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Abstract. This paper develops an abstract framework for constructing ‘“‘seminor-
mal forms” for cellular algebras. That is, given a cellular R-algebra 4 which is equipped
with a family of JM-elements we give a general technique for constructing orthogonal
bases for 4, and for all of its irreducible representations, when the JM-clements separate
A. The seminormal forms for 4 are defined over the field of fractions of R. Significantly,
we show that the Gram determinant of each irreducible A-module is equal to a product
of certain structure constants coming from the seminormal basis of A. In the non-separated
case we use our seminormal forms to give an explicit basis for a block decomposition
of A.

1. Introduction

The purpose of this paper is to give an axiomatic way to construct ‘“‘seminormal
forms” and to compute Gram determinants for the irreducible representations of semisim-
ple cellular algebras. By this we mean that, starting from a given cellular basis {a’} for a
cellular algebra 4, we give a new cellular basis { fsf} for the algebra which is orthogonal
with respect to a natural bilinear form on the algebra. This construction also gives a “‘semi-
normal basis” for each of the cell modules of the algebra. We show that the Gram determi-
nant of the cell modules (the irreducible 4-modules) can be computed in terms of the struc-
ture constants of the new cellular basis of 4. Combining these results gives a recipe for
computing the Gram determinants of the irreducible 4-modules.

Of course, we cannot carry out this construction for an arbitrary cellular algebra A.
Rather, we assume that the cellular algebra comes equipped with a family of “Jucys-
Murphy” elements. These are elements of 4 which act on the cellular basis of 4 via upper
triangular matrices. We will see that, over a field, the existence of such a basis {f;/} forces
A to be (split) semisimple. The cellular algebras which have JM-elements include the group
algebras of the symmetric groups, any split semisimple algebra, the Hecke algebras of type
A, the ¢g-Schur algebras, the (degenerate) Ariki-Koike algebras, the cyclotomic g-Schur al-
gebras, the Brauer algebras and the BMW algebras.
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At first sight, our construction appears to be useful only in the semisimple case. How-
ever, in the last section of this paper we apply these ideas in the non-semisimple case to
construct a third cellular basis {g%} of 4. We show that this basis gives an explicit decom-
position of 4 into a direct sum of smaller cellular subalgebras. In general, these subalgebras
need not be indecomposable, however, it turns out that these subalgebras are indecompos-
able in many of the cases we know about. As an application, we give explicit bases for the
block decomposition of the group algebras of the symmetric groups, the Hecke algebras of
type 4, the Ariki-Koike algebras with ¢ + 1, the degenerate Ariki-Koike algebras and the
(cyclotomic) g-Schur algebras.

There are many other accounts of seminormal forms in the literature; see, for exam-
ple, [1], [8], [13], [21]. The main difference between this paper and previous work is that,
starting from a cellular basis for an algebra we construct seminormal forms for the entire
algebra, rather than just the irreducible modules. The main new results that we obtain are
explicit formulae for the Gram determinants of the cell modules in the separated case, and
a basis for a block decomposition of the algebra in the non-separated case. The seminormal
forms that we construct have the advantage that they are automatically defined over the
field of fractions of the base ring.

It follows using the Wedderburn theorem that an algebra has a family of separating
JM-elements if and only if it is split semisimple (see Example 2.13). As every split semisim-
ple algebra is cellular this suggests that cellular algebras provide the right framework for
studying seminormal forms. There is, however, an important caveat: the set of JM-elements
for a cellular algebra is not canonical as it depends heavily on the particular choice of cel-
lular basis. Consequently, to study an algebra using the techniques in this paper one has to
first find a cellular basis for the algebra and then find an appropriate set of JM-elements.
Neither of these tasks is necessarily easy especially as, ideally, we would like the set of JM-
elements to be compatible with modular reduction.

In the appendix to this paper, Marcos Soriano, gives an alternative matrix theoretic
approach to the theory of seminormal forms. Using only the Cayley-Hamilton theorem
he shows that if you have a family of operators acting on a module via upper triangular
matrices which satisfy an analogous separation condition then you can construct a com-
plete set of pairwise orthogonal idempotents. This shows that, ultimately, the theory of
seminormal forms rests on the Cayley-Hamilton theorem. Note that unlike in our treat-
ment, Soriano does not need to assume that the JM-elements commute or that they are
x-invariant.

This paper is organized as follows. In the next section we recall Graham and Lehrer’s
theory of cellular algebras and define JM-elements for cellular algebras. We then show that
any cellular algebra with a family of separating JM-elements is necessarily semisimple and,
by way of example, show that most of the well-known cellular algebras have JM-elements.
The third section of the paper develops the theory of JM-elements in the separated case,
culminating with the construction of a seminormal basis for a cellular algebra and the com-
putation of the Gram determinants of the cell modules. In the last section of the paper
we use modular reduction to study the non-separated case. Our main result gives a cellular
basis for a decomposition of the original cellular algebra into blocks. Finally, in the ap-
pendix Marcos Soriano gives his matrix theoretic approach to the theory of seminormal
forms.



Mathas and Soriano, Seminormal forms and Gram determinants 143
2. Cellular algebras and JM-elements

We begin by recalling Graham and Lehrer’s [6] definition of a cellular algebra. Let R
be a commutative ring with 1 and let 4 be a unital R-algebra and let K be the field of frac-
tions of R.

2.1. Definition (Graham and Lehrer). A cell datum for A is a triple (A, T, C) where
A = (A, >) is a finite poset, T'(1) is a finite set for each 1 € A, and

C:1IT()x T(A) — A;  (s,t) — a’
AeA
is an injective map (of sets) such that:

(a) {a’|AeA,s,t e T(A)}is an R-free basis of A.

(b) For any x € 4 and ¢ € T'(4) there exist scalars r,,, € R such that, for any s € T(1),

> r[vxas’lv (mod A)'),
veT(4)

where 4 is the R-submodule of 4 with basis {af. > Aand y,ze T(n)}.

A
agx

‘ forall Ae Aands,te T(2),

(c) The R-linear map determined by * : 4 — A4; a’. = a}.,

is an anti-isomorphism of 4.
If a cell datum exists for 4 then we say that 4 is a cellular algebra.

Henceforth, we fix a cellular algebra 4 with cell datum (A, 7', C) as above. We will
also assume that 7'(1) is a poset with ordering =, for each 1 € A. For convenience we

set T(A) = ][] T(Z). We consider T(A) as a poset with the ordering s ¢ if either (1)
AeA

s,t € T(1), forsome A€ A,and s>, t,or (2) se T(4), t € T () and A > p. We write s = ¢ if

s=torsct If s=t we say that s dominates t.

Note that, by assumption 4 is a free R-module of finite rank |7'(A)].

Let Ax = A ®z K. As A4 is free as an R-module, Ak is a cellular algebra with cellular
basis {a’ ® 1x|Ae A and s,t e T(1)}. We consider 4 as a subalgebra of Ax and, abusing
notation, we also consider af, to be elements of Ag.

We recall some of the general theory of cellular algebras. First, applying the * invo-
lution to part (b) of Definition 2.1 we see that if y € 4 and s € T'(1) then there exist scalars
Iy € R such that, for all 7 € T(4),

(2.2) yaft = ue;wr;uyait (mod 4%).

Consequently, A* is a two-sided ideal of A, for any / € A.

Next, for each 1 € A define the cell module C(1) to be the free R-module with basis
{a}|t e T(2)} and with A-action given by
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afx = > rwxaf,
veT(2)
where r;,, is the same scalar which appears in Definition 2.1. As r,,, is independent of s this
gives a well-defined A-module structure on C(4). The map <, ), : C(4) x C(4) — R which
is determined by
(2.3) Caf.ayy,alv = ajay, (mod A7),

for s,t,u,v € T(1), defines a symmetric bilinear form on C(4). This form is associative in
the sense that {ax,b);, = {a,bx*),, for all a,b € C(4) and all x € 4. From the definitions,
for any s € T'(4) the cell module C(4) is naturally isomorphic to the A-module spanned by
{a’. + A% |te T(2)}. The isomorphism is the obvious one which sends a; — a/, + A%, for
te T(A).

For e A we define rad C(4) = {x e C(4)|<{x,y);, =0 for all ye C(4)}. As the
bilinear form on C(4) is associative it follows that rad C(4) is an 4-submodule of C(4).
Graham and Lehrer ([6], Theorem 3.4) show that the Ax-module D(1) = C(4)/rad C(A)
is absolutely irreducible and that {D(1) £ 0|4 € A} is a complete set of pairwise non-
isomorphic irreducible 4g-modules.

The proofs of all of these results follow easily from Definition 2.1. For the full details
see [0], §2-3, or [15], Chapt. 2.

In this paper we are interested only in those cellular algebras which come equipped
with the following elements.

2.4. Definition. A family of JM-elements for A is a set {L,,..., Ly} of commuting
elements of A4 together with a set of scalars, {c,(i) € R|t€ T(A) and 1 <i < M}, such that
fori=1,...,M we have L; = L; and, for all A€ A and 5,1 € T(4),

a’L; = c(i)al + Srpal, (mod A%),

>t
for some r,, € R (which depend on 7). We call c,(i) the content of t at i.
Implicitly, the JM-elements depend on the choice of cellular basis for A4.

Notice that we also have the following left-hand analogue of the formula in (2.4):

(2.5) Liaj, = ci(iaj, + Soray,
us=s

(mod 4%),
for some r}, € R.

