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Abstract. The fatigue life calculation of bearings under rotating conditions has been well re-

searched and standardized. In contrast, for bearings in oscillating applications no international 

standards exist. As a result, pitch bearings in wind turbines are designed with different, non 

standardized approaches. Furthermore, the impact of individual pitch control on pitch bearings 

has not yet been studied. In this paper four approaches for fatigue life calculation will be ap-

plied and compared under individual pitch control conditions. For comparison, the loads and 

the bearing geometry of the reference turbine IWT 7.5 MW, which is individual pitch con-

trolled, are used. This paper will show how the bearing life calculated by different approaches 

reacts to individual pitch control conditions. Furthermore, the factors for the modified rating 

life, according to the ABMA and ISO standards, which implement different operation condi-

tions on the bearings in rotating applications, are calculated for the given loads and the given 

bearing geometry in oscillating applications.  

1.  Introduction 

A wind turbine with individual pitch control (IPC) moves each blade individually to reduce loads im-

posed by lift difference. According to theoretical analyses, IPC can reduce the loads on each blade in 

comparison to blades which are collective pitch controlled [1] [2] [3]. First field tests confirm this 

theory [4] [5]. The impact on the pitch bearings, which connect hub and blades, has not yet been stud-

ied. For first estimations on the impact of IPC the data of a state-of-the-art 7.5 MW reference turbine 

which is individual pitch controlled are used [6]. The calculated loads of the IWT 7.5 will be presented 

and used for the life estimation of the pitch bearings. This paper delivers the first theoretical results on 

how the life time calculations of pitch bearings are influenced under IPC conditions. Furthermore, the 

comparison of four different approaches will give an overview about the different approaches for fa-

tigue life calculation of bearings under IPC conditions. The ABMA and ISO standard use different 

methods to calculate the factors for the modified rating life for rotating applications. In this paper both 

standards are applied on a pitch bearing under IPC conditions. 
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2.  State of the art - Life calculation 

For rotating bearings the calculation of fatigue life has been investigated in depth. The International 

standard DIN ISO 281 [7] delivers results which fit well for rolling element bearings. The bearing life, 

which statistically 90 % of the bearings will survive, can be described by equation (1). In this equation 

the dynamic load rating 𝐶 is divided by the equivalent load 𝑃. The exponent 𝑝 depends on the geome-

try of the rollers.  

𝐿10 = (
𝐶

𝑃
)

𝑝
       (1) 

 

The assumptions of this approach are valid for bearings which rotate. For oscillating bearings, new 

assumptions must be taken into account because under radial load and pure oscillation not all rollers 

and only subareas of the raceway are loaded. The reversal points of the roller, where the rolling speed 

decreases, are not considered. Moreover, the physically loaded volume for oscillating bearings is 

smaller in comparison to rotating bearings. Under this aspect the fatigue life should be greater for os-

cillating applications. However, the lubrication in oscillating applications worsens, which reduces the 

fatigue life for oscillating bearings. In the following section, four approaches for the calculation of 

bearing life in oscillating bearings will be briefly explained. The approaches vary in complexity and in 

the level of awareness by the industry. All approaches are based on the international standard DIN ISO 

281. Below, the bearing life under oscillating conditions is named 𝐿10,𝑂𝑠𝑐. 

2.1.  DIN ISO 281 

The first approach is widespread in the industry and easy to use. The oscillating angle 𝜙 and the 

frequency of oscillating motion 𝑛𝑂𝑠𝑐 are considered in the equivalent speed 𝑛 by equation (2). The 

equation is only valid for oscillating angles which are greater than twice of the angular pitch of the 

rolling elements. For the given example of a pitch bearing in a wind turbine, most oscillating an-

gles will be smaller than the limitation of the equation. Nevertheless, for better comparability be-

tween the different models, this model will be applied for all oscillating angles. 

 

𝑛 = 𝑛𝑂𝑠𝑐 ∙
𝜙

180°
       (2) 

2.2.  HARRIS 1 [8] 

In the first approach published by HARRIS [8] a reduced bearing load 𝑃𝑅𝐸 is used, which depends 

on the oscillating angle 𝜙. This approach is widespread in industry and can be found in several 

catalogs of bearing manufactures: 

 

𝑃𝑅𝐸 = (
2𝜙

180°
)

1/𝑝
𝑃       (3) 

 

The purpose of the reduced bearing load 𝑃𝑅𝐸 is to take the oscillating movement into account. In 

fact, this approach will lead to the same results as the first presented approach. It is unimportant 

whether the angle is taken into account in the reduced load 𝑃𝑅𝐸 or in the equivalent speed 𝑛. 

