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Abstract. This paper develops an abstract framework for constructing ‘‘seminor-
mal forms’’ for cellular algebras. That is, given a cellular R-algebra A which is equipped
with a family of JM-elements we give a general technique for constructing orthogonal
bases for A, and for all of its irreducible representations, when the JM-elements separate

A. The seminormal forms for A are defined over the field of fractions of R. Significantly,
we show that the Gram determinant of each irreducible A-module is equal to a product
of certain structure constants coming from the seminormal basis of A. In the non-separated
case we use our seminormal forms to give an explicit basis for a block decomposition
of A.

1. Introduction

The purpose of this paper is to give an axiomatic way to construct ‘‘seminormal
forms’’ and to compute Gram determinants for the irreducible representations of semisim-
ple cellular algebras. By this we mean that, starting from a given cellular basis fal

stg for a
cellular algebra A, we give a new cellular basis f f l

st g for the algebra which is orthogonal
with respect to a natural bilinear form on the algebra. This construction also gives a ‘‘semi-
normal basis’’ for each of the cell modules of the algebra. We show that the Gram determi-
nant of the cell modules (the irreducible A-modules) can be computed in terms of the struc-
ture constants of the new cellular basis of A. Combining these results gives a recipe for
computing the Gram determinants of the irreducible A-modules.

Of course, we cannot carry out this construction for an arbitrary cellular algebra A.
Rather, we assume that the cellular algebra comes equipped with a family of ‘‘Jucys-
Murphy’’ elements. These are elements of A which act on the cellular basis of A via upper
triangular matrices. We will see that, over a field, the existence of such a basis f f l

st g forces
A to be (split) semisimple. The cellular algebras which have JM-elements include the group
algebras of the symmetric groups, any split semisimple algebra, the Hecke algebras of type
A, the q-Schur algebras, the (degenerate) Ariki-Koike algebras, the cyclotomic q-Schur al-
gebras, the Brauer algebras and the BMW algebras.
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At first sight, our construction appears to be useful only in the semisimple case. How-
ever, in the last section of this paper we apply these ideas in the non-semisimple case to
construct a third cellular basis fgl

stg of A. We show that this basis gives an explicit decom-
position of A into a direct sum of smaller cellular subalgebras. In general, these subalgebras
need not be indecomposable, however, it turns out that these subalgebras are indecompos-
able in many of the cases we know about. As an application, we give explicit bases for the
block decomposition of the group algebras of the symmetric groups, the Hecke algebras of
type A, the Ariki-Koike algebras with q3 1, the degenerate Ariki-Koike algebras and the
(cyclotomic) q-Schur algebras.

There are many other accounts of seminormal forms in the literature; see, for exam-
ple, [1], [8], [13], [21]. The main di¤erence between this paper and previous work is that,
starting from a cellular basis for an algebra we construct seminormal forms for the entire
algebra, rather than just the irreducible modules. The main new results that we obtain are
explicit formulae for the Gram determinants of the cell modules in the separated case, and
a basis for a block decomposition of the algebra in the non-separated case. The seminormal
forms that we construct have the advantage that they are automatically defined over the
field of fractions of the base ring.

It follows using the Wedderburn theorem that an algebra has a family of separating
JM-elements if and only if it is split semisimple (see Example 2.13). As every split semisim-
ple algebra is cellular this suggests that cellular algebras provide the right framework for
studying seminormal forms. There is, however, an important caveat: the set of JM-elements
for a cellular algebra is not canonical as it depends heavily on the particular choice of cel-
lular basis. Consequently, to study an algebra using the techniques in this paper one has to
first find a cellular basis for the algebra and then find an appropriate set of JM-elements.
Neither of these tasks is necessarily easy especially as, ideally, we would like the set of JM-
elements to be compatible with modular reduction.

In the appendix to this paper, Marcos Soriano, gives an alternative matrix theoretic
approach to the theory of seminormal forms. Using only the Cayley-Hamilton theorem
he shows that if you have a family of operators acting on a module via upper triangular
matrices which satisfy an analogous separation condition then you can construct a com-
plete set of pairwise orthogonal idempotents. This shows that, ultimately, the theory of
seminormal forms rests on the Cayley-Hamilton theorem. Note that unlike in our treat-
ment, Soriano does not need to assume that the JM-elements commute or that they are
�-invariant.

This paper is organized as follows. In the next section we recall Graham and Lehrer’s
theory of cellular algebras and define JM-elements for cellular algebras. We then show that
any cellular algebra with a family of separating JM-elements is necessarily semisimple and,
by way of example, show that most of the well-known cellular algebras have JM-elements.
The third section of the paper develops the theory of JM-elements in the separated case,
culminating with the construction of a seminormal basis for a cellular algebra and the com-
putation of the Gram determinants of the cell modules. In the last section of the paper
we use modular reduction to study the non-separated case. Our main result gives a cellular
basis for a decomposition of the original cellular algebra into blocks. Finally, in the ap-
pendix Marcos Soriano gives his matrix theoretic approach to the theory of seminormal
forms.
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2. Cellular algebras and JM-elements

We begin by recalling Graham and Lehrer’s [6] definition of a cellular algebra. Let R
be a commutative ring with 1 and let A be a unital R-algebra and let K be the field of frac-
tions of R.

2.1. Definition (Graham and Lehrer). A cell datum for A is a triple ðL;T ;CÞ where
L ¼ ðL; >Þ is a finite poset, TðlÞ is a finite set for each l A L, and

C :
‘
l AL

TðlÞ � TðlÞ ! A; ðs; tÞ 7! al
st

is an injective map (of sets) such that:

(a) fal
st j l A L; s; t A TðlÞg is an R-free basis of A.

(b) For any x A A and t A TðlÞ there exist scalars rtvx A R such that, for any s A TðlÞ,

al
stx1

P
v ATðlÞ

rtvxa
l
sv ðmodAlÞ;

where Al is the R-submodule of A with basis fam
yz j m > l and y; z A TðmÞg.

(c) The R-linear map determined by � : A ! A; al
st ¼ al

ts, for all l A L and s; t A TðlÞ,
is an anti-isomorphism of A.

If a cell datum exists for A then we say that A is a cellular algebra.

Henceforth, we fix a cellular algebra A with cell datum ðL;T ;CÞ as above. We will
also assume that TðlÞ is a poset with ordering ql, for each l A L. For convenience we
set TðLÞ ¼

‘
l AL

TðlÞ. We consider TðLÞ as a poset with the ordering sq t if either (1)

s; t A TðlÞ, for some l A L, and sql t, or (2) s A TðlÞ, t A TðmÞ and l > m. We write su t if
s ¼ t or sq t. If su t we say that s dominates t.

Note that, by assumption A is a free R-module of finite rank jTðLÞj.

Let AK ¼ AnR K . As A is free as an R-module, AK is a cellular algebra with cellular
basis fal

stn 1K j l A L and s; t A TðlÞg. We consider A as a subalgebra of AK and, abusing
notation, we also consider al

st to be elements of AK .

We recall some of the general theory of cellular algebras. First, applying the � invo-
lution to part (b) of Definition 2.1 we see that if y A A and s A TðlÞ then there exist scalars
r 0suy A R such that, for all t A TðlÞ,

yal
st 1

P
u ATðlÞ

r 0suya
l
ut ðmodAlÞ:ð2:2Þ

Consequently, Al is a two-sided ideal of A, for any l A L.

Next, for each l A L define the cell module CðlÞ to be the free R-module with basis
fal

t j t A TðlÞg and with A-action given by
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al
t x ¼

P
v ATðlÞ

rtvxa
l
v ;

where rtvx is the same scalar which appears in Definition 2.1. As rtvx is independent of s this
gives a well-defined A-module structure on CðlÞ. The map h ; il : CðlÞ � CðlÞ ! R which
is determined by

hal
t ; a

l
uila

l
s v1 al

sta
l
uv ðmodAlÞ;ð2:3Þ

for s; t; u; v A TðlÞ, defines a symmetric bilinear form on CðlÞ. This form is associative in
the sense that hax; bil ¼ ha; bx�il, for all a; b A CðlÞ and all x A A. From the definitions,
for any s A TðlÞ the cell module CðlÞ is naturally isomorphic to the A-module spanned by
fal

st þ Al j t A TðlÞg. The isomorphism is the obvious one which sends al
t 7! al

st þ Al, for
t A TðlÞ.

For l A L we define radCðlÞ ¼ fx A CðlÞ j hx; yil ¼ 0 for all y A CðlÞg. As the
bilinear form on CðlÞ is associative it follows that radCðlÞ is an A-submodule of CðlÞ.
Graham and Lehrer ([6], Theorem 3.4) show that the AK -module DðlÞ ¼ CðlÞ=radCðlÞ
is absolutely irreducible and that fDðlÞ3 0 j l A Lg is a complete set of pairwise non-
isomorphic irreducible AK -modules.

The proofs of all of these results follow easily from Definition 2.1. For the full details
see [6], §2–3, or [15], Chapt. 2.

In this paper we are interested only in those cellular algebras which come equipped
with the following elements.

2.4. Definition. A family of JM-elements for A is a set fL1; . . . ;LMg of commuting
elements of A together with a set of scalars, fctðiÞ A R j t A TðLÞ and 1e ieMg, such that
for i ¼ 1; . . . ;M we have L�

i ¼ Li and, for all l A L and s; t A TðlÞ,

al
stLi 1 ctðiÞal

st þ
P
vqt

rtva
l
sv ðmodAlÞ;

for some rtv A R (which depend on iÞ. We call ctðiÞ the content of t at i.

Implicitly, the JM-elements depend on the choice of cellular basis for A.

Notice that we also have the following left-hand analogue of the formula in (2.4):

Lia
l
st 1 csðiÞal

st þ
P
uqs

r 0sua
l
ut ðmodAlÞ;ð2:5Þ

for some r 0su A R.

2.6. Let LK be the subalgebra of AK which is generated by fL1; . . . ;LMg. By defini-
tion, LK is a commutative subalgebra of AK . It is easy to see that each t A TðLÞ gives rise
to a one dimensional representation Kt of LK on which Li acts as multiplication by ctðiÞ,
for 1e ieM. In fact, since LK is a subalgebra of AK , and AK has a filtration by cell mod-
ules, it follows that fKt j t A TðLÞg is a complete set of irreducible LK -modules.

These observations give a way of detecting when DðlÞ3 0 (cf. [6], Prop. 5.9(i)).
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2.7. Proposition. Let AK be a cellular algebra with a family of JM-elements and fix

l A L, and s A TðlÞ. Suppose that whenever t A TðLÞ and sq t then ctðiÞ3 csðiÞ, for some i

with 1e ieM. Then DðlÞ3 0.