2.6. Let %k be the subalgebra of Ax which is generated by {L, ..., Ly }. By defini-
tion, ¥k is a commutative subalgebra of Ag. It is easy to see that each 7 € T(A) gives rise
to a one dimensional representation K, of #x on which L; acts as multiplication by ¢,(i),
for 1 £i £ M. In fact, since %% is a subalgebra of Ag, and Ax has a filtration by cell mod-
ules, it follows that {K,|z€ T'(A)} is a complete set of irreducible Zx-modules.

These observations give a way of detecting when D(A) % 0 (cf. [6], Prop. 5.9(i)).
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2.7. Proposition. Let Ax be a cellular algebra with a family of IM-elements and fix
L€, and s € T(). Suppose that whenever t € T(A) and s>t then c,(i) # c4(i), for some i
with1 <i < M. Then D(A) % 0.

Proof. By Definition 2.4, for any u € A the ¥x-module composition factors of C(u)
are precisely the modules {K,|te€ T(u)}. Observe that if u,ve T(A) then K, =~ K, as
Yk-modules if and only if ¢,(i) = c,(i), for 1 <i < M. Therefore, our assumptions imply
that K is not an ¥x-module composition factor of any cell module C(u) whenever 4 > u.
Consequently, K is not an Zkx-module composition factor of D(u) whenever 4 > u.
However, by [6], Prop. 3.6, D(u) is a composition factor of C(4) only if A = u. Therefore,
a} ¢ rad C(2) and, consequently, D(Z) # 0 as claimed. []

Motivated by Proposition 2.7, we break our study of cellular algebras with JM-
elements into two cases depending upon whether or not the condition in Proposition 2.7 is
satisfied.

2.8. Definition (Separation condition). Suppose that A is a cellular algebra with
JM-elements {L;,...,Ly}. The JM-elements separate T(A) (over R) if whenever
s,t € T(A) and st then c,(i) # ¢,(i), for some i with 1 <i < M.

In essence, the separation condition says that the contents c,(i) distinguish between
the elements of 7'(A). Using the argument of Proposition 2.7 we see that the separation
condition forces Ag to be semisimple.

2.9. Corollary. Suppose that Ak is a cellular algebra with a family of JM-elements
which separate T(A). Then Ay is (split) semisimple.

Proof. By the general theory of cellular algebras [6], Theorem 3.8, Ax is (split) semi-
simple if and only if C(1) = D(A) for all A € A. By the argument of Proposition 2.7, the
separation condition implies that if s € 7'(4) then K does not occur as an ¥,x-module com-
position factor of D(u) for any u > A. By [6], Prop. 3.6, D(u) is a composition factor of
C(A) only if 4 = g, so the cell module C(41) = D(4) is irreducible. Hence, Ak is semisimple
as claimed. [

In Example 2.13 below we show that every split semisimple algebra is a cellular alge-
bra with a family of JM-elements which separate 7'(A).

2.10. Remark. Corollary 2.9 says that if a cellular algebra 4 has a family of JM-
elements which separate 7T(A) then Ak is split semisimple. Conversely, we show in Exam-
ple 2.13 below that every split semisimple algebra has a family of JM-elements which sep-
arate T(A). However, if 4 is semisimple and 4 has a family of JM-elements then it is not
true that the JM-elements must separate A4; the problem is that an algebra can have differ-
ent families of JM-elements. As described in Example 2.18 below, the Brauer and BMW
algebras both have families of JM-elements. Combined with work of Enyang ([5], Exam-
ples 7.1 and 10.1) this shows that there exist BMW and Brauer algebras which are semi-
simple and have JM-elements which do not separate 7'(A).

2.11. Remark. Following ideas of Grojnowski [12], (11.9), and (2.6) we can use the
algebra %k to define formal characters of Ax-modules as follows. Let {K,|t€ L(A)} be a
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complete set of non-isomorphic irreducible ¥,x-modules, where L(A) < T(A). If M is any
Ag-module let [M : K] be the decomposition multiplicity of the irreducible #x-module K,
in M. Define the formal character of M to be

chM = > [M:K]e,
te L(A)
which is element of the free Z-module with basis {e’ |7 € L(A)}. It would be interesting to
know to what extent these characters determine the representations of A.

We close this introductory section by giving examples of cellular R-algebras which
have a family of JM-elements. Rather than starting with the simplest example we start
with the motivating example of the symmetric group.

2.12. Example (Symmetric groups). The first example of a family of JM-elements
was given by Jucys [11] and, independently, by Murphy [17]. (In fact, these elements first
appear in the work of Young [23].) Let 4 = RS, be the group ring of the symmetric group
of degree n. Define

Li=0,0)4+Qi)+---+({—1,0i), fori=2,...,n.

Murphy [17] showed that these elements commute and he studied the action of these ele-
ments on the seminormal basis of the Specht modules. The seminormal basis of the Specht
modules can be extended to a seminormal basis of RS,, so Murphy’s work shows that the
group algebra of the symmetric group fits into our general framework. We do not give fur-
ther details because a better approach to the symmetric groups is given by the special case
g = 1 of Example 2.15 below which concerns the Hecke algebra of type 4. [

2.13. Example (Semisimple algebras). By Corollary 2.9 every cellular algebra over a
field which has a family of JM-elements which separate 7'(A) is split semisimple. We show
the converse is also true. Note that a cellular algebra is semisimple if and only if it is split
semisimple, so non-split semisimple algebras do not arise in our setting. In fact, the appen-
dix shows that in the separated case the existence of a family of JM-elements acting on a
module forces absolute irreducibilty, so JM-elements never arise in the non-split case.

Suppose that Ag is a split semisimple algebra. Then the Wedderburn basis of matrix
units in the simple components of Ak is a cellular basis of Ax. We claim that Ax has a
family of JM-elements. To see this it is enough to consider the case when Ax = Mat,(K)
is the algebra of n x n matrices over K. Let ¢; be the elementary matrix which has a 1 in
row i and column j and zeros elsewhere. Then it is easy to check that {e;} is a cellular basis
for Ax (with A = {1}, say, and T(1) ={l,...,n}). Let L; =e¢; for 1 <i<n. Then
{Ly,...,L,} is a family of JM-elements for Ax which separate T'(A).

By the last paragraph, any split semisimple algebra Ax has a family of JM-elements
{Ly,..., Ly} which separate T'(A), where M =d, +---+d, and d,...,d, are the dimen-
sions of the irreducible Ag-modules. The examples below show that we can often find a
much smaller set of JM-elements. In particular, this shows that the number M of JM-
elements for an algebra is not an invariant of A! Nevertheless, in the separated case we
will show that the JM-elements are always linear combinations of the diagonal elementary



Mathas and Soriano, Seminormal forms and Gram determinants 147

matrices coming from the different Wedderburn components of the algebra. Further, the
subalgebra of Agx generated by a family of JM-elements is a maximal abelian subalgebra
of 4 K- D

If Ak is a cellular algebra and explicit formulae for the Wedderburn basis of Ax are
known then we do not need this paper to understand the representations of 4x. One of the
points of this paper is that if we have a cellular basis for an R-algebra A together with a fam-
ily of IM-elements then we can construct a Wedderburn basis for Ak.

2.14. Example (A toy example). Let 4 = R[X]/(X —c1)...(X —c¢y), where X is

an indeterminate over R and ¢y, ..., ¢, € R. Let x be the image of X in A4 under the canon-
il
ical projection R[X] — A. Set a;:=ajj=[[(x—¢;), for i=1,...,n4+1. Then 4 is a

cellular algebra with A = {1,...,n}, T(i) = {i}, for 1 =i <n, and with cellular basis
{al,,...,a" }. Further, x is a JM-element for 4 because

aix=(x—c1)...(x = ci-1)x = cia; + a;11,

fori=1,...,n. Thus, ¢;(x) = ¢;, for all i. The ‘family’ of JM-elements {x} separates 7'(A)
if and only if ¢y, ..., ¢, are pairwise distinct. []

2.15. Example (Hecke algebras of type 4). Fix an integer n > 1 and an invertible
element g € R. Let # = A ,(S,) be the Hecke algebra of type A. In particular, if ¢ =1
then A ,(S,) = RS,. In general, & is free as an R-module with basis {7, |w € €,} and
with multiplication determined by

o T(i,i+l)w7 if " > (l + 1)w7
TinnyTy = :
qTi,iv1yw + (¢ —1)T,,, otherwise.

Recall that a partition of n is a weakly decreasing sequence of positive integers
which sum to n. Let A be the set of partitions of n ordered by dominance ([15], 3.5). If
2= (A1,...,A) is a partition let [A] = {(r,c)|1 £ ¢ £ A,,r < k} be the diagram of 1. A
standard A-tableau is a map ¢ : [A] — {1,...,n} such that 7 is monotonic increasing in both
coordinates (i.e. rows and columns).

Given 4 € A let T(A) be the set of standard A-tableau, ordered by dominance (the
Bruhat order; see [15], Theorem 3.8). Murphy [19] has shown that # has a cellular basis
of the form {m?|Ze A and s,1€ T(A)}.

