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notypic difference of two siblings over the proportion of 
alleles shared identity by descent (IBD). Knowing exactly 
which alleles are identically inherited by the sibs, the pro-
portion of alleles IBD can take only one of three values 
(0, 0.5, 1), depending on receiving none, one, or two al-
leles from their parents. For real applications this propor-
tion has to be estimated from incomplete genetic marker 
data; therefore any value between 0 and 1 may occur with 
clustering near 0, 0.5, and 1. This problem also arises 
from calculation of linkage tests for stepwise intervals (in 
cM) over a whole chromosome, as IBD proportions have 
to be estimated from only a limited amount of available 
marker data.

  At linkage, there should be some trait difference be-
tween the phenotypes for sibs sharing no alleles IBD at a 
specific locus. Almost no effect of a trait of interest may 
be found for completely similar genotypes. Further, the 
variances of the squared phenotypic differences should 
increase with a decreasing number of shared alleles, as 
the variance is higher for dissimilar genotypes than for 
genotypes that are entirely equal.

  Until now, many attempts have been made to improve 
the original HE method, for example, including further 
information on the mean corrected squared phenotypic 
sum (Haseman-Elston revisited  [2] ), and weighting the 
phenotypic sum and difference by the inverse of their 
variances (weighted Haseman-Elston regression (wHE) 
 [3] ). Although wHE is assumed to be quite robust against 
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 Abstract 

 The Haseman-Elston method is a simple regression ap-
proach for detecting genetic linkage to quantitative traits in 
sib-pair studies. Although this method and especially the 
new extended Haseman-Elston approach are quite robust, 
there might be some loss of power for non-normally dis-
tributed traits. We propose using rank transformation tech-
niques, which either combine the information on a trend in 
locations and in scales or detect a trend only for a subset of 
the trait variables for genetically different sibs under linkage. 
As this rank transformation is based on linear regression, no 
exact grouping of identity by descent proportions has to be 
assumed. Simulation results indicate a gain in power com-
pared to recently suggested nonparametric methods. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 In sib-pair studies, the Haseman-Elston regression 
(HE)  [1]  is a popular method to detect genetic linkage be-
tween a locus and a phenotypic trait due to its straightfor- 
ward and fast computation. It regresses the squared phe-
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deviations from normality, a loss of power might be pos-
sible where the assumptions for a linear regression mod-
el are seriously violated. A nonparametric alternative
was proposed  [4] , where a Lepage-type combination  [5]  
of the Jonckheere-Terpstra  [6]  (JT) and Siegel-Tukey  [7]  
(ST) test statistics was used to merge information about 
a trend in location and a trend in scale. Simulation showed 
a gain in power of their method over the wHE approach 
for non-normal traits, and quite accurate properties un-
der normality.

  Our objective is to adapt the HE regression to non-
normally distributed phenotypes, keeping the power of 
the original method for normally distributed residual er-
rors. As in  [4] , rank transformation scores are chosen to 
reflect the characteristics of the phenotypes at linkage, 
but without the constraint of observing the IBD propor-
tions for only the three fixed groups 0, 0.5, and 1.

  Methods 

 Haseman-Elston Regression 
 For a set of independent sib pairs let  x  ij  be a phenotypic trait 

of a sib  i  = 1, 2 in pair  j  = 1, ...,  N , assuming the genetic model
 x  ij  =  �  +  g  ij  +  e  ij , where  �  is the overall mean, and  g  and  e  are the 
genetic and environmental effects. Additionally, let  Y  j  = ( x  j  1  –  x  j  2 ) 2  
be the squared phenotypic difference and let  �  j  be the proportion 
of alleles IBD. According to Haseman and Elston  [1] , a simple lin-
ear regression can be performed to associate the trait values on 
the proportion of alleles IBD by