 

𝐿10,𝑂𝑠𝑐 = (
𝐶

𝑃𝑅𝐸
)

𝑝
       (4) 

2.3.  HARRIS 2 [9] 

Furthermore, HARRIS developed another approach for oscillating conditions, which corrects the 

dynamic load rating 𝐶𝑂𝑠𝑐 depending on the oscillating angle 𝜙 and the number of rolling elements 

for each row 𝑍 [9]. Therefore, a critical angle 𝜙𝑐𝑟𝑖𝑡 is included [10]. If the angle is smaller than the 

critical one, every roller overruns a subarea that no other roller overruns. 
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𝛾 is defined as  𝐷𝑤 ∙ cos (𝛼)/𝐷𝑝𝑤. The physically stressed volume, which is smaller in comparison 

to rotating applications, is therefore considered in a simplified manner. Furthermore, HARRIS 

mentioned, that for 𝜙 < 𝜙𝑐𝑟𝑖𝑡/2 it is possible that fretting corrosion occurs and that it is advisable 

to rotate the bearing as often as possible for a better lubrication distribution to the rolling elements. 

This approach is part of the DESIGN GUIDELINE 03 of NREL [9] and is therefore well known in 

wind turbine engineering. For 𝜙 > 𝜙𝑐𝑟𝑖𝑡 the results are equal to the results of the DIN ISO and 

HARRIS 1 approach. 

 

𝐶𝑂𝑠𝑐(𝜙 > 𝜙𝑐𝑟𝑖𝑡) = (
180°

2𝜙
)

1/3
∙ 𝐶     (5) 

𝐶𝑂𝑠𝑐(𝜙 < 𝜙𝑐𝑟𝑖𝑡) = (
180°

2𝜙
)

3/10
𝑍0,033 ∙ 𝐶    (6) 

𝜙𝑐𝑟𝑖𝑡 =
360°

𝑍(1±𝛾)
       (7) 

 

2.4.  HOUPERT [11] 

Another approach is suggested by HOUPERT, who calculates the bearing life of an oscillating 

bearing with a factor 𝐴𝑂𝑠𝑐. The factor 𝐴𝑂𝑠𝑐 represents the ratio of the bearing life during continu-

ous rotation and the bearing life in oscillatory application and is calculated as a function of the 

load zone parameter 𝜖 and the oscillating angle 𝜙. This approach is the most complex of the four 

presented. A detailed description of 𝐴𝑂𝑠𝑐 can be found in HOUPERT [11]. 

 

𝐿10,𝑂𝑠𝑐 = 𝐴𝑂𝑠𝑐 (
𝐶

𝑃
)

𝑝
      (8) 

 

HOUPERT advises not to use the model for small oscillating amplitudes. The limitation of this 

model is set on 𝜙 < 2𝜋/𝑍, because HOUPERT assumes that smaller values will lead to roller 

failure from wear [12] instead of rolling contact fatigue [13]. For IPC most values will be smaller 

than the limitation of the model. Nevertheless, for better comparability between the different mod-

els, this model will be applied for all oscillating angles. 

3.  Proceeding 

To compare the four explained approaches under individual pitch control conditions a reference bear-

ing and loads are needed. The approaches will be compared on the individual pitch controlled refer-

ence wind turbine IWT 7.5 [6]. Details on the pitch control concept can be found in [5] and [14]. 

3.1.  Pitch bearing IWT 7,5 MW 

The pitch bearing of the IWT 7.5 MW was designed by the Fraunho-

fer IWES in close cooperation with the wind and bearing industry. 

To create as realistic as possible conditions, a double row four point-

contact ball bearing will be used. This bearing is often used for pitch 

applications [15]. Table 1 shows the main bearing geometry. More 

detailed data of the bearing will be published in the future. For the 

presented comparison the given geometric data are sufficient. Fig-

ure 1 shows the CAD-Model of the bearing. 