Set L; = 0 and define

il S
Li:Zq]_lT(i,j)’ f0r2§i§n.
=

It is a straightforward, albeit tedious, exercise to check that these elements commute; see,
for example, [15], Prop. 3.26. The cellular algebra * involution of s is the linear extension
of the map which sends T, to 7,1, forwe &,. So L} = L;, for all i.
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For any integer k let [k], =1+ ¢+---+¢"*" if k=0 and set [k], = —¢ *[-Kk], if
k < 0. Let ¢ be a standard tableau and suppose that i appears in row r and column ¢ of ¢,
where 1 <i < n. The g-content of i in t is ¢,(i) = [c — r],. Then, by [15], Theorem 3.32,

m’ L; = c,(iym’, + more dominant terms.
Hence, {Li,...,L,} is a family of JM-elements for #°. Moreover, if [1] [2], ... [n], 0
then a straightforward induction shows that the JM-elements separate 7'(A); see [15],
Lemma 3.34. []

2.16. Example (Ariki-Koike algebras). Fix integers n,m = 1, an invertible element
g € R and an m-tuple u = (uy, ... ,uy) € R™. The Ariki-Koike algebra #7p 4, is a deforma-
tion of the group algebra of the complex reflection group of type G(m, 1,n); that is, the
group (Z/mZ) 1 S,. The Ariki-Koike algebras are generated by elements Ty, T, ..., T,
subject to the relations (79 —u;)...(To —uw) =0, (T;—q)(T; +1)=0 for 1 <i<n,
together with the braid relations of type B.

Let A be the set of m-multipartitions of n; that is, the set of m-tuples of partitions
which sum to n. Then A is a poset ordered by dominance. If A € A then a standard A-tableau
is an m-tuple of standard tableau t= (t(l), ..., ") which, collectively, contain the num-
bers 1,...,n and where ) has shape A*). Let T(2) be the set of standard A-tableaux
ordered by dominance ([4], (3 11)). It is shown in [4] that the Ariki-Koike algebra has a
cellular basis of the form {m/ |1 e A and s, € T(A)}.

Fori=1,...,nset Li=¢q'""'Ti_;...T\T;T; ... T;_;. These elements commute, are
invariant under the * involution of #% , , and

mjL; = c,(i)msj'[ -+ more dominant terms,

where ¢, (i) = u,q°" if i appears in row r and column ¢ of #*). All of these facts are proved
n [10], §3. Hence, {L;,...,L,} is a family of JM-elements for #% , .. In this case, if
[1,..-[, II 1I (q%u; —u;) # 0 and ¢ # 1 then the JM-elements separate T(A) by

l<si<j=m|d|<n

[10], Lemma 3.12.

There is an analogous family of JM-elements for the degenerate Ariki-Koike alge-
bras. See [2], §6, for details. []

2.17. Example (Schur algebras). Let A be the set of partitions of n, ordered by
dominance, and for e A let S, be the corresponding Young subgroup of &, and set
= Y. T, € A. Then the g-Schur algebra is the endomorphism algebra

we,

Sk 4(n) = End 4 ( D m,,%‘) .

HEN

For A € A let T(4) be the set of semistandard A-tableaux, and let 7,,(4) < T'(4) be the set of
semistandard A-tableaux of type y; see [15], §4.1. The main result of [4] says that Sg, .¢(n) has
a cellular basis {pé, |4 € A and S, T € T ()} where the homomorphism ¢%; is given by left
multiplication by a sum of Murphy basis elements m’, € # which depend on S and 7.
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Let 4= (4, ..., 1) be a partition in A. Fori = 1,...,k let L/ be the endomorphism
of m,# which is given by

u Mty
L (myh) = > Ljmh,

J=t et g+l

for all h € s#. Here, Ly,..., L, are the JM-elements of the Hecke algebra #. We can con-
sider L to be an element of Sg ,(n). Using properties of the JM-elements of # it is easy to
check that the L/ commute, that they are #-invariant and by [9], Theorem 3.16, that

b L = {CT(i)(pgT + more dominant terms, if 7 e T,(/),
ST~ 0 .
5 otherwise.

Here cr(i) is the sum of the g-contents of the nodes in 7 labelled by i ([15], §5.1). Hence
{L{|we A} is a family of IM-elements for Sg 4(n). If [1], ... [n], # 0 then the JM-elements
separate T'(A); see [15], Lemma 5.4.

More generally, the ¢g-Schur algebras Sg ,(n,7) of type 4 and the cyclotomic g-Schur
algebras both have a family of JM-elements; see [9], [10] for details. [

2.18. Example (Birman-Murakami-Wenzl algebras). Let r and ¢ be invertible inde-
terminates over R and let n > 1 an integer. Let %,(q,r) be the Birman-Murakami-Wenzl
algebra, or BMW algebra. The BMW algebra is generated by elements 77, ..., T,_; which
satisfy the relations (7; — q)(T; +¢q ") (T; —r~') = 0, the braid relations of type 4, and

. T, — T
the relations E,-TiillE,- = r*'E; and E;T; = TE; = r ' E;, where E; = 1 — ———— see [5],

[13]. -4

The BMW algebra %,(q,r) is a deformation of the Brauer algebra. Indeed, both the
Brauer and BMW algebras have a natural diagram basis indexed by the set of n-Brauer
diagrams; that is, graphs with vertex set {1,...,n,1,...,7} such that each vertex lies on a
unique edge. For more details see [7].

Let A be a partition of n— 2k, where 0 <k < gJ An n-updown A-tableau ¢ is
an n-tuple ¢ = (#1,...,1,) of partitions such that 7, = (1), , = 4 and |#;] = |t;-1]| = 1, for
2 <i < n. (Here |t;| is the sum of the parts of the partition 7;.)

Let A be the set of partitions of n — 2k, for 0 < k < gJ ordered again by dominance.

For A€ A let T(A) be the set of n-updown tableaux. Enyang ([5], Theorem 4.8 and §5)
has given an algorithm for constructing a cellular basis of %,(q,r) of the form
{m’ |/ e Aands,teT(A)}. Enyang actually constructs a basis for each cell module of
AB,(q,r) which is “compatible” with restriction, however, his arguments give a new cellular
basis {m?}} for %,(q,r) which is indexed by pairs of n-updown /-tableaux for 4 € A.

Following [13], Cor. 1.6, set L; = 1 and define L;,; = T;L;T;, fori =2,... n. These
elements are invariant under the * involution of %,(¢,r) and Enyang ([5], §6) has shown
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that L,,..., L, commute and that

m’. L; = c,(i)m’, + more dominant terms,
where ¢, (i) = ¢?“) if [t;] = [ti1] U {(b,c)} and ¢,(i) = r2¢**=9) if [t;] = [ti1]\{(b, )}
Hence, Li,...,L, is a family of JM-elements for %,(q,r). When R = Z[r*! ¢*!] the JM-

elements separate T'(A).

The BMW algebras include the Brauer algebras essentially as a special case. Indeed, it
follows from Enyang’s work [5], §8-9, that the Brauer algebras have a family of JM-
elements which separate 7'(A).

Rui and Si [22] have recently computed the Gram determinants of the irreducible
modules of the Brauer algebras in the semisimple case. []

It should be possible to find JM-elements for other cellular algebras such as the par-
tition algebras and the cyclotomic Nazarov-Wenzl algebras [2].

3. The separated case
Throughout this section we assume that A is a cellular algebra with a family of JM-
elements which separate T(A) over R. By Corollary 2.9 this implies that A is a split semi-

simple algebra.

Fori=1,...,M let (i) = {c,(i) |t € T(A)}. Thus, %(i) is the set of possible con-
tents that the elements of 7'(A) can take at i.

We can now make the key definition of this paper.

3.1. Definition. Suppose that s,z € T'(1), for some 4 € A and define

M Li—c
F=1I II - .
T ce(i) a(i) —c
cE¢(i)
Thus, F, € Ag. Define f* = Fa’F, € Ax.

3.2. Remark. Rather than working over K we could instead work over a ring R’ in
which the elements {c,(i) — ¢,(i) |s =€ T(A) and 1 <i < M} are invertible. All of the re-
sults below, except those concerned with the irreducibe A4g-modules or with the semisim-
plicity of Ak, are valid over R’. However, there seems to be no real advantage to working
over R’ in this section. In section 4 we work over a similar ring when studying the non-
separated case.

We extend the dominance order = on T(A) to [[ T(4) x T(4) by declaring that
(s,8) = (u,v) if s=u, t=vand (s,7) + (u,0). rEN

We now begin to apply our definitions. The first step is easy.

3.3. Lemma. Assume that A has a family of IM-elements which separate T (A).
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(a) Suppose that s,t € T(X). Then there exist scalars b,, € K such that

A__ A u
st — Ay + Z buvauv'
wveT(p),neA
(u,v)>(s,1)

(b) {fi}|s,te T(A) for some A e A} is a basis of Ak.
(c) Suppose that s,t € T(1). Then (f1)" = f.

Proof. By the definition of the JM-elements (2.4), for any 7 and any ¢ € (i) with
¢ % ¢,(i) we have

Li—c )
p _ p p
a; Ct(;) =gt mgtbva” (mod A%).

By (2.5) this is still true if we act on a/, with L; from the left. These two facts imply part (a).
Note that part (a) says that the transition matrix between the two bases {a’} and {f/}
of Ak is unitriangular (when the rows and columns are suitably ordered). Hence, (b) fol-
lows. Part (c) follows because, by definition, (a%)* = a/ and L} = L;, so that F; = F, and
()" = FagFs = fi. O

Given 5,1 € T(A) let oy be the Kronecker delta; that is, d, = 1 if s = ¢ and J,, = 0,
otherwise.

3.4. Proposition. Suppose that s,t € T(1), for some L€ A, that ue T(A) and fix i
withl £i £ M. Then

(@) fyLi=c(i)fy, (0) Lifif = cs(i)fy,

(b) fiFu=0ufy,  (d) Fufi} =0ufl.