Proof. By Definition 2.4, for any m A L the LK -module composition factors of CðmÞ
are precisely the modules fKt j t A TðmÞg. Observe that if u; v A TðLÞ then Ku GKv as
LK -modules if and only if cuðiÞ ¼ cvðiÞ, for 1e ieM. Therefore, our assumptions imply
that Ks is not an LK -module composition factor of any cell module CðmÞ whenever l > m.
Consequently, Ks is not an LK -module composition factor of DðmÞ whenever l > m.
However, by [6], Prop. 3.6, DðmÞ is a composition factor of CðlÞ only if lf m. Therefore,
al
t B radCðlÞ and, consequently, DðlÞ3 0 as claimed. r

Motivated by Proposition 2.7, we break our study of cellular algebras with JM-
elements into two cases depending upon whether or not the condition in Proposition 2.7 is
satisfied.

2.8. Definition (Separation condition). Suppose that A is a cellular algebra with
JM-elements fL1; . . . ;LMg. The JM-elements separate TðlÞ (over R) if whenever
s; t A TðLÞ and sq t then csðiÞ3 ctðiÞ, for some i with 1e ieM.

In essence, the separation condition says that the contents ctðiÞ distinguish between
the elements of TðLÞ. Using the argument of Proposition 2.7 we see that the separation
condition forces AK to be semisimple.

2.9. Corollary. Suppose that AK is a cellular algebra with a family of JM-elements

which separate TðLÞ. Then AK is (split) semisimple.

Proof. By the general theory of cellular algebras [6], Theorem 3.8, AK is (split) semi-
simple if and only if CðlÞ ¼ DðlÞ for all l A L. By the argument of Proposition 2.7, the
separation condition implies that if s A TðlÞ then Ks does not occur as an LK -module com-
position factor of DðmÞ for any m > l. By [6], Prop. 3.6, DðmÞ is a composition factor of
CðlÞ only if lf m, so the cell module CðlÞ ¼ DðlÞ is irreducible. Hence, AK is semisimple
as claimed. r

In Example 2.13 below we show that every split semisimple algebra is a cellular alge-
bra with a family of JM-elements which separate TðLÞ.

2.10. Remark. Corollary 2.9 says that if a cellular algebra A has a family of JM-
elements which separate TðLÞ then AK is split semisimple. Conversely, we show in Exam-
ple 2.13 below that every split semisimple algebra has a family of JM-elements which sep-
arate TðLÞ. However, if A is semisimple and A has a family of JM-elements then it is not
true that the JM-elements must separate A; the problem is that an algebra can have di¤er-
ent families of JM-elements. As described in Example 2.18 below, the Brauer and BMW
algebras both have families of JM-elements. Combined with work of Enyang ([5], Exam-
ples 7.1 and 10.1) this shows that there exist BMW and Brauer algebras which are semi-
simple and have JM-elements which do not separate TðLÞ.

2.11. Remark. Following ideas of Grojnowski [12], (11.9), and (2.6) we can use the
algebra LK to define formal characters of AK -modules as follows. Let fKt j t A LðLÞg be a
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complete set of non-isomorphic irreducible LK -modules, where LðLÞLTðLÞ. If M is any
AK -module let ½M : Kt� be the decomposition multiplicity of the irreducible LK -module Kt

in M. Define the formal character of M to be

chM ¼
P

t ALðLÞ
½M : Kt�et;

which is element of the free Z-module with basis fet j t A LðLÞg. It would be interesting to
know to what extent these characters determine the representations of A.

We close this introductory section by giving examples of cellular R-algebras which
have a family of JM-elements. Rather than starting with the simplest example we start
with the motivating example of the symmetric group.

2.12. Example (Symmetric groups). The first example of a family of JM-elements
was given by Jucys [11] and, independently, by Murphy [17]. (In fact, these elements first
appear in the work of Young [23].) Let A ¼ RSn be the group ring of the symmetric group
of degree n. Define

Li ¼ ð1; iÞ þ ð2; iÞ þ � � � þ ði � 1; iÞ; for i ¼ 2; . . . ; n:

Murphy [17] showed that these elements commute and he studied the action of these ele-
ments on the seminormal basis of the Specht modules. The seminormal basis of the Specht
modules can be extended to a seminormal basis of RSn, so Murphy’s work shows that the
group algebra of the symmetric group fits into our general framework. We do not give fur-
ther details because a better approach to the symmetric groups is given by the special case
q ¼ 1 of Example 2.15 below which concerns the Hecke algebra of type A. r

2.13. Example (Semisimple algebras). By Corollary 2.9 every cellular algebra over a
field which has a family of JM-elements which separate TðLÞ is split semisimple. We show
the converse is also true. Note that a cellular algebra is semisimple if and only if it is split
semisimple, so non-split semisimple algebras do not arise in our setting. In fact, the appen-
dix shows that in the separated case the existence of a family of JM-elements acting on a
module forces absolute irreducibilty, so JM-elements never arise in the non-split case.

Suppose that AK is a split semisimple algebra. Then the Wedderburn basis of matrix
units in the simple components of AK is a cellular basis of AK . We claim that AK has a
family of JM-elements. To see this it is enough to consider the case when AK ¼ MatnðKÞ
is the algebra of n� n matrices over K. Let eij be the elementary matrix which has a 1 in
row i and column j and zeros elsewhere. Then it is easy to check that feijg is a cellular basis
for AK (with L ¼ f1g, say, and TðlÞ ¼ f1; . . . ; ng). Let Li ¼ eii, for 1e ie n. Then
fL1; . . . ;Lng is a family of JM-elements for AK which separate TðLÞ.

By the last paragraph, any split semisimple algebra AK has a family of JM-elements
fL1; . . . ;LMg which separate TðLÞ, where M ¼ d1 þ � � � þ dr and d1; . . . ; dr are the dimen-
sions of the irreducible AK -modules. The examples below show that we can often find a
much smaller set of JM-elements. In particular, this shows that the number M of JM-
elements for an algebra is not an invariant of A! Nevertheless, in the separated case we
will show that the JM-elements are always linear combinations of the diagonal elementary
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matrices coming from the di¤erent Wedderburn components of the algebra. Further, the
subalgebra of AK generated by a family of JM-elements is a maximal abelian subalgebra
of AK . r

If AK is a cellular algebra and explicit formulae for the Wedderburn basis of AK are
known then we do not need this paper to understand the representations of AK . One of the
points of this paper is that if we have a cellular basis for an R-algebra A together with a fam-

ily of JM-elements then we can construct a Wedderburn basis for AK.

2.14. Example (A toy example). Let A ¼ R½X �=ðX � c1Þ . . . ðX � cnÞ, where X is
an indeterminate over R and c1; . . . ; cn A R. Let x be the image of X in A under the canon-

ical projection R½X � ! A. Set ai :¼ ai
ii ¼

Qi�1

j¼1

ðx� cjÞ, for i ¼ 1; . . . ; nþ 1. Then A is a

cellular algebra with L ¼ f1; . . . ; ng, TðiÞ ¼ fig, for 1e ie n, and with cellular basis
fa1

11; . . . ; a
n
nng. Further, x is a JM-element for A because

aix ¼ ðx� c1Þ . . . ðx� ci�1Þx ¼ ciai þ aiþ1;

for i ¼ 1; . . . ; n. Thus, ciðxÞ ¼ ci, for all i. The ‘family’ of JM-elements fxg separates TðLÞ
if and only if c1; . . . ; cn are pairwise distinct. r

2.15. Example (Hecke algebras of type A). Fix an integer n > 1 and an invertible
element q A R. Let H ¼ HR;qðSnÞ be the Hecke algebra of type A. In particular, if q ¼ 1
then HR;qðSnÞGRSn. In general, H is free as an R-module with basis fTw jw A Sng and
with multiplication determined by

Tði; iþ1ÞTw ¼
Tði; iþ1Þw; if iw > ði þ 1Þw;
qTði; iþ1Þw þ ðq� 1ÞTw; otherwise.

�

Recall that a partition of n is a weakly decreasing sequence of positive integers
which sum to n. Let L be the set of partitions of n ordered by dominance ([15], 3.5). If
l ¼ ðl1; . . . ; lkÞ is a partition let ½l� ¼ fðr; cÞ j 1e ce lr; re kg be the diagram of l. A
standard l-tableau is a map t : ½l� ! f1; . . . ; ng such that t is monotonic increasing in both
coordinates (i.e. rows and columns).

Given l A L let TðlÞ be the set of standard l-tableau, ordered by dominance (the
Bruhat order; see [15], Theorem 3.8). Murphy [19] has shown that H has a cellular basis
of the form fml

st j l A L and s; t A TðlÞg.

Set L1 ¼ 0 and define

Li ¼
Pi�1

j¼1

q j�iTði; jÞ; for 2e ie n:

It is a straightforward, albeit tedious, exercise to check that these elements commute; see,
for example, [15], Prop. 3.26. The cellular algebra � involution of H is the linear extension
of the map which sends Tw to Tw�1 , for w A Sn. So L�

i ¼ Li, for all i.

147Mathas and Soriano, Seminormal forms and Gram determinants

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 02.03.16 09:02



For any integer k let ½k�q ¼ 1 þ qþ � � � þ qk�1 if kf 0 and set ½k�q ¼ �q�k½�k�q if
k < 0. Let t be a standard tableau and suppose that i appears in row r and column c of t,
where 1e ie n. The q-content of i in t is ctðiÞ ¼ ½c� r�q. Then, by [15], Theorem 3.32,

ml
stLi ¼ ctðiÞml

st þ more dominant terms:

Hence, fL1; . . . ;Lng is a family of JM-elements for H. Moreover, if ½1�q½2�q . . . ½n�q 3 0
then a straightforward induction shows that the JM-elements separate TðLÞ; see [15],
Lemma 3.34. r

2.16. Example (Ariki-Koike algebras). Fix integers n;mf 1, an invertible element
q A R and an m-tuple u ¼ ðu1; . . . ; umÞ A Rm. The Ariki-Koike algebra HR;q;u is a deforma-
tion of the group algebra of the complex reflection group of type Gðm; 1; nÞ; that is, the
group ðZ=mZÞ oSn. The Ariki-Koike algebras are generated by elements T0;T1; . . . ;Tn�1

subject to the relations ðT0 � u1Þ . . . ðT0 � umÞ ¼ 0, ðTi � qÞðTi þ 1Þ ¼ 0 for 1e i < n,
together with the braid relations of type B.

Let L be the set of m-multipartitions of n; that is, the set of m-tuples of partitions
which sum to n. Then L is a poset ordered by dominance. If l A L then a standard l-tableau
is an m-tuple of standard tableau t ¼ ðtð1Þ; . . . ; tðmÞÞ which, collectively, contain the num-

bers 1; . . . ; n and where tðsÞ has shape lðsÞ. Let TðlÞ be the set of standard l-tableaux
ordered by dominance ([4], (3.11)). It is shown in [4] that the Ariki-Koike algebra has a
cellular basis of the form fml

st j l A L and s; t A TðlÞg.

