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For a large class of vorticities we prove that a steady periodic deep-water wave must be

symmetric if its profile is monotone between crests and troughs.

1 Introduction

Of all the various types of fluid wave motions that occur in Nature, surface water

waves are the most easily observed. The importance of the influence of currents on

waves has been known for centuries by navigators and a knowledge of the interaction

of waves and currents is proving to be of increasing interest [13, 14, 20, 19, 21, 23].

Numerical calculations undertaken for a linearly sheared current (constant vorticity) in

deep water [19, 23] confirm the existence of symmetric steady periodic two-dimensional

waves (regular wave trains) on such currents. While there are many situations where

the assumption of constant vorticity is valid (e.g. the majority of tidal flows have a

non-constant vorticity approximately uniform with depth [20]), they are not universally

applicable. Open ocean areas are dominated by deep water waves and the prime source

of the ocean currents is long duration winds [13]. A current generated by wind is

initially a pure surface process which gradually penetrates downward [13], and hence

has a near-surface vorticity distribution [20]. We show that a steady periodic deep-water

wave propagating against a wind-drift current must be symmetric if its profile is monotone

between crests and troughs. This conclusion is consistent with previous results for uniform

vorticity distributions (irrotational flows) [9, 16, 22] and extends to the deep water setting

the recent results [3, 4, 5] valid for waves with vorticity in water of finite depth.

In § 2 we present the governing equations for deep-water waves. § 3 is devoted to some

considerations about vorticity distributions for deep-water waves. In the last section, we

formulate and prove the main result of this paper.

2 Formulation

In this section we recall the governing equations for the propagation of two-dimensional

gravity deep water-waves and we give a reformulation suitable for our purposes.
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Figure 1.

Since the motion is identical in any direction orthogonal to the direction of propagation

of the wave, it suffices to analyze a cross-section of the flow, perpendicular to the crest line.

We choose Cartesian coordinates (x, y) so that the horizontal x-axis is in the direction

of wave propagation, the y-axis points vertically upwards and the origin lies in the

mean water level. A suitable description of deep-water waves is obtained by assuming

the water to be infinitely deep. The equation of the free surface is y = η(t, x) with∫
� η(t, x) dx = 0, and the fluid domain at time t � 0 is Dη = {(x, y) : x ∈ �, y < η(t, x)}.

Let (u(t, x, y), v(t, x, y)) be the velocity field.

Homogeneity (constant density) is a good approximation for water [6], and it implies

the equation of mass conservation

ux + vy = 0. (2.1)

Neglecting viscosity, the equation of motion is Euler’s equation{
ut + uux + vuy = −Px,
vt + uvx + vvy = −Py − g,

(2.2)

where P (t, x, y) denotes the pressure and g is the gravitational constant of acceleration.

The boundary conditions for the water wave problem are the following. Ignoring the

effects of surface tension, the dynamic boundary condition

P = P0 on y = η(t, x), (2.3)

P0 being the constant atmospheric pressure, decouples the motion of the air from that of

the water. The kinematic boundary condition

v = ηt + u ηx on y = η(t, x), (2.4)

guarantees that the same fluid particles always form the free surface. At every instant

t � 0, the boundary condition at the bottom

(u, v) → (0, 0) as y → −∞ uniformly for x ∈ �, (2.5)

expresses the fact that at great depths there is practically no motion. The deep-water
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Symmetry of steady deep-water waves with vorticity 757

regime is characterized by the fact that the motion is confined to near-surface water layers

[12, 15].

Given c> 0, we are considering periodic waves traveling at speed c, that is, the space-

time dependence of the free surface, of the pressure, and of the velocity field has the form

(x−ct). Concerning regularity, we require that η ∈ C3(�) and (P , u, v) ∈ C1(Dη)×C2(Dη)×
C2(Dη), where Dη = {(x, y) ∈ �2 : −∞ < y � η(x)} is the closure of the fluid domain.