Proof. Notice that statements (a) and (c) are equivalent by applying the * involu-
tion. Similarly, (b) and (d) are equivalent. Thus, it is enough to show that (a) and (b)
hold. Rather than proving this directly we take a slight detour.

Let N = |T(A)| and fix v = vy € T(u) with v=> 1. We claim that a* FN = 0, for all
u € T(u). By the separation condition (2.8), there exists an integer j; with ¢,(ji) =+ ¢,(j1).
Therefore, by 2.4, a* (L, — c,(j1)) is a linear combination of terms a/,, where x> v 1.

wx’
However, (Lj — ¢y jl)) is a factor of F;, so a/; F; is a linear combination of terms of the
form a! where x=>vr=1r. Let vs € T(u,) be minimal such that a2, appears with non-
zero coefficient in a F;, for some u; € T'(u,). Then vy = v; = ¢, so there exists an integer
ja such that ¢,(j») # ¢y, (j»). Consequently, (L;, — ¢,,(j»)) is a factor of F,, so a’ F} is a lin-

uv= t
ear combination of terms of the form a,, ., where x = v, = v; = ¢. Continuing in this way
proves the claim.

For any s,7€ T(A) let f, = FNa}FN. Fix j with 1 £ j £ M. Then, because the JM-
elements commute,

Julj = FYa FY Ly = Fray LiFY = FY (e/(Day, + x)F,

N st t
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where x is a linear combination of terms of the form a% with vt and u,v € T(u) for some
1 € A. However, by the last paragraph xFN =0, so thls implies that f,/L; = c¢,(j)f,,. Con-
sequently, every factor of F, fixes f, ’ = fiF,. Moreover ifu=+t then we can find j
such that c¢,(j) =+ c,(/) by the separatlon condition, so that = 0since (L; — cu(j)) is a
factor of F,. As F,f,, = (f,.F,)", we have shown that

(3.5) FofiFy = 0usOnfis
for any u,v e T(A).
We are now almost done. By the argument of Lemma 3.3(a) we know that

A
fs; =dag+ > Sma,/jL,

for some s, € K. Inverting this equation we can write

a:‘;:f;‘;_F Z Sl/ ub’

u,ve T(p)
(, 0)=>(s,7)

for some s, € K. Therefore,

Jizﬂa:‘,Fzst(m > f) — RfIF = f),

u,ve T(p)
(u,0)e=(s,1)

where the last two equalities follow from (3.5). That is, f.* = f.;. We now have that

"L = fiLi = c,(i)fy = c(i) i},

proving (a). Finally, if u € T(A) then

F, = fy;Fu = 5tufg 5tu st
proving (b). (In fact, (b) also follows from (a) and the separation condition.) []

3.6. Remark. The proof of Proposition 3.4 is the only place where we explicitly
invoke the separation condition. All of the results which follow rely on this key result. It
is worth noting the proof of Proposition 3.4 relies on the assumptions that the L;,..., Ly,
commute and that L} = L;, for <i < M. The commutativity of the JM-elements is essen—
tial in proving 3.4. If we did not assume that L; + L; then we could define f;, = Fal.F,.
If we did this then in order to prove that fF, = 0 we would have to assume that the L}
act from the right on the basis {a¥} in essentially the same way as the L; do. We note that
neither of these assumptions appear in Soriano’s treatment in the appendix.

3.7. Theorem. Suppose that the JM-elements separate T(A) over R. Let s,t € T(A)
and u,v € T(p), for some A, u € A. Then there exist scalars {y, € K |t € T(A)} such that

ff“ ﬂ:{y,fsﬁ:, if A=pand t=u,
S uv

0, otherwise.
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In particular, y, depends only on t € T(A) and {f|s,t € T() and /. € A} is a cellular basis
OfAK.

Proof. Using the definitions, [/ f# = f./F,a" F,. So f.*f# % 0 only if u = ¢ by Pro-
position 3.4(b).

Now suppose that u=1¢ (so that u=4). Using Lemma 3.3, we can write
fj S =" ruwc S, where 1,y € R and the sum is over pairs w,x € T'(u), for some u € A.

w, X

Hence, by parts (b) and (d) of Proposition 3.4

Y Y 2
(3.8) St = FffuFo = Z;\ FuxEs [l Fo = oy
He
w,xeT(u)
Thus, it remains to show that scalar ry, is independent of s,v € T'(4). Using Lemma 3.3 to
compute directly, there exist scalars b, ¢,-, d,. € K such that

fifh = (af[ + > b‘,t,xaj,x) (a,);, + X cyzaj'z) mod A7
w,xeT(A) y,zeT(4)
(w, x)e=(s,1) (3,2)=(1,0)

= <<a?a a;>i + Z (bsu + Cuv)<aiv a[}'>), + Z bsxcyv<a;;, a;>A> a;};

ueT(2) x,yeT(L)
uc>t X, ye>t
+ > dwa;, (modAg).

w,xeT(A)
(w,x)=>(s,v)

The inner products in the last equation come from applying (2.3). (For typographical con-
venience we also use the fact that the form is symmetric in the sum over u.) By the cellular
basis axiom 2.1(b) the scalars by, and ¢,, do not depend on s or v. Therefore, there exists a
scalar y € A, which does not depend on s or on v, such that Sﬁ' fzf = yafv plus a linear com-
bination of more dominant terms. By Lemma 3.3(b) and (3.8), the coefficient of £ in f;*f;#
is equal to the coefficient of a/ in f7 £, so this completes the proof. []

We call {f/|s,te T () and /. € A} the seminormal basis of A. This terminology is
justified by Remark 3.13 below.

3.9. Corollary. Suppose that Ak is a cellular algebra with a family of JM-elements
which separate T(A). Then y, % 0, for all t € T(A).

Proof. Suppose by way of contradiction that y, = 0, for some 7€ 7'(4) and reA.
Then, by Theorem 3.7, f;/f# = 0= f£f7 for all u,ve T(u), u € A. Therefore, Kf is a
one dimensional nilpotent ideal of Ax, so Ak is not semisimple. This contradicts Corollary
2.9, so we must have y, = 0 forall e T(A). [

Next, we use the basis {f#} to identify the cell modules of A4 as submodules of A.

3.10. Corollary. Suppose that /. € A and fix s,t € T(1). Then

C(A) = foAK = Span{ Sﬁ lve T(A)}.
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Proof. As f! = F,a" F,, for u,v e T(u), the cell modules for the cellular bases {a }

and {f*} of Ax coincide. Therefore, C(4) is isomorphic to the Ax-module C(2)" which is
spanned by the elements {f* + A} |ue T(1)}.

On the other hand, if u,v e T(u), for ue A, then f}f* = 5,7,/ by Theorem 3.7.
Now 7, # 0, by Corollary 3.9, so {f.*|ve T ()} is a basis of f,/Ak.

Finally, by Theorem 3.7 we have that f;;4x = C(4)’, where the isomorphism is the
linear extension of the map f* — fi* + A}, for ve T(4). Hence, C(4) = C(1)' = f/ Ak, as
required. []

Recall that rad C(1) is the radical of the bilinear form on C(1) and that
D(2) = C(4)/rad C(4).

Using Corollary 3.10 and Theorem 3.7, the basis {f;/} gives an explicit decomposi-
tion of Ak into a direct sum of cell modules. Abstractly this also follows from Corollary
2.9 and the general theory of cellular algebras because a cellular algebra is semisimple if
and only if C(4) = D(Z), for all A € A; see [6], Theorem 3.4.

3.11. Corollary. Suppose that Ak is a cellular algebra with a family of JM-elements
which separate T(A). Then C(A) = D(A), for all /. € A, and

Ag = @ ()T,

AeA
Fix se T(X) and, for notational convenience, set f,* = kaso that C(4) has basis
{f*|te T(A)} by Corollary 3.10. Note that f*=a’+ Y b,a’, for some b, € K, by
Lemma 3.3(a). =t

For L€ A let G(A) = det(<al,al),) sre7(y) be the Gram determinant of the bilinear

form <, »; on the cell module C(4). Note that G(1) is well-defined only up to multiplication
by +1 as we have not specified an ordering on the rows and columns of the Gram matrix.

3.12. Theorem. Suppose that Ak is a cellular algebra with a family of JM-elements
which separate T(A). Let 1 € A and suppose that s,t € T(1). Then

Sitii=<ais i ={ir T

0, otherwise.

Consequently, G(A) = [] 7.
teT(2)

Proof. By Theorem 3.7, {f.}} is a cellular basis of Ax and, by Corollary 3.10, we
may take {f*|¢€ T(A)} to be a basis of C(1). By Theorem 3.7 again, f*f./ = 6uy,f.}, so
that {f*, />, = dxy, by Corollary 3.10 and the definition of the inner product on C(4).
Using Proposition 3.4(b) and the associativity of the inner product on C(1), we see that

<a3/-17ft/1>/1 = <a_f7f;iFl‘>/l = <aj~F[*7f;/1>2 = <a:~lFl7](t)~>/l = <f3)~7f[)~>/l'

So we have proved the first claim in the statement of the theorem.
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Finally, the transition matrix between the two bases {a/} and {f*} of C(A) is uni-
triangular (when suitably ordered), so we have that

G(2) = det({af,af ;) = det(<f7, £75) = 11 7

teT())

as required. []

3.13. Remark. Extending the bilinear forms ¢, >, to the whole of Ax (using Corol-
lary 3.11), we see that the seminormal basis {f,/} is an orthogonal basis of 4x with respect
to this form.