For i ¼ 1; . . . ; n set Li ¼ q1�iTi�1 . . .T1TiT1 . . .Ti�1. These elements commute, are
invariant under the � involution of HR;q;u and

ml
stLi ¼ ctðiÞml

st þ more dominant terms;

where ctðiÞ ¼ usq
c�r if i appears in row r and column c of tðsÞ. All of these facts are proved

in [10], §3. Hence, fL1; . . . ;Lng is a family of JM-elements for HR;q;u. In this case, if
½1�q . . . ½n�q

Q
1ei< jem

Q
jdj<n

ðqdui � ujÞ3 0 and q3 1 then the JM-elements separate TðLÞ by

[10], Lemma 3.12.

There is an analogous family of JM-elements for the degenerate Ariki-Koike alge-
bras. See [2], §6, for details. r

2.17. Example (Schur algebras). Let L be the set of partitions of n, ordered by
dominance, and for m A L let Sm be the corresponding Young subgroup of Sn and set
mm ¼

P
w ASm

Tw A H. Then the q-Schur algebra is the endomorphism algebra

SR;qðnÞ ¼ EndH

�L
m AL

mmH

�
:

For l A L let TðlÞ be the set of semistandard l-tableaux, and let TmðlÞLTðlÞ be the set of
semistandard l-tableaux of type m; see [15], §4.1. The main result of [4] says that SR;qðnÞ has
a cellular basis fjl

ST j l A L and S;T A TðlÞg where the homomorphism jl
ST is given by left

multiplication by a sum of Murphy basis elements ml
st A H which depend on S and T .
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Let m ¼ ðm1; . . . ; mkÞ be a partition in L. For i ¼ 1; . . . ; k let L
m
i be the endomorphism

of mmH which is given by

L
m
i ðmmhÞ ¼

Pm1þ���þm i

j¼m1þ���þm i�1þ1

Ljmmh;

for all h A H. Here, L1; . . . ;Ln are the JM-elements of the Hecke algebra H. We can con-
sider Lm

i to be an element of SR;qðnÞ. Using properties of the JM-elements of H it is easy to
check that the L

m
i commute, that they are �-invariant and by [9], Theorem 3.16, that

jl
STL

m
i ¼ cTðiÞjl

ST þ more dominant terms; if T A TmðlÞ;
0; otherwise.

�

Here cTðiÞ is the sum of the q-contents of the nodes in T labelled by i ([15], §5.1). Hence
fLm

i j m A Lg is a family of JM-elements for SR;qðnÞ. If ½1�q . . . ½n�q 3 0 then the JM-elements
separate TðLÞ; see [15], Lemma 5.4.

More generally, the q-Schur algebras SR;qðn; rÞ of type A and the cyclotomic q-Schur
algebras both have a family of JM-elements; see [9], [10] for details. r

2.18. Example (Birman-Murakami-Wenzl algebras). Let r and q be invertible inde-
terminates over R and let nf 1 an integer. Let Bnðq; rÞ be the Birman-Murakami-Wenzl
algebra, or BMW algebra. The BMW algebra is generated by elements T1; . . . ;Tn�1 which
satisfy the relations ðTi � qÞðTi þ q�1ÞðTi � r�1Þ ¼ 0, the braid relations of type A, and

the relations EiT
G1
iG1Ei ¼ rG1Ei and EiTi ¼ TiEi ¼ r�1Ei, where Ei ¼ 1 � Ti � T�1

i

q� q�1
; see [5],

[13].

The BMW algebra Bnðq; rÞ is a deformation of the Brauer algebra. Indeed, both the
Brauer and BMW algebras have a natural diagram basis indexed by the set of n-Brauer
diagrams; that is, graphs with vertex set f1; . . . ; n; 1; . . . ; ng such that each vertex lies on a
unique edge. For more details see [7].

Let l be a partition of n� 2k, where 0e ke
n

2

j k
. An n-updown l-tableau t is

an n-tuple t ¼ ðt1; . . . ; tnÞ of partitions such that t1 ¼ ð1Þ, tn ¼ l and jtij ¼ jti�1jG 1, for
2e ie n. (Here jtij is the sum of the parts of the partition ti.)

Let L be the set of partitions of n� 2k, for 0e ke
n

2

j k
ordered again by dominance.

For l A L let TðlÞ be the set of n-updown tableaux. Enyang ([5], Theorem 4.8 and §5)
has given an algorithm for constructing a cellular basis of Bnðq; rÞ of the form
fml

st j l A L and s; t A TðlÞg. Enyang actually constructs a basis for each cell module of
Bnðq; rÞ which is ‘‘compatible’’ with restriction, however, his arguments give a new cellular
basis fml

stg for Bnðq; rÞ which is indexed by pairs of n-updown l-tableaux for l A L.

Following [13], Cor. 1.6, set L1 ¼ 1 and define Liþ1 ¼ TiLiTi, for i ¼ 2; . . . ; n. These
elements are invariant under the � involution of Bnðq; rÞ and Enyang ([5], §6) has shown
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that L1; . . . ;Ln commute and that

ml
stLi ¼ ctðiÞml

st þ more dominant terms;

where ctðiÞ ¼ q2ðc�bÞ if ½ti� ¼ ½ti�1�W fðb; cÞg and ctðiÞ ¼ r�2q2ðb�cÞ if ½ti� ¼ ½ti�1�nfðb; cÞg.
Hence, L1; . . . ;Ln is a family of JM-elements for Bnðq; rÞ. When R ¼ Z½rG1; qG1� the JM-
elements separate TðLÞ.

The BMW algebras include the Brauer algebras essentially as a special case. Indeed, it
follows from Enyang’s work [5], §8–9, that the Brauer algebras have a family of JM-
elements which separate TðLÞ.

Rui and Si [22] have recently computed the Gram determinants of the irreducible
modules of the Brauer algebras in the semisimple case. r

It should be possible to find JM-elements for other cellular algebras such as the par-
tition algebras and the cyclotomic Nazarov-Wenzl algebras [2].

3. The separated case

Throughout this section we assume that A is a cellular algebra with a family of JM-
elements which separate TðLÞ over R. By Corollary 2.9 this implies that AK is a split semi-
simple algebra.

For i ¼ 1; . . . ;M let CðiÞ ¼ fctðiÞ j t A TðLÞg. Thus, CðiÞ is the set of possible con-
tents that the elements of TðLÞ can take at i.

We can now make the key definition of this paper.

3.1. Definition. Suppose that s; t A TðlÞ, for some l A L and define

Ft ¼
QM
i¼1

Q
c ACðiÞ
c3ctðiÞ

Li � c

ctðiÞ � c
:

Thus, Ft A AK . Define f l
st ¼ Fsa

l
stFt A AK .

3.2. Remark. Rather than working over K we could instead work over a ring R 0 in
which the elements fcsðiÞ � ctðiÞ j s3 t A TðLÞ and 1e ieMg are invertible. All of the re-
sults below, except those concerned with the irreducibe AK -modules or with the semisim-
plicity of AK , are valid over R 0. However, there seems to be no real advantage to working
over R 0 in this section. In section 4 we work over a similar ring when studying the non-
separated case.

We extend the dominance order q on TðLÞ to
‘
l AL

TðlÞ � TðlÞ by declaring that
ðs; tÞq ðu; vÞ if su u, tu v and ðs; tÞ3 ðu; vÞ.

We now begin to apply our definitions. The first step is easy.

3.3. Lemma. Assume that A has a family of JM-elements which separate TðLÞ.
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(a) Suppose that s; t A TðlÞ. Then there exist scalars buv A K such that

f l
st ¼ al

st þ
P

u; v ATðmÞ;m AL
ðu; vÞqðs; tÞ

buva
m
uv:

(b) f f l
st j s; t A TðlÞ for some l A Lg is a basis of AK.

(c) Suppose that s; t A TðlÞ. Then ð f l
st Þ

� ¼ f l
ts .

Proof. By the definition of the JM-elements (2.4), for any i and any c A CðiÞ with
c3 ctðiÞ we have

al
st

Li � c

ctðiÞ � c
1 al

st þ
P
vqt

bva
l
sv ðmodAl

KÞ:

By (2.5) this is still true if we act on al
st with Li from the left. These two facts imply part (a).

Note that part (a) says that the transition matrix between the two bases fal
stg and f f l

st g
of AK is unitriangular (when the rows and columns are suitably ordered). Hence, (b) fol-
lows. Part (c) follows because, by definition, ðal

stÞ
� ¼ al

ts and L�
i ¼ Li, so that F �

t ¼ Ft and
ð f l

st Þ
� ¼ Fta

l
tsFs ¼ f l

ts . r

Given s; t A TðLÞ let dst be the Kronecker delta; that is, dst ¼ 1 if s ¼ t and dst ¼ 0,
otherwise.

3.4. Proposition. Suppose that s; t A TðlÞ, for some l A L, that u A TðLÞ and fix i

with 1e ieM. Then

(a) f l
st Li ¼ ctðiÞ f l

st , (c) Li f
l
st ¼ csðiÞ f l

st ,

(b) f l
st Fu ¼ dtu f

l
su, (d) Fu f

l
st ¼ dus f

l
ut.

Proof. Notice that statements (a) and (c) are equivalent by applying the � involu-
tion. Similarly, (b) and (d) are equivalent. Thus, it is enough to show that (a) and (b)
hold. Rather than proving this directly we take a slight detour.

Let N ¼ jTðLÞj and fix v ¼ v1 A TðmÞ with vq t. We claim that am
uvF

N
t ¼ 0, for all

u A TðmÞ. By the separation condition (2.8), there exists an integer j1 with ctð j1Þ3 cvð j1Þ.
Therefore, by 2.4, am

uv

�
Lj1 � cvð j1Þ

�
is a linear combination of terms an

wx, where xq vq t.
However,

�
Lj1 � cvð j1Þ

�
is a factor of Ft, so am

uvFt is a linear combination of terms of the
form an

wx where xq vq t. Let v2 A Tðm2Þ be minimal such that a
m2
u2v2 appears with non-

zero coe‰cient in am
uvFt, for some u2 A Tðm2Þ. Then v2 q v1 q t, so there exists an integer

j2 such that ctð j2Þ3 cv2
ð j2Þ. Consequently,

�
Lj2 � cv2

ð j2Þ
�

is a factor of Ft, so am
uvF

2
t is a lin-

ear combination of terms of the form an
wx, where xq v2 q v1 q t. Continuing in this way

proves the claim.