   E  [ Y  j   �   �  j ] =  �  +  �  �  j , (1)

  where  �  =  �    2  e  +  �   2 g     and  �  = –2 �   2 g     . A significantly decreasing slope 
  �  ̂      indicates linkage at the observed locus. If a genetic effect is pres-
ent, the distribution of  Y  j  conditional on  �  j  is a mixture of up to 
three different distributions shifted by genetic effects according 
to the genotype combinations of the sib pairs. For  �  = 0, up to nine 
different distributions occur and at  �  = 1, one single distribution 
occurs for the single sibs, illustrated in  figure 1 , where simulated 
realizations of normally distributed phenotypes are shown for
 �   D  {0, 0.5, 1} in different genetic models. The blue points repre-
sent the sib phenotypes, where both sibs own the same allele com-
bination AA-AA, aa-aa, or Aa-Aa. As the sibs are completely iden-
tical at this locus, they will only be affected by environmental 
variance. The genotype combinations AA-Aa, Aa-AA, Aa-aa, and 
aa-Aa represent sib pairs with one allele IBD, assigned to a pro-
portion of IBD  �  = 0 or 0.5. At linkage, the corresponding pheno-
types (red points) are affected by genetic variance in addition to 
the environmental variance. Also, the phenotypes for the com-
pletely different genotype combinations AA-aa and aa-AA at  �  = 
0 (green points) are influenced by the genetic variance to a great-
er extent in additive genetic models. Because only the phenotypes 
of sib pairs that correspond to different genotypes are showing 
increasing genetic effects with an increasing number of alleles 
IBD, linkage can be detected by linear regression over the squared 
phenotypic difference. But since phenotype combinations for 

completely similar genotypes occur over the whole range of IBD 
proportions, the assumptions for a linear regression are violated 
in the alternative. 

 By only looking at the squared phenotypic trait distance  D  j  = 
–1/2( x  j  1  –  x  j  2 ) 2 , all information about each sib pair is not used; 
therefore it may be preferable to incorporate the mean corrected 
squared phenotypic sum  S  j  = –1/2( x  j  1  +  x  j  2  – 2 � ) 2 .  D  j  and  S  j  are 
uncorrelated, but do not share the same variances. To combine 
both of them, they can be weighted by the inverse of their vari-
ances  [3] . If 

,var Sw
var D var S

 then 

    E  [ wD  j  + (1 –  w ) S  j   �   �  j ] =  �  +  �  �  j . (2)

  There are many recommendations for estimating the weights and 
mean corrections. In the following, wHE is defined by estimating 
the variances directly from the data and taking the sib pair mean 
as  � . 

 The Nonparametric Approach by Kim et al.    [4]    
 If the phenotypes of each sib are not normally distributed, the 

linear regression is not adequate for detecting linkage. Therefore, 
 [4]  used the nonparametric trend statistic of Jonckheere  [6]  (JT) 
to detect a trend in locations of phenotype groups ordered by the 
alleles inherited IBD for grouped  �  k  with  k  = 0, 1, and 2, assuming 
fully informative markers. As the JT test is based on ranks, it is 
robust against deviations from normality. The JT test can be writ-
ten as combinations of Mann-Whitney statistics  U  kk '   by 

1 2

0 1
. kk

k k k
J U �

�
                                                                          (3)

 where  k  and  k �   denote different groups of sib pairs sharing the 
same IBD probability. A test of linkage can be performed by a 
large sample approximation using the standard normal statistic   

0

0
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  Fig. 1.  Scatterplot for random normal phenotypes of the two sibs 
in the j-th sib pair for  h  2  = 0 ( H  0 ) and  h  2  = 0.5 for an additive (Add), 
dominant (Dom), and recessive (Rec) mode of inheritance with
p = 0.5,  N  = 1,000,  �   2  e     = 0.05 and an overall sib correlation of
 �  = 0.5. The blue-colored points represent the phenotypes of the 
sib genotype combinations AA-AA, aa-aa, Aa-Aa; the red points 
display AA-Aa, Aa-AA, Aa-aa, aa-Aa and the green points mark 
the complete allele differences AA-aa and aa-AA. 
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   As the groups IBD also show differences in variances under 
the alternative, a test for differences in scales might be suitable to 
detect a quantitative trait loci (QTL). Kim et al.  [4]  chose the Sie-
gel-Tukey test  [7]  (ST) for this kind of scale hypotheses. Because 
this test compares only two sample variances, they plugged the 
Siegel-Tukey scores into the JT statistic to generalize it for a trend 
test ( Z  ST ). The two test statistics for location and for scale have to 
be combined to test for both trends, using the Lepage approach 
 [5] 
  

2
JT ST

JT ST

Z Z
Z

                                                                     
(5)

 for a combination, which assumes approximate normality and 
uncorrelated test statistics. 