In principle, we can use Theorem 3.12 to compute the Gram determinants of the cell
modules of any cellular algebra 4 which has a separable family of JM-elements. In prac-
tice, of course, we need to find formulae for the structure constants {y, |7 € T(4)} of the
basis {f,7}. In all known examples, explicit formulae for 7, can be determined inductively
once the actions of the generators of 4 on the seminormal basis have been determined. In
turn, the action of 4 on its seminormal basis is determined by its action on the original cel-
lular basis {a/}. In effect, Theorem 3.12 gives an effective recipe for computing the Gram
determinants of the cell modules of A4.

By definition the scalars y, are elements of the field K, for # € T'(4). Surprisingly, their
product must belong to R.

3.14. Corollary. Suppose that J.€ A. Then [] 7,€ R
teT(2)

Proof. By definition, the inner products <a;~‘, af*) ; all belong to R, so G(4) € R. The
result now follows from Theorem 3.12. [

As G(4) % 0 by Theorem 3.12 and Corollary 3.9, it follows that each cell module is
irreducible.

3.15. Corollary. Suppose that i € A. Then the cell module C(1.) = D(X) is an irreduc-
ible Ag-module.

We close this section by describing the primitive idempotents in Ag.

3.16. Theorem. Suppose that Ak is a cellular algebra with a family of JM-elements
which separate T(A). Then

I,
(@) If te T(A) and 4 € A then F, = y—j,f and F, is a primitive idempotent in Ak.

t

(b) If € A then F, = ) F,is a primitive central idempotent in Ak.
teT(2)

(c) {F/|te T(A)} and {F,| A e A} are complete sets of pairwise orthogonal idempo-
tents in Ag; in particular,

lAK:ZF;{: Z Ff.

AeA teT(A)
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Proof. By Corollary 3 9, y, 0 for all e T(4), so the statement of the theorem
makes sense. Furthermore, f” is an idempotent by Theorem 3.7. By Corollary 3.15 the

cell module C(4) is 1rredu01ble and by Corollary 3.10, C(4) = fth x = F;Ag. Hence, F,is a
primitive idempotent.

To complete the proof of (a) we still need to show that F, = fn By Theorem 3.7 we

can write Fr= > >  ryfy, for some ry, € K. Suppose that u,ve T(u), for some
veAx,yeT(v)
i € A. Then, by Proposition 3.4 and Theorem 3.7,

Jaki=22 X rolaly = 2 Terdiy

veAx,yeT(u) yeT(u)

By Corollary 3.9, y, # 0, so comparing both sides of this equation shows that

1 )
—, ifo=t=y,
Foy = § Vi

0, otherwise.
. . I, .
As v is arbitrary we have F; = — f,/, as claimed.
Vi

This completes the proof of (a). Parts (b) and (c) now follow from (a) and the multi-
plication formula in Theorem 3.7. []

3.17. Corollary. Suppose that Ak is a cellular algebra with a family of JM-elements
which separate T(A). Then

Li= Y c(i)F

teT(A)

and ] (L;— ¢) is the minimum polynomial for L; acting on Ak.
ce€(i)

Proof. By part (c) of Theorem 3.16,

Li=L Y F= Y LF= Y c(i)F,

teT(A) teT(A) teT(A)

where the last equality follows from Proposition 3.4(c).

For the second claim, observe that [] (L; — ¢) - £/ = 0 by Proposition 3.4(c), for all
ce?(i)
€A andalls,te T(4). If we omit the factor (L; — d), for some d € %(i), then we can find

an s € T(u), for some y, such that cy(i) = d so that [[ (L; — ¢)F; 0. Hence, [] (L;—c¢)
c*d ce€(i)
is the minimum polynomial for the action of L; on Ag. []

The examples at the end of section 2 show that the number of JM-elements is not
uniquely determined. Nonetheless, we are able to characterize the subalgebra of Ax which
they generate when the JM-elements separate 7°(1).
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3.18. Corollary. Suppose that Ak is a cellular algebra with a family of JM-elements
which separate T(A). Then {L,,..., Ly} generate a maximal abelian subalgebra of Ag.

Proof. As the JM-elements commute, by definition, the subalgebra #x of Ax which
they generate is certainly abelian. By Theorem 3.16 and Corollary 3.17, %k is the subalge-
bra of A spanned by the primitive idempotents {F, |z € T(A)}. As the primitive idempo-
tents of Ax span a maximal abelian subalgebra of Ak, we are done. [

4. The non-separated case

Up until now we have considered those cellular algebras 4x which have a family of
JM-elements which separate 7'(A). By Corollary 2.9 the separation condition forces Ak to
be semisimple. In this section we still assume that 4 = Ag has a family of JM-elements
which separate 7'(A) over R but rather than studying the semisimple algebra Ax we extend
the previous constructions to non-separated algebras over a field.

In this section let R be a discrete valuation ring with maximal ideal 7. We assume that
Ar has a family of JM-elements which separate T(A) over R.

Let K be the field of fractions of R. Then Ak is semisimple by Corollary 2.9 and all of
the results of the previous section apply to Ax. Let kK = R/x be the residue field of K. Then
A = A ®gk is a cellular algebra with cellular basis given by the image of the cellular basis
of 4 in A. We abuse notation and write {a’} for the cellular bases of all three algebras
A = Ag,Ag and Ay. It should always be clear from the context which algebra these ele-
ments belong to at any given time.

In general, the JM-elements will not separate 7'(A) over k, so the arguments of the
previous section do not necessarily apply to the algebra Ay.

If re R let 7 = r+ & be its image in k = R/n. More generally, if a = 3 ryal, € Ag
then we set @ = Y iyal € Ay.

M
Observe that ¢ — ¢’ is invertible in R whenever ¢ + ¢’ and ¢,¢’ € € = |J %(i).
i=1

If 1 £i< M and te T(A) define the residue of i at t to be r,(i) = c,(i). By 2.4 the
action of the JM-elements on A4y is given by

atlL; = r,(i)alf, + > rwafv (modA,ﬁ'),

st
vt

where r,, € k (and otherwise the notation is as in 2.4). There is an analogous formula for the
action of L; on a, from the left.

We use residues modulo # to define equivalence relations on 7(A) and on A.

4.1. Definition (Residue classes and linkage classes). (a) Suppose that s,z € T(A).
Then s and ¢ are in the same residue class, and we write s x~ ¢, if ry(i) = r,(i), for 1 £i < M.
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(b) Suppose that 4, € A. Then 1 and u are residually linked, and we write A ~ p, if
there exist elements Ao = 4, 41, ...,4, = u and elements s;, t; € T(4;) such that s;_ ~ ¢;, for
i=1,...,r

It is easy to see that & is an equivalence relation on 7'(A) and that ~ is an equivalence
relation on A. If se T(A) let T, e T(A)/~ be its residue class. If T is a residue class let
T(A) =TnT(A), for A€ A. By 2.6, the residue classes T(A)/~ parameterize the irreduc-
ible Z-modules.

Let T be a residue class T(A) and define

FT:ZF[.

teT

By definition, F7y is an element of Ax. We claim that, in fact, Fy € Ag.
The following argument is an adaptation of Murphy’s proof of [18], Theorem 2.1.

4.2. Lemma. Suppose that T is a residue equivalence class in T(A). Then Fr is an
idempotent in Ag.

Proof. We first note that Fy is an idempotent in Ax because it is a linear combina-
tion of orthogonal idempotents by Theorem 3.16(a). The hard part is proving that Fy € Ag.

Fix an element 7 € T(u), where 1 € A, and define

M Li—c
=11 .

i=1 ce% Ct()
C:Fr1<l)

Then F/ e Ag since, by assumption, ¢,(i) —c¢ is invertible in R whenever 1,(i) # C.
Observe that the numerator of F/ depends only on T whereas the denominator

M
=TI II (ci(i) —¢) of F/ depends on t. Let s € T(4). Then, by Proposition 3.4(d) and
i=1 ¢r1,(i)

Theorem 3.16(a),

dy .
FIF, = ZFS’ if seT,
0, otherwise.

Consequently, F/ = > >

R, by Theorem 3.16(c).
AeAseT(4 )d

Now, if s € T(4) then d; = d; (mod 7) since s & t. Therefore, 1 — % is an element of 7.
t

Let e, € R be the denominator of F, and choose N maximal such that e, € 7%, for all s € T.

d\"1 d\"
Then 1—2 — € R, so that l—z F; € Ag, for all s e T. We now compute

t) €s t
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% = i ZI)NF

AeNseT(4)

where the last line follows because the F; are pairwise orthogonal idempotents in Ag.
Therefore, (Fr — F,’)N € Ag.

To complete the proof we evaluate (Fy — F/)" directly. First, by Theorem 3.16(a),

FlFr=3% X drFFTr—Z >

d t
reNseT(A AeAseT(2) Yt

Similarly, FyrF/ = F/. Hence, using the binomial theorem, we have

-y = -0 ()

Hence, Fr = (Fr — F/ R ) + 1 € Ag, as required. []

By the lemm& Fy € Ag. Therefore, we can reduce Fy modulo 7 to obtain an element
of Ay. Let Gy = Fy € Ay be the reduction of Fy modulo n. Then G is an idempotent in
Ay

Recall that if s € T(A) then T is its residue class.
4.3. Definition. Let T be a residue class of T(A).