For any s; t A TðlÞ let f 0
st ¼ F N

s al
stF

N
t . Fix j with 1e jeM. Then, because the JM-

elements commute,

f 0
stLj ¼ F N

s al
stF

N
t Lj ¼ F N

s al
stLjF

N
t ¼ F N

s

�
ctðiÞal

st þ x
�
F N
t ;
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where x is a linear combination of terms of the form am
uv with vq t and u; v A TðmÞ for some

m A L. However, by the last paragraph xF N
t ¼ 0, so this implies that f 0

stLj ¼ ctð jÞ f 0
st. Con-

sequently, every factor of Ft fixes f 0
st, so f 0

st ¼ f 0
stFt. Moreover, if u3 t then we can find j

such that ctð jÞ3 cuð jÞ by the separation condition, so that f 0
stFu ¼ 0 since

�
Lj � cuð jÞ

�
is a

factor of Fu. As Fu f
0
st ¼ ð f 0

tsFuÞ�, we have shown that

Fu f
0
stFv ¼ dusdtv f

0
st;ð3:5Þ

for any u; v A TðLÞ.

We are now almost done. By the argument of Lemma 3.3(a) we know that

f 0
st ¼ al

st þ
P

u; v ATðmÞ
ðu; vÞqðs; tÞ

suva
m
uv;

for some suv A K . Inverting this equation we can write

al
st ¼ f 0

st þ
P

u; v ATðmÞ
ðu; vÞqðs; tÞ

s 0uv f
0
uv;

for some s 0uv A K . Therefore,

f l
st ¼ Fsa

l
stFt ¼ Fs

�
f 0
st þ

P
u; v ATðmÞ
ðu; vÞqðs; tÞ

s 0uv f
0
uv

�
Ft ¼ Fs f

0
stFt ¼ f 0

st;

where the last two equalities follow from (3.5). That is, f l
st ¼ f 0

st. We now have that

f l
st Li ¼ f 0

stLi ¼ ctðiÞ f 0
st ¼ ctðiÞ f l

st ;

proving (a). Finally, if u A TðLÞ then

f l
st Fu ¼ f 0

stFu ¼ dtu f
0
st ¼ dtu f

l
st ;

proving (b). (In fact, (b) also follows from (a) and the separation condition.) r

3.6. Remark. The proof of Proposition 3.4 is the only place where we explicitly
invoke the separation condition. All of the results which follow rely on this key result. It
is worth noting the proof of Proposition 3.4 relies on the assumptions that the L1; . . . ;LM

commute and that L�
i ¼ Li, for e ieM. The commutativity of the JM-elements is essen-

tial in proving 3.4. If we did not assume that Li 3L�
i then we could define fst ¼ F �

s a
l
stFt.

If we did this then in order to prove that f 0
stFu ¼ 0 we would have to assume that the L�

i

act from the right on the basis fam
v g in essentially the same way as the Lj do. We note that

neither of these assumptions appear in Soriano’s treatment in the appendix.

3.7. Theorem. Suppose that the JM-elements separate TðLÞ over R. Let s; t A TðlÞ
and u; v A TðmÞ, for some l; m A L. Then there exist scalars fgt A K j t A TðLÞg such that

f l
st f

m
uv ¼

gt f
l
sv ; if l ¼ m and t ¼ u;

0; otherwise:

�
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In particular, gt depends only on t A TðLÞ and f f l
st j s; t A TðlÞ and l A Lg is a cellular basis

of AK.

Proof. Using the definitions, f l
st f

m
uv ¼ f l

st Fua
m
uvFv. So f l

st f
m
uv3 0 only if u ¼ t by Pro-

position 3.4(b).

Now suppose that u ¼ t (so that m ¼ l). Using Lemma 3.3, we can write
f l
st f

l
tv ¼

P
w;x

rwx f
m
wx, where rwx A R and the sum is over pairs w; x A TðmÞ, for some m A L.

Hence, by parts (b) and (d) of Proposition 3.4

f l
st f

l
tv ¼ Fs f

l
st f

l
tvFv ¼

P
m AL

w;x ATðmÞ

rwxFs f
m
wxFv ¼ rsv f

l
sv :ð3:8Þ

Thus, it remains to show that scalar rsv is independent of s; v A TðlÞ. Using Lemma 3.3 to
compute directly, there exist scalars bwx; cyz; dwx A K such that

f l
st f

l
tv 1

�
al
st þ

P
w;x ATðlÞ
ðw;xÞqðs; tÞ

bwxa
l
wx

��
al
tv þ

P
y; z ATðlÞ
ðy; zÞqðt; vÞ

cyza
l
yz

�
modAl

K

1

�
hal

t ; a
l
t il þ

P
u ATðlÞ
uqt

ðbsu þ cuvÞhal
u ; a

l
t il þ

P
x;y ATðlÞ
x;yqt

bsxcyvha
l
x ; a

l
yil

�
al
sv

þ
P

w;x ATðlÞ
ðw;xÞqðs; vÞ

dwxa
l
wx ðmodAl

KÞ:

The inner products in the last equation come from applying (2.3). (For typographical con-
venience we also use the fact that the form is symmetric in the sum over u.) By the cellular
basis axiom 2.1(b) the scalars bsu and cuv do not depend on s or v. Therefore, there exists a
scalar g A A, which does not depend on s or on v, such that f l

st f
l
tv ¼ gal

sv plus a linear com-
bination of more dominant terms. By Lemma 3.3(b) and (3.8), the coe‰cient of f l

sv in f l
st f

l
tv

is equal to the coe‰cient of al
sv in f l

st f
l
tv , so this completes the proof. r

We call f f l
st j s; t A TðlÞ and l A Lg the seminormal basis of A. This terminology is

justified by Remark 3.13 below.

3.9. Corollary. Suppose that AK is a cellular algebra with a family of JM-elements

which separate TðLÞ. Then gt 3 0, for all t A TðLÞ.

Proof. Suppose by way of contradiction that gt ¼ 0, for some t A TðlÞ and l A L.
Then, by Theorem 3.7, f l

tt f
m
uv ¼ 0 ¼ f m

uv f
l
tt , for all u; v A TðmÞ, m A L. Therefore, Kf l

tt is a
one dimensional nilpotent ideal of AK , so AK is not semisimple. This contradicts Corollary
2.9, so we must have gt3 0 for all t A TðLÞ. r

Next, we use the basis f f l
st g to identify the cell modules of A as submodules of A.

3.10. Corollary. Suppose that l A L and fix s; t A TðlÞ. Then

CðlÞG f l
st AK ¼ Spanf f l

sv j v A TðlÞg:
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Proof. As f m
uv ¼ Fua

m
uvFv, for u; v A TðmÞ, the cell modules for the cellular bases fal

uvg
and f f l

uvg of AK coincide. Therefore, CðlÞ is isomorphic to the AK -module CðlÞ0 which is
spanned by the elements f f l

su þ Al
K j u A TðlÞg.

On the other hand, if u; v A TðmÞ, for m A L, then f l
st f

m
uv ¼ dtugt f

l
sv by Theorem 3.7.

Now gt 3 0, by Corollary 3.9, so f f l
sv j v A TðlÞg is a basis of f l

st AK .

Finally, by Theorem 3.7 we have that f l
st AK GCðlÞ0, where the isomorphism is the

linear extension of the map f l
sv 7! f l

sv þ Al
K , for v A TðlÞ. Hence, CðlÞGCðlÞ0 G f l

st AK , as
required. r

Recall that radCðlÞ is the radical of the bilinear form on CðlÞ and that
DðlÞ ¼ CðlÞ=radCðlÞ.

Using Corollary 3.10 and Theorem 3.7, the basis f f l
st g gives an explicit decomposi-

tion of AK into a direct sum of cell modules. Abstractly this also follows from Corollary
2.9 and the general theory of cellular algebras because a cellular algebra is semisimple if
and only if CðlÞ ¼ DðlÞ, for all l A L; see [6], Theorem 3.4.

3.11. Corollary. Suppose that AK is a cellular algebra with a family of JM-elements

which separate TðLÞ. Then CðlÞ ¼ DðlÞ, for all l A L, and

AK G
L
l AL

CðlÞljTðlÞj:

Fix s A TðlÞ and, for notational convenience, set f l
t ¼ f l

st so that CðlÞ has basis
f f l

t j t A TðlÞg by Corollary 3.10. Note that f l
t ¼ al

t þ
P
vqt

bva
l
v , for some bv A K , by

Lemma 3.3(a).

For l A L let GðlÞ ¼ detðhal
s ; a

l
t ilÞs; t ATðlÞ be the Gram determinant of the bilinear

form h ; il on the cell module CðlÞ. Note that GðlÞ is well-defined only up to multiplication
byG1 as we have not specified an ordering on the rows and columns of the Gram matrix.

3.12. Theorem. Suppose that AK is a cellular algebra with a family of JM-elements

which separate TðLÞ. Let l A L and suppose that s; t A TðlÞ. Then

h f l
s ; f

l
t il ¼ hal

s ; f
l
t il ¼

gt; if s ¼ t;

0; otherwise:

�

Consequently, GðlÞ ¼
Q

t ATðlÞ
gt.

Proof. By Theorem 3.7, f f l
st g is a cellular basis of AK and, by Corollary 3.10, we

may take f f l
t j t A TðlÞg to be a basis of CðlÞ. By Theorem 3.7 again, f l

us f
l
tv ¼ dstgt f

l
uv, so

that h f l
s ; f

l
t il ¼ dstgt by Corollary 3.10 and the definition of the inner product on CðlÞ.

Using Proposition 3.4(b) and the associativity of the inner product on CðlÞ, we see that

hal
s ; f

l
t il ¼ hal

s ; f
l
t Ftil ¼ hal

s F
�
t ; f

l
t il ¼ hal

s Ft; f
l
t il ¼ h f l

s ; f
l
t il:

So we have proved the first claim in the statement of the theorem.
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Finally, the transition matrix between the two bases fal
t g and f f l

t g of CðlÞ is uni-
triangular (when suitably ordered), so we have that

GðlÞ ¼ detðhal
s ; a

l
t ilÞ ¼ detðh f l

s ; f
l
t ilÞ ¼

Q
t ATðlÞ

gt;

as required. r

3.13. Remark. Extending the bilinear forms h ; il to the whole of AK (using Corol-
lary 3.11), we see that the seminormal basis f f l

st g is an orthogonal basis of AK with respect
to this form.

In principle, we can use Theorem 3.12 to compute the Gram determinants of the cell
modules of any cellular algebra A which has a separable family of JM-elements. In prac-
tice, of course, we need to find formulae for the structure constants fgt j t A TðlÞg of the
basis f f l

st g. In all known examples, explicit formulae for gt can be determined inductively
once the actions of the generators of A on the seminormal basis have been determined. In
turn, the action of A on its seminormal basis is determined by its action on the original cel-
lular basis fal

stg. In e¤ect, Theorem 3.12 gives an e¤ective recipe for computing the Gram
determinants of the cell modules of A.