For our choice of coordinates the mean water level is y = 0 so that
∫ L

0 η(x) dx = 0, where

L> 0 is the wavelength. We assume that u < c throughout the fluid. This hypothesis is

motivated by experimental evidence which indicates that for wave patterns that are not

near the spilling or breaking state, the propagation speed of the surface wave is in general

considerably larger than the speed of each individual water particle [1, 15]. Define a

stream function ψ(x, y) by

ψx = −v, ψy = u− c, (2.6)

and let

ω = vx − uy
be the vorticity of the flow. Then ω ∈ C1(Dη) and

∆ψ = −ω for y < η(x). (2.7)

Note that the stream function ψ ∈ C2(Dη), given by the explicit formula

ψ(x, y) = ψ0 −
∫ x

0

v(ξ,−d) dξ +

∫ y

−d
[u(x, ξ) − c] dξ, y � η(x),

where ψ0 ∈ � is a constant and d> 0 is chosen so that the horizontal line y= −d
lies entirely within the fluid domain, is periodic in the x-variable. Indeed, an explicit

calculation shows that the expression (ψ(x + L, y) − ψ(x, y)) = −
∫ x+L

x
v(ξ,−d) dξ is a

constant throughout the fluid. Thus (2.5) confirms the periodicity assertion.

The change of frame (x−ct, y) �→ (x, y) eliminates time from the problem and transforms

it into a problem in a fixed domain. In the new reference frame, in which the origin moves

in the direction of propagation of the wave with the wave speed c, the wave is stationary

and the flow is steady. In this moving reference frame the equations of motion (2.2) and

the corresponding boundary conditions (2.3)–(2.4) are expressed as{
ψyψxy − ψxψyy = −Px,
−ψyψxx + ψxψxy = −Py − g,

for y < η(x), (2.8)

respectively {
ψx = −ψyηx at y = η(x),

P = P0 at y = η(x).

Here P , ψ, η are all required to have period L in the x-variable. The above form of the

boundary conditions readily shows that ψ is constant on the free surface y = η(x). We

normalize ψ by choosing ψ = 0 on the free surface. The assumption u < c ensures that

ψy < 0 throughout the fluid. Moreover, ψy → −c as y → −∞ uniformly for x ∈ �,

in view of (2.5). This indicates that the coordinate transformation (x, y) �→ (q, p) with

q = x, p = −ψ, might be appropriate as it transforms the fluid domain Dη into the lower
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half-plane {(q, p) ∈ �2 : q ∈ �, p � 0}. Since

∂x = ∂q + v ∂p, ∂y = (c− u) ∂p,

we deduce that

∂qω = (∂x − v ∂p)ω =

(
∂x − v

c− u
∂y

)
ω.

On the other hand, taking the curl of the Euler equation (2.2), we obtain (u−c)ωx + v ωy =

0 in view of (2.7). Hence ωq = 0 so that ω is a function of p throughout the fluid. That

is, ω = γ(ψ) with γ ∈ C1(�+,�). The vorticity function γ is a measure of the strength of

the vorticity.

From (2.6) and (2.8) we obtain Bernoulli’s Law, which states that

E :=
ψ2
x + ψ2

y

2
+ gy + P −

∫ 0

ψ

γ(s) ds

is constant throughout the fluid. In view of Bernoulli’s Law, the dynamic boundary

condition (2.3) is equivalent to requiring that
ψ2
x+ψ

2
y

2
+ gy is constant on the free surface,

that is,

|∇ψ|2 + 2gy = C on y = η(x), (2.9)

where C := 2(E − P0).

Summarizing the above considerations, from the governing equations for deep-water

waves we obtain the free boundary value problem




∆ψ = −γ(ψ) in − ∞ < y < η(x),

|∇ψ|2 + 2gy =C on y = η(x),

ψ = 0 on y = η(x),

∇ψ → (0,−c) as y → −∞ uniformly for x ∈ �,

(2.10)

to be satisfied for η ∈ C3(�) and ψ ∈ C2(Dη), both L-periodic in the x-variable.

3 Vorticity of deep-water waves

In this section we present some considerations about the vorticity distribution for deep-

water wave motions.