(a) Suppose that s, e T(4). Define g% = Gr,al,G, € Ax.

sSt

(b) Suppose that I' € A/~ is a residue linkage class in A. Let A} be the subspace of
Ay spanned by {g7|s,te T(4) and 1€ T}.

Note that G* = Gt and that (g%)" = g/, for all 5,7 T(4) and 4 € A. By Theorem
3.16,if S and T are residue classes in T'(A) then GsG1 = ds7Gr.

4.4. Proposition. Suppose that s,t € T(1), for some L€ A, that ue T(A) and fix i
with1 <i < M. Let T € T(A)/~. Then, in Ay,

(@) Ligy; = 15(i)g5s + 3 rug), mod A%, (¢) Grgl =dr,1 95

u=s

(b) giLi =1i(i)gs + > rogf, mod 4%, (d) g.Gt = drr, g5

>t
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We can now generalize the seminormal basis of the previous section to the algebra Ay.

4.5. Theorem. Suppose that Ag has a family of JM-elements which separate T(A)
over R.

() {gZ|s,te T(A) and ). € A} is a cellular basis of Ay.

(b) Let T be a residue linkage class of A. Then A} is a cellular algebra with cellular
basis {gl|s,t e T(%) and /. e T}.

(c) The residue linkage classes decompose Ay into a direct sum of cellular subalgebras;
that is,

A= @ 4}
FeA/~

Proof. Let I be a residue linkage class in A and suppose that 4 € I'. Then, exactly as
in the proof of Lemma 3.3(a), we see that if s,z € T'(4) then g/ = a’ plus a linear combina-
tion of more dominant terms. Therefore, the elements {g#} are linearly independent be-
cause {a’} is a basis of Ay. Hence, {g’} is a basis of 4;. We prove the remaining state-
ments in the theorem simultaneously.

Suppose that A, € A and that s,z € T(4) and u,v € T(x«). Then

Glea;‘,quta{ijqu_, if t~ u,

Lgl = Gr,a},G1,Gr,allG :{
gstguv Ts st T,9T, uv T, 0’ Otherwise_
Observe that 1 ~ u only if 4 ~ u. Suppose then that 4 ~ u and let I" be the residue linkage
class in A which contains 4 and x. Then, because {a), } is a cellular basis of 4, we can
write

afthtaz’le‘ = Z Z wag:;,x,
veA w,xeT(v)
VZA,VZ U WS, X1
for some r,,, € k such that if v = A then r,, & 0 only if w = s, and if v = u then r,,, & 0 only
if x = v. Therefore, using Proposition 4.4, we have

A v
Ist9uw = Z Z rWXGTngxGTu
veA w,xeT(v)
VA,V U wE=s, X0

. v

= E § rwxgwx *
vell  w,xeT(v)
VZA,VZ U WE=s, XE=0

L e AL otherwise, gﬁ;g{fv = 0. All of the

uv

Consequently, we see that if 4 ~ eI then g‘f,g
statements in the theorem now follow. []

Arguing as in the proof of Theorem 3.16(a) it follows that Gy = ) rS,g‘f[, where ry, is
non-zero only if s, € T(4) for some 1 € A.
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We are not claiming in Theorem 4.5 that the subalgebras 4] of Ay are indecom-
posable. We call the indecomposable two-sided ideals of A; the blocks of Aj. It is a
general fact that each irreducible module of an algebra is a composition factor of a unique
block, so the residue linkage classes induce a partition of the set of irreducible A;-modules.
By the general theory of cellular algebras, all of the composition factors of a cell module
are contained in the same block; see [6], 3.9.8, or [15], Cor. 2.22. Hence, we have the
following.

4.6. Corollary. Suppose that Ag has a family of IM-elements which separate T(A)
over R and that J,u € A. Then C(1) and C(u) are in the same block of Ay only if . ~ p.

Let e A/~ be a residue linkage class. Then > F, € Ax by Lemma 4.2 and
_ Lel
Theorem 3.16(b). Set Gr = > F; € Ax. The following result is now immediate from
rel
Theorem 4.5 and Theorem 3.16.

4.7. Corollary. Suppose that Ag has a family of IM-elements which separate T(A)
over R.

(a) Let T be a residue linkage class. Then Gr is a central idempotent in Ay and the
identity element of the subalgebra A} . Moreover,

Al = GrAyGr = Endy, (4;Gr).

(b) {Gr|T' € A/~} and {G1|T € T(A)/~} are complete sets of pairwise orthogonal
idempotents of Ay. In particular,

ly= > Gr= > Gr.
FeA/~ TeT(A)/x

Observe that the right ideals Gy Ay are projective Ax-modules, for all T € T'(A)/~. Of
course, these modules need not (and, in general, will not) be indecomposable.

Let 2(i) ={c|ce®(i)}, for 1 =i < M.If T is a residue class in T(A) then we set
r7(i) =r,(i), forte Tand 1 £i < M.

4.8. Corollary. Suppose that Ar has a family of JM-elements which separate T (A)
over R. Then

Proof. That L;= > ry(i)Gy follows from Corollary 4.7(b) and Proposition
TeT(A)/~
44. O

As our final general result we note that the new cellular basis of A, gives us a new
‘not quite orthogonal’ basis for the cell modules of Ay. Given 4 € A fix s € 7'(4) and define
g} =gl + A for t e T(4).
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4.9. Proposition. Suppose that Ag has a family of IM-elements which separate T ()
over R. Then {g}|te T(L)} is a basis of C(A). Moreover, if t,u € T(A) then

) | <Cl;'7 )'>‘7 ) I~ u,
<g;,gi>ﬁ~={ (9w U
0, if txu.

Proof. That {g}|te T(%)} is a basis of C(4) follows from Theorem 4.5 and the ar-
gument of Lemma 3.3(a). For the second claim, if z,u € T'(1) then

gl gly, = <alGr, gl>, = <al,g!GT.>;

by the associativity of the inner product since G}, = Gr,. The result now follows from
Proposition 4.4(d). [

In the semisimple case Theorem 3.12 reduces the Gram determinant of a cell module
to diagonal form. This result reduces it to block diagonal form. Murphy has considered this
block decomposition of the Gram determinant for the Hecke algebras of type A4 [20].

We now apply the results of this section to give a basis for the blocks of several of the
algebras considered in section 2.

4.10. Theorem. Let k be a field and suppose that Ag is one of the following algebras:
(a) the group algebra RS, of the symmetric group;

(b) the Hecke algebra #y ,(S,) of type A;

(c) the Ariki-Koike algebra #y 44 with q =+ 1;

(d) the degenerate Ariki-Koike algebra AR ,.

Then A has a family of JM-elements which separate T(A) over R and Theorem 4.5 gives a
basis for the block decomposition of Ay into a direct sum of indecomposable subalgebras.

The cellular bases and the families of JM-elements for each of these algebras are
given in the examples of Section 2. As kS, =~ #; 1(S,), we use the Murphy basis for the
symmetric group. Note that the Hecke algebras of type A should not be considered as the
special case r =1 of the Ariki-Koike algebras because the JM-elements that we use for
these two algebras are different. Significantly, for the Ariki-Koike case we must assume
that ¢ # 1 as the JM-elements that we use do not separate 7(A) over R when ¢ = 1.

Before we can begin proving this result we need to describe how to choose a modular
system (R, K, k) for each of the algebras above. In all cases we start with a field k and a
non-zero element ¢ € k and we let R be the localization of the Laurent polynomial ring
k[t, '] at the maximal ideal generated by (¢ — ¢). Then R is a discrete valuation ring with
maximal ideal 7 generated by the image of (¢ — ) in R. By construction, k =~ R/n and ¢ is
sent to ¢ by the natural map R — k = R/n. Let K be the field of fractions of R.
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First consider the case of the Hecke algebra 7 ,(S,). As we have said, this includes
the symmetric group as the special case ¢ = 1. We take Ag = #z (S,), Ax = H#x (S,),
and Ay = #R (S,) Qg k. Then Hk (S,) is semisimple and #; ,(S,) = Hr (S,) Qrk.

Next, consider the Ariki-Koike algebra #; ,, with parameters ¢ & 0,1 and
u= (uy,...,u,)ek™. Let vy=u;+(q—1)", for s=1,...,m, and set v = (vy,...,v,).
We consider the triple of algebras Agx = #r v, Ax = #x,1,v and Ay = Hj. 4. Once again,
Ak is semisimple and A, =~ Ar ®r k. The case of the degenerate Ariki-Koike algebras is
similar and we leave the details to the reader.

The indexing set A for each of the algebras considered in Theorem 4.10 is the set of
m-multipartitions of n, where we identify the set of 1-multipartitions with the set of parti-
tions. If 4 is an m-multipartition let [1] be the diagram of 1; that is,

] ={(s,i,j)|1 Ss<rand 1< )<V}
Given a node x = (s,1, j) € [A] we define its content to be

[] - i]tv if Ag = %R,l(gn)7
C(X) = Ustj_iy if AR = J[)R,t.,v’
l)_g-}-(j—l'), ifAR:Jwa.

We set €, = {c(x)|x € [A]} and Z, = {c(x) | x € [4]}.

Unravelling the definitions, it is easy to see, for each of the algebras that we are con-
sidering, thatif Ae A and re T'(4) then 4, = {c,(i) |1 =i = M}.

To prove Theorem 4.10 we need to show that the residue linkage classes correspond
to the blocks of each of the algebras above. Hence, Theorem 4.10 is a corollary of the fol-
lowing proposition.