  Figure 1: CAD-Model – Pitch bearing 

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 112013 doi:10.1088/1742-6596/753/11/112013

3



 

 

 

 

 

Table 1. Used bearing geometry 

Parameter Size 

Pitch diameter 𝑫𝒑𝒘 4650 mm 

Ball diameter 𝑫𝒘 80 mm 

Contact angle 𝜶 45° 

Number of balls per row 𝒁 156 

Number of rows 𝒊 2 

 

For the comparison of the approaches the dynamic load rating of the bearing has to be determined. 

According to DIN ISO 281 it is necessary to differentiate between radial and axial bearings by consid-

ering the contact angle 𝛼 of the bearing: 

 

𝑅𝑎𝑑𝑖𝑎𝑙 𝑏𝑒𝑎𝑟𝑖𝑛𝑔: 0° < 𝛼 ≤ 45° 

𝐴𝑥𝑖𝑎𝑙 𝑏𝑒𝑎𝑟𝑖𝑛𝑔: 45° < 𝛼 < 90° 

 

Thus, the given bearing geometry, with a contact angle of 45° should be calculated as a radial bearing. 

Depending on the bearing type, the following equations (9) and (10) must be used in accordance with 

DIN ISO 281. The equations consider the bearing material, the geometry, the contact type and empiri-

cal factors. 

 

𝐶𝑟 = 3,647 ∙ 𝑏𝑚 ∙ 𝑓𝑐,𝑟 ∙ (i ∙ cos (𝛼))0,7 ∙ 𝑍2/3 ∙ 𝐷𝑤
1,4

    (9) 

𝐶𝑎 = 3,647 ∙ 𝑏𝑚 ∙ 𝑓𝑐,𝑎 ∙ (i ∙ cos (𝛼))0,7 ∙ tan (𝛼) ∙ 𝑍2/3 ∙ 𝐷𝑤
1,4

   (10) 

 

With the given equations and the bearing data of table 1 the radial dynamic load rating 𝐶𝑟 is 2340 kN 

and the axial dynamic load rating 𝐶𝑎 is 3570 kN. In equation (9) and (10) the bearing geometry-

material factor 𝑓𝑐 is used. This factor depends on the geometry and also on the bearing type. For the 

axial geometry-material factor, values from the DESIGN GUIDELINE 03 [9] are used. The difference 

to the values from [7] and [16] is that the values of the DESIGN GUIDELINE 03 are made for large 

slewing bearings and groove raceway conformity. 

In Industry most fatigue life calculations for double row four point-contact ball bearings for 

pitch applications consider the axial dynamic load rating, independently of the specifications of DIN 

ISO 281. Furthermore, the DESIGN GUIDELINE 03 of NREL advises to use this load rating [9]. The 

reason for this procedure is that the pitch bearing is highly axially loaded by the wind. Of course, the 

bearing is also radially loaded from wind and gravity forces acting on the blades, but the radial loads 

are small in comparison with the axial loads. Anyhow, the contact angle of the bearing 𝛼 under load is 

larger than the given value of 45°. The contact angle grows with axial displacement and misalignment 

which due to the axial and radial loads and the bending moment occur [8] [17]. Therefore, the compar-

ison of the named approaches will also use the axial bearing capacity. 

3.2.  Loads 

Standard pitch bearing lifetime calculations according to DIN ISO are done on the base of Load Revo-

lutions Distribtutions (LRD). In their most simple form, LRDs consist of pitch movements that are 

summed for a number of load classes. Other load signals may be added, as well as pitch speeds. The 

number of classes in the LRD increases exponentially with every added signal. A LRD will always 

discard parts of the information and lead to a more conservative calculation. As it is not possible to 

take into account oscillating movements when using a LRD, a different approach is used in this work. 

The dynamic loads of the IWT 7.5 reference turbine are simulated with HAWC2. These simulations 

follow the provisions of [18]. Both fatigue and extreme Design Load Cases (DLC) have been taken 

into account. The HAWC2 data output is transferred to MATLAB for post processing purposes. The 

single simulations are combined with the wind speed distributions and the number of special events in 

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 112013 doi:10.1088/1742-6596/753/11/112013

4



 

 

 

 

 

the turbine’s lifetime to obtain the 20-year loads. The oscillating movements of the pitch bearing are 

analysed, taking into account range and mean values of the single oscillations as well as the load situa-

tion during these movements. The number of cycles and their amplitudes are derived by a range pair 

count as a rainflow counting algorithm is not apt for this application [19]. Table 2 shows the cycle 

counting. The calculation of 𝑃 is given in equation (11) and will be explained in the next chapter. With 

these cycle counting results, the subsequent calculations are executed.  

