,−1)
4 and I

(0,−4)
3 =

(
0√
2

)
= i I (0,−4)

4 , (4.16c)

I
(2,2)
5 = −i13 , I

(1,−1)
5 = i

2 12 and I
(0,−4)
5 = 2 i . (4.16d)

The endomorphisms Xμ read

Xa =
⎛⎜⎝ 03 φ1 ⊗ I

(1,−1)
a 0

−φ
†
1 ⊗ (I (1,−1)

a

)† 02 φ0 ⊗ I
(0,−4)
a

0 −φ
†
0 ⊗ (I (0,−4)

a

)† 0

⎞⎟⎠ ,

X5 =
⎛⎜⎝ψ2 ⊗ I

(2,2)
5 0 0

0 ψ1 ⊗ I
(1,−1)
5 0

0 0 ψ0 ⊗ I
(0,−4)
5

⎞⎟⎠ , (4.17)

with the Higgs field content from Appendix C that furnishes a representation of the quiver

(0,−4)

ψ0

φ0
(1,−1)

ψ1

φ1
(2,2)

ψ2

(4.18)

The representation (3.33) in this case reads

γ : h 
−→
⎛⎜⎝ 1p(2,2) ⊗ 13 ζ 2

q+1 0 0

0 1p(1,−1) ⊗ 12 ζ−1
q+1 0

0 0 1p(0,−4) ⊗ ζ−4
q+1

⎞⎟⎠ . (4.19)
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4.3.2.1. Quiver relations Again the first two equations of (4.7) turn out to be trivial, while the 
second set of equations have two non-vanishing off-diagonal components (plus their conjugates) 
which yield

2
dφ0

dτ
= −3φ0 − ψ1 φ0 + 4φ0 ψ0 and 2

dφ1

dτ
= −3φ1 + φ1 ψ1 + 2ψ2 φ1 (4.20)

and the C2,0-quiver has no purely algebraic quiver relations either.

4.3.2.2. Stability conditions From (4.9) one obtains three non-trivial diagonal components that 
yield

1

4

dψ0

dτ
= −ψ0 + φ

†
0 φ0 , (4.21a)

1

4

dψ1

dτ
= −ψ1 − 2φ0 φ

†
0 + 3φ

†
1 φ1 , (4.21b)

1

4

dψ2

dτ
= −ψ2 + φ1 φ

†
1 . (4.21c)

Taking ψ0, ψ1 and ψ2 again to be identity morphisms, from (4.20) we obtain constant matrices 
φ0 and φ1 which by (4.21c) obey the expected D-term constraints from equivariant dimensional 
reduction over CP 2 [23,25].

4.3.3. C1,1-quiver
The decomposition of the adjoint representation C1,1, which splits as given in (C.5), yields

Ia =

⎛⎜⎜⎜⎝
02 I

(0,0)
a I

(2,0)
a 0

−(I (0,0)
a

)† 0 0 I
− (1,−3)
a

−(I (2,0)
a

)† 0 03 I
+ (1,−3)
a

0 −(I− (1,−3)
a

)† −(I+ (1,−3)
a

)† 02

⎞⎟⎟⎟⎠ , (4.22a)

I5 =

⎛⎜⎜⎜⎝
I
(1,3)
5 0 0 0
0 I

(0,0)
5 0 0

0 0 I
(2,0)
5 0

0 0 0 I
(1,−3)
5

⎞⎟⎟⎟⎠ (4.22b)

for a = 1, 2, 3, 4, with components

I
(0,0)
1 =

(√
3
2

0

)
= i I (0,0)

2 and I
(2,0)
1 =

(
0 −

√
1
2 0

0 0 −1

)
= i I (2,0)

2 , (4.22c)

I
− (1,−3)
1 =

(
0 −

√
3
2

)
= i I−(1,−3)

2 and I
+ (1,−3)
1 =

⎛⎜⎝1 0

0
√

1
2

0 0

⎞⎟⎠= i I+(1,−3)
2 , (4.22d)

I
(0,0)
3 =

(
0√

3
2

)
= i I (0,0)

4 and I
(2,0)
3 =

(
1 0 0

0
√

1
2 0

)
= i I (2,0)

4 , (4.22e)

I
− (1,−3)
3 =

(√
3
2 0

)
= i I− (1,−3)

4 and I
+ (1,−3)
3 =

⎛⎜⎝ 0 0√
1
2 0

0 1

⎞⎟⎠= i I+ (1,−3)
4 , (4.22f)
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I
(1,3)
5 = − 3 i

2 12 , I
(0,0)
5 = 0 , I

(2,0)
5 = 03 and I

(1,−3)
5 = 3 i

2 12 . (4.22g)

The matrices Xμ are given by

Xa =

⎛⎜⎜⎝
02 φ+

0 ⊗ I
(0,0)
a φ−

0 ⊗ I
(2,0)
a 0

−(φ+
0 )† ⊗ (I (0,0)a

)† 0 0 φ−
1 ⊗ I

− (1,−3)
a

−(φ−
0 )† ⊗ (I (2,0)a

)† 0 03 φ+
1 ⊗ I

+ (1,−3)
a

0 −(φ−
1 )† ⊗ (I− (1,−3)

a

)† −(φ+
1 )† ⊗ (I+ (1,−3)

a

)† 02

⎞⎟⎟⎠ ,

(4.23a)

X5 =

⎛⎜⎜⎝
ψ+ ⊗ I

(1,3)
5 0 0 0

0 0 0 0
0 0 03 0
0 0 0 ψ− ⊗ I

(1,−3)
5

⎞⎟⎟⎠ . (4.23b)

This example involves the collection of Higgs fields from Appendix C which furnish a represen-
tation of the quiver

(1,+3)

ψ+

(0,0)

φ+
0

(2,0)

φ−
0

(1,−3)φ−
1 φ+

1

ψ−

(4.24)

In this case the Zq+1-representation (3.33) has the form

γ : h 
−→

⎛⎜⎜⎝
1p(1,3) ⊗ 12 ζ 3

q+1 0 0 0
0 1p(0,0) ⊗ 1 0 0
0 0 1p(2,0) ⊗ 13 0
0 0 0 1p(1,−3) ⊗ 12 ζ−3

q+1

⎞⎟⎟⎠ . (4.25)

4.3.3.1. Quiver relations For this 8-dimensional example, one finds that the first two equations 
of (4.7) have the same single non-trivial off-diagonal component (plus its adjoint) which yields

φ+
0 φ−

1 = φ−
0 φ+

1 . (4.26)

This equation is precisely the anticipated algebraic relation for the C1,1-quiver expressing equal-
ity of paths between the vertices (1, ± 3), cf. [23]. The second set of equations have four 
non-trivial off-diagonal components (plus their conjugates) which yield

2

3

dφ±
0

dτ
= −φ±

0 + ψ+ φ±
0 and

2

3

dφ±
1

dτ
= −φ±

1 + φ±
1 ψ− . (4.27)
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4.3.3.2. Stability conditions From (4.9) one computes four non-vanishing diagonal compo-
nents that yield

(φ±
0 )† φ±

0 = φ∓
1 (φ∓

1 )† , (4.28a)

1

4

dψ+

dτ
= −ψ+ + 1

2

(
φ+

0 (φ+
0 )† + φ−

0 (φ−
0 )†
)

, (4.28b)

1

4

dψ−

dτ
= −ψ− + 1

2

(
(φ−

1 )† φ−
1 + (φ+

1 )† φ+
1

)
. (4.28c)

We thus obtain two non-holomorphic purely algebraic conditions, which coincide with D-term 
constraints of the quiver gauge theory for the C1,1-quiver, and two further differential equations 
which for identity endomorphisms ψ± reproduce the remaining stability equations for constant 
matrices φ±

0 and φ±
1 in equivariant dimensional reduction over CP 2 [23,25].

5. Translationally-invariant instantons

In this section we study translationally-invariant instantons on a trivial vector V-bundle 
over the orbifold C3/Zq+1. In contrast to the G-equivariant Hermitian Yang–Mills instan-
tons of Section 4, the generic form of a translationally-invariant connection is determined by 
Zq+1-equivariance alone and is associated with a different quiver.

5.1. Preliminaries

Consider the cone C(S5)/Zq+1 ∼= C
3/Zq+1, with the Zq+1-action given by (2.28), and the 

(trivial) vector V-bundle

Ek,l V k,l−−−→ C
3/Zq+1 (5.1)

of rank p which is obtained by suitable Zq+1-projection from the trivial vector bundle
C

3 × V k,l → C
3. The fibres of (5.1) can be regarded as representation spaces

V k,l =
⊕

(n,m)∈Q0(k,l)

C
p(n,m) ⊗ (n,m) ∼=

⊕
(n,m)∈Q0(k,l)

(
C

p(n,m) ⊗C
n+1)⊗ Vm . (5.2)

Here Vm is the [m]-th irreducible representation ρ[m] of Zq+1 (cf. (3.10)), with [m] ∈
{0, 1, . . . , q} the congruence class of m ∈ Z modulo q + 1, and the vector space Cp(n,m) ⊗C

n+1

serves as the multiplicity space of this representation. The structure group of the bundle Ek,l is

Gk,l :=
∏

(n,m)∈Q0(k,l)

U
(
p(n,m) (n + 1)

)
, (5.3)

because the fibres are isomorphic to (5.2) and hence it carries a natural complex structure J ; this 
complex structure is simply multiplication with i on each factor Vm. Consequently, the structure 
group is reduced to the stabiliser of J .

On the base the canonical Kähler form of C3 is given by

ωC3 = i
2 δαβ dzα ∧ dz̄β . (5.4)

This Kähler form is compatible with the standard metric ds2
C3 = 1

2 δαβ (dzα ⊗ dz̄β + dz̄α ⊗ dzβ)
and the complex structure J (dzα) = i dzα , J (dz̄α) = −i dz̄α .
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5.1.1. Connections
Consider a connection 1-form

A = Wα dzα + Wα dz̄α (5.5)

on Ek,l , and impose translational invariance along the space C3. For the coordinate basis 
{dzα, dz̄α} of T ∗

(z,z̄)C
3 at any point (z, ̄z) ∈ C

3, this translates into the condition

dWα = 0 = dWα for α = 1,2,3 . (5.6)

Thus the curvature F = dA +A ∧A simplifies to

F =A∧A= 1
2

[
Wα,Wβ

]
dzα ∧ dzβ + [Wα,Wβ

]
dzα ∧ dz̄β + 1

2

[
Wα,Wβ

]
dz̄α ∧ dz̄β .

(5.7)

5.1.2. Zq+1-action
As before one demands Zq+1-invariance due to the projection from the trivial vector bundle 

C
3 ×V k,l →C

3 to the trivial V-bundle Ek,l →C
3/Zq+1. Again one needs to choose a represen-

tation of Zq+1 on the fibres (5.2). For reasons that will become clear later on (see Section 6.1), 
this time one chooses

γ (h) =
⊕

(n,m)∈Q0(k,l)

1p(n,m)
⊗ ζ n

q+1 1n+1 ∈ Center
(
Gk,l

)
. (5.8)

One immediately sees that all elements of Gk,l commute with the action of Zq+1 given by (5.8), 
i.e. γ (Zq+1) ⊂ Center

(
Gk,l

)
. The action of Zq+1 on the coordinates zα defined in (2.28) induces 

a representation π of Zq+1 in �1(C3), which on the generator h of Zq+1 is given by

π(h)(Wα) =
{
ζ−1
q+1 Wi , i = 1,2

ζ 2
q+1 W3

and π(h)(Wα) =
{
ζq+1 Wi , i = 1,2

ζ−2
q+1 W3

. (5.9)

The requirement of Zq+1-equivariance of the connection A reduces to conditions similar 
to (3.35), i.e. the equivariance conditions read as

γ (h)Wα γ (h)−1 = π(h)−1(Wα) and γ (h)Wα γ (h)−1 = π(h)−1(Wα) (5.10)

for α = 1, 2, 3, but this time with different Zq+1-actions γ and π .

5.1.3. Quiver representations
For a decomposition of the endomorphisms

Wα =
⊕

(n,m),(n′,m′)
(Wα)(n,m),(n′,m′),

(Wα)(n,m),(n′,m′) ∈ Hom
(
C

p(n,m) ⊗ (n,m) , Cp(n′,m′) ⊗ (n′,m′ )
)

(5.11)

as before, the equivariance conditions imply that the allowed non-vanishing components are 
given by

�i
(n,m) := (Wi)(n,m),(n′,m′) 	= 0 for n′ − n = 1 (mod q + 1) , (5.12a)

�(n,m) := (W3)(n,m),(n′,m′) 	= 0 for n′ − n = −2 (mod q + 1) , (5.12b)
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for i = 1, 2, together with the analogous conjugate decomposition for Wα ; in each instance m′ is 
implicitly determined by n and m via the requirement (n′, m′ ) ∈ Q0(k, l). The structure of these 
endomorphisms thus determines a representation of another quiver Qk,l with the same vertex set 
Q0(k, l) as before for the quiver Qk,l but with new arrow set consisting of allowed components 
(n, m) → (n′, m′ ).