 Regression-Type Rank Transformation 
 Combining Scores for Location and Scale Alternatives 
 Rank transformation is a common way to deal with unknown 

distributions in various applications  [8, 9] . In the following,  R ( Y  j ) 
denotes the rank of every  Y  j  over the space from 1 to  N , assigning 
average ranks in the case of ties. First, we want to test for a sig-
nificant trend in locations; therefore Wilcoxon scores  [10]  are ap-
plied to the response variable, so that 

,
1

Ra R
N

 where the lowest score is assigned to the lowest ranked value and 
any subsequent score increases, according to the ranking. Taking 
the scores as response, the linear regression model is written as 

    E ( a ( R  j )  �   �  j ) =  �  +  �  �  j . (6)

  The test for the slope parameter  H  0 :  �   6  0 and  H  A :  �   !  0 is per-
formed similarly to the original Haseman-Elston method 

. 
ˆ

T
ˆvar

�

�
                                                                                  (7)

  T  can be assumed to be asymptotically  t  distributed with  N  – 2 
degrees of freedom, providing the calculation of a p value  p  loc . 
Under equally spaced  �  j , this test is equivalent to the test for cor-
relation based on Spearman’s  �   [9] , which is also proposed by 
Haseman and Elston  [1]  for nonparametric linkage analysis.
Here, we assume incomplete marker data and hence randomly 
spaced  �  j . 

 To include additional information about a trend in scales to 
support the hypotheses of a linked locus, we have to choose ap-
propriate rank scores and plug these into the regression model as 
response variables as well. Ansari-Bradley scores  [11]  can be used 
for the scale regression: 

1 1
,

2 2
N N

b R R

 where small scores are assigned to both extremes, with an increas-
ing score for the ranks in the middle. A test for the slope param-
eter in the regression model 

    E ( b ( R  j )  �   �  j ) =  �  +  �  �  j  (8)

  results in a corresponding p value  p  sca . In Kim et al.  [4] , Siegel-
Tukey  [7]  scores are favored over the Ansari-Bradley scores, as the 
Siegel-Tukey method avoids giving the same scores for small and 

large ranks; nevertheless we could not find large differences be-
tween the two methods, preferring the Ansari-Bradley scores for 
their straightforward software implementation. For a combina-
tion of both nonparametric tests for location and scale, the two 
rank scores have to be uncorrelated. The covariance between 
score statistics is zero for the combination of an odd with an even 
translation invariant statistic  [12] . It is easy to show that for the 
Wilcoxon (odd:  a ( R ) = – a ( N  + 1 –  R )) and the Ansari-Bradley 
scores (even:  b ( R ) =  b ( N  + 1 –  R )) this criterion is fulfilled, where-
as the joint test decision might be biased under the alternative, 
since the regression with location scores assumes the homogene-
ity of scales and vice versa. A method to combine both regression 
outcomes, for location and for scale, is Fisher’s combination test 
 [13]  (Fis), which uses the logarithm of two p values. A test statistic 
can be defined as 

    T  Fisher  = –2(log( p  loc ) + log( p  sca )), (9)

  with  T  Fisher  being  �  2 -distributed with two times the number of 
combined p values as degrees of freedom (here d.f. = 4). For a com-
bination of just two uncorrelated p values, this combination test 
was shown to be uniformly most powerful  [14] . 