4.11. Proposition. Let A be one of the algebras considered in Theorem 4.10. Suppose
that ,u € A. The following are equivalent:

(@) C(4) and C(u) belong to the same block of Ay.

(b) 4 ~ .
(C) 9?,1 = %ﬂ'

Proof. First suppose that C(A) and C(x) are in the same block. Then 4 ~ u by Cor-
ollary 4.6, so that (a) implies (b). Next, if (b) holds then, without loss of generality, there
exist s € T'(A) and ¢ € T'(u) with s ~ t; however, then %, = #,. So, (b) implies (c). The im-
plication ‘(c) implies (a)” is the most difficult, however, the blocks of all of the algebras that
we are considering have been classified and the result can be stated uniformly by saying
that the cell modules C(4) and C(u) belong to the same block if and only if Z, = Z,,; see
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[14] for #. ,(S,) and the Ariki-Koike algebras, and [3] for the degenerate Ariki-Koike al-
gebras. Therefore, (a) and (c) are equivalent. This completes the proof. []

As a consequence we obtain the block decomposition of the Schur algebras. Let A, ,
be the set of m-multipartitions of n and let Sg (A ) be the corresponding cyclotomic
¢-Schur algebra [4], where ¢ and v are as above.

4.12. Corollary. Let k be a field and suppose that A is one of the following
k-algebras:

(a) the q-Schur algebra Sg 4(n);
(b) the cyclotomic q-Schur Sg ¢ o(Am,n) algebra with q % 1.

Then A has a family of JM-elements which separate T'(A) over R and Theorem 4.5 gives a
basis for the block decomposition of Ay into a direct sum of indecomposable subalgebras.

Proof. Once again it is enough to show that two cell modules C(1) and C(u) belong
to the same block if and only if 4 ~ u. By Schur-Weyl duality, the blocks of Sy ,(n) are in
bijection with the blocks of J# ,(n) ([15], 5.37-5.38) and the blocks of Sk 4 4(A ) are in
bijection with the blocks of #; , . ([16], Theorem 5.5). Hence the result follows from Pro-
position 4.11. [

It is well known for each algebra A in Theorem 4.10 that the symmetric polynomials
in the JM-elements belong to the centre of 4. As our final result we show that there is a
uniform explanation of this fact. If 4 is an algebra we let Z(A4) be its centre.

4.13. Proposition. Suppose that A has a family of IM-elements which separate T (A)
over R and that for A € A there exist scalars c,(i), for 1 < i < M, such that

()1 Sis My ={c(i)|1 i< M},

for any t € T(A). Then any symmetric polynomial in Ly, ..., Ly belongs to the centre of Ay.

Proof. Suppose that Xj,...,X)y are indeterminates over R and let
p(Xi,...,Xm) € R[X1,..., Xy] be a symmetric polynomial. Recall that L; = > ¢,(i)F, in
Ag, by Corollary 3.17. Therefore, !

p(Li,...,Ly) =Y ple(l),....colM))F, =3 p(ei(1),...,¢c;(M))F,.
1eT(A) leA
The first equality follows because the F; are pairwise orthogonal idempotents by Theorem
3.16. By Theorem 3.16(c) the centre of Ak is spanned by the elements {F; | A € A}, so this
shows that p(Ly, ..., Ly) belongs to the centre of Ax. However, p(Li, ..., Ly ) belongs to
Ag so, in fact, p(Ly,..., L)) belongs to the centre of Ag. Now, Z(Ag) is contained in the
centre of A; and any symmetric polynomial over k& can be lifted to a symmetric polynomial
over R. Thus, it follows that the symmetric polynomials in the JM-elements of 4, are cen-

tralin 4. O
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All of the algebras in Theorem 4.10 satisfy the conditions of the proposition because,
using the notation above, if 7€ T(1) then €, = {c,(i)| 1 <£i < M} for any of these alge-
bras. Notice, however, that the (cyclotomic) Schur algebras considered in section 2 and
the Brauer and BMW algebras do not satisfy the assumptions of Proposition 4.13.

Acknowledgements. 1 thank Marcos Soriano for many discussions about seminor-
mal forms of Hecke algebras and for his detailed comments and suggestions on this paper.
This paper also owes a debt to Gene Murphy as he pioneered the use of the Jucys-Murphy
elements in the representation theory of symmetric groups and Hecke algebras.
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Appendix. Constructing idempotents
from triangular actions

By Marcos Soriano at Hannover

Abstract. We give a general construction of a complete set of orthogonal idempo-
tents starting from a set of elements acting in an (upper) triangular fashion. The construc-
tion is inspired in the Jucys-Murphy elements (in their various appearances in several cellu-
lar algebras).

1. Triangular actions: setup and notation

The construction of idempotents presented here is based only on matrix arithmetic.
However, whenever possible, we will mention the more suggestive notation from combina-
torial representation theory.

Let A be an R-algebra, where R is an arbitrary integral domain. The starting point is
a representation p of A via matrices over R, that is, an R-free (left) A-module M. Let d be
the R-rank of M and setd := {1,...,d}.

1.1. Remark. Until section 5 we will not make any additional assumptions on R or
A. We have in mind such examples as A being a cellular R-algebra and M a single cell
(“‘Specht”) module M, which would give rise to “Young’s Orthogonal Form” for M, as
well as the case M = A itself, e.g. for questions of semisimplicity.

Assume that with respect to a certain basis (of “tableaux’)
I = {Zl,...,td} oM

there is a finite set of elements ¥ := {L;,...,L,} < A (the “Jucys-Murphy” elements) act-
ing in an upper triangular way, that is,

rpoox *
2. :

o(Li) = 0 r; | Vien
0 0 r

for certain diagonal entries {rl] },ien, jed (the “residues” or “contents”). Call

(r{,r'z’,...,r,{)

Y The author thanks Andrew Mathas for his generosity and hospitality.
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the residue sequence corresponding to the basis element #;. From now on, we identify L;
with its representing matrix, thus suppressing p. Note that we do not make any assumption
on (¥ being central in A or that .# consists of pairwise commuting elements.

Finally, we need some notation for matrices. We denote by { £}, ;.. the canonical
basis of matrix units of Mat,(R), whose elements multiply according to E;E = oy Ej.
The subring of Mat,(R) consisting of upper triangular matrices contains a nilpotent ideal
with R-basis {Ej}, <, <, which we denote by ./". We define the support of a matrix
A = (a;) € Maty(R) in the obvious way,

supp(A4) :={(i,j) ed x d|a; + 0}.
To any i € d we associate the following subset of d*:
wo={(k,)ed*|k<i<I},

and extend this definition to any non-empty subset J = d via u,; := |J u;. If J is non-empty
ieJ

then a matrix A has shape J if supp(4) < u; and the sequence (a;), ., of diagonal entries is

the characteristic function of the subset J, that is, -

. 1, ifield,
"0, ifi¢d.

In particular, A€ >  E; + ./ and A is upper triangular. For example, the matrices of
ieJ
shape {i} have the form

0 0 * =x *
0 = *

1 * - %

0

2. Cayley-Hamilton and lifting idempotents

Let us pause to consider a single upper triangular matrix

Cl * *

0 R
Z= & € Mat,(R).
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Note that by the Cayley-Hamilton theorem, the matrix Z satisfies the polynomial
d

[1(X —=¢;). Assume that Z has shape J for some non-empty J < d of cardinality k = |J|.
i=1

Then Z satisfies the polynomial (X — l)k-X d=k What if k=1? Then the Cayley-
Hamilton equation for Z reads

0=2z""1.(2z-1) o zi=2z""

This implies (by induction) Z9+/ = Z¢ for all j = 1. In particular, the element F := Z¢ is
an idempotent.

Of course, this is just a special case of “lifting”” idempotents, and can be extended (cf.
[1], Section 1.12) to the following ring theoretical version (Lemma 2.4). We introduce some
notation first.

Let N = 2 be a natural number (corresponding to the nilpotency degree in Lemma
2.4; for N = 1 there is nothing to do). Consider the following polynomial in two (commut-
ing) indeterminates:

X+ )= _
1

N1 /ON — |
%
i=0

)Xi Yszlfl'

N-L/2ON — 1 S NZl/ON — ] 4 -
— XZN—I—IYI le2N—1—l
> (") <2 (M)

= SN(X, Y) —I—SN(Y,X)

(using the symmetry of the binomial coefficients). Note that ey (X, Y) has integer coeffi-
cients. Since N > 1,

(2.1) en(X,Y) = X1 mod(XY)
and ey (X, Y) = 0 mod(X?). This implies that
(2.2) en(X,Y)-en(Y,X)=0 mod(XY)".
Specialise to a single indeterminate by setting ey (X) := ey (X, 1 — X) and observe that

(23) 1 =12N-1 = (X—|- (1 _X))ZNfl

= SN(X) —|—8N(1 — X)
Now we are ready to formulate the

2.4. Lemma. Let A be aring and N a nilpotent two-sided ideal of nilpotency degree
N. If x*> = xmod N, then e := ex(x) is an idempotent with e = x mod A"

Proof. Note that x> = x mod A" < x — x?> = x(1 — x) € A, implying
e=ey(x)=x*"1=x modA

by equation (2.1). On the other hand, combining equations (2.2) and (2.3),
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e—e?=e(l—e)=ex(x)ex(l —x) =0 mod (x(1 — x))N.