 

Table 2: Cycle counting output of the IWT7.5 reference turbine 

𝑖 
Amplitude 

range 

[deg] 

No. of cycles 
Operation time of 

active pitch 𝑡𝑖 [%] 

Mean 

Amplitude 

𝜙𝑖 [deg] 

Mean  

Frequency 𝑓𝑖 

[Hz] 

𝑃𝑖 
 [kN] 

1 0,05 - 0,55 2,27E+07 14,88 0,22 0,67 9153,89 

2 0,55 - 1,05 4,28E+06 4,59 0,75 0,41 8148,75 

3 1,05 - 1,55 2,53E+06 3,75 1,30 0,30 7287,11 

4 1,55 - 2,05 2,89E+06 5,18 1,80 0,24 7066,84 

5 2,05 - 2,55 3,40E+06 7,51 2,30 0,20 6902,72 

6 2,55 - 3,05 3,86E+06 8,96 2,80 0,19 6776,68 

7 3,05 - 3,55 4,18E+06 10,04 3,30 0,18 6802,57 

8 3,55 - 4,05 4,43E+06 10,89 3,80 0,18 6699,16 

9 4,05 - 4,55 4,52E+06 11,39 4,30 0,17 6579,67 

10 4,55 - 5,05 3,87E+06 9,98 4,79 0,17 6413,73 

11 5,05 - 90 4,80E+06 12,82 5,92 0,16 6380,32 

3.3.  Analytical Approach 

In the following part the application of the different approaches to the load range will be shown. The 

procedure varies in complexity for the different approaches. First, all time steps without influence on 

the fatigue life of the bearing are deleted to save computing time. These are all time steps without ac-

tivity of the pitch controller. In detail 63,83 % of the load steps are deleted. SHAN [5] showed in his 

analytical analyses of pitch bearings, which he compared with field tests, that the loads which occur 

during the turbine standstill do not influence the fatigue life of the bearing. In a real turbine system 

there are at any time micro movements which influence the pitch bearing and the bearing life. In an 

analytical approach it is currently not possible to consider these movements and loads. The radial 

loads 𝐹𝑟, axial loads 𝐹𝑎 and the bending moments 𝑀𝑥 and 𝑀𝑦 are summed up, as presented in DESIGN 

GUIDELINE 03 [9]: 

 

𝑃 = 0,75 ∙ 𝐹𝑟 + 𝐹𝑎 +
√(𝑀𝑥²+𝑀𝑦²)

𝑑𝑝𝑤/2
     (11) 

 

For all approaches the equal load 𝑃𝑒𝑎 is calculated with equation (12): 

 

𝑃𝑒𝑎 = (
∑ 𝑃𝑖

𝑝
∙𝑓𝑖∙𝑡𝑖∙𝜙𝑖

𝑖=𝑛
𝑖=1

∑ 𝑓𝑖∙𝑡𝑖∙𝜙𝑖
𝑖=𝑛
𝑖=1

)
1/𝑝

      (12) 

The approaches now uses equation (13) with the result of equation (12): 

 

𝐿10,𝑜𝑠𝑐 = (
𝐶

𝑃𝑒𝑎
)

𝑝
       (13) 
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The result of equation (13) is given in oscillations multiplied with 106. To gain a result in hours the 

frequency 𝑓 and the operation time 𝑡 need to be considered. The equivalent speed of oscillation 𝑛𝑂𝑠𝑐 is 

given by equation (14) and is used for the HARRIS approaches. The DIN ISO approach furthermore 

uses equation (2) to calculate the equivalent speed 𝑛. 

 

nOsc = ∑ 𝑓𝑖 ∙ 𝑡𝑖
𝑖=𝑛
𝑖=1        (14) 

Thus, the bearing life can be expressed in hours: 

𝐿10ℎ,𝑜𝑠𝑐 = (
𝐶

𝑃𝑒𝑎
)

𝑝
∙ 106/(𝑛𝑂𝑠𝑐  or 𝑛 ∙ 60)    (15) 

 

Equation (15) does not consider that the turbine does not pitch at all times. The continuous energy 

output of 7.5 MW of the turbine is given at wind speeds between 11 m/s and 25 m/s. In this wind 

speed region the pitch control is active to control the power output. Furthermore, the pitch is active 

intermittently under typical operating conditions much below the rated wind speed, because due to 

turbulence there are periods with instantaneous wind speed above rated. Also the wind cyclic individ-

ual pitch control for negating the effect of wind shear is taken into account. The pitch is active in 

36,17 % of the turbine life. To express the bearing life in wind turbine applications, these effects need 

to be considered. 