We are interested in the interaction of a regular irrotational wave train with an adverse

steady current1. If the current is a laminar flow in the plane of the wave motion, i.e. its

velocity components are (uc, 0), we say that the current is adverse if uc � 0 throughout

the fluid [20]. Being created by an external force that acted on the boundary of the

flow (e.g. a wind stress), the current must be highly sheared with a non-uniform vorticity

whose effect diminishes with depth. In other words ωc (the vorticity of the current)

depends monotonically on depth and vanishes deep down. The negative velocity uc is also

1 The term ‘current’ is intended to indicate the presence of a water flow with a flat free surface.

An adverse current is a current aligned opposite to the direction of wave propagation.
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Symmetry of steady deep-water waves with vorticity 759

confined to a near-surface water layer. Accomodating these features, we conclude that

an adverse current in deep water is negatively sheared (∂yuc � 0) and with ∂yωc � 0.

The last relation holds true in view of the monotone dependence of ωc on depth since

ωc = 0 at y = −∞ and ωc = −∂yuc � 0 at the surface. These considerations are much

more complicated in the case of a wave-current interaction, as in this case the water flow

is not laminar i.e. v � 0. We would like to emphasize that experimental measurements

[14, 20, 21] show that linear approximations yield a poor description with considerable

errors in predictions so that a study taking fully into account the nonlinear character

of the governing equations is necessary. Also, note that field observations and numerical

calculations [13, 14, 20, 21] confirm the uniquity of symmetric wave trains propagating

against currents. In this context, we prove the following result.

Proposition Assume that (η, u, v) defines a symmetric non-trivial deep-water wave2 with a

monotone profile between crests and troughs. If the vorticity of the flow is non-decreasing

with depth, i.e. ∂yω � 0, and has bounded first-order partial derivatives, then it must be

non-negative and vanishing in the limit y → −∞.

Proof By assumption we have 0 � ∂yω = γ′(ψ)ψy so that ψy = u − c < 0 yields that

γ′(ψ) � 0 throughout the fluid. Without loss of generality, let us assume that the wave

crest is located at (0, η(0)) and the wave trough at (L/2, η(L/2)), where η(0) � η(L/2).

Since ψ(x, η(x)) = 0 for x ∈ �, we deduce by differentiation that ψx + ψyηx = 0 on the

free surface y = η(x). Since by assumption ψy = u−c < 0 throughout the fluid and ηx � 0

for x ∈ [0, L/2], we infer that v = −ψx � 0 on the free surface from crest and trough. On

the other hand, (2.7) implies that ∆ψx + γ′(ψ)ψx = 0 for y < η(x) since ω = γ(ψ). Thus

∆(−v) + γ′(ψ)(−v) = 0 (3.1)

in the fluid region {(x, y) ∈ �2 : 0 < x < L/2, y < η(x)}. By the symmetry assumption

we know that v(0, y) = 0 for y � η(0) and v(L/2, y) = 0 for y � η(L/2). Since we proved

that −v(x, η(x)) � 0 for x ∈ [0, L/2], by the Phragmen–Lindelöf principle [18] we obtain

v(x, y) � 0, 0 < x < L/2, y < η(x).

To show that above we actually have a strict inequality, assume that there is some

(x0, y0) with x0 ∈ (0, L/2) and y0 < η(x0), such that v(x0, y0) = 0. Choose k0 ∈ � such

that −k0 < y0. An application of the maximum principle [11] to (3.1) on the truncated

domains

Dk = {(x, y) ∈ �2 : 0 < x < L/2, −k < y < η(x)}, k � k0,

implies that v ≡ 0 on Dk since we already know that v is non-negative. But then v ≡ 0,

i.e. the flow is trivial. Therefore

v(x, y) > 0, 0 < x < L/2, y < η(x). (3.2)

2 That is, in addition to the requirements of § 2, we assume that ψ(x, y) is symmetric in the first

variable throughout the fluid. This hypothesis is equivalent to asking for (η, u) to be symmetric and

for v to be anti-symmetric in the first variable. We say that the wave is trivial if v ≡ 0.
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We now claim that there is a > 0 sufficiently large that

v(x, y) − a sin

(
2πx

L

)
e2πy/L > 0 for x ∈ (0, L/2), y = η(L/2). (3.3)

This is possible since the C2-function v satisfies v(0, η(L/2)) = v(L/2, η(L/2)) = 0. Indeed,

the mean-value ensures that for some M > 0 we have

0 < v(x, η(L/2)) � Mx, x ∈ (0, L/2),

and

0 < v(x, η(L/2)) � M(L/2 − x), x ∈ (0, L/2).