5.2. Generalised instanton equations

Similarly to Section 4.2, the Hermitian Yang–Mills equations on the complex 3-space 
C

3/Zq+1 can be regarded in terms of holomorphicity and stability conditions.

5.2.1. Quiver relations
The condition that the connection A defines an integrable holomorphic structure on the bun-

dle (5.1) is, as before, equivalent to the vanishing of the (2, 0)- and (0, 2)-parts of the curvature F , 
i.e. F0,2 = 0 =F2,0, which in the present case is equivalent to[

Wα,Wβ

]= 0 and
[
Wα,Wβ

]= 0 . (5.13)

The general solutions (5.12) to the equivariance conditions allow for a decomposition of the 
generalised instanton equations (5.13) into components given by

(W1)(n,m),(n+1,m′) (W2)(n−1,m′′),(n,m) = (W2)(n,m),(n+1,m′) (W1)(n−1,m′′),(n,m) , (5.14a)

(Wi)(n,m),(n+1,m′) (W3)(n+2,m′′),(n,m) = 0 = (W3)(n,m),(n−2,m′) (Wi)(n−1,m′′),(n,m) ,

(5.14b)

for (n, m) ∈ Q0(k, l) and i = 1, 2, together with their conjugate equations. Note that in (5.14a)
both combinations are morphisms between the same representation spaces and hence the com-
mutation relation [W1, W2] = 0 requires only that their difference vanish. On the other hand, 
in (5.14b) the two terms are morphisms between different spaces and so the relation [Wi, W3] = 0
implies that they each vanish individually; in particular, in the generic case the solution has 
W3 = 0.

5.2.2. Stability conditions
For invariant connections there is a peculiarity involved in formulating stability of a holo-

morphic vector bundle, see for example [20]. On a 2n-dimensional Kähler manifold with Kähler 
form ω, the stability condition is usually formulated through the identity

F ∧ ωn−1 = (ω �F)ωn (5.15)

by demanding that ω � F ∈ Center(g), where g is the Lie algebra of the structure group. For 
generic connections the center of g is trivial and the usual stability condition ω � F = 0 fol-
lows. However, for invariant connections the structure group is smaller and the center can be 
non-trivial. This implies that there are several moduli spaces of translationally-invariant (and 
Zq+1-equivariant) instantons depending on a choice of element in Center(g).

Analogously to Section 4.2, the stability condition is associated to the moment map on the 
space of translationally-invariant and Zq+1-equivariant connections as we elaborate on in Sec-
tion 6.2.3. In this case one can use any gauge-invariant element

� :=
⊕

1p(n,m)
⊗ i ξ(n,m) 1n+1 ∈ Center

(
gk,l
)

(5.16)

(n,m)∈Q0(k,l)
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from the center of the Lie algebra

gk,l :=
⊕

(n,m)∈Q0(k,l)

u
(
p(n,m) (n + 1)

)
, (5.17)

where ξ(n,m) ∈R are called Fayet–Iliopoulos parameters. Thus the remaining instanton equations 
ωC3 � F = −i � read[

W1,W 1
]+ [W2,W 2

]+ [W3,W 3
]= −i� . (5.18)

Again by substituting the general solutions (5.12a) and (5.12b) to the equivariance conditions we 
can decompose the generalised instanton equation (5.18) explicitly into component equations

2∑
i=1

(
(Wi)(n,m),(n+1,m′) (W i)(n+1,m′),(n,m) − (Wi)(n,m),(n−1,m′) (Wi)(n−1,m′),(n,m)

)
+ (W3)(n,m),(n−2,m′) (W 3)(n−2,m′),(n,m) − (W 3)(n,m),(n+2,m′) (W3)(n+2,m′),(n,m)

= 1p(n,m)
⊗ 1n+1 ξ(n,m) (5.19)

for (n, m) ∈ Q0(k, l).

5.3. Examples

We shall now elucidate this general construction for the three examples C1,0, C2,0 and C1,1. 
In each case we highlight the non-vanishing components of the matrices Wα and the representa-
tion (5.8).

5.3.1. C1,0-quiver
The decomposition of the fundamental representation C1,0 into irreducible SU(2)-representa-

tions is given by (C.1). The non-vanishing components can be read off to be (Wi)(0,−2),(1,1) and 
their adjoints ( Wi)(1,1),(0,−2). Thus there are two complex Higgs fields

�i := (Wi)(0,−2),(1,1) for i = 1,2 , (5.20)

which determine a representation of the 2-Kronecker quiver

(0,−2)
�1

�2

(1,1) (5.21)

By (5.8) the representation of the generator h is given by

γ : h 
−→
(
1p(1,1) ⊗ 12 ζq+1 0

0 1p(0,−2) ⊗ 1

)
. (5.22)

5.3.1.1. Quiver relations The mutual commutativity of the matrices Wα is trivial in this case, 
and thus there are no quiver relations among the arrows of (5.21).

5.3.1.2. Stability conditions Choosing Fayet–Iliopoulos parameters ξ0, ξ1 ∈ R, the requirement 
of a stable quiver bundle yields non-holomorphic matrix equations given by

�1 �
†
1 + �2 �

†
2 = 1p(1,1) ⊗ ξ0 and �

†
1 �1 + �

†
2 �2 = 1p(0,−2) ⊗ 12 ξ1 . (5.23)
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5.3.2. C2,0-quiver
The representation C2,0 is decomposed according to (C.3). The non-vanishing components 

can be determined as before to be (Wi)(0,−4),(1,−1), (Wi)(1,−1),(2,2) and (W3)(2,2),(0,−4), together 
with their adjoints ( Wi)(1,−1),(0,−4), ( Wi)(2,2),(1,−1) and ( W 3)(0,−4),(2,2). Thus there are five 
complex Higgs fields

�i := (Wi)(0,−4),(1,−1) , �i+2 := (Wi)(1,−1),(2,2) and � := (W3)(2,2),(0,−4) ,

(5.24a)

for i = 1, 2, which can be encoded in a representation of the quiver

(0,−4)
�1

�2

(1,−1)
�3

�4

(2,2)

�

(5.25)

As before the representation (5.8) for this example is

γ : h 
−→
⎛⎝1p(2,2) ⊗ 13 ζ 2

q+1 0 0
0 1p(1,−1) ⊗ 12 ζq+1 0
0 0 1p(0,−4) ⊗ 1

⎞⎠ . (5.26)

5.3.2.1. Quiver relations The holomorphicity condition yields

�i � = 0 , � �i+2 = 0 and �3 �2 = �4 �1 (5.27)

for i = 1, 2, plus the conjugate equations. The first two sets of quiver relations of (5.27) each 
describe the vanishing of a path of the quiver (5.25); an obvious trivial solution of these equations 
is � = 0. The last relation expresses equality of two paths with source vertex (0, −4) and target 
vertex (2, 2).

5.3.2.2. Stability conditions Choosing Fayet–Iliopoulos parameters ξ0, ξ1, ξ2 ∈R, the stability 
conditions yield

�
†
1 �1 + �

†
2 �2 − � �† = 1p(0,−4) ⊗ ξ0 , (5.28a)

�1 �
†
1 + �2 �

†
2 − �

†
3 �3 − �

†
4 �4 = 1p(1,−1) ⊗ 12 ξ1 , (5.28b)

�3 �
†
3 + �4 �

†
4 − �† � = 1p(2,2) ⊗ 13 ξ2 . (5.28c)

5.3.3. C1,1-quiver
The decomposition of the adjoint representation C1,1 is given by (C.5). The non-vanishing 

components are (Wi)(0,0),(1,3), (Wi)(0,0),(1,−3), (Wi)(1,3),(2,0), (Wi)(1,−3),(2,0) and (W3)(2,0),(0,0), 
together with their adjoint maps ( Wi)(1,3),(0,0), ( Wi)(1,−3),(0,0), ( Wi)(2,0),(1,3), ( Wi)(2,0),(1,−3)
and ( W 3)(0,0),(2,0). Thus there are nine complex Higgs fields

�±
i := (Wi)(0,0),(1,± 3) , �±

i+2 := (Wi)(1,± 3),(2,0) and � := (W3)(2,0),(0,0) , (5.29)

for i = 1, 2, which can be assembled into a representation of the quiver



O. Lechtenfeld et al. / Nuclear Physics B 899 (2015) 848–903 877
(1,+3)
�+

3 ,�+
4

(0,0)

�+
1 ,�+

2

�−
1 ,�−

2

(2,0)�

(1,−3) �−
3 ,�−

4

(5.30)

In this example the generator h of Zq+1 has the representation

γ : h 
−→

⎛⎜⎜⎝
1p(1,3) ⊗ 12 ζq+1 0 0 0

0 1p(0,0) ⊗ 1 0 0
0 0 1p(2,0) ⊗ 13 ζ 2

q+1 0
0 0 0 1p(1,−3) ⊗ 12 ζq+1

⎞⎟⎟⎠ .

(5.31)

5.3.3.1. Quiver relations In this case the holomorphicity condition yields the relations

�±
i � = 0 , � �±

i+2 = 0 and �+
3 �+

2 + �−
3 �−

2 = �+
4 �+

1 + �−
4 �−

1 (5.32)

for i = 1, 2. Again the first two sets of relations of (5.32) each describe the vanishing of a path 
in the associated quiver (5.30) (with the obvious trivial solution � = 0), while the last relation 
equates two sums of paths.

5.3.3.2. Stability conditions Introducing Fayet–Iliopoulos parameters ξ±
1 , ξ2, ξ3 ∈ R, from the 

stability conditions one obtains

(�+
1 )† �+

1 + (�+
2 )† �+

2 + (�−
1 )† �−

1 + (�−
2 )† �−

2 − � �† = 1p(0,0) ⊗ ξ0 , (5.33a)

�±
1 (�±

1 )† + �±
2 (�±

2 )† − (�±
3 )† �±

3 − (�±
4 )† �±

4 = 1p(1,±3) ⊗ 12 ξ±
1 , (5.33b)

�+
3 (�+

3 )† + �+
4 (�+

4 )† + �−
3 (�−

3 )† + �−
4 (�−

4 )† − �† � = 1p(2,0) ⊗ 13 ξ2 . (5.33c)

6. Quiver gauge theories on cones: comparison

In Sections 4 and 5 we defined Higgs branch moduli spaces of vacua of two distinct quiver 
gauge theories on the Calabi–Yau cone over the orbifold S5/Zq+1. In this section we shall ex-
plore their constructions in more detail, and describe their similarities and differences.

6.1. Quiver bundles

6.1.1. SU(3)-equivariance
Consider the quiver bundle Ek,l over R × S5/Zq+1 (as a special case of (3.25)). By con-

struction the space of all connections is restricted to those which are both SU(3)-equivariant and 
Zq+1-equivariant. For holomorphic quiver bundles, one additionally imposes the holomorphic-
ity condition on the allowed connections. The general solution to these constraints (up to gauge 
equivalence) is given by the ansatz (4.4), where the matrices Xμ satisfy the equivariance condi-
tions (3.30) and (3.35) as well as the quiver relations (4.7). The induced quiver bundles have the 
following structure:

• A single morphism (arrow) φ±
(n,m) between two Hermitian bundles (vertices) Ep(n,m)

and 
Ep ′ ′ if n − n′ = ± 1 and m − m′ = ± 3.
(n ,m )
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• An endomorphism (vertex loop) ψ(n,m) at each Hermitian bundle (vertex) Ep(n,m)
with non-

trivial monopole charge m2 .

The reason why there is precisely one arrow between any two adjacent vertices is SU(3)-equi-
variance, which forces the horizontal component matrices Xa for a = 1, 2, 3, 4 to have exactly 
the same Higgs fields φ±

(n,m), i.e. SU(3)-equivariance intertwines the horizontal components. 
The vertical component X5 can be chosen independently as it originates from the Hopf fibration 
S5 → CP 2. No further constraints arise from Zq+1-equivariance as we embed Zq+1 ↪→ U(1) ⊂
SU(3). These quivers are a simple extension of the quivers obtained by [23,25] from dimen-
sional reduction over CP 2, because the additional vertical components only contribute loops on 
vertices with m 	= 0. This structure is reminescent of that of the quivers of [15] which arise from 
reduction over 3-dimensional Sasaki–Einstein manifolds.