 

𝐿10,𝑊𝐸𝐴 =
𝐿10ℎ,𝑜𝑠𝑐

0,3617
       (16) 

 

Some turbines have a control region where rated rpm is reached, but power is below rated. In this re-

gion the pitch control is active despite the lower power. This concept is not considered in the current 

controller and therefore not considered in the bearing life calculation. In the future this feature will be 

taken into account. The bearing life will decrease little with this feature due to the higher number of 

cycles. With the equations (2), (11), (12), (14) and (15) the bearing life according to ISO 281 can be 

calculated. For the HARRIS 1 approach the reduced load 𝑃𝑅𝐸 needs to be considered. This can be done 

similar to equation (12) with the difference that equation (3) is applied. Both HARRIS approaches con-

sider for equation (15) the results of equation (14). 

 

𝑃𝑅𝐸 = (
∑ (

2𝜙𝑖
180°

)
1/𝑝

𝑃𝑖∙𝑓𝑖∙𝑡𝑖∙𝜙𝑖
𝑖=𝑛
𝑖=1

∑ 𝑓𝑖∙𝑡𝑖∙𝜙𝑖
𝑖=𝑛
𝑖=1

)

1/𝑝

     (17) 

For the approach of HARRIS 2 the dynamic load rating for oscillating applications 𝐶𝑂𝑠𝑐 needs to be 

considered. 𝐶𝑂𝑠𝑐 can calculated, depending on the oscillating amplitude 𝜙𝑖 with the equations (5) and 

(6).  

 

𝐶𝑂𝑠𝑐 = ∑ 𝐶𝑜𝑠𝑐,𝑖 ∙𝑛=𝑖
𝑖=1 𝑡𝑖      (18) 

 

The HOUPERT approach is complex and in detail difficult to implement in an algorithm. In HOU-

PERT’s paper a table is given to easily calculate 𝐴𝑂𝑠𝑐 for each discrete time step. The algorithm uses 

the given table and the integral value for the calculated load zone factor 𝜖: 

 

𝜖 =
1

2
(1 +

𝛿𝑎∙tan (𝛼)

𝛿𝑟
)      (19) 

With the given table of HOUPERT and equation (19) the oscillating factor for each time step can be 

calculated. The factors need to multiplied with the calculated loads for each time step. 
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4.  Results 

The results summarized in Table 3 show the extent of the differences of the presented approaches for 

the bearing life calculation of bearings under IPC conditions. The calculated bearing load 𝑃𝑒𝑎 for the 

used time series is 6800 kN. The approach of ISO 281 thus delivers a bearing life 𝐿10,𝑂𝑠𝑐 of 5100 h. 

The bearing life in the considered wind turbine application 𝐿10,𝑊𝐸𝐴 is 1,6 years. With the approach of 

HARRIS 1 a reduced bearing load 𝑃𝑅𝑒 of 2100 kN is calculated. Thus, the bearing life 𝐿10,𝑂𝑠𝑐 for this 

approach is 5100 h. The approaches of ISO 281 and HARRIS 1 deliver equal results, because it does 

not matter if the conversion is effected via the load or the speed. The HARRIS 2 approach yields a 

bearing life of 7560 h or a turbine bearing life of 2,4 years. The HOUPERT approach delivers a bear-

ing life of 1752 h which is equal to a turbine bearing life of 0,6 years.   

 

 

 

 
 

 

 

 

 

 
 

Table 3. Result of comparison 

Approach 𝐿10,𝑂𝑠𝑐
 𝐿10,𝑊𝐸𝐴

a 𝑃𝑒𝑎 𝑃𝑅𝑒 𝜙𝐾𝑟𝑖𝑡 ∑ 𝐴𝑂𝑠𝑐 ∙ 𝑡𝑖 

DIN ISO 281 5098 h 1,6 a 6818 kN - - - 

HARRIS 1 5098 h 1,6 a - 2100 kN - - 

HARRIS 2 7561 h 2,4 a 6818 kN - 2,5° - 

HOUPERT 1752 h 0,6 a 6818 kN - - 11,8 
a𝐿10,𝑊𝐸𝐴 considers that the pitch control of the wind turbine is active only in 36,17 % of the time. 