Since

lim
x↓0

sin
(

2πx
L

)
x

= lim
x↑L/2

sin
(

2πx
L

)
L/2 − x

=
2π

L

it is now plain that for a > 0 large enough (3.3) holds.

We now define the C2-function

θ(x, y) = v(x, y) − a sin

(
2πx

L

)
e2πy/L for (x, y) ∈ C, (3.4)

where C is the closure of the fluid region C = {(x, y) ∈ �2 : 0 < x < L/2, y < η(L/2)}.
Note that θ(0, y) = θ(L/2, y) = 0 for y � η(L/2), while (3.3) ensures that θ(x, η(L/2)) < 0

for x ∈ (0, L/2). Moreover, (2.5) shows that θ(x, y) → 0 as y → −∞ uniformly in

x ∈ [0, L/2]. On the other hand, we have

∆θ + γ′(ψ)v = 0 for (x, y) ∈ C,

if we take into account (3.1). Thus

∆θ + γ′(ψ)θ = −a γ′(ψ) sin

(
2πx

L

)
e2πy/L � 0 for (x, y) ∈ C.

Therefore, by the Phragmen–Lindelöf principle [18] we deduce that

θ(x, y) � 0 for (x, y) ∈ C.

Taking into account (3.4), we obtain that

0 < v(x, y) � a sin

(
2πx

L

)
e2πy/L for (x, y) ∈ C, (3.5)

if we recall (3.2).

Because ωy = γ′(ψ)ψy and ψy = u− c < 0 throughout the fluid, with limy→−∞ ψy = −c
uniformly for x ∈ �, the boundedness of ωy ensures that

sup
ψ�0

|γ′(ψ)| < ∞. (3.6)

Viewing now (3.1) as the Poisson equation ∆v = f(x, y) in C with right-hand side
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Symmetry of steady deep-water waves with vorticity 761

Figure 2.

f = −γ′(ψ) v, classical gradient estimates [11, p. 37] yield

|(∇v)(L/4, y)| �
L

8
sup

(x,y)∈C
|f(x, y)| +

8

L
sup

(x,y)∈C
|v(x, y)|

�

(
L

8
sup
ψ�0

|γ′(ψ)| +
8

L

)
sup

(x,y)∈C
|v(x, y)| for y < η(L/2) − L/4.

Combining the above estimate with (3.5)–(3.6), we deduce that

|ψxx(L/4, y)| = |vx(L/4, y)| � K e2πy/L for y � η(L/4) − L/4, (3.7)

The statement of the Proposition follows at once if we prove that limψ→∞ γ(ψ) = 0 since

γ′(ψ) � 0 throughout the fluid. If this last assertion does not hold true, the monotonicity

of the function γ forces limψ→∞ γ(ψ) = α� 0. But then (2.7) yields

|ψyy(L/4, y)| = |γ(ψ(L/4, y)) + ψxx(L/4, y)| → |α| as y → −∞,

if we take into account (3.7). By the mean-value theorem we would obtain that

lim inf
n→∞

|ψy(L/4,−n− 1) − ψy(L/4,−n)| �
|α|
2
> 0.

However, since ψy = u− c, the previous relation contradicts (2.5). The proof is complete.

�

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792504005777
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 15 Jan 2018 at 14:00:35, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792504005777
https://www.cambridge.org/core


762 A. Constantin and J. Escher

Remark A simple consequence of the Proposition is that flows of constant non-zero

vorticity do not describe deep-water waves. We refer elsewhere [19, 23] for numerical

calculations of regular wave trains in water of constant vorticity and infinite depth.