 Detecting Linkage for A Subset of   Y j    
 A subset of sib pairs over all IBD groups share the same distri-

bution, whereas differences occur with varying IBD probabilities 
under linkage only for some of them. In the context of clinical 
drug research, when only a subset of patients can be expected to 
respond to a treatment, Conover and Salsburg  [15]  proposed to 
model this shift in distributions as a Lehmann  [16]  alternative. 
They suggested the approximate scores 

1

1
R

s R
N

	

 with  	  = 5 based on empirical results. By plugging these scores 
into the linear model of the Haseman and Elston approach, 

    E ( s ( R  j )  �   �  j ) =  �  +  �  �  j , (10)

  a significant test for  �  ̂   will correspond to a trend for only a subset 
of  Y  j  (CS). Thus, an attempt is made to distinguish between two 
groups of phenotype differences: an uninformative group, where 
sib pairs possess similar genotypes and the corresponding pheno-
types are only affected by environmental variability, and a group 
consisting of genetically different sibs under linkage with pheno-
types being additionally influenced by genetic variability. As-
suming a mixed distribution based on these two groups may re-
sult in a higher power compared with the investigation of a trend 
for the whole data, then distinguishing between a group of sib 
pairs under linkage and an uninformative group of sib pairs with 
similar genotypes is quite a good approximation to the various 
response distributions of the trait differences under the alterna-
tive hypothesis. For large sample sizes this fact need not be con-
sidered. As the Conover-Salsburg scores are a weighted variant of 
Wilcoxon scores ( 	  = 2), giving more weight to higher ranked val-
ues, they are used to detect a trend in locations at linkage. With 
only a subgroup of observations showing a trend in locations
under the alternative and the others remaining under the null 
hypothesis of no trend, a trend in scales is thereby indirectly
assumed. Thus, the Conover-Salsburg method represents a kind 
of compromise between location and scale tests. 
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 Simulations 
 In order to compare the power of the different methods, we per-

formed simulations under a variety of conditions. The simulation 
settings were mainly adopted from Kim et al.  [4] . First, IBD scores 
were generated from a trinomial distribution under the assump-
tion of fully informative, biallelic markers with cell probabilities 
0.25 for homozygous and 0.5 for heterogeneous loci. Then, the trait 
genotypes for  N  = 500 sib pairs were randomly drawn from a mul-
tinomial distribution with cell probabilities conditional to the gen-
erated IBD probabilities with allele frequencies of  p  = 0.1, 0.5, 0.7. 
Phenotypic values for each sib were generated from normal, con-
taminated normal, log-normal, and Laplace distributions, choos-
ing 1 for the residual variance and varying the percentage of vari-
ance explained by the QTL ( h  2 ) for an additive, dominant, or reces-
sive mode of inheritance. For each sib pair, an overall phenotypic 
residual correlation is chosen at  �  = 0.5. For the contaminated nor-
mal distribution, 2.5 or 10% of the phenotypes are assumed to have 
a residual standard deviation five times larger. The Laplace distrib-
uted phenotypes with a variance of two are generated, according to 
Fernandez et al.  [17] , from two random, normally distributed vari-
ates for each sib with a correlation of 0.5454. In addition, the per-
formance of the methods is investigated for different numbers of 
observations from  N  = 50, 100, ..., 1,000 for an additive model, an 
allele frequency of  p  = 0.5, and heritability of  h  2  = 0.2. The simula-
tion was conducted in the statistical software R  [26] ; every simula-
tion step was repeated with 100,000 runs.

  Results 

 The simulation results under the null hypothesis show 
that all methods hold a nominally level  �  for every inves-
tigated residual distribution: as under the null hypothesis 

of no significant trend, there is no difference in distribu-
tions for any sib pairs. If we look at the power simulations 
for data, assuming normally distributed errors (for de-
tails, see  [18] ), it is obvious that the wHE method is the 
most powerful of the methods under investigation, but in 
almost every situation there is no significant difference 
in power to the CS approach. Only at small allele frequen-
cies, especially under a recessive mode of inheritance, do 
the rank transformation methods show a loss in power. 
One reason might be the detection of the small amount 
of sib pairs showing an effect as outliers, whereas the 
parametric methods incorporate this information. Both 
approaches combining scores for location and scale show 
quite a similar power.