5.  Further effects of bearing life 

The results in table 3 consider standard conditions which do not fit with the conditions that occur in 

wind turbine application. The lubricant in a pitch bearing will not behave under standard conditions 

and not at any time an EHL-Contact will be present. Furthermore, the lubricant will be influenced by 

dirt or other negative effects. The structural component’s stiffness and the material properties also 

need to be considered. The ISO 281 [7] and the ABMA 9 [16] designate factors which estimate the 

influence of these effects. It must be mentioned, that the factors are designed for rotating applications. 

For oscillating applications assumptions must be made, which can be found in the DESIGN GUIDE-

LINE 03. In the following chapters the bearings life which consider the effects according to the ISO 

and ABMA with assumptions of the DESIGN GUIDELINE 03 are called 𝐿10,𝑂𝑠𝑐,𝐼𝑆𝑂 and 𝐿10,𝑂𝑠𝑐,𝐴𝑁𝑆𝐼. 

  

Figure 2: Comparison of the four approaches 
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5.1.  Modified 𝐿10 according to ABMA 9 [16] 

According to the American Bearing Manufactures Association (ABMA) the modified bearing life can 

be calculated with different factors which are multiplied with the bearing fatigue life under standard 

conditions. For the used pitch bearing these are the factors 𝑎1, 𝑎2 and 𝑎3. Furthermore, ZARETSKY 

[20] applies additional factors. Therefore, the factor 𝑎4 is added for the given pitch bearing. 

 

𝐿10,𝑂𝑠𝑐,𝐴𝑁𝑆𝐼 = 𝑎1 ∙ 𝑎2 ∙ 𝑎3 ∙ 𝑎4 ∙ 𝐿10,𝑂𝑠𝑐    (20) 

 

The factor 𝑎1 describes the considered reliability. In the 

case of 𝐿10 it is equal to 1. For a conservative example of 

99 % (𝐿99) it is 0,25. 𝑎2 considers the material. For the ref-

erence pitch bearing the steel type 100Cr6 with an hardness 

of HRC 58 is used. Therefore, the factor 𝑎2 is chosen to be 

1. The factor 𝑎3 considers the lubrication. Because of the 

oscillating movement of the bearing and the small oscillat-

ing amplitudes most of the time there are no fully estab-

lished lubricating films. Thus, 𝑎3 is equal to 0,1 [9]. The 

factor 𝑎4 considers the stiffness of the adjacent structure. In 

this case the blades and the hub. HARRIS estimates a value 

of 0,85 for 𝑎4 [9]. The hub of the IWT 7.5 MW has a hub diameter of around 5,5 meters, to ensure that 

the blades are not affected by the decreased wind in front of the generator. Figure 3 shows a FE-

Analysis of the hub. The greatest deformation has a value of more than 9 mm under extreme loads 

according to GL [21]. For the used supporting structure the value of 𝑎4 is chosen to 0,5. With these 

four factors the modified bearing life can be calculated: 

 

𝐿10,𝑂𝑠𝑐,𝐴𝐵𝑀𝐴 = 1 ∙ 1 ∙ 0,1 ∙ 0,5 ∙ 𝐿10,𝑂𝑠𝑐 = 0,05 ∙ 𝐿10,𝑂𝑠𝑐   (21) 

5.2.  Modified 𝐿10 according to DIN ISO 281 [7] 

According to DIN ISO 281 and assumptions of the DESIGN GUIDELINE 03 all these effects, which 

can reduce the bearing life, are implemented in a life factor called 𝑎𝐼𝑆𝑂: 

 

𝐿10,𝑂𝑠𝑐,𝐼𝑆𝑂 = 𝑎1 ∙ 𝑎𝐼𝑆𝑂 ∙ 𝐿10,𝑂𝑠𝑐     (22) 

 

This factor can calculated with equation (23) and multiplied with the bearing life of each approach to 

consider the further named aspects. The exponents 𝑥1, 𝑥2, 𝑒1,𝑒2, 𝑒3 and 𝑒4 are exponents which con-

sider empirical knowledge. 𝜅 considers the lubrication conditions. Lubricant contamination is consid-

ered through the factor 𝜂 from equation (24), with the constants 𝑐1 and 𝑐2 to calculate the contamina-

tion factor. To consider the material properties and the given loads the fatigue load limit 𝑃𝑢, which can 

calculated with DIN ISO 76 [22] or ABMA 9 [16], and the further calculated dynamic equivalent load 

𝑃, are also given in the equation. As mentioned before, assumptions need to be considered to calculate 

𝑎𝐼𝑆𝑂 for oscillating applications, cause the ISO do not considers oscillating movements. 