4 Main result

In this section we will prove the following main result of the paper.

Theorem A steady periodic deep-water wave with a monotone profile between crests and

troughs, propagating against a current with a vorticity that is non-decreasing with depth

and has bounded first-order partial derivatives, must be symmetric.

The proof of the Theorem is based on the moving plane method and uses sharp

maximum principles for elliptic partial differential equations, which we present now as a

lemma.

Lemma Let Ω be the open domain in the (x, y)-plane lying betweelow the graph y = f(x)

of a continuous function f : [a, b] → �. That is, Ω = {(x, y) ∈ �2 : a < x < b, −∞ <

y < f(x)}. For functions b1, b2, c ∈ C(Ω,�) such that c(x, y) � 0 throughout Ω, define the

elliptic operator

L = ∂2
x + ∂2

y + b1(x, y) ∂x + b2(x, y) ∂y + c(x, y).

(i) If w ∈ C2(Ω) ∩ C(Ω) is such that Lw � 0 in Ω, w � 0 on the boundary ∂Ω of Ω, and

limy→−∞ w(x, y) = 0 uniformly for x ∈ [a, b], then w > 0 in Ω unless w ≡ 0 throughout Ω.

(ii) Let w ∈ C2(Ω) ∩ C(Ω). Suppose that w� 0 in Ω, Lw� 0 in Ω, and w= 0 at some point

Q ∈ ∂Ω. If Ω satisfies an interior sphere condition3 at Q, then the outer normal derivative
∂w
∂ν

of w at Q, if it exists, satisfies the strict inequality ∂w
∂ν
< 0, unless w ≡ 0 on Ω.

(iii) Assume that f is twice continuously differentiable and let T be the line containing the

normal to y = f(x) at some point Q ∈ ∂Ω. Let Ω0 then denote the portion of Ω lying on

some particular side of T . Suppose that w ∈ C2(Ω0) satisfies Lw � 0 in Ω0, while also

w � 0 in Ω0 and w = 0 at Q. Then either ∂w
∂µ
> 0 or ∂2w

∂µ2 > 0 at Q unless w ≡ 0 on Ω0, where

µ is any direction at Q which enters Ω nontangentially.

Assertion (i) follows from the Phragmen–Lindelöf principle and the Weak Maximum

Principle [18]. Assertion (ii) is the Hopf Maximum Principle, whereas (iii) is a version of

the Edge Point Lemma proved in Fraenkel [8].

Proof of the Theorem For simplicity we choose the crest of the wave at x = 0.

For x∗ ∈ (−L/2, 0] we define

D∗ = {(x, y) ∈ �2 : −∞ < y < η(x) for − L/2 < x < x∗}.

3 That is, there exists a small open ball contained in Ω with Q on its boundary.
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Figure 3.

The map (x, y) �→ (2x∗ − x, y) reflects the domain D∗ in the line x = x∗ into a domain DR∗ .

Since x = −L/2 is the location of the wave trough, the monotonicity property of the free

surface ensures the existence of some ε > 0 small enough such that the function x �→ η(x)

is nondecreasing on (−L/2,−L/2 + ε). Therefore DR∗ is a subset of the fluid domain

D = {(x, y) ∈ �2 : −∞ < y < η(x)}

for all x∗ ∈ (−L/2,−L/2 + ε). As we increase x∗ from −L/2 there is some maximal x0 ∈
(−L/2, 0] such that DR∗ is included in D for all x∗ ∈ (0, x0). Note that DR0 , corresponding

to x∗ = x0, is still a subset of D. At x = x0 one of the following three situations occurs:

(a) x0 = 0;

(b) x0 < 0 and the vertical line x = x0 is normal to the free surface y = η(x) at the crest

point (x0, η(x0));

(c) x0 < 0 and DR0 is internally tangent to the boundary y = η(x) at some point.