   Figure 2  shows that all rank methods are rather stable, 
even if the sample size is small. A sample size of 100 sib 
pairs should be sufficient to assume approximate nor-
mality for the rank statistics. When we assume that 2.5% 
of the phenotypes possess a higher residual variance ( ta-
ble 1 ), the rank transformation methods are more robust 
than the wHE method.

  Here, the CS approach also appears to have an advan-
tage in power. If the proportion of phenotypes with
higher residual variance increases, the power of all ap-
proaches decreases, but to a lesser extent for the methods 
incorporating scale effects (see  [18] ). Looking at residual 
distributions with long tails, for example the log-normal 
distribution (see  [18] ), the wHE has problems detecting 

Table 1. Size and power of tests in parametric and rank-based regression models assuming contaminated normal distribution (2.5% 
phenotypes with 5 times higher standard deviation)

p h2 Dominant Additive Recessive

HE wHE CS Fis Kim HE wHE CS Fis Kim HE wHE CS Fis Kim

0.1 0 0.052 0.050 0.050 0.051 0.050 0.052 0.050 0.050 0.051 0.050 0.052 0.050 0.050 0.051 0.050
0.1 0.084 0.137 0.223 0.200 0.203 0.084 0.137 0.218 0.196 0.199 0.081 0.126 0.101 0.092 0.092
0.3 0.252 0.545 0.834 0.791 0.790 0.253 0.536 0.807 0.758 0.760 0.170 0.300 0.111 0.097 0.098
0.5 0.618 0.928 0.995 0.991 0.991 0.616 0.916 0.993 0.986 0.987 0.252 0.408 0.113 0.100 0.100
0.6 0.828 0.987 0.999 0.998 0.999 0.823 0.982 0.999 0.998 0.998 0.277 0.433 0.115 0.099 0.100

0.5 0 0.051 0.051 0.050 0.050 0.049 0.051 0.051 0.050 0.050 0.049 0.051 0.051 0.050 0.050 0.049
0.1 0.085 0.138 0.221 0.201 0.203 0.085 0.138 0.226 0.204 0.205 0.084 0.137 0.221 0.200 0.204
0.3 0.250 0.550 0.850 0.819 0.812 0.254 0.556 0.872 0.840 0.828 0.249 0.549 0.851 0.820 0.812
0.5 0.619 0.938 0.998 0.997 0.997 0.636 0.942 0.999 0.999 0.998 0.620 0.938 0.998 0.997 0.997
0.6 0.831 0.991 1.000 1.000 1.000 0.847 0.992 1.000 1.000 1.000 0.830 0.991 1.000 1.000 1.000

0.7 0 0.050 0.049 0.051 0.050 0.050 0.050 0.049 0.051 0.050 0.050 0.050 0.049 0.051 0.050 0.050
0.1 0.085 0.137 0.204 0.184 0.188 0.086 0.138 0.226 0.204 0.207 0.086 0.139 0.228 0.205 0.208
0.3 0.239 0.519 0.686 0.621 0.640 0.254 0.553 0.865 0.832 0.821 0.252 0.555 0.880 0.856 0.840
0.5 0.571 0.892 0.895 0.833 0.852 0.633 0.940 0.999 0.999 0.998 0.631 0.946 1.000 0.999 0.999
0.6 0.770 0.970 0.927 0.868 0.885 0.845 0.992 1.000 1.000 1.000 0.844 0.994 1.000 1.000 1.000
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any QTL at all. In their simulations, Kim et al.  [4]  showed 
a gain in power at small QTL effects for only the location 
scores, whereas the combination of locations and scales 
by their proposed Lepage statistic appears to be less pow-
erful. The location-scale combination by Fisher’s test 
does not suffer from including the information about 
scales and displays almost the same properties as the lo-
cation statistic.