 

𝑎𝐼𝑆𝑂 = 0,1 [1 − (𝑥1 −
𝑥2

𝜅𝑒1
)

𝑒2
(

𝜂𝑃𝑢

𝑃
)

𝑒3

]
𝑒4

    (23) 

𝜂 = 0,173 ∙ 𝑐1𝜅 0,68𝑑𝑚 0,55 (1 −
𝑐2

𝑑𝑚 1/3)     (24) 

 

For the given bearing and the given conditions 𝑎𝐼𝑆𝑂 can be calculated with the mentioned assumptions 

to ~0,1: 

 

𝐿10,𝑂𝑠𝑐,𝐼𝑆𝑂 = 0,1 ∙ 𝐿10,𝑂𝑠𝑐      (25) 

Figure 3: Deformation of hub  
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6.  Conclusions 

The results show that none of the approaches lead to results which accomplish the required turbine life 

of 20 years. Furthermore, it becomes clear that the different approaches show variations in the results. 

Under some operating conditions the oscillating amplitudes of the bearing are smaller than the limita-

tions of the presented approaches, which influence the results. Therefore, the results are only valid for 

the comparison. For the amplitudes which are smaller than the limitations, new approaches need to be 

investigated. Furthermore, the occurrence of false brinelling / fretting corrosion needs to be further 

explored to predict the bearing life in the field. 

The given cycle load shows the conditions the pitch bearing needs to withstand. The equiva-

lent load 𝑃𝑒𝑎 of 6800 kN is very high in comparison to the dynamic capacity of the bearing 𝐶𝑎 of 

3500 kN. The effects of a modified, improved bearing on the results will be a part of future research. 

Furthermore the turbine pitch is active 16 times each minute. This high pitch rate leads to around 1000 

pitch cycles each hour.  

 The ISO 281 approach lead to equal results as the HARRIS 1 approach. The ISO 281 pursued 

the idea to convert the oscillation into revolution via the speed. The HARRIS 1 approach converts via 

the equivalent load. The results show, that it does not matter which transformation is used, because 

both yield equal results. 

 The other approach of HARRIS follows the same idea as the first presented approaches. In 

the HARRIS 2 approach the axial dynamic capacity is calculated depending on the oscillating ampli-

tude 𝜙. The new calculated capacity 𝐶𝑎,𝑜𝑠𝑐 of 13250 kN leads to the highest calculated bearing life. 

The approach considers a simplified stressed volume of the raceway. Furthermore, the approach is 

easy to use for collective loads, because the transformation is done via the capacity of the bearing. 

The last compared approach of HOUPERT use a factor 𝐴𝑜𝑠𝑐. This factor establishes a rela-

tionship between rotating and oscillating bearing life. 34 % of the oscillating amplitudes are smaller 

than the limitation of the model. The result of HOUPERT is therefore only valid for the comparison. 

 There is little information about the conditions of pitch bearings in the field. Especially IPC 

has not been thoroughly investigated. The estimations for the bearing life factors according to the 

american and even the international standard showed, that the calculation currently is very conserva-

tive. The american standard leads to an estimated bearing life which is just 5 % of the calculated life 

under standard conditions. The international standard leads to a value of 10 % of the calculated life 

under standard conditions. Most of the influences which decrease these life factors are estimated or 

based on empirical data which do not fit for oscillatory applications. To get more accurate results, 

more research in life factors for wind turbine applications is needed. 

 At least, further damage mechanisms like wear, which also occur in pitch bearings are not be 

considered. The approaches of HARRIS and HOUPERT advise to use big oscillating amplitudes, to 

avoid false brinelling / fretting corrosion. For the given conditions 15 % of the oscillating amplitudes 

are smaller than 0,55 °, so that wear damages are likely to occur.  

 This paper shows that tests of pitch bearings are needed to prove different bearing life ap-

proaches, as calculatory measures do not provide certain results and predicable operational experience 

with IPC controller is not yet available. The financial implications of necessary bearing changes can 

not be estimated at this point, but will be subject to future research. 
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