But (x(l — x))N e /N =0, thus the equality e — e?> = 0 holds and e is indeed an idempo-
tent. [

3. The separating condition and directedness

We consider first a simple version of the idempotent construction that is relevant to
semisimplicity questions. For i € d we denote by i the set d\{i}. Let us assume now that for
all i € d the following separating condition is satisfied:

(F) Vjei 3k ensuch thatr] —r,feRX.

In particular, both residues are different. Of course, £ may not be unique, but we assume a
fixed choice made for all possible pairs of indices. Then we define (1 denotes the identity
matrix)

L — rlfl

AU RN B
jei T =Tk

Zl‘ =

The product can be taken in any order, the essential fact being only to achieve that the ma-
trix Z; is of the form Z; = Ej; + N; for some upper triangular nilpotent matrix NV;. Just note
that for the j-th factor F in the definition of Z; we have

i J J Jj
rt —r v, —r
Fy=X*_"kK—1 and Fjj:’f k—.
rl_r.l rl_r]
k k k

Now, using the observation of §2, we obtain a set of idempotents &; := Zl-" . Our first asser-
tion is

3.1. Lemma. The idempotent &; has shape {i}.

Proof. Any matrix of the form (E; + N) with N e /" has shape {i}. To see this,
use the non-commutative binomial expansion for U = (E; + N )d, that is, express U as a
sum of terms X --- X,, where X; € {E;, N}. If all X; = N, we have the (only) summand
of the form N = 0 (by nilpotency), with no contribution. Similarly, if all X; = Ej;;, we ob-
tain one summand Ej;.

In the case when X or X,; equals Ej;, and at least one factor equals N, this summand
has the appropriate form,

O --- 000 --- 0 0O --- 0 = 0 --- 0

0 0 O 0 0 « 0 - 0

either 0 = * or 0o 0 - 0
0 0 0 - 0




170 Mathas and Soriano, Seminormal forms and Gram determinants

Thus we are left with the summands having X1 = X; = N and X; = Ej; for some 1 < j < d.
But the support of any matrix in ./"Ej;. /" is contained in the set {(k,s) e d* |k < i < s}, as
one sees by matrix unit gymnastics (running indices are underlined):

() 5o (5hu8) = (Souts) (S0) = 5wt

k<j r<s k<j i<s 1=k<i<s<d

This finishes the proof of the lemma, as all summands add up to show that U — Ej; is nil-
potent with support contained in u;. []

Lemma 3.1 has an important consequence: the one-sided “directed”” orthogonality of
the obtained idempotents.

3.2. Definition. Let »# be an arbitrary ring. Call a finite set {ej,...,e;} of idempo-
tents in J directed, if eje; = 0 whenever j > i.

3.3. Lemma. The set of idempotents {&;},., is directed.
Proof. Directedness is an immediate consequence of the fact that &; has shape
{i}. O
4. Gram-Schmidt orthogonalisation of directed systems of idempotents

We can now proceed inductively and construct a complete set of orthogonal idempo-
tents out of {&;}. The inductive step goes as follows:

4.1. Lemma. Let S be an arbitrary ring. Assume we are given two finite sets of idem-
potents in A (one of them possibly empty):

E=A{e,....,ex} and F=A{fir1, fkr2,---sfa}
for some k = 0 with the following properties:
(a) [ consists of pairwise orthogonal idempotents.
(b) [ is directed.
(c) Eis orthogonal to F, that is, ef =0 = fe foreekl, f el

k
Set F := )" e; + fi+1. Then the sets of idempotents
i=1
E: {81,...7€k,fk+1} and ﬁ:: {(1 —F)ﬁ(+2,...7(1 —F)fd}
satisfy conditions (a)—(c).

Proof. First observe that F is an idempotent, by orthogonality. If j = k 4 2 we have
(by the orthogonality of E and [F and the directedness of [) that
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k
Ji-F=fi-(et+ - +ex+ fix1) = fiei+ fifixsr =0+0=0.
i=1

This implies that ]i := (1 — F)f; is an idempotent because

2= = B = Ef) = fj= Fj = fiF fi+F fF fi= (1= F)f; =],
R

Similarly, the set {£.}, 12<s<q 18 directed because for j > i >k + 1

Jifi= G = EO = Bf) = fifi = GF fi= F fifi +F F fi=0.
R e T

Since E is orthogonal to fi;, E consists obviously of pairwise orthogonal idempotents.
Thus, we are left with checking orthogonality between f;; and F. Let j = k + 2, then

A~

Jivr - i = fent(L=F)fi = firi(1 = fin) fj = Zk:fkﬂeifi =0,
— i=1 N=—~—

=0 =0

as well as f; - fix1 = (1 = F) fi fis1 = 0 by directedness. []
Thus, keeping the notations from §1 and §3, we obtain the following

4.2. Proposition. A set ¥ ={Ly,...,L,} of “Jucys-Murphy operators” satisfying
the separating condition (&) for all i € d gives rise to a complete set of orthogonal idempo-
tents {e1,...,eq}.

Proof. Starting from E = 0 and F = {&; = Z{},_,, we obtain—using Lemma 4.1 d
times—a set {ey,...,e,s} of orthogonal idempotents.

Note that the idempotents ¢; have again shape {i} (check this in the inductive step
from Lemma 4.1 by considering the form of the matrix 1 — F). Completeness of the set
{e1,...,eq} now follows easily, since we obviously have by Lemma 3.1:

e:=e1+---+e;=1+N,

for some (upper triangular) nilpotent matrix N. Thus, 1 — e is an idempotent and a nilpo-
tent matrix, implying that N =0. [

Note that the proof gives, at the same time, a practical algorithm for constructing the
complete set of orthogonal idempotents in question.
5. Linkage classes

From now on, we assume that R is a local commutative ring with maximal ideal m.
This includes the case of R being a field (when m = 0).
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Fix k e nand j € d. We may assume without loss of generality that not all residues r{,
i € d, are zero (replace Ly by 1+ L if necessary®). We say that i € d is linked to j via L, if
i
rp, — 1, € m. Set

Lx(j) :={ied|iislinked to j via Ly}.
Observe that j € L (/) since 0 € m.

5.1. Definition. The /inkage class of j € d with respect to ¥ = {L,,...,L,} is the
set

L(j) == M Le())-
ken
5.2. Remark. Linkage classes with respect to % partition the set d (of “tableaux’)
into, say, / disjoint sets Ji, . ..,J;. In view of the fact that R\m = R*, the assumption of the
separating condition (%) from §3 for all / € d just translates into the condition of all linkage
classes being singletons.

Consider a fixed linkage class J. For all j € d\J we assume that a fixed choice of k e n
and i € d has been made such that

r,i — r;f € R* = R\m.
Then we define

L, —r/1
ZJZ: Hili k

: J
JEJ T =T

(the product can be taken in any order). Note that—by Lemma 3.1—Z¢ has shape J.

6. A general orthogonalisation algorithm for idempotents

6.1. Proposition. A4 set ¥ ={L,,...,L,} partitioning d into | linkage classes gives
rise to a complete set {ey, ..., e} of orthogonal idempotents.

Again, the proof of the proposition provides an algorithm for constructing

{61,...,61}.

Proof. Let Jy,...,J; denote the linkage classes and set U; := Z j{ , a matrix of shape
Ji. We start the orthogonalisation procedure by setting Ey := @ and F; := {e;(U)}, <;<;-
Note that [; consists of idempotents by Lemma 2.4. Assuming that two sets of idempotents
Ex = {ei1,...,ex} (pairwise orthogonal) and F;—x = {fk+1,..., i} with Ex orthogonal to
F;_x have been already constructed, we set Exyj := Ex U {fi+1} and have to modify F,_
appropriately. The goal is that F;_;_; consists of idempotents orthogonal to .

2 Note that this does not change the property of the considered set of Jucys-Murphy operators of being
central in A or, rather, consisting of pairwise commuting elements.
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Set F:= Y e and consider first f,:=e,((1 —F)f) for all j>k+2. Since
e€lbrs '
e(1—F) =0 for e e Exyy and g4(X) € X - Z[X, Y], Ex4 is left orthogonal to the idempo-
tent f;, j = k + 2. Similarly, multiplication from the right by (1 — F) and application of the
polynomial ¢, forces right orthogonality to hold, while keeping left orthogonality. That is,
the set Fr_—1 = {fir2,-- -, [y} with f; := e4(f;(1 — F)) has the desired properties.

Thus, after / steps, we end up with an orthogonal set of idempotents {ej,...,e/}. Ob-
serve that the inductive step described above does not change the shape of the idempotents,
implying that e; has shape J;, just like the original idempotent &;(U;). This fact, in addition
to Ji,...,J; partitioning d, leads to the equation

e +--+te=1-N

with N a nilpotent and idempotent matrix, thus implying N = 0 and the completeness of
E. O

6.2. Remark. Retracing all steps in the proof of Proposition 6.1, we see that the
constructed idempotents e; belong to R[L,...,L,|, the R-subalgebra of A generated by
%. Thus, if the elements from ¥ do commute pairwise, this will still hold for the set of
idempotents [E := F;.

In particular, assuming that .# is a set of central Jucys-Murphy elements for the mod-
ule M = A, we obtain a set E of central orthogonal idempotents. Thus, for example, the
block decomposition of A in the case of R being a field must be a refinement of the decom-
position into linkage classes induced by ..

We leave the adaptation of the presented methods to particular classes or examples
for A, R, M and & to the reader’s needs.
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