  Example 

 As an example, we applied our methods to the Beaver 
Dam Eye Study  [19]  with systolic blood pressure as a sin-
gle trait. Information from a sample of 120 families, some 
of them containing more than one sib pair, was investi-
gated. As the family size has an influence on the results, 
proved by choosing random pairs out of each family (not 
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  Fig. 2.  Power for regression model-based tests for various sample size settings for an additive genetic model with 
p = 0.5,  h  2  = 0.2. 
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shown here), we used a bootstrap method for the  Y  i  to 
avoid bias from the correlation of sibs in one family. Mul-
tipoint IBD probabilities over intervals of 2 cM were cal-
culated with the software S.A.G.E  [25] . Across chromo-
some 2, the original HE regression and the nonparamet-
ric methods follow the same curvature of p-values, where 
the rank transformation results in overall lower p values 
( fig. 3 ). There is one value of the response vector that is 
remarkably higher than the other measurements, possi-
bly creating some bias, which is not weighted to this ex-

tent by the rank transformation methods. The wHE ap-
proach shows a slightly different pattern with a peak from 
145–176 cM above  p  = 0.01. Wang and Elston  [20] , who 
analyzed the same dataset, had previously reported link-
age evidence in this region. Across chromosome 10, the 
nonparametric methods show a high peak at around 90 
cM ( fig. 3 ). For the squared trait difference at this special 
marker, an exceptionally high value occurs at IBD prob-
ability 1, which causes the parametric methods to miss 
the indication of a downward regression trend.
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  Fig. 3.  Interval mapping for chromosomes 
2 and 10 for systolic blood pressure.     
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  Discussion 

 If it cannot be assumed that a trait is normally distrib-
uted, researchers may increase power to detect a QTL us-
ing rank transformation methods. The approach of com-
bining scores for location and scales by Fisher’s combina-
tion of p values shows almost the same properties, and
in some situations a gain in power, as with the Kim et al. 
 [4]  Lepage combination. As an alternative, modeling the 
squared trait distribution as a mixture of two distribu-
tions with Conover-Salsburg scores results in a gain in 
power, especially if only a few values do not fit into the 
normal assumption. There are many studies demonstrat-
ing the limitations of rank transformation in complex de-
signs and multiple regression  [21, 22] . They show a severe 
inflation of the type I error rate and a substantial loss of 
power. Nevertheless, in our simulations we could not de-
tect any of these violations in our one-way regression set-
ting, but we would not suggest including additional co-
variates into the model.

  The original HE regression takes only families con-
sisting of exactly two sibs and their parents into account. 
In larger families, or even more complex pedigree struc- 
tures, the correlation between pedigree members has to 
be considered. This can be done by variance components 
methods  [23]  or by adopted regression-based methods. 
Sham et al.  [24]  show the equivalence of their regression 
method to variance components in general pedigrees 
with the robustness of the wHE method. Their method is 
based on a pooled estimate of QTL variances, regressing 
the squared phenotypic difference and squared pheno-
typic sum over the proportion of IBD sharing, weighted 
by sib correlations. In families with only two sibs, this 
regression method is quite similar to the wHE method in 
terms of power. With increasing family size, the Sham et 
al. method gains some power, as it exploits the correlation 

between family members. Reproducing this method by a 
rank transformation approach might be more difficult, 
as the regression coefficients cannot be interpreted any-
more in terms of explained QTL variances or regression 
coefficients. Furthermore, by observing the transformed 
ranks of the squared trait difference and sum simultane-
ously, these may no longer be independent even for fam-
ilies consisting of only two sibs.

  The Kim et al. approach is not feasible if there are large 
amounts of missing marker information. The discrete-
ness, which originates from comparing single ordered 
groups, makes it impossible to access additional infor-
mation given by algorithms that provide continuous IBD 
probabilities. Therefore, the modification of the estab-
lished regression procedures seems to be applicable to a 
wider range of problems, for example, to interval map-
ping.

  If IBD probabilities are given, the regression over rank 
scores can be done with any statistical software capable 
of fitting a linear model, such as R or the SAS System. The 
rank transformation may also be easily implemented into 
any available software providing the classical HE ap-
proach. Computer code for the implementation of the ap-
proach in R and for the simulations shown here can be 
obtained from the corresponding author.
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