By definition the scalars gt are elements of the field K, for t A TðlÞ. Surprisingly, their
product must belong to R.

3.14. Corollary. Suppose that l A L. Then
Q

t ATðlÞ
gt A R.

Proof. By definition, the inner products hal
s ; a

l
t il all belong to R, so GðlÞ A R. The

result now follows from Theorem 3.12. r

As GðlÞ3 0 by Theorem 3.12 and Corollary 3.9, it follows that each cell module is
irreducible.

3.15. Corollary. Suppose that l A L. Then the cell module CðlÞ ¼ DðlÞ is an irreduc-

ible AK-module.

We close this section by describing the primitive idempotents in AK .

3.16. Theorem. Suppose that AK is a cellular algebra with a family of JM-elements

which separate TðLÞ. Then

(a) If t A TðlÞ and l A L then Ft ¼
1

gt
f l
tt and Ft is a primitive idempotent in AK.

(b) If l A L then Fl ¼
P

t ATðlÞ
Ft is a primitive central idempotent in AK.

(c) fFt j t A TðLÞg and fFl j l A Lg are complete sets of pairwise orthogonal idempo-

tents in AK ; in particular,

1AK
¼
P
l AL

Fl ¼
P

t ATðLÞ
Ft:
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Proof. By Corollary 3.9, gt3 0 for all t A TðlÞ, so the statement of the theorem

makes sense. Furthermore,
1

gt
f l
tt is an idempotent by Theorem 3.7. By Corollary 3.15 the

cell module CðlÞ is irreducible and by Corollary 3.10, CðlÞG f l
tt AK ¼ FtAK . Hence, Ft is a

primitive idempotent.

To complete the proof of (a) we still need to show that Ft ¼
1

gt
f l
tt . By Theorem 3.7 we

can write Ft ¼
P
n AL

P
x;y A TðnÞ

rxy f
n
xy, for some rxy A K . Suppose that u; v A TðmÞ, for some

m A L. Then, by Proposition 3.4 and Theorem 3.7,

dvt f
m
uv ¼ f m

uvFt ¼
P
n AL

P
x;y ATðmÞ

rxy f
m
uv f

n
xy ¼

P
y ATðmÞ

rvygv f
m
uy:

By Corollary 3.9, gv3 0, so comparing both sides of this equation shows that

rvy ¼
1

gt
; if v ¼ t ¼ y;

0; otherwise.

8><
>:

As v is arbitrary we have Ft ¼
1

gt
f l
tt , as claimed.

This completes the proof of (a). Parts (b) and (c) now follow from (a) and the multi-
plication formula in Theorem 3.7. r

3.17. Corollary. Suppose that AK is a cellular algebra with a family of JM-elements

which separate TðLÞ. Then

Li ¼
P

t ATðLÞ
ctðiÞFt

and
Q

c ACðiÞ
ðLi � cÞ is the minimum polynomial for Li acting on AK.

Proof. By part (c) of Theorem 3.16,

Li ¼ Li

P
t ATðLÞ

Ft ¼
P

t ATðLÞ
LiFt ¼

P
t ATðLÞ

ctðiÞFt;

where the last equality follows from Proposition 3.4(c).

For the second claim, observe that
Q

c ACðiÞ
ðLi � cÞ � f l

st ¼ 0 by Proposition 3.4(c), for all

l A L and all s; t A TðlÞ. If we omit the factor ðLi � dÞ, for some d A CðiÞ, then we can find
an s A TðmÞ, for some m, such that csðiÞ ¼ d so that

Q
c3d

ðLi � cÞFs3 0. Hence,
Q

c ACðiÞ
ðLi � cÞ

is the minimum polynomial for the action of Li on AK . r

The examples at the end of section 2 show that the number of JM-elements is not
uniquely determined. Nonetheless, we are able to characterize the subalgebra of AK which
they generate when the JM-elements separate TðlÞ.
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3.18. Corollary. Suppose that AK is a cellular algebra with a family of JM-elements

which separate TðLÞ. Then fL1; . . . ;LMg generate a maximal abelian subalgebra of AK.

Proof. As the JM-elements commute, by definition, the subalgebra LK of AK which
they generate is certainly abelian. By Theorem 3.16 and Corollary 3.17, LK is the subalge-
bra of A spanned by the primitive idempotents fFt j t A TðLÞg. As the primitive idempo-
tents of AK span a maximal abelian subalgebra of AK , we are done. r

4. The non-separated case

Up until now we have considered those cellular algebras AK which have a family of
JM-elements which separate TðLÞ. By Corollary 2.9 the separation condition forces AK to
be semisimple. In this section we still assume that A ¼ AR has a family of JM-elements
which separate TðLÞ over R but rather than studying the semisimple algebra AK we extend
the previous constructions to non-separated algebras over a field.

In this section let R be a discrete valuation ring with maximal ideal p. We assume that
AR has a family of JM-elements which separate TðLÞ over R.

Let K be the field of fractions of R. Then AK is semisimple by Corollary 2.9 and all of
the results of the previous section apply to AK . Let k ¼ R=p be the residue field of K. Then
Ak ¼ AnR k is a cellular algebra with cellular basis given by the image of the cellular basis
of A in Ak. We abuse notation and write fal

stg for the cellular bases of all three algebras
A ¼ AR;AK and Ak. It should always be clear from the context which algebra these ele-
ments belong to at any given time.

In general, the JM-elements will not separate TðLÞ over k, so the arguments of the
previous section do not necessarily apply to the algebra Ak.

If r A R let r ¼ rþ p be its image in k ¼ R=p. More generally, if a ¼
P

rsta
l
st A AR

then we set a ¼
P

rsta
l
st A Ak.

Observe that c� c 0 is invertible in R whenever c3 c 0 and c; c 0 A C ¼
SM
i¼1

CðiÞ.

If 1e ieM and t A TðlÞ define the residue of i at t to be rtðiÞ ¼ ctðiÞ. By 2.4 the
action of the JM-elements on Ak is given by

al
stLi 1 rtðiÞal

st þ
P
vqt

rtva
l
sv ðmodAl

kÞ;

where rtv A k (and otherwise the notation is as in 2.4). There is an analogous formula for the
action of Li on al

st from the left.

We use residues modulo p to define equivalence relations on TðLÞ and on L.

4.1. Definition (Residue classes and linkage classes). (a) Suppose that s; t A TðLÞ.
Then s and t are in the same residue class, and we write sA t, if rsðiÞ ¼ rtðiÞ, for 1e ieM.

157Mathas and Soriano, Seminormal forms and Gram determinants

Bereitgestellt von | Technische Informationsbibliothek (TIB)
Angemeldet

Heruntergeladen am | 02.03.16 09:02



(b) Suppose that l; m A L. Then l and m are residually linked, and we write l@ m, if
there exist elements l0 ¼ l; l1; . . . ; lr ¼ m and elements sj; tj A TðljÞ such that sj�1Atj, for
i ¼ 1; . . . ; r.

It is easy to see thatA is an equivalence relation on TðLÞ and that@ is an equivalence
relation on L. If s A TðLÞ let Ts A TðLÞ=A be its residue class. If T is a residue class let
TðlÞ ¼ TXTðlÞ, for l A L. By 2.6, the residue classes TðLÞ=A parameterize the irreduc-
ible Lk-modules.

Let T be a residue class TðLÞ and define

FT ¼
P
t AT

Ft:

By definition, FT is an element of AK . We claim that, in fact, FT A AR.

The following argument is an adaptation of Murphy’s proof of [18], Theorem 2.1.

4.2. Lemma. Suppose that T is a residue equivalence class in TðLÞ. Then FT is an

idempotent in AR.

Proof. We first note that FT is an idempotent in AK because it is a linear combina-
tion of orthogonal idempotents by Theorem 3.16(a). The hard part is proving that FT A AR.

Fix an element t A TðmÞ, where m A L, and define

F 0
t ¼

QM
i¼1

Q
c AC

c3rtðiÞ

Li � c

ctðiÞ � c
:

Then F 0
t A AR since, by assumption, ctðiÞ � c is invertible in R whenever rtðiÞ3 c.

Observe that the numerator of F 0
t depends only on T whereas the denominator

dt ¼
QM
i¼1

Q
c3rtðiÞ

�
ctðiÞ � c

�
of F 0

t depends on t. Let s A TðlÞ. Then, by Proposition 3.4(d) and

Theorem 3.16(a),

F 0
t Fs ¼

ds

dt
Fs; if s A T;

0; otherwise.

8<
:

Consequently, F 0
t ¼

P
l AL

P
s ATðlÞ

ds

dt
Fs, by Theorem 3.16(c).

Now, if s A TðlÞ then ds1 dt ðmod pÞ since sA t. Therefore, 1 � ds

dt
is an element of p.

Let es A R be the denominator of Fs and choose N maximal such that es A pN , for all s A T.

Then 1 � ds

dt

� �N 1

es
A R, so that 1 � ds

dt

� �N
Fs A AR, for all s A T. We now compute
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ðFT � F 0
t Þ

N ¼
 P

l AL

P
s ATðlÞ

1 � ds

dt

� �
Fs

!N

¼
P
l AL

P
s ATðlÞ

1 � ds

dt

� �N
Fs;

where the last line follows because the Fs are pairwise orthogonal idempotents in AK .
Therefore, ðFT � F 0

t Þ
N A AR.

To complete the proof we evaluate ðFT � F 0
t Þ

N directly. First, by Theorem 3.16(a),

F 0
t FT ¼

P
l AL

P
s ATðlÞ

ds

dt
FsFT ¼

P
l AL

P
s ATðlÞ

ds

dt
Fs ¼ F 0

t :

Similarly, FTF
0
t ¼ F 0

t . Hence, using the binomial theorem, we have

ðFT � F 0
t Þ

N ¼
PN
i¼0

ð�1Þ i N

i

� �
ðF 0

t Þ
i
F N�i
T

¼ FT þ
PN
i¼1

ð�1Þ i N

i

� �
ðF 0

t Þ
i

¼ FT þ ð1 � F 0
t Þ

N � 1:

Hence, FT ¼ ðFT � F 0
t Þ

N � ð1 � F 0
t Þ

N þ 1 A AR, as required. r

By the lemma, FT A AR. Therefore, we can reduce FT modulo p to obtain an element
of Ak. Let GT ¼ FT A Ak be the reduction of FT modulo p. Then GT is an idempotent in
Ak.

Recall that if s A TðLÞ then Ts is its residue class.

4.3. Definition. Let T be a residue class of TðLÞ.

(a) Suppose that s; t A TðlÞ. Define gl
st ¼ GTs

al
stGTt

A Ak.