Let us first assume that (a) occurs, like in Figure 3. Let Q = (−L/2, η(−L/2)) and

define

w(x, y) = ψ(−x, y) − ψ(x, y), −L/2 � x � 0, −∞ < y � η(x),

where ψ is the stream function introduced in § 2. To obtain the statement of the theorem

if (a) occurs, it suffices to show that w ≡ 0 in

Ω0 = {(x, y) ∈ �2 : −L/2 < x < 0, −∞ < y < η(x)}.

Indeed, then ψ(−x, η(x)) = ψ(x, η(x)) for all x ∈ [−L/2, 0]. Since the free surface y =

η(x) is given implicitely by ψ= 0, we infer that ψ(−x, η(x)) =ψ(−x, η(−x)) = 0 for all

x ∈ [−L/2, 0]. The injectivity of the function y �→ ψ(x, y) for every fixed x, ensured

by ψy = u − c < 0, yields η(x) = η(−x) for every x ∈ [−L/2, 0]. Therefore the wave is

symmetric.

To prove that w ≡ 0 in Ω0, we proceed as follows. Observe that w ∈ C2(Ω0). The

periodicity property of ψ implies w = 0 on x =+
− L/2. Moreover, by the mean-value
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theorem we have

|w(x, y)| � 2|x| sup
−L/2�x�L/2

|ψx(ξ, y)| � L sup
−L/2�x�L/2

|v(ξ, y)|

so that (2.5) yields w(x, y) → 0 as y → −∞, uniformly for x ∈ [−L/2, L/2]. Since

x0 = 0, we deduce that (−x, η(x)) ∈ D for all x ∈ (−L/2, 0). Therefore ψ(−x, η(x)) � 0

for all x ∈ (−L/2, 0), as ψ � 0 within the fluid. On the other hand, ψ(x, η(x)) = 0 for

x ∈ (−L/2, 0) in view of (2.10). Hence w(x, η(x)) � 0 for all x ∈ (−L/2, 0). Thus w � 0 on

the boundary ∂Ω0 of Ω0. Since ∆ψ = −γ(ψ) throughout the fluid, we obtain that

∆w + γ̃ = 0, −L/2 � x � 0, y � η(x),

where γ̃(x, y) = γ(ψ(−x, y)) − γ(ψ(x, y)). The mean-value theorem ensures the existence of

some s0(x, y) ∈ � such that γ̃(x, y) = γ′(s0) [ψ(−x, y) − ψ(x, y)]. It follows that

∆w + γ′(s0)w = 0, −L/2 � x � 0, y � η(x).

Since w � 0 on ∂Ω0, by the Lemma, part (i), we deduce that either w > 0 in Ω0 or w ≡ 0

on Ω0. Noticing that w = 0 at Q, part (iii) of the Lemma (with T = {x = −L/2}) yields

w ≡ 0 in Ω0 if at the point Q all partial derivatives of w of order less than or equal to

two are equal to zero. We now show that this is the case. First of all, the way we defined

the periodic function w guarantees that wy(Q) = wxx(Q) = wyy(Q) = 0 since w(Q) = 0.

Differentiating the relation ψ(x, η(x)) = 0, we obtain ψx + ψyη
′ = 0 on y = η(x). But

η′(−L/2) = 0 since Q is the wave trough, so that ψx(Q) = 0 and wx(Q) = −2ψx(Q) = 0.

It remains to show that wxy(Q) = 0. Differentiating the nonlinear boundary condition on

y = η(x) from (2.10) with respect to x, we get

ψx(ψxx + ψxyη
′) + ψy(ψxy + ψyyη

′) + gη′ = 0 on y = η(x).

Evaluating this at the wave trough Q, where η′ = ψx = 0, we obtain ψy(Q)ψxy(Q) = 0.

Since by assumption ψy = u− c < 0, we must have ψxy(Q) = 0. But wxy(Q) = −2ψxy(Q),

and we conclude that wxy(Q) = 0 since we already know that wx(Q) = 0. Therefore the

wave is symmetric if the case (a) occurs.

Let us now analyze alternative (b) (see Figure 4).