The Hermitian Yang–Mills equations can be considered as the intersection of the holomor-
phicity condition (4.7) and the stability condition (4.9). In this way their form can be recognised 
as Nahm-type equations of the sort considered in [22]. We will come back to this point in Sec-
tion 6.2.2.

6.1.2. C3-invariance
Consider the V-bundle Ek,l over C3/Zq+1 from (5.1). Recall that C(S5) ∼= C

3. In contrast to 
the former case, we now impose invariance under the translation group C3 acting on the base as 
well as Zq+1-equivariance. We demand that these invariant connections also induce a holomor-
phic structure as previously. The general solution to these constraints is given by the ansatz (5.5)
where the matrices Wα are constant along the base by (5.6), they commute with each other, and 
they solve the Zq+1-equivariance conditions (5.12). The induced quiver representations have the 
following characteristic structure:

• Two morphisms (arrows) �i
(n,m) (i = 1, 2) between each pair of Zq+1-representations (ver-

tices) Cp(n,m) ⊗ (n,m) and Cp(n′,m′) ⊗ (n′,m′ ) if n − n′ = ± 1 in Zq+1.
• One homomorphism (arrow) �(n,m) between each pair of Zq+1-representations (vertices) 
C

p(n,m) ⊗ (n,m) and Cp(n′,m′) ⊗ (n′,m′ ) if n − n′ = ± 2 in Zq+1.

The reason why there are exactly two arrows between adjacent vertices is that the chosen rep-
resentation (5.8) does not intertwine W1, W2 and acts in the same way on both of them. Thus 
both endomorphisms have the same allowed non-vanishing components independently of one 
another, which gives rise to two independent sets of Higgs fields. The next novelty, compared to 
the former case, is the additional arrow associated to W3; its existence is again due to the cho-
sen Zq+1-action. Translational invariance plus Zq+1-equivariance are weaker constraints than 
SU(3)-equivariance plus Zq+1-equivariance, and consequently the allowed number of Higgs 
fields is larger. On the other hand, holomorphicity seems to impose the constraint W3 = 0 for 
generic non-trivial endomorphisms W1 and W2 as discussed in Section 5. Hence there are two 
arrows between adjacent vertices, i.e. with n − n′ = ± 1, but no vertex loops as in the former 
case.

It follows that the generalised instanton equations (5.13) and (5.18) give rise to non-linear ma-
trix equations similar to those considered in [20] for moduli spaces of Hermitian Yang–Mills-type 
generalised instantons and in [15] for instantons on cones over 3-dimensional Sasaki–Einstein 
orbifolds. We will analyse these equations further in Section 6.2.3.
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6.1.3. Fibrewise Zq+1-actions
We shall now explain the origin of the difference between the choices of Zq+1-representations 

(3.33) and (5.8). Consider the generic linear Zq+1-action on C3: Letting h denote the generator 
of the cyclic group Zq+1, and choosing (θα) = (θ1, θ2, θ3) ∈ Z

3 and (zα) = (z1, z2, z3) ∈ C
3, 

one has

h · (zα) = (hα
β zβ

)
with (hα

β) =
⎛⎜⎝ζ θ1

q+1 0 0

0 ζ θ2

q+1 0

0 0 ζ θ3

q+1

⎞⎟⎠ . (6.1)

This defines an embedding of Zq+1 into SU(3) if and only if θ1 + θ2 + θ3 = 0 mod q + 1.
However, we also have to account for the representation γ of Zq+1 in the fibres of the 

bundles (3.25) and (5.1). These bundles are explicitly constructed from SU(3)-representations 
Ck,l which decompose under SU(2) × U(1) into a sum of irreducible representations (n,m)

from (3.9). If (n,m) and (n′,m′ ) both appear in the decomposition (3.9), then there exists 
(r, s) ∈ Z

2≥0 such that n − n′ = ± r and m − m′ = ± 3s.

6.1.3.1. SU(3)-equivariance The 1-forms βi
q+1 transform under the generic Zq+1-action (6.1)

as

βi
q+1 
−→ ζ θi−θ3

q+1 βi
q+1 for i = 1,2 , (6.2)

while η and dτ are invariant. Thus the equivariance condition for the connection (3.28) becomes

γ (h) (X2i−1 − iX2i ) γ (h)−1 = ζ−θi+θ3

q+1 (X2i−1 − iX2i ) for i = 1,2 , (6.3a)

γ (h) (X2i−1 + iX2i ) γ (h)−1 = ζ θi−θ3

q+1 (X2i−1 + iX2i ) for i = 1,2 , (6.3b)

γ (h)X5 γ (h)−1 = X5 . (6.3c)

In this case the aim is to embed Zq+1 in such a way that the entire quiver decomposition (3.25) is 
automatically Zq+1-equivariant; hence the non-vanishing components of the matrices Xa and X5

are already prescribed by SU(3)-equivariance. For generic θα it seems quite difficult to realise 
this embedding, because if one assumes a diagonal Zq+1-action on the fibre of the form

γ (h) =
⊕

(n,m)∈Q0(k,l)

1p(n,m)
⊗ ζ

γ (n,m)

q+1 1n+1 with γ (n,m) ∈ Z , (6.4)

then these equivariance conditions translate into

γ (n ± 1,m + 3) − γ (n,m) = θi − θ3 mod q + 1 for i = 1,2 (6.5)

on the non-vanishing components of Xa , a = 1, 2, 3, 4.
In this paper we specialise to the weights (θα) = (1, 1, −2) and obtain (2.34) for the 

Zq+1-action on SU(3)-equivariant 1-forms. From this action we naturally obtain factors ζ± 3
q+1

for the induced representation π(h). This justifies the choice of γ in (3.33), as m changes by 
integer multiples of 3 while n in (6.5) does not have such uniform behaviour.
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6.1.3.2. C3-invariance The modified equivariance condition under (6.1) is readily read off to 
be

γ (h)Wα γ (h)−1 = ζ θα

q+1 Wα for α = 1,2,3 . (6.6)

In contrast to the SU(3)-equivariant case above, no particular form of the matrices Wα is fixed 
yet, i.e. here the choice of realisation of the Zq+1-action on the fibres determines the field content. 
By the same argument as above, a representation of Zq+1 on the fibres of the form (6.4) allows 
the component (Wα)(n,m),(n′,m′) to be non-trivial if and only if

γ (n′,m′ ) − γ (n,m) = θα mod q + 1 for α = 1,2,3 . (6.7)

For the weights (θα) = (1, 1, −2) we then pick up factors of ζ± 1
q+1 or ζ± 2

q+1, which excludes the 
choice (3.33). However, the modification to (5.8) is allowed as n changes in integer increments.

6.1.4. McKay quiver
In [15,37] the correspondence between the Hermitian Yang–Mills moduli space for transla-

tionally-invariant and Zq+1-equivariant connections and the representation moduli of the McKay 
quiver is employed. The McKay quiver associated to the orbifold singularity C3/Zq+1 and the 
weights (θα) = (1, 1, −2) is constructed in exactly the same way as the Ck,l-quivers from Sec-
tion 5, except that it is based on the regular representation of Zq+1 rather than the representations 
Ck,l considered here. It is a cyclic quiver with q +1 vertices labelled by the irreducible represen-
tations of Zq+1, whose underlying graph is the affine extended Dynkin diagram of type Âq , and 
whose arrow set coincides with those of the Ck,l-quivers. See [21,38,39] for explicit construc-
tions of instanton moduli on C3/Zq+1 in this context.

6.2. Moduli spaces

We shall now formalise the treatment of the instanton moduli spaces. We will first present an 
account of the general construction following [36,40], and then discuss the individual scenarios.

6.2.1. Kähler quotient construction
Let M be a Kähler manifold of complex dimension n and G a compact Lie group with Lie 

algebra g. Assume that G acts in the cotangent bundle T ∗M preserving the complex structure J
and the metric g; hence G also preserves the Kähler form ω. Let P = P(M, G) be a principal 
G-bundle over M , A a connection 1-form and F =FA = dA +A ∧A its curvature.

Let Ad(P ) := P ×G G be the group adjoint bundle (where G acts on itself via the adjoint 
action, i.e. by the inner automorphism h 
→ g h g−1), and let ad(P ) := P ×G g be the algebra 
adjoint bundle (where G acts on g via the adjoint action, i.e. by X 
→ Ad(g)X = gXg−1). Let 
E := P ×G F be the complex vector bundle associated to a G-representation F .

Denote the space of all connections A on P by A =A(P ) and note that all associated bundles 
E inherit their space of connections A(E) from P . On A(P ) there is a natural action of the gauge 
group Ĝ, i.e. the group of automorphisms of P which are trivial on the base M . One can identify 
the gauge group with the space of global sections

Ĝ = �0(M,Ad(P )) (6.8)

of the group adjoint bundle, and the action is realised via the gauge transformations

A 
−→ g ·A= Ad(g)A+ g−1 dg for g ∈ �0(M,Ad(P )) . (6.9)
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The Lie algebra of the gauge group can then be identified with the space of sections

ĝ = �0(M, ad(P )) (6.10)

of the algebra adjoint bundle, and the infinitesimal gauge transformations are given by

A 
−→ δχA = dAχ := dχ + [A, χ
]

for χ ∈ �0(M, ad(P )) . (6.11)

Since A(P ) is an affine space, its tangent space TAA at any point A ∈ A can be canonically 
identified with �1(M, ad(P )). If the structure group is a matrix Lie group, i.e. there is an em-
bedding G ↪→ U(N) for some N ∈ Z>0, then g is a matrix Lie algebra and the trace defines an 
Ad(G)-invariant inner product on g. The induced invariant inner product on �1(M, ad(P )) is

〈X1,X2〉 :=
∫
M

tr (X1 ∧ �X2) for X1,X2 ∈ �1(M, ad(P )) , (6.12a)

which gives rise to a gauge-invariant metric on A(P ) via the pointwise definition

g|A(X1,X2) := 〈X1,X2〉|A for X1,X2 ∈ TAA . (6.12b)

The space A(P ) moreover carries a gauge-invariant symplectic structure defined by

ω|A(X1,X2) =
∫
M

tr (X1 ∧ X2) ∧ ωn−1 for X1,X2 ∈ TAA . (6.13)

Note that the 2-form ω is completely independent of the base point A ∈ A. Let D denote the 
exterior derivative acting on forms on A. Then by computing

Dω|A(X0,X1,X2) =X0
(
ω|A(X1,X2)

)− X1
(
ω|A(X0,X2)

)+ X2
(
ω|A(X0,X1)

)
− ω|A([X0,X1],X2) + ω|A([X0,X2],X1) − ω|A([X1,X2],X0) ,

(6.14)

one observes that Dω = 0 as Xi

(
ω|A(Xj , Xk)

)= 0 due to base point independence and

ω|A([Xi,Xj ],Xk) =
∫
M

tr
([Xi,Xj ] ∧ Xk

)∧ ωn−1 = 0 (6.15)

as tr
([Xi,Xj ] ∧ Xk

) ∈ �3(M) which renders the integrand into a form of degree larger than the 
top degree. It follows that ω is a symplectic form, which promotes A to an infinite-dimensional 
Riemannian symplectic manifold (A, g, ω) equipped with a compatible Ĝ-action.