(b) Suppose that G A L=@ is a residue linkage class in L. Let AG
k be the subspace of

Ak spanned by fgl
st j s; t A TðlÞ and l A Gg.

Note that G�
T ¼ GT and that ðgl

stÞ
� ¼ gl

ts, for all s; t A TðlÞ and l A L. By Theorem
3.16, if S and T are residue classes in TðLÞ then GSGT ¼ dSTGT.

4.4. Proposition. Suppose that s; t A TðlÞ, for some l A L, that u A TðLÞ and fix i

with 1e ieM. Let T A TðLÞ=A. Then, in Ak,

(a) Lig
l
st ¼ rsðiÞgl

st þ
P
uqs

rug
l
ut modAl, (c) GTg

l
st ¼ dTsT gl

st,

(b) gl
stLi ¼ rtðiÞgl

st þ
P
vqt

rvg
l
sv modAl, (d) gl

stGT ¼ dTTt
gl
st.
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We can now generalize the seminormal basis of the previous section to the algebra Ak.

4.5. Theorem. Suppose that AR has a family of JM-elements which separate TðLÞ
over R.

(a) fgl
st j s; t A TðlÞ and l A Lg is a cellular basis of Ak.

(b) Let G be a residue linkage class of L. Then AG
k is a cellular algebra with cellular

basis fgl
st j s; t A TðlÞ and l A Gg.

(c) The residue linkage classes decompose Ak into a direct sum of cellular subalgebras;
that is,

Ak ¼
L

G AL=@
AG

k :

Proof. Let G be a residue linkage class in L and suppose that l A G. Then, exactly as
in the proof of Lemma 3.3(a), we see that if s; t A TðlÞ then gl

st ¼ al
st plus a linear combina-

tion of more dominant terms. Therefore, the elements fgl
stg are linearly independent be-

cause fal
stg is a basis of Ak. Hence, fgl

stg is a basis of Ak. We prove the remaining state-
ments in the theorem simultaneously.

Suppose that l; m A L and that s; t A TðlÞ and u; v A TðmÞ. Then

gl
stg

m
uv ¼ GTs

al
stGTt

GTu
am
uvGTv

¼ GTs
al
stGTt

am
uvGTv

; if tAu;

0; otherwise.

�

Observe that tAu only if l@ m. Suppose then that l@ m and let G be the residue linkage
class in L which contains l and m. Then, because fan

wxg is a cellular basis of Ak, we can
write

al
stGTt

am
uv ¼

P
n AL

nfl; nfm

P
w;x ATðnÞ
wus;xuv

rwxg
n
wx;

for some rwx A k such that if n ¼ l then rwx 3 0 only if w ¼ s, and if n ¼ m then rwx 3 0 only
if x ¼ v. Therefore, using Proposition 4.4, we have

gl
stg

m
uv ¼

P
n AL

nfl; nfm

P
w;x ATðnÞ
wus;xuv

rwxGTs
gn
wxGTv

¼
P
n AG

nfl; nfm

P
w;x ATðnÞ
wus;xuv

rwxg
n
wx:

Consequently, we see that if l@ m A G then gl
stg

m
uv A AG

k ; otherwise, gl
stg

m
uv ¼ 0. All of the

statements in the theorem now follow. r

Arguing as in the proof of Theorem 3.16(a) it follows that GT ¼
P

rstg
l
st, where rst is

non-zero only if s; t A TðlÞ for some l A L.
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We are not claiming in Theorem 4.5 that the subalgebras AG
k of Ak are indecom-

posable. We call the indecomposable two-sided ideals of Ak the blocks of Ak. It is a
general fact that each irreducible module of an algebra is a composition factor of a unique
block, so the residue linkage classes induce a partition of the set of irreducible Ak-modules.
By the general theory of cellular algebras, all of the composition factors of a cell module
are contained in the same block; see [6], 3.9.8, or [15], Cor. 2.22. Hence, we have the
following.

4.6. Corollary. Suppose that AR has a family of JM-elements which separate TðLÞ
over R and that l; m A L. Then CðlÞ and CðmÞ are in the same block of Ak only if l@ m.

Let G A L=@ be a residue linkage class. Then
P
l AG

Fl A AR by Lemma 4.2 and

Theorem 3.16(b). Set GG ¼
P
l AG

Fl A Ak. The following result is now immediate from

Theorem 4.5 and Theorem 3.16.

4.7. Corollary. Suppose that AR has a family of JM-elements which separate TðLÞ
over R.

(a) Let G be a residue linkage class. Then GG is a central idempotent in Ak and the

identity element of the subalgebra AG
k . Moreover,

AG
k ¼ GGAkGGGEndAk

ðAkGGÞ:

(b) fGG jG A L=@g and fGT jT A TðLÞ=Ag are complete sets of pairwise orthogonal

idempotents of Ak. In particular,

1Ak
¼

P
G AL=@

GG ¼
P

T ATðLÞ=A
GT:

Observe that the right ideals GTAk are projective Ak-modules, for all T A TðLÞ=A. Of
course, these modules need not (and, in general, will not) be indecomposable.

Let RðiÞ ¼ fc j c A CðiÞg, for 1e ieM. If T is a residue class in TðLÞ then we set
rTðiÞ ¼ rtðiÞ, for t A T and 1e ieM.

4.8. Corollary. Suppose that AR has a family of JM-elements which separate TðLÞ
over R. Then

Li ¼
P

T ATðLÞ=A
rTðiÞGT:

Proof. That Li ¼
P

T ATðLÞ=A
rTðiÞGT follows from Corollary 4.7(b) and Proposition

4.4. r

As our final general result we note that the new cellular basis of Ak gives us a new
‘not quite orthogonal’ basis for the cell modules of Ak. Given l A L fix s A TðlÞ and define
gl
t ¼ gl

st þ Al
k for t A TðlÞ.
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4.9. Proposition. Suppose that AR has a family of JM-elements which separate TðLÞ
over R. Then fgl

t j t A TðlÞg is a basis of CðlÞ. Moreover, if t; u A TðlÞ then

hgl
t ; g

l
uil ¼

hal
t ; g

l
uil; if tAu;

0; if tEu:

�

Proof. That fgl
t j t A TðlÞg is a basis of CðlÞ follows from Theorem 4.5 and the ar-

gument of Lemma 3.3(a). For the second claim, if t; u A TðlÞ then

hgl
t ; g

l
uil ¼ hal

t GTt
; gl

uil ¼ hal
t ; g

l
uGTt

il

by the associativity of the inner product since G�
Tt

¼ GTt
. The result now follows from

Proposition 4.4(d). r

In the semisimple case Theorem 3.12 reduces the Gram determinant of a cell module
to diagonal form. This result reduces it to block diagonal form. Murphy has considered this
block decomposition of the Gram determinant for the Hecke algebras of type A [20].

We now apply the results of this section to give a basis for the blocks of several of the
algebras considered in section 2.

4.10. Theorem. Let k be a field and suppose that AR is one of the following algebras:

(a) the group algebra RSn of the symmetric group;

(b) the Hecke algebra HR;qðSnÞ of type A;

(c) the Ariki-Koike algebra HR;q;u with q3 1;

(d) the degenerate Ariki-Koike algebra HR; v.

Then A has a family of JM-elements which separate TðLÞ over R and Theorem 4.5 gives a

basis for the block decomposition of Ak into a direct sum of indecomposable subalgebras.

The cellular bases and the families of JM-elements for each of these algebras are
given in the examples of Section 2. As kSnGHk;1ðSnÞ, we use the Murphy basis for the
symmetric group. Note that the Hecke algebras of type A should not be considered as the
special case r ¼ 1 of the Ariki-Koike algebras because the JM-elements that we use for
these two algebras are di¤erent. Significantly, for the Ariki-Koike case we must assume
that q3 1 as the JM-elements that we use do not separate TðLÞ over R when q ¼ 1.

Before we can begin proving this result we need to describe how to choose a modular
system ðR;K ; kÞ for each of the algebras above. In all cases we start with a field k and a
non-zero element q A k and we let R be the localization of the Laurent polynomial ring
k½t; t�1� at the maximal ideal generated by ðq� tÞ. Then R is a discrete valuation ring with
maximal ideal p generated by the image of ðq� tÞ in R. By construction, kGR=p and t is
sent to q by the natural map R ! k ¼ R=p. Let K be the field of fractions of R.
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First consider the case of the Hecke algebra Hk;qðSnÞ. As we have said, this includes
the symmetric group as the special case q ¼ 1. We take AR ¼ HR; tðSnÞ, AK ¼ HK; tðSnÞ,
and Ak ¼ HR; tðSnÞnR k. Then HK ; tðSnÞ is semisimple and Hk;qðSnÞGHR; tðSnÞnR k.

Next, consider the Ariki-Koike algebra Hk;q;u with parameters q3 0; 1 and
u ¼ ðu1; . . . ; umÞ A km. Let vs ¼ us þ ðq� tÞns, for s ¼ 1; . . . ;m, and set v ¼ ðv1; . . . ; vmÞ.
We consider the triple of algebras AR ¼ HR; t; v, AK ¼ HK ; t; v and Ak ¼ Hk;q;u. Once again,
AK is semisimple and Ak GAR nR k. The case of the degenerate Ariki-Koike algebras is
similar and we leave the details to the reader.

The indexing set L for each of the algebras considered in Theorem 4.10 is the set of
m-multipartitions of n, where we identify the set of 1-multipartitions with the set of parti-
tions. If l is an m-multipartition let ½l� be the diagram of l; that is,

½l� ¼ fðs; i; jÞ j 1e se r and 1e je l
ðsÞ
i g:

Given a node x ¼ ðs; i; jÞ A ½l� we define its content to be

cðxÞ ¼
½ j � i�t; if AR ¼ HR; tðSnÞ;
vst

j�i; if AR ¼ HR; t; v;

vs þ ð j � iÞ; if AR ¼ HR; v:

8><
>:

We set Cl ¼ fcðxÞ j x A ½l�g and Rl ¼ fcðxÞ j x A ½l�g.

Unravelling the definitions, it is easy to see, for each of the algebras that we are con-
sidering, that if l A L and t A TðlÞ then Cl ¼ fctðiÞ j 1e ieMg.

To prove Theorem 4.10 we need to show that the residue linkage classes correspond
to the blocks of each of the algebras above. Hence, Theorem 4.10 is a corollary of the fol-
lowing proposition.

4.11. Proposition. Let A be one of the algebras considered in Theorem 4.10. Suppose
that l; m A L. The following are equivalent:

(a) CðlÞ and CðmÞ belong to the same block of Ak.

(b) l@ m.

(c) Rl ¼ Rm.