The defining property of x0 < 0 ensures that the domain DR0 , obtained by reflecting

D0 = {(x, y) ∈ �2 : −L/2 < x < x0, y < η(x)} in the line x = x0 by means of the

transformation (x, y) �→ (2x0−x, y), is contained within the fluid domain D. Since (x0, η(x0))

is the wave crest, the wave profile y = η(x) is decreasing on [x0, L/2]. Therefore, letting

x1 = 2x0+L/2 and x2 = x0+L/2, the reflection via the transformation (x, y) �→ (2x2−x, y)
of the domain

{(x, y) ∈ �2 : x2 < x < L/2, y < η(x)}
in the line x = x2, is also contained within D. Observe that this reflection maps the line

{x = L/2} into {x = x1}. We now define

w(x, y) =

{
ψ(x, y) − ψ(2x0 − x, y), x0 � x � x1, y � η(2x0 − x),

ψ(x, y) − ψ(2x2 − x, y), x1 � x � x2, y � η(2x2 − x),
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Figure 4.

and we claim that it suffices to show that w ≡ 0 on the closure of the domain

Ω0 = {(x, y) ∈ �2 : x0 < x < x2, y < η̃(x)}.

Here

η̃(x) =

{
η(2x0 − x), x0 � x � x1,

η(2x2 − x), x1 � x � x2.

Indeed, w ≡ 0 on Ω0 implies that ψ(2x0 − x, η(2x0 − x)) = ψ(x, η(2x0 − x)) for x ∈ [x0, x1]

and ψ(2x2 − x, η(2x2 − x)) = ψ(x, η(2x2 − x)) for x ∈ [x1, x2]. Since ψy = u − c < 0

throughout D and the implicit equation of the free surface is ψ(x, η(x)) = 0, we deduce

that η(x) = η(2x0 − x) for x ∈ [−L/2, x1] and η(x) = η(2x2 − x) for x ∈ [x1, L/2]. That

is, the wave profile y = η(x) is symmetric with respect to x = x0 on [−L/2, x1] and

with respect to x = x2 on [x1, L/2]. But the profile is supposedly monotone between

crest and trough, that is, on each of the intervals [−L/2, x0] and [x0, L/2]. The obtained

contradiction shows that the alternative (b) does not occur.

To verify that w ≡ 0 in Ω0 we will apply part (iii) of the Lemma with Q = (x0, η(x0)) and

T = {x = x0}. First of all, note that w ∈ C2(Ω0) and the function η̃ is twice continuously

differentiable on [x0, x2] with η̃′(x1) = 0. Similar to the case (a), we see that w � 0 on

the top boundary of Ω0, while w = 0 on the lateral boundaries of Ω0 and w(x, y) → 0 as

y → −∞ uniformly for x ∈ [x0, x2]. Also, just like in the case (a), we see that

∆w + c(x, y)w = 0, (x, y) ∈ Ω0,

for some c ∈ C(Ω0) with c(x, y) � 0 throughout Ω0. Therefore, we may apply part (i) of

the Lemma to infer that either w > 0 in Ω0 or w ≡ 0 on Ω0. Since (x0, η(x0)) is the crest

of the wave, we have η′(x0) = 0. An argumentation analogous to that pursued in the case

of (a) confirms that at the point Q all partial derivatives of w of order less than or equal

to two are equal to zero. But w = 0 at Q, so that by the Lemma, part (iii), we conclude

that w ≡ 0 in Ω0. As argues above, this leads to a contradiction.
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Figure 5.

It remains to investigate the last alternative (c), corresponding to Figure 5. Again, let

x1 = 2x0 + L/2 and x2 = x0 + L/2. Since the contact point Q = (ξ1, η(ξ1)) of the upper

boundaries of DR0 and D has to be located on the decreasing part of the wave profile, the

reflection of the domain

{(x, y) ∈ �2 : x2 < x < L/2, y < η(x)}

in the line x = x2, achieved through the transformation (x, y) �→ (2x2 − x, y), is contained

in D. This reflection maps the line {x = L/2} into {x = x1}.
Just like in the case of the alternative (b), it suffices to show that the function

w(x, y) =

{
ψ(x, y) − ψ(2x0 − x, y), x0 � x � x1, y � η(2x0 − x),

ψ(x, y) − ψ(2x2 − x, y), x1 � x � x2, y � η(2x2 − x),

is identically zero on the closure of the domain

Ω = {(x, y) ∈ �2 : x0 < x < x2, y < η̃(x)},

where, as before,

η̃(x) =

{
η(2x0 − x), x0 � x � x1,

η(2x2 − x), x1 � x � x2.