6.2.1.1. Holomorphic structure Consider now the restriction to connections on E → M which 
are generalised instanton connections. Recall that one part of the Hermitian Yang–Mills equa-
tions can be interpreted as holomorphicity conditions, and the corresponding subspace is

A
1,1 = {A ∈A(E) : F0,2

A = −(F2,0
A
)† = 0

}⊂ A(E) . (6.16)

This definition employs the underlying complex structure on M . As before, this condition is 
equivalent to the existence of a holomorphic structure on E, i.e. a Cauchy–Riemann operator 
∂E := ∂ + A0,1 that satisfies the Leibniz rule as well as ∂E ◦ ∂E = 0. Thus a G-bundle with only 
holomorphic connections induces a GC-bundle where GC = G ⊗C. One can show that A1,1 is an 
infinite-dimensional Kähler manifold, i.e. the metric g is Hermitian and the symplectic form ω
is Kähler. These tensor fields descend from A to A1,1 simply by restriction.
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6.2.1.2. Moment map The space A1,1 inherits a Ĝ-action from A and since it has a Ĝ-invariant 
symplectic form, i.e. the Kähler form ω, one can introduce a moment map

μ :A1,1 −→ ĝ∗ ∼= �2n(M, ad(P ))

A 
−→ FA ∧ ωn−1 . (6.17)

For this to be a moment map of the Ĝ-action one needs to verify the defining properties, gener-
alising the arguments presented in [36]. For this, note that μ is obviously Ĝ-equivariant. Next let 
φ ∈ �0(M, ad(P )) be an element of the gauge algebra, φ the corresponding vector field on A1,1

and ψ ∈ �1(M, ad(P )) a tangent vector at the base point A. Then the condition to verify is

(φ,Dμ|A)(ψ) = ιφ ω|A(ψ) , (6.18)

wherein ι denotes contraction and the dual pairing (·, ·) of ĝ with ĝ∗ is defined via integra-
tion over M of the invariant inner product on g. Firstly, in the definition of μ only FA is 
base point dependent, and a standard computation gives FA+t ψ = FA + t dAψ + 1

2 t2 ψ ∧ ψ

so that DF|A = ( d
dtFA+t ψ

)
|t=0 = dAψ . Thus the left-hand side of (6.18) is (φ, Dμ|A)(ψ) =∫

M
tr
(
(dAψ) ∧ φ

)∧ωn−1. Secondly, the vector field φ can be read off from (6.11) to be φ 

|A =
dAφ ∈ �1(M, ad(P )). Hence the right-hand side is ιφ ω|A(ψ) = ∫

M
tr
(
(dAφ) ∧ ψ

) ∧ ωn−1. 
But from 

∫
M

d 
(
tr (ψ ∧ φ) ∧ ωn−1

) = 0 and dω = 0 one has 
∫
M

tr
(
(dAψ) ∧ φ

) ∧ ωn−1 =
− 
∫
M

tr
(
ψ ∧ (dAφ)

) ∧ ωn−1, and therefore the relation (6.18) holds, i.e. μ is a moment map 
of the Ĝ-action on A1,1.

We will use the dual moment map defined by

μ∗ :A1,1 −→ ĝ = �0(M, ad(P ))

A 
−→ ω �FA , (6.19)

which is equivalent to the definition (6.17) due to the identification ̂g∼= ĝ∗ given by (5.15) (gener-
ically by a choice of metric). Thus we will no longer explicitly distinguish between the moment 
map μ and its dual μ∗.

For regular elements � ∈ ĝ, the centraliser of � in Ĝ is the maximal torus and μ−1(�) ⊂ A
1,1

defines a submanifold which carries a Ĝ-action. The quotient of the level sets6

A
1,1 �� Ĝ := μ−1(�)

/
Ĝ (6.20)

is well-defined, and moreover it defines a Kähler space as the Kähler form and the complex struc-
ture descend from A1,1 by gauge-invariance. The level set of zeroes is precisely the Hermitian 
Yang–Mills moduli space.

6.2.1.3. Complex group action As the G-action in T ∗M preserves the Kähler structure, one can 
extend it to a GC-action in T ∗M . The same is true for the extension to the complexification of 
the Ĝ-action on A1,1, i.e. the holomorphicity conditions F0,2

A = 0 are invariant under the action 
of the complex gauge group

ĜC = Ĝ ⊗C . (6.21)

6 One must in fact take � ∈ Center( ̂g ) for a well-defined quotient.
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For A ∈A
1,1 the orbit Ĝ C

A of the ĜC-action is given by

Ĝ C

A = {A′ ∈A
1,1 : A′ = g ·A , g ∈ ĜC

}
. (6.22)

A point A ∈ A1,1 is called stable if Ĝ C

A ∩ μ−1(�) 	= ∅. Denote by A1,1
st (�) ⊂ A1,1 the set of all 

stable points (for a given regular element �). Then the Kähler quotient can be identified with the 
GIT quotient (see for instance [41])

A
1,1 �� Ĝ ∼=A

1,1
st (�)

/
ĜC . (6.23)

In the following we discuss applications of this Kähler quotient construction to SU(3)-equiv-
ariant and Zq+1-equivariant instantons on the Calabi–Yau cone M = C(S5/Zq+1), as well as 
to the C3-invariant and Zq+1-equivariant case. These vacuum moduli spaces are special cases 
of those constructed above, as we do not consider generic connections but rather equivariant 
connections. For instance, equivariance reduces the gauge groups.

6.2.2. SU(3)-equivariance
Consider the space of SU(3)-equivariant connections A(Ek,l) on the bundle (3.25) (for d = 1), 

which is an affine space modelled on �1
(
C(S5/Zq+1), EndU(1)(V

k,l)
)
. The structure group Gk,l

of the bundle (3.25) is given by (3.24). An element X ∈ �1
(
C(S5/Zq+1), EndU(1)(V

k,l)
)

can be 
expressed as

X = Xμ eμ + Xτ dτ ≡ Xj θj + Xj θj , (6.24)

once one has chosen the coframe {eμ, dτ } of the conformally equivalent cylinder R × S5/Zq+1
with r = eτ . One can equivalently use the complex basis θj = e2j−1 + i e2j for j = 1, 2, 3, 
where e6 := dτ ; then (Xj )

† = −Xj . Thus once one has fixed a choice of coframe on the Calabi–
Yau cone C(S5/Zq+1), the tangent space to A(Ek,l) at a point A is described by all 6-tuples 
({Xμ}, Xτ ) or equivalently ({Xj }, { Xj }). Here Xμ and Xτ depend only on the cone coordinate 
τ by SU(3)-equivariance.7

6.2.2.1. Instanton equations One can eliminate the linear terms in (4.7) and (4.9) via the re-
definitions

Xa = e− 3
2 τ Xa for a = 1,2,3,4 and X5 = e−4τ X5 , Xτ = e−4τ X6 . (6.25)

Using ’t Hooft tensors the matrix equations read

η1
ab [Xa,Xb] = 0 and η2

ab [Xa,Xb] = 0 , (6.26a)
dXa

ds
= −η3

ab [Xb,X5] − [Xa,X6] , (6.26b)

dX5

ds
= −λ(s)

(
[X1,X2] + [X3,X4]

)− [X5,X6] , (6.26c)

where s := 1
4 e−4τ ∈ R>0 and λ(s) = ( 1

4s

) 5
4 . The equations (6.26) are automatically satisfied in 

the temporal gauge Xτ = 0 by taking constant scalar fields Xμ for μ = 1, . . . , 5 satisfying the 
Higgs branch BPS equations (3.43) of the quiver gauge theory.

7 Recall that the equivariance condition (3.30) makes the endomorphisms Xμ base point independent on S5/Zq+1; 
hence it is consistent to have solely τ -dependent matrices Xμ in any coframe.
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Changing to a complex basis as before and defining

Yj = 1
2

(
X2j−1 − iX2j

)
and Yj = 1

2

(
X2j−1 + iX2j

)
for j = 1,2,3 , (6.27)

the resulting holomorphicity conditions are[
Y1,Y2

]= 0 and
[
Y1,Y2

]= 0 , (6.28a)

dYi

ds
= −2 i

[
Yi ,Y3

]
and

dY i

ds
= 2 i

[
Y i ,Y3

]
for i = 1,2 , (6.28b)

while the stability condition yields

dY3

ds
+ dY3

ds
= 2 i

[
Y3,Y3

]+ 2 iλ(s)
([
Y1,Y1

]+ [Y2,Y2
])

. (6.28c)

Analogously to the generic situation, we define the subspace

A
1,1(Ek,l

)= {({Yj }, {Yj }
) ∈A

(
Ek,l
) : (6.28a) and (6.28b) hold

}
. (6.29)

6.2.2.2. Real gauge group On the space A1,1(Ek,l) there is an action of the gauge group

Ĝk,l := �0(
R>0,Gk,l

)
, (6.30)

with Gk,l ↪→ U(p), given by8

Y i 
−→ Ad(g)Y i for i = 1,2 and Y3 
−→ Ad(g)Y3 + i

2

( dg

ds

)
g−1 , (6.31a)

for g ∈ Ĝk,l . One readily checks that the full set of equations (6.28) is invariant under these “real” 
gauge transformations. Moreover, one can always find a gauge transformation g ∈ Ĝk,l such that 
g ·X6 = 0 or equivalently g ·Y3 = g ·Y3.

6.2.2.3. Complex gauge group The space A1,1(Ek,l) also admits an action of the complex 
gauge group(

Ĝ k,l
)C := �0(

R>0, (Gk,l)C
)
, (6.32)

with 
(
Gk,l
)C

↪→ GL(p, C). However, only the equations (6.28a) and (6.28b) are invariant under 
the “complex” gauge transformations given by

Y i 
−→ Ad(g)Y i and Yi 
−→ Ad(g∗−1)Yi for i = 1,2 , (6.33a)

Y3 
−→ Ad(g)Y3 + i

2

( dg

ds

)
g−1 and Y3 
−→ Ad(g∗−1)Y3 + i

2
g∗−1

( dg†

ds

)
,

(6.33b)

where g ∈ (Ĝ k,l
)C and g∗−1 = (g−1)†.

8 We assume that the paths g(s) : (0, ∞) → Gk,l are sufficiently smooth.
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6.2.2.4. Kähler structure Following the construction of Section 6.2.1, the next step is 
to define a Kähler structure on A1,1(Ek,l). The tangent space TAA(Ek,l) at point A is 
�1
(
C(S5/Zq+1), EndU(1)(V

k,l)
)
, so a tangent vector x = xj θj + xj θj over A1,1(Ek,l) is de-

fined by linearisation of the holomorphicity equations (6.28a) and (6.28b) for paths xj (s) :
(0, ∞) → EndU(1)(V

k,l)C. The gauge transformations are given by xj 
→ Ad(g)xj for j =
1, 2, 3.

A metric on A1,1(Ek,l) can be defined from (6.12) as

g|A(x,y) := 1

2

∞∫
0+

ds
3∑

j=1

tr
(
x

†
j yj + xj y

†
j

)
, (6.34)

where the integral over S5/Zq+1 drops out here as the tangent vectors at equivariant connections 
are independent of the coordinates of S5/Zq+1. A symplectic form on A1,1(Ek,l) can likewise be 
defined from (6.13) as

ω|A(x,y) := i

2

∞∫
0+

ds
3∑

j=1

tr
(
x

†
j yj − xj y

†
j

)
. (6.35)

Both g and ω are gauge-invariant by construction. Moreover, we immediately see that for the 
choice of complex structure9 J ( xj ) = i xj the symplectic form ω and the metric g are compati-
ble, i.e. g(·, J ·) = ω(·, ·).

6.2.2.5. Moment map On the Kähler manifold A1,1(Ek,l) we define a moment map by

μ : A1,1(Ek,l
)−→ ÊndU(1)

(
V k,l

)
({Yj }, {Yj }

) 
−→ dY3

ds
+ dY3

ds
− 2 i

[
Y3,Y3

]− 2 iλ(s)
([
Y1,Y1

]+ [Y2,Y2
])

, (6.36)

which readily gives us the Kähler quotient for the instanton moduli space

MSU(3)
k,l = μ−1(0)

/
Ĝk,l . (6.37)

6.2.2.6. Stable points We can alternatively describe the moduli space MSU(3)
k,l via the stable 

points

A
1,1
st
(
Ek,l
) := {({Yj }, {Yj }

) ∈A
1,1(Ek,l

) : (Ĝk,l
)C
({Yj },{Yj }) ∩ μ−1(0) 	= ∅

}
, (6.38)

and by taking the GIT quotient as before to get

MSU(3)
k,l

∼=A
1,1
st
(
Ek,l
)/ (

Ĝk,l
)C

. (6.39)

We show below that it is sufficient to solve the holomorphicity equations (subject to certain 
boundary conditions), as the solution to the stability equation then follows automatically by 
a complex gauge transformation. More precisely, for every point in A1,1(Ek,l) there exists a 
unique point in its complex gauge orbit which satisfies the stability equation, i.e. every point in 
A

1,1(Ek,l) is stable.

9 We essentially use the complex structure J of C3.
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6.2.2.7. Solutions of the holomorphicity equations Following [42] one can regard the holomor-
phicity equations as being locally trivial. For this, we use a complex gauge transformation (6.33)
to eliminate Y3 via

Ỹ3 = Ad(g)Y3 + i

2

( dg

ds

)
g−1 = 0 . (6.40)

From the holomorphicity equations (6.28b) and (6.28a) one obtains in this gauge

dỸ i

ds
= 0 and Ỹ i = T i with

[
T 1,T 2

]= 0 , (6.41)

where T i are constant for i = 1, 2. Consequently the general local solution of the holomorphicity 
equations (6.28a) and (6.28b) is

Y i = Ad(g−1)T i with
[
T 1,T 2

]= 0 and Y3 = − i

2
g−1 dg

ds
, (6.42)

with g ∈ (Ĝk,l
)C. A solution to the commutator constraint chooses T i for i = 1, 2 as elements of 

the Cartan subalgebra of the complex Lie algebra EndU(1)(V
k,l)C of the structure group (3.24).

6.2.2.8. Solutions of the stability equation We also need to solve the stability equation (6.28c), 
for which we follow again [42]. Recall that the complete set of instanton equations (6.28) is 
Ĝk,l-invariant, and for each g ∈ (Ĝk,l)C define

h = h(g) = g g† : (0,∞) −→ (
Gk,l
)C /Gk,l ↪→ GL(p,C)

/
U(p) . (6.43)

Fix a 6-tuple 
{
Yj , Yj

}
j=1,2,3 and define the gauge transformed 6-tuple 

{
Ỹj , ̃Yj

}
j=1,2,3. We 

will study the critical points of the functional

Lε[g] = 1

2

1
ε∫

ε

ds tr
( ∣∣Ỹ3 + Ỹ3

∣∣2 + 2λ(s)
2∑

i=1

∣∣ Ỹ i

∣∣2 ) for 0 < ε < 1 . (6.44)

As the instanton equations are invariant under U(p)-valued gauge transformations, we can 
restrict g to take values in the quotient GL(p, C) /U(p) which may be identified with the set of 
positive Hermitian p×p matrices [42]. Hence it is sufficient to consider variations with δg = δg†

around g = 1p (and with δg 	= 0). Then the gauge transformations (6.33) imply that

δY3 = [δg,Y3
]+ i

2

dδg

ds
and δY i = [δg,Y i

]
for i = 1,2 . (6.45)

The variation then leads to

δLε[g] = −i

1
ε∫

ε

ds tr
(
μ
({Yj }, {Yj }

)
δg
)
, (6.46)

i.e. the critical points of (6.44) form the zero-level set of the moment map.
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Now we use the solution (6.42) as an initial evaluation of Lε . Then we obtain the functional 
of h given by

Lε[h] = 1

2

1
ε∫

ε

ds

(
1

4
tr
(
h−1 dh

ds

)2 + V (h)

)
, (6.47)

where the potential V (h) = 2λ(s) 
∑2

i=1 tr
(
h−1 T i h T i

†
)

is positive. This implies that for any 
boundary values h± ∈ (Gk,l)C/Gk,l there exists a continuous path10

hε :
[
ε, 1

ε

]
−→ (

Gk,l
)C /Gk,l with h(ε) = h− and h( 1

ε
) = h+ , (6.48)

which is smooth on 
(
ε, 1

ε

)
and minimises the functional Lε . Hence for any choice of com-

plex gauge transformation g such that gg† = hε , the triple g · ({T i}i=1,2, 0
)= ({Ad(g)T i}i=1,2,

i
2 (

dg
ds ) g

−1
)

satisfies the stability equation μ
({Yj }, { Yj }

)= 0 on 
(
ε, 1

ε

)
for any 0 < ε < 1.

The uniqueness of the solution hε and its extension to the limit ε → 0 follows from [42]

similarly to the proof of [43, Lemma 3.17].11 The gauge transformation g∞ = (h∞)
1
2 is obtained 

from h∞ = limε→0 hε . However, the corresponding complex gauge transformation g = g(hε) is 
not unique. Similarly to [42,43], given a solution { Yj }j=1,2,3 of the holomorphicity equations 
one can define two solutions { Yj

′}j=1,2,3 = {g1 ·Yj }j=1,2,3 and { Yj
′′}j=1,2,3 = {g2 ·Yj }j=1,2,3

of the stability equation for any g1, g2 ∈ (Ĝk,l)C. By uniqueness one has g1 g
†
1 = g2 g

†
2 ; thus 

there exists g̃ ∈ Ĝk,l such that g1(s) = g2(s) g̃(s). This ambiguity in the choice of g = g(hε)

can be removed as follows: The complete set of instanton equations is invariant under Ĝk,l and 
a Ĝk,l gauge transformation is sufficient to eliminate X6. Hence one can demand that the gauge 
transformation { Yj

′}j=1,2,3 = {g ·Yj }j=1,2,3 of a solution { Yj }j=1,2,3 satisfies Y3
′ = Y3

′. This 
fixes g = g(hε) uniquely.

6.2.2.9. Boundary conditions A trivial solution of (6.26) is given by

X6(s) = 0 and Xμ(s) = Tμ with [Tμ,Tν] = 0 for μ,ν = 1, . . . ,5 , (6.49)

where Tμ are constant elements in the Cartan subalgebra u(1)p of EndU(1)(V
k,l). From the 

rescaling (6.25) we then see that the original scalar fields Xμ are singular at the origin r = 0 (cor-
responding to τ → −∞ or s → ∞). Following [43,44], in the generic case we choose boundary 
conditions for Xμ such that12 Xμ(τ) → 0 as τ → +∞ for μ = 1, . . . , 5. Arguing as in [43], this 
implies the existence of the limit of Xμ(s) for s → 0 and hence the solutions extend over the 
half-closed interval R≥0. Since (6.26) is a system of first order ordinary differential equations, 
it suffices to impose one additional boundary condition for the matrices Xμ(s) on [0, ∞) which 
we take to be

lim
s→∞ Xμ(s) = Ad(g0)Tμ , (6.50)

10 See for instance the note under [42, Corollary 2.13]: Since GL(p, C)/U(p) satisfies all necessary conditions for 
the existence of a unique stationary path between any two points, the quotient (Gk,l )C/Gk,l ∼=∏(n,m) GL(p(n,m), C)/

U(p(n,m)) × GL(n + 1, C)/U(n + 1) inherits these properties.
11 We omit a description of the required differential inequality as well as a treatment of potential pole contributions 
from λ(s); see [13, Section 3] for a general discussion of these issues.
12 From now on we will no longer deal with the scalar field X6 as it can always be gauged away.
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for suitable g0 ∈ Gk,l ensuring compatibility with the SU(3)-equivariant structure from (3.31)
(cf. Section 4 for explicit examples). Then the value of Xμ(s) at s = 0 is completely determined 
by the solution.

From (6.28b) it follows that the paths Y i (s) for i = 1, 2 each lie respectively in the same 
adjoint orbits Oi of the complex Lie algebra EndU(1)(V

k,l)C for all s ∈ [0, ∞). Let T i =
1
2 (T2i−1 + iT2i ) for i = 1, 2, and denote by OT i

the adjoint orbit of T i in EndU(1)(V
k,l)C. 

Then the boundary conditions (6.50) imply that the closures OT i
contain Oi for i = 1, 2. If 

the quintuple {Tμ}μ=1,...,5 is regular in the Cartan subalgebra of EndU(1)(V
k,l), i.e. the joint 

centraliser of Tμ in Gk,l is the maximal torus U(1)p , then OT i
= OT i

are regular orbits and 
hence OT i

= Oi [43]. By our previous results, there exists a unique complex gauge transfor-

mation g, which is bounded and framed, such that {g · Yj }j=1,2,3 satisfies (6.28c) and g · Y3 is 
skew-Hermitian. Employing (6.28a), it follows that in this case there is a map

MSU(3)
k,l −→OT 1

×OT 2({Yj (τ )}j=1,2,3 , {Yj (τ )}j=1,2,3}
) 
−→ (

Y1(0),Y2(0)
)

(6.51)

from the moduli space of solutions satisfying the boundary conditions (6.50) together with the 
equivariance condition imposed by our construction. Arguing as in [43], by our construction of 
local solutions to the complex equations, and the existence of a unique solution to the real equa-
tion within the complex gauge orbit of these elements, this map is a bijection which moreover 
preserves the holomorphic symplectic structure. This space is naturally a complex symplec-
tic manifold of (complex) dimension 2 dim(Gk,l)C −∑2

i=1 dim(ZT i
) with the product of the 

standard Kirillov–Kostant–Souriau symplectic forms on the orbits, where ZT i
⊂ (Gk,l)C is the 

subgroup that commutes with T i for i = 1, 2. By our general constructions it is a Kähler man-
ifold. In the cases that SU(3)-equivariance forces T i = 0 for some i ∈ {1, 2}, the corresponding 
orbit closure OT i

should be replaced by the nilpotent cone N of dimension dim(Gk,l)C − p

which consists of all nilpotent elements of EndU(1)(V
k,l)C. The variety N has singularities cor-

responding to non-regular nilpotent orbits, and in particular it contains the locus of Kleinian 
singularities C2/Zp in complex codimension 2; see [15] for further details. Thus in this case 
the moduli space is singular and by SU(3)-equivariance we expect that it contains the singular 
subvariety C3/Zp .

6.2.3. C3-invariance
Now we turn our attention to the space of translationally-invariant connections A(Ek,l) on 

the bundle (5.1). The structure group Gk,l of (5.1) (which in this case coincides with the gauge 
group) is given by (5.3) and its Lie algebra gk,l by (5.17). A generic element of the tangent space 
TAA(Ek,l) at a point A ∈A(Ek,l) is given by

W = Wα dzα + Wα dz̄α ∈ �1(
C

3/Zq+1,g
k,l
)
, (6.52)

with constant Wα, Wα for α = 1, 2, 3. As before, let us define a metric g on A(Ek,l). Gauge trans-
formations of tangent vectors w = wα dzα +wα dz̄α are given by wα 
→ Ad(g)wα for α = 1,2,3. 
We deduce the metric to be

g|A(w,v) := 1

2

3∑
tr
(
w†

α vα + wα v†
α

)
, (6.53)
α=1
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and a symplectic form via

ω|A(w,v) := i

2

3∑
α=1

tr
(
w†

α vα − wα v†
α

)
. (6.54)

These definitions follow directly from the translationally-invariant limit of (6.12) and (6.13)
(and agree with those of [20]). Evidently the metric and symplectic structure are gauge-
invariant.

Define the subspace of invariant connections that satisfy the holomorphicity conditions (5.13)
as

A
1,1(Ek,l

)= {({Wα}, {Wα}) ∈ A
(
Ek,l
) : [Wα,Wβ

]= 0 for α,β = 1,2,3
}
, (6.55)

which is a finite-dimensional Kähler space by the general considerations of Section 6.2.1.

6.2.3.1. Moment map The corresponding moment map can be introduced as before via

μ : A1,1(Ek,l
)−→ gk,l({Wα}, {Wα}) 
−→ i

3∑
α=1

[
Wα,Wα

]
, (6.56)

but in this case it is possible to choose various gauge-invariant levels � from (5.16) and conse-
quently define different moduli spaces

MC
3

k,l (�) = μ−1(�)
/
Gk,l . (6.57)

6.2.3.2. Real gauge group The complete set of instanton equations (5.13) and (5.18) is invari-
ant under the action of the gauge group (5.3) with the usual transformations

Wα 
−→ Ad(g)Wα for α = 1,2,3 (6.58)

for g ∈Gk,l ↪→ U(p).

6.2.3.3. Complex gauge group Recalling that the holomorphicity conditions allow for the in-
troduction of a (Gk,l)C-bundle, we find that the corresponding equations are invariant under 
(Gk,l)C gauge transformations. Again the stability equation is not invariant under the action of 
the complex gauge group.

6.2.3.4. Stable points The set of stable points is defined as before to be

A
1,1
st
(
Ek,l;�) := {({Wα}, {Wα}) ∈A

1,1(Ek,l
) : (Gk,l

)C
({Wα},{Wα}) ∩ μ−1(�) 	= ∅

}
,

(6.59)

and by taking the GIT quotient one obtains the �-dependent moduli spaces13

MC3

k,l (�) ∼=A
1,1
st
(
Ek,l;�)/ (Gk,l

)C
. (6.60)

13 This description is analogous to the quiver GIT quotients used by [21,37] to describe instanton moduli on C3/Zq+1
as representation moduli of the McKay quiver.



890 O. Lechtenfeld et al. / Nuclear Physics B 899 (2015) 848–903
The moment map (6.56) transforms under g ∈ (Gk,l)C as

μ
({Wα}, {Wα})= i

3∑
α=1

[
Wα,Wα

]

−→ i Ad(g)

3∑
α=1

[
h−1 Wα h,Wα

]
, (6.61)

where we introduced h = h(g) = g† g ∈ (Gk,l)C/Gk,l . Similarly to before, h can be identi-
fied with a positive Hermitian p × p matrix. Moreover, Ad(g′ )� = � for any g′ ∈ Gk,l . By 
the embedding Gk,l ↪→ U(p) and the polar decomposition of an element g ∈ (Gk,l)C into 
g = h′ exp(i X) for Hermitian h′ ∈ Gk,l and skew-adjoint X ∈ gk,l , we have

Ad(g)� = Ad(h′ )
(
Ad(exp (iX))�

)= Ad(h′ )
(
� + i [X,�]

)= Ad(h′ )� = � , (6.62)

where we used the Baker–Campbell–Hausdorff formula and the fact that � is central in gk,l . 
It follows that Center

(
gk,l
)⊂ Center

(
(gk,l)C

)
. Hence a point 

({Wα}, { Wα}) ∈ A1,1(Ek,l) is sta-
ble if and only if there exists a positive Hermitian matrix h (modulo unitary transformations) 
satisfying the equation

3∑
α=1

[
h−1 Wα h,Wα

]= −i� . (6.63)

By our general constructions the moduli spaces MC
3

k,l(�) are Kähler spaces, which however 
are generically not smooth manifolds but have a complicated scheme structure with branches 
of varying dimension that should be analysed within the context of a perfect obstruction the-
ory; such an analysis is beyond the scope of the present paper. Generally, the canonical map 
MC3

k,l (�) → MC3

k,l (0) is a partial resolution of singularities for generic �. For example, in the 
case p(n,m) = 1 for all (n, m) ∈ Q0(k, l) (so that V k,l ∼= Ck,l and p = p0), for generic levels 
� 	= 0 the moduli spaces MC

3

k,l (�) are schemes akin to the Zp-Hilbert scheme of p = dim( Ck,l )

points on C3 for the Zp-action given by (2.28) (with q = p − 1), which are partial resolutions of 

the singular spaces MC
3

k,l (0) that correspond to configurations of p points of C3 given as unions 
of Zp-orbits (cf. [21,20] for the case of the McKay quiver)14; these are precisely the same types 
of singularities encountered in the moduli spaces MSU(3)

k,l above.
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Appendix A. Bundles on CCCP 2

A.1. Geometry of CP 2

A.1.1. SU(3)-equivariant 1-forms
Consider the row vector β� = (β1, β2). The relations (2.11) and (2.12) dictate the explicit 

form of the 1-forms βi and their exterior derivatives as

βi = 1

γ
dyi − 1

γ 2 (γ + 1)
yi

2∑
j=1

ȳj dyj , β̄i = 1

γ
dȳi − 1

γ 2 (γ + 1)
ȳi

2∑
j=1

yj dȳj ,

(A.1a)

dβ1 = −β1 ∧ (B11 + 3
2 a
)+ β2 ∧ B̄12 , dβ2 = −β1 ∧ B12 + β2 ∧ (B11 − 3

2 a
)
,

(A.1b)

dβ̄1 = −(B11 + 3
2 a
)∧ β̄1 − B12 ∧ β̄2 , dβ2 = B̄12 ∧ β̄1 + (B11 − 3

2 a
)∧ β̄2 . (A.1c)

One can regard βi as a basis for the (1, 0)-forms and β̄i as a basis for the (0, 1)-forms of the com-
plex cotangent bundle over the patch U0 of CP 2 with respect to an almost complex structure J . 
The canonical 1-forms dyi and dȳi could equally well be used for a holomorphic decomposition 
with respect to J , but the forms βi and β̄i are SU(3)-equivariant.

A.1.2. Hermitian Yang–Mills equations
The canonical Kähler 2-form on the patch U0 is given by

ωCP 2 = −iR2 β� ∧ β̄ = iR2
(
β1 ∧ β̄1 + β2 ∧ β̄2

)
, (A.2)

where R is the radius of the linearly embedded projective line CP 1 ⊂ CP 2. The 1-form B(1) is 
then an instanton connection by the following argument: Locally, one can define a (2, 0)-form �
proportional to β1 ∧ β2. The Hermitian Yang–Mills equations for a curvature 2-form F are

� ∧ F = 0 and ωCP 2 �F = 0 , (A.3)

which translate to F = F 1,1 being a (1, 1)-form for which tr(F 1,1) = 0; here the contraction �
between two forms η and η′ is defined as η � η′ := � 

(
η ∧ �η′ ). The curvature FB = dB + B ∧

B = β̄ ∧ β� is a (1, 1)-form which is u(2)-valued, i.e. tr(FB) = 2a 	= 0. However Fa = da =
β† ∧ β is also a (1, 1)-form. Thus the curvature of the connection B(1) = B − 1

2 a12 given by 
FB(1) = FB − 1

2 Fa 12 is a (1, 1)-form and by construction traceless; hence B(1) is an su(2)-valued 
connection satisfying the Hermitian Yang–Mills equations, i.e. it is an instanton connection.

A.2. Hopf fibration and associated bundles

Consider the principal U(1)-bundle S5 = SU(3)/SU(2) → CP 2. One can associate to it a 
complex vector bundle whose fibres carry any representation of the structure group U(1), i.e. 
a complex vector space V together with a group homomorphism ρ : U(1) → GL(V ). Then the 
associated vector bundle E is given as E := S5 ×ρ V →CP 2. In particular, one can choose V =
m to be the one-dimensional irreducible representation of highest weight m ∈Z. Following [25], 
one then generates associated complex line bundles Lm := (L⊗m)

1
2 .
2
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A.2.1. Chern classes and monopole charges
Using the conventions of [25] for CP 2, there is a normalised volume form

βvol := 1

2π2
β1 ∧ β̄1 ∧ β2 ∧ β̄2 with

∫
CP 2

βvol = 1 , (A.4)

and the canonical Kähler 2-form (A.2) with

ωCP 2 ∧ ωCP 2 = −(2π R2)2 βvol . (A.5)

Consider the connection a from (2.11c) on the line bundle L associated to the Hopf bundle 
S5 → CP 2 and the fundamental representation. Since its curvature is Fa = i

R2 ωCP 2 , the total 
Chern character of the monopole bundle L is

ch(L) = exp
( i

2π Fa

)= exp(ξ) (A.6)

where ξ := − 1
2π R2 ωCP 2 . Then one immediately reads off the first Chern class

c1(L) = ξ with
∫

CP 2

ξ ∧ ξ = −1 . (A.7)

Since [ξ ] = [c1(L)] generates H 2(CP 2, Z) ∼= Z [23], this identifies the first Chern number of L
as −1. Thus L ≡ L1 exists globally, and the dual bundle L−1 has first Chern class c1(L−1) =
−c1(L) and hence first Chern number +1. For all other bundles Lm

2
one takes the connection to 

be m2 a, which changes the first Chern class accordingly to

c1
(
Lm

2

)= m
2 ξ , (A.8)

and the first Chern number to −m
2 . Hence only for even values of m do the line bundles Lm

2
exist 

globally in the sense of conventional bundles. On the other hand, for odd values of m the line 
bundles Lm

2
(and also the instanton bundles In for odd values of the isospin n [25]) are examples 

of twisted bundles. The obstruction to the global existence of these bundles is the failure of 
the cocycle condition for transition functions on triple overlaps of patches, which is given by a 
non-trivial integral 3-cocycle representing the Dixmier–Douady class of an abelian gerbe; see for 
example [45] for more details. As argued in [25], the Chern number m2 of the line bundle L−m

2
should be taken as the monopole charge rather than the Hα2 -eigenvalue m in the Biedenharn 
basis.

Appendix B. Representations

B.1. Biedenharn basis

Let us summarise the relevant details we need concerning the Biedenharn basis [28–30], 
which is defined as the basis of eigenvectors according to (3.8); we follow [23,25] for the pre-
sentation and notation.

B.1.1. Generators
The remaining generators of su(3) act on this eigenvector basis as
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E± α1

∣∣∣∣nq m

〉
= 1

2

√
(n ∓ q) (n ± q + 2)

∣∣∣∣ n

q ± 2
m

〉
, (B.1a)

Eα2

∣∣∣∣nq m

〉
=
√

n−q−2
2(n+1) �

+
k,l(n,m)

∣∣∣∣n + 1
q − 1

m + 3

〉
+
√

n+q
2(n+1) �

−
k,l(n,m)

∣∣∣∣n − 1
q − 1

m + 3

〉
,

(B.1b)

Eα1+α2

∣∣∣∣nq m

〉
=
√

n+q+2
2(n+1)�

+
k,l(n,m)

∣∣∣∣n + 1
q + 1

m + 3

〉
+
√

n−q
2(n+1)�

−
k,l(n,m)

∣∣∣∣n − 1
q + 1

m + 3

〉
,

(B.1c)

with E†
α2

= E�
α2

= E−α2 and E†
α1+α2

= E�
α1+α2

= E−(α1+α2). It is convenient to express the gen-
erators as

E
+ (n,m)
α1+α2

=
∑
q∈Qn

√
n+q+2
2(n+1) �

+
k,l(n,m)

∣∣∣∣n + 1
q + 1

m + 3

〉 〈
n

q
m

∣∣∣∣ , (B.2a)

E
− (n,m)
α1+α2

=
∑
q∈Qn

√
n−q

2(n+1) �
−
k,l(n,m)

∣∣∣∣n − 1
q + 1

m + 3

〉 〈
n

q
m

∣∣∣∣ , (B.2b)

E+ (n,m)
α2

=
∑
q∈Qn

√
n−q−2
2(n+1) �

+
k,l(n,m)

∣∣∣∣n + 1
q − 1

m + 3

〉 〈
n

q
m

∣∣∣∣ , (B.2c)

E− (n,m)
α2

=
∑
q∈Qn

√
n+q

2(n+1) �
−
k,l(n,m)

∣∣∣∣n − 1
q − 1

m + 3

〉 〈
n

q
m

∣∣∣∣ , (B.2d)

where Qn := {−n, −n + 2, . . . , n − 2, n} and

�+
k,l(n,m) = 1√

n + 2

√(
k+2l

3 + n
2 + m

6 + 2
) (

k−l
3 + n

2 + m
6 + 1

) ( 2k+l
3 − n

2 − m
6

)
,

(B.3a)

�−
k,l(n,m) = 1√

n

√(
k+2l

3 − n
2 + m

6 + 1
) (

l−k
3 + n

2 − m
6

) ( 2k+l
3 + n

2 − m
6 + 1

)
, (B.3b)

with �−
k,l(0, m) := 0 [25]. The identity operator �(n,m) of the representation (n,m) is given by

�(n,m) =
∑
q∈Qn

∣∣∣∣nq m

〉 〈
n

q
m

∣∣∣∣ . (B.4)

B.1.2. Fields
The 1-instanton connection (2.13) is represented in the Biedenharn basis by

B(1) = B11 Hα1 + B12 Eα1 − (B12 Eα1

)†
=
∑
n,q,m

(
B11 q

∣∣∣∣nq m

〉 〈
n

q
m

∣∣∣∣+ 1

2
B12

√
(n − q) (n + q + 2)

∣∣∣∣ n

q + 2
m

〉 〈
n

q
m

∣∣∣∣
− 1

2
B̄12

√
(n + q) (n − q + 2)

∣∣∣∣ n

q − 2
m

〉 〈
n

q
m

∣∣∣∣ )
≡

⊕
B(n,m) , (B.5)
(n,m)∈Q0(k,l)
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where B(n,m) ∈ �1
(
su(2), End

(
(n,m)

))
. One further introduces matrix-valued 1-forms given by

β̄q+1 = β̄1
q+1 Eα1+α2 + β̄2

q+1 Eα2 ≡
⊕

(n,m)∈Q0(k,l)

(
β̄+
(n,m)

+ β̄−
(n,m)

)
, (B.6a)

with the morphism-valued 1-forms

β̄±
(n,m) ∈ �1

(
S5/Zq+1 , Hom

(
(n,m) , (n ± 1,m + 3)

))
, (B.6b)

and the corresponding adjoint maps

β±
(n,m) ∈ �1

(
S5/Zq+1 , Hom

(
(n ± 1,m + 3) , (n,m)

))
. (B.6c)

They have the explicit form

β̄±
(n,m) = �±

k,l(n,m)√
2(n + 1)

∑
q∈Qn

(√
n ± q + 1 ± 1 β̄1

q+1

∣∣∣∣n ± 1
q + 1

m + 3

〉 〈
n

q
m

∣∣∣∣
+√n ∓ q + 1 ± 1 β̄2

q+1

∣∣∣∣n ± 1
q − 1

m + 3

〉 〈
n

q
m

∣∣∣∣ ) . (B.7)

B.1.3. Skew-Hermitian basis
Similarly to [46], for a given representation Ck,l of the generators Ii and Iμ defined in (3.2)

the decomposition into the Biedenharn basis yields

I1 =
⊕
(n,m)

I
(n,m)
1 =

⊕
± , (n,m)

(
E

± (n,m)
α1+α2

− E
± (n,m)
−α1−α2

)
, (B.8a)

I2 =
⊕
(n,m)

I
(n,m)
2 = −i

⊕
± , (n,m)

(
E

± (n,m)
α1+α2

+ E
± (n,m)
−α1−α2

)
, (B.8b)

I3 =
⊕
(n,m)

I
(n,m)
3 =

⊕
± , (n,m)

(
E± (n,m)

α2
− E

± (n,m)
−α2

)
, (B.8c)

I4 =
⊕
(n,m)

I
(n,m)
4 = −i

⊕
± , (n,m)

(
E± (n,m)

α2
+ E

± (n,m)
−α2

)
, (B.8d)

I5 =
⊕
(n,m)

I
(n,m)
5 = − i

2

⊕
(n,m)

H (n,m)
α2

. (B.8e)

The commutation relations [Ii, Ia] = fia
b Ib and [Ii, I5] = 0 induced by (3.4) respectively imply 

relations among the components given by

I
(n′,m′)
i I (n,m)

a = I (n,m)
a I

(n,m)
i + fia

b I
(n,m)
b , (B.9a)

I
(n,m)
i I

(n,m)
5 = I

(n,m)
5 I

(n,m)
i , (B.9b)

where i ∈ {6, 7, 8}, a ∈ {1, 2, 3, 4}, Ii =⊕ I
(n,m) and (n′, m′ ) = (n ± 1, m + 3).
(n,m) i
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B.2. Flat connections

One can compute the matrix elements of A0 from (3.12) with respect to the Biedenharn basis. 
By choosing an SU(3)-representation Ck,l , which induces an SU(2)-representation by restric-
tion, one induces a connection A0 on the vector V-bundle

ṼCk,l

Ck,l

−−→ G/K̃ with VCk,l := G ×K Ck,l (B.10)

associated to the principal V-bundle (2.23). Then the connection A0 can be decomposed into 
morphism-valued 1-forms

A0 =
⊕

(n,m)∈Q0(k,l)

(
B(n,m) − im

2
η�(n,m) + β̄+

(n,m) + β̄−
(n,m) − β+

(n,m) − β−
(n,m)

)
(B.11)

with respect to this basis. The computation of the vanishing curvature F0 = 0 yields relations 
between the different matrix elements given by

dB(n,m) + B(n,m) ∧ B(n,m) − i m
2 dη�(n,m)

= β̄+
(n−1,m−3) ∧ β+

(n−1,m−3) + β̄−
(n+1,m−3) ∧ β−

(n+1,m−3)

+ β+
(n,m)

∧ β̄+
(n,m)

+ β−
(n,m)

∧ β̄−
(n,m)

, (B.12a)

0 = dβ̄±
(n,m) + B(n+1,m+3) ∧ β̄±

(n,m) + β̄±
(n,m) ∧ B(n,m) − 3 i

2 η�(n±1,m+3) ∧ β̄±
(n,m),

(B.12b)

0 = β̄+
(n,m)

∧ β̄−
(n+1,m−3) + β̄−

(n+2,m)
∧ β̄+

(n+1,m−3) , (B.12c)

0 = β̄+
(n,m) ∧ β−

(n,m) + β−
(n+1,m+3) ∧ β̄+

(n−1,m+3) , (B.12d)

0 = β̄±
(n,m)

∧ β̄±
(n∓1,m−3) , (B.12e)

plus their conjugate equations.

B.3. Quiver connections

One can also compute the matrix elements of the curvature (3.36c) in the Biedenharn basis. 
For this, the curvature F = dA +A ∧A is arranged into components

(F)(n,m),(n′,m′) ∈ �2
(
Ek,l , End

(
Ep(n,m)

,Ep(n′,m′)
)⊗ End

(
(n,m) , (n′,m′ )

))
, (B.13)

which can be simplified by using the relations (B.12). We denote the curvature of the connection 
A(n,m) on the bundle (3.21) by

F(n,m) := dA(n,m) + A(n,m) ∧ A(n,m) (B.14a)

and the bifundamental covariant derivatives of the Higgs fields as

Dφ±
(n,m) := dφ±

(n,m) + A(n±1,m+3) φ
±
(n,m) − φ±

(n,m) A(n,m) , (B.14b)

Dψ(n,m) := dψ(n,m) + A(n,m) ψ(n,m) − ψ(n,m) A(n,m) . (B.14c)
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Then the non-zero curvature components read as

(F)(n,m),(n,m) = F(n,m) ⊗ �(n,m) − Dψ(n,m) ∧ i m
2 η�(n,m)

− (ψ(n,m) − 1p(n,m)

)⊗ i m
2 dη�(n,m)

+ (1p(n,m)
− φ+

(n−1,m−3) (φ
+)

†
(n−1,m−3)

)⊗ β̄+
(n−1,m−3) ∧ β+

(n−1,m−3)

+ (1p(n,m)
− φ−

(n+1,m−3) (φ
−)

†
(n+1,m−3)

)⊗ β̄−
(n+1,m−3) ∧ β−

(n+1,m−3)

+ (1p(n,m)
− (φ+)

†
(n,m) φ

+
(n,m)

)⊗ β+
(n,m)

∧ β̄+
(n,m)

+ (1p(n,m)
− (φ−)

†
(n,m) φ

−
(n,m)

)⊗ β−
(n,m)

∧ β̄−
(n,m)

, (B.15a)

(F)(n,m),(n±1,m+3) = Dφ±
(n,m) ∧ β̄±

(n,m) − ((m + 3)ψ(n±1,m+3) φ
±
(n,m)

− mφ±
(n,m) ψ(n,m) − 3φ±

(n,m)

)⊗ i
2 η�(n±1,m+3) ∧ β̄±

(n,m) , (B.15b)

(F)(n+1,m−3),(n+1,m+3)

= (
φ+
(n,m) φ

−
(n+1,m−3) − φ−

(n+2,m) φ
+
(n+1,m−3)

)⊗ β̄+
(n,m) ∧ β̄−

(n+1,m−3) , (B.15c)

(F)(n−1,m+3),(n+1,m+3)

= −(φ+
(n,m) (φ

−)
†
(n,m) − (φ−)

†
(n+1,m+3) φ

+
(n−1,m+3)

)⊗ β̄+
(n,m) ∧ β−

(n,m) , (B.15d)

which are accompanied by the anti-Hermiticity conditions

(F)(n′,m′),(n,m) = − ((F)(n,m),(n′,m′)
)†

. (B.15e)

By setting ψ(n,m) = 1p(n,m)
for all (n, m) ∈ Q0(k, l), these curvature matrix elements correctly 

reproduce those computed in [25] for equivariant dimensional reduction over CP 2.

Appendix C. Quiver bundle examples

C.1. C1,0-quiver

Consider the fundamental 3-dimensional representation C1,0 of G = SU(3). Its decomposi-
tion into irreducible SU(2)-representations is given by

C1,0
∣∣
SU(2) = (0,−2) ⊕ (1,1) , (C.1)

wherein (0,−2) is the SU(2)-singlet and (1,1) is the SU(2)-doublet. Using the general quiver 
construction of Section 3.3, the G-action dictates the existence of bundle morphisms

φ := φ+
(0,−2) ∈ Hom

(
Ep(0,−2) ,Ep(1,1)

)
, φ† := (φ+)†

(0,−2) ∈ Hom
(
Ep(1,1) ,Ep(0,−2)

)
,

(C.2a)

ψ0 := ψ(0,−2) ∈ End
(
Ep(0,−2)

)
, ψ1 := ψ(1,1) ∈ End

(
Ep(1,1)

)
. (C.2b)

C.2. C2,0-quiver

The 6-dimensional representation C2,0 of SU(3) splits under restriction to SU(2) as

C2,0
∣∣ = (2,2) ⊕ (1,−1) ⊕ (0,−4) . (C.3)
SU(2)
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The SU(3)-action intertwines the irreducible SU(2)-modules and the corresponding bundles. The 
actions of Eα1+α2 and Eα2 respectively yield Higgs fields

φ0 := φ+
(0,−4) ∈ Hom

(
Ep(0,−4) ,Ep(1,−1)

)
, φ1 := φ+

(1,−1) ∈ Hom
(
Ep(1,−1) ,Ep(2,2)

)
. (C.4a)

Due to the non-zero restrictions of Hα2 to its eigenspaces (0,−4), (1,−1) and (2,2), one further 
has three bundle endomorphisms

ψ0 := ψ(0,−4) ∈ End
(
Ep(0,−4)

)
, ψ1 := ψ(1,−1) ∈ End

(
Ep(1,−1)

)
,

ψ2 := ψ(2,2) ∈ End
(
Ep(2,2)

)
. (C.4b)

C.3. C1,1-quiver

The 8-dimensional adjoint representation of SU(3) splits under restriction to SU(2) as

C1,1
∣∣
SU(2) = (1,3) ⊕ (0,0) ⊕ (2,0) ⊕ (1,−3) . (C.5)

The action of SU(3) implies the existence of the following bundle morphisms: The actions of 
Eα1+α2 and Eα2 translate into the Higgs fields

φ+
1 := φ+

(1,−3) ∈ Hom
(
Ep(1,−3) ,Ep(2,0)

)
, φ−

1 := φ−
(1,−3) ∈ Hom

(
Ep(1,−3) ,Ep(0,0)

)
,

(C.6a)

φ+
0 := φ+

(0,0) ∈ Hom
(
Ep(0,0) ,Ep(1,3)

)
, φ−

0 := φ−
(2,0) ∈ Hom

(
Ep(2,0) ,Ep(1,3)

)
, (C.6b)

whereas the action of Hα2 generates

ψ± := ψ(1,± 3) ∈ End
(
Ep(1,±3)

)
. (C.6c)

Note that Hα2 neither introduces endomorphisms on (0,0) and (2,0) nor does it intertwine these 
SU(2)-multiplets. This follows from the fact that these representations are subspaces of the kernel 
of Hα2 , and that Hα2 commutes with the entire Lie algebra su(2).

Appendix D. Equivariant dimensional reduction details

D.1. 1-form products on CP 2

The metric on Md ×CP 2 is given as

ds2 = ds2
Md + ds2

CP 2 , (D.1)

where

ds2
Md = Gμ′ν′ dxμ′ ⊗ dxν′

(D.2)

with (xμ′
) local real coordinates on the manifold Md and μ′, ν′, . . . = 1, . . . , d . The metric on 

CP 2 is written as

gCP 2 := ds2
CP 2 = R2

(
β1 ⊗ β̄1 + β̄1 ⊗ β1 + β2 ⊗ β̄2 + β̄2 ⊗ β2

)
. (D.3)

This metric is compatible with the Kähler form (A.2), and by defining the complex structure J
via ωCP 2(·, ·) = gCP 2(·, J ·) on the cotangent bundle of CP 2 one obtains Jβi = i βi and J β̄i =
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−i β̄i for i = 1, 2. The corresponding Hodge operator is denoted �CP 2 , with the non-vanishing 
1-form products

�CP 2 1 = R4 β1 ∧ β̄1 ∧ β2 ∧ β̄2 = 2
(
π R2)2 βvol , (D.4a)

β̄1 ∧ �CP 2β
1 = β̄2 ∧ �CP 2β

2 = β1 ∧ �CP 2 β̄
1 = β2 ∧ �CP 2 β̄

2 = 2π2 R2 βvol , (D.4b)

�CP 2 β̄
1 ∧ β1 = β2 ∧ β̄2 , �CP 2 β̄

2 ∧ β2 = β1 ∧ β̄1 , (D.4c)

�CP 2 β̄
1 ∧ β2 = β̄1 ∧ β2 , �CP 2 β̄

2 ∧ β1 = β̄2 ∧ β1 . (D.4d)

For later use we shall also need to compute various products involving matrix-valued 1-forms. 
Firstly, we have15

tr
β±
(n,m) ∧ �CP 2 β̄

±
(n,m)

�±
k,l(n,m)2

= 2π2 R2 (n + 1 ± 1)βvol , (D.5a)

tr
β±
(n,m)

∧ β̄±
(n,m)

∧ �CP 2

(
β±
(n,m)

∧ β̄±
(n,m)

)†
�±

k,l(n,m)4
= 2π2 (n + 1 ± 1)βvol , (D.5b)

tr
β̄±
(n,m) ∧ β±

(n,m) ∧ �CP 2

(
β̄±
(n,m) ∧ β±

(n,m)

)†
�±

k,l(n,m)4
= 2π2 (n + 1 ± 1)2

n + 1
βvol , (D.5c)

tr
β̄+
(n,m) ∧ β̄−

(n+1,m−3) ∧ �CP 2

(
β̄+
(n,m) ∧ β̄−

(n+1,m−3)

)†
�+

k,l(n,m)2 �−
k,l(n + 1,m − 3)2

= 2π2 n + 1

3
βvol , (D.5d)

tr
β̄+
(n,m) ∧ β−

(n,m) ∧ �CP 2

(
β̄+
(n,m) ∧ β−

(n,m)

)†
�+

k,l(n,m)2 �−
k,l(n,m)2

= 2π2 n (n + 2)

n + 1
βvol . (D.5e)

The trace formulas (D.5) will have to be supplemented by

tr
β+
(n,m) ∧ β̄+

(n,m) ∧ �CP 2

(
β−
(n,m) ∧ β̄−

(n,m)

)†
�+

k,l(n,m)2 �−
k,l(n,m)2

= 2π2 2n (n + 2)

3(n + 1)
βvol , (D.6a)

tr
β̄+
(n−1,m−3) ∧ β+

(n−1,m−3) ∧ �CP 2

(
β̄−
(n+1,m−3) ∧ β−

(n+1,m−3)

)†
�+

k,l(n − 1,m − 3)2 �−
k,l(n + 1,m − 3)2

= 2π2 2(n + 1)

3
βvol ,

(D.6b)

tr
β±
(n,m) ∧ β̄±

(n,m) ∧ �CP 2

(
β̄±
(n∓1,m−3) ∧ β±

(n∓1,m−3)

)†
�±

k,l(n,m)2 �±
k,l(n ∓ 1,m − 3)2

= −2π2 n (n + 2)

n + 1 ∓ 1
βvol , (D.6c)

tr
β±
(n,m) ∧ β̄±

(n,m) ∧ �CP 2

(
β̄∓
(n±1,m−3) ∧ β∓

(n±1,m−3)

)†
�±

k,l(n,m)2 �∓
k,l(n ± 1,m − 3)2

= 2π2
( n (n + 2)

3(n + 1 ± 1)
− (n + 1)

)
βvol (D.6d)

15 The expressions (D.5) correct the trace formulas from [25, eq. (B.7)].
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and one additionally needs the traces

tr
β±
(n,m) ∧ β̄±

(n,m)

�±
k,l(n,m)2

= − i

2R2
(n + 1 ± 1)ωCP 2 = �CP 2 tr

(
β±
(n,m) ∧ β̄±

(n,m)

)†
�±

k,l(n,m)2
, (D.7a)

tr
β̄±
(n∓1,m−3) ∧ β±

(n∓1,m−3)

�±
k,l(n ∓ 1,m − 3)2

= i

2R2
(n + 1)ωCP 2 = �CP 2 tr

(
β̄±
(n∓1,m−3) ∧ β±

(n∓1,m−3)

)†
�±

k,l(n ∓ 1,m − 3)2
.

(D.7b)

D.2. 1-form products on S5

Let us write the metric (3.39) in the forms

ds2
S5 = gij

(
βi
ϕ ⊗ β̄j

ϕ + β̄j
ϕ ⊗ βi

ϕ

)
+ g55 η ⊗ η = 2R2 δab e

a ⊗ eb + r2 e5 ⊗ e5 , (D.8)

for i, j = 1, 2 and a, b = 1, 2, 3, 4, where r is the radius of the S1-fibre of the Hopf bundle 
S5 → CP 2; the corresponding Hodge operator is denoted �S5 . Define the normalised volume 
form ηvol on S5 as

�S5 1 = −(2π)3 r R4 ηvol with βvol ∧ η = −4π ηvol = − 2

π2
e12345 and∫

S5

ηvol = 1 . (D.9)

In the computation of the reduced action (3.42) we use the identities

eμ ∧ �S5e
ν = √

g gμν e12345 =
⎧⎨⎩

4π3 r R2 ηvol , μ = ν = a ,
(2π)3 R4

r
ηvol , μ = ν = 5

0 , μ 	= ν ,

, (D.10a)

eμν ∧ �S5e
ρσ =

⎧⎨⎩
√

g gμρ gνσ e12345 , μ = ρ, ν = σ ,

−√
g gμσ gνρ e12345 , μ = σ, ν = ρ

0 , otherwise ,

, (D.10b)

eab ∧ �S5e
ab = 2π3 r ηvol and ea5 ∧ �S5e

a5 = 4π3 R2

r
ηvol . (D.10c)

We can reduce the action of the Hodge operator in 5 dimensions to the action of �CP 2 from 
Appendix D.1 to get

�S5β
i
ϕ = r

(
�CP 2β

i
ϕ

)
∧ η , �S5 β̄

i
ϕ = r

(
�CP 2 β̄

i
ϕ

)
∧ η , (D.11a)

�S5

(
βi
ϕ ∧ β̄j

ϕ

)
= r

(
�CP 2β

i
ϕ ∧ β̄j

ϕ

)
∧ η , �S5

(
βi
ϕ ∧ βj

ϕ

)
= r

(
�CP 2β

i
ϕ ∧ βj

ϕ

)
∧ η ,

(D.11b)

�S5

(
η ∧ βi

ϕ

)
= 1

r
�CP 2 βi

ϕ , �S5

(
η ∧ β̄i

ϕ

)
= 1

r
�CP 2 β̄i

ϕ , (D.11c)

�S5η = 2(π R2)2
βvol , η ∧ �S5η = − (2π)3 R4

ηvol . (D.11d)

r r
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We can additionally compute

dη = −2ω3 = i
(
β1
ϕ ∧ β̄1

ϕ + β2
ϕ ∧ β̄2

ϕ

)
= − 1

R2 ωCP 2 , (D.12a)

�S5 dη = − 1
R2 �S5 ωCP 2 = − r

R2 (�CP 2ωCP 2) ∧ η = r

R2 ωCP 2 ∧ η , (D.12b)

dη ∧ �S5 dη = −2(2π)3 r ηvol , (D.12c)

wherein we used �CP 2ωCP 2 = −ωCP 2 and (A.5). Note that due to the structure of the extension 
from CP 2 to S5, the matrices accompanying contributions from η or dη are always propor-
tional to the identity operators �(n,m); thus their inclusion does not alter the trace formulas of 
Appendix D.1.

D.3. Yang–Mills action

The reduction of (3.40) proceeds by writing

tr F ∧ �F = −
∑

(n,m)∈Q0(k,l)

tr
(
F ∧ �F† )

(n,m),(n,m)
. (D.13)

We insert the explicit non-vanishing components (B.15), rescale the horizontal Higgs fields

φ±
(n,m) −→ 1

�±
k,l (n,m)

φ±
(n,m) (D.14)

as in [25] (but not the vertical Higgs fields ψ(n,m)), and evaluate the traces over the representation 
spaces (n,m) for each weight (n, m) ∈ Q0(k, l) using the matrix products from Appendix D.1
and the relations of Appendix D.2. Finally, one then integrates over S5 using the unit volume 
form ηvol introduced in Appendix D.2. The dimensionally reduced Yang–Mills action on Md

then reads as16

S = 2π3 r R4

g̃2

∫
Md

ddx
√

G
∑

(n,m)∈Q0(k,l)

tr

(
(n + 1)

(
F(n,m)

)†
μ′ν′
(
F(n,m)

)μ′ν′

+ n + 2

R2

(
Dμ′φ+

(n,m)

)†
Dμ′

φ+
(n,m) + n + 1

R2
Dμ′φ+

(n−1,m−3)

(
Dμ′

φ+
(n−1,m−3)

)†
+ n

R2

(
Dμ′φ−

(n,m)

)†
Dμ′

φ−
(n,m) + n + 1

R2
Dμ′φ−

(n+1,m−3)

(
Dμ′

φ−
(n+1,m−3)

)†
+ n + 2

R4

(
�+

k,l(n,m)2 1p(n,m)
− (φ+)

†
(n,m) φ

+
(n,m)

)2

+ n

R4

(
�−

k,l(n,m)2 1p(n,m)
− (φ−)

†
(n,m) φ

−
(n,m)

)2

+ n + 1

nR4

(
�+

k,l(n − 1,m − 3)2 1p(n,m)
− φ+

(n−1,m−3) (φ
+)

†
(n−1,m−3)

)2

+ (n + 1)2

(n + 2)R4

(
�−

k,l(n + 1,m − 3)2 1p(n,m)
− φ−

(n+1,m−3) (φ
−)

†
(n+1,m−3)

)2

16 By setting ψ(n,m) = 1p(n,m)
for all (n, m) ∈ Q0(k, l) and r = 1

4π in (D.15) we obtain the quiver gauge theory action 
for equivariant dimensional reduction over the complex projective plane CP 2; this reduction eliminates the last nine 
lines of (D.15) and the resulting expression corrects [25, eq. (3.5)].
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+ 2(n + 3)

3R4

∣∣∣φ+
(n,m) φ

−
(n+1,m−3)

− �+
k,l(n,m)�−

k,l(n + 1,m − 3)

�+
k,l(n + 1,m − 3)�−

k,l(n + 2,m)
φ−
(n+2,m) φ

+
(n+1,m−3)

∣∣∣2
+ 2n (n + 2)

(n + 1)R4

∣∣∣φ+
(n,m) (φ

−)
†
(n,m)

− �+
k,l(n,m)�−

k,l(n,m)

�+
k,l(n − 1,m + 3)�−

k,l(n + 1,m + 3)
(φ−)

†
(n+1,m+3) φ

+
(n−1,m+3)

∣∣∣2
+ 4n (n + 2)

3(n + 1)R4

((
�+

k,l(n,m)2 1p(n,m)
− (φ+)

†
(n,m) φ

+
(n,m)

)
× (

�−
k,l(n,m)2 1p(n,m)

− (φ−)
†
(n,m) φ

−
(n,m)

))
− 2(n + 2)

R4

((
�+

k,l(n,m)2 1p(n,m)
− (φ+)

†
(n,m) φ

+
(n,m)

)
× (

�+
k,l(n − 1,m − 3)2 1p(n,m)

− φ+
(n−1,m−3) (φ

+)
†
(n−1,m−3)

))
+ 2

R4

( n

3
− n − 1

)((
�+

k,l(n,m)2 1p(n,m)
− (φ+)

†
(n,m) φ

+
(n,m)

)
× (

�−
k,l(n + 1,m − 3)2 1p(n,m)

− φ−
(n+1,m−3) (φ

−)
†
(n+1,m−3)

))
+ 2

R4

( n + 2

3
− n − 1

)((
�−

k,l(n,m)2 1p(n,m)
− (φ−)

†
(n,m) φ

−
(n,m)

)
× (

�+
k,l(n − 1,m − 3)2 1p(n,m)

− φ+
(n−1,m−3) (φ

+)
†
(n−1,m−3)

))
− 2n

R4

((
�−

k,l(n,m)2 1p(n,m)
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†
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−
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)
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�−
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−)
†
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†
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†
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†
(n,m) φ

+
(n,m)

) (
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))
− mn
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†
(n,m) φ

−
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) (
ψ(n,m) − 1p(n,m)

))
+ m(n + 1)
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×
((

�+
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(n−1,m−3) (φ

+)
†
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) (
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))
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×
((

�− (n + 1,m − 3)2 1p(n,m)
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†
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+ n + 1

4R2 r2

∣∣∣mψ(n,m) φ
+
(n−1,m−3) − (m − 3)φ+

(n−1,m−3) ψ(n−1,m−3) − 3φ+
(n−1,m−3)

∣∣∣2
+ n + 1

4R2 r2

∣∣∣mψ(n,m) φ
−
(n+1,m−3) − (m − 3)φ−

(n+1,m−3) ψ(n+1,m−3) − 3φ−
(n+1,m−3)

∣∣∣2
+ n + 2

4R2 r2

∣∣∣(m + 3)ψ(n+1,m+3) φ
+
(n,m) − mφ+

(n,m)ψ(n,m) − 3φ+
(n,m)

∣∣∣2
+ n

4R2 r2

∣∣∣(m + 3)ψ(n−1,m+3) φ
−
(n,m) − mφ−

(n,m) ψ(n,m) − 3φ−
(n,m)

∣∣∣2) . (D.15)

Note that while the trace in (3.42) is taken over the full fibre space V k,l of the equivariant vector 
bundle (3.22), in (D.15) the trace over the SU(2)× U(1)-representations (n,m) has already been 
evaluated.
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