Proof. First suppose that CðlÞ and CðmÞ are in the same block. Then l@ m by Cor-
ollary 4.6, so that (a) implies (b). Next, if (b) holds then, without loss of generality, there
exist s A TðlÞ and t A TðmÞ with sAt; however, then Rl ¼ Rm. So, (b) implies (c). The im-
plication ‘(c) implies (a)’ is the most di‰cult, however, the blocks of all of the algebras that
we are considering have been classified and the result can be stated uniformly by saying
that the cell modules CðlÞ and CðmÞ belong to the same block if and only if Rl ¼ Rm; see
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[14] for Hk;qðSnÞ and the Ariki-Koike algebras, and [3] for the degenerate Ariki-Koike al-
gebras. Therefore, (a) and (c) are equivalent. This completes the proof. r

As a consequence we obtain the block decomposition of the Schur algebras. Let Lm;n

be the set of m-multipartitions of n and let SR; t; vðLm;nÞ be the corresponding cyclotomic
q-Schur algebra [4], where t and v are as above.

4.12. Corollary. Let k be a field and suppose that A is one of the following

k-algebras:

(a) the q-Schur algebra SR;qðnÞ;

(b) the cyclotomic q-Schur SR; t; vðLm;nÞ algebra with q3 1.

Then A has a family of JM-elements which separate TðLÞ over R and Theorem 4.5 gives a

basis for the block decomposition of Ak into a direct sum of indecomposable subalgebras.

Proof. Once again it is enough to show that two cell modules CðlÞ and CðmÞ belong
to the same block if and only if l@ m. By Schur-Weyl duality, the blocks of Sk;qðnÞ are in
bijection with the blocks of Hk;qðnÞ ([15], 5.37–5.38) and the blocks of Sk;q;uðLm;nÞ are in
bijection with the blocks of Hk;q;u ([16], Theorem 5.5). Hence the result follows from Pro-
position 4.11. r

It is well known for each algebra A in Theorem 4.10 that the symmetric polynomials
in the JM-elements belong to the centre of A. As our final result we show that there is a
uniform explanation of this fact. If A is an algebra we let ZðAÞ be its centre.

4.13. Proposition. Suppose that A has a family of JM-elements which separate TðLÞ
over R and that for l A L there exist scalars clðiÞ, for 1e ieM, such that

fclðiÞ j 1e ieMg ¼ fctðiÞ j 1e ieMg;

for any t A TðlÞ. Then any symmetric polynomial in L1; . . . ;LM belongs to the centre of Ak.

Proof. Suppose that X1; . . . ;XM are indeterminates over R and let
pðX1; . . . ;XMÞ A R½X1; . . . ;XM � be a symmetric polynomial. Recall that Li ¼

P
t

ctðiÞFt in
AK , by Corollary 3.17. Therefore,

pðL1; . . . ;LMÞ ¼
P

t ATðLÞ
p
�
ctð1Þ; . . . ; ctðMÞ

�
Ft ¼

P
l AL

p
�
clð1Þ; . . . ; clðMÞ

�
Fl:

The first equality follows because the Ft are pairwise orthogonal idempotents by Theorem
3.16. By Theorem 3.16(c) the centre of AK is spanned by the elements fFl j l A Lg, so this
shows that pðL1; . . . ;LMÞ belongs to the centre of AK . However, pðL1; . . . ;LMÞ belongs to
AR so, in fact, pðL1; . . . ;LMÞ belongs to the centre of AR. Now, ZðARÞ is contained in the
centre of Ak and any symmetric polynomial over k can be lifted to a symmetric polynomial
over R. Thus, it follows that the symmetric polynomials in the JM-elements of Ak are cen-
tral in Ak. r
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All of the algebras in Theorem 4.10 satisfy the conditions of the proposition because,
using the notation above, if t A TðlÞ then Cl ¼ fctðiÞ j 1e ieMg for any of these alge-
bras. Notice, however, that the (cyclotomic) Schur algebras considered in section 2 and
the Brauer and BMW algebras do not satisfy the assumptions of Proposition 4.13.

Acknowledgements. I thank Marcos Soriano for many discussions about seminor-
mal forms of Hecke algebras and for his detailed comments and suggestions on this paper.
This paper also owes a debt to Gene Murphy as he pioneered the use of the Jucys-Murphy
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Appendix. Constructing idempotents
from triangular actions

By Marcos Soriano1) at Hannover

Abstract. We give a general construction of a complete set of orthogonal idempo-
tents starting from a set of elements acting in an (upper) triangular fashion. The construc-
tion is inspired in the Jucys-Murphy elements (in their various appearances in several cellu-
lar algebras).

1. Triangular actions: setup and notation

The construction of idempotents presented here is based only on matrix arithmetic.
However, whenever possible, we will mention the more suggestive notation from combina-
torial representation theory.

Let L be an R-algebra, where R is an arbitrary integral domain. The starting point is
a representation r of L via matrices over R, that is, an R-free (left) L-module M. Let d be
the R-rank of M and set d :¼ f1; . . . ; dg.

1.1. Remark. Until section 5 we will not make any additional assumptions on R or
L. We have in mind such examples as L being a cellular R-algebra and M a single cell
(‘‘Specht’’) module M, which would give rise to ‘‘Young’s Orthogonal Form’’ for M, as
well as the case M ¼ L itself, e.g. for questions of semisimplicity.

Assume that with respect to a certain basis (of ‘‘tableaux’’)

T :¼ ft1; . . . ; tdgHM

there is a finite set of elements L :¼ fL1; . . . ;LngHL (the ‘‘Jucys-Murphy’’ elements) act-
ing in an upper triangular way, that is,

rðLiÞ ¼

r1
i � � � � �

0 r2
i

. .
. ..

.

..

. . .
. . .

.
�

0 � � � 0 rdi

0
BBBBB@

1
CCCCCA; Ei A n

for certain diagonal entries fr ji g, i A n, j A d (the ‘‘residues’’ or ‘‘contents’’). Call

ðr j1 ; r
j

2 ; . . . ; r
j
nÞ

1) The author thanks Andrew Mathas for his generosity and hospitality.
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the residue sequence corresponding to the basis element tj. From now on, we identify Li

with its representing matrix, thus suppressing r. Note that we do not make any assumption
on hLi being central in L or that L consists of pairwise commuting elements.

Finally, we need some notation for matrices. We denote by fEijgi; j A d the canonical
basis of matrix units of MatdðRÞ, whose elements multiply according to EijEkl ¼ djkEil .
The subring of MatdðRÞ consisting of upper triangular matrices contains a nilpotent ideal
with R-basis fEijg1ei< jed which we denote by N. We define the support of a matrix
A ¼ ðaijÞ A MatdðRÞ in the obvious way,

suppðAÞ :¼ fði; jÞ A d � d j aij 3 0g:

To any i A d we associate the following subset of d 2:

ui :¼ fðk; lÞ A d 2 j ke ie lg;

and extend this definition to any non-empty subset JL d via uJ :¼
S
i A J

ui. If J is non-empty

then a matrix A has shape J if suppðAÞL uJ and the sequence ðaiiÞi A d of diagonal entries is
the characteristic function of the subset J, that is,

aii ¼
1; if i A J;

0; if i B J:

�

In particular, A A
P
i A J

Eii þN and A is upper triangular. For example, the matrices of

shape fig have the form

0 � � � 0 � � � � � �
. .
. ..

. ..
. ..

.

0 � �
1 � � � � �

0 � � � 0

. .
. ..

.

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

2. Cayley-Hamilton and lifting idempotents

Let us pause to consider a single upper triangular matrix

Z ¼

z1 � � � � �

0 z2
. .
. ..

.

..

. . .
. . .

.
�

0 � � � 0 zd

0
BBBBB@

1
CCCCCAA MatdðRÞ:
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Note that by the Cayley-Hamilton theorem, the matrix Z satisfies the polynomialQd
i¼1

ðX � ziÞ. Assume that Z has shape J for some non-empty JL d of cardinality k ¼ jJj.

Then Z satisfies the polynomial ðX � 1Þk � X d�k. What if k ¼ 1? Then the Cayley-
Hamilton equation for Z reads

0 ¼ Zd�1 � ðZ � 1Þ , Zd ¼ Zd�1:

This implies (by induction) Zdþj ¼ Zd for all jf 1. In particular, the element F :¼ Zd is
an idempotent.

Of course, this is just a special case of ‘‘lifting’’ idempotents, and can be extended (cf.
[1], Section I.12) to the following ring theoretical version (Lemma 2.4). We introduce some
notation first.

Let Nf 2 be a natural number (corresponding to the nilpotency degree in Lemma
2.4; for N ¼ 1 there is nothing to do). Consider the following polynomial in two (commut-
ing) indeterminates:

ðX þ Y Þ2N�1 ¼
P2N�1

i¼0

2N � 1

i

� �
X iY 2N�1�i

¼
PN�1

i¼0

2N � 1

i

� �
X 2N�1�iY i þ

PN�1

i¼0

2N � 1

i

� �
X iY 2N�1�i

¼: eNðX ;Y Þ þ eNðY ;X Þ

(using the symmetry of the binomial coe‰cients). Note that eNðX ;Y Þ has integer coe‰-
cients. Since N > 1,

eNðX ;Y Þ1X 2N�1 modðXY Þð2:1Þ

and eNðX ;YÞ1 0 modðXNÞ. This implies that

eNðX ;Y Þ � eNðY ;X Þ1 0 modðXYÞN :ð2:2Þ

Specialise to a single indeterminate by setting eNðXÞ :¼ eNðX ; 1 � XÞ and observe that

1 ¼ 12N�1 ¼
�
X þ ð1 � XÞ

�2N�1 ¼ eNðXÞ þ eNð1 � XÞ:ð2:3Þ

Now we are ready to formulate the

2.4. Lemma. Let H be a ring and N a nilpotent two-sided ideal of nilpotency degree

N. If x2 1 x modN, then e :¼ eNðxÞ is an idempotent with e1 x modN.

Proof. Note that x2 1 x modN , x� x2 ¼ xð1 � xÞ A N, implying

e ¼ eNðxÞ1 x2N�1 1 x modN

by equation (2.1). On the other hand, combining equations (2.2) and (2.3),
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e� e2 ¼ eð1 � eÞ ¼ eNðxÞeNð1 � xÞ1 0 mod
�
xð1 � xÞ

�N
:

But
�
xð1 � xÞ

�N
A NN ¼ 0, thus the equality e� e2 ¼ 0 holds and e is indeed an idempo-

tent. r

3. The separating condition and directedness

We consider first a simple version of the idempotent construction that is relevant to
semisimplicity questions. For i A d we denote by îi the set dnfig. Let us assume now that for
all i A d the following separating condition is satisfied:

Ej A îi bk A n such that rik � r
j
k A R�:ðSÞ

In particular, both residues are di¤erent. Of course, k may not be unique, but we assume a
fixed choice made for all possible pairs of indices. Then we define (1 denotes the identity
matrix)

Zi :¼
Q
j A îi

Lk � r
j
k1

rik � r
j
k

:

The product can be taken in any order, the essential fact being only to achieve that the ma-
trix Zi is of the form Zi ¼ Eii þNi for some upper triangular nilpotent matrix Ni. Just note
that for the j-th factor F in the definition of Zi we have

Fii ¼
rik � r

j
k

rik � r
j
k

¼ 1 and Fjj ¼
r
j
k � r

j
k

rik � r
j
k

¼ 0:

Now, using the observation of §2, we obtain a set of idempotents Ei :¼ Zd
i . Our first asser-

tion is

3.1. Lemma. The idempotent Ei has shape fig.

Proof. Any matrix of the form ðEii þNÞd with N A N has shape fig. To see this,
use the non-commutative binomial expansion for U ¼ ðEii þNÞd , that is, express U as a
sum of terms X1 � � �Xd , where Xj A fEii;Ng. If all Xj ¼ N, we have the (only) summand
of the form Nd ¼ 0 (by nilpotency), with no contribution. Similarly, if all Xj ¼ Eii, we ob-
tain one summand Eii.