Observe that w ∈ C2(Ω) and η̃ is twice continuously differentiable on [x0, x2].

Let us prove that w ≡ 0 on Ω. Since ψ � 0 below the free surface y = η(x) and ψ = 0 on

the free surface, we have that w � 0 on y = η̃(x). The definition of w and the periodicity

property of ψ ensure that w = 0 on {x = x0} and on {x = x2}. Also, w(x, y) → 0 as

y → −∞ uniformly for x ∈ [x0, x2] follows in view of (2.5) and the mean-value theorem,

just like in the analysis made for the alternative (a). Similarly to the case (a), we have

∆w + c(x, y)w = 0, (x, y) ∈ Ω,

for some c ∈ C(Ω) with c(x, y) � 0 throughout Ω. Therefore, by part (i) of the Lemma,

w > 0 in Ω unless w ≡ 0 on Ω. We now claim that ∂w
∂ν

= 0 at Q, where ν is the outer
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normal to Ω at Q, implies w ≡ 0 on Ω. Indeed, the tangency property at Q ensures that

Ω satisfies an interior sphere condition at Q. Moreover, note that η(ξ1) = η(2x0 − ξ1)

yields ψ(ξ1, η(2x0 − ξ1)) = ψ(ξ1, η(ξ1)) = ψ(2x0 − ξ1, η(2x0 − ξ1)) = 0 as ψ = 0 on the free

surface. Therefore w = 0 at Q, and ∂w
∂ν

(Q) = 0 implies w ≡ 0 on Ω in view of part (ii) of

the Lemma. To check that ∂w
∂ν

(Q) = 0, let ξ0 = 2x0 −ξ1. The tangency property at Q yields

η(ξ0) = η(ξ1) and η′(ξ0) = −η′(ξ1). (4.1)

On the other hand, differentiating the relation ψ(x, η(x)) = 0 with respect to x, we obtain

ψx + ψyη
′ = 0 on y = η(x). Combining this with (4.1), we obtain that

ψx

ψy
(ξ0, η(ξ0)) = − ψx

ψy
(ξ1, η(ξ1)), (4.2)

since ψy = u − c < 0 by assumption. Note also that (4.1) and the nonlinear boundary

condition on y = η(x) from (2.10) yield

|∇ψ|2(ξ0, η(ξ0)) = |∇ψ|2(ξ1, η(ξ1)). (4.3)

Since ψy = u− c < 0 thoroughout D, we deduce from (4.2)–(4.3) that

ψx(ξ0, η(ξ0)) = −ψx(ξ1, η(ξ1)) and ψy(ξ0, η(ξ0)) = ψy(ξ1, η(ξ1)).

This forces ∂w
∂ν

= 0 at Q, if we take into account the definitions of ψ, α, ξ1, and ξ0, and

note that η(ξ0) = η(ξ1). The proof is complete. �

Remark In view of the proposition, we see that the conclusion of the theorem is not only

that the surface wave is symmetric, but also that the vorticity has to be non-negative and

vanishing in the limit y → −∞.

5 Conclusion

We have shown that steady periodic deep-water waves which propagate against a current

with a vorticity that is non-decreasing with depth and has a bounded gradient are

symmetric if their profile is monotonic between crests and troughs. This symmetry property

particularly holds true for irrotational waves. We also show that within the class of

vorticity distributions described above the vorticity is non-negative and has to vanish at

infinite depth. In particular, this means that, except of irrotational flows, there are no

other deep-water waves of constant (non-zero) vorticity. Both results are based on sharp

maximum principles, gradient estimates, and Phragmen-Lindelöf principles for elliptic

boundary value problems.
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