In the case when X1 or Xd equals Eii, and at least one factor equals N, this summand
has the appropriate form,

either

0 � � � 0 0 0 � � � 0

. .
. ..

. ..
. ..

. ..
.

0 0 0 � � � 0

0 � � � � �
0 � � � 0

. .
. ..

.

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

or

0 � � � 0 � 0 � � � 0

. .
. ..

. ..
. ..

. ..
.

0 � 0 � � � 0

0 0 � � � 0

0 � � � 0

. .
. ..

.

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:
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Thus we are left with the summands having X1 ¼ Xd ¼ N and Xj ¼ Eii for some 1 < j < d.
But the support of any matrix in NEiiN is contained in the set fðk; sÞ A d 2 j k < i < sg, as
one sees by matrix unit gymnastics (running indices are underlined):

�P
k< j

akjEkj

�
� Eii �

�P
r<s

brsErs

�
¼
�P

k<j

akjEkj

��P
i<s

bisEis

�
¼

P
1ek<i<sed

akibisEks:

This finishes the proof of the lemma, as all summands add up to show that U � Eii is nil-
potent with support contained in ui. r

Lemma 3.1 has an important consequence: the one-sided ‘‘directed’’ orthogonality of
the obtained idempotents.

3.2. Definition. Let H be an arbitrary ring. Call a finite set fe1; . . . ; edg of idempo-
tents in H directed, if ejei ¼ 0 whenever j > i.

3.3. Lemma. The set of idempotents fEigi A d is directed.

Proof. Directedness is an immediate consequence of the fact that Ei has shape
fig. r

4. Gram-Schmidt orthogonalisation of directed systems of idempotents

We can now proceed inductively and construct a complete set of orthogonal idempo-
tents out of fEig. The inductive step goes as follows:

4.1. Lemma. Let H be an arbitrary ring. Assume we are given two finite sets of idem-

potents in H (one of them possibly empty):

E ¼ fe1; . . . ; ekg and F ¼ f fkþ1; fkþ2; . . . ; fdg

for some kf 0 with the following properties:

(a) E consists of pairwise orthogonal idempotents.

(b) F is directed.

(c) E is orthogonal to F, that is, ef ¼ 0 ¼ fe for e A E, f A F.

Set F :¼
Pk
i¼1

ei þ fkþ1. Then the sets of idempotents

~EE ¼ fe1; . . . ; ek; fkþ1g and F̂F ¼ fð1 � FÞ fkþ2; . . . ; ð1 � FÞ fdg

satisfy conditions (a)–(c).

Proof. First observe that F is an idempotent, by orthogonality. If jf k þ 2 we have
(by the orthogonality of E and F and the directedness of F) that
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fj � F ¼ fj � ðe1 þ � � � þ ek þ fkþ1Þ ¼
Pk
i¼1

fjei þ fj fkþ1 ¼ 0 þ 0 ¼ 0:

This implies that f̂fj :¼ ð1 � FÞ fj is an idempotent because

f̂f 2
j ¼ ð fj � FfjÞð fj � FfjÞ ¼ fj � Ffj � fjF|{z}

¼0

fj þ F fjF|{z}
¼0

fj ¼ ð1 � FÞ fj ¼ f̂fj:

Similarly, the set f f̂fsgkþ2esed is directed because for j > i > k þ 1

f̂fj � f̂fi ¼ ð fj � FfjÞð fi � FfiÞ ¼ fj fi|{z}
¼0

� fjF|{z}
¼0

fi � F fj fi|{z}
¼0

þF fjF|{z}
¼0

fi ¼ 0:

Since E is orthogonal to fkþ1, ~EE consists obviously of pairwise orthogonal idempotents.
Thus, we are left with checking orthogonality between fkþ1 and F̂F. Let jf k þ 2, then

fkþ1 � f̂fj ¼ fkþ1ð1 � FÞ fj ¼ fkþ1ð1 � fkþ1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0

fj �
Pk
i¼1

fkþ1ei fj|fflfflfflffl{zfflfflfflffl}
¼0

¼ 0;

as well as f̂fj � fkþ1 ¼ ð1 � FÞ fj fkþ1 ¼ 0 by directedness. r

Thus, keeping the notations from §1 and §3, we obtain the following

4.2. Proposition. A set L ¼ fL1; . . . ;Lng of ‘‘Jucys-Murphy operators’’ satisfying

the separating condition ðSÞ for all i A d gives rise to a complete set of orthogonal idempo-

tents fe1; . . . ; edg.

Proof. Starting from E ¼ j and F ¼ fEi ¼ Zd
i gi A d , we obtain—using Lemma 4.1 d

times—a set fe1; . . . ; edg of orthogonal idempotents.

Note that the idempotents ei have again shape fig (check this in the inductive step
from Lemma 4.1 by considering the form of the matrix 1� F ). Completeness of the set
fe1; . . . ; edg now follows easily, since we obviously have by Lemma 3.1:

e :¼ e1 þ � � � þ ed ¼ 1þN;

for some (upper triangular) nilpotent matrix N. Thus, 1� e is an idempotent and a nilpo-
tent matrix, implying that N ¼ 0. r

Note that the proof gives, at the same time, a practical algorithm for constructing the
complete set of orthogonal idempotents in question.

5. Linkage classes

From now on, we assume that R is a local commutative ring with maximal ideal m.
This includes the case of R being a field (when m ¼ 0).
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Fix k A n and j A d. We may assume without loss of generality that not all residues rik,
i A d, are zero (replace Lk by 1þ Lk if necessary2)). We say that i A d is linked to j via Lk, if
rik � r

j
k A m. Set

Lkð jÞ :¼ fi A d j i is linked to j via Lkg:

Observe that j A Lkð jÞ since 0 A m.

5.1. Definition. The linkage class of j A d with respect to L ¼ fL1; . . . ;Lng is the
set

Lð jÞ :¼
T
k A n

Lkð jÞ:

5.2. Remark. Linkage classes with respect to L partition the set d (of ‘‘tableaux’’)
into, say, l disjoint sets J1; . . . ; Jl . In view of the fact that Rnm ¼ R�, the assumption of the
separating condition ðSÞ from §3 for all i A d just translates into the condition of all linkage
classes being singletons.

Consider a fixed linkage class J. For all j A dnJ we assume that a fixed choice of k A n
and i A d has been made such that

rik � r
j
k A R� ¼ Rnm:

Then we define

ZJ :¼
Q
j B J

Lk � r
j
k1

rik � r
j
k

(the product can be taken in any order). Note that—by Lemma 3.1—Zd
J has shape J.

6. A general orthogonalisation algorithm for idempotents

6.1. Proposition. A set L ¼ fL1; . . . ;Lng partitioning d into l linkage classes gives

rise to a complete set fe1; . . . ; elg of orthogonal idempotents.

Again, the proof of the proposition provides an algorithm for constructing
fe1; . . . ; elg.

Proof. Let J1; . . . ; Jl denote the linkage classes and set Ui :¼ Zd
Ji

, a matrix of shape
Ji. We start the orthogonalisation procedure by setting E0 :¼ j and Fl :¼ fedðUiÞg1eiel .
Note that Fl consists of idempotents by Lemma 2.4. Assuming that two sets of idempotents
Ek ¼ fe1; . . . ; ekg (pairwise orthogonal) and Fl�k ¼ f fkþ1; . . . ; flg with Ek orthogonal to
Fl�k have been already constructed, we set Ekþ1 :¼ Ek W f fkþ1g and have to modify Fl�k

appropriately. The goal is that Fl�k�1 consists of idempotents orthogonal to Ekþ1.

2) Note that this does not change the property of the considered set of Jucys-Murphy operators of being

central in L or, rather, consisting of pairwise commuting elements.
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Set F :¼
P

e A Ekþ1

e and consider first ~ffj :¼ ed
�
ð1 � FÞ fj

�
for all jf k þ 2. Since

eð1 � FÞ ¼ 0 for e A Ekþ1 and edðX Þ A X d � Z½X ;Y �, Ekþ1 is left orthogonal to the idempo-
tent ~ffj , jf k þ 2. Similarly, multiplication from the right by ð1 � FÞ and application of the
polynomial ed forces right orthogonality to hold, while keeping left orthogonality. That is,
the set Fl�k�1 ¼ f f̂fkþ2; . . . ; f̂fdg with f̂fj :¼ ed

�
~ffjð1 � FÞ

�
has the desired properties.

Thus, after l steps, we end up with an orthogonal set of idempotents fe1; . . . ; elg. Ob-
serve that the inductive step described above does not change the shape of the idempotents,
implying that ei has shape Ji, just like the original idempotent edðUiÞ. This fact, in addition
to J1; . . . ; Jl partitioning d, leads to the equation

e1 þ � � � þ el ¼ 1�N

with N a nilpotent and idempotent matrix, thus implying N ¼ 0 and the completeness of
El . r

6.2. Remark. Retracing all steps in the proof of Proposition 6.1, we see that the
constructed idempotents ei belong to R½L1; . . . ;Ln�, the R-subalgebra of L generated by
L. Thus, if the elements from L do commute pairwise, this will still hold for the set of
idempotents E :¼ El .

In particular, assuming that L is a set of central Jucys-Murphy elements for the mod-
ule M ¼ L, we obtain a set E of central orthogonal idempotents. Thus, for example, the
block decomposition of L in the case of R being a field must be a refinement of the decom-
position into linkage classes induced by L.

We leave the adaptation of the presented methods to particular classes or examples
for L, R, M and L to the reader’s